Sample records for silver nitrate method

  1. Accuracy, precision, usability, and cost of portable silver test methods for ceramic filter factories.

    PubMed

    Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S

    2017-02-01

    Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.

  2. Mechanism of Prophylaxis by Silver Compounds against Infection of Burns

    PubMed Central

    Ricketts, C. R.; Lowbury, E. J. L.; Lawrence, J. C.; Hall, M.; Wilkins, M. D.

    1970-01-01

    To clarify tthe mechanism by which local application of silver compounds protects burns against infection, an ion-specific electrode was used to measùre the concentration of silver ions in solutions. By this method it was shown that in burn dressings silver ions were reduced to a very low level by precipitation as silver chloride. The antibacterial effect was found to depend on the availability of silver ions from solution in contact with precipitate. Between 10-5 and 10-6 molar silver nitrate solution in water was rapidly bactericidal. The minimal amount of silver nitrate causing inhibition of respiration of skin in tissue culture was about 25 times the minimal concentration of silver nitrate that inhibited growth of Pseudomonas aeruginosa. PMID:4986877

  3. Method for producing microcomposite powders using a soap solution

    DOEpatents

    Maginnis, Michael A.; Robinson, David A.

    1996-01-01

    A method for producing microcomposite powders for use in superconducting and non-superconducting applications. A particular method to produce microcomposite powders for use in superconducting applications includes the steps of: (a) preparing a solution including ammonium soap; (b) dissolving a preselected amount of a soluble metallic such as silver nitrate in the solution including ammonium soap to form a first solution; (c) adding a primary phase material such as a single phase YBC superconducting material in particle form to the first solution; (d) preparing a second solution formed from a mixture of a weak acid and an alkyl-mono-ether; (e) adding the second solution to the first solution to form a resultant mixture; (f) allowing the resultant mixture to set until the resultant mixture begins to cloud and thicken into a gel precipitating around individual particles of the primary phase material; (g) thereafter drying the resultant mixture to form a YBC superconducting material/silver nitrate precursor powder; and (h) calcining the YBC superconducting material/silver nitrate precursor powder to convert the silver nitrate to silver and thereby form a YBC/silver microcomposite powder wherein the silver is substantially uniformly dispersed in the matrix of the YBC material.

  4. Rapid Fabrication of Silver Nanowires through Photoreduction of Silver Nitrate from an Anodic-Aluminum-Oxide Template

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Hsuan; Chen, Kun-Tso; Ho, Jeng-Rong

    2011-06-01

    A method for rapidly fabricating dense and high-aspect-ratio silver nanowires, with wire diameter of 200 nm and wire length more than 30 µm, is reported. The fabrication process simply involves filling the silver nitrate solution into the pores of an anodic-aluminum-oxide (AAO) membrane through capillary attraction and irradiating the dried template AAO membrane using a pulsed ArF excimer laser. Through varying the thickness and pore diameter of the employed AAO membrane, the primary dimensions of the targeted silver nanowires can be plainly specified; and, by amending the initial concentration of the silver nitrate solution and adjusting the laser operation parameters, laser fluence and number of laser pulses, the surface morphology and size of the resulting nanowires can be finely regulated. The wire formation mechanism is considered through two stages: the period of precipitation of silver particles from the dried silver nitrate film through the laser-induced photoreduction; and, the phase of clustering, merging and fusing of the reduced particles to form nanowires in the template pores by the thermal energy owing to photothermal effect. This approach is straightforward and takes the advantage that all the fabrication processes can be executed in an ambient environment and at room temperature. In addition, by the excellence in local processing that the laser possesses, this method is suitable for precisely growing nanowires.

  5. Analysis of Aircraft Fuels and Related Materials

    DTIC Science & Technology

    1982-09-01

    content by the Karl Fischer method . Each 2040 solvent sample represented a different step in a clean-up procedure conducted by Aero Propulsion...izes a potentiometric titration with alcoholic silver nitrate. This method has a minimum detectability of 1 ppm. It has a re- peatability of 0.1 ppm... Method 163-80, which util- izes a potentiometric titration with alcoholic silver nitrate. This method has a minimum detectability of 1 ppm and has a

  6. A novel Ag catalyzation process using swelling impregnation method for electroless Ni deposition on Kevlar® fiber

    NASA Astrophysics Data System (ADS)

    Pang, Hongwei; Bai, Ruicheng; Shao, Qinsi; Gao, Yufang; Li, Aijun; Tang, Zhiyong

    2015-12-01

    A novel Ag catalyzation process using swelling impregnation pretreatment method was developed for electroless nickel (EN) deposition on Kevlar fiber. Firstly, the fiber was immersed into an aqueous dimethylsulfoxide (DMSO) solution of silver nitrate to impart silver nitrate into the inner part of the fiber near the surface. Subsequently silver nitrate was reduced to metal silver nanoparticles on the fiber surface by treatment with aqueous solution of sodium borohydride. After electroless plating, a dense and homogeneous nickel coating was obtained on the fiber surface. The silver nanoparticles formed at the fiber surface functioned as a catalyst for electroless deposition as well as an anchor for the plated layer. The study also revealed that the incorporation of surfactant sodium dodecyl sulfate (SDS) in electroless nickel plating bath can enhance the adhesion strength of EN layer with the fiber surface and minimize the surface roughness of the EN coating. The Ni plated Kevlar fiber possessed excellent corrosion resistance and high tensile strength.

  7. 40 CFR 415.530 - Applicability; description of the silver nitrate production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... silver nitrate production subcategory. 415.530 Section 415.530 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.530 Applicability; description of the silver nitrate production subcategory. The provisions of this subpart are applicable to discharges and to the...

  8. 40 CFR 415.530 - Applicability; description of the silver nitrate production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... silver nitrate production subcategory. 415.530 Section 415.530 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.530 Applicability; description of the silver nitrate production subcategory. The provisions of this subpart are applicable to discharges and to the...

  9. 40 CFR 415.530 - Applicability; description of the silver nitrate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... silver nitrate production subcategory. 415.530 Section 415.530 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.530 Applicability; description of the silver nitrate production subcategory. The provisions of this subpart are applicable to discharges and to the...

  10. 40 CFR 415.530 - Applicability; description of the silver nitrate production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... silver nitrate production subcategory. 415.530 Section 415.530 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.530 Applicability; description of the silver nitrate production subcategory. The provisions of this subpart are applicable to discharges and to the...

  11. 40 CFR 415.530 - Applicability; description of the silver nitrate production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... silver nitrate production subcategory. 415.530 Section 415.530 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.530 Applicability; description of the silver nitrate production subcategory. The provisions of this subpart are applicable to discharges and to the...

  12. Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.)

    PubMed Central

    2014-01-01

    Background The aim of this study was to evaluate the effect of nano silver and silver nitrate on yield of seed in basil plant. The study was carried out in a randomized block design with three replications. Results Four levels of either silver nitrate (0, 100, 200 and 300 ppm) or nano silver (0, 20, 40, and 60 ppm) were sprayed on basil plant at seed growth stage. The results showed that there was no significant difference between 100 ppm of silver nitrate and 60 ppm concentration of nano silver on the shoot silver concentration. However, increasing the concentration of silver nitrate from 100 to 300 ppm caused a decrease in seed yield. In contrast, a raise in the concentration of nano silver from 20 to 60 ppm has led to an improvement in the seed yield. Additionally, the lowest amount of seed yield was found with control plants. Conclusions Finally, with increasing level of silver nitrate, the polyphenol compound content was raised but the enhancing level of nano silver resulting in the reduction of these components. In conclusion, nano silver can be used instead of other compounds of silver. PMID:25383311

  13. [Silver nitrate burn after Credé's preventive treatment. A roentgen analytic and scanning electron microscopy study].

    PubMed

    Schirner, G; Schrage, N F; Salla, S; Teping, C; Reim, M; Burchard, W G; Schwab, B

    1991-10-01

    Following Credé's prophylaxis with silver-nitrate, the cornea of a newborn presented greyish-brown, lime-like plaques on the nasal part of the right eye. A paracentral ulcerating stromal opacification undermined these appositions, when the patient was admitted to the eye-clinic at Aachen. In the material taken in a lamellar keratectomy scanning electron microscopical examination was able to prove the existence of granules, previously described in light-microscopy. These granules measured 100 to 300 nm in diameter and were placed up to 110 microns deep into the corneal stroma of the specimen. An earlier chemical analysis of necrotic material showed no silver specific reaction. By means of EDX-Analysis these granules could be identified as silver-containing. This was once reassured by a newly developed modification of van-Kossa's-staining-method. The fact that the granular deposits contained mainly silver proves that the onset of a sodium-chloride-irrigation did not promote an intended therapeutic silver-chloride-precipitation and therefore had no effects on the silver-nitrate's penetration abilities. Injuries by silver-nitrate-solutions used for Credé's prophylaxis are seldom but still reported. The mechanism of injury in this case of a child, born by sectio remains unknown. Neither the use of an unusual silvernitrate solution, that was taken from a disposable ampoule (Mova-Nitrat) was reported, nor any corneal injury during sectio mentioned.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely used...

  15. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely used...

  16. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Silver nitrate and hydrogen peroxide solution. 172... Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely used in accordance with the following...

  17. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely used...

  18. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities.

    PubMed

    Niraimathi, K L; Sudha, V; Lavanya, R; Brindha, P

    2013-02-01

    The present work focuses the use of the aqueous extract of Alternanthera sessilis Linn. (Amaranthaceae) in producing silver nanoparticles (AgNPs) from silver nitrate aqueous. Phytochemical analysis of the extract revealed the presence of alkaloid, tannins, ascorbic acid, carbohydrates and proteins and they serve as effective reducing and capping agents for converting silver nitrate into nanoparticles. The synthesized silver nanoparticles (AgNPs) were also tested for proteins and ascorbic acid. Its pH was also determined (5.63). The AgNPs obtained was characterized by UV-vis spectroscopy, FT-IR spectroscopy, SEM, Zeta sizer and TG-DSC. SEM images which revealed the presence of various shapes and sizes. FT-IR spectrum showed the AgNPs having a coating of proteins indicating a dual role of bio-molecules responsible for capping and efficient stabilization of the silver nanoparticles. Presence of impurities and melting point profile were screened by TG-DSC analyzer. AgNPs were synthesized from the silver nitrate through the reducing power of ascorbic acid present in A. sessilis leaves. In this study, we also investigated antimicrobial and antioxidant activity of green synthesized AgNPs. The antimicrobial activity is investigated by Bauer et al.'s method. Antioxidant activity was done by DPPH method. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Oxygen isotope exchange with quartz during pyrolysis of silver sulfate and silver nitrate.

    PubMed

    Schauer, Andrew J; Kunasek, Shelley A; Sofen, Eric D; Erbland, Joseph; Savarino, Joel; Johnson, Ben W; Amos, Helen M; Shaheen, Robina; Abaunza, Mariana; Jackson, Terri L; Thiemens, Mark H; Alexander, Becky

    2012-09-30

    Triple oxygen isotopes of sulfate and nitrate are useful metrics for the chemistry of their formation. Existing measurement methods, however, do not account for oxygen atom exchange with quartz during the thermal decomposition of sulfate. We present evidence for oxygen atom exchange, a simple modification to prevent exchange, and a correction for previous measurements. Silver sulfates and silver nitrates with excess (17)O were thermally decomposed in quartz and gold (for sulfate) and quartz and silver (for nitrate) sample containers to O(2) and byproducts in a modified Temperature Conversion/Elemental Analyzer (TC/EA). Helium carries O(2) through purification for isotope-ratio analysis of the three isotopes of oxygen in a Finnigan MAT253 isotope ratio mass spectrometer. The Δ(17)O results show clear oxygen atom exchange from non-zero (17)O-excess reference materials to zero (17)O-excess quartz cup sample containers. Quartz sample containers lower the Δ(17)O values of designer sulfate reference materials and USGS35 nitrate by 15% relative to gold or silver sample containers for quantities of 2-10 µmol O(2). Previous Δ(17)O measurements of sulfate that rely on pyrolysis in a quartz cup have been affected by oxygen exchange. These previous results can be corrected using a simple linear equation (Δ(17)O(gold) = Δ(17)O(quartz) * 1.14 + 0.06). Future pyrolysis of silver sulfate should be conducted in gold capsules or corrected to data obtained from gold capsules to avoid obtaining oxygen isotope exchange-affected data. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Preparation and Properties of Methylammonium, Perchlorate.

    DTIC Science & Technology

    1978-05-01

    accident which occurred during the preparation of MAP is described and discussed in Appendix III. 2.2 Chloride Silver nitrate solution was added to...placing it in a furnace at 200WC and heating to 830 C. The chloride formed was determined by titration with standard silver nitrate solution using...calculated by: V M x 3.545 m where V = net volume of silver nitrate solution (cm*) M = molarity of silver nitrate solution and m = mass of MAP (g) 2.7 Purity

  1. ARSENIC DETERMINATION BY THE SILVER DIETHYLDITHIOCARBAMATE METHOD AND THE ELIMINATION OF METAL ION INTERFERENCE

    EPA Science Inventory

    The interference of metals with the determination of arsenic by the silver diethyldithiocarbamate (SDDC) Method was investigated. Low recoveries of arsenic are obtained when cobalt, chromium, molybdenum, nitrate, nickel or phosphate are at concentrations of 7 mg/l or above (indiv...

  2. FINE GRAIN NUCLEAR EMULSION

    DOEpatents

    Oliver, A.J.

    1962-04-24

    A method of preparing nuclear track emulsions having mean grain sizes less than 0.1 microns is described. The method comprises adding silver nitrate to potassium bromide at a rate at which there is always a constant, critical excess of silver ions. For minimum size grains, the silver ion concentration is maintained at the critical level of about pAg 2.0 to 5.0 during prectpitation, pAg being defined as the negative logarithm of the silver ion concentration. It is preferred to eliminate the excess silver at the conclusion of the precipitation steps. The emulsion is processed by methods in all other respects generally similar to the methods of the prior art. (AEC)

  3. Stable silver/biopolymer hybrid plasmonic nanostructures for high performance surface enhanced raman scattering (SERS)

    USDA-ARS?s Scientific Manuscript database

    Silver/biopolymer nanoparticles were prepared by adding 100 mg silver nitrate to 2% polyvinyl alcohol solution and reduced the silver nitrate into silver ion using 2 % trisodium citrate for high performance Surface Enhanced Raman Scattering (SERS) substrates. Optical properties of nanoparticle were ...

  4. Research on metal-plated cellulose nitrate flakes and their infrared / millimeter wave characteristics

    NASA Astrophysics Data System (ADS)

    Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei

    2016-10-01

    Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.

  5. Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract

    NASA Astrophysics Data System (ADS)

    Balamurugan, Madheswaran; Saravanan, Shanmugam

    2017-12-01

    A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.

  6. Antibacterial Effect of Silver Diamine Fluoride on Cariogenic Organisms.

    PubMed

    Lou, Yali; Darvell, Brain W; Botelho, Michael G

    2018-05-01

    To screen the possible antimicrobial activity of a range of clinically used, silver-based compounds on cariogenic organisms: silver diamine fluoride (SDF), silver fluoride, and silver nitrate. Preliminary screening disk-diffusion susceptibility tests were conducted on Mueller-Hinton agar plates inoculated with Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces naeslundii, organisms known to be cariogenic. In order to identify which component of the silver compounds was responsible for any antibacterial (AB) effect, and to provide controls, the following were also investigated at high and low concentrations: sodium fluoride, ammonium fluoride, ammonium chloride, sodium fluoride, sodium chloride, and sodium nitrate, as well as deionized water as control. A volume of 10 pL of a test solution was dispensed onto a paper disk resting on the inoculated agar surface, and the plate incubated anaerobically at 37°C for 48 hours. The zones of inhibition were then measured. Silver diamine fluoride, silver fluoride, silver nitrate, and ammonium fluoride had significant AB effect (p < 0.05) on all three test organisms, although ammonium fluoride had no effect at low concentration; the remaining other compounds had no effect. Silver ions appear to be the principal AB agent at both high and low concentration; fluoride ions only have an AB effect at high concentration, while ammonium, nitrate, chloride and sodium ions have none. The anticaries effect of topical silver solutions appears restricted to that of the silver ions. Silver compounds, such as SDF, silver fluoride, and silver nitrate have AB effect against cariogenic organisms and these may have clinical impact in arresting or preventing dental decay. Sodium fluoride did not have AB effect under the conditions tested.

  7. Antimicrobial action of silver nitrate.

    PubMed

    Richards, R M

    1981-01-01

    Silver nitrate 3 mug/ml prevented the separation into two daughter cells of sensitive dividing cells of Pseudomonas aeruginosa growing in nutrient broth plus the chemical. Cell size of sensitive cells was increased and the cytoplasmic contents, cytoplasmic membrane and external cell envelope structures were all abnormal. P. aeruginosa cells grown in the presence of silver nitrate 9 mug/ml showed all these changes to a marked degree except inhibition of cell division was not observed. Silver nitrate (1.5 mug/ml) in distilled water inactivated bacteriophage T2 particles as determined by their infectivity to Escherichia coli B cultures. Lysozyme (50 mug/ml) reduced, and sodium chloride (0.9%) blocked this activity.

  8. A Comparison of Bipolar Electrocautery and Chemical Cautery for Control of Pediatric Recurrent Anterior Epistaxis.

    PubMed

    Johnson, Nathan; Faria, John; Behar, Philomena

    2015-11-01

    To compare the outcome of children with anterior epistaxis treated intraoperatively with either bipolar electrocautery or silver nitrate chemical cautery. Case series with chart review. Tertiary-care pediatric otolaryngology practice. Children aged 2 to 18 years treated with either intraoperative bipolar electrocautery or silver nitrate chemical cautery of the anterior nasal septum for recurrent anterior epistaxis. Any reported bleeding event after surgery was recorded. The mean time from surgery to recurrent epistaxis was compared between groups. Fifty patients underwent bipolar electrocautery, while 60 patients underwent silver nitrate chemical cautery. Within 2 years, 1 (2%) patient in the bipolar electrocautery group and 13 (22%) patients in the silver nitrate chemical cautery group had recurrent epistaxis (P = .003). Two years after treatment, there was no difference between treatment groups. Overall, 4 patients (8%) had recurrent epistaxis postoperatively in the bipolar electrocautery group at a mean of 4.34 years after treatment, while 17 (28.3%) patients recurred after a mean of 1.53 years of treatment in the silver nitrate chemical cautery group (P = .01). Compared to those treated with chemical cautery, those treated with bipolar electrocautery had a longer nosebleed-free period and a lower incidence of recurrent epistaxis within 2 years of treatment. Beyond 2 years, the treatment methods are equivocal. Bipolar electrocautery may be a superior treatment in children who will not tolerate in-office chemical cautery, in those with a risk of severe bleeding, or when it can be combined with other operative procedures. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  9. Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate.

    PubMed

    Raut, Rajesh Warluji; Mendhulkar, Vijay Damodhar; Kashid, Sahebrao Balaso

    2014-03-05

    The metal nanoparticle synthesis is highly explored field of nanotechnology. The biological methods seem to be more effective; however, due to slow reduction rate and polydispersity of the resulting products, they are less preferred. In the present study, we report rapid and facile synthesis of silver nanoparticles at room temperature. The exposure of reaction mixtures containing silver nitrate and dried leaf powder of Withania somnifera Linn to direct sunlight resulted in reduction of metal ions within five minutes whereas, the dark exposure took almost 12h. Further studies using different light filters reveal the role of blue light in reduction of silver ions. The synthesized silver nanoparticles were characterized by UV-Vis, Infrared spectroscopy (IR), Transmission Electron Microscopy (TEM), X-ray Diffraction studies (XRD), Nanoparticle Tracking Analysis (NTA), Energy Dispersive Spectroscopy (EDS), and Cyclic Voltammetry (CV). The Antibacterial and antifungal studies showed significant activity as compared to their respective standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method.

    PubMed

    Gorup, Luiz F; Longo, Elson; Leite, Edson R; Camargo, Emerson R

    2011-08-15

    A new method to stabilize silver nanoparticles by the addition of ammonia is proposed. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C. After approximately 12 min, a diluted ammonia solution was added to the reaction flask to form soluble diamine silver (I) complexes that played an important growth moderating role, making it possible to stabilize metallic silver nanoparticles with sizes as small as 1.6 nm after 17 min of reaction. Colloidal dispersions were characterized by UV-visible absorption spectroscopy, X-ray diffraction, and transmission electronic microscopy. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Nanocolloid substrate for surface enhanced Raman scattering sensor for biological applications

    USDA-ARS?s Scientific Manuscript database

    Biopolymer encapsulated with silver nanoparticle (BeSN) substrate was prepared by chemical reduction method with silver nitrate, trisodium citrate in addition to polyvinyl alcohol. Optical properties of BeSN were analyzed with UV/Vis spectroscopy and hyperspectral microscope imaging. UV/Visible spec...

  12. Immobilization of nitrate reductase onto epoxy affixed silver nanoparticles for determination of soil nitrates.

    PubMed

    Sachdeva, Veena; Hooda, Vinita

    2015-08-01

    Epoxy glued silver nanoparticles were used as immobilization support for nitrate reductase (NR). The resulting epoxy/AgNPs/NR conjugates were characterized at successive stages of fabrication by scanning electron microscopy and fourier transform infrared spectroscopy. The immobilized enzyme system exhibited reasonably high conjugation yield (37.6±0.01 μg/cm(2)), with 93.54±0.88% retention of specific activity. Most favorable working conditions of pH, temperature and substrate concentration were ascertained to optimize the performance of epoxy/AgNPs/NR conjugates for soil nitrate quantification. The analytical results for soil nitrate determination were consistent, reliable and reproducible. Minimum detection limit of the method was 0.05 mM with linearity from 0.1 to 11.0 mM. The % recoveries of added nitrates (0.1 and 0.2 mM) were<95.0% and within-day and between-day coefficients of variations were 0.556% and 1.63% respectively. The method showed good correlation (R(2)=0.998) with the popular Griess reaction method. Epoxy/AgNPs bound NR had a half-life of 18 days at 4 °C and retained 50% activity after 15 reuses. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Synthesis of Silver Polymer Nanocomposites and Their Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Gavade, Chaitali; Shah, Sunil; Singh, N. L.

    2011-07-01

    PVA (Polyvinyl Alcohol) silver nanocomposites of different sizes were prepared by chemical reduction method. Silver nitrate was taken as the metal precursor and amine hydrazine as a reducing agent. The formation of the silver nanoparticles was noticed using UV- visible absorption spectroscopy. The UV-visible spectroscopy revealed the formation of silver nanoparticles by exhibiting the surface plasmon resonance. The bactericidal activity due to silver release from the surface was determined by the modification of conventional diffusion method. Salmonella typhimurium, Serratia sps and Shigella sps were used as test bacteria which are gram-negative type bacteria. Effect of the different sizes of silver nano particles on antibacterial efficiency was discussed. Zones of inhibition were measured after 24 hours of incubation at 37 °C which gave 20 mm radius for high concentration of silver nanoparticles.

  14. In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation

    PubMed Central

    Wang, Zheng; Sun, Yan; Wang, Dongzhou; Liu, Hong; Boughton, Robert I

    2013-01-01

    A silver nanoparticle (AgNP)-filled hydrogen titanate nanotube layer was synthesized in situ on a metallic titanium substrate. In the synthesis approach, a layer of sodium titanate nanotubes is first prepared on the titanium surface by using a hydrothermal method. Silver nitrate solution is absorbed into the nanotube channels by immersing a dried nanotube layer in silver nitrate solution. Finally, silver ions are reduced by glucose, leading to the in situ growth of AgNPs in the hydrogen titanate nanotube channels. Long-term silver release and bactericidal experiments demonstrated that the effective silver release and effective antibacterial period of the titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface can extend to more than 15 days. This steady and prolonged release characteristic is helpful to promote a long-lasting antibacterial capability for the prevention of severe infection after surgery. A series of antimicrobial and biocompatible tests have shown that the sandwich nanostructure with a low level of silver loading exhibits a bacteriostatic rate as high as 99.99%, while retaining low toxicity for cells and possessing high osteogenic potential. Titanium foil with a AgNP-filled hydrogen titanate nanotube layer on the surface that is fabricated with low-cost surface modification methods is a promising implantable material that will find applications in artificial bones, joints, and dental implants. PMID:23966780

  15. A green synthesis method for large area silver thin film containing nanoparticles.

    PubMed

    Shinde, N M; Lokhande, A C; Lokhande, C D

    2014-07-05

    The green synthesis method is inexpensive and convenient for large area deposition of thin films. For the first time, a green synthesis method for large area silver thin film containing nanoparticles is reported. Silver nanostructured films are deposited using silver nitrate solution and guava leaves extract. The study confirmed that the reaction time plays a key role in the growth and shape/size control of silver nanoparticles. The properties of silver films are studied using UV-visible spectrophotometer, scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), contact angle, Fourier-transform Raman (FT-Raman) spectroscopy and Photoluminescence (PL) techniques. Finally, as an application, these films are used effectively in antibacterial activity study. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species

    PubMed Central

    Andrade, Juvana M.; Baba, Elio H.; Machado-de-Avila, Ricardo A.; Chavez-Olortegui, Carlos; Demicheli, Cynthia P.; Frézard, Frédéric

    2016-01-01

    Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (SbIII) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased SbIII susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to SbIII exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, SbIII-sodium nitrate or SbIII-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of SbIII alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to SbIII and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated SbIII susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and SbIII. PMID:27161624

  17. Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species.

    PubMed

    Andrade, Juvana M; Baba, Elio H; Machado-de-Avila, Ricardo A; Chavez-Olortegui, Carlos; Demicheli, Cynthia P; Frézard, Frédéric; Monte-Neto, Rubens L; Murta, Silvane M F

    2016-08-01

    Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (Sb(III)) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased Sb(III) susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to Sb(III) exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, Sb(III)-sodium nitrate or Sb(III)-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of Sb(III) alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to Sb(III) and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated Sb(III) susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and Sb(III). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Novel method for synthesis of silver nanoparticles and their application on wool

    NASA Astrophysics Data System (ADS)

    Boroumand, Majid Nasiri; Montazer, Majid; Simon, Frank; Liesiene, Jolanta; Šaponjic, Zoran; Dutschk, Victoria

    2015-08-01

    In this study, a new method for the synthesis of silver nanoparticles (AgNPs) suitable to impart antibacterial properties of wool fabric is proposed. AgNPs were synthesized by a biochemical reduction method. An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for the synthesis of AgNPs from silver nitrate. The ratio of dye to silver nitrate concentration (RDye/Ag = [Dye]/[AgNO3]) is the influencing factor in the synthesis of silver nanoparticles. The nanoparticles formation was followed by UV/Vis absorption spectroscopy. The size and shape of AgNPs were studied by transmission electron microscopy (TEM). The size distribution and Zetapotential of nanoparticles were evaluated using diffraction light scattering (DLS) measurements. The antibacterial potential of biosynthesized silver nanoparticles against Escherichia coli (E. coli) was examined qualitatively and quantitatively. Kinetic analysis of the bacteria reduction using AgNPs synthesized in different way was performed. AgNPs were applied on wool fabrics by exhaustion. The changes in surface morphology of wool fibers after AgNPs loading were studied using scanning electron microscopy (SEM). The amounts of silver deposited on wool fabrics at different pH and temperature were compared applying energy-dispersive X-ray spectroscopy (EDX). AgNPs loaded fabrics showed excellent antibacterial efficiency even after five washing cycles. To investigate the nature of interaction and bonding between the AgNPs and the wool substrate XPS measurements were performed.

  19. Synthesis of silver nanowires using hydrothermal technique for flexible transparent electrode application

    NASA Astrophysics Data System (ADS)

    Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.; Jayaraj, M. K.

    2016-05-01

    Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.

  20. Synthesis of silver nanowires using hydrothermal technique for flexible transparent electrode application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.

    2016-05-23

    Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.

  1. 40 CFR 415.531 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Silver Nitrate Production... shall apply to this subpart. (b) The term product shall mean silver nitrate. (c) The term process...

  2. 40 CFR 415.531 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Silver Nitrate Production... shall apply to this subpart. (b) The term product shall mean silver nitrate. (c) The term process...

  3. 40 CFR 415.531 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Silver Nitrate Production... shall apply to this subpart. (b) The term product shall mean silver nitrate. (c) The term process...

  4. 40 CFR 415.531 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Silver Nitrate Production... shall apply to this subpart. (b) The term product shall mean silver nitrate. (c) The term process...

  5. Two step continuous method to synthesize colloidal spheroid gold nanorods.

    PubMed

    Chandra, S; Doran, J; McCormack, S J

    2015-12-01

    This research investigated a two-step continuous process to synthesize colloidal suspension of spheroid gold nanorods. In the first step; gold precursor was reduced to seed-like particles in the presence of polyvinylpyrrolidone and ascorbic acid. In continuous second step; silver nitrate and alkaline sodium hydroxide produced various shape and size Au nanoparticles. The shape was manipulated through weight ratio of ascorbic acid to silver nitrate by varying silver nitrate concentration. The specific weight ratio of 1.35-1.75 grew spheroid gold nanorods of aspect ratio ∼1.85 to ∼2.2. Lower weight ratio of 0.5-1.1 formed spherical nanoparticle. The alkaline medium increased the yield of gold nanorods and reduced reaction time at room temperature. The synthesized gold nanorods retained their shape and size in ethanol. The surface plasmon resonance was red shifted by ∼5 nm due to higher refractive index of ethanol than water. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Antimicrobial activity of silver nanoparticles impregnated wound dressing

    NASA Astrophysics Data System (ADS)

    Shinde, V. V.; Jadhav, P. R.; Patil, P. S.

    2013-06-01

    In this work, silver nanoparticles were synthesized by simple wet chemical reduction method. The silver nitrate was reduced by Sodium borohydride used as reducing agent and Poly (vinyl pyrrolidone) (PVP) as stabilizing agent. The formation of silver nanoparticles was evaluated by UV-visible spectroscope and transmission electron microscope (TEM). Absorption spectrum consist two plasmon peaks at 410 and 668 nm revels the formation of anisotropic nanoparticles confirmed by TEM. The formation of silver nanoparticles was also evidenced by dynamic light scattering (DLS) study. DLS showed polydisperse silver nanoparticles with hydrodynamic size 32 nm. Protecting mechanism of PVP was manifested by FT-Raman study. Silver nanoparticles were impregnated into wound dressing by sonochemical method. The Kirby-Bauer disc diffusion methods were used for antimicrobial susceptibility testing. The antimicrobial activity of the samples has been tested against gram-negative bacterium Escherichia coli and gram-positive bacterium Staphylococcus aureus.

  7. Capsaicin-capped silver nanoparticles: its kinetics, characterization and biocompatibility assay

    NASA Astrophysics Data System (ADS)

    Amruthraj, Nagoth Joseph; Preetam Raj, John Poonga; Lebel, Antoine

    2015-04-01

    Capsaicin was used as a bio-reductant for the reduction of silver nitrate to form silver nanoparticles. The formation of the silver nanoparticles was initially confirmed by color change and Tyndall effect of light scattering. It was characterized with UV-visible spectroscopy, FTIR and TEM. Hemagglutination (H) test and H-inhibition assay were performed in the presence of AgNPs-capsaicin conjugates. The silver colloid solution after complete reduction turned into pale gray color. The characteristic surface plasmon resonance of silver nanoparticles (SNPs) was observed at 450 nm. Time taken for complete bio-reduction of silver nitrate and capping was found to be 16 hours. The amount of capsaicin required to reduce 20 ml of 1 mM silver nitrate solution was found to be 40 μg approximately. The FTIR results confirmed the capping of capsaicin on the silver metal. The particle size was within the range of 20-30 nm. The hemagglutination and H-inhibition test was negative for all the blood groups. The capsaicin-capped silver nanoparticles were compatible with blood cells in hemagglutination test implying biocompatibility as future therapeutic drug.

  8. Defect modes in silver-doped photonic crystals made by holography using dichromated gelatin

    NASA Astrophysics Data System (ADS)

    Dai, Rui; Chen, Shujing; Ren, Zhi; Wang, Zhaona; Liu, Dahe

    2012-10-01

    The defect mode in silver-doped photonic crystals is investigated. 1D and 3D photonic crystals were made by holography using dichromated gelatin mixed with silver nitrate. By controlling the concentration of the silver nitrate, the defect mode was observed in the bandgaps of the holographic photonic crystals. The numerical simulations were made, and the results showed the consistency with the experimental observations.

  9. Structural modification in the formation of starch - silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal

    2016-05-01

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  10. Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties

    PubMed Central

    Kemp, Melissa M; Kumar, Ashavani; Clement, Dylan; Ajayan, Pulickel; Mousa, Shaker

    2009-01-01

    Aims Silver nanoparticles exhibit unique antibacterial properties that make these ideal candidates for biological and medical applications. We utilized a clean method involving a single synthetic step to prepare silver nanoparticles that exhibit antimicrobial activity. Materials & methods These nanoparticles were prepared by reducing silver nitrate with diaminopyridinylated heparin (DAPHP) and hyaluronan (HA) polysaccharides and tested for their efficacy in inhibiting microbial growth. Results & discussion The resulting silver nanoparticles exhibit potent antimicrobial activity against Staphylococcus aureus and modest activity against Escherichia coli. Silver–HA showed greater antimicrobial activity than silver–DAPHP, while silver–glucose nanoparticles exhibited very weak antimicrobial activity. Neither HA nor DAPHP showed activity against S. aureus or E. coli. Conclusion These results suggest that DAPHP and HA silver nanoparticles have potential in antimicrobial therapeutic applications. PMID:19505245

  11. DIFFERENTIAL THERMOMETRIC TITRATIONS AND THE DETERMINATION OF HEATS OF REACTION,

    DTIC Science & Technology

    TITRATION , THERMISTORS), (*HEAT OF REACTION, TITRATION ), SILVER COMPOUNDS, NITRATES, AMMONIA, PYRIDINES, ETHYLENEDIAMINE, AMINES, ALCOHOLS, BUTANOLS, PROPANOLS, SODIUM COMPOUNDS, HYDROXIDES, TEST METHODS

  12. Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae.

    PubMed

    Kalpana, Duraisamy; Lee, Yang Soo

    2013-03-05

    Silver nanoparticles were synthesized by biological method using cultural filtrate of Klebsiella pneumoniae cultured under simulated microgravity and silver nitrate solution as precursor. The nanoparticles exhibited typical plasmon absorption maximum of silver nanoparticles between 405 and 407 nm. Spherical silver nanoparticles were found to have size between 15 and 37 nm by TEM analysis. XRD pattern corresponding to planes (111), (200), (220) (311) revealed the crystalline nature of the biosynthesized silver nanoparticles. FTIR spectrum proposed stabilization of silver nanoparticles by the protein molecules present in the cultural filtrate. The silver nanoparticles exhibited high bactericidal activity against Salmonella enterica, Escherichia coli and moderate bactericidal activity against Streptococcus pyogenes. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles.

    PubMed

    Amooaghaie, Rayhaneh; Saeri, Mohammad Reza; Azizi, Morteza

    2015-10-01

    Despite the development potential in the field of nanotechnology, there is a concern about possible effects of nanoparticles on the environment and human health. In this study, silver nanoparticles (AgNPs) were synthesized by 'green' and 'chemical' methods. In the wet-chemistry method, sodium borohydrate, sodium citrate and silver nitrate were used as raw materials. Leaf extract of Nigella sativa was used as reducing as well as capping agent to reduce silver nitrate in the green synthesis method. In addition, toxic responses of both synthesized AgNPs were monitored on bone-building stem cells of mice as well as seed germination and seedling growth of six different plants (Lolium, wheat, bean and common vetch, lettuce and canola). In both synthesis methods, the colorless reaction mixtures turned brown and UV-visible spectra confirmed the presence of silver nanoparticles. Scanning electron microscope (SEM) observations revealed the predominance of silver nanosized crystallites and fourier transform infra-red spectroscopy (FTIR) indicated the role of different functional groups in the synthetic process. MTT assay showed cell viability of bone-building stem cells of mice was further in the green AgNPs synthesized using black cumin extract than chemical AgNPs. IC50 (inhibitory concentrations) values for seed germination, root and shoot length for 6 plants in green AgNPs exposures were higher than the chemical AgNPs. These results suggest that cytotoxicity and phytotoxicity of the green synthesized AgNPs were significantly less than wet-chemistry synthesized ones. This study indicated an economical, simple and efficient ecofriendly technique using leaves of N. sativa for synthesis of AgNPs and confirmed that green AgNPs are safer than chemically-synthesized AgNPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Revitalising Silver Nitrate for Caries Management

    PubMed Central

    Zhao, Irene Shuping; Duffin, Steve; Duangthip, Duangporn

    2018-01-01

    Silver nitrate has been adopted for medical use as a disinfectant for eye disease and burned wounds. In dentistry, it is an active ingredient of Howe’s solution used to prevent and arrest dental caries. While medical use of silver nitrate as a disinfectant became subsidiary with the discovery of antibiotics, its use in caries treatment also diminished with the use of fluoride in caries prevention. Since then, fluoride agents, particularly sodium fluoride, have gained popularity in caries prevention. However, caries is an infection caused by cariogenic bacteria, which demineralise enamel and dentine. Caries can progress and cause pulpal infection, but its progression can be halted through remineralisation. Sodium fluoride promotes remineralisation and silver nitrate has a profound antimicrobial effect. Hence, silver nitrate solution has been reintroduced for use with sodium fluoride varnish to arrest caries as a medical model strategy of caries management. Although the treatment permanently stains caries lesions black, this treatment protocol is simple, painless, non-invasive, and low-cost. It is well accepted by many clinicians and patients and therefore appears to be a promising strategy for caries control, particularly for young children, the elderly, and patients with severe caries risk or special needs. PMID:29316616

  15. Photochemical decoration of magnetic composites with silver nanostructures for determination of creatinine in urine by surface-enhanced Raman spectroscopy.

    PubMed

    Alula, Melisew Tadele; Yang, Jyisy

    2014-12-01

    In this study, silver nanostructures decorated magnetic nanoparticles for surface-enhanced Raman scattering (SERS) measurements were prepared via photoreduction utilizing the catalytic activity of ZnO nanostructure. The ZnO/Fe3O4 composite was first prepared by dispersing pre-formed magnetic nanoparticles into alkaline zinc nitrate solutions. After annealing of the precipitates, the formed ZnO/Fe3O4 composites were successfully decorated with silver nanostructures by soaking the composites into silver nitrate/ethylene glycol solution following UV irradiations. To find the optimal condition when preparing Ag@ZnO/Fe3O4 composites for SERS measurements, factors such as the reaction conditions, photoreduction time, concentration of zinc nitrate and silver nitrate were studied. Results indicated that the photoreduction efficiency was significantly improved with the assistance of ZnO but the amount of ZnO in the composite is not critical. The concentration of silver nitrate and UV irradiation time affected the morphologies of the formed composites and optimal condition in preparation of the composites for SERS measurement was found using 20mM of silver nitrate with an irradiation time of 90 min. Under the optimized condition, the obtained SERS intensities were highly reproducible with a SERS enhancement factor in the order of 7. Quantitative analyses showed that a linear range up to 1 µM with a detection limit lower than 0.1 µM in the detection of creatinine in aqueous solution could be obtained. Successful applying of these prepared composites to determine creatinine in urine sample was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Purification of simulated waste water using green synthesized silver nanoparticles of Piliostigma thonningii aqueous leave extract

    NASA Astrophysics Data System (ADS)

    Shittu, K. O.; Ihebunna, O.

    2017-12-01

    Synthesis of nanoparticles from various biological systems has been reported, but among all such systems, biosynthesis of nanoparticles from plants is considered the most suitable method. The use of plant material not only makes the process eco-friendly, but also the abundance makes it more economical. The aim of this study was to biologically synthesize silver nanoparticle using Piliostigma thonningii aqueous leaf extract and applied in the purification of laboratory stimulated waste with optimization using the different conditions of silver nanoparticle production such as time, temperature, pH, concentration of silver nitrate and volume of the aqueous extract. The biosynthesized silver nanoparticles were characterized by UV-visible spectrophotometry, nanosizer, energy dispersive x-ray analysis (EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. The time intervals for the reaction with aqueous silver nitrate solution shows an increase in the absorbance with time and became constant giving a maximum absorbance at 415 nm at 60 min of incubation. The pH of 6.5, temperature 65 °C, 1.25 mM of silver nitrate and 5 ml of plant extract was the best condition with maximum absorbance. The results from nanosizer, UV-vis and TEM suggested the biosynthesis silver nanoparticle to be spherical ranging from 50 nm to 114 nm. The EDX confirmed the elemental synthesis of silver at 2.60 keV and FTIR suggested the capping agent to be hydroxyl (OH) group with -C=C stretching vibrations. The synthesized silver nanoparticle also shows heavy metal removal activity in laboratory simulated waste water. The safety toxicity studies show no significant difference between the orally administered silver nanoparticles treated water group and control group, while the histopathological studies show well preserved hepatic architecture for the orally administered silver nanoparticle treated waste water group when compared with the control group. Therefore, it can be concluded that the biosynthesized silver nanoparticles have efficient ability in heavy metal removal without sub chronic adverse effects in experimental rats.

  17. 40 CFR 415.532 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.532 Effluent limitations guidelines... available (BPT): Subpart BA—Silver Nitrate Pollutant or pollutant property BPT limitations Maximum for any 1...

  18. 40 CFR 415.532 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.532 Effluent limitations guidelines... available (BPT): Subpart BA—Silver Nitrate Pollutant or pollutant property BPT limitations Maximum for any 1...

  19. 40 CFR 415.532 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.532 Effluent limitations guidelines... available (BPT): Subpart BA—Silver Nitrate Pollutant or pollutant property BPT limitations Maximum for any 1...

  20. Fluorogenic Ag+–Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver Staining

    PubMed Central

    Xie, Sheng; Wong, Alex Y. H.; Kwok, Ryan T. K.; Li, Ying; Su, Huifang; Lam, Jacky W. Y.

    2018-01-01

    Abstract Silver staining, which exploits the special bioaffinity and the chromogenic reduction of silver ions, is an indispensable visualization method in biology. It is a most popular method for in‐gel protein detection. However, it is limited by run‐to‐run variability, background staining, inability for protein quantification, and limited compatibility with mass spectroscopic (MS) analysis; limitations that are largely attributed to the tricky chromogenic visualization. Herein, we reported a novel water‐soluble fluorogenic Ag+ probe, the sensing mechanism of which is based on an aggregation‐induced emission (AIE) process driven by tetrazolate‐Ag+ interactions. The fluorogenic sensing can substitute the chromogenic reaction, leading to a new fluorescence silver staining method. This new staining method offers sensitive detection of total proteins in polyacrylamide gels with a broad linear dynamic range and robust operations that rival the silver nitrate stain and the best fluorescent stains. PMID:29575702

  1. Structural modification in the formation of starch – silver nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begum, S. N. Suraiya; Ramasamy, Radha Perumal, E-mail: perumal.ramasamy@gmail.com; Aswal, V. K.

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO{sub 3}) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO{sub 3}. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structuresmore » and with increasing the AgNO{sub 3} concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.« less

  2. Step-reduced synthesis of starch-silver nanoparticles.

    PubMed

    Raghavendra, Gownolla Malegowd; Jung, Jeyoung; Kim, Dowan; Seo, Jongchul

    2016-05-01

    In the present process, silver nanoparticles were directly synthesized in a single step by microwave irradiation of a mixture of starch, silver nitrate, and deionized water. This is different from the commonly adopted procedure for starch-silver nanoparticle synthesis in which silver nanoparticles are synthesized by preparing a starch solution as a reaction medium first. Thus, the additional step associated with the preparation of the starch solution was eliminated. In addition, no additional reducing agent was utilized. The adopted method was facile and straight forward, affording spherical silver nanoparticles with diameter below 10nm that exhibited good antibacterial activity. Further, influence of starch on the size of the silver nanoparticles was noticed. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Green and ecofriendly synthesis of silver nanoparticles: Characterization, biocompatibility studies and gel formulation for treatment of infections in burns.

    PubMed

    Jadhav, Kiran; Dhamecha, Dinesh; Bhattacharya, Debdutta; Patil, Mrityunjaya

    2016-02-01

    The current study summarizes a unique green process for the synthesis of silver nanoparticles (AgNPs) by simple treatment of silver nitrate with aqueous extract of Ammania baccifera. Phytosynthesized AgNPs were characterized by various advanced analytical methods and studied for its use against infections associated with burns. Formation of AgNPs was observed by visual color change from colorless to dark brown and confirmed by UV-visible characteristic peak at 436 nm. Zeta potential, particle size and polydispersity index of nano-silver were found to be -33.1 ± 1.12, 112.6 ± 6.8 nm and 0.3 ± 0.06 respectively. XRD spectra revealed crystalline nature of AgNPs whereas TEM confirmed the presence of mixed morphology of AgNPs. The overall approach designated in the present research investigation for the synthesis of AgNPs is based on all 12 principles of green chemistry, in which no man-made chemical other than the silver nitrate was used. Synthesized nano-silver colloidal dispersion was initially tested for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against a panel of organisms involved in infections associated with burns (Pseudomonas aeruginosa (PA), Staphylococcus aureus (SA) and methicillin resistant S. aureus (MRSA)). MIC and MBC were found to be in range of 0.992 to 7.93 and 7.93 to 31.75 μg/mL respectively. MBC was used for formulation of AgNP gel and tested for its efficacy using agar well diffusion method against PA, SA and MRSA. Comparative bactericidal efficacy of formulated gel (0.03% w/w) and marked formulation Silverex™ ionic (silver nitrate gel 0.2% w/w) showed equal zone of inhibition against all pathogenic bacteria. Formulated AgNP gel consisting of 95% lesser concentration of silver compared to marketed formulation was found to be equally effective against all organisms. Hence, the formulated AgNP gel could serve as a better alternative with least toxicity towards the treatment presently available for infections in burns. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Complexes of silver(I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts.

    PubMed

    Chudobova, Dagmar; Nejdl, Lukas; Gumulec, Jaromir; Krystofova, Olga; Rodrigo, Miguel Angel Merlos; Kynicky, Jindrich; Ruttkay-Nedecky, Branislav; Kopel, Pavel; Babula, Petr; Adam, Vojtech; Kizek, Rene

    2013-06-28

    Polymers are currently widely used to replace a variety of natural materials with respect to their favourable physical and chemical properties, and due to their economic advantage. One of the most important branches of application of polymers is the production of different products for medical use. In this case, it is necessary to face a significant disadvantage of polymer products due to possible and very common colonization of the surface by various microorganisms that can pose a potential danger to the patient. One of the possible solutions is to prepare polymer with antibacterial/antimicrobial properties that is resistant to bacterial colonization. The aim of this study was to contribute to the development of antimicrobial polymeric material ideal for covering vascular implants with subsequent use in transplant surgery. Therefore, the complexes of polymeric substances (hyaluronic acid and chitosan) with silver nitrate or silver phosphate nanoparticles were created, and their effects on gram-positive bacterial culture of Staphylococcus aureus were monitored. Stages of formation of complexes of silver nitrate and silver phosphate nanoparticles with polymeric compounds were characterized using electrochemical and spectrophotometric methods. Furthermore, the antimicrobial activity of complexes was determined using the methods of determination of growth curves and zones of inhibition. The results of this study revealed that the complex of chitosan, with silver phosphate nanoparticles, was the most suitable in order to have an antibacterial effect on bacterial culture of Staphylococcus aureus. Formation of this complex was under way at low concentrations of chitosan. The results of electrochemical determination corresponded with the results of spectrophotometric methods and verified good interaction and formation of the complex. The complex has an outstanding antibacterial effect and this effect was of several orders higher compared to other investigated complexes.

  5. Complexes of Silver(I) Ions and Silver Phosphate Nanoparticles with Hyaluronic Acid and/or Chitosan as Promising Antimicrobial Agents for Vascular Grafts

    PubMed Central

    Chudobova, Dagmar; Nejdl, Lukas; Gumulec, Jaromir; Krystofova, Olga; Rodrigo, Miguel Angel Merlos; Kynicky, Jindrich; Ruttkay-Nedecky, Branislav; Kopel, Pavel; Babula, Petr; Adam, Vojtech; Kizek, Rene

    2013-01-01

    Polymers are currently widely used to replace a variety of natural materials with respect to their favourable physical and chemical properties, and due to their economic advantage. One of the most important branches of application of polymers is the production of different products for medical use. In this case, it is necessary to face a significant disadvantage of polymer products due to possible and very common colonization of the surface by various microorganisms that can pose a potential danger to the patient. One of the possible solutions is to prepare polymer with antibacterial/antimicrobial properties that is resistant to bacterial colonization. The aim of this study was to contribute to the development of antimicrobial polymeric material ideal for covering vascular implants with subsequent use in transplant surgery. Therefore, the complexes of polymeric substances (hyaluronic acid and chitosan) with silver nitrate or silver phosphate nanoparticles were created, and their effects on gram-positive bacterial culture of Staphylococcus aureus were monitored. Stages of formation of complexes of silver nitrate and silver phosphate nanoparticles with polymeric compounds were characterized using electrochemical and spectrophotometric methods. Furthermore, the antimicrobial activity of complexes was determined using the methods of determination of growth curves and zones of inhibition. The results of this study revealed that the complex of chitosan, with silver phosphate nanoparticles, was the most suitable in order to have an antibacterial effect on bacterial culture of Staphylococcus aureus. Formation of this complex was under way at low concentrations of chitosan. The results of electrochemical determination corresponded with the results of spectrophotometric methods and verified good interaction and formation of the complex. The complex has an outstanding antibacterial effect and this effect was of several orders higher compared to other investigated complexes. PMID:23812079

  6. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    NASA Astrophysics Data System (ADS)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  7. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    PubMed Central

    2014-01-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904

  8. Well-defined N-heterocyclic carbene silver halides of 1-cyclohexyl-3-arylmethylimidazolylidenes: synthesis, structure and catalysis in A3-reaction of aldehydes, amines and alkynes.

    PubMed

    Li, Yanbo; Chen, Xiaofeng; Song, Yin; Fang, Ling; Zou, Gang

    2011-03-07

    Structurally well-defined N-heterocyclic carbene silver chlorides and bromides supported by 1-cyclohexyl-3-benzylimidazolylidene (CyBn-NHC) or 1-cyclohexyl-3-naphthalen-2-ylmethylimidazolylidene (CyNaph-NHC) were synthesized by reaction of the corresponding imidazolium halides with silver(I) oxide while cationic bis(CyBn-NHC) silver nitrate was isolated under similar conditions using imidazolium iodide in the presence of sodium nitrate. Single-crystal X-ray diffraction revealed a dimeric structure through a nonpolar weak-hydrogen-bond supported Ag-Ag bond for 1-cyclohexyl-3-benzylimidazolylidene silver halides [(CyBn-NHC)AgX](2) (X = Cl, 1; Br, 2) but a monomeric structure for N-heterocyclic carbene silver halides with the more sterically demanding 1-cyclohexyl-3-naphthalen-2-ylmethylimidazolylidene ligand (CyNaph-NHC)AgX (X = Cl, 4; Br, 5). Cationic biscarbene silver nitrate [(CyBn-NHC)(2)Ag](+)NO(3)(-)3 assumed a cis orientation with respect to the two carbene ligands. The monomeric complexes (CyNaph-NHC)AgX 4 and 5 showed higher catalytic activity than the dimeric [(CyBn-NHC)AgX](2)1 and 2 as well as the cationic biscarbene silver nitrate 3 in the model three component reaction of 3-phenylpropionaldehyde, phenylacetylene and piperidine with chloride 4 performing best and giving product in almost quantitative yield within 2 h at 100 °C. An explanation for the structure-activity relationship in N-heterocyclic carbene silver halide catalyzed three component reaction is given based on a slightly modified mechanism from the one in literature.

  9. Surface-enhanced Raman scattering from silver nanostructures with different morphologies

    NASA Astrophysics Data System (ADS)

    Zhang, W. C.; Wu, X. L.; Kan, C. X.; Pan, F. M.; Chen, H. T.; Zhu, J.; Chu, Paul K.

    2010-07-01

    Scanning electron microscopy and X-ray diffraction reveal that four different types of crystalline silver nanostructures including nanoparticles, nanowires, nanocubes, and bipyramids are synthesized by a solvothermal method by reducing silver nitrate with ethylene glycol using poly(vinylpyrrolidone) as an adsorption agent and adding different quantities of sodium chloride to the solution. These nanostructures which exhibit different surface plasma resonance properties in the ultraviolet-visible region are shown to be good surface-enhanced Raman scattering (SERS) substrates using rhodamine 6G molecules. Our results demonstrate that the silver nanocubes, bipyramids with sharp corners and edges, and aggregated silver nanoparticles possess better SERS properties than the silver nanowires, indicating that they can serve as high-sensitivity substrates in SERS-based measurements.

  10. Synthesis of silver nanoparticle and its application.

    PubMed

    Pandian, A Muthu Kumara; Karthikeyan, C; Rajasimman, M; Dinesh, M G

    2015-11-01

    In this work, silver nanoparticles have been synthesized by wet chemical technique, green synthesis and microbial methods. Silver nitrate (10(-3)M) was used with aqueous extract to produce silver nanoparticles. From the results it was observed that the yield of nanoparticles was high in green synthesis. The size of the silver nanoparticles was determined from Scanning Electron Microscope analysis (SEM). Fourier Transform Infrared spectroscopy (FTIR) was carried out to determine the presence of biomolecules in them. Its cytotoxic effect was studied in cancerous cell line and normal cell line. MTT assay was done to test its optimal concentration and efficacy which gives valuable information for the use of silver nanoparticles for future cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Formation of hybrid nanocomposites polymethylolacrylamide/silver

    NASA Astrophysics Data System (ADS)

    Kolzunova, L. G.; Shchitovskaya, E. V.; Rodzik, I. G.

    2018-05-01

    In this study, polymethylolacrylamide/silver composites have been formed by incorporating silver nanoparticles into the pre-electrosynthesized polymer film. The composites were formed in a two-step process involving the sorption of silver nitrate by a polymer matrix followed by chemical reduction of Ag-ions. The presence of crystalline silver phase in the polymer was confirmed by X-ray phase analysis (XRD), plasmon resonance and scanning electron microscopy (SEM). The small-angle X-ray scattering (SAXS) method has obtained the distribution functions of silver particles over radii. It is established that the content of silver in composites without chitosan is 10-15 times higher than with its additive. The dependences of cyclic voltammetry in pure phosphate buffer (pH 6.86) and in the presence of hydrogen peroxide were obtained. It has been shown that polymer/silver composites exhibit selectivity to hydrogen peroxide.

  12. In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-Ray Fluorescence.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covert, Timothy Todd

    2014-09-01

    The Light Initiated High Explosive facility utilized a spray deposited coating of silver acetylide - silver nitrate explosive to impart a mechanical shock into targets of interest. A diagnostic was required to measure the explosive deposition in - situ. An X - ray fluorescence spectrometer was deployed at the facility. A measurement methodology was developed to measure the explosive quantity with sufficient accuracy. Through the use of a tin reference material under the silver based explosive, a field calibration relationship has been developed with a standard deviation of 3.2 % . The effect of the inserted tin material into themore » experiment configuration has been explored.« less

  13. A fast method for the determination of lead in honey samples using stabilizer-free silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bittar, Dayana Borges; Catelani, Tiago Augusto; Pezza, Leonardo; Pezza, Helena Redigolo

    2018-01-01

    A sensitive, rapid and robust method based on the use of stabilizer-free silver nanoparticles was developed for lead detection in honey. Silver nanoparticles were synthesized without the presence of any stabilizers using silver nitrate and sodium borohydride as precursors where the latter was applied as reducing agent. The optimization of the experimental variables (AgNO3 and NaBH4) for the formation of the nanoparticles was carried out using varying volumes of these solutions. Spectrophotometric measurements at 393 nm showed a linear working range between 0.0500 and 0.167 mg L- 1 lead (R = 0.994), with limits of detection (LOD) and quantification (LOQ) of 0.0135 and 0.0451 mg L- 1, respectively. The proposed method proved to be a significantly sensitive mechanism for lead detection in honey samples.

  14. Combination of grape extract-silver nanoparticles and liposomes: A totally green approach.

    PubMed

    Castangia, Ines; Marongiu, Francesca; Manca, Maria Letizia; Pompei, Raffaello; Angius, Fabrizio; Ardu, Andrea; Fadda, Anna Maria; Manconi, Maria; Ennas, Guido

    2017-01-15

    In the present work, silver nanoparticles were prepared using a totally green procedure combining silver nitrate and an extract of grape pomace as a green source. Additionally, nanoparticles were stabilized using phospholipid and water and/or a mixture of water and propylene glycol (PG). To the best of our knowledge, grape-silver nanoparticle stabilized liposomes or PG-liposomes were formulated, for the first time, combining the residual products of wine-made industry, silver nitrate and phospholipids, avoiding the addition of hazardous substances to human health and the environment, in an easy, scalable and reproducible method. The structure and morphology of grape-silver nanoparticle stabilized vesicles were evaluated by transmission electron microscopy (TEM), UV-vis spectroscopy and photon correlation spectroscopy. Samples were designed as possible carrier for skin protection because of their double function: the grape extract acts as antioxidant and the colloidal silver as antimicrobial agent, which might be helpful in eliminating dangerous free radicals and many pathogenic microorganisms. Obtained nanoparticles were small in size and their combination with phospholipids did not hamper the vesicle formation, which were multilamellar and sized ~100nm. TEM images shows a heterogeneous distribution of nanoparticles, which were located both in the intervesicular medium and in the vesicular structure. Further, grape-silver nanoparticles, when stabilized by liposomes, were able to inhibit the proliferation of both Staphylococcus aureus and Pseudomonas aeruginosa and provided a great protection of keratinocytes and fibroblasts against oxidative stress avoiding their damage and death. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    Starch-stabilized silver nanoparticles were prepared from amylose-sodium palmitate complexes by first converting sodium palmitate to silver palmitate by reaction with silver nitrate and then reducing the silver ion to metallic silver. This process produced water solutions that could be dried and the...

  16. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basavaraja, S.; Balaji, S.D.; Department of Chemistry, Gulbarga University, Gulbarga 585106, Karnataka

    2008-05-06

    Development of environmental friendly procedures for the synthesis of metal nanoparticles through biological processes is evolving into an important branch of nanobiotechnology. In this paper, we report on the use of fungus 'Fusarium semitectum' for the extracellular synthesis of silver nanoparticles from silver nitrate solution (i.e. through the reduction of Ag{sup +} to Ag{sup 0}). Highly stable and crystalline silver nanoparticles are produced in solution by treating the filtrate of the fungus F. semitectum with the aqueous silver nitrate solution. The formations of nanoparticles are understood from the UV-vis and X-ray diffraction studies. Transmission electron microscopy of the silver particlesmore » indicated that they ranged in size from 10 to 60 nm and are mostly spherical in shape. Interestingly the colloidal suspensions of silver nanoparticles are stable for many weeks. Possible medicinal applications of these silver nanoparticles are envisaged.« less

  17. Effect of silver-doping on the crystal structure, morphology and photocatalytic activity of TiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Barakat, N. A. M.; Kim, H. Y.

    2012-09-01

    In this study, effect of sliver-doping on the crystal structure, the nanofibrous morphology and the photocatalytic activity of titanium oxide nanofibers have been investigated. Silver-doped TiO2 nanofibers having different silver contents were prepared by calcination of electrospun nanofiber mats consisting of silver nitrate, titanium isopropoxide and poly(vinyl acetate) at 600 °C. The results affirmed formation of silver-doped TiO2 nanofibers composed of anatase and rutile when the silver nitrate content in the original electrospun solution was more than 3 wt%. The rutile phase content was directly proportional with the AgNO3 concentration in the electrospun solution. Negative impact of the silver-doping on the nanofibrous morphology was observed as increase the silver content caused to decrease the aspect ratio, i.e. producing nanorods rather nanofibers. However, silver-doping leads to modify the surface roughness. Study of the photocatalytic degradation of methylene blue dye clarified that increase the silver content strongly enhances the dye oxidation process.

  18. Preparation and characterization of silver nanoparticles homogenous thin films

    NASA Astrophysics Data System (ADS)

    Hegazy, Maroof A.; Borham, E.

    2018-06-01

    The wet chemical method by metal salt reduction has been widely used to synthesize nanoparticles. Accordingly the silver nitrate used as silver precursor and sodium borohydrate as reduction agent. The silver nanoparticles were characterized by different characterization techniques including UV-VIS spectrometry, Transmission electron microscope (TEM), and Zeta potential technique. Thin films of the colloidal solution were fabricated using direct precipitation technique on ITO glass, silicon substrate and commercial glass substrate and characterized by imaging technique. The absorption peak of the silver nanoparticles colloidal solution was around 400 nm. The TEM images indicate that the silver nanoparticles had spherical shape and their sizes were from 10 to 17 nm. The particle size of the silver nanoparticles was confirmed by Zeta potential technique. The imaging technique indicated that the homogeneous distribution of the colloidal silver solution thin film on the silicon substrate was stronger than the ITO glass and inhomogeneous film was emerged on the commercial glass.

  19. High-performance antibacterial of montmorillonite decorated with silver nanoparticles using microwave-assisted method

    NASA Astrophysics Data System (ADS)

    Kheiralla, Zeinab Mohamed Hassan; Rushdy, Abeer Ahmed; Betiha, Mohamed Ahmed; Yakob, Naglaa Abdullah Nasif

    2014-08-01

    Syntheses of silver nanocomposites (AgNPs@MMT) were fabricated with different silver nanoparticles to montmorillonite clay (MMT) ratios using microwave-assisted synthesis method, and silver nitrate was used as the precursor of silver nanoparticles. The antibacterial activities of the nanocomposite were evaluated against Staphylococcus aureus and Pseudomonas aeruginosa bacteria by the disk diffusion and macrodilution broth techniques. The prepared nanocomposites were characterized by N2 adsorption-desorption isotherms, X-ray diffraction (XRD), field emission scanning electron microscope, high-resolution transmission electron microscope (HRTEM), X-ray fluorescence spectroscopy and Fourier transform infrared spectroscopy. The wide-angle XRD patterns and HRTEM images demonstrate that silver nanoparticles were fabricated on surface and within MMT channels. The diameters of the AgNPs were below 15 nm, as indicated by UV-Vis absorption, which effectively controlled by the pores of the MMT host. Data revealed that 5 % AgNP@MMT nanocomposite is much more effective than silver nitrate and shows strong antibacterial activities. The efficiency of antibiotics increased when combined with 5 % AgNP@MMT nanocomposite against both the tested strains. The increase in fold area was higher in case of P. aeruginosa than S. aureus. The highest percentage of fold increases was found for Sulfamethaxole/Trimethoprim and Oxacillin followed by Levofloxaci and Nalidixic acid against P.aeruginosa. On the other hand, Imipenem increases activity in presence of AgNP@MMT nanocomposite against S. aureus. Overall, the synergistic effect of antibiotics and nanoparticles clearly revealed that nanoparticles can be effectively used in combination with antibiotics in order to improve their efficiency against various pathogenic microbes. The suspensions of the synthesized nanocomposites were found to be stable over a long time without any sign of detachment of AgNPs.

  20. Protective Gel Composition for Treating White Phosphorus Burn Wounds.

    DTIC Science & Technology

    Water soluble hydrogels of alkali metal alginate and glycerin containing 0.01% to 1% cupric ( copper ) sulfate pentahydrate or silver salts such as...burns. Cupric sulfate pentahydrate of silver salts such as silver acetate, silver lactate monohydrate and silver nitrate in the gel reacts with the

  1. The silver nanowires synthesized using different molecule weight of polyvinyl pyrrolidone for controlling diameter and length by one-pot polyol method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id; Departement of Physics, Lampung University, Bandar Lampung; Triyana, K., E-mail: triyana@ugm.ac.id

    In this paper, we report our investigation on the effect of the molecular weight and molar ratio of polyvinyl pyrrolidone (PVP) and silver nitrate (AgNO{sub 3}) for controlling diameter and length of the silver nanowires synthesized with a high-aspect-ratio. The silver nanowires synthesized by one-pot polyol method at a constant temperature oil bath of 130°C. Different molecule weights of PVP, i.e. 55 K, 360 K, and 1300 K were used combined with different molar ratios of [PVP:Ag]. The UV–vis spectrophotometry and Field-emission scanning electron microscopy (FE-SEM) were employed to characterize the silver nanowires. The results show that the molecular weightmore » and molar ratio of [PVP:Ag] are very important for controlling growth and properties of the silver nanowires. The diameter and length of silver nanowires are obtained 80 to 140 nm and 30 to 70 µm, respectively. The higher molecular weight of PVP, the greater diameter and length of silver nanowires.« less

  2. Phase Equilibria and Transport Properties in the Systems AgNO3/RCN/H2O. R = CH3, C2H5, C3H7, C4H,, C6H5, and C6H5CH2

    NASA Astrophysics Data System (ADS)

    Das, Surjya P.; Wittekopf, Burghard; Weil, Konrad G.

    1988-11-01

    Silver nitrate can form homogeneous liquid phases with some organic nitriles and water, even when there is no miscibility between the pure liquid components. We determined the shapes of the single phase regions in the ternary phase diagram for the following systems: silver nitrate /RCN /H2O with R =CH3, C3H7, C6H5, and C6H5CH2 at room temperature and for R =C6H5 also at 60 °C and O °C. Furthermore we studied kinematic viscosities, electrical conductivities, and densities of mixtures containing silver nitrate, RCN, and water with the mole ratios X /4 /1 (0.2≦ X ≦S 3.4). In these cases also R = C2H5 and C4H9 were studied. The organic nitriles show different dependences of viscosity and conductivity on the silver nitrate content from the aliphatic ones.

  3. Utilization of hydroxypropyl carboxymethyl cellulose in synthesis of silver nanoparticles.

    PubMed

    Abdel-Halim, E S; Alanazi, Humaid H; Al-Deyab, Salem S

    2015-04-01

    Hydroxypropyl carboxymethyl cellulose samples having varying degrees of substitution and varying degrees of polymerization were used to reduce silver nitrate to silver nanoparticles. UV spectral analysis of silver nanoparticles colloidal solution reveal that increasing the pH of the reduction solution leads to improvement in the intensity of the absorption band for silver nanoparticles, to be maximum at pH 11. The absorption peak intensity also enhanced upon prolonging the reaction duration up to 60 min. The conversion of silver ions to metallic silver nanoparticles was found to be temperature-dependent and maximum transformation occurs at 60 °C. The reduction efficiency of hydroxypropyl carboxymethyl cellulose was found to be affected by its degree of polymerization. Colloidal solutions of silver nanoparticles having concentration up to 1000 ppm can be prepared upon fixing the ratio between silver nitrate and hydroxypropyl carboxymethyl cellulose at 0.017-0.3g per each 100ml of the reduction solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Three-component access to pyrroles promoted by the CAN-silver nitrate system under high-speed vibration milling conditions: a generalization of the Hantzsch pyrrole synthesis.

    PubMed

    Estévez, Verónica; Villacampa, Mercedes; Menéndez, J Carlos

    2013-01-21

    A sequential multicomponent process involving the high-speed vibration milling of ketones with N-iodosuccinimide and p-toluenesulfonic acid, followed by addition of a mixture of primary amines, β-dicarbonyl compounds, cerium(IV) ammonium nitrate and silver nitrate afforded polysubstituted, functionalized pyrroles. This one-pot, solid-state process can be considered as the coupling of an α-iodoketone preparation with a general version of the classical Hantzsch pyrrole synthesis.

  5. A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion.

    PubMed

    Liu, Xian-Hao; Luo, Xiao-Hong; Lu, Shu-Xia; Zhang, Jing-Chang; Cao, Wei-Liang

    2007-03-01

    A novel cetyltrimethyl ammonium silver bromide (CTASB) complex has been prepared simply through the reaction of silver nitrate with cetyltrimethyl ammonium bromide (CTAB) in aqueous solution at room temperature by controlling the concentration of CTAB and the molar ratio of CTAB to silver nitrate in the reaction solution, in which halogen in CTAB is used as surfactant counterion. The structure and thermal behavior of cetyltrimethyl ammonium silver bromide have been investigated by using X-ray diffraction (XRD), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), UV/vis spectroscopy, thermal analysis (TG-DTA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results show that the complex possesses a metastable layered structure. Upon heating the CTASB aqueous dispersion to above 80 degrees C, the structure change of the complex took place and CTAB-capped nanosized silver bromide particles further formed.

  6. Preparation of the egg membrane bandage contained the antibacterial Ag nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jin; Duan, Guangwen; Fu, Yunzhi, E-mail: yzhfu@hainu.edu.cn

    Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous aloe leaf extracts as both the reducing and capping agent. Transmission electron microscopy analysis revealed the average size of silver nanoparticles approximately 18.05 nm. Fourier transform infrared spectroscopy observation showed the estimation of two kinds of binding sites between aqueous aloe leaf and aqueous aloe leaf with silver nanoparticles. In addition, the critical roles of the concentration of silver nitrate, temperature, and reaction time in the formation of silver nanoparticles had been illustrated. Furthermore, silver nanoparticles were deposited on egg membrane bandage, forming amore » new egg membrane bandage that contained silver nanoparticles that exhibiting excellent antibacterial effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, which was 2.5 times stronger than the commercially available bandage. - Graphical Abstract: Display Omitted.« less

  7. Management of bilateral idiopathic renal hematuria in a dog with silver nitrate

    PubMed Central

    Di Cicco, Michael F.; Fetzer, Tara; Secoura, Patricia L.; Jermyn, Kieri; Hill, Tracy; Chaloub, Serge; Vaden, Shelly

    2013-01-01

    Renal hematuria has limited treatment options. This report describes management of bilateral idiopathic renal hematuria in a dog with surgically assisted installation of 0.5% silver nitrate solution. Initial treatment resulted in freedom from clinical signs or recurrent anemia for 10 months; however, recurrence of bleeding following a nephrectomy resulted in euthanasia. PMID:24155476

  8. Trimethyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii.

    PubMed

    Chang, T Y; Chen, C C; Cheng, K M; Chin, C Y; Chen, Y H; Chen, X A; Sun, J R; Young, J J; Chiueh, T S

    2017-07-01

    We report a facile route for the green synthesis of trimethyl chitosan nitrate-capped silver nanoparticles (TMCN-AgNPs) with positive surface charge. In this synthesis, silver nitrate, glucose, and trimethyl chitosan nitrate (TMCN) were used as silver precursor, reducing agent, and stabilizer, respectively. The reaction was carried out in a stirred basic aqueous medium at room temperature without the use of energy-consuming or expensive equipment. We investigated the effects of the concentrations of NaOH, glucose, and TMCN on the particle size, zeta potential, and formation yield. The AgNPs were characterized by UV-vis spectroscopy, photon correlation spectroscopy, laser Doppler anemometry, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The catalytic activity of the TMCN-AgNPs was studied by the reduction of 4-nitrophenol using NaBH 4 as a reducing agent. We evaluated the antibacterial effects of the TMCN-AgNPs on Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus using the broth microdilution method. The results showed that both gram-positive and gram-negative bacteria were killed by the TMCN-AgNPs at very low concentration (<6.13μg/mL). Moreover, the TMCN-AgNPs also showed high antibacterial activity against clinically isolated multidrug-resistant A. baumannii strains, and the minimum inhibitory concentration (MIC) was ≤12.25μg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method.

    PubMed

    Shameli, Kamyar; Ahmad, Mansor Bin; Jazayeri, Seyed Davoud; Sedaghat, Sajjad; Shabanzadeh, Parvaneh; Jahangirian, Hossein; Mahdavi, Mahnaz; Abdollahi, Yadollah

    2012-01-01

    The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work.

  10. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles

    EPA Science Inventory

    Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxic...

  11. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts)

    PubMed Central

    2013-01-01

    We have synthesized silver nanoparticles from silver nitrate solutions using extracts of Rumex hymenosepalus, a plant widely found in a large region in North America, as reducing agent. This plant is known to be rich in antioxidant molecules which we use as reducing agents. Silver nanoparticles grow in a single-step method, at room temperature, and with no addition of external energy. The nanoparticles have been characterized by ultraviolet-visible spectroscopy and transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. The nanoparticle diameters are in the range of 2 to 40 nm. High-resolution transmission electron microscopy and fast Fourier transform analysis show that two kinds of crystal structures are obtained: face-centered cubic and hexagonal. PMID:23841946

  12. Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum.

    PubMed

    Gholami-Shabani, Mohammadhassan; Akbarzadeh, Azim; Norouzian, Dariush; Amini, Abdolhossein; Gholami-Shabani, Zeynab; Imani, Afshin; Chiani, Mohsen; Riazi, Gholamhossein; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2014-04-01

    Nanostructures from natural sources have received major attention due to wide array of biological activities and less toxicity for humans, animals, and the environment. In the present study, silver nanoparticles were successfully synthesized using a fungal nitrate reductase, and their biological activity was assessed against human pathogenic fungi and bacteria. The enzyme was isolated from Fusarium oxysporum IRAN 31C after culturing on malt extract-glucose-yeast extract-peptone (MGYP) medium. The enzyme was purified by a combination of ultrafiltration and ion exchange chromatography on DEAE Sephadex and its molecular weight was estimated by gel filtration on Sephacryl S-300. The purified enzyme had a maximum yield of 50.84 % with a final purification of 70 folds. With a molecular weight of 214 KDa, it is composed of three subunits of 125, 60, and 25 KDa. The purified enzyme was successfully used for synthesis of silver nanoparticles in a way dependent upon NADPH using gelatin as a capping agent. The synthesized silver nanoparticles were characterized by X-ray diffraction, dynamic light scattering spectroscopy, and transmission and scanning electron microscopy. These stable nonaggregating nanoparticles were spherical in shape with an average size of 50 nm and a zeta potential of -34.3. Evaluation of the antimicrobial effects of synthesized nanoparticles by disk diffusion method showed strong growth inhibitory activity against all tested human pathogenic fungi and bacteria as evident from inhibition zones that ranged from 14 to 25 mm. Successful green synthesis of biologically active silver nanoparticles by a nitrate reductase from F. oxysporum in the present work not only reduces laborious downstream steps such as purification of nanoparticle from interfering cellular components, but also provides a constant source of safe biologically-active nanomaterials with potential application in agriculture and medicine.

  13. Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments.

    PubMed

    Balazs, D J; Triandafillu, K; Wood, P; Chevolot, Y; van Delden, C; Harms, H; Hollenstein, C; Mathieu, H J

    2004-05-01

    Medical-grade poly(vinyl chloride) (PVC) was chemically modified to study how the incorporation of monovalent silver influences Pseudomonas aeruginosa adhesion and colonization. The modification investigated consisted of a radio frequency-oxygen (RF-O(2)) glow discharge pre-functionalization, followed by a two-step wet-treatment in sodium hydroxide and silver nitrate solutions. X-ray photoelectron spectroscopy (XPS) analysis and contact angle measurements were used to investigate the chemical nature and surface wettability of the films following each step of the modification. XPS analysis proved that the RF-O(2) plasma pre-functionalization of native PVC reproducibly increased the amount of functional groups representative of PVC additives, including ether/alcohol, esters and carboxyl groups. More specifically, we demonstrated that the O-C=O groups representative of the phthalic ester and zinc carboxylate additives identified for native PVC increased by two-fold following the RF-O(2) plasma pre-functionalization step. Although RF-O(2) pre-functionalization did not have an effect on the silver content of the NaOH/AgNO(3) treated substrates, such a modification was necessary for biomaterial products that did not have reproducible surfaces amongst production lots. XPS analysis also demonstrated that saponification with sodium hydroxide (NaOH) of esters, like those of the phthalic ester additives of PVC is a simple, irreversible method of hydrolysis, which produced sodium carboxylate and sodium phthalate salts. Exposure of native PVC to NaOH resulted in an increased surface hydrophilicity (from ca 90 degrees to ca 60 degrees ) due to dechlorination. XPS analysis following further incubation in silver nitrate demonstrated that silver ions can be trapped when the sodium of sodium carboxylate is replaced by silver after performing a second treatment with a monovalent silver-containing solution. The creation of silver salt on native PVC resulted in an ultra-hydrophobic (>120 degrees ) surface. The chemical modifications using NaOH and AgNO(3) wet treatments completely inhibited bacterial adhesion of four strains of P. aeruginosa to both native and oxygen-pre-functionalized PVC, and efficiently prevented colonization over longer periods (72 h). Our results suggest that surface modifications that incorporate silver ions would be extremely effective at reducing bacterial colonization to medical devices.

  14. Comparison of electro and chemical cautery in the treatment of anterior epistaxis.

    PubMed

    Toner, J G; Walby, A P

    1990-08-01

    In the ENT Department of the Royal Victoria Hospital, Belfast, the impression (supported only by anecdotes) was that electro-cautery was superior to chemical cautery in the treatment of simple anterior epistaxis. Since no evaluation of the relative merits of electro and chemical cautery has been reported, a prospective randomized study was conducted to assess the effectiveness of electro-cautery and cautery with silver nitrate. The results of the study showed that there was no statistically significant difference between the two methods in either controlling the epistaxis or in the incidence of complications. It is concluded that since cautery with a silver nitrate tipped applicator is simpler, and of equal effectiveness, it would appear to be the treatment of choice for simple anterior epistaxis.

  15. Randomized clinical trial of the effectiveness of complementary therapies for recurrent aphthous stomatitis.

    PubMed

    Rodríguez-Archilla, Alberto; Raissouni, Tarik

    2017-07-21

    Despite the high prevalence of recurrent aphthous stomatitis (RAS), its etiology is not yet completely clear and there is no completely remedial treatment available at present. The objective of this study was to evaluate the clinical efficacy and safety of 4 treatments (silver nitrate, propolis, rhubarb and walnut) for RAS. A randomized clinical trial was conducted with 125 patients with minor aphthae, including 25 patients per group: cauterization with silver nitrate, propolis, rhubarb extract, walnut extract and placebo. No patient reported adverse effects related to the treatment received. There were significant (P<.001) differences in the time elapsed until symptom resolution. The fastest treatment was silver nitrate (1.16 days), followed by the 3 alternative treatments (1.60 days with propolis, 1.84 with rhubarb and 2.00 with walnut; with no differences between them), and finally the placebo (4.64 days). The mean healing time of the lesions was statistically higher (8.96 days) for the placebo than for the 4 treatments: silver nitrate (7.32 days), propolis (6.80), rhubarb (7.72) and walnut (8.00). Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  16. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis

    NASA Astrophysics Data System (ADS)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO 3 contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO 3 concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.

  17. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties

    NASA Astrophysics Data System (ADS)

    Kemp, Melissa M.; Kumar, Ashavani; Mousa, Shaymaa; Dyskin, Evgeny; Yalcin, Murat; Ajayan, Pulickel; Linhardt, Robert J.; Mousa, Shaker A.

    2009-11-01

    Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (P<0.01) as compared to glucose conjugation. These results suggest that DAPHP-reduced silver nanoparticles and gold nanoparticles have potential in pathological angiogenesis accelerated disorders such as cancer and inflammatory diseases.

  18. Green Synthesis of Silver Nanoparticles using Extract of Pinus merkusii Jungh & De Vriese Cone Flower

    NASA Astrophysics Data System (ADS)

    Azkiya, N. I.; Masruri, M.; Ulfa, S. M.

    2018-01-01

    The paper studies recent application of cone flower waste from Pinus merkusii Jungh & De Vriese for an environmentally unclear method for synthesis silver nanoparticle. Phytochemical characterization using iron trichloride solution showed the extract of Pinus merkusii cone flower contains of phenolic group of secondary metabolite. This group acts as both reducing and stabilizing agents. For the synthesis of silver nanoparticle, solution of silver nitrate is added to the extract at 60°C. The effect of extract concentration (5-20%) and time reaction (15-60 min) is investigated. The formation of silver nanoparticle is confirmed by the color change from yellowish to brown. Meanwhile, UV-Vis characterization of silver nanoparticle in extract 20% and 60 min reaction showed surface plasmon resonance (SPR) at 431 nm, and transmission electron microscope (TEM) revealed the particle size range in between 8 and 23 nm with a spherical in shape.

  19. Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Campillo Gloria, E.; Ederley, Vélez; Gladis, Morales; César, Hincapié; Jaime, Osorio; Oscar, Arnache; Uribe José, Ignacio; Franklin, Jaramillo

    2017-06-01

    The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ~ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated.

  20. Green Synthesis of Silver Nanoparticles Using Sodium Alginate and Lignosulphonic Acid Blends

    NASA Astrophysics Data System (ADS)

    Thakur, Amrita; Reddy, Giridhar

    2017-08-01

    A simple method based on the principles of green chemistry has been developed to synthesize stable silver nanoparticles (AgNP) for possible biomedical applications. Blend of sodium alginate (SA) and lignosulphonic acid (LS) prepared in the ratio of 80/20 mass percent respectively was used as reducing and stabilizing agent. This blend is biocompatible and has shown drug release ability under physiological conditions. Use of blend has an added advantage as LS has the ability to reduce silver while the blend matrix acts as a stabilizing agent. Effect of precursor concentration (AgNO3) and temperature was investigated. Progress of synthesis was monitored using UV-Vis spectroscopy. Higher temperature and lower silver nitrate concentration showed better synthesis of AgNP.

  1. Study of the spectra of silica colloidal crystals with assembled silver obtained from a photolysis method

    NASA Astrophysics Data System (ADS)

    Li, Wenjiang; He, Jinglong; He, Sailing

    2005-02-01

    The colorful artificial 3D silica colloidal crystals (opal) were prepared through self-assembly of silica spheres in the visible frequency range. We directly synthesized nano silver particles in the void of the silica artificial opal film using the photolysis of silver nitrate under UV light, nano silver particles were self-deposited around the surface of silica sphere. The shifts of the stop band of the artificial crystals after exposing different time under UV light were studied. Synthetic silica opal with three-dimensional (3D) structure is potentially useful for the development of diffractive optical devices, micro mechanical systems, and sensory elements because photonic band gaps obtained from self-assembled closely packed periodic structures.

  2. Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells.

    PubMed

    Peetsch, Alexander; Greulich, Christina; Braun, Dieter; Stroetges, Christian; Rehage, Heinz; Siebers, Bettina; Köller, Manfred; Epple, Matthias

    2013-02-01

    Spherical silver-doped calcium phosphate nanoparticles were synthesized in a co-precipitation route from calcium nitrate/silver nitrate and ammonium phosphate in a continuous process and colloidally stabilized by carboxymethyl cellulose. Nanoparticles with 0.39 wt% silver content and a diameter of about 50-60 nm were obtained. The toxic effects toward mammalian and prokaryotic cells were determined by viability tests and determination of the minimal inhibitory and minimal bactericidal concentrations (MIC and MBC). Three mammalian cells lines, i.e. human mesenchymal stem cells (hMSC) and blood peripheral mononuclear cells (PBMC, monocytes and T-lymphocytes), and two prokaryotic strains, i.e. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used. Silver-doped calcium phosphate nanoparticles and silver acetate showed similar effect toward mammalian and prokaryotic cells with toxic silver concentrations in the range of 1-3 μg mL(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Intravenous Exposure of Pregnant Mice to Silver Nanoparticles: Silver Tissue Distribution and Effects in Maternal and Extra-Embryonic Tissues and Embryos

    NASA Astrophysics Data System (ADS)

    Austin, Carlye Anne

    This research explores the tissue distribution of silver, as well as adverse effects in pregnant mice and embryos, following prenatal silver nanoparticle (AgNP) exposure. Chapter one of this dissertation is a survey of the published literature on the reproductive and/or developmental toxicity of AgNPs. The available data indicate that AgNPs adversely affect sperm count, viability, and/or motility both in vivo and in vitro, and cause apoptosis and necrosis in spermatogonial stem cells and testicular cells. Additionally, AgNP exposure results in mortality and morphological deformities in fish embryos, but produces no adverse effects in chicken embryos. The current published research on in vivo AgNP exposure to mammals during gestation consists of only three studies, one of which is described in chapter two of this dissertation. These studies report results that may suggest a potential for adverse effects on fetal development (e.g. , decreased viability and fetal and placental weights, increased incidence of developmentally young embryos), but additional research is needed. Chapter two of this dissertation investigates the distribution of silver in tissues of pregnant mice and gestation day (GD) 10 embryos following intravenous maternal exposure to 50 nm AgNPs during early organogenesis (GDs 7-9). Examinations of embryo morphology and histology were also performed. Results demonstrated the presence of silver in all organs and tissues examined. Silver concentrations were highest in liver, spleen, and visceral yolk sac, and lowest in embryos. Groups of mice were also treated with soluble silver nitrate, and the pattern of silver tissue distribution following silver nitrate exposure was similar to that which followed AgNP treatment. Transmission electron microscopy-energy dispersive x-ray spectroscopy (TEM-EDS) confirmed the presence of vesicle-bound nanoparticulate silver in visceral yolk sac endoderm, but not mesoderm. This finding, along with the high silver concentration in visceral yolk sac and low silver concentration in embryos, suggests that visceral yolk sac tissue mitigates AgNP transfer to embryos. No significant treatment-related effects on embryo morphology or tissue histology were detected. Chapter three constitutes an expanded study of silver distribution in pregnant mice and developing embryos, with the addition of 10 nm AgNP treatment groups and examination of fetuses at GD16. Very low concentrations of silver were measured in GD10 embryos and GD16 fetuses following 10 nm AgNP treatment or in GD16 fetuses following 50 nm AgNP treatment. Highest silver concentrations were measured in maternal liver, spleen, and visceral yolk sac. AgNP particle size (10 or 50 nm) did not consistently affect silver tissue distribution. At GD10, 50 nm AgNP treatment resulted in significantly higher silver concentrations than 10 nm AgNP treatment for liver, spleen, and visceral yolk sac only; at GD16, in visceral yolk sac only, 10 nm AgNP treatment resulted in a significantly higher silver concentration than 50 nm AgNP treatment. In liver, spleen, visceral yolk sac, and uterus, absolute silver concentrations following 10 nm AgNP treatment were significantly lower at GD16 compared to GD10; the patterns of silver tissue distribution were similar at both time points. Silver nitrate and 10 nm AgNP treatments resulted in similar tissue concentrations in GD10 tissues with the exception of visceral yolk sac, for which the silver concentration was significantly higher after silver nitrate treatment. Silver distribution patterns were generally similar between 10 nm AgNP and silver nitrate treatments. No histological abnormalities were noted in maternal tissues, extra-embryonic tissues, or embryos. A significantly increased incidence of developmentally young (for gestational age) GD10 embryos was seen following 10 nm AgNP treatment; no significant morphological effects were observed in embryos or maternal tissues. Further research will be needed to fully evaluate potential effects of prenatal AgNP exposure on embryos. (Abstract shortened by UMI.)

  4. Silver Trees: Chemistry on a TEM Grid

    EPA Science Inventory

    The copper/carbon substrate of a TEM grid reacted with aqueous silver nitrate solution within minutes to yield spectacular tree-like silver dendrites, without using any added capping or reducing reagents. These results demonstrate a facile, aqueous, room temperature synthesis of...

  5. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties

    PubMed Central

    Geethalakshmi, R; Sarada, DVL

    2012-01-01

    Background There is an increasing commercial demand for nanoparticles due to their wide applicability in various markets, including medicine, catalysis, electronics, chemistry, and energy. In this report, a simple and ecofriendly chemical reaction for the synthesis of gold and silver nanoparticles from Trianthema decandra (Aizoaceae) has been developed. Methods and results On treatment of aqueous solutions containing chloroauric acid or silver nitrate with root extract of T. decandra, stable gold or silver nanoparticles were rapidly formed. The kinetics of reduction of gold and silver ions during the reaction was analyzed by ultraviolet-visible spectroscopy. Field emission-scanning electron microscopy showed formation of gold nanoparticles in various shapes, including spherical, cubical, triangular, and hexagonal, while silver nanoparticles were spherical. The size of the gold nanoparticles was 33–65 nm and that of the silver nanoparticles was 36–74 nm. Energy dispersive x-ray and Fourier transform infrared spectroscopy confirmed the presence of metallic gold and metallic silver in the respective nanoparticles. The antimicrobial properties of the synthesized nanoparticles were analyzed using the Kirby-Bauer method. The results show varied susceptibility of microorganisms to the gold and silver nanoparticles. Conclusion It is believed that phytochemicals present in T. decandra extract reduce the silver and gold ions into metallic nanoparticles. This strategy reduces the cost of production and the environmental impact. The silver and gold nanoparticles formed showed strong activity against all microorganisms tested. PMID:23091381

  6. The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jian-Yang; Hsueh, Yu-Lee; Huang, Jung-Jie, E-mail: jjhuang@mdu.edu.tw

    2014-06-01

    Silver nanowires were synthesized by the polyol method employing ethylene glycol, Poly(N-vinylpyrrolidone) (PVP) and silver nitrate (AgNO{sub 3}) as the precursors. Most of the studies used metal salts (PtCl{sub 2}, NaCl) as seed precursor to synthesize the silver nanowires. In the study, the metal salts were not used and the concentration of capping agent was changed to observe the aspect ratio of silver nanowires. The experimental results showed that controlling synthesis temperature, Poly(N-vinylpyrrolidone) (PVP) molecular weight, reactant concentrations, and addition rates of AgNO{sub 3} affects the growth characteristics of silver nanowires. Field-emission scanning electron microscopy, UV–vis spectrophotometry, and X-ray diffractometrymore » were employed to characterize the silver nanowires. As increasing the concentration of PVP, the silver nanowire diameter widened and resulted in a smaller aspect ratio. We successfully prepared silver nanowires (diameter: 170 nm, length: 20 μm). The silver nanowire thin film suspension showed high transmittance, low sheet resistance, and may be used for transparent conductive film applications. - Graphical abstract: The FE-SEM image shows that nanostructures with considerable quantities of silver nanowires can also be produced when the PVP (Mw=360 K)/AgNO{sub 3} molar ratio was 2.5. - Highlights: • The polyol method was used to synthesize of silver nanowire. • The metal seed precursors were not used before synthesizing the silver nanowires. • The silver nanowire diameter and length was 170 nm and 20 μm, respectively. • Silver nanowire film with high transmittance (>85%) and low sheet resistance (<110 Ω/sq)« less

  7. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract

    PubMed Central

    Khan, Mujeeb; Khan, Merajuddin; Adil, Syed Farooq; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Alkhathlan, Hamad Z; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H

    2013-01-01

    The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet–visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract) and precursor solution (silver nitrate), the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs’ surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines. PMID:23620666

  8. Process for the detection of micro-cracks

    DOEpatents

    Lapinski, Norman; Sather, Allen

    1979-01-01

    A process for the nondestructive testing of ceramic objects to detect the presence of defects and micro-cracks in the surface in which a solution of silver nitrate is applied to the surface of the object which penetrates into the surface defects, drying the object so that the silver nitrate remains in the defects, and preparing an X-ray radiograph whereby any defects and micro-cracks will appear in the radiograph.

  9. Ionic Liquids as Energetic Materials

    DTIC Science & Technology

    2007-03-01

    triazolium halide that can be synthesized from the electrophilic fluorination and quaternization of the amino-substituted triazole. Metathesis with a...silver salt such as silver nitrate forms the nitrate salt. By electrophilic difluoroamination of 1 -alkyl-3-nitro- 1,2,4-triazole, 1,4-dialkyl-3-nitro...nonaromatic salts (1-7) described in Table 1. The presence of small amounts of fluorine in the substituent arm contributes to the thermal stability and has

  10. Sponge-like silver obtained by decomposition of silver nitrate hexamethylenetetramine complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afanasiev, Pavel, E-mail: pavel.afanasiev@ircelyon.univ-lyon.fr

    2016-07-15

    Silver nitrate hexamethylenetetramine [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] coordination compound has been prepared via aqueous route and characterized by chemical analysis, XRD and electron microscopy. Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] under hydrogen and under inert has been studied by thermal analysis and mass spectrometry. Thermal decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] proceeds in the range 200–250 °C as a self-propagating rapid redox process accompanied with the release of multiple gases. The decomposition leads to formation of sponge-like silver having hierarchical open pore system with pore size spanning from 10 µm to 10 nm. The as-obtained silver spongesmore » exhibited favorable activity toward H{sub 2}O{sub 2} electrochemical reduction, making them potentially interesting as non-enzyme hydrogen peroxide sensors. - Graphical abstract: Thermal decomposition of silver nitrate hexamethylenetetramine coordination compound [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to sponge like silver that possesses open porous structure and demonstrates interesting properties as an electrochemical hydrogen peroxide sensor. Display Omitted - Highlights: • [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] orthorhombic phase prepared and characterized. • Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to metallic silver sponge with opened porosity. • Ag sponge showed promising properties as a material for hydrogen peroxide sensors.« less

  11. Facile and highly efficient approach for the fabrication of multifunctional silk nanofibers containing hydroxyapatite and silver nanoparticles.

    PubMed

    Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Park, Hyun Jung; Kim, Jung-Ho; Lee, Ok Joo; Park, Chan Hum

    2014-10-01

    In this study, a good combination consisting of electrospun silk fibroin nanofibers incorporated with high-purity hydroxyapatite (HAp) nanoparticles (NPs) and silver NPs is introduced as antimicrobial for tissue engineering applications. The variable pressure field emission scanning electron microscope results confirmed randomly placed nanofibers are produced with highly dispersed HAp and silver NPs in nanofibers after electrospinning. The X-ray diffraction results demonstrated crystalline features of each of the three components used for electrospinning. Moreover, the TEM-EDS analysis confirmed the presence and chemical nature of each component over individual silk nanofiber. The FT-IR analyses was used confirm the different vibration modes caused due to functional groups present in silk fibroin, Hap, and silver NPs. The obtained nanofibers were checked for antimicrobial activity by using two model organisms Escherichia coli and Staphylococcus aureus. Subsequently, the antimicrobial tests have indicated that prepared nanofibers do possess good bactericidal activity. The ability of N,N-dimethylformamide and silk fibroin used to reduce silver nitrate into silver metal was evaluated using MTT assay. The nanofibers were grown in presence of NIH 3T3 fibroblasts, which revealed toxic behavior to fibroblasts at higher concentrations of silver nitrate used in this study. Furthermore, cell attachment studies on nanofibers for 3 and 12 days of incubation time were minutely observed and correlated with the results of MTT assay. The reported results confirmed the high amounts of silver nitrate can lead to toxic effects on viability of fibroblasts and had bad effect in cell attachment. © 2013 Wiley Periodicals, Inc.

  12. Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity.

    PubMed

    Hamedi, Sepideh; Shojaosadati, Seyed Abbas; Shokrollahzadeh, Soheila; Hashemi-Najafabadi, Sameereh

    2014-02-01

    In the present study, the biosynthesis of silver nanoparticles (AgNPs) using Neurospora intermedia, as a new non-pathogenic fungus was investigated. For determination of biomass harvesting time, the effect of fungal incubation period on nanoparticle formation was investigated using UV-visible spectroscopy. Then, AgNPs were synthesized using both culture supernatant and cell-free filtrate of the fungus. Two different volume ratios (1:100 and 1:1) of the culture supernatant to the silver nitrate were employed for AgNP synthesis. In addition, cell-free filtrate and silver nitrate were mixed in presence and absence of light. Smallest average size and highest productivity were obtained when using equal volumes of the culture supernatant and silver nitrate solution as confirmed by UV-visible spectra of colloidal AgNPs. Comparing the UV-visible spectra revealed that using cell-free filtrate for AgNP synthesis resulted in the formation of particles with higher stability and monodispersity than using culture supernatant. The absence of light in cell-free filtrate mediated synthesis led to the formation of nanoparticles with the lowest rate and the highest monodispersity. The presence of elemental silver in all prepared samples was confirmed using EDX, while the crystalline nature of synthesized particles was verified by XRD. FTIR results showed the presence of functional groups which reduce Ag(+) and stabilize AgNPs. The presence of nitrate reductase was confirmed in the cell-free filtrate of the fungus suggesting the potential role of this enzyme in AgNP synthesis. Synthesized particles showed significant antibacterial activity against E. coli as confirmed by examining the growth curve of bacterial cells exposed to AgNPs.

  13. Arresting simulated dentine caries with adjunctive application of silver nitrate solution and sodium fluoride varnish: an in vitro study.

    PubMed

    Zhao, Irene Shuping; Mei, May Lei; Li, Quan-Li; Lo, Edward Chin Man; Chu, Chun-Hung

    2017-08-01

    The aim of this in vitro study was to assess the ability of silver nitrate solution, followed by sodium fluoride varnish, to arrest caries. Dentine slices were prepared and demineralised. Each slice was cut into three specimens for three groups (SF, SDF and W). Specimens of the SF group received topical application of 25% silver nitrate solution followed by 5% sodium fluoride varnish. The SDF group received topical application of 38% silver diamine fluoride solution (positive control). Specimens of the W group received deionised water (negative control). All specimens were subjected to pH cycling for 8 days. Dentine surface morphology, crystal characteristics, carious lesion depth and collagen matrix degradation were evaluated by scanning electron microscopy, X-ray diffraction, X-ray microtomography and spectrophotometry with a hydroxyproline assay. Scanning electron microscopy showed that dentine collagen was exposed in group W, but not in groups SF and SDF, while clusters of granular spherical grains were formed in groups SF and SDF. The mean lesion depths (±standard deviation) of groups SF, SDF and W were 128 ± 19, 135 ± 24 and 258 ± 53 μm, respectively (SF, SDF < W; P < 0.001). The X-ray diffraction analysis indicated that silver chloride was formed in groups SF and SDF. The concentration of hydroxyproline released from the dentine matrix was significantly lower in groups SF and SDF than in group W (P < 0.05). The results of this in vitro study indicate that the use of silver nitrate solution and sodium fluoride varnish is effective in inhibiting dentine demineralisation and dentine collagen degradation. © 2017 FDI World Dental Federation.

  14. Detection of Prohibited Fish Drugs Using Silver Nanowires as Substrate for Surface-Enhanced Raman Scattering

    PubMed Central

    Song, Jia; Huang, Yiqun; Fan, Yuxia; Zhao, Zhihui; Yu, Wansong; Rasco, Barbara A.; Lai, Keqiang

    2016-01-01

    Surface-enhanced Raman scattering or surface-enhanced Raman spectroscopy (SERS) is a promising detection technology, and has captured increasing attention. Silver nanowires were synthesized using a rapid polyol method and optimized through adjustment of the molar ratio of poly(vinyl pyrrolidone) and silver nitrate in a glycerol system. Ultraviolet-visible spectrometry, X-ray diffraction, and transmission electron microscopy were used to characterize the silver nanowires. The optimal silver nanowires were used as a SERS substrate to detect prohibited fish drugs, including malachite green, crystal violet, furazolidone, and chloramphenicol. The SERS spectra of crystal violet could be clearly identified at concentrations as low as 0.01 ng/mL. The minimum detectable concentration for malachite green was 0.05 ng/mL, and for both furazolidone and chloramphenicol were 0.1 μg/mL. The results showed that the as-prepared Ag nanowires SERS substrate exhibits high sensitivity and activity. PMID:28335303

  15. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis.

    PubMed

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO(3) contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO(3) concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Synergistic reaction of silver nitrate, silver nanoparticles, and methylene blue against bacteria

    PubMed Central

    Li, Runze; Chen, Jie; Cesario, Thomas C.; Wang, Xin; Yuan, Joshua S.; Rentzepis, Peter M.

    2016-01-01

    In this paper we describe the antibacterial effect of methylene blue, MB, and silver nitrate reacting alone and in combination against five bacterial strains including Serratia marcescens and Escherichia coli bacteria. The data presented suggest that when the two components are combined and react together against bacteria, the effects can be up to three orders of magnitude greater than that of the sum of the two components reacting alone against bacteria. Analysis of the experimental data provides proof that a synergistic mechanism is operative within a dose range when the two components react together, and additive when reacting alone against bacteria. PMID:27849602

  17. Electrochemical quantification of iodide ions in synthetic urine using silver nanoparticles: a proof-of-concept.

    PubMed

    Toh, Her Shuang; Tschulik, Kristina; Batchelor-McAuley, Christopher; Compton, Richard G

    2014-08-21

    Typical urinary iodide concentrations range from 0.3 μM to 6.0 μM. The conventional analytical method is based on the Sandell-Kolthoff reaction. It involves the toxic reagent, arsenic acid, and a waiting time of 30 minutes for the iodide ions to reduce the cerium(iv) ions. In the presented work, an alternative fast electrochemical method based on a silver nanoparticle modified electrode is proposed. Cyclic voltammetry was performed with a freshly modified electrode in presence of iodide ions and the voltammetric peaks corresponding to the oxidation of silver to silver iodide and the reverse reaction were recorded. The peak height of the reduction signal of silver iodide was used to plot a calibration line for the iodide ions. Two calibration plots for the iodide ions were obtained, one in 0.1 M sodium nitrate (a chloride-ion free environment to circumvent any interference from the other halides) and another in synthetic urine (which contains 0.2 M KCl). In both of the calibration plots, linear relationships were found between the reduction peak height and the iodide ion concentration of 0.3 μM to 6.0 μM. A slope of 1.46 × 10(-2) A M(-1) and a R(2) value of 0.999 were obtained for the iodide detection in sodium nitrate. For the synthetic urine experiments, a slope of 3.58 × 10(-3) A M(-1) and a R(2) value of 0.942 were measured. A robust iodide sensor with the potential to be developed into a point-of-care system has been validated.

  18. Surface enhaced raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    A biopolymer encapsulated with silver nanoparticles was prepared using polyvinyl alcohol (PVA) solution, silver nitrate, and trisodium citrate. Biopolymer based nanosubstrates were deposited on a mica sheet for SERS. Fresh cultures of Salmonella Typhimurium, Escherichia coli, Staphylococcus aureus a...

  19. Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity

    NASA Astrophysics Data System (ADS)

    Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei

    2018-03-01

    Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.

  20. Spectroscopic Studies on the Effect of Some Ferrocene Derivatives in the Formation of Silver Nanoparticles.

    PubMed

    Sanyal, Manik Kumar; Biswas, Bipul; Chowdhury, Avijit; Mallik, Biswanath

    2016-06-01

    Silver nanoparticles were prepared by microwave assisted method using silver nitrate as precursor in the presence of some ferrocene derivatives. The formation of the silver nanoparticles was monitored using UV-Vis spectroscopy. The UV-Vis spectroscopy revealed the formation of silver nanoparticles by exhibiting typical surface plasmon absorption band. The position of plasmon band (406-429 nm) was observed to depend on the nature of a particular ferrocene derivative used. TEM images indicated that the nanoparticles were spherical in shape and well-dispersed. Quantum dots (3.2 nm) were prepared by using ferrocenecarboxylic acid. The surface plasmon absorption band has shown red shift with increasing concentration of ferrocene derivative. For different duration of microwave heating time, intensity of absorption spectra in general was found to increase except in presence of ferrocene carbaldehyde where it decreased. Time-dependent spectra have indicated almost stable position of the surface plasmon band with increasing time of observation confirming that the as prepared silver nanoparticles did not aggregate with lapse of time.

  1. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundredsmore » of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.« less

  2. Potentiometric titration of thiols, cationic surfactants and halides using a solid-state silver-silver sulphide electrode.

    PubMed

    Pinzauti, S; Papeschi, G; La Porta, E

    1983-01-01

    A rugged, low resistance silver-silver sulphide solid-state electrode for determining pharmaceuticals as authentic samples or in dosage forms by potentiometric titration is described. Sodium tetraphenylborate, mercury(II) acetate and silver nitrate (0.01) M were employed as titrants in the analysis of cationic surfactants (cetylpyridinium chloride, benzethonium chloride, benzalkonium chloride and chlorhexidine salts), antithyroid drugs (methimazole and propylthiouracil) or sodium halides respectively.

  3. 40 CFR 415.534 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Nitrate Production Subcategory § 415.534 Pretreatment standards for existing sources (PSES). Except as... pretreatment standards for existing sources (PSES): Subpart BA—Silver Nitrate Pollution or pollutant property...

  4. 40 CFR 415.534 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Nitrate Production Subcategory § 415.534 Pretreatment standards for existing sources (PSES). Except as... pretreatment standards for existing sources (PSES): Subpart BA—Silver Nitrate Pollution or pollutant property...

  5. 40 CFR 415.534 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Nitrate Production Subcategory § 415.534 Pretreatment standards for existing sources (PSES). Except as... pretreatment standards for existing sources (PSES): Subpart BA—Silver Nitrate Pollution or pollutant property...

  6. 40 CFR 415.534 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Nitrate Production Subcategory § 415.534 Pretreatment standards for existing sources (PSES). Except as... pretreatment standards for existing sources (PSES): Subpart BA—Silver Nitrate Pollution or pollutant property...

  7. 40 CFR 415.534 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Nitrate Production Subcategory § 415.534 Pretreatment standards for existing sources (PSES). Except as... pretreatment standards for existing sources (PSES): Subpart BA—Silver Nitrate Pollution or pollutant property...

  8. Synthesis, characterization and biocompatibility of ``green'' synthesized silver nanoparticles using tea polyphenols

    NASA Astrophysics Data System (ADS)

    Moulton, Michael C.; Braydich-Stolle, Laura K.; NadagoudaPresent Address: Pegasus Technical Services, 46 E. Hollister Street, Cincinnati, 45219, Ohio, Usa., Mallikarjuna N.; Kunzelman, Samantha; Hussain, Saber M.; Varma, Rajender S.

    2010-05-01

    Since ancient times, people have taken advantage of the antimicrobial effects of colloidal silver particles. Aside from the medical prospects, silver nanoparticles are found in a wide range of commercially available consumer products ranging from cosmetics to household cleansers. Current synthetic methods for creating silver nanoparticles typically call for potentially hazardous chemicals, extreme heat, and produce environmentally dangerous byproducts. Therefore, it is essential that novel ``green'' synthesis of nanoparticles becomes a reality, and it is imperative to fully analyze the potential toxic effects of these nanoparticles. In this study, we have shown that by reducing silver nitrate in solutions of tea extract or epicatechin of varying concentrations, spherical silver nanoparticles were formed that had controllable size distributions depending on the concentration of tea extract or epicatechin in the samples. Our ultra-resolution microscopy demonstrated that the nanoparticles were in fact interacting with the keratinocytes. Furthermore, evaluation of mitochondrial function (MTS) to assess cell viability and membrane integrity (LDH) in human keratinocytes showed that the silver nanoparticles were nontoxic. These results demonstrated that these nanoparicles are potentially biocompatible and warrant further evaluation in other biological systems.

  9. Biosynthesis and evaluation of the characteristics of silver nanoparticles using Cassia fistula fruit aqueous extract and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ghafoori, Seyed Mohammad; Entezari, Maliheh; Taghva, Arefeh; Tayebi, Zahra

    2017-12-01

    There are several ways to produce nanoparticles, but the biological method of nanoparticle production is considered most efficient by researchers due to its eco-friendly and energy saving properties. In this study, the biosynthesis of silver nanoparticles (AgNPs) via Cassia fistula fruit pulp extract was examined. Furthermore, its antibacterial effects were investigated both in vitro and in vivo. To achieve biosynthesis, 10 ml of C. fistula extract was added to 90 ml of aqueous solution of 1 mM silver nitrate. The solution was incubated in darkness overnight, at room temperature. After changing the color of solution, the production of AgNPs was examined by UV-Vis spectrophotometry, XRD and DLS methods. Finally, the antibacterial activity of AgNPs was investigated by using three methods: (1) agar well diffusion, (2) MIC determining and (3) effect on prevention of infection in wound on rat models. The results revealed that synthesized silver nanoparticles have strong antibacterial activity in vitro and in vivo conditions. Undeniably, further research is required to investigate the side effects of such particles.

  10. BULK SYNTHESIS OF SILVER NANORODS IN POLY(ETHYLENE GLYCOL) USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Microwave-assisted (MW), surfactantless, greener approach to bulk synthesis of silver nanorods employing poly (ethylene glycol) (PEG) is described. An aqueous solution of silver nitrate (AgNO-3,- 0.1 M, 4 mL) and 4 mL of PEG (molecular weight 300) were mixed at room temperature t...

  11. Biosynthesis, Antimicrobial and Cytotoxic Effect of Silver Nanoparticles Using a Novel Nocardiopsis sp. MBRC-1

    PubMed Central

    Manivasagan, Panchanathan; Senthilkumar, Kalimuthu; Sivakumar, Kannan; Kim, Se-Kwon

    2013-01-01

    The biosynthesis of nanoparticles has been proposed as a cost effective environmental friendly alternative to chemical and physical methods. Microbial synthesis of nanoparticles is under exploration due to wide biomedical applications, research interest in nanotechnology and microbial biotechnology. In the present study, an ecofriendly process for the synthesis of nanoparticles using a novel Nocardiopsis sp. MBRC-1 has been attempted. We used culture supernatant of Nocardiopsis sp. MBRC-1 for the simple and cost effective green synthesis of silver nanoparticles. The reduction of silver ions occurred when silver nitrate solution was treated with the Nocardiopsis sp. MBRC-1 culture supernatant at room temperature. The nanoparticles were characterized by UV-visible, TEM, FE-SEM, EDX, FTIR, and XRD spectroscopy. The nanoparticles exhibited an absorption peak around 420 nm, a characteristic surface plasmon resonance band of silver nanoparticles. They were spherical in shape with an average particle size of 45 ± 0.15 nm. The EDX analysis showed the presence of elemental silver signal in the synthesized nanoparticles. The FTIR analysis revealed that the protein component in the form of enzyme nitrate reductase produced by the isolate in the culture supernatant may be responsible for reduction and as capping agents. The XRD spectrum showed the characteristic Bragg peaks of 1 2 3, 2 0 4, 0 4 3, 1 4 4, and 3 1 1 facets of the face centered cubic silver nanoparticles and confirms that these nanoparticles are crystalline in nature. The prepared silver nanoparticles exhibited strong antimicrobial activity against bacteria and fungi. Cytotoxicity of biosynthesized AgNPs against in vitro human cervical cancer cell line (HeLa) showed a dose-response activity. IC50 value was found to be 200 μg/mL of AgNPs against HeLa cancer cells. Further studies are needed to elucidate the toxicity and the mechanism involved with antimicrobial and anticancer activity of the synthesized AgNPs as nanomedicine. PMID:23936787

  12. Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1.

    PubMed

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Senthilkumar, Kalimuthu; Sivakumar, Kannan; Kim, Se-Kwon

    2013-01-01

    The biosynthesis of nanoparticles has been proposed as a cost effective environmental friendly alternative to chemical and physical methods. Microbial synthesis of nanoparticles is under exploration due to wide biomedical applications, research interest in nanotechnology and microbial biotechnology. In the present study, an ecofriendly process for the synthesis of nanoparticles using a novel Nocardiopsis sp. MBRC-1 has been attempted. We used culture supernatant of Nocardiopsis sp. MBRC-1 for the simple and cost effective green synthesis of silver nanoparticles. The reduction of silver ions occurred when silver nitrate solution was treated with the Nocardiopsis sp. MBRC-1 culture supernatant at room temperature. The nanoparticles were characterized by UV-visible, TEM, FE-SEM, EDX, FTIR, and XRD spectroscopy. The nanoparticles exhibited an absorption peak around 420 nm, a characteristic surface plasmon resonance band of silver nanoparticles. They were spherical in shape with an average particle size of 45 ± 0.15 nm. The EDX analysis showed the presence of elemental silver signal in the synthesized nanoparticles. The FTIR analysis revealed that the protein component in the form of enzyme nitrate reductase produced by the isolate in the culture supernatant may be responsible for reduction and as capping agents. The XRD spectrum showed the characteristic Bragg peaks of 1 2 3, 2 0 4, 0 4 3, 1 4 4, and 3 1 1 facets of the face centered cubic silver nanoparticles and confirms that these nanoparticles are crystalline in nature. The prepared silver nanoparticles exhibited strong antimicrobial activity against bacteria and fungi. Cytotoxicity of biosynthesized AgNPs against in vitro human cervical cancer cell line (HeLa) showed a dose-response activity. IC50 value was found to be 200 μg/mL of AgNPs against HeLa cancer cells. Further studies are needed to elucidate the toxicity and the mechanism involved with antimicrobial and anticancer activity of the synthesized AgNPs as nanomedicine.

  13. Nucleolar Organizer Regions in Oral Squamous Cell Carcinoma

    PubMed Central

    Moradzadeh Khiavi, Monir; Vosoughhosseini, Sepideh; Halimi, Monire; Mahmoudi, Seyyed Mostafa; Yarahmadi, Asghar

    2012-01-01

    Background and aims Several diagnostic methods are being employed to detect benign and malignant lesions, one of which is silver nitrate staining for organizer regions. The number of nucleolar organizing regions (NORs) can be used to show the degree of cell activity or metabolism in pathologic lesions. This study was designed to evaluate NORs as determi-nants of precancerous and squamous cell carcinoma. Materials and methods A silver colloid technique was applied on paraffin sections of 40 cases of oral squamous cell carcinoma and 25 cases of precancerous lesions; 15 specimens of normal epithelium were selected for the control group. After staining with silver nitrate, argyrophilic nucleolar organizer regions (AgNORs) were counted in 100 epithelial cells in three groups with the use of an oil immersion and ×1000 objective lens. One-way ANOVA and a post hoc Tukey test were used for statistical analysis. Results The mean numbers and standard deviations of AgNORs were 1.58 ± 0.76 in normal epithelium, 2.1 ± 1.05 in pre-cancerous lesions and 2.43 ±1.33 in squamous cell carcinoma (SCC). There were statistically significant differences in Ag-NORs numbers between the groups (P<0.001) and significant differences in precancerous lesions between dysplastic and non-dysplastic epithelia (P<0.001). The mean AgNORs count per nucleus increased from healthy epithelium to precancer-ous lesion to SCC. Conclusion This study suggests that the silver staining technique for the detection of NORs (AgNOR) can be used to distinguish precancerous lesions and benign and malignant lesions. PMID:22991629

  14. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria.

    PubMed

    Cavassin, Emerson Danguy; de Figueiredo, Luiz Francisco Poli; Otoch, José Pinhata; Seckler, Marcelo Martins; de Oliveira, Roberto Angelo; Franco, Fabiane Fantinelli; Marangoni, Valeria Spolon; Zucolotto, Valtencir; Levin, Anna Sara Shafferman; Costa, Silvia Figueiredo

    2015-10-05

    Multidrug resistant microorganisms are a growing challenge and new substances that can be useful to treat infections due to these microorganisms are needed. Silver nanoparticle may be a future option for treatment of these infections, however, the methods described in vitro to evaluate the inhibitory effect are controversial. This study evaluated the in vitro activity of silver nanoparticles against 36 susceptible and 54 multidrug resistant Gram-positive and Gram-negative bacteria from clinical sources. The multidrug resistant bacteria were oxacilin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., carbapenem- and polymyxin B-resistant A. baumannii, carbapenem-resistant P. aeruginosa and carbapenem-resistant Enterobacteriaceae. We analyzed silver nanoparticles stabilized with citrate, chitosan and polyvinyl alcohol and commercial silver nanoparticle. Silver sulfadiazine and silver nitrate were used as control. Different methods were used: agar diffusion, minimum inhibitory concentration, minimum bactericidal concentration and time-kill. The activity of AgNPs using diffusion in solid media and the MIC methods showed similar effect against MDR and antimicrobial-susceptible isolates, with a higher effect against Gram-negative isolates. The better results were achieved with citrate and chitosan silver nanoparticle, both with MIC90 of 6.75 μg mL(-1), which can be due the lower stability of these particles and, consequently, release of Ag(+) ions as revealed by X-ray diffraction (XRD). The bactericidal effect was higher against antimicrobial-susceptible bacteria. It seems that agar diffusion method can be used as screening test, minimum inhibitory concentration/minimum bactericidal concentration and time kill showed to be useful methods. The activity of commercial silver nanoparticle and silver controls did not exceed the activity of the citrate and chitosan silver nanoparticles. The in vitro inhibitory effect was stronger against Gram-negative than Gram-positive, and similar against multidrug resistant and susceptible bacteria, with best result achieved using citrate and chitosan silver nanoparticles. The bactericidal effect of silver nanoparticle may, in the future, be translated into important therapeutic and clinical options, especially considering the shortage of new antimicrobials against the emerging antimicrobial resistant microorganisms, in particular against Gram-negative bacteria.

  15. Comment on "A re-assessment of the safety of silver in household water treatment: rapid systematic review of mammalian in vivo genotoxicity studies".

    PubMed

    Lantagne, Daniele; Rayner, Justine; Mittelman, Anjuliee; Pennell, Kurt

    2017-11-13

    We wish to thank Fewtrell, Majuru, and Hunter for their article highlighting genotoxic risks associated with the use of particulate silver for primary drinking water treatment. The recent promotion of colloidal silver products for household water treatment in developing countries is problematic due to previously identified concerns regarding manufacturing quality and questionable advertising practices, as well as the low efficiency of silver nanoparticles to treat bacteria, viruses, and protozoa in source waters. However, in the conclusion statement of the manuscript, Fewtrell et al. state, "Before colloidal Ag or AgNP are used in filter matrices for drinking water treatment, consideration needs to be given to how much silver is likely to be released from the matrix during the life of the filter." Unfortunately, it appears Fewtrell et al. were unaware that studies of silver nanoparticle and silver ion elution from ceramic filters manufactured and used in developing countries have already been completed. These existing studies have found that: 1) silver ions, not silver nanoparticles, are eluted from ceramic filters treated with silver nanoparticles or silver nitrate; and, 2) silver ions have not been shown to be genotoxic. Thus, the existing recommendation of applying silver nanoparticles to ceramic filters to prevent biofilm formation within the filter and improve microbiological efficacy should still be adhered to, as there is no identified risk to people who drink water from ceramic filters treated with silver nanoparticles or silver nitrate. We note that efforts should continue to minimize exposure to silver nanoparticles (and silica) to employees in ceramic filter factories in collaboration with the organizations that provide technical assistance to ceramic filter factories.

  16. Highly surface-roughened quasi-spherical silver powders in back electrode paste for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Liu, Shouchao; Li, Qiuying; Chen, Xiaolei; Guo, Weihong; Wu, Chifei

    2017-08-01

    In our work, highly surface-roughened quasi-spherical silver powders with controllable size and superior dispersibility, which have narrow size distribution and relatively high tap density, were successfully prepared by reducing silver nitrate with ascorbic acid in aqueous solutions. Gum arabic (AG) was selected as dispersant to prevent the agglomeration of silver particles. Furthermore, the effects of preparation conditions on the characteristics of the powders were systematically investigated. By varying the concentration of the reactants, dosage of dispersant, the feeding modes, synthesis temperature and the pH value of the mixture solution of silver nitrate and AG, the resulted silver particles displayed controllable size, different morphologies and surface roughness. The spherical silver powder with mean particle size of 1.20 µm, tap density of 4.1 g cm-3 and specific area value of 0.46 m2 g-1 was prepared by adjusting preparation conditions. The AG absorbed on the surface preventing the silver particles from diffusion and aggregation was proved by the ultraviolet spectra. Observations of SEM images showed that the as-prepared silver powders were relatively monodisperse silver spheres with highly roughened surface and the particle size was controllable from 1 µm to 5 µm, specific surface area value from approximately 0.2 m2 g-1 to 0.8 m2 g-1. X-ray diffraction (XRD) patterns, energy dispersive spectroscopy (EDS), x-ray photoelectron spectra (XPS) and thermal gravity analysis (TGA) demonstrated high crystallinity and purity of the obtained silver powders.

  17. Sterility in male animals induced by injection of chemical agents into the vas deferens.

    PubMed

    Freeman, C; Coffey, D S

    1973-11-01

    This study was undertaken to develop a simple non-surgical technic for achieving male sterility. The method induces obstruction in the vas deferens by injecting sclerosing chemical agents through the skin of the scrotum directly into the vas. Previous success in rats using 95% ethanol have been reported. This sutdy used 95% ethanol, 10% silver nitrate, 36% acetic acid, 3.6% formaldehyde, 3% sodium tetradecyl sulfate, 5% sodium morrhuate, 5% potassium permanganate, 3.6% formaldehyde in 90% ethanol, and for controls .9% sodium chloride. 25 or 50 mcl of the agent being tested was injected into each vas deferens of mature Sprague-Dawley rats. 2 weeks after treatment the rats were exposed to continuous mating. All of the rats treated with ethanol, silver nitrate, acetic acid, formaldehyde, and sodium tetradecyl sulfate have remained sterile for 8 months. 33% of those treated with potassium permanganate and 67% of those treated with sodium morrhuate have remained fertile. When the experiment was repeated in dogs using 95% ethanol, 10% silver nitrate, or 3.6% formaldehyde in 90% ethanol (100 or 500 mcl injected through the skin of the scrotum) the same obstructing sclerosis was found and a reduction in size of the vas was visible for approximately 2 cm. No sperm granulomas were found either grossly or microscopically. The method has not be used in humans but injections of methylene blue dye in alcohol have been made in several human autopsy specimens. The dye was contained within the sheath of the vas and penetrated the full thickness of the wall of the vas. The method is believed to be suitable for humans, would avoid post-surgical hemorrhage and infection, would require less equipment, and more rapid accomplishment and lower cost would follow if paramedical personnel could be taught the procudre in less developed countries for mass voluntary sterilizations. The results appear to be permanent. Surgical reversibility has not be determined.

  18. Synthesis of silver nanoparticles by silver salt reduction and its characterization

    NASA Astrophysics Data System (ADS)

    Muzamil, Muhammad; Khalid, Naveed; Danish Aziz, M.; Aun Abbas, S.

    2014-06-01

    The wet chemical method route by metal salt reduction has been used to synthesize nanoparticles, using silver nitrate as an inorganic salt, aldehyde as a reducing agent and amino acid as a catalyst. During the reaction aldehyde oxidizes to carboxylic acid and encapsulates the silver nanoparticles to prevent agglomeration and provide barrier in the growth of particle. The existing work produces particles using lab grade chemical, here the presented work is by using industrial grade chemicals to make the process more cost & time effective. The nano silver powder has been studied for their formation, particle size, shape & compositional analysis using Scanning Electron Microscope (SEM) equipped with EDS. The particles size distributions were analyzed by Laser Particle Analyzer (LPA), structure & morphological analysis using x-ray diffraction (XRD) and Fourier-transform-infrared Spectroscopy (FTIR) confirmed the stabilization of particles by coating of carboxylic group. These studies infer that the particles are mostly spherical in shape and have an average size between 70 to 350 nm.

  19. Luminescence and antibacterial studies of silver nanoparticles using the esterases-containing latex of E. Tirucalli plant via green route

    NASA Astrophysics Data System (ADS)

    Sudheerkumar, K. H.; Dhananjaya, N.; Reddy Yadav, L. S.

    2016-04-01

    Silver nanoparticles (Ag NPs) synthesized from silver nitrate solutions using the esterase-containing latex of the E. Tirucalli plant widely found in a large region in Karnataka, India. Plant-mediated synthesis of nanoparticles is a green chemistry approach that intercom-nects nanotechnology and plant biotechnology. The effect of extract concentration, contact time, and temperature on the reaction rate and the shape of the Ag nanoparticles was investigated. The nanoparticles have been characterized by powder X-ray diffraction, UV-visible spectroscopy, photoluminescence spectroscopy and morphology by scanning electron microscope, transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. Powder X-ray diffraction patterns show that the crystal structure obtained is face-centered cubic (fcc). The morphology of the silver nanoparticle was uniform with well-distributed elliptical particles with a range from 15 to 25nm. Ag NPs exhibit significant antibacterial activity against Bacillus cereus using the agar well diffusion method.

  20. Endophytic synthesis of silver chloride nanoparticles from Penicillium sp. of Calophyllum apetalum

    NASA Astrophysics Data System (ADS)

    Chandrappa, C. P.; Govindappa, M.; Chandrasekar, N.; Sarkar, Sonia; Ooha, Sepuri; Channabasava, R.

    2016-06-01

    In the present study, Penicillium species extract isolated from Calophyllum apetalum was used for the synthesis of silver nanoparticles and it was confirmed by changing the color of the silver nitrate UV-Vis spectrum. The synthesized nanoparticles have been characterized by biophysical techniques such as scanning electron microscopy and x-ray diffraction.

  1. Sweet Nanochemistry: A Fast, Reliable Alternative Synthesis of Yellow Colloidal Silver Nanoparticles Using Benign Reagents

    ERIC Educational Resources Information Center

    Cooke, Jason; Hebert, Dominique; Kelly, Joel A.

    2015-01-01

    This work describes a convenient and reliable laboratory experiment in nanochemistry that is flexible and adaptable to a wide range of educational settings. The rapid preparation of yellow colloidal silver nanoparticles is achieved by glucose reduction of silver nitrate in the presence of starch and sodium citrate in gently boiling water, using…

  2. Importance of poly(ethylene glycol) conformation for the synthesis of silver nanoparticles in aqueous solution

    USDA-ARS?s Scientific Manuscript database

    In the formation of silver nanoparticles (NPs) using silver nitrate in a poly(ethylene glycol) (PEG) aqueous solution, which acts as both a reducing and stabilizing agent, the PEG chain structure was found to play a significant role. Even though PEG 100 (100 kg/mol) has limited reducing sites of hyd...

  3. Preparation and characterization of silver chloride nanoparticles as an antibacterial agent

    NASA Astrophysics Data System (ADS)

    Duong Trinh, Ngoc; Thanh Binh Nguyen, Thi; Hai Nguyen, Thanh

    2015-12-01

    Silver chloride nanoparticles were prepared by the precipitation reaction between silver nitrate and sodium chloride in an aqueous solution containing poly(vinyl alcohol) as a stabilizing agent. Different characteristics of the nanoparticles in suspension and in lyophilized powder such as size, morphology, chemical nature, interaction with stabilizing agent and photo-stability were investigated. Biological tests showed that the obtained silver chloride nanoparticles displayed antibacterial activities against Escherichia coli and Staphylococcus aureus.

  4. Bladder irrigation in patients with indwelling catheters.

    PubMed

    Bruun, J N; Digranes, A

    1978-01-01

    The effect of intermittent bladder irrigation on the bacterial counts in urine samples was studied in patients with indwelling catheter and pre-existing urinary tract infection. Four different irrigating solutions were used. Irrigation with saline or 0.25% acetic acid had no effect on the urinary bacterial count. The bacterial counts were effectively reduced during intermittent irrigation both with 0.02% chlorhexidine and with 0.25% silver nitrate. Silver nitrate gave the greatest reduction of bacterial counts but chlorhexidine is preferable due to fewer side effects and greater convenience.

  5. Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity.

    PubMed

    Velmurugan, Palanivel; Iydroose, Mahudunan; Mohideen, Mohmed Hanifa Abdul Kader; Mohan, Thankiah Selva; Cho, Min; Oh, Byung-Taek

    2014-08-01

    This study highlights the ability of nitrate-reducing Bacillus subtilis EWP-46 cell-free extract used for preparation of silver nanoparticles (AgNPs) by reduction of silver ions into nano silver. The production of AgNPs was optimized with several parameters such as hydrogen ion concentration, temperature, silver ion (Ag(+) ion) and time. The maximum AgNPs production was achieved at pH 10.0, temperature 60 °C, 1.0 mM Ag(+) ion and 720 min. The UV-Vis spectrum showed surface plasmon resonance peak at 420 nm, energy-dispersive X-ray spectroscopy (SEM-EDX) spectra showed the presence of element silver in pure form. Atomic force microscopy (AFM) and transmission electron microscopy images illustrated the nanoparticle size, shape, and average particle size ranging from 10 to 20 nm. Fourier transform infrared spectroscopy provided the evidence for the presence of biomolecules responsible for the reduction of silver ion, and X-ray diffraction analysis confirmed that the obtained nanoparticles were in crystalline form. SDS-PAGE was performed to identify the proteins and its molecular mass in the purified nitrate reductase from the cell-free extract. In addition, the minimum inhibitory concentration and minimum bactericidal concentration of AgNPs were investigated against gram-negative (Pseudomonas fluorescens) and gram-positive (Staphylococcus aureus) bacteria.

  6. A photochemical approach designed to improve the coating of nanoscale silver films onto food plastic wrappings intended to control bacterial hazards

    NASA Astrophysics Data System (ADS)

    Mustatea, Gabriel; Vidal, Loïc; Calinescu, Ioan; Dobre, Alina; Ionescu, Mariana; Balan, Lavinia

    2015-01-01

    Plasmonic silver film was directly generated on a variety of substrates through a facile and environmentally friendly method, which involves a UV-photoreduction process without any reducing or stabilizing agent and requiring no thermal step. Top-coated films of unprotected silver nanoparticles (3-11 nm) were generated from hydroalcoholic AgNO3 solution and directly on glass substrates or food packaging plastic wraps, low density polyethylene film, and polyvinyl chloride. The natural antibacterial activity of the material was evaluated. The correlation between silver migration and antimicrobial activity of silver-functionalized substrates against pure strains of gram-negative bacteria ( Escherichia coli) and gram-positive bacteria ( Staphylococcus aureus) was demonstrated. By way of illustration, food plastic wraps top-coated in this way exhibited a high antibacterial activity. The metal nanoparticle film obtained in this way was characterized and the influence of several parameters (fluence, exposure, silver nitrate concentration, and nature of the free radicals generator) on their formation was studied. Moreover, by shaping the actinic beam with an appropriate device, it is very easy to pattern the brown yellow silver nanofilm or to print messages in plain text.

  7. Synthesis of Nanosilver Particles in the Texture of Bank Notes to Produce Antibacterial Effect

    NASA Astrophysics Data System (ADS)

    Lari, Mohammad Hossein Asadi; Esmaili, Vahid; Naghavi, Seyed Mohammad Ebrahim; Kimiaghalam, Amir Hossein; Sharifaskari, Emadaldin

    Silver particles show antibacterial and antiseptic properties at the nanoscale. Such properties result from an alteration in the binding capacity of silver atoms in bits of less than 6.5nm which enables them to kill harmful organisms. Silver nanoparticles are now the most broadly used agents in the area of nanotechnology after carbon nanotubes. Given that currency bills are one of the major sources of bacterial disseminations and their contamination has recently been nominated as a critical factor in gastrointestinal infections and possibly colon cancers, here we propose a new method for producing antibacterial bank notes by using silver nanoparticles. Older bank notes are sprayed with acetone to clean the surface. The bank note is put into a petri-dish containing a solution of silver nitrate and ammonia so that it is impregnated. The bank notes are then reduced with the formaldehyde gas, which penetrates its texture and produces silver nanoparticles in the cellulose matrix. The side products of the reactions are quickly dried off and the procedure ends with the drying of the bank note. The transmission electron microscope (TEM) images confirmed the nanoscale size range for the formed particles while spectroscopy methods, such as XRD, provided proof for the metallic nature of the particles. Bacterial challenge tests then showed that no colonies of the three tested bacterium (Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa survived on the sample after a 72h incubation period. This study has provided a method for synthesizing silver NPs directly into the texture of fabrics and textiles (like that of bank notes) which can result in lower production costs, making the use of silver NPs economically beneficial. The method, specifically works on the fabric of bank notes, suggesting a method to tackle the transmission of bacteria through bank notes. Moreover, this study is a testament to the strong antibacterial nature of even low concentrations of silver NPs.

  8. Synthesis and characterization of silver nanoparticles using Cynodon dactylon leaves and assessment of their antibacterial activity.

    PubMed

    Sahu, Nidhi; Soni, Deepika; Chandrashekhar, B; Sarangi, Bijaya Ketan; Satpute, Devanand; Pandey, Ram Avatar

    2013-07-01

    Many methods of synthesizing silver nanoparticles (Ag-NPs) by reducing Ag⁺ ions using aqueous/organic extracts of various plants have been reported in the past, but the methods are rather slow. In this investigation, silver nanoparticles were quickly synthesized from aqueous silver nitrate through a simple method using leaf extract of a plant--Cynodon dactylon which served as reducing agent, while sunlight acted as a catalyst. The formation of Ag-NPs was indicated by gradual change in colour and pH and confirmed by ultraviolet--visible spectroscopy. The Ag-NPs showed a surface plasmon resonance at 451 nm. Based on the decrease in pH, a possible mechanism of the synthesis of Ag-NPs involving hydroxyl (OH⁻) ions of polyphenols of the leaf extract is postulated. Ag-NPs having (111) and (200) crystal lattices were confirmed by X-ray diffraction. Scanning electron microscopy revealed the spherical nature of the Ag-NPs, while transmission electron microscopy showed that the nanoparticles were polydispersed with a size range of 8-10 nm. The synthesized Ag-NPs also demonstrated their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella typhimurium.

  9. Sunlight mediated synthesis of silver nanoparticles by a novel actinobacterium (Sinomonas mesophila MPKL 26) and its antimicrobial activity against multi drug resistant Staphylococcus aureus.

    PubMed

    Manikprabhu, Deene; Cheng, Juan; Chen, Wei; Sunkara, Anil Kumar; Mane, Sunilkumar B; Kumar, Ram; das, Mousumi; N Hozzein, Wael; Duan, Yan-Qing; Li, Wen-Jun

    2016-05-01

    Synthesis of silver nanoparticles using microorganism are many, but there are only scanty reports using actinobacteria. In the present study, the actinobacterium of the genus Sinomonas was reported to synthesis silver nanoparticles for the first time. A photo-irradiation based method was developed for the synthesis of silver nanoparticles, which includes two day old cultural supernatant of novel species Sinomonas mesophila MPKL 26 and silver nitrate solution, exposed to sunlight. The preliminary synthesis of silver nanoparticles was noted by the color change of the solution from colorless to brown; the synthesis was further confirmed using UV-visible spectroscopy which shows a peak between 400 and 450nm. Spherical shape silver nanoparticles of size range 4-50nm were synthesized, which were characterized using transmission electron microscopy. The Fourier transform infrared spectroscopy result indicates that, the metabolite produced by the novel species S. mesophila MPKL 26 was the probable reducing/capping agent involved in the synthesis of silver nanoparticles. The synthesized silver nanoparticles maintained consistent shape with respect to different time periods. The synthesized silver nanoparticles were evaluated for the antimicrobial activity against multi drug resistant Staphylococcus aureus which show good antimicrobial activity. The method developed for synthesis is easy, requires less time (20min) and produces spherical shape nanoparticles of size as small as 4nm, having good antimicrobial activity. Hence, our study enlarges the scope of actinobacteria for the rapid biosynthesis of silver nanoparticles and can be used in formulating remedies for multi drug resistant S. aureus. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach.

    PubMed

    Gopinath, V; MubarakAli, D; Priyadarshini, S; Priyadharsshini, N Meera; Thajuddin, N; Velusamy, P

    2012-08-01

    In the recent decades, increased development of green synthesis of nanoparticles is inevitable because of its incredible applications in all fields of science. There were numerous work have been produced based on the plant and its extract mediated synthesis of nanoparticles, in this present study to explore that the novel approaches for the biosynthesis of silver nanoparticles using plant fruit bodies. The plant, Tribulus terrestris L. fruit bodies are used in this study, where the dried fruit body extract was mixed with silver nitrate in order to synthesis of silver nanoparticles. The active phytochemicals present in the plant were responsible for the quick reduction of silver ion (Ag(+)) to metallic silver nanoparticles (Ag(0)). The reduced silver nanoparticles were characterized by Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM), XRD, FTIR, UV-vis spectroscopy. The spherical shaped silver nanoparticles were observed and it was found to be 16-28 nm range of sizes. The diffraction pattern also confirmed that the higher percentage of silver with fine particles size. The antibacterial property of synthesized nanoparticles was observed by Kirby-Bauer method with clinically isolated multi-drug resistant bacteria such as Streptococcus pyogens, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus aureus. The plant materials mediated synthesis of silver nanoparticles have comparatively rapid and less expensive and wide application to antibacterial therapy in modern medicine. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species.

    PubMed

    Sütterlin, S; Dahlö, M; Tellgren-Roth, C; Schaal, W; Melhus, Å

    2017-07-01

    Silver-based products have been marketed as an alternative to antibiotics, and their consumption has increased. Bacteria may, however, develop resistance to silver. To study the presence of genes encoding silver resistance (silE, silP, silS) over time in three clinically important Enterobacteriaceae genera. Using polymerase chain reaction (PCR), 752 bloodstream isolates from the years 1990-2010 were investigated. Age, gender, and ward of patients were registered, and the susceptibility to antibiotics and silver nitrate was tested. Clonality and single nucleotide polymorphism were assessed with repetitive element sequence-based PCR, multi-locus sequence typing, and whole-genome sequencing. Genes encoding silver resistance were detected most frequently in Enterobacter spp. (48%), followed by Klebsiella spp. (41%) and Escherichia coli 4%. Phenotypical resistance to silver nitrate was found in Enterobacter (13%) and Klebsiella (3%) isolates. The lowest carriage rate of sil genes was observed in blood isolates from the neonatology ward (24%), and the highest in blood isolates from the oncology/haematology wards (66%). Presence of sil genes was observed in international high-risk clones. Sequences of the sil and pco clusters indicated that a single mutational event in the silS gene could have caused the phenotypic resistance. Despite a restricted consumption of silver-based products in Swedish health care, silver resistance genes are widely represented in clinical isolates of Enterobacter and Klebsiella species. To avoid further selection and spread of silver-resistant bacteria with a high potential for healthcare-associated infections, the use of silver-based products needs to be controlled and the silver resistance monitored. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  12. Bactericidal Efficiency of Silver Nanoparticles Synthesized from Annona squamosa

    NASA Astrophysics Data System (ADS)

    Jayavardhanan, R.; Nanda, Anima

    2016-09-01

    Nanotechnology is described as an emerging technology that not only holds promise for society, but also is capable of providing novel approaches to overcome our common problems. The present study focused on the synthesis of silver nanoparticles using the metabolites of Annona squamosa seeds. The biological reduction procedure proposed in this method was considered as better one compared to chemical mediated reduction methods. The advantages include nontoxic to the environment, less energy consuming and highly suitable for further biological applications. The seeds were separated from the fruit pulp, grinded into powder and dissolved in distilled water. The suspension was used as reducing agent and treated with silver nitrate at the concentration of 1mM. The reduction reaction was continuously monitored by UV-visible photo spectrometer. Further the samples were subjected to AFM, SEM and XRD analysis for the confirmation of their size, structure, agglomerations and the arrangements of crystals. Finally the antibacterial properties of nanoparticles were tested against clinically important pathogenic microorganisms using disc diffusion method and compared with the activities of standard antibiotics. The combinational effects of nanoparticles with commercial antibiotics also were tested by the same method.

  13. The toxicity of silver to soil organisms exposed to silver nanoparticles and silver nitrate in biosolids-amended field soil.

    PubMed

    Jesmer, Alexander H; Velicogna, Jessica R; Schwertfeger, Dina M; Scroggins, Richard P; Princz, Juliska I

    2017-10-01

    The use of engineered silver nanoparticles (AgNPs) is widespread, with expected release to the terrestrial environment through the application of biosolids onto agricultural lands. The toxicity of AgNPs and silver nitrate (AgNO 3 ; as ionic Ag + ) to plant (Elymus lanceolatus and Trifolium pratense) and soil invertebrate (Eisenia andrei and Folsomia candida) species was assessed using Ag-amended biosolids applied to a natural sandy loam soil. Bioavailable Ag + in soil samples was estimated using an ion-exchange technique applied to KNO 3 soil extracts, whereas exposure to dispersible AgNPs was verified by single-particle inductively coupled plasma-mass spectrometry and transmission electron microscopy-energy dispersive X-ray spectroscopy analysis. Greater toxicity to plant growth and earthworm reproduction was observed in AgNP exposures relative to those of AgNO 3 , whereas no difference in toxicity was observed for F. candida reproduction. Transformation products in the AgNP-biosolids exposures resulted in larger pools of extractable Ag + than those from AgNO 3 -biosolids exposures, at similar total Ag soil concentrations. The results of the present study reveal intrinsic differences in the behavior and bioavailability of the 2 different forms of Ag within the biosolids-soils pathway. The present study demonstrates how analytical methods that target biologically relevant fractions can be used to advance the understanding of AgNP behavior and toxicity in terrestrial environments. Environ Toxicol Chem 2017;36:2756-2765. © 2017 Crown in the Right of Canada. Published Wiley Periodicals Inc., on behalf of SETAC. © 2017 Crown in the Right of Canada. Published Wiley Periodicals Inc., on behalf of SETAC.

  14. Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning

    USDA-ARS?s Scientific Manuscript database

    Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers were prepared by atmospheric plasma treatment and electrospinning. Atmospheric helium plasma treatment was first used to reduce the silver nitrate precursor in pre-electrospinning solutions into metallic silver nanoparticles, foll...

  15. A new medium for Caenorhabditis elegans toxicology and nanotoxicology studies designed to better reflect natural soil solution conditions.

    PubMed

    Tyne, William; Lofts, Stephen; Spurgeon, David J; Jurkschat, Kerstin; Svendsen, Claus

    2013-08-01

    A new toxicity test medium for Caenorhabditis elegans is presented. The test solution is designed to provide a better representation of natural soil pore water conditions than currently available test media. The medium has a composition that can readily be modified to allow for studies of the influences of a range of environmentally relevant parameters on nematode biology and toxicology. Tests conducted in the new medium confirmed that nematodes' reproduction was possible at a range of solution pH levels, offering the potential to conduct toxicity studies under a variety of conditions. A test to establish silver nanoparticle and dissolved silver nitrate toxicity, a study type not feasible in M9 or agar media due to precipitation and nanoparticle agglomeration, indicated lower silver nanoparticle (median effective concentration [EC50] of 6.5 mg Ag/L) than silver nitrate (EC50 0.28 mg Ag/L) toxicity. Characterization identified stable nanoparticle behavior in the new test medium. Copyright © 2013 SETAC.

  16. A Localized Surface Plasmon Resonance Sensing Method for Simultaneous Determination of Atenolol and Amiloride in Pharmaceutical Dosage Forms and Urine Samples

    PubMed Central

    2018-01-01

    This contribution describes a simple, fast, and sensitive application of localized surface plasmon resonance effect of silver nanoparticles for simultaneous determination of antihypertensive drugs' mixture atenolol and amiloride in both pharmaceutical dosage forms and in biological samples (urine). Silver nanoparticles were prepared by chemical reduction of silver nitrate using hydroxylamine HCL in an alkaline medium. Application of silver-hydroxylamine nanoparticles (SH NPs) provides many advantages including reproducibility, sensitivity, and cost effective way of analyte determination. Amiloride has four amino groups which act as attachment points on the surface of silver nanoparticles resulting in a synergistic effect on the absorption intensity of atenolol, leading to increase the sensitivity of the determination of both compounds. This method shows excellent advantages comparing with the previously reported methods, including accuracy, precision, and selectivity. The linear range of atenolol is 1 × 10−5–1 × 10−4 mol·L−1 and of amiloride is 1 × 10−6–1 × 10−5 mol·L−1. The limit of detection (LOD) values of atenolol and amiloride are 0.89 × 10−5 and 0.42 × 10−6 mol·L−1, respectively. PMID:29576886

  17. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity

    PubMed Central

    2012-01-01

    Background Gum ghatti is a proteinaceous edible, exudate tree gum of India and is also used in traditional medicine. A facile and ecofriendly green method has been developed for the synthesis of silver nanoparticles from silver nitrate using gum ghatti (Anogeissus latifolia) as a reducing and stabilizing agent. The influence of concentration of gum and reaction time on the synthesis of nanoparticles was studied. UV–visible spectroscopy, transmission electron microscopy and X-ray diffraction analytical techniques were used to characterize the synthesized nanoparticles. Results By optimizing the reaction conditions, we could achieve nearly monodispersed and size controlled spherical nanoparticles of around 5.7 ± 0.2 nm. A possible mechanism involved in the reduction and stabilization of nanoparticles has been investigated using Fourier transform infrared spectroscopy and Raman spectroscopy. Conclusions The synthesized silver nanoparticles had significant antibacterial action on both the Gram classes of bacteria. As the silver nanoparticles are encapsulated with functional group rich gum, they can be easily integrated for various biological applications. PMID:22571686

  18. Thin and long silver nanowires self-assembled in ionic liquids as a soft template: electrical and optical properties

    NASA Astrophysics Data System (ADS)

    Chang, Min-Hwa; Cho, Hyun-Ah; Kim, Youn-Soo; Lee, Eun-Jong; Kim, Jin-Yeol

    2014-07-01

    Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 105 S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value.

  19. Development of High Pressure Liquid Chromatographic Techniques

    DTIC Science & Technology

    1976-05-01

    Silver tungstate was prepared by precipitation from equimolar solutions of sodium tungsten oxide (Na^Oj and silver nitrate {AgN03). The precipitate ...electro- chemical detector based on this observation. Various approaches were used. Silver iodide- tungstate was prepared in the following manner...Lamers, B. J. M., and Gerding, M. H., "A New Highly Sensitive Detection System for Peptides and Proteins in Column Effluents," J. Chrom., 66, 1972

  20. Preparation and Characterization of Gelatin Nanofibers Containing Silver Nanoparticles

    PubMed Central

    Jeong, Lim; Park, Won Ho

    2014-01-01

    Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag+ ions were reduced into Ag NPs by formic acid. The formation of Ag NPs was characterized by a UV-Vis spectrophotometer. Ag NPs were quickly generated within a few minutes in silver nitrate (AgNO3)/formic acid solution. As the water content of formic acid aqueous solution increased, more Ag NPs were generated, at a higher rate and with greater size. When gelatin was added to the AgNO3/formic acid solution, the Ag NPs were stabilized, resulting in smaller particles. Moreover, gelatin limits further aggregation of Ag NPs, which were effectively dispersed in solution. The amount of Ag NPs formed increased with increasing concentration of AgNO3 and aging time. Gelatin nanofibers containing Ag NPs were fabricated by electrospinning. The average diameters of gelatin nanofibers were 166.52 ± 32.72 nm, but these decreased with the addition of AgNO3. The average diameters of the Ag NPs in gelatin nanofibers ranged between 13 and 25 nm, which was confirmed by transmission electron microscopy (TEM). PMID:24758929

  1. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size.

    PubMed

    Prathna, T C; Chandrasekaran, N; Raichur, Ashok M; Mukherjee, Amitava

    2011-01-01

    In the present study, silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract. The effect of various process parameters like the reductant concentration, mixing ratio of the reactants and the concentration of silver nitrate were studied in detail. In the standardized process, 10(-2)M silver nitrate solution was interacted for 4h with lemon juice (2% citric acid concentration and 0.5% ascorbic acid concentration) in the ratio of 1:4 (vol:vol). The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm. X-ray diffraction analysis revealed the distinctive facets (111, 200, 220, 222 and 311 planes) of silver nanoparticles. We found that citric acid was the principal reducing agent for the nanosynthesis process. FT-IR spectral studies demonstrated citric acid as the probable stabilizing agent. Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy. The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing "MiePlot v. 3.4". The theoretical particle size corresponding to 2% citric acid concentration was compared to those obtained by various experimental techniques like X-ray diffraction analysis, atomic force microscopy, and transmission electron microscopy. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Preparation of silver-chitosan nanocomposites and coating on bandage for antibacterial wound dressing application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susilowati, Endang, E-mail: endwati@yahoo.co.id; Ashadi; Maryani

    Bandage is a medical device that is essential for wound dressing. To improve the performance of the bandage, it has been coated by silver-chitosan nanocomposites (Ag/Chit) with pad-dry-cure method. The nanocomposites were performed by chemical reduction method at room temperature using glucose as reducing agent, sodium hydroxide (NaOH) as accelerator reagent, silver nitrate (AgNO{sub 3}) as metal precursor and chitosan as stabilizing agent. Localized surface plasmon resonance (LSPR) absorption band of silver nanoparticles was investigated using UV-Vis spectrophotometer. The bandage coated Ag/Chit nanocomposites (B-Ag/Chit) were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM).more » In addition, antibacterial activity of the bandage toward Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) were also studied. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 412.2 – 423.2 nm. Coating of nanocomposite cause increasing rigidity of bandage and decreasing on crystallinity. The bandages of B-Ag/Chit demonstrated good activity against both Gram positive (S. aureus) and Gram negative (E.Coli). Thus the bandages have a potential to be used for antibacterial wound dressing application.« less

  3. Preparation of silver-hydroyapatite/PVA nanocomposites: Giant dielectric material for industrial and clinical applications

    NASA Astrophysics Data System (ADS)

    Uddin, Md Jamal; Middya, T. R.; Chaudhuri, B. K.

    2015-02-01

    Pure hydroxyappatite Ca10(PO4)6(OH)2 (or HAP) was prepared from eggshell and potassium dihydrogen phosphate (KH2PO4) by a simple self-chemical reaction method. The clean eggshell was heated at 800 °C in air giving the source of CaO. Appropriate amount of CaO was dissolved in KH2PO4 solution at 37°C for few days. The PH value decreases with increasing the duration of preparation of HAP. Silver nanoparticles derived from silver nitrate solution using black tea leaf extract had been introduced to hydroxyapatite due to its biocompatibility. The unique size- dependent properties of nanomaterials make them superior and indispensable. In this work, hydroxyapatite-silver nanoparticles/polyvinyl alcohol (PVA) composites with 4 different concentrations of hydroxyapatite (1-4 wt %) were prepared by bio-reduction method. Several techniques like XRD and SEM were used to characterize the prepared samples. Frequency dependent capacitance and conductance of the samples were measured using an impedance analyzer. The results showed a remarkable increase in dielectric permittivity (~5117) with low loss (~0.23) at1000 HZ and room temperature (300K) for 4wt% Hydroxapatie-Silver/PVA nanocomposite. Such nanocomposite might be directly applied in manufacturing clinical devices and also for embedding capacitor applications.

  4. Green synthesis and characterization of silver nanoparticles by leaf extracts of Cycas circinalis, Ficus amplissima, Commelina benghalensis and Lippia nodiflora

    NASA Astrophysics Data System (ADS)

    Johnson, I.; Prabu, H. Joy

    2015-01-01

    Biosynthesis of nanoparticles is a kind of bottom-up approach where the main reaction occurring is reduction. Since silver nanoparticles (AgNPs) have been used for infection prevention in medical field, it is more relevant to reduce their size using ancient Indian herbal plants. This method is good in anti-microbial efficiency against bacteria, viruses and other microorganisms and hence clearly enhances the medicinal usage of AgNPs. This type of green biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, cost-effective and environmental-friendly technologies for nano-materials synthesis. In the process of synthesizing AgNPs, we observed a rapid reduction of silver ions leading to the formation of stable crystalline AgNPs in the solution. Plant extracts from Cycas circinalis, Ficus amplissima, Commelina benghalensis and Lippia nodiflora were used for the synthesis of AgNPs from silver nitrate solution. AgNPs were characterized by different techniques.

  5. Silver deposition on titanium surface by electrochemical anodizing process reduces bacterial adhesion of Streptococcus sanguinis and Lactobacillus salivarius.

    PubMed

    Godoy-Gallardo, Maria; Rodríguez-Hernández, Ana G; Delgado, Luis M; Manero, José M; Javier Gil, F; Rodríguez, Daniel

    2015-10-01

    The aim of this study was to determine the antibacterial properties of silver-doped titanium surfaces prepared with a novel electrochemical anodizing process. Titanium samples were anodized with a pulsed process in a solution of silver nitrate and sodium thiosulphate at room temperature with stirring. Samples were processed with different electrolyte concentrations and treatment cycles to improve silver deposition. Physicochemical properties were determined by X-ray photoelectron spectroscopy, contact angle measurements, white-light interferometry, and scanning electron microscopy. Cellular cytotoxicity in human fibroblasts was studied with lactate dehydrogenase assays. The in vitro effect of treated surfaces on two oral bacteria strains (Streptococcus sanguinis and Lactobacillus salivarius) was studied with viable bacterial adhesion measurements and growth curve assays. Nonparametric statistical Kruskal-Wallis and Mann-Whitney U-tests were used for multiple and paired comparisons, respectively. Post hoc Spearman's correlation tests were calculated to check the dependence between bacteria adhesion and surface properties. X-ray photoelectron spectroscopy results confirmed the presence of silver on treated samples and showed that treatments with higher silver nitrate concentration and more cycles increased the silver deposition on titanium surface. No negative effects in fibroblast cell viability were detected and a significant reduction on bacterial adhesion in vitro was achieved in silver-treated samples compared with control titanium. Silver deposition on titanium with a novel electrochemical anodizing process produced surfaces with significant antibacterial properties in vitro without negative effects on cell viability. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Visualization procedures for proteins and peptides on flat-bed monoliths and their effects on matrix-assisted laser-desorption/ionization time-of-flight mass spectrometric detection.

    PubMed

    Wouters, Bert; Vanhoutte, Dominique J D; Aarnoutse, Petra; Visser, Adriaan; Stassen, Catherine; Devreese, Bart; Kok, Wim Th; Schoenmakers, Peter J; Eeltink, Sebastiaan

    2013-04-19

    The present study concerns the application of visualization methods, i.e. coomassie-brilliant-blue-R staining (CBB-R), silver-nitrate staining, and fluorescamine labeling, and subsequent MALDI-MS analysis of intact proteins and peptides on the surface of flat-bed monoliths, intended for spatial two-dimensional chromatographic separations. The use of 100-μm thick macroporous poly(butyl methacrylate-co-ethylene dimethacrylate) flat-bed monoliths renders a fixation step obsolete, so that CBB-R and silver-nitrate staining and destaining could be achieved in 10-15 min as opposed to up to 24h, as is typical on 2D-PAGE gels. The detection limits remained comparable. The compatibility of the monolithic layer with subsequent MALDI-MS analysis of individual proteins and peptide spots was investigated with regards to mass accuracy, mass precision, resolution, and signal intensity. When comparing results from MALDI-MS analysis of proteins and peptides on a flat-bed monolith to results obtained directly on stainless-steel target plates, significant losses in mass precision, signal intensity, and an increased variation in resolution were observed. In addition, a loss in signal intensity up to two orders of magnitude was observed when using monolithic layers. After CCB-R and silver-nitrate staining and destaining to disrupt the protein-dye complexes no MALDI spectra with significant S/N ratios could be achieved. After fluorescamine labeling heterogeneous signals were observed, which resulted from a distribution in the number of fluorescence-labeled lysine groups and from the presence of labeled derivatives that had undergone condensation reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Synthesis of noble metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bahadory, Mozhgan

    Improved methods were developed for the synthesis of noble metal nanoparticles. Laboratory experiments were designed for introducing of nanotechnology into the undergraduate curriculum. An optimal set of conditions for the synthesis of clear yellow colloidal silver was investigated. Silver nanoparticles were obtained by borohydride reduction of silver nitrate, a method which produces particles with average size of 12+/-2 nm, determined by Transmission Electron Microscopy (TEM). The plasmon absorbance is at 397 nm and the peak width at half maximum (PWHM) is 70-75 nm. The relationship between aggregation and optical properties was determined along with a method to protect the particles using polyvinylpyrrolidone (PVP). A laboratory experiment was designed in which students synthesize yellow colloidal silver, estimate particle size using visible spectroscopy, and study aggregation effects. The synthesis of the less stable copper nanoparticles is more difficult because copper nanopaticles are easily oxidized. Four methods were used for the synthesis of copper nanoparticles, including chemical reduction with sodium borohydride, sodium borohydride with potassium iodide, isopropyl alcohol with cetyltrimethylammonium bormide (CTAB) and reducing sugars. The latter method was also the basis for an undergraduate laboratory experiment. For each reaction, the dependence of stability of the copper nanoparticles on reagent concentrations, additives, relative amounts of reactants, and temperature is explored. Atomic force microscopy (AFM), TEM and UV-Visible Spectroscopy were used to characterize the copper nanoparticles. A laboratory experiment to produce copper nanoparticles from household chemicals was developed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mokhtari, Narges; Daneshpajouh, Shahram; Seyedbagheri, Seyedali

    This study has investigated different visible-light irradiation's effect on the formation of silver nanoparticles from silver nitrate using the culture supernatant of Klebsiella pneumonia. Our study shows that visible-light emission can significantly prompt the synthesis of silver nanoparticles. Also, the study experimentally investigated the liquid mixing process effect on silver nanoparticle synthesis by visible-light irradiation. This study successfully synthesized uniformly dispersed silver nanoparticles with a uniform size and shape in the range of 1-6 nm with an average size of 3 nm. Furthermore, the study investigated the mechanism of the reduction of silver ions by culture supernatant of K. pneumonia,more » and used X-ray diffraction to characterize silver chloride as an intermediate compound. Silver chloride was prepared synthetically and used as a substrate for the synthesis of silver nanoparticles by culture supernatant of K. pneumonia. The silver nanoparticles have been prepared from silver chloride during this investigation for the first time.« less

  9. Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of Annona muricata Linn and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ezealisiji, K. M.; Noundou, X. S.; Ukwueze, S. E.

    2017-11-01

    In recent time, various phytosynthetic methods have been employed for the fabrication of silver nanoparticles; these unique metal nanoparticles are used in several applications which include pharmaceuticals and material engineering. The current research reports a rapid and simple synthetic partway for silver nanoparticles (AgNPs) using root bark aqueous extract of Annona muricata and the evaluation of its antimicrobial efficacy against pathogenic microorganisms. The root bark extract was treated with aqueous silver nitrate solution. Silver ions were reduced to silver atoms which on aggregation gave Silver nanoparticles; the biosynthesized AgNPs were characteristically spherical, discreet and stabilized by phytochemical entities and were characterized using ultraviolet visible spectroscopy, transmission electron microscope (TEM) and photon correlation microscopy. The aqueous plant extract-AgNPs suspension was subjected to Fourier transform infrared spectroscopy. TEM result for the average particle size is 22 ± 2 nm. The polydispersity index and zeta-potential were found to be 0.44 ± 0.02 and - 27.90 ± 0.01 mV, respectively (Zeta-Sizer). The antimicrobial evaluation result showed that the synthesized silver nanoparticles at different concentration were very active against the Gram-positive bacteria ( B. subtilis, S. aureous) and Gram-negative bacteria ( K. Pneumonia, E. Coli and Pseudomonas aeruginosa), P. aeruginosa being most susceptible to the anti microbial effect of the silver nanoparticles. Stable silver nanoparticles with antimicrobial activity were obtained through biosynthesis.

  10. Determination of mercurous chloride and total mercury in mercury ores

    USGS Publications Warehouse

    Fahey, J.J.

    1937-01-01

    A method for the determination of mercurous chloride and total mercury on the same sample is described. The mercury minerals are volatilized in a glass tube and brought into intimate contact with granulated sodium carbonate. The chlorine is fixed as sodium chloride, determined with silver nitrate, and computed to mercurous chloride. The mercury is collected on a previously weighed gold coil and weighed.

  11. Synthesis and characterization of monodispersed silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Jegatha Christy, A.; Umadevi, M.

    2012-09-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO3), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM).

  12. Sorption of silver, gold and palladium with a polythioether foam.

    PubMed

    Khan, A S; Chow, A

    1986-02-01

    Silver, gold and palladium can be sorbed by a thiopolymer of the type [HO(CH(2)CH(2)CH(2)SS)(n)CH(2)CH(2)OH]. The distribution coefficient for palladium increases with halide concentration, with iodide having the largest effect. Silver can be extracted from chloride, nitrate or picrate media. The different distribution coefficients for gold in hydrochloric acid and in sodium chloride suggest that different sorption mechanisms predominate.

  13. Synthesis of phosphonic acid silver-graphene oxide nanomaterials with photocatalytic activity through ultrasonic-assisted method.

    PubMed

    Li, Yongshen; Song, Yunna; Ma, Zheng; Niu, Shuai; Li, Jihui; Li, Ning

    2018-06-01

    In this article, phosphonic acid silver-graphene oxide nanomaterials (Nano-PAS-GO) was synthesized from silver nitrate (AgNO 3 ) solution and phosphoric graphene oxide (PGO) via the convenient ultrasonic-assisted method, and the structure and morphology were characterized, and the photocatalytic activity and recyclability were evaluated through photocatalyzing degradation of Rhodamin B (RhB) aqueous solution, and the possible photocatalytic mechanism was also discussed. Based on those, it was confirmed that Nano-PAS-GO has been synthesized from AgNO 3 solution and PGO colloidal suspension under ultrasonic-assisted condition, and Nano-PAS-GO has consisted of phosphoric acid silver nanoparticles and GO with 2D lattice (2D GO lattice) connected in the form of C-P bonds, and the photodegradation rate of Nano-PAS-GO for RhB aqueous solution has reached 93.99%, and Nano-PAS-GO has possessed the nicer recyclability when the photocatalytic time was 50 min. From those results, the strong and stable interface . between PAS nanoparticles and 2D GO lattice connected in the form of the covalent bonds has effectively inhibited the occurrence of the photocorrosion phenomenon. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications.

    PubMed

    Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok Chun

    2016-06-01

    The biosynthesis of nanoparticles has received attention because of the development of economic and environmentally friendly technology for the synthesis of nanoparticles. The study develops a convenient method for the green synthesis of silver and gold nanoparticles by utilizing fresh root extract of the four-year old Panax ginseng plant, and evaluated the antimicrobial applications of silver nanoparticles against pathogenic microorganisms. P. ginseng is a well-known herbal medicinal plant, and its active ingredients are mainly ginsenosides. The fresh root of the 4 year old P. ginseng plant has been explored for the synthesis of silver and gold nanoparticles without the use of any additional reducing and capping agents. The reduction of silver nitrate led to the formation of silver nanoparticles within 2 h of reaction at 80°C. The gold nanoparticles were also successfully synthesized by the reduction of auric acid at 80°C, within 5 min of reaction. The biosynthesized gold and silver nanoparticles were characterized by techniques using various instruments, viz. ultraviolet-visible spectroscopy (UV-Vis spectroscopy), field emission transmission electron microscopy (FE-TEM), energy dispersive X-ray analysis (EDX), elemental mapping, and X-ray diffraction (XRD). In addition, the silver nanoparticles have shown antimicrobial potential against Bacillus anthracis, Vibrio parahaemolyticus, Staphylococcus aureus, Escherichia coli, and Bacillus cereus.

  15. Adduct simplification in the analysis of cyanobacterial toxins by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Howard, Karen L; Boyer, Gregory L

    2007-01-01

    A novel method for simplifying adduct patterns to improve the detection and identification of peptide toxins using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry is presented. Addition of 200 microM zinc sulfate heptahydrate (ZnSO(4) . 7H(2)O) to samples prior to spotting on the target enhances detection of the protonated molecule while suppressing competing adducts. This produces a highly simplified spectrum with the potential to enhance quantitative analysis, particularly for complex samples. The resulting improvement in total signal strength and reduction in the coefficient of variation (from 31.1% to 5.2% for microcystin-LR) further enhance the potential for sensitive and accurate quantitation. Other potential additives tested, including 18-crown-6 ether, alkali metal salts (lithium chloride, sodium chloride, potassium chloride), and other transition metal salts (silver chloride, silver nitrate, copper(II) nitrate, copper(II) sulfate, zinc acetate), were unable to achieve comparable results. Application of this technique to the analysis of several microcystins, potent peptide hepatotoxins from cyanobacteria, is illustrated. Copyright (c) 2007 John Wiley & Sons, Ltd.

  16. Synthesis of nano silver on cellulosic denim fabric producing yellow colored garment with antibacterial properties.

    PubMed

    Maryan, Ali Sadeghian; Montazer, Majid; Harifi, Tina

    2015-01-22

    In this study, an aged-look denim fabric with antibacterial property was prepared in one single step process. For this purpose, the simultaneous antibacterial finishing and discoloration of denim fabric was carried out through reduction of indigo dye and silver nitrate by glucose in alkaline media using a conventional garment washing machine. The uniform distribution of silver nanoparticles on the fiber surface was confirmed by scanning electron microscope and energy dispersive X-ray spectroscopy. The treated fabrics were also characterized by X-ray diffraction (XRD) and Raman spectroscopy. Due to the color changes during the process, the color coordinates of the treated samples were also measured. Findings suggest the potential of the proposed method in producing old-look denim fabric with desirable yellow appearance and reasonable antibacterial activity against Staphylococcus aureus and Escherichia coli with low toxicity for human. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Thin and long silver nanowires self-assembled in ionic liquids as a soft template: electrical and optical properties

    PubMed Central

    2014-01-01

    Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 105 S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value. PMID:25024690

  18. Thin and long silver nanowires self-assembled in ionic liquids as a soft template: electrical and optical properties.

    PubMed

    Chang, Min-Hwa; Cho, Hyun-Ah; Kim, Youn-Soo; Lee, Eun-Jong; Kim, Jin-Yeol

    2014-01-01

    Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 10(5) S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value.

  19. Use of Silver in the Prevention and Treatment of Infections: Silver Review

    PubMed Central

    Campbell, Kristin T.; Rosenberger, Laura H.; Sawyer, Robert G.

    2013-01-01

    Abstract Background The use of silver for the treatment of various maladies or to prevent the transmission of infection dates back to at least 4000 b.c.e. Medical applications are documented in the literature throughout the 17th and 18th centuries. The bactericidal activity of silver is well established. Silver nitrate was used topically throughout the 1800s for the treatment of burns, ulcerations, and infected wounds, and although its use declined after World War II and the advent of antibiotics, Fox revitalized its use in the form of silver sulfadiazine in 1968. Method Review of the pertinent English-language literature. Results Since Fox's work, the use of topical silver to reduce bacterial burden and promote healing has been investigated in the setting of chronic wounds and ulcers, post-operative incision dressings, blood and urinary catheter designs, endotracheal tubes, orthopedic devices, vascular prostheses, and the sewing ring of prosthetic heart valves. The beneficial effects of silver in reducing or preventing infection have been seen in the topical treatment of burns and chronic wounds and in its use as a coating for many medical devices. However, silver has been unsuccessful in certain applications, such as the Silzone heart valve. In other settings, such as orthopedic hardware coatings, its benefit remains unproved. Conclusion Silver remains a reasonable addition to the armamentarium against infection and has relatively few side effects. However, one should weigh the benefits of silver-containing products against the known side effects and the other options available for the intended purpose when selecting the most appropriate therapy. PMID:23448590

  20. Active control of nanolitre droplet contents with convective concentration gradients across permeable walls.

    PubMed

    Zeitoun, Ramsey I; Goudie, Marcus J; Zwier, Jacob; Mahawilli, David; Burns, Mark A

    2011-12-07

    Nanolitre droplets in microfluidic devices can be used to perform thousands of independent chemical and biological experiments while minimizing reagents, cost and time. However, the absence of simple and versatile methods capable of controlling the contents of these nanolitre chemical systems limits their scientific potential. To address this, we have developed a method that is simple to fabricate and can continuously control nanolitre chemical systems by integrating a time-resolved convective flow signal across a permeable membrane wall. With this method, we can independently control the volume and concentration of nanolitre-sized drops without ever directly contacting the fluid. Transport occurring in these systems was also analyzed and thoroughly characterized. We achieved volumetric fluid introduction and removal rates ranging from 0.23 to 4.0 pL s(-1). Furthermore, we expanded this method to perform chemical processes. We precipitated silver chloride using a flow signal of sodium chloride and silver nitrate droplets. From there, we were able to separate sodium chloride reactants with a water flow signal, and dissolve silver chloride solids with an ammonia hydroxide flow signal. Finally, we demonstrate the potential to deliver large molecules and perform physical processes like crystallization and particle packing.

  1. Biomimetic fabrication of antibacterial calcium phosphates mediated by polydopamine.

    PubMed

    Forte, Lucia; Torricelli, Paola; Bonvicini, Francesca; Boanini, Elisa; Gentilomi, Giovanna Angela; Lusvardi, Gigliola; Della Bella, Elena; Fini, Milena; Vecchio Nepita, Edoardo; Bigi, Adriana

    2018-01-01

    In this work we developed new antibacterial composite materials using polydopamine (PDA) to trigger the deposition of silver nanoparticles (AgNPs) onto calcium phosphates, namely octacalcium phosphate (OCP) and α-tricalcium phosphate (αTCP). Functionalization of OCP and αTCP with a self-polymerized polydopamine layer was obtained by soaking the calcium phosphates in dopamine solution. The PDA surface of functionalized calcium phosphates (OCPd and αTCPd) promoted the deposition of AgNPs by reducing silver ions when soaked in a silver nitrate solution. The amount of deposited AgNPs can be modulated by varying the concentration of silver nitrate solution and the type of substrate. The results of in vitro tests carried out with osteoblast-like MG63 cells indicate that the combination of AgNPs with OCP provides more biocompatible materials than those obtained using αTCP as substrate. In particular, the study of osteoblast activity and differentiation was focused on the samples OCPdAg5 (silver content=8.2wt%) and αTCPdAg5 (silver content=4.7wt%), which did not show any cytotoxicity, and compared with those obtained on pure OCP and αTCP. The results demonstrate that the AgNPs loaded materials support osteoblast viability and differentiation, whereas they significantly inhibit the growth of relevant antibiotic-resistant pathogenic bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation

    NASA Astrophysics Data System (ADS)

    Rogers, James V.; Parkinson, Christopher V.; Choi, Young W.; Speshock, Janice L.; Hussain, Saber M.

    2008-04-01

    The use of nanotechnology and nanomaterials in medical research is growing. Silver-containing nanoparticles have previously demonstrated antimicrobial efficacy against bacteria and viral particles. This preliminary study utilized an in vitro approach to evaluate the ability of silver-based nanoparticles to inhibit infectivity of the biological select agent, monkeypox virus (MPV). Nanoparticles (10 80 nm, with or without polysaccharide coating), or silver nitrate (AgNO3) at concentrations of 100, 50, 25, and 12.5 μg/mL were evaluated for efficacy using a plaque reduction assay. Both Ag-PS-25 (polysaccharide-coated, 25 nm) and Ag-NP-55 (non-coated, 55 nm) exhibited a significant ( P ≤ 0.05) dose-dependent effect of test compound concentration on the mean number of plaque-forming units (PFU). All concentrations of silver nitrate (except 100 μg/mL) and Ag-PS-10 promoted significant ( P ≤ 0.05) decreases in the number of observed PFU compared to untreated controls. Some nanoparticle treatments led to increased MPV PFU ranging from 1.04- to 1.8-fold above controls. No cytotoxicity (Vero cell monolayer sloughing) was caused by any test compound, except 100 μg/mL AgNO3. These results demonstrate that silver-based nanoparticles of approximately 10 nm inhibit MPV infection in vitro, supporting their potential use as an anti-viral therapeutic.

  3. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    NASA Astrophysics Data System (ADS)

    Ferraris, S.; Miola, M.; Cochis, A.; Azzimonti, B.; Rimondini, L.; Prenesti, E.; Vernè, E.

    2017-02-01

    The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules - showing reducing ability to directly obtain in situ metallic silver - and silver nanoparticles was investigated by means of UV-vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  4. Reduction and determination of dixanthogens.

    PubMed

    Prasad, M S

    1971-06-01

    A convenient method for the reduction and determination of dixaathogen has been developed. It is based on the quantitative reaction of dixanthogen with zinc amalgam to form xanthate; the latter can be determined by iodine titration, potentiometric titration with silver nitrate or by spectrophotometry at 310 mmu. Dixanthogen can be determined in mixtures containing xanthate, by titration of aliquots with and without reduction. Higher dixanthogens can also be determined, and flotation liquors analysed.

  5. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zamanian, Ali; Sangpour, Parvanh; Shabanzadeh, Parvaneh; Abdollahi, Yadollah; Zargar, Mohsen

    2012-01-01

    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries. PMID:23341739

  6. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12–3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO3. The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller–Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications. PMID:21383858

  7. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity.

    PubMed

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.

  8. Enhancement of antibacterial properties of silver nanoparticles-ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis.

    PubMed

    Harshiny, Muthukumar; Matheswaran, Manickam; Arthanareeswaran, Gangasalam; Kumaran, Shanmugam; Rajasree, Shanmuganathan

    2015-11-01

    Green synthesis of nanoparticles with low range of toxicity and conjugation to antibiotics has become an attractive area of research for several biomedical applications. Nanoconjugates exhibited notable increase in biological activity compared to free antibiotic molecules. With this perception, we report the biosynthesis of silver nanoparticles using aqueous extract of leaves of Mukia maderaspatana and subsequent conjugation of the silver nanoparticles to antibiotic ceftriaxone. The leaves of this plant are known to be a rich source of phenolic compounds with high antioxidant activity that are used as reducing agents. The size, morphology, crystallinity, composition of the synthesized silver nanoparticles and conjugation of ceftriaxone to silver nanoparticles were studied using analytical techniques. The activity of the conjugates against Bacillus subtilis (MTCC 1790), Klebsiella pneumoniae (MTCC 3384), Staphylococcus aureus (ATCC 25923), and Salmonella typhi (MTCC 3224) was compared to ceftriaxone and unconjugated nanoparticles using disc diffusion method. The effect of silver nanoparticles on the reduction of biofilms of Pseudomonas fluorescens (MTCC 6732) was determined by micro plate assay method. The antioxidant activities of extract, silver nitrate, silver nanoparticles, ceftriaxone and conjugates of nanoparticles were evaluated by radical scavenging 1, 1- diphenyl-2-picrylhydrazyl test. Ultraviolet visible spectroscopy and Fourier transform infrared spectroscopy confirmed the formation of metallic silver nanoparticles and conjugation to ceftriaxone. Atomic force microscopy, transmission electron microscopy and particle size analysis showed that the formed particles were of spherical morphology with appreciable nanosize and the conjugation was confirmed by slight increase in surface roughness. The results thus showed that the conjugation of ceftriaxone with silver nanoparticles has better antioxidant and antimicrobial effects than ceftriaxone and unconjugated nanoparticles. It can be suggested that M. maderaspatana mediated nanoparticle-ceftriaxone conjugate can be used effectively in the production of potential antioxidant and antimicrobial agents. The present study offers a significant overview to the development of novel antimicrobial nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Green synthesis of silver nanoparticles and investigation of their colorimetric sensing and cytotoxicity effects

    NASA Astrophysics Data System (ADS)

    Pahlavan Noghabi, Mohammad; Parizadeh, Mohammad Reza; Ghayour-Mobarhan, Majid; Taherzadeh, Danial; Hosseini, Hasan Ali; Darroudi, Majid

    2017-10-01

    The "Green" synthesis of metallic nanoparticles and investigation of their optical properties has become a useful application between nanoscience and medicine. In this work, silver nanoparticles (Ag-NPs) were successfully prepared through a facile and green method by treating silver ions with chitosan. Preparation of Ag-NPs in silver nitrate solution (0.01 M) resulted in small and spherical shapes of Ag-NPs with a mean diameter of 10.2 nm. The formation of Ag-NPs was approved by surface Plasmon resonance (SPR) absorption peaks, using UV-vis spectrophotometer, while Ag-NPs were successfully employed in colorimetric sensing of H2O2 via an analytical procedure. Degradation process of Ag-NPs, encouraged by the catalytic decomposition of H2O2, causes a significant change in the absorbance intensity of SPR band depending on the H2O2 concentration. The cytotoxicity effect of synthesized Ag-NPs was examined on HEK293 cell line. The results illustrate a concentration-dependent toxicity for the tested cells, while15.07 μg/mL of IC50 was obtained.

  10. Utility of surface enhanced Raman spectroscopy (SERS) for elucidation and simultaneous determination of some penicillins and penicilloic acid using hydroxylamine silver nanoparticles.

    PubMed

    El-Zahry, Marwa R; Refaat, Ibrahim H; Mohamed, Horria A; Rosenberg, Erwin; Lendl, Bernhard

    2015-11-01

    Elucidation and quantitative determination of some of commonly used penicillins (ampicillin, penicillin G and carbenicillin) in the presence of their main degradation product (penicilloic acid) were developed. Forced acidic and basic degradation processes were applied at different time intervals. The formed degradation products were elucidated and quantified using surface enhanced Raman spectroscopy (SERS). Silver nanoparticles (AgNPs) prepared by reduction of silver nitrate using hydroxylamine-HCl in alkaline medium were used as SERS substrate. The results obtained in SERS were confirmed by the application of LC/MS method. The concentration range was 100-600 ng/ml in case of the studied penicillins and 100-700 ng/ml in case of penicilloic acid. An excellent correlation coefficient was found in case of ampicillin (r=0.9993) and in the case of penicilloic acid (r=0.9997). Validation procedures were carried out including precision, robustness and accuracy by comparing F- and t-values of both the proposed and reported methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Interaction of DNA bases with silver nanoparticles: assembly quantified through SPRS and SERS.

    PubMed

    Basu, Soumen; Jana, Subhra; Pande, Surojit; Pal, Tarasankar

    2008-05-15

    Colloidal silver nanoparticles were prepared by reducing silver nitrate with sodium borohydride. The synthesized silver particles show an intense surface plasmon band in the visible region. The work reported here describes the interaction between nanoscale silver particles and various DNA bases (adenine, guanine, cytosine, and thymine), which are used as molecular linkers because of their biological significance. In colloidal solutions, the color of silver nanoparticles may range from red to purple to orange to blue, depending on the degree of aggregation as well as the orientation of the individual particles within the aggregates. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and absorption spectroscopy were used to characterize the assemblies. DNA base-induced differential silver nanoparticle aggregation was quantified from the peak separation (relates to color) of surface plasmon resonance spectroscopy (SPRS) and the signal intensity of surface-enhanced Raman scattering (SERS), which rationalize the extent of silver-nucleobase interactions.

  12. A novel green one-step synthesis of silver nanoparticles using chitosan: catalytic activity and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Venkatesham, Maragoni; Ayodhya, Dasari; Madhusudhan, Alle; Veera Babu, Nagati; Veerabhadram, Guttena

    2014-01-01

    Stable silver nanoparticles were synthesized using chitosan acting as both reducing and stabilizing agent without using any toxic chemicals. This reaction was carried out in an autoclave at a pressure of 15 psi and 120 °C temperature by varying the time. The influence of different parameters such as time, change of concentration of silver nitrate and concentration of chitosan on the formation of silver nanoparticles were studied. The synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infrared, X-ray diffraction and transmission electron microscopy. The results of catalytic reduction of 4-nitrophenol by sodium borohydride in the presence of green synthesized silver nanoparticles were presented. The antimicrobial activity of silver nanoparticles was tested against Escherichia coli and Micrococcus luteus and was found to be possessing inhibiting property.

  13. A prototype single-port device for pressurized intraperitoneal aerosol chemotherapy. Technical feasibility and local drug distribution.

    PubMed

    Seitenfus, Rafael; Ferreira, Paulo Roberto Walter; Santos, Gabriel Oliveira Dos; Alves, Rafael José Vargas; Kalil, Antonio Nocchi; Barros, Eduardo Dipp de; Glehen, Olivier; Casagrande, Thaís Andrade Costa; Bonin, Eduardo Aimoré; Silva Junior, Edison Martins da

    2017-12-01

    To evaluate the technical feasibility and homogeneity of drug distribution of pressurized intraperitoneal aerosol chemotherapy (PIPAC) based on a novel process of intraperitoneal drug application (multidirectional aerosolization). This was an in vivo experimental study in pigs. A single-port device was manufactured at the smallest diameter possible for multidirectional aerosolization of the chemotherapeutic drug under positive intraperitoneal pressure. Four domestic pigs were used in the study, one control animal that received multidirectional microjets of 9 mL/sec for 30 min and three animals that received multidirectional aerosolization (pig 02: 9 mL/sec for 30 min; pigs 03 and 04: 3 mL/sec for 15 min). Aerosolized silver nitrate solution was applied for anatomopathological evaluation of intraperitoneal drug distribution. Injection time was able to maintain the pneumoperitoneum pressure below 20 mmHg. The rate of moderate silver nitrate staining was 45.4% for pig 01, 36.3% for pig 02, 36.3% for pig 03, and 72.7% for pig 04. Intra-abdominal drug distribution had a broad pattern, especially in animals exposed to the drug for 30 min. Our sample of only four animals was not large enough to demonstrate an association between aerosolization and a higher silver nitrate concentration in the stained abdominal regions.

  14. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    NASA Astrophysics Data System (ADS)

    Liu, Suwen; Wehmschulte, Rudolf J.; Lian, Guoda; Burba, Christopher M.

    2006-03-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

  15. Eco-friendly synthesis of gelatin-capped bimetallic Au-Ag nanoparticles for chemiluminescence detection of anticancer raloxifene hydrochloride.

    PubMed

    Alarfaj, Nawal A; El-Tohamy, Maha F

    2016-09-01

    This study described the utility of green analytical chemistry in the synthesis of gelatin-capped silver, gold and bimetallic gold-silver nanoparticles (NPs). The preparation of nanoparticles was based on the reaction of silver nitrate or chlorauric acid with a 1.0 wt% aqueous gelatin solution at 50°C. The gelatin-capped silver, gold and bimetallic NPs were characterized using transmission electron microscopy, UV-vis, X-ray diffraction and Fourier transform infrared spectroscopy, and were used to enhance a sensitive sequential injection chemiluminescence luminol-potassium ferricyanide system for determination of the anticancer drug raloxifene hydrochloride. The developed method is eco-friendly and sensitive for chemiluminescence detection of the selected drug in its bulk powder, pharmaceutical injections and biosamples. After optimizing the conditions, a linear relationship in the range of 1.0 × 10(-9) to 1.0 × 10(-1)  mol/L was obtained with a limit of detection of 5.0 × 10(-10)  mol/L and a limit of quantification of 1.0 × 10(-9)  mol/L. Statistical treatment and method validation were performed based on ICH guidelines. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Evaluation of the In Vitro Effect of Gold Nanorod Aspect Ratio, Surface Charge and Chemistry on Cellular Association and Cytotoxicity

    DTIC Science & Technology

    2016-03-28

    Synthesis of GNRs ..............................................................................................................3 3.2 PEG...chemistry we can enhance their biocompatibility while maintaining their cellular uptake. 3 3.0 METHODS 3.1 Synthesis of GNRs MTAB GNRs (MTAB-1...chlorauric acid (0.1 M) was combined at room temperature with a growth solution of CTAB (0.1 M), chlorauric acid (0.1 M) silver nitrate (0.1 M) ascorbic

  17. The silver cation (Ag+): antistaphylococcal activity, mode of action and resistance studies.

    PubMed

    Randall, Christopher P; Oyama, Linda B; Bostock, Julieanne M; Chopra, Ian; O'Neill, Alex J

    2013-01-01

    To examine several poorly understood or contentious aspects of the antibacterial activity of silver (Ag(+)), including its cidality, mode of action, the prevalence of resistance amongst clinical staphylococcal isolates and the propensity for Staphylococcus aureus to develop Ag(+) resistance. The effects of Ag(+) on the viability, macromolecular synthesis and membrane integrity of S. aureus SH1000 were assessed using established methodology. Silver nitrate MICs were determined for a collection of staphylococcal isolates (n = 1006) collected from hospitals across Europe and Canada between 1997 and 2010. S. aureus biofilms were grown using the Calgary Biofilm Device. To examine the in vitro development of staphylococcal resistance to Ag(+), bacteria were subjected to continuous subculture in the presence of sub-MIC concentrations of Ag(+). Silver was bactericidal against S. aureus in buffered solution, but bacteriostatic in growth medium, and was unable to eradicate staphylococcal biofilms in vitro. Challenge of S. aureus with Ag(+) caused rapid loss of membrane integrity and inhibition of the major macromolecular synthetic pathways. All clinical staphylococcal isolates were susceptible to ≤ 16 mg/L silver nitrate and prolonged exposure (42 days) to Ag(+) in vitro failed to select resistant mutants. The rapid and extensive loss of membrane integrity observed upon challenge with Ag(+) suggests that the antibacterial activity results directly from damage to the bacterial membrane. The universal susceptibility of staphylococci to Ag(+), and failure to select for resistance to Ag(+), suggest that silver compounds remain a viable option for the prevention and treatment of topical staphylococcal infections.

  18. Layer-by-Layer Self-Assembly of Plexcitonic Nanoparticles

    DTIC Science & Technology

    2013-08-12

    nitrate , trisodium citrate tribasic dihydrate, sodium poly(styrene sulfonate) (PSS, MW ~70,000), poly(diallyldimethyl ammonium chloride ) (PDADMAC...Abstract: Colloidal suspensions of multilayer nanoparticles composed of a silver core, a polyelectrolyte spacer layer (inner shell), and a J-aggregate...multilayer architecture served as a framework for examining the coupling of the localized surface plasmon resonance exhibited by the silver core with

  19. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Suwen; Wehmschulte, Rudolf J.; Lian Guoda

    2006-03-15

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 {mu}m, some even more than 100 {mu}m, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silvermore » nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)« less

  20. Synthesis and antibacterial activity of water-dispersible silver nanoparticles via micellar nanoreactors

    NASA Astrophysics Data System (ADS)

    Pofali, Prasad; Shirolikar, Seema; Borde, Lalit; Pattani, Aditya; Dandekar, Prajakta; Jain, Ratnesh

    2018-04-01

    We have synthesized silver nanoparticles (AgNPs) using micelles of sugar fatty acid ester by dissolving the surfactant in a mixture of iso-octane and n-butanol, with solid-liquid extraction. Highly concentrated, water-dispersible AgNPs were obtained after thorough washing with alcohol, to remove excess of sucrose fatty acid ester DK SS and salt, followed by drying. The particles were characterized for their size, morphology and crystallinity using UV-Visible spectrophotometry, Transmission Electron Microscopy and x-ray diffractometry. Antibacterial study, confirmed the activity of nanoparticles against E. coli, P. aeruginosa and S. aureus, which causes diseases including diarrhoea and several life-threatening infections. Antibacterial activity of E. coli and P. aeruginosa was found to be 2.5 fold and for S. aureus 1.6 fold compared to 50 ppm conc. of Silver Nitrate. Our method of producing nanoparticles is employed as a platform technology for synthesizing other inorganic nanoparticles. This is the first report discussing the use of micellar carriers for obtaining silver nanopowder, to the best of our knowledge, which has the potential to overcome limitations during fabrication of AgNPs using reverse/inverse micelles. Our method yielded nano-sized, water-dispersible AgNPs via an easy and economic approach. The one-pot approach possesses advantages in terms of cost and simplicity, as compared with traditional methods of producing powdered AgNPs using energy intensive and expensive techniques like lyophilisation. The developed method, thus, possesses immense potential for commercial synthesis of AgNPs.

  1. Coulometric thermometric titration of halides in molten calcium nitrate tetrahydrate.

    PubMed

    Zsigrai, I J; Bartusz, D B

    1983-01-01

    A method for coulometric thermometric precipitation titrations of chloride, bromide and iodide in molten calcium nitrate tetrahydrate at 55 degrees with coulometrically generated silver ions has been developed. The change in temperature during the titration is followed with the aid of a thermistor bridge coupled to a recorder. To minimize the temperature effect of the passage of current through the melt, two thermistors are connected in opposition in the bridge, with one in the anodic and the other in the cathodic cell compartment. Amounts of 62-80 mumole of halide have been determined with relative error below 0.4% and relative standard deviation less than 2.7%. The relative error in determination of 40 mumole of iodide was + 2%.

  2. Facile synthesis and characterization of silver nanoparticle/bis(o-phenolpropyl)silicone composites using a gold catalyst.

    PubMed

    Roh, Sung-Hee; Cheong, Hyeonsook; Kim, Do-Heyoung; Woo, Hee-Gweon; Lee, Byeong-Gweon; Yang, Kap-Seung; Kim, Bo-Hye; Sohn, Honglae

    2013-01-01

    The generation of silver nanoparticle/bis(o-phenolpropyl)silicone composites have been facilitated by the addition of sodium tetrachloroaurate or gold(Ill) chloride (< 1 wt% of NaAuCl4 or AuCl3) to the reaction of silver nitrate (AgNO3) with bis(o-phenolpropyl)silicone [BPPS, (o-phenolpropyl)2(SiMe2O)n, n = 2,3,8,236]. TEM and FE-SEM data showed that the silver nanoparticles having the size of < 20 nm are well dispersed throughout the BPPS silicone matrix in the composites. XRD patterns are consistent with those for polycrystalline silver. The size of silver nanoparticles augmented with increasing the relative molar concentration of AgNO3 added with respect to BPPS. The addition of gold complexes (1-3 wt%) did not affect the size distribution of silver nanoparticles appreciably. In the absence of BPPS, the macroscopic precipitation of silver by agglomeration, indicating that BPPS is necessary to stabilize the silver nanoparticles surrounded by coordination.

  3. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core.

    PubMed

    Richter, Alexander P; Brown, Joseph S; Bharti, Bhuvnesh; Wang, Amy; Gangwal, Sumit; Houck, Keith; Cohen Hubal, Elaine A; Paunov, Vesselin N; Stoyanov, Simeon D; Velev, Orlin D

    2015-09-01

    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles.

  4. Effect of AgNO3 and BAP on Root as a Novel Explant in Date Palm (Phoenix dactylifera cv. Medjool) Somatic Embryogenesis.

    PubMed

    Roshanfekrrad, Marjan; Zarghami, Reza; Hassani, Hassan; Zakizadeh, Hedayat; Salari, Ali

    2017-01-01

    Somatic embryogenesis techniques are used for cloning a wide range of varieties of date palms around the world. The aim of the present study was to develop an efficient method with the lowest cost and the greatest potential to obtain in vitro plantlets of date palm cv. Medjool. Also, produce embryogenic callus and somatic embryos without using 2,4-dichlorophenoxyacetic acid (2,4-D). In this study, produced plantlets through somatic embryogenesis were used in vitro roots as explant cultured on Murashige and Skoog (MS) media containing three level of Silver Nitrate (AgNO3) (0, 3 and 6 mg L-1) plus two level of 6-benzylaminopurine (BAP) (0 and 2 mg L-1) plus 0.1 mg L-1 1-naphthylacetic acid (NAA) for callus induction. After 12 weeks of culture, callus induction and after 16 weeks, production of embryogenic callus and embryos were occurred from root explants. According to the results, medium containing 2 mg L-1 BAP and 3 mg L-1 silver nitrate+0.1 mg L-1 NAA showed the highest amount of embryogenic callus fresh weight (1.38 g). This treatment also cause the highest number and length of embryos by production of 90.04 embryogenic callus with length of 11.18 mm. On the other hand, shoots were appeared from germinated embryos and white roots began to appear within 8 weeks. Medium contains 3 mg L-1 BAP and 0.1 mg L-1 NAA with average of 12.27 cm shoot length and 15.48 cm root length was the best. Control treatment had the lowest average shoot (3.71 cm) and root (5.03 cm) length. This study showed that certain concentration of silver nitrate and BAP has stimulating effect on growth of produced embryonic callus from root segments of Medjool cultivar of date palm.

  5. Determination of acetylsalicylic acid in commercial tablets by SERS using silver nanoparticle-coated filter paper

    NASA Astrophysics Data System (ADS)

    Sallum, Loriz Francisco; Soares, Frederico Luis Felipe; Ardila, Jorge Armando; Carneiro, Renato Lajarim

    2014-12-01

    In this work, filter paper was used as a low cost substrate for silver nanoparticles in order to perform the detection and quantification of acetylsalicylic acid by SERS in a commercial tablet. The reaction conditions were 150 mM of ammonium hydroxide, 50 mM of silver nitrate, 500 mM of glucose, 12 min of the reaction time, 45 °C temperature, pretreatment with ammonium hydroxide and quantitative filter paper (1-2 μm). The average size of silver nanoparticles deposited on the paper substrate was 180 nm. Adsorption time of acetylsalicylic acid on the surface of the silver-coated filter paper was studied and an adsorption time of 80 min was used to build the analytical curve. It was possible to obtain a calibration curve with good precision with a coefficient of determination of 0.933. The method proposed in this work was capable to quantify acetylsalicylic acid in commercial tablets, at low concentration levels, with relative error of 2.06% compared to the HPLC. The preparation of filter paper coated with silver nanoparticles using Tollen's reagent presents several advantages such as low cost of synthesis, support and reagents; minimum amount of residuals, which are easily treated, despite the SERS spectroscopy presenting fast analysis, with low sample preparation and low amount of reactants as in HPLC analysis.

  6. Nonlinear Conductive Behaviour of Silver Nanowires/Silicone Rubber Composites

    NASA Astrophysics Data System (ADS)

    Lu, Pin; Qu, Zhaoming; Wang, Qingguo; Bai, Liyun; Zhao, Shiyang

    2018-01-01

    Silver nanowires with an average length of 10 μm and diameter of about 90 nm have been synthesized by polyol reduction of silver nitrate in the presence of polyvinylpyrrolidone(PVP). Silver nanowires (AgNWs)/silicone rubber (SR) composites have been made by mixing silver nanowires into silicone rubber. The nonlinear response of AgNWs/SR composites under high electric field is investigated. The nonlinear Conductive behavior of composites is considered as a competitive process of several effects. From the perspective of the microstructure of composites, the conductive path is established by the quantum tunnel effect between silver nanowires. The influence factors on the conductivity of composites are discussed and analyzed. The results show that the AgNWs/SR composites with nonlinear conductive properties are of great potential application in electromagnetic protection of electron device and system.

  7. Ambipolar transport of silver nanoparticles decorated graphene oxide field effect transistors

    NASA Astrophysics Data System (ADS)

    Sarkar, Kalyan Jyoti; Sarkar, K.; Pal, B.; Kumar, Aparabal; Das, Anish; Banerji, P.

    2018-05-01

    In this article, we report ambipolar field effect transistor (FET) by using graphene oxide (GO) as a gate dielectric material for silver nanoparticles (AgNPs) decorated GO channel layer. GO was synthesized by Hummers' method. The AgNPs were prepared via photochemical reduction of silver nitrate solution by using monoethanolamine as a reducing agent. Morphological properties of channel layer were characterized by Field Effect Scanning Electron Microscopy (FESEM). Fourier Transform Infrared Spectroscopy (FTIR) was carried out to characterize GO thin film. For device fabrication gold (Au) was deposited as source-drain contact and aluminum (Al) was taken as bottom contact. Electrical measurements were performed by back gate configuration. Ambipolar transport behavior was explained from transfer characteristics. A maximum electron mobiliy of 6.65 cm2/Vs and a hole mobility of 2.46 cm2/Vs were extracted from the transfer characteristics. These results suggest that GO is a potential candidate as a gate dielectric material for thin film transistor applications and also provides new insights in GO based research.

  8. Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application

    NASA Astrophysics Data System (ADS)

    Erjaee, Hoda; Rajaian, Hamid; Nazifi, Saeed

    2017-06-01

    The present study reports green synthesis of silver nanoparticles (AgNPs) at room temperature using aqueous Chamaemelum nobile extract for the first time. The effect of silver nitrate concentration, quantity of the plant extract and the reaction time on particle size was optimized and studied by UV-Vis spectroscopy and dynamic light scattering. The appearance of brownish color with λ max of 422 nm confirmed the formation of AgNPs. Synthesized nanoparticles were further characterized by Fourier transform infrared spectroscopy, x-ray diffraction and transmission electron microscopy. In addition, antimicrobial activity of the AgNPs against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Bacillus subtilis was evaluated based on the inhibition zone using the disc-diffusion assay and measurement of minimal inhibition concentration and minimal bactericidal concentration by standard microdilution method. In conclusion, synthesis of nanoparticle with aqueous Chamaemelum nobile extract is simple, rapid, environmentally benign and inexpensive. Moreover, these synthesized nanoparticles exhibit significant antibacterial activity.

  9. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications

    NASA Astrophysics Data System (ADS)

    Nirmala, R.; Sheikh, Faheem A.; Kanjwal, Muzafar A.; Lee, John Hwa; Park, Soo-Jin; Navamathavan, R.; Kim, Hak Yong

    2011-05-01

    Bovine femur bone hydroxyapatite (HA) containing silver (Ag) nanoparticles was synthesized by thermal decomposition method and subsequent reduction of silver nitrate with N, N-dimethylformamide (DMF) in the presence of poly(vinylacetate) (PVAc). The structural, morphological, and chemical properties of the HA-Ag nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM images showed that the Ag nanoparticles with size ranging from 8 to 20 nm and were arranged at the periphery of HA crystals. Bactericidal activity of HA-Ag with different concentration of Ag nanoparticles immobilized on the surface of HA was investigated against gram-positive Staphylococcus aureus ( S. aureus, non-MRSA), Methicillin resistant S. aureus (MRSA) and gram-negative Escherichia coli ( E. coli) by the disc diffusion susceptibility test. The HA-Ag nanoparticles showed that broad spectrum activity against non-MRSA, MRSA, and E. coli bacterial strains.

  11. Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials.

    PubMed

    Youssef, Ahmed M; Abdel-Aziz, Mohamed S; El-Sayed, Samah M

    2014-08-01

    Chitosan-silver (CS-Ag) and Chitosan-gold (CS-Au) nanocomposites films were synthesized by a simple chemical method. A local bacterial isolate identified as Bacillus subtilis ss subtilis was found to be capable to synthesize both silver nanoparticles (Ag-NP) and gold nanoparticles (Au-NP) from silver nitrate (AgNO3) and chloroauric acid (AuCl(4-)) solutions, respectively. The biosynthesis of both Ag-NP and Au-NP characterize using UV/vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), and then added to chitosan by different ratios (0.5, 1 and 2%). The prepared chitosan nanocomposites films were characterize using UV, XRD, SEM and TEM. Moreover, the antibacterial activity of the prepared films was evaluated against gram positive (Staphylococcus aureus) and gram negative bacteria (Pseudomonas aerugenosa), fungi (Aspergillus niger) and yeast (Candida albicans). Therefore, these materials can be potential used as antimicrobial agents in packaging applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Chemical synthesis and characterization of chitosan/silver nanocomposites films and their potential antibacterial activity.

    PubMed

    Shah, Aamna; Hussain, Izhar; Murtaza, Ghulam

    2018-05-12

    This study provides the optimum preparation parameters for functional chitosan silver nanocomposite (CSN) films with promising antibacterial efficacy though prepared with very low silver nitrate (AgNO 3 ) concentration. Chitosan nano‑silver composites were fabricated by In-situ chemical method utilizing the reducing ability of sodium borohydride (NaBH 4 ) and afterward casted into films. Utilization of response surface methodology, NCSS, and SigmaPlot for the optimization of CSN and their predicted antibacterial efficacy assessment of the selected bacterial strains (standard and clinical) was the essential part of the study. The cumulative silver ions released from the CSN films was examined by AAS and was found pH dependent. The developed nanocomposite films exhibited strong antibacterial activity against ATCC strains of Gram-positive Staphylococcus aureus, Gram-negative bacteria (Pseudomonas aeruginosa) and clinically isolated strains of MRSA. The antibacterial activity CSN films were compared with three commercially available dressings (Aquacel Ag®, Bactigras®, and Kaltostat®) and Quench cream. Statistical analysis of the results indicated that the developed CSN films were equally or even more effective than commercial products. Thus the fabricated CSN films may act as a potential candidate to overcome the emerging antibiotic resistance particularly in hospital-acquired skin infections caused by MRSA. Copyright © 2018. Published by Elsevier B.V.

  13. Potassium sodium chloride integrated microconduits in a potentiometric analytical system.

    PubMed

    Hongbo, C; Junyan, S

    1991-09-01

    The preparation and application of a K(+), Na(+) and Cl(-) integrated microconduit potentiometric analytical system with tubular ion-selective electrodes (ISEs), microvalve, chemfold, electrostatic and pulse inhibitors is described. Electrochemical characteristics of the tubular ISEs and integrated microconduit FIA-ISEs were studied. The contents of K(+), Na(+) and Cl(-) in soil, water and serum were determined with the device. The analytical results agreed well with those obtained by flame photometric and silver nitrate volumetric methods.

  14. Environmentally Responsible Use of Nanomaterials for the Photocatalytic Reduction of Nitrate in Water

    NASA Astrophysics Data System (ADS)

    Doudrick, Kyle

    Nitrate is the most prevalent water pollutant limiting the use of groundwater as a potable water source. The overarching goal of this dissertation was to leverage advances in nanotechnology to improve nitrate photocatalysis and transition treatment to the full-scale. The research objectives were to (1) examine commercial and synthesized photocatalysts, (2) determine the effect of water quality parameters (e.g., pH), (3) conduct responsible engineering by ensuring detection methods were in place for novel materials, and (4) develop a conceptual framework for designing nitrate-specific photocatalysts. The key issues for implementing photocatalysis for nitrate drinking water treatment were efficient nitrate removal at neutral pH and by-product selectivity toward nitrogen gases, rather than by-products that pose a human health concern (e.g., nitrite). Photocatalytic nitrate reduction was found to follow a series of proton-coupled electron transfers. The nitrate reduction rate was limited by the electron-hole recombination rate, and the addition of an electron donor (e.g., formate) was necessary to reduce the recombination rate and achieve efficient nitrate removal. Nano-sized photocatalysts with high surface areas mitigated the negative effects of competing aqueous anions. The key water quality parameter impacting by-product selectivity was pH. For pH < 4, the by-product selectivity was mostly N-gas with some NH4 +, but this shifted to NO2- above pH = 4, which suggests the need for proton localization to move beyond NO2 -. Co-catalysts that form a Schottky barrier, allowing for localization of electrons, were best for nitrate reduction. Silver was optimal in heterogeneous systems because of its ability to improve nitrate reduction activity and N-gas by-product selectivity, and graphene was optimal in two-electrode systems because of its ability to shuttle electrons to the working electrode. "Environmentally responsible use of nanomaterials" is to ensure that detection methods are in place for the nanomaterials tested. While methods exist for the metals and metal oxides examined, there are currently none for carbon nanotubes (CNTs) and graphene. Acknowledging that risk assessment encompasses dose-response and exposure, new analytical methods were developed for extracting and detecting CNTs and graphene in complex organic environmental (e.g., urban air) and biological matrices (e.g. rat lungs).

  15. Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications

    PubMed Central

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar

    2013-01-01

    The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV)-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications. PMID:23861583

  16. Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(-)-myrtenol nitrate.

    PubMed

    Bew, Sean P; Hiatt-Gipson, Glyn D; Mills, Graham P; Reeves, Claire E

    2016-01-01

    Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a 'halide for nitrate' substitution. Employing readily available starting materials, reagents and Horner-Wadsworth-Emmons chemistry the synthesis of easily separable, synthetically versatile 'key building blocks' (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, 'off the shelf' materials. Exploiting their reactivity we have studied their ability to undergo an 'allylic halide for allylic nitrate' substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates ('isoprene nitrates') in 66-80% overall yields. Using NOESY experiments the elucidation of the carbon-carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our 'halide for nitrate' substitution chemistry we outline the straightforward transformation of (1R,2S)-(-)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(-)-myrtenol nitrate.

  17. Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength.

    PubMed

    Zhou, Weiping; Bai, Shi; Ma, Ying; Ma, Delong; Hou, Tingxiu; Shi, Xiaomin; Hu, Anming

    2016-09-21

    We demonstrate a novel approach to rapidly fabricate conductive silver electrodes on transparent flexible substrates with high-bonding strength by laser-direct writing. A new type of silver ink composed of silver nitrate, sodium citrate, and polyvinylpyrrolidone (PVP) was prepared in this work. The role of PVP was elucidated for improving the quality of silver electrodes. Silver nanoparticles and sintered microstructures were simultaneously synthesized and patterned on a substrate using a focused 405 nm continuous wave laser. The writing was completed through the transparent flexible substrate with a programmed 2D scanning sample stage. Silver electrodes fabricated by this approach exhibit a remarkable bonding strength, which can withstand an adhesive tape test at least 50 times. After a 1500 time bending test, the resistance only increased 5.2%. With laser-induced in-situ synthesis, sintering, and simultaneous patterning of silver nanoparticles, this technology is promising for the facile fabrication of conducting electronic devices on flexible substrates.

  18. Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium.

    PubMed

    Bankura, K P; Maity, D; Mollick, M M R; Mondal, D; Bhowmick, B; Bain, M K; Chakraborty, A; Sarkar, J; Acharya, K; Chattopadhyay, D

    2012-08-01

    A simple one-step rapid synthetic route is described for the preparation of silver nanoparticles by reduction of silver nitrate (AgNO3) using aqueous dextran solution which acts as both reducing and capping agent. The formation of silver nanoparticles is assured by characterization with UV-vis spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The absorbance of the silver nanoparticles is observed at 423 nm. The AFM image clearly shows the surface morphology of the well-dispersed silver nanoparticles with size range of 10-60 nm. TEM images show that the nanoparticles are spherical in shape with ∼5-10 nm dimensions. The crystallinity of Ag nanoparticles is assured by XRD analysis. The antimicrobial activity of as synthesized silver nanoparticles is tested against the bacteria, Bacillus subtilis, Bacillus cereus, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth is inhibited by gradual reduction of the concentration of the silver nanoparticles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium.

    PubMed

    Vigneshwaran, Nadanathangam; Kathe, Arati A; Varadarajan, P V; Nachane, Rajan P; Balasubramanya, R H

    2006-11-01

    Extracellular synthesis of silver nanoparticles by a white rot fungus, Phaenerochaete chrysosporium is reported in this paper. Incubation of P. chrysosporium mycelium with silver nitrate solution produced silver nanoparticles in 24h. These silver nanoparticles were characterized by means of UV-vis spectroscopy, X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The synthesized silver nanoparticles absorbed maximum at 470 nm in the visible region. XRD spectrum of the silver nanoparticles confirmed the formation of metallic silver. The SEM characterization of the fungus reacted on the Ag+ indicated that the protein might be responsible for the stabilization of silver nanoparticles. This result was further supported by the TEM examination. Though shape variation was noticed, majority of the nanoparticles were found to be of pyramidal shape as seen under TEM. Photoluminescence spectrum showed a broad emission peak of silver nanoparticles at 423 nm when excited at 350 nm. Apart from eco-friendliness, fungus as bio-manufacturing unit will give us an added advantage in ease of handling when compared to other classes of microorganisms.

  20. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa.

    PubMed

    Pourmortazavi, Seied Mahdi; Taghdiri, Mehdi; Makari, Vajihe; Rahimi-Nasrabadi, Mehdi

    2015-02-05

    The present study is dealing with the green synthesis of silver nanoparticles using the aqueous extract of Eucalyptus oleosa as a green synthesis procedure without any catalyst, template or surfactant. Colloidal silver nanoparticles were synthesized by reacting aqueous AgNO3 with E. oleosa leaf extract at non-photomediated conditions. The significance of some synthesis conditions such as: silver nitrate concentration, concentration of the plant extract, time of synthesis reaction and temperature of plant extraction procedure on the particle size of synthesized silver particles was investigated and optimized. The participations of the studied factors in controlling the particle size of reduced silver were quantitatively evaluated via analysis of variance (ANOVA). The results of this investigation showed that silver nanoparticles could be synthesized by tuning significant parameters, while performing the synthesis procedure at optimum conditions leads to form silver nanoparticles with 21nm as averaged size. Ultraviolet-visible spectroscopy was used to monitor the development of silver nanoparticles formation. Meanwhile, produced silver nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray, and FT-IR techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Chemical quality of bottom sediments in selected streams, Jefferson County, Kentucky, April-July 1992

    USGS Publications Warehouse

    Moore, B.L.; Evaldi, R.D.

    1995-01-01

    Bottom sediments from 25 stream sites in Jefferson County, Ky., were analyzed for percent volatile solids and concentrations of nutrients, major metals, trace elements, miscellaneous inorganic compounds, and selected organic compounds. Statistical high outliers of the constituent concentrations analyzed for in the bottom sediments were defined as a measure of possible elevated concentrations. Statistical high outliers were determined for at least 1 constituent at each of 12 sampling sites in Jefferson County. Of the 10 stream basins sampled in Jefferson County, the Middle Fork Beargrass Basin, Cedar Creek Basin, and Harrods Creek Basin were the only three basins where a statistical high outlier was not found for any of the measured constituents. In the Pennsylvania Run Basin, total volatile solids, nitrate plus nitrite, and endrin constituents were statistical high outliers. Pond Creek was the only basin where five constituents were statistical high outliers-barium, beryllium, cadmium, chromium, and silver. Nitrate plus nitrite and copper constituents were the only statistical high outliers found in the Mill Creek Basin. In the Floyds Fork Basin, nitrate plus nitrite, phosphorus, mercury, and silver constituents were the only statistical high outliers. Ammonia was the only statistical high outlier found in the South Fork Beargrass Basin. In the Goose Creek Basin, mercury and silver constituents were the only statistical high outliers. Cyanide was the only statistical high outlier in the Muddy Fork Basin.

  2. THE DIFFERENTIAL THERMAL ANALYSIS OF CYANO-TRANSITION METAL COMPLEXES

    DTIC Science & Technology

    COMPOUNDS, CHROMATES, COBALT COMPOUNDS, CYANIDES, CYANOGEN, DYES, FERRATES , GASES, HEAT, HYDROXIDES, LITHIUM COMPOUNDS, MOLYBDATES, NICKELATES, NITRATES...OXIDATION REDUCTION REACTIONS, POTASSIUM COMPOUNDS, SILVER COMPOUNDS, SODIUM COMPOUNDS, VANADATES

  3. Controlled synthesis of silver nanostructures stabilized by fluorescent polyarylene ether nitrile

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Shou, Hongguo; Wang, Pan; Zhou, Xuefei; Liu, Xiaobo

    2016-07-01

    In this work, the intrinsically fluorescent polyarylene ether nitrile (PEN) was explored to realize the controlled synthesis of fluorescent silver nanostructures with different morphology for the first time. Specifically, it was found that silver nitrate (AgNO3) can be effectively reduced to silver nanoparticles using PEN as both reducing and surface capping agents in N, N-dimethylformamide (DMF). More interestingly, the morphology of obtained fluorescent silver nanostructures can be tuned from nanospheres to nanorods by simple variation of reaction time at 130 °C using a relative PEN:AgNO3 molar concentration ratio of 1:8. Meanwhile, the obtained Ag nanostructures exhibited both localized surface plasmon resonance (LSPR) band and fluorescent emission around 420 nm, which would find potential applications in biochemical sensing and optical devices fields.

  4. A comparative study of the effect of α-, β-, and γ-cyclodextrins as stabilizing agents in the synthesis of silver nanoparticles using a green chemistry method.

    PubMed

    Suárez-Cerda, Javier; Nuñez, Gabriel Alonso; Espinoza-Gómez, Heriberto; Flores-López, Lucía Z

    2014-10-01

    This paper describes the effect of different types of cyclodextrins (CDs) in the synthesis of silver nanoparticles (Ag-NPs), using an easy green chemistry method. The Ag-NPs were obtained using an aqueous silver nitrate solution (AgNO3) with α-, β-, or γ-CDs (aqueous solutions) as stabilizing agents, employing the chemical reduction method with citric acid as a reducing agent. A comparative study was done to determine which cyclodextrin (CD) was the best stabilizing agent, and we found out that β-CD was the best due to the number of glucopyranose units in its structure. The formation of the Ag-NPs was demonstrated by analysis of UV-vis spectroscopy, atomic force microscopy (AFM), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). SEM-EDS showed the formation of a cluster with a significant amount of silver, for β-CD-Ag-NPs, spherical agglomerates can be observed. However, for α-, γ-CD, the agglomerates do not have a specific form, but their appearance is porous. TEM analysis shows spherical nanoparticles in shape and size between ~0.5 to 7 nm. The clear lattice fringes in TEM images and the typical selected area electron diffraction (SAED) pattern, showed that the Ag-NPs obtained were highly crystalline with a face cubic center structure (FCC). Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Green Synthesis and Characterization of Silver Nanoparticles Using Citrullus lanatus Fruit Rind Extract

    PubMed Central

    Ndikau, Michael; Andala, Dickson M.; Masika, Eric

    2017-01-01

    The wide-scale application of silver nanoparticles (AgNPs) in areas such as chemical sensing, nanomedicine, and electronics has led to their increased demand. Current methods of AgNPs synthesis involve the use of hazardous reagents and toxic solvents. There is a need for the development of new methods of synthesizing AgNPs that use environmentally safe reagents and solvents. This work reports a green method where silver nanoparticles (AgNPs) were synthesized using silver nitrate and the aqueous extract of Citrullus lanatus fruit rind as the reductant and the capping agent. The optimized conditions for the AgNPs synthesis were a temperature of 80°C, pH 10, 0.001 M AgNO3, 250 g/L watermelon rind extract (WMRE), and a reactant ratio of 4 : 5 (AgNO3 to WMRE). The AgNPs were characterized by Ultraviolet-Visible (UV-Vis) spectroscopy exhibiting a λmax at 404 nm which was consistent with the spectra of spherical AgNPs within the wavelength range of 380–450 nm, and Cyclic Voltammetry (CV) results showed a distinct oxidation peak at +291 mV while the standard reference AgNPs (20 nm diameter) oxidation peak occurred at +290 mV, and Transmission Electron Microscopy (TEM) revealed spherical shaped AgNPs. The AgNPs were found to have an average diameter of 17.96 ± 0.16 nm. PMID:28316627

  6. A Novel Photosynthesis of Carboxymethyl Starch-Stabilized Silver Nanoparticles

    PubMed Central

    El-Sheikh, M. A.

    2014-01-01

    The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs). A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3 concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C) and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively. PMID:24672325

  7. Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties.

    PubMed

    Saravanakumar, Arthanari; Peng, Mei Mei; Ganesh, Mani; Jayaprakash, Jayabalan; Mohankumar, Murugan; Jang, Hyun Tae

    2017-09-01

    Low cost and eco-friendly green synthesis of silver nanoparticles (AgNPs) from silver nitrate (AgNO 3 ) using Prunus japonica leaves extract as reducing agent by a simple method at room temperature. The biosynthesized nanoparticles (NPs) were characterized by UV-Vis, tunneling electron microscopy (HR-TEM), scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectrophotometer (EDAX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). In UV-Vis spectroscopy results, the λ max was observed at 441 nm. The AgNPs synthesized were spherical, hexagonal, and irregular in shapes. The EDAX and XRD spectrum confirmed the presence of silver ions and crystalline nature of synthesized AgNPs. FTIR showed the functional groups such as C = O, N-H and C-N groups involved in the reduction of Ag +  to Ag. 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay was performed and it showed the percentage inhibition in concentration-dependent manner. The synthesized AgNPs showed antibacterial activity against Escherichia coli, Proteus vulgaris, Staphylococcus aureus and Bacillus cereus to different extents and the higher activity was observed in Proteus vulgaris.

  8. Ultra-small Ag clusters in zeolite A4: Antibacterial and thermochromic applications

    NASA Astrophysics Data System (ADS)

    Horta-Fraijo, P.; Cortez-Valadez, M.; Flores-Lopez, N. S.; Britto Hurtado, R.; Vargas-Ortiz, R. A.; Perez-Rodriguez, A.; Flores-Acosta, M.

    2018-03-01

    The physical and chemical properties of metal clusters depend on their atomic structure, therefore, it is important to determine the lowest-energy structures of the clusters in order to understand and utilize their properties. In this work, we use the Density Functional Theory (DFT) at the generalized gradient approximation level Becke's three-parameter and the gradient corrected functional of Lee, Yang and Puar (B3LYP) in combination with the basis set LANL2DZ (the effective core potentials and associated double-zeta valence) to determine some of the structural, electronic and vibrational properties of the planar silver clusters (Agn clusters n = 2-24). Additionally, the study reports the experimental synthesis of small silver clusters in synthetic zeolite A4. The synthesis was possible using the ion exchange method with some precursors like silver nitrate (AgNO3) and synthetic zeolite A4. The silver clusters in zeolite powder underwent thermal treatment at 450 °C to release the remaining water or humidity on it. The morphology of the particles was determined by Transmission Electron microscopy. The nanomaterials obtained show thermochromic properties. The structural parameters were correlated theoretically and experimentally.

  9. Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract.

    PubMed

    Nasiriboroumand, Majid; Montazer, Majid; Barani, Hossein

    2018-02-01

    The potential application of any nanoparticles, including silver nanoparticles (AgNPs), strongly depends on their stability against aggregation. In the current study, an aqueous extract of pomegranate peel was used as a stabilizer during synthesis of AgNPs. Nanoparticles have been prepared by the chemical reduction method from an aqueous solution of silver nitrate in the presence of sodium borohydride as a reducing agent. The AgNPs were characterized by dynamic light scattering (DLS), zeta-potential measurements, UV-Vis spectroscopy and transmission electron microscopy (TEM). The antibacterial efficiency of AgNPs against Escherichia coli was investigated. The size, polydispersity index, FWHM, and colloidal stability of nanoparticles in dispersion depends on the extract concentrations. In the presence of pomegranate peel extract, the nanoparticles suspension shows colloidal stability at least for a week. Our studies show that synthesized AgNPs with the above described procedure were stable at pH = 3-12 and in the temperature range of 25-85 °C. Additionally, AgNPs exhibit antibacterial properties, especially at the lowest amount of extract to silver ratio (K Extract/Ag ). Copyright © 2018. Published by Elsevier B.V.

  10. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-02-01

    Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles

  11. Surface plasmon resonances, optical properties, and electrical conductivity thermal hystersis of silver nanofibers produced by the electrospinning technique.

    PubMed

    Barakat, Nasser A M; Woo, Kee-Do; Kanjwal, Muzafar A; Choi, Kyung Eun; Khil, Myung Seob; Kim, Hak Yong

    2008-10-21

    In the present study, silver metal nanofibers have been successfully prepared by using the electrospinning technique. Silver nanofibers have been produced by electrospinning a sol-gel consisting of poly(vinyl alcohol) and silver nitrate. The dried nanofiber mats have been calcined at 850 degrees C in an argon atmosphere. The produced nanofibers do have distinct plasmon resonance compared with the reported silver nanoparticles. Contrary to the introduced shapes of silver nanoparticles, the nanofibers have a blue-shifted plasmon resonance at 330 nm. Moreover, the optical properties study indicated that the synthesized nanofibers have two band gap energies of 0.75 and 2.34 eV. An investigation of the electrical conductivity behavior of the obtained nanofibers shows thermal hystersis. These privileged physical features greatly widen the applications of the prepared nanofibers in various fields.

  12. Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters.

    PubMed

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E

    2016-05-21

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

  13. Electrophoresis and isoelectric focusing of whole cell and membrane proteins from the extremely halophilic archaebacteria

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Lang, Frank J., Jr.; Hochstein, Lawrence I.

    1989-01-01

    The subunits from two purified halobacterial membrane enzymes (ATPase and nitrate reductase) behaved differently with respect to isoelectric focusing, silver staining and interaction with ampholytes. Differential behavior was also observed in whole cell proteins from Halobacterium saccharovorum regarding resolution in two-dimensional gels and silver staining. It is proposed that these differences reflect the existence of two classes of halobacterial proteins.

  14. Comparative synthesis and antimicrobial action of silver nanoparticles and silver nitrate

    NASA Astrophysics Data System (ADS)

    Mosselhy, Dina A.; El-Aziz, Mohamed Abd; Hanna, Magdy; Ahmed, Mohamed A.; Husien, Mona M.; Feng, Qingling

    2015-12-01

    The high wave of antibiotic bacterial resistance has addressed an importance for administration of different antibacterial agents, as silver nanoparticles (Ag NPs). However, many investigators still suffer conflict in the mechanistic antimicrobial action of Ag NPs and Ag+ ions. In this regard, our study investigated the comparative antimicrobial action of different sizes of Ag NPs as 8 (nAg1) and 29 (nAg2) nm, in comparison with silver nitrate (AgNO3) against five different bacterial species; Aeromonas hydrophila ( A. hydrophila), Pseudomonas putida ( Ps. putida), Escherichia coli ( E. coli), Staphylococcus aureus ( S. aureus), and Bacillus subtilis ( B. subtilis) using agar diffusion assay and minimum inhibitory concentration (MIC). The key role of the size of nanomaterials was detected, as the smaller Ag NPs (nAg1) showed more antimicrobial action than the larger particles. Transmission electron microscopy (TEM) studies demonstrated the different mechanistic antibacterial actions of Ag NPs and AgNO3. The effect of combining Ag NPs with antibiotics was also investigated. Synergistic effect of combining Ag NPs with ampicillin was detected against S. aureus, in a size-dependent manner as well. To summarize, our results point towards the major role played by the size of Ag NPs in their antimicrobial effects and the different toxic mechanisms of actions induced by Ag NPs and AgNO3.

  15. Hydroxy propyl cellulose capped silver nanoparticles produced by simple dialysis process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, L.; Balakrishnan, A.; Sanosh, K.P.

    2010-08-15

    Silver (Ag) nanoparticles ({approx}6 nm) were synthesized using a novel dialysis process. Silver nitrate was used as a starting precursor, ethylene glycol as solvent and hydroxy propyl cellulose (HPC) introduced as a capping agent. Different batches of reaction mixtures were prepared with different concentrations of silver nitrate (AgNO{sub 3}). After the reduction and aging, these solutions were subjected to ultra-violet visible spectroscopy (UVS). Optimized solution, containing 250 mg AgNO{sub 3} revealed strong plasmon resonance peak at {approx}410 nm in the spectrum indicating good colloidal state of Ag nanoparticles in the diluted solution. The optimized solution was subjected to dialysis processmore » to remove any unreacted solvent. UVS of the optimized solution after dialysis showed the plasmon resonance peak shifting to {approx}440 nm indicating the reduction of Ag ions into zero-valent Ag. This solution was dried at 80 {sup o}C and the resultant HPC capped Ag (HPC/Ag) nanoparticles were studied using transmission electron microscopy (TEM) for their particle size and morphology. The particle size distribution (PSD) analysis of these nanoparticles showed skewed distribution plot with particle size ranging from 3 to 18 nm. The nanoparticles were characterized for phase composition using X-ray diffractrometry (XRD) and Fourier transform infrared spectroscopy (FT-IR).« less

  16. Indirect potentiometric titration of ascorbic acid in pharmaceutical preparations using copper based mercury film electrode.

    PubMed

    Abdul Kamal Nazer, Meeran Mohideen; Hameed, Abdul Rahman Shahul; Riyazuddin, Patel

    2004-01-01

    A simple and rapid potentiometric method for the estimation of ascorbic acid in pharmaceutical dosage forms has been developed. The method is based on treating ascorbic acid with iodine and titration of the iodide produced equivalent to ascorbic acid with silver nitrate using Copper Based Mercury Film Electrode (CBMFE) as an indicator electrode. Interference study was carried to check possible interference of usual excipients and other vitamins. The precision and accuracy of the method was assessed by the application of lack-of-fit test and other statistical methods. The results of the proposed method and British Pharmacopoeia method were compared using F and t-statistical tests of significance.

  17. An environmentally benign antimicrobial nanoparticle based ...

    EPA Pesticide Factsheets

    Silver nanoparticles have antibacterial properties but their use has been a cause for concern because they persist in the environment. Here we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and together with silver ions can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies showed that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles

  18. Synthesis of silver nanoparticles by chemical reduction at various fraction of MSA and their structure characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diantoro, Markus, E-mail: m-diantoror@yahoo.com; Fitrianingsih, Rina, E-mail: m-diantoror@yahoo.com; Mufti, Nandang, E-mail: m-diantoror@yahoo.com

    Nanosilver is currently one of the most common engineered nanomaterials and is used in many applications that lead to the release of silver nanoparticles and silver ions into aqueous systems. Nanosilver also possesses enhanced antimicrobial activity and bioavailability that may less environmental risk compared with other manufactured nanomaterials. Described in this research are the synthesis of silver nanoparticle produced by chemical reduction from silver nitrate (AgNO{sub 3}) solution. As a reducing agent, Sodium Borohydride (NaBH{sub 4}) was used and mercaptosuccinic Acid (MSA) as stabilizer to prevent the nanoparticle from aglomerating. It was also used two kinds of solvent, they aremore » water and methanol. In typical experiment MSA was dissolve in methanol with a number of variation of molarity i.e. 0,03 M, 0,06 M, 0,12 M, 0,15 M, and the mixture was kept under vigorous stirring in an ice bath. A solution of silver nitrate of 340 mg in 6,792 ml water was added. A freshly prepared aqueous solution of sodium borohydride (756,6 mL in 100 mL of water) was added drop wisely. The solution was kept for half an hour for stirring and were allowed to settle down in methanol. The obtained samples then characterized by means of x-ray diffractometer, and scanning electron microscopy, as well as transmission electron microscopy to obtain their structures of silver nanoparticles, morphology, and sizes. It is shown that diameter of silver nanoparticle sized about 24.3 nm (Ag@MSA 0.03 M), 20.4 nm (Ag@MSA 0.06 M), 16.8 nm (Ag@MSA 0.12 M), 16.9 nm (Ag@MSA 0.15 M) which was calculated by Scherrer formula by taking the FWHM from fitting to Gaussian. The phases and lattice parameter showed that there is no significant change in its volume by increasing molarity of stabilizer. In contrast, the size of particles is decreasing.« less

  19. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties

    PubMed Central

    Ashour, Asmaa A; Raafat, Dina; El-Gowelli, Hanan M; El-Kamel, Amal H

    2015-01-01

    Background The growing threat of microbial resistance against traditional antibiotics has prompted the development of several antimicrobial nanoparticles (NPs), including silver NPs (AgNPs). In this article, a simple and eco-friendly method for the synthesis of AgNPs using the cranberry powder aqueous extract is reported. Materials and methods Cranberry powder aqueous extracts (0.2%, 0.5%, and 0.8% w/v) were allowed to interact for 24 hours with a silver nitrate solution (10 mM) at 30°C at a ratio of 1:10. The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy and their concentrations were determined using atomic absorption spectroscopy. The prepared NPs were evaluated by transmission electron microscopy, measurement of ζ-potential, and Fourier-transform infrared spectroscopy. The in vitro antimicrobial properties of AgNPs were then investigated against several microbial strains. Finally, in vivo appraisal of both wound-healing and antimicrobial properties of either plain AgNPs (prepared using 0.2% extract) or AgNP-Pluronic F-127 gel was conducted in a rat model after induction of a Staphylococcus aureus ATCC 6538P wound infection. Results The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy, where a surface-plasmon resonance absorption peak was observed between 432 and 438 nm. Both size and concentration of the formed AgNPs increased with increasing concentration of the extracts. The developed NPs were stable, almost spherical, and polydisperse, with a size range of 1.4–8.6 nm. The negative ζ-potential values, as well as Fourier-transform infrared spectroscopy analysis, indicated the presence of a capping agent adsorbed onto the surface of the particles. In vitro antimicrobial evaluation revealed a size-dependent activity of the AgNPs against the tested organisms. Finally, AgNPs prepared using 0.2% extract exhibited a substantial in vivo healing potential for full-thickness excision wounds in rats. Conclusion AgNPs were successfully synthesized from a silver nitrate solution through a simple green route, using cranberry powder aqueous extract as a reducing as well as capping agent. PMID:26664112

  20. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications

    PubMed Central

    Hassiba, Alaa J; El Zowalaty, Mohamed E; Webster, Thomas J; Abdullah, Aboubakr M; Nasrallah, Gheyath K; Khalil, Khalil Abdelrazek; Luyt, Adriaan S; Elzatahry, Ahmed A

    2017-01-01

    Herein, novel hybrid nanomaterials were developed for wound dressing applications with antimicrobial properties. Electrospinning was used to fabricate a double layer nanocomposite nanofibrous mat consisting of an upper layer of poly(vinyl alcohol) and chitosan loaded with silver nanoparticles (AgNPs) and a lower layer of polyethylene oxide (PEO) or polyvinylpyrrolidone (PVP) nanofibers loaded with chlorhexidine (as an antiseptic). The top layer containing AgNPs, whose purpose was to protect the wound site against environmental germ invasion, was prepared by reducing silver nitrate to its nanoparticulate form through interaction with chitosan. The lower layer, which would be in direct contact with the injured site, contained the antibiotic drug needed to avoid wound infections which would otherwise interfere with the healing process. Initially, the upper layer was electrospun, followed sequentially by electrospinning the second layer, creating a bilayer nanofibrous mat. The morphology of the nanofibrous mats was studied by scanning electron microscopy and transmission electron microscopy, showing successful nanofiber production. X-ray diffraction confirmed the reduction of silver nitrate to AgNPs. Fourier transform infrared spectroscopy showed a successful incorporation of the material used in the produced nanofibrous mats. Thermal studies carried out by thermogravimetric analysis indicated that the PVP–drug-loaded layer had the highest thermal stability in comparison to other fabricated nanofibrous mats. Antimicrobial activities of the as-synthesized nanofibrous mats against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were determined using disk diffusion method. The results indicated that the PEO–drug-loaded mat had the highest antibacterial activity, warranting further attention for numerous wound-healing applications. PMID:28356737

  1. Differential Expression of Mitochondrial Manganese Superoxide Dismutase (SOD) in Triticum aestivum Exposed to Silver Nitrate and Silver Nanoparticles.

    PubMed

    Karimi, Javad; Mohsenzadeh, Sasan; Niazi, Ali; Moghadam, Ali

    2017-01-01

    Background: The increasing use of nanoparticles (NPs) may have negative impacts on both organisms and the environment. Objectives: The differential expression of mitochondrial manganese superoxide dismutase ( MnSOD ) gene in wheat in response to silver nitrate nanoparticles (AgNPs) and AgNO 3 was investigated. Materials and Methods: A quantitative Real-Time RT-PCR experiment was carried out with MnSOD gene using RNAs isolated from wheat shoots treated for 0, 2, 6, 12, and 24 h with 100 mg.L -1 of either AgNO 3 or AgNPs. Results: The results of this study showed that both treatments cause changes in the expression pattern of the MnSOD gene. While 2 and 6 h following the beginning of the stress, MnSOD expression was up-regulated significantly, in response to AgNO 3 (1.4 and 2.8 fold, respectively), in response to AgNPs, it was up-regulated significant only after 6 h (1.6 fold), compared with the control. The gene expression, after 12 h in response to AgNO 3 and AgNPs were downregulated significantly (0.7 and 0.8 fold, respectively), and in the next 12 h , the expression appeared to be similar to the control. Conclusion: Exposure to both AgNPs and Ag ions led to a significant increase in MnSOD expression, but AgNO 3 changed the MnSOD expression faster than AgNPs. Therefore, it is suggested that AgNO 3 has greater penetrability and effectiveness.

  2. Synthesis and characterization of novel chiral ionic liquids and investigation of their enantiomeric recognition properties.

    PubMed

    Bwambok, David K; Marwani, Hadi M; Fernand, Vivian E; Fakayode, Sayo O; Lowry, Mark; Negulescu, Ioan; Strongin, Robert M; Warner, Isiah M

    2008-02-01

    We report the synthesis and characterization of amino acid ester based chiral ionic liquids, derived from L- and D-alanine tert butyl ester chloride. The synthesis was accomplished via an anion metathesis reaction between commercially available L- and D-alanine tert butyl ester chloride using a variety of counterions such as lithium bis (trifluoromethane) sulfonimide, silver nitrate, silver lactate, and silver tetrafluoroborate. Both enantiomeric forms were obtained as confirmed by bands of opposite sign in the circular dichroism spectra. The L- and D-alanine tert butyl ester bis (trifluoromethane) sulfonimide were obtained as liquids at room temperature and intriguingly exhibited the highest thermal stability (up to 263 degrees C). In addition, the ionic liquids demonstrated enantiomeric recognition ability as evidenced by splitting of racemic Mosher's sodium salt signal using a liquid state (19)F nuclear magnetic resonance (NMR) and fluorescence spectroscopy. The L- and D-alanine tert butyl ester chloride resulted in solid salts with nitrate, lactate, and tetrafluoroborate anions. This illustrates the previously observed tunability of ionic liquid synthesis, resulting in ionic liquids of varying properties as a function of varying the anion.

  3. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications.

    PubMed

    Zain, N Mat; Stapley, A G F; Shama, G

    2014-11-04

    Silver and copper nanoparticles were produced by chemical reduction of their respective nitrates by ascorbic acid in the presence of chitosan using microwave heating. Particle size was shown to increase by increasing the concentration of nitrate and reducing the chitosan concentration. Surface zeta potentials were positive for all nanoparticles produced and these varied from 27.8 to 33.8 mV. Antibacterial activities of Ag, Cu, mixtures of Ag and Cu, and Ag/Cu bimetallic nanoparticles were tested using Bacillus subtilis and Escherichia coli. Of the two, B. subtilis proved more susceptible under all conditions investigated. Silver nanoparticles displayed higher activity than copper nanoparticles and mixtures of nanoparticles of the same mean particle size. However when compared on an equal concentration basis Cu nanoparticles proved more lethal to the bacteria due to a higher surface area. The highest antibacterial activity was obtained with bimetallic Ag/Cu nanoparticles with minimum inhibitory concentrations (MIC) of 0.054 and 0.076 mg/L against B. subtilis and E. coli, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Silver Nanoparticle Impregnated Bio-Based Activated Carbon with Enhanced Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Suriyaraj, S. P.; Jayavignesh, V.; Swaminathan, K.

    2013-08-01

    The present study involves the production of silver nanoparticles using a novel yeast strain Saccharomyces cerevisiae BU-MBT CY-1 isolated from coconut cell sap. The biological reduction of silver nitrate by the isolate was deducted at various time intervals. The yeast cells after biological silver reduction were harvested and subjected to carbonization at 400°C for 1 h and its properties were analyzed using Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope attached with energy dispersive spectroscopy and transmission electron microscopy. The average size of the silver nanoparticles present on the surface of the carbonized silver containing yeast cells (CSY) was 19 ± 9 nm. The carbonized control yeast cells (CCY) did not contain any particles on its surface. The carbonized silver nanoparticles containing yeast cells (CSY) were made into bioactive emulsion and tested for its efficacy against various pathogenic Gram positive and Gram negative bacteria. The antimicrobial activity studies indicated that CSY bioactive nanoemulsion was effective against Gram negative organisms than Gram positive organism.

  5. Electrochemical Sensors for In Situ Phosphate and Nitrate Measurements in Seawater

    NASA Astrophysics Data System (ADS)

    Romanytsia, I.; Chen Legrand, D.; Barus, C.; Striebig, N.; Garcon, V.

    2016-02-01

    Monitoring the evolution of concentrations of dissolved inorganic nutrients, like phosphate and nitrate, provides insights on the oceanic biogeochemical cycles. This long term monitoring is key to investigate how changing oceanic conditions will alter biogeochemical cycles. We report here the latest development and analytical method to measure phosphate and nitrate concentrations in seawater without any addition of liquid reagents. We propose to use a derivative electrochemical method such as Square Wave Voltammetry (SWV) to detect phosphomolybdic complex and nitrate as this method offers a higher sensitivity than classical cyclic voltammetry and avoids the need of stirring the solution like for chronoamperometry technique. Phosphate is a non-electroactive species and its determination is performed by measuring its corresponding phosphomolybdic complex formed in situ after oxidation of two molybdenum electrodes placed into two different compartments connected with a proton-exchange membrane. [1]. All the SWV parameters such as step potential, amplitude and frequency have been determined to detect phosphomolybdic complex as fast as possible and with the lowest limit of detection. Depending on the frequency used, two calibration curves have been obtained for two phosphate concentration ranges: 0.07-1.06 µM (250 Hz) and 0.5-6 µM (2.5 Hz). We are currently working to adapt those parameters to laboratory prototype and results obtained will be presented. On the other hand, nitrate can be detected directly on gold electrode modified with silver nanoparticles (AgNPs) where the nitrate reduction process can be easily measured at -0.97 V [2]. This method allows to obtain good calibration curves with a detection limit of 10 nM, very short measuring time (2.8 s) and long life time of the modified electrode (minimum 47 days storage in seawater). [1] Jonca et al., Electrochimica Acta 88 (2013) 165-169 [2] Fajerwerg et al., Electrochem. Commun. 12 (2010) 1439-1441

  6. Photocatalytic silver enhancement reaction for gravimetric immunosensors.

    PubMed

    Seo, Hyejung; Joo, Jinmyoung; Ko, Wooree; Jung, Namchul; Jeon, Sangmin

    2010-12-17

    A novel microgravimetric immunosensor has been developed using TiO(2) nanoparticle-modified immunoassay and silver enhancement reaction. An antibody-conjugated TiO(2) nanoparticle is bound to the AFP antigen immobilized on a quartz resonator. When the nanoparticles are exposed to UV light in a silver nitrate solution, the photocatalytic reduction of silver ions results in the formation of metallic silver onto the nanoparticles and induces a decrease in the resonance frequency. The frequency change by this photocatalytic reduction reaction is three orders of magnitude larger than the change by antigen binding alone. The efficiency of the photocatalytic reaction has been found to increase with the fraction of anatase crystallites in the nanoparticles and the concentration of the AgNO(3) solution. The results highlight the potential of the photocatalytic nanoparticles for the detection of low concentrations of target molecules using gravimetric sensors.

  7. Single Cell Fluorescence Imaging Using Metal Plasmon-Coupled Probe

    PubMed Central

    Zhang, Jian; Fu, Yi; Lakowicz, Joseph R.

    2009-01-01

    This work constitutes the first fluorescent imaging of cells using metal plasmon-coupled probes (PCPs) at single cell resolution. N-(2-Mercapto-propionyl)glycine-coated silver nanoparticles were synthesized by reduction of silver nitrate using sodium borohyride and then succinimidylated via ligand exchange. Alexa Fluor 647-labeled concanavalin A (con A) was chemically bound to the silver particles to make the fluorescent metal plasmon-coupled probes. The fluorescence images were collected using a scanning confocal microscopy. The fluorescence intensity was observed to enhance 7-fold when binding the labeled con A on a single silver particle. PCPs were conjugated on HEK 293 A cells. Imaging results demonstrate that cells labeled by PCPs were 20-fold brighter than those by free labeled con A. PMID:17375898

  8. New bioactive silver(I) complexes: Synthesis, characterization, anticancer, antibacterial and anticarbonic anhydrase II activities

    NASA Astrophysics Data System (ADS)

    Ozdemir, Ummuhan O.; Ozbek, Neslihan; Genc, Zuhal Karagoz; İlbiz, Firdevs; Gündüzalp, Ayla Balaban

    2017-06-01

    Silver(I) complexes of alkyl sulfonic acide hydrazides were newly synthesized as homologous series. Methanesulfonic acide hydrazide (L1), ethanesulfonic acide hydrazide (L2), propanesulfonic acide hydrazide (L3) and butanesulfonic acide hydrazide (L4) were used for complexation with Ag(I) ions. The silver complexes obtained in the mol ratio of 1:2 have the structural formula as Ag(L1)2NO3 (I), Ag(L2)2NO3 (II), Ag(L3)2NO3(III), (Ag(L4)2NO3 (IV). The Ag(I) complexes exhibit distorted linear two-fold coordination in [AgL2]+ cations with uncoordinated nitrates. Ligands are chelated with silver(I) ions through unsubstituted primary nitrogen in hydrazide group. Ag(I) complexes were characterized by using elemental analysis, spectroscopic methods (FT-IR, LC-MS), magnetic susceptibility and conductivity measurements. Silver(I) complexes were optimized using PBEPBE/LanL2DZ/DEF2SV basic set performed by DFT method with the Gaussian 09 program package. The geometrical parameters, frontier molecular orbitals (HOMOs and LUMOs) and molecular electrostatic potential (MEP) mapped surfaces of the optimized geometries were also determined by this quantum set. The anticancer activities of silver(I) complexes on MCF-7 human breast cancer cell line were investigated by comparing IC50 values. The antibacterial activities of complexes were studied against Gram positive bacteria; S. aureus ATCC 6538, B. subtilis ATCC 6633, B. cereus NRRL-B-3711, E. faecalis ATCC 29212 and Gram negative bacteria; E. coli ATCC 11230, P. aeruginosa ATCC 15442, K. pneumonia ATCC 70063 by using disc diffusion method. The inhibition activities of Ag(I) complexes on carbonic anhydrase II enzyme (hCA II) were also investigated by comparing IC50 and Ki values. The biological activity screening shows that Ag(I) complex of butanesulfonicacidehydrazide (IV) has the highest activity against tested breast cancer cell lines MCF-7, Gram positive/Gram negative bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  9. Dark Field Microscopy for Analytical Laboratory Courses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augspurger, Ashley E; Stender, Anthony S; Marchuk, Kyle

    2014-06-10

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also observe and measure individual crystal growth during a replacement reaction between copper and silver nitrate. The experiment allows for quantitative, qualitative, and image data analyses for undergraduate students.

  10. Comparative analysis of the susceptibility to biocides and heavy metals of extended-spectrum β-lactamase-producing Escherichia coli isolates of human and avian origin, Germany.

    PubMed

    Deus, Daniela; Krischek, Carsten; Pfeifer, Yvonne; Sharifi, Ahmad Reza; Fiegen, Ulrike; Reich, Felix; Klein, Guenter; Kehrenberg, Corinna

    2017-05-01

    A total of 174 extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates collected from humans (n=140) and healthy broiler chickens (n = 34) was included in the study. The MIC values of alkyl diaminoethyl glycin hydrochloride, benzethonium chloride, benzalkonium chloride, chlorhexidine, acriflavine, copper sulfate, silver nitrate and zinc chloride were determined by the broth microdilution method. Significant differences in MIC distributions were found between human and avian isolates and between CTX-M-, SHV- and TEM-type ESBL E. coli for chlorhexidine, silver nitrate, zinc chloride and copper sulfate by statistical analysis. Isolates with reduced susceptibility were investigated for the presence and localization of tolerance-mediating genes by PCR analysis and Southern blotting. The genes emrE, mdfA, sugE(c), cueO, copA, zntA and zitB were commonly present in isolates with elevated MICs, while the genes qacE∆1, qacF, qacH, sugE(p), cusC and pcoA, were less prevalent. In several isolates, a plasmid localization of the genes qacE∆1, qacF, qacH and sugE(p) on large plasmids >20 kb was detected. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Parsimonious Hydrologic and Nitrate Response Models For Silver Springs, Florida

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Yaquian-Luna, Jose Antonio; Jawitz, James W.; Annable, Michael D.; Hatfield, Kirk

    2014-05-01

    Silver Springs with an approximate discharge of 25 m3/sec is one of Florida's first magnitude springs and among the largest springs worldwide. Its 2500-km2 springshed overlies the mostly unconfined Upper Floridan Aquifer. The aquifer is approximately 100 m thick and predominantly consists of porous, fractured and cavernous limestone, which leads to excellent surface drainage properties (no major stream network other than Silver Springs run) and complex groundwater flow patterns through both rock matrix and fast conduits. Over the past few decades, discharge from Silver Springs has been observed to slowly but continuously decline, while nitrate concentrations in the spring water have enormously increased from a background level of 0.05 mg/l to over 1 mg/l. In combination with concurrent increases in algae growth and turbidity, for example, and despite an otherwise relatively stable water quality, this has given rise to concerns about the ecological equilibrium in and near the spring run as well as possible impacts on tourism. The purpose of the present work is to elaborate parsimonious lumped parameter models that may be used by resource managers for evaluating the springshed's hydrologic and nitrate transport responses. Instead of attempting to explicitly consider the complex hydrogeologic features of the aquifer in a typically numerical and / or stochastic approach, we use a transfer function approach wherein input signals (i.e., time series of groundwater recharge and nitrate loading) are transformed into output signals (i.e., time series of spring discharge and spring nitrate concentrations) by some linear and time-invariant law. The dynamic response types and parameters are inferred from comparing input and output time series in frequency domain (e.g., after Fourier transformation). Results are converted into impulse (or step) response functions, which describe at what time and to what magnitude a unitary change in input manifests at the output. For the hydrologic response model, frequency spectra of groundwater recharge and spring discharge suggest an exponential response model, which may explain a significant portion of spring discharge variability with only two fitting parameters (mean response time 2.4 years). For the transport model, direct use of nitrate data is confounded by inconsistent data and a strong trend. Instead, chloride concentrations in rainfall and at the spring are investigated as a surrogate candidate. Preliminary results indicate that the transport response function of the springshed as a whole may be of the gamma type, which possesses both a larger initial peak as well as a longer tail than the exponential response function. This is consistent with the large range of travel times to be expected between input directly into fast conduits connected to the spring (e.g., though sinkholes) and input or back-diffusion from the rock matrix. The result implies that reductions in nitrate input, especially at remote and hydraulically not well connected locations, will only manifest in a rather delayed and smoothed out form in concentration observed at the spring.

  12. One-step large-scale synthesis of micrometer-sized silver nanosheets by a template-free electrochemical method

    NASA Astrophysics Data System (ADS)

    Park, Sun Hwa; Son, Jin Gyeong; Lee, Tae Geol; Park, Hyun Min; Song, Jae Yong

    2013-05-01

    We have synthesized micrometer-sized Ag nanosheets via a facile, one-step, template-free electrochemical deposition in an ultra-dilute silver nitrate aqueous electrolyte. The nanosheet growth was revealed to occur in three stages: (1) formation of polygonal Ag nuclei on a substrate, (2) growth of {112}-faceted nanowire from the nuclei, and (3) anisotropic growth of (111)-planar nanosheets, approximately 20 to 50 nm in thickness and 10 μm in width, in the <112>-direction. The vertical growth of the facet nanowire was induced by the strong interface anisotropy between the deposit and electrolyte due to the ultra-dilute concentration of electrolyte and high reduction potential. The thickness of Ag nanosheets was controllable by the adjustment of the reduction/oxidation potential and frequency of the reverse-pulse potentiodynamic mode.

  13. Silver deposition and tissue staining associated with wound dressings containing silver.

    PubMed

    Walker, Michael; Cochrane, Christine A; Bowler, Philip G; Parsons, David; Bradshaw, Peter

    2006-01-01

    Argyria is the general term used to denote a clinical condition in which excessive administration and deposition of silver causes a permanent irreversible gray-blue discoloration of the skin or mucous membranes. The amount of discoloration usually depends on the route of silver delivery (ie, oral or topical administration) along with the body's ability to absorb and excrete the administered silver compound. Argyria is accepted as a rare dermatosis but once silver particles are deposited, they remain immobile and may accumulate during the aging process. Topical application of silver salts (eg, silver nitrate solution) may lead to transient skin staining. To investigate their potential to cause skin staining, two silver-containing dressings (Hydrofiber and nanocrystalline) were applied to human skin samples taken from electively amputated lower limbs. The potential for skin discoloration was assayed using atomic absorption spectroscopy. When the dressings were hydrated with water, a significantly higher amount of silver was released from the nanocrystalline dressing compared to the Hydrofiber dressing (P <0.005), which resulted in approximately 30 times more silver deposition. In contrast, when saline was used as the hydration medium, the release rates were low for both dressings and not significantly different (silver deposition was minimal). Controlling the amount of silver released from silver-containing dressings should help reduce excessive deposition of silver into wound tissue and minimize skin staining.

  14. [The role of heavy metals and their derivatives in the selection of antibiotics resistant gram-negative rods (author's transl)].

    PubMed

    Joly, B; Cluzel, R

    1975-01-01

    The authors have studied 116 Gram-negative strains, 27 of which were sensitive to antibiotics and 89 showed multiple resistance. The MIC of mercury chloride, mercuric nitrate and of an aqueous solution of mercuresceine were much higher in the case of the sensitive strains. The transfer of resistance to mercury, which has been achieved in 56% of cases, was always accompanied by transfer of resistance to the antibiotics. The MIC of phenylmercury borate, mercurothiolic acid and other heavy metals (such as: cobaltous nitrate, silver nitrate, cadmium nitrate, nickel nitrate, zinc nitrate, copper sulphate and sodium arsenate) are approximatively the same for all strains. The normal concentrations of mercury in nature are lower than the rate of microbial selection. But in areas of accumulation, particularly in biological chains or in hospitals, the mercury compounds could play a part in the selection of antibiotic resistant Gram-negative bacteria.

  15. Photocatalytic, antioxidant, antibacterial and anti-inflammatory activity of silver nanoparticles synthesised using forest and edible mushroom

    NASA Astrophysics Data System (ADS)

    Sriramulu, Mohana; Sumathi, Shanmugam

    2017-12-01

    Mushroom has been part of the human diet for thousands of years, and in recent times, the amounts consumed have risen greatly, involving a large number of species. Mushrooms used for nutritional and therapeutic purposes. In this study silver nanoparticles were synthesised using an edible mushroom (Agaricus bisporus) and forest mushroom (Ganoderma lucidum) extract. The synthesised nanoparticles were characterised by UV-vis spectroscopy, FTIR, powder XRD and SEM. Silver nanoparticles were synthesised at room temperature and at 60 °C. FTIR results recognised the presence of bioactive functional groups responsible for the reduction of silver nitrate to silver nanoparticles. From the XRD, it was observed that the nanoparticles are silver with an average size of 10-80 nm. The silver nanoparticles are explored for photocatalytic activity and biological activities such as in vitro antioxidant activity, anti-inflammatory activity and antimicrobial activity against Escherichia coli and Staphylococcus aureus organisms. 98% of textile dye (direct blue 71) degradation was noticed under UV light within 150 min for forest mushroom synthesised silver nanoparticles at room temperature.

  16. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity.

    PubMed

    Venil, Chidambaram Kulandaisamy; Sathishkumar, Palanivel; Malathi, Mahalingam; Usha, Rajamanickam; Jayakumar, Rajarajeswaran; Yusoff, Abdull Rahim Mohd; Ahmad, Wan Azlina

    2016-02-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ((1)H NMR and (13)C NMR), UV-Vis, and LC-MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV-Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36μgmL(-1). This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Yong, Ken-Tye; Roy, Indrajit; Hu, Rui; Ding, Hong; Zhao, Lingling; Swihart, Mark T.; He, Guang S.; Cui, Yiping; Prasad, Paras N.

    2010-07-01

    Gold nanorods (GNRs) with a longitudinal surface plasmon resonance peak that is tunable from 600 to 1100 nm have been fabricated in a cetyl trimethylammoniumbromide (CTAB) micellar medium using hydrochloric acid and silver nitrate as additives to control their shape and size. By manipulating the concentrations of silver nitrate and hydrochloric acid, the aspect ratio of the GNRs was reliably and reproducibly tuned from 2.5 to 8. The GNRs were first coated with polyelectrolyte multilayers and then bioconjugated to transferrin (Tf) to target pancreatic cancer cells. Two-photon imaging excited from the bioconjugated GNRs demonstrated receptor-mediated uptake of the bioconjugates into Panc-1 cells, overexpressing the transferrin receptor (TfR). The bioconjugated GNR formulation exhibited very low toxicity, suggesting that it is biocompatible and potentially suitable for targeted two-photon bioimaging.

  18. Using multiple chemical indicators to characterize and determine the age of groundwater from selected vents of the silver springs group, Central Florida, USA

    USGS Publications Warehouse

    Knowles, L.; Katz, B.G.; Toth, D.J.

    2010-01-01

    The Silver Springs Group, Florida (USA), forms the headwaters of the Silver River and supports a diverse ecosystem. The 30 headwater springs divide into five subgroups based on chemistry. Five selected spring vents were sampled in 2007 to better understand the contaminant sources and groundwater flow system. Elevated nitrate-N concentrations (>0.8mg/L) in the five spring vents likely originate from inorganic (fertilizers) and organic sources, based on nitrogen and oxygen isotope ratios of nitrate. Evidence for denitrification in the Lost River Boil spring includes enriched ??15N and ??18O, excess N2 gas, and low dissolved O2 concentrations (<0.5mg/L). Multiple age-tracer data (SF6, 3H, tritiogenic 3He) for the two uppermost springs (Mammoth East and Mammoth West) indicate a binary mixture dominated by recent recharge water (mean age 6-7 years, and 87-97% young water). Tracer data for the three downstream spring vents (Lost River Boil, Catfish Hotel-1, and Catfish Conventional Hall-1) indicate exponential mixtures with mean ages of 26-35 years. Contamination from non-atmospheric sources of CFCs and SF5CF3 precluded their use as age tracers here. Variations in chemistry were consistent with mean groundwater age, as nitrate-N and dissolved O2 concentrations were higher in younger waters, and the Ca/Mg ratio decreased with increasing mean age. ?? 2010 Springer-Verlag (outside the USA).

  19. Using multiple chemical indicators to characterize and determine the age of groundwater from selected vents of the Silver Springs Group, central Florida, USA

    NASA Astrophysics Data System (ADS)

    Knowles, Leel; Katz, Brian G.; Toth, David J.

    2010-12-01

    The Silver Springs Group, Florida (USA), forms the headwaters of the Silver River and supports a diverse ecosystem. The 30 headwater springs divide into five subgroups based on chemistry. Five selected spring vents were sampled in 2007 to better understand the contaminant sources and groundwater flow system. Elevated nitrate-N concentrations (>0.8 mg/L) in the five spring vents likely originate from inorganic (fertilizers) and organic sources, based on nitrogen and oxygen isotope ratios of nitrate. Evidence for denitrification in the Lost River Boil spring includes enriched δ15N and δ18O, excess N2 gas, and low dissolved O2 concentrations (<0.5 mg/L). Multiple age-tracer data (SF6, 3H, tritiogenic 3He) for the two uppermost springs (Mammoth East and Mammoth West) indicate a binary mixture dominated by recent recharge water (mean age 6-7 years, and 87-97% young water). Tracer data for the three downstream spring vents (Lost River Boil, Catfish Hotel-1, and Catfish Conventional Hall-1) indicate exponential mixtures with mean ages of 26-35 years. Contamination from non-atmospheric sources of CFCs and SF5CF3 precluded their use as age tracers here. Variations in chemistry were consistent with mean groundwater age, as nitrate-N and dissolved O2 concentrations were higher in younger waters, and the Ca/Mg ratio decreased with increasing mean age.

  20. Synthesis and characterization of silver nanowires with zigzag morphology in N, N-dimethylformamide

    NASA Astrophysics Data System (ADS)

    He, Xin; Zhao, Xiujian; Chen, Yunxia; Feng, Jinyang; Sun, Zhenya

    2007-08-01

    Zigzag silver nanowires with a uniform diameter of 20±5 nm were prepared by reducing silver nitrate (AgNO 3) with N, N-dimethylformamide (DMF) in the presence of tetrabutyl titanate (TBT) and acetylacetone (AcAc) at 373 K for 18 h. X-ray and selected area electron diffraction (XRD and SAED) patterns reveal that the prepared product is made of pure silver with face centered cubic structure. Transmission electron microscopy (TEM) investigations suggest that the amount of silver nanowires is enhanced with increase in reaction time, and the end-to-end assemblies of silver nanorods are observed during the reaction process. After 18 h reaction, silver nanowires with zigzag morphology are obtained. In this paper, a possible growth process of silver nanowires with this interesting shape is described. Silver nanoparticles with small sizes were obtained by reducing Ag + ions with DMF, providing seeds for homogeneous growth of silver nanorods. With the extending reaction time, the synthesized silver nanorods were connected in an end-to-end manner, and the interface between the connections of two nanorods gradually disappeared. The final product shows zigzag morphology with various angles. The angles between two connecting straight parts of zigzag nanowires exhibit an alterable range of 74-151°. These silver nanowires show tremendous potential applications in future nanoscale electronic circuits.

  1. TOPO-capped silver selenide nanoparticles and their incorporation into polymer nanofibers using electrospinning technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, D.S.; Moloto, M.J., E-mail: makwenam@vut.ac.za; Moloto, N.

    Highlights: • Ag{sub 2}Se nanoparticles produced spherical particles with sizes 12 nm (180 °C) and 27 nm (200 °C). • Higher temperature produced increased particle size (∼75 nm) and changed in shape. • Ag{sub 2}Se nanoparticles (0.2–0.6%) added into PVP (35–45%) to yield reduced fiber beading. • Polymer nanofibers electrospun at 11–20 kV produced fiber diameters of 425–461 nm. • Optical properties in the fibers were observed due to the Ag{sub 2}Se nanoparticles loaded. - Abstract: Electrospinning is the most common technique for fabricating polymer fibers as well as nanoparticles embedded polymer fibers. Silver selenide nanoparticles were synthesized using tri-n-octylphosphinemore » (TOP) as solvent and tri-n-octylphosphine oxide (TOPO) as capping environment. Silver selenide was prepared by reacting silver nitrate and selenium with tri-n-octylphosphine (TOP) to form TOP–Ag and TOP–Se solutions. Both absorption and emission spectra signify the formation of nanoparticles as well as the TEM which revealed spherical particles with an average particle size of 22 nm. The polymer, PVP used was prepared at concentrations ranging from (35 to 45 wt%) and the TOPO-capped silver selenide nanoparticles (0.2 and 0.6 wt%) were incorporated into them and electrospun by varying the voltage from 11 to 20 kV. The SEM images of the Ag{sub 2}Se/PVP composite fibers revealed the fibers of diameters with average values of 425 and 461 nm. The X-ray diffraction results show peaks which were identified due to α-Ag{sub 2}Se body centered cubic compound. The sharp peak observed for all the samples at 2θ = 44.5 suggest the presence of Ag in the face centered cubic which can be attributed to higher concentration of silver nitrate used with molar ratio of selenium to silver and the abundance of silver in the silver selenide crystal. Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and ultraviolet–visible spectroscopy were used to characterize the structure of the PVP/Ag{sub 2}Se composite fibers.« less

  2. Effective conservative treatment of umbilical pilonidal sinus disease: Silver nitrate? Salt?

    PubMed

    Sözen, Selim; Kanat, Burhan Hakan; Kanat, Zekiye; Bali, Ilhan; Polat, Yilmaz

    2015-01-01

    The aim of this study was to compare the three different treatment methods and investigate The effectiveness of the therapeutic effect of common salt. This retrospective study involved patients who were treated in our clinic for umbilical pilonidal sinus disease between January 2010 and December 2011. The patients were divided to three subgroups according to treatment methods. Group I: Cases treated with only local debridement and systemic antibiotic, group II: cases treated with local debridement, systemic antibiotic and silver nitrate, group 3: cases treated with debridement, systemic antibiotic and salt. In this study, 63 patients with the diagnosis of UPS were treated in our clinic. The patients were classified into three groups; group I included 20 patients, group II included 18 patients and group III included 18 patients. During 16-24 months of follow-up, 4 (20%) recurrences in group1 and 2 (11.1%) recurrences in group 2 were detected. Recurrence rate of group 3 was significantly different (5.55%) when compared to group 2. The mean period for returning to daily activities and work was 1 day for the patients. In conclusion, we suggest that pilonidal sinus cases which are not complicated by abcess and cellulitis can be treated by local removal of umbilical hairs, debridement and dressing without surgery. We conclude that application of common salt (table/ cooking salt) to umbilical pilonidal sinus with granuloma is a simple and highly effective way of treatment without any relapse and complications. Conservative treatment, Local debridement, Umblical pilonidal sinus.

  3. Potentiometric determination of saccharin in dietary products using mercurous nitrate as titrant.

    PubMed

    Fo, O F; Moraes, A J; Dos Santos, G

    1993-05-01

    A rapid, precise and low cost method for saccharin determination in dietary products is proposed. Saccharin in several samples is potentiometrically titrated with mercurous nitrate solution using a silver wire coated with a metallic mercury film as the working electrode, and the end point was found using a Gran's plot. The detection limit of sodium saccharin was 0.5 mg/ml and the best pH range was from 2.0 to 3.5. Sucrose, glucose, aspartame, sodium cyclamate, sorbitol, fructose, benzoic acid, salicylic acid and lactose do not interfere even in significant amounts. The interference due to the presence of chloride and/or phosphate ions can be eliminated by previous solvent extraction of this sweetener. Recovery of saccharin from various dietary products gave from 95.2 to 103.2% of the label claim.

  4. Novel One-pot Fabrication of Lab-on-a-Bubble@Ag Substrate without Coupling-agent for Surface Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Jiang, Jizhou; Ou-Yang, Lei; Zhu, Lihua; Zou, Jing; Tang, Heqing

    2014-02-01

    Through in-situ reduction of silver nitrate without using any coupling-agent, a substrate for surface-enhanced Raman scattering (SERS) was prepared by coating silver on hollow buoyant silica microspheres as a lab on a bubble (LoB). The silver coated LoBs (LoBs@Ag) floated on surface of a solution could provide a very convenient platform for the detection of target molecules in the solution. The LoBs@Ag substrate not only immobilized well-distributed Ag nanoparticles on the surface LoBs, but excluded the interference of coupling agents. This yielded high-resolution SERS spectra with excellent reproducibility. The adsorption of crystal violet (CV) on the LoBs@Ag substrate was investigated by means of SERS combined with density functional theory (DFT) calculations. The LoBs@Ag substrate exhibited a remarkable Raman enhancement effect for CV with an enhancement factor of 6.9 × 108 and wide adaptability from dye, pesticide to bio-molecules. On the basis of this substrate, a simple and sensitive SERS method was proposed for the determination of trace organic pollutants or bio-molecules.

  5. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    NASA Astrophysics Data System (ADS)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  6. The production of antibacterial tubing, sutures, and bandages by in situ precipitation of metallic salts.

    PubMed

    Farrah, S R; Erdos, G W

    1991-06-01

    Two procedures were used to modify gauze bandages, polyester sutures, silicone tubing, and polyvinyl chloride tubing. In one procedure, the materials were first modified by in situ precipitation of metallic hydroxides and then used to adsorb silver ions. In the second procedure, the materials were soaked in sodium pyrophosphate or sodium chloride, dried, and then soaked in silver nitrate. These procedures produced materials with silver deposited on the surface of the tubing and sutures and both on the surface and within the gauze fibers. The modified materials inhibited the growth of Pseudomonas aeruginosa. Escherichia coli, and Staphylococcus aureus in vitro.

  7. In situ Silver Spot Preparation and on-Plate Surface-Enhanced Raman Scattering Detection in Thin Layer Chromatography Separation

    NASA Astrophysics Data System (ADS)

    Herman, K.; Mircescu, N. E.; Szabo, L.; Leopold, L. F.; Chiş, V.; Leopold, N.

    2013-05-01

    An improved approach for surface-enhanced Raman scattering (SERS) detection of mixture constituents after thin layer chromatography (TLC) separation is presented. A SERS active silver substrate was prepared under open air conditions, directly on the thin silica film by photo-reduction of silver nitrate, allowing the detection of binary mixtures of cresyl violet, bixine, crystal violet, and Cu(II) complex of 4-(2-pyridylazo)resorcinol. The recorded SERS spectrum provides a unique spectral fingerprint for each molecule; therefore the use of analyte standards is avoided, thus rendering the presented procedure advantageous compared to the conventional detection methodology in TLC.

  8. Electroless growth of silver nanoparticles into mesostructured silica block copolymer films.

    PubMed

    Bois, Laurence; Chassagneux, Fernand; Desroches, Cédric; Battie, Yann; Destouches, Nathalie; Gilon, Nicole; Parola, Stéphane; Stéphan, Olivier

    2010-06-01

    Silver nanoparticles and silver nanowires have been grown inside mesostructured silica films obtained from block copolymers using two successive reduction steps: the first one involves a sodium borohydride reduction or a photoreduction of silver nitrate contained in the film, and the second one consists of a silver deposit on the primary nanoparticles, carried out by silver ion solution reduction with hydroxylamine chloride. We have demonstrated that the F127 block copolymer ((PEO)(106)(PPO)(70)(PEO)(106)), "F type", mesostructured silica film is a suitable "soft" template for the fabrication of spherical silver nanoparticles arrays. Silver spheres grow from 7 to 11 nm upon the second reduction step. As a consequence, a red shift of the surface plasmon resonance associated with metallic silver has been observed and attributed to plasmonic coupling between particles. Using a P123 block copolymer ((PEO)(20)(PPO)(70)(PEO)(20)), "P type", mesostructured silica film, we have obtained silver nanowires with typical dimension of 10 nm x 100 nm. The corresponding surface plasmon resonance is blue-shifted. The hydroxylamine chloride treatment appears to be efficient only when a previous chemical reduction is performed, assuming that the first sodium borohydride reduction induces a high concentration of silver nuclei in the first layer of the porous silica (film/air interface), which explains their reactivity for further growth.

  9. In situ bioinspired synthesis of silver chloride nanocrystals on silk fibroin fibers

    NASA Astrophysics Data System (ADS)

    Su, Huilan; Han, Jie; Dong, Qun; Xu, Jia; Chen, Ying; Gu, Yu; Song, Weiqiang; Zhang, Di

    2011-02-01

    Silver chloride (AgCl) nanocrystals were formed and grown on silk fibroin fibers (SFFs) by a room-temperature process. Practically, the degummed SFFs were immersed into silver nitrate solution and sodium chloride solution in turn. The amino acids on the SFF surface were negatively charged in alkaline impregnant, providing locations to immobilize silver ions and form silver chloride seeds. AgCl nanocrystals can further grow into cubic AgCl nanocrystals with an edge of about 100 nm. The morphologies of the AgCl nanocrystals were mostly influenced by the concentration of sodium chloride solution and the special configurations of the SFFs. The target AgCl/SFF nanocomposites constructed by AgCl nanocrystals and substrate SFFs could be used as photocatalysts in water splitting and antibacterial agents. This work provides an important example in the introduction of natural biofibers to the synthesis of functional hybrid nanocomposites by a green and mild technique.

  10. Application of silver ion in the separation of macrolide antibiotic components by high-speed counter-current chromatography.

    PubMed

    Wen, Yaoming; Wang, Jiaoyan; Chen, Xiuming; Le, Zhanxian; Chen, Yuxiang; Zheng, Wei

    2009-05-29

    Three macrolide antibiotic components - ascomycin, tacrolimus and dihydrotacrolimus - were separated and purified by silver ion high-speed counter-current chromatography (HSCCC). The solvent system consisted of n-hexane-tert-butyl methyl ether-methanol-water (1:3:6:5, v/v) and silver nitrate (0.10mol/l). The silver ion acted as a pi-complexing agent with tacrolimus because of its extra side double bond compared with ascomycin and dihydrotacrolimus. This complexation modified the partition coefficient values and the separation factors of the three components. As a result, ascomycin, tacrolimus and dihydrotacrolimus were purified from 150mg extracted crude sample with purities of 97.6%, 98.7% and 96.5%, respectively, and yields over 80% (including their tautomers). These results cannot be achieved with the same solvent system but without the addition of silver ion.

  11. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract--A comprehensive study.

    PubMed

    Ali, Mohammad; Kim, Bosung; Belfield, Kevin D; Norman, David; Brennan, Mary; Ali, Gul Shad

    2016-01-01

    Unlike chemical synthesis, biological synthesis of nanoparticles is gaining tremendous interest, and plant extracts are preferred over other biological sources due to their ample availability and wide array of reducing metabolites. In this project, we investigated the reducing potential of aqueous extract of Artemisia absinthium L. for synthesizing silver nanoparticles (AgNPs). Optimal synthesis of AgNPs with desirable physical and biological properties was investigated using ultra violet-visible spectroscopy (UV-vis), dynamic light scattering (DLS), transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDX). To determine their appropriate concentrations for AgNP synthesis, two-fold dilutions of silver nitrate (20 to 0.62 mM) and aqueous plant extract (100 to 0.79 mg ml(-1)) were reacted. The results showed that silver nitrate (2mM) and plant extract (10 mg ml(-1)) mixed in different ratios significantly affected size, stability and yield of AgNPs. Extract to AgNO3 ratio of 6:4v/v resulted in the highest conversion efficiency of AgNO3 to AgNPs, with the particles in average size range of less than 100 nm. Furthermore, the direct imaging of synthesized AgNPs by TEM revealed polydispersed particles in the size range of 5 to 20 nm. Similarly, nanoparticles with the characteristic peak of silver were observed with EDX. This study presents a comprehensive investigation of the differential behavior of plant extract and AgNO3 to synthesize biologically stable AgNPs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.

    PubMed

    Roy, Kaushik; Sarkar, C K; Ghosh, C K

    2015-07-05

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. X-Ray Absorption Near-Edge Structure (XANES) Spectroscopy Study of the Interaction of Silver Ions with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli

    PubMed Central

    Zanzen, Ulrike; Krishna, Katla Sai; Hormes, Josef

    2013-01-01

    Silver ions are widely used as antibacterial agents, but the basic molecular mechanism of this effect is still poorly understood. X-ray absorption near-edge structure (XANES) spectroscopy at the Ag LIII, S K, and P K edges reveals the chemical forms of silver in Staphylococcus aureus and Escherichia coli (Ag+ treated). The Ag LIII-edge XANES spectra of the bacteria are all slightly different and very different from the spectra of silver ions (silver nitrate and silver acetate), which confirms that a reaction occurs. Death or inactivation of bacteria was observed by plate counting and light microscopy. Silver bonding to sulfhydryl groups (Ag-S) in cysteine and Ag-N or Ag-O bonding in histidine, alanine, and dl-aspartic acid was detected by using synthesized silver-amino acids. Significantly lower silver-cysteine content, coupled with higher silver-histidine content, in Gram-positive S. aureus and Listeria monocytogenes cells indicates that the peptidoglycan multilayer could be buffering the biocidal effect of silver on Gram-positive bacteria, at least in part. Bonding of silver to phosphate groups was not detected. Interaction with DNA or proteins can occur through Ag-N bonding. The formation of silver-cysteine can be confirmed for both bacterial cell types, which supports the hypothesis that enzyme-catalyzed reactions and the electron transport chain within the cell are disrupted. PMID:23934494

  14. Silver Dissolution and Release from Ceramic Water Filters.

    PubMed

    Mittelman, Anjuliee M; Lantagne, Daniele S; Rayner, Justine; Pennell, Kurt D

    2015-07-21

    Application of silver nanoparticles (nAg) or silver nitrate (AgNO3) has been shown to improve the microbiological efficacy of ceramic water filters used for household water treatment. Silver release, however, can lead to undesirable health effects and reduced filter effectiveness over time. The objectives of this study were to evaluate the contribution of nanoparticle detachment, dissolution, and cation exchange to silver elution, and to estimate silver retention under different influent water chemistries. Dissolved silver (Ag(+)) and nAg release from filter disks painted with 0.03 mg/g casein-coated nAg or AgNO3 were measured as a function of pH (5-9), ionic strength (1-50 mM), and cation species (Na(+), Ca(2+), Mg(2+)). Silver elution was controlled by dissolution as Ag(+) and subsequent cation exchange reactions regardless of the applied silver form. Effluent silver levels fell below the drinking water standard (0.1 mg/L) after flushing with 30-42 pore volumes of pH 7, 10 mM NaNO3 at pH 7. When the influent water was at pH 5, contained divalent cations or 50 mM NaNO3, silver concentrations were 5-10 times above the standard. Our findings support regular filter replacement and indicate that saline, hard, or acidic waters should be avoided to minimize effluent silver concentrations and preserve silver treatment integrity.

  15. Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds

    NASA Astrophysics Data System (ADS)

    Luna, Carlos; Chávez, V. H. G.; Barriga-Castro, Enrique Díaz; Núñez, Nuria O.; Mendoza-Reséndez, Raquel

    2015-04-01

    Given the upsurge of new technologies based on nanomaterials, the development of sustainable methods to obtain functional nanostructures has become an imperative task. In this matter, several recent researches have shown that the biodegradable natural antioxidants of several plant extracts can be used simultaneously as reducing and stabilizing agents in the wet chemical synthesis of metallic nanoparticles, opening new opportunities to design greener synthesis. However, the challenge of these new techniques is to produce stable colloidal nanoparticles with controlled particle uniformity, size, shape and aggregation state, in similar manner than the well-established synthetic methods. In the present work, colloidal metallic silver nanoparticles have been synthesized using silver nitrate and extracts of Illicium verum (star anise) seeds at room temperature in a facile one-step procedure. The resulting products were colloidal suspensions of two populations of silver nanoparticles, one of them with particle sizes of few nanometers and the other with particles of tens of nm. Strikingly, the variation of the AgNO3/extract weight ratio in the reaction medium yielded to the variation of the spatial distribution of the nanoparticles: high AgNO3/extract concentration ratios yielded to randomly dispersed particles, whereas for lower AgNO3/extract ratios, the biggest particles appeared coated with the finest nanoparticles. This biosynthesized colloidal system, with controlled particle aggregation states, presents plasmonic and SERS properties with potential applications in molecular sensors and nanophotonic devices.

  16. Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds.

    PubMed

    Luna, Carlos; Chávez, V H G; Barriga-Castro, Enrique Díaz; Núñez, Nuria O; Mendoza-Reséndez, Raquel

    2015-04-15

    Given the upsurge of new technologies based on nanomaterials, the development of sustainable methods to obtain functional nanostructures has become an imperative task. In this matter, several recent researches have shown that the biodegradable natural antioxidants of several plant extracts can be used simultaneously as reducing and stabilizing agents in the wet chemical synthesis of metallic nanoparticles, opening new opportunities to design greener synthesis. However, the challenge of these new techniques is to produce stable colloidal nanoparticles with controlled particle uniformity, size, shape and aggregation state, in similar manner than the well-established synthetic methods. In the present work, colloidal metallic silver nanoparticles have been synthesized using silver nitrate and extracts of Illicium verum (star anise) seeds at room temperature in a facile one-step procedure. The resulting products were colloidal suspensions of two populations of silver nanoparticles, one of them with particle sizes of few nanometers and the other with particles of tens of nm. Strikingly, the variation of the AgNO3/extract weight ratio in the reaction medium yielded to the variation of the spatial distribution of the nanoparticles: high AgNO3/extract concentration ratios yielded to randomly dispersed particles, whereas for lower AgNO3/extract ratios, the biggest particles appeared coated with the finest nanoparticles. This biosynthesized colloidal system, with controlled particle aggregation states, presents plasmonic and SERS properties with potential applications in molecular sensors and nanophotonic devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Egg extract of apple snail for eco-friendly synthesis of silver nanoparticles and their antibacterial activity.

    PubMed

    Janthima, Ratima; Khamhaengpol, Arunrat; Siri, Sineenat

    2018-03-01

    Green synthesis of silver nanoparticles (AgNPs) provides the alternative method with cost effectiveness and the eco-friendly process by using natural biomolecules as reducing and stabilizing agents. Alternative to the most studies of plant extracts, this work demonstrated a use of egg extract of apple snail (Pomacea canaliculata) for an eco-friendly production of AgNPs. The extract contained at least six proteins with the molecular weight in a range of 24-65 kDa that exhibited the reducing activity. The dispersive AgNPs were produced in the reaction containing only the extract and silver nitrate, as determined by the characteristic surface plasmon resonance peak of silver at 412 nm. The synthesized AgNPs were spherical with the average diameter of 9.0 ± 5.9 nm. The X-ray diffraction pattern and selected area electron diffraction (SAED) analyses confirmed the face-cubic centre (fcc) unit cell structure of AgNPs. The synthesized AgNPs exhibited the antibacterial activity against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Results of this work clearly showed the potential use of the egg extract of apple snail for a green synthesis of small size AgNPs exhibiting the antibacterial activity.

  18. A monolayer of hierarchical silver hemi-mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Shuangmei; Fan, Chunzhen; Mao, Yanchao; Wang, Junqiao; He, Jinna; Liang, Erjun; Chao, Mingju

    2016-02-01

    We proposed a facile green synthesis system to synthesize large-scale Ag hemi-mesoparticles monolayer on Cu foil. Ag hemi-mesoparticles have different surface morphologies on their surfaces, including ridge-like, meatball-like, and fluffy-like shapes. In the reaction, silver nitrate was reduced by copper at room temperature in dimethyl sulfoxide via the galvanic displacement reaction. The different surface morphologies of the Ag hemi-mesoparticles were adjusted by changing the reaction time, and the hemi-mesoparticle surface formed fluffy-spherical nanoprotrusions at longer reaction time. At the same time, we explored the growth mechanism of silver hemi-mesoparticles with different surface morphologies. With 4-mercaptobenzoic acid as Raman probe molecules, the fluffy-like silver hemi-mesoparticles monolayer with the best activity of surface enhanced Raman scattering (SERS), the enhancement factor is up to 7.33 × 107 and the detection limit can reach 10-10M. SERS measurements demonstrate that these Ag hemi-mesoparticles can serve as sensitive SERS substrates. At the same time, using finite element method, the distribution of the localized electromagnetic field near the particle surface was simulated to verify the enhanced mechanism. This study helps us to understand the relationship between morphology Ag hemi-mesoparicles and the properties of SERS.

  19. A monolayer of hierarchical silver hemi-mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy.

    PubMed

    Zhu, Shuangmei; Fan, Chunzhen; Mao, Yanchao; Wang, Junqiao; He, Jinna; Liang, Erjun; Chao, Mingju

    2016-02-21

    We proposed a facile green synthesis system to synthesize large-scale Ag hemi-mesoparticles monolayer on Cu foil. Ag hemi-mesoparticles have different surface morphologies on their surfaces, including ridge-like, meatball-like, and fluffy-like shapes. In the reaction, silver nitrate was reduced by copper at room temperature in dimethyl sulfoxide via the galvanic displacement reaction. The different surface morphologies of the Ag hemi-mesoparticles were adjusted by changing the reaction time, and the hemi-mesoparticle surface formed fluffy-spherical nanoprotrusions at longer reaction time. At the same time, we explored the growth mechanism of silver hemi-mesoparticles with different surface morphologies. With 4-mercaptobenzoic acid as Raman probe molecules, the fluffy-like silver hemi-mesoparticles monolayer with the best activity of surface enhanced Raman scattering (SERS), the enhancement factor is up to 7.33 × 10(7) and the detection limit can reach 10(-10)M. SERS measurements demonstrate that these Ag hemi-mesoparticles can serve as sensitive SERS substrates. At the same time, using finite element method, the distribution of the localized electromagnetic field near the particle surface was simulated to verify the enhanced mechanism. This study helps us to understand the relationship between morphology Ag hemi-mesoparicles and the properties of SERS.

  20. Biomolecule-assisted hydrothermal synthesis of silver bismuth sulfide with nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaowphong, Sulawan, E-mail: sulawank@gmail.com; Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200

    2012-05-15

    Silver bismuth sulfide (AgBiS{sub 2}) nanostructures were successfully prepared via a simple biomolecule-assisted hydrothermal synthesis at 200 Degree-Sign C for 12-72 h. Silver nitrate, bismuth nitrate and L-cysteine were used as starting materials. Here, the biomolecule, L-cysteine, was served as the sulfide source and a complexing agent. The products, characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), were cubic AgBiS{sub 2} nanoparticles with a diameter range of about 20-75 nm. It was found that their crystallinity and particle size increased with increasing reaction time. The energy dispersive X-ray spectroscopy (EDX) and inductively coupledmore » plasma optical emission spectrophotometry (ICP-OES) analyses were used to confirm the stoichiometry of AgBiS{sub 2}. The optical band gap of the AgBiS{sub 2} nanoparticles, calculated from UV-vis spectra, was 3.0 eV which indicated a strong blue shift because of the quantum confinement effect. A possible formation mechanism of the AgBiS{sub 2} nanoparticles was also discussed. - Graphical abstract: The optical band gap of the as-prepared AgBiS{sub 2} nanoparticles displays a strong blue shift comparing to the 2.46 eV of bulk AgBiS{sub 2} caused by the quantum confinement effects. Highlights: Black-Right-Pointing-Pointer A simple biomolecule-assisted hydrothermal method is developed to prepare AgBiS{sub 2}. Black-Right-Pointing-Pointer L-Cysteine is served as the sulfide source and a complexing agent. Black-Right-Pointing-Pointer Increase in band gap of the AgBiS{sub 2} nanoparticles attributes to the quantum confinement effects.« less

  1. Atomic-absorption determination of mercury in geological materials by flame and carbon-rod atomisation after solvent extraction and using co-extracted silver as a matrix modifier

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1983-01-01

    Based on modifications and expansion of the original Tindall's solvent extraction flame atomic-absorption procedure, an atomic-absorption spectrophotometric method has been developed for the determination of mercury in geological materials. The sample is digested with nitric and hydrochloric acids in a boiling water-bath. The solution is made ammoniacal and potassium iodide and silver nitrate are added. The mercury is extracted into isobutyl methyl ketone as the tetraiodomercurate(ll). Added silver is co-extracted with mercury and serves as a matrix modifier in the carbon-rod atomiser. The mercury in the isobutyl methyl ketone extract may be determined by either the flame- or the carbon-rod atomisation method, depending on the concentration level. The limits of determination are 0.05-10 p.p.m. of mercury for the carbon-rod atomisation and 1 -200 p.p.m. of mercury for the flame atomisation. Mercury values for reference samples obtained by replicate analyses are in good agreement with those reported by other workers, with relative standard deviations ranging from 2.3 to 0.9%. Recoveries of mercury spiked at two levels were 93-106%. Major and trace elements commonly found in geological materials do not interfere.

  2. Pre-heating mitigates composite degradation

    PubMed Central

    da SILVA, Jessika Calixto; Rogério Vieira, REGES; REGE, Inara Carneiro Costa; CRUZ, Carlos Alberto dos Santos; VAZ, Luís Geraldo; ESTRELA, Carlos; de CASTRO, Fabrício Luscino Alves

    2015-01-01

    ABSTRACT Dental composites cured at high temperatures show improved properties and higher degrees of conversion; however, there is no information available about the effect of pre-heating on material degradation. Objectives This study evaluated the effect of pre-heating on the degradation of composites, based on the analysis of radiopacity and silver penetration using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Material and Methods Thirty specimens were fabricated using a metallic matrix (2x8 mm) and the composites Durafill VS (Heraeus Kulzer), Z-250 (3M/ESPE), and Z-350 (3M/ESPE), cured at 25°C (no pre-heating) or 60°C (pre-heating). Specimens were stored sequentially in the following solutions: 1) water for 7 days (60°C), plus 0.1 N sodium hydroxide (NaOH) for 14 days (60°C); 2) 50% silver nitrate (AgNO3) for 10 days (60°C). Specimens were radiographed at baseline and after each storage time, and the images were evaluated in gray scale. After the storage protocol, samples were analyzed using SEM/EDS to check the depth of silver penetration. Radiopacity and silver penetration data were analyzed using ANOVA and Tukey’s tests (α=5%). Results Radiopacity levels were as follows: Durafill VSZ-350>Z-250 (p<0.05). After storage in water/NaOH, pre-heated specimens presented higher radiopacity values than non-pre-heated specimens (p<0.05). There was a lower penetration of silver in pre-heated specimens (p<0.05). Conclusions Pre-heating at 60°C mitigated the degradation of composites based on analysis of radiopacity and silver penetration depth. PMID:26814459

  3. Silver(I) ion-selective membrane based on Schiff base-p-tert-butylcalix[4]arene.

    PubMed

    Mahajan, R K; Kumar, M; Sharma, V; Kaur, I

    2001-04-01

    A PVC membrane electrode for silver(I) ion based on Schiff base-p-tert-butylcalix[4]arene is reported. The electrode works well over a wide range of concentration (1.0 x 10(-5)-1.0 x 10(-1) mol dm-3) with a Nernstian slope of 59.7 mV per decade. The electrode shows a fast response time of 20 s and operates in the pH range 1.0-5.6. The sensor can be used for more than 6 months without any divergence in the potential. The selectivity of the electrode was studied and it was found that the electrode exhibits good selectivity for silver ion over some alkali, alkaline earth and transition metal ions. The silver ion-selective electrode was used as an indicator electrode for the potentiometric titration of silver ion in solution using a standard solution of sodium chloride; a sharp potential change occurs at the end-point. The applicability of the sensor to silver(I) ion measurement in water samples spiked with silver nitrate is illustrated.

  4. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides

    NASA Astrophysics Data System (ADS)

    Aguilar-Méndez, Miguel A.; San Martín-Martínez, Eduardo; Ortega-Arroyo, Lesli; Cobián-Portillo, Georgina; Sánchez-Espíndola, Esther

    2011-06-01

    Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV-Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV-Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (<20 nm). The above-mentioned was confirmed by TEM, observing a size distribution of 5-24 nm. According to RSM the synthesis variables influenced on the size of the silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.

  5. Overhead Projector Demonstrations: A Classroom Demonstration of Aliphatic Substitution.

    ERIC Educational Resources Information Center

    Perina, Ivo; Mihanovic, Branka

    1989-01-01

    Presents a halogen substitution of an alkane using a compartmentalized Petri dish or Conway dish on an overhead projector. Provides methodology and several modifications for different reactions. Uses hexane, methyl orange, bromine, and silver nitrate. (MVL)

  6. A comparison of sperm morphology and silver nitrate staining characteristics in the domestic ferret and the black-footed ferret.

    PubMed

    Curry, P T; Ziemer, T; Van der Horst, G; Burgess, W; Straley, M; Atherton, R W; Kitchin, R M

    1989-01-01

    Ejaculated sperm from the domestic ferret (Mustela putorius furo) and the black-footed ferret (Mustela nigripes) were compared for differences in morphological abnormalities and argentophilic protein distribution. Thawed domestic ferret sperm was also compared to fresh sperm to determine whether there were any effects on cell morphology due to cryopreservation. There were statistically significant differences between the two species of ferret in two of the categories scored. The domestic ferret had a higher frequency of cells that were bent in the midpiece and in the principal piece, and a higher frequency of headless and tailless cells when compared to the black-footed ferret. There were no statistically significant differences in cell morphology between the fresh and cryopreserved ejaculates of the domestic ferret employing a standard egg yolk cryoextender. Silver nitrate staining distribution was different between the two species in both the head and tail region.

  7. Antimicrobial, free radical scavenging activities and catalytic oxidation of benzyl alcohol by nano-silver synthesized from the leaf extract of Aristolochia indica L.: a promenade towards sustainability

    NASA Astrophysics Data System (ADS)

    Shanmugam, C.; Sivasubramanian, G.; Parthasarathi, Bera; Baskaran, K.; Balachander, R.; Parameswaran, V. R.

    2016-06-01

    Silver nanoparticles (Ag-NPs) were synthesized from aqueous silver nitrate through a simple route using the leaf extract of Aristolochia indica L. (LAIL) which acted as a reducing as well as capping agent. X-ray diffraction confirmed that the synthesized silver particles have a face centred cubic structure. EDS predicted the presence of elemental silver. The SEM images showed the synthesis of spherically mono-dispersed particles, with nano dimensions accounted by the TEM images. Infra-red spectrum adopted to the different organic functionalities present at the surface of the particles. TGA indicated an overall 11 % weight loss up to 1000 °C, suggesting desorption of biomolecules from the surface. X-ray photoelectron spectroscopy (XPS) analysis revealed the presence of metallic silver nanoparticles. The prepared material was utilized as catalyst in the oxidation of benzyl alcohol with molecular oxygen as the oxidant in methanol, under ambient conditions of temperature and pressure. Also Ag-NPs showed good to moderate anti-microbial activity employing the Agar disc diffusion method against various strains using Ciprofloxacin and Fluconazole as standard. Free radical scavenging activity of the nanoparticles were observed by modified 1,1-diphynyl-2-picrylhydrazyl, DPPH and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS in vitro assays. The work presented here demonstrates the adaptability of the synthesized Ag-NPs in participating as a disinfectant agent, free radical scavenger and an effective oxidation catalyst. The basic premise of attaining sustainability through the green synthesis of smart multifaceted materials has been consciously addressed.

  8. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification.

    PubMed

    Cheng, Kuang-ming; Hung, Yao-wen; Chen, Cheng-cheung; Liu, Cheng-che; Young, Jenn-jong

    2014-09-22

    A one-step route for the green synthesis of highly stable and nanosized silver metal particles with narrow distribution is reported. In this environmentally friendly synthetic method, silver nitrate was used as silver precursor and biocompatible chondroitin sulfate (ChS) was used as both reducing agent and stabilizing agent. The reaction was carried out in a stirring aqueous medium at the room temperature without any assisted by microwave, autoclave, laser irradiation, γ-ray irradiation or UV irradiation. The transparent colorless solution was converted to the characteristics light red then deep red-brown color as the reaction proceeds, indicating the formation of silver nanoparticles (Ag NPs). The Ag NPs were characterized by UV-visible spectroscopy (UV-vis), photon correlation spectroscopy, laser Doppler anemometry, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were Ag NPs capped with ChS. In this report, dynamic light scattering (DLS) was used as a routinely analytical tool for measuring size and distribution in a liquid environment. The effects of the reaction time, reaction temperature, concentration and the weight ratio of ChS/Ag+ on the particle size and zeta potential were investigated. The TEM image clearly shows the morphology of the well-dispersed ChS-capped Ag NPs are spherical in shape, and the average size (<20 nm) is much smaller than the Z-average value (76.7 nm) measured by DLS. Meanwhile, the ChS-capped Ag NPs coated with N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC) were prepared by an ionic gelation method and the surface charge of Ag NPs was switched from negative to positive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Colorimetric determination of cyanide liberated from apricot kernels.

    PubMed

    Egli, K L

    1977-07-01

    A simple colorimetric method is described for determining the quantity of hydrogen cyanide produced by the spontaneous decomposition of amygdalin in apricot kernels. The evolved cyanide is collected in sodium hydroxide solution and assayed colorimetrically by reaction with picric acid. Results for duplicate assays, 3.02 and 3.06 mg CN-/g, compare well with those obtained by AOAC method 26.115 which specifies steam distillation and silver nitrate titration; results for triplicate assays were 3.02, 3.03, and 3.08 mg CN-/g by the latter. Recovery of cyanide from potassium cyanide at a level equivalent to 243 microgram CN-/g was 101.0%.

  10. 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles.

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electrochemistry in ethanol. I. Reference electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zara, A.J.; de S. Bulhoes, L.O.

    1982-01-01

    The silver/silver nitrate electrode was found to be a suitable reference electrode in ethanolic solutions (2% v/v in water). The concentration of Ag/sup +/ inside the reference electrode is satisfactory in teh 0.1 to 10 mM concentration range. The liquid junction potential is minimized with sufficient supporting electrolyte (e.g., 0.1 to 0.5 M sodium perchlorate). The electrode is suitable for use as reference electrode in potentiometry and in polarography. Preparation is uncomplicated and the product is stable. 4 figures.

  12. Synthesis and antibacterial properties of water-dispersible silver nanoparticles stabilized by metal-carbon σ-bonds

    NASA Astrophysics Data System (ADS)

    Kawai, Koji; Narushima, Takashi; Kaneko, Kotaro; Kawakami, Hayato; Matsumoto, Miyuki; Hyono, Atsushi; Nishihara, Hiroshi; Yonezawa, Tetsu

    2012-12-01

    The synthesis of 4-diazoniumcarboxylbenzene fluoroborate, a new water-soluble stabilizer for metal nanoparticles (NPs), is described. A stable dispersion of Ag NPs in water was successfully produced by a simultaneous aqueous reduction of this diazonium salt and silver nitrate by NaBH4. UV-vis spectra, TEM images, XRD patterns, and XPS spectra of the obtained Ag NPs revealed that they were stabilized by Ag-C σ-bonds. These NPs showed excellent antimicrobial properties against Staphylococcus aureus.

  13. THE MONITORING OF EFFLUENT FOR ALPHA EMITTERS. PART II. METHODS FOR THE DETERMINATION OF URANIUM, POLONIUM AND OTHER ALPHA EMITTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smales, A.A.; Airey, L.; Woodward, J.

    1950-06-01

    Consideration has been given to the problem of separating and estimating uranium, polonium, and other alpha emitters (in order to provide analytical methods for their routine determination in conformily with the draft agreement on the Harwell effluent). Uranium may be ether extracted from solutions of ammonium nitrate as salting out agent at pHl with an efficiency of 98 to 99%. The deposition of polonium on silver foil is a specific method for this element and under prescribed conditions similar extraction efficiencies may be obtained. An adequate separation from all other alpha emitters'' is obtained and methods for the estimation ofmore » these are discussed. A comprehensive scheme involving a preliminary activity concentration step has been elaborated. Uranium, polonium, and the majority of the other alpha emitters'' are precipitated as their tannin complexes at pH8 using calcium hydroxide, the calcium-tannin complex acting as a carrier. That part of the activity remaining in solution is determined as in the total activity method, previously described. From the solution of the precipitate, polonium is first separated by electrodeposition, and then uranium by ether extraction in the presence of ammonium nitrate. The majority of the other alpha emitters'' still in the aqueous ammonium nitrate solution are collected on a second calcium-tannin precipitate, while the small part remaining in solution after this operation is obtained by direct evaporation. (auth)« less

  14. Green Synthesis of Silver Nanoparticles Using an Aqueous Extract of Monotheca buxifolia (Flac.) Dcne

    NASA Astrophysics Data System (ADS)

    Anwar, Natasha; Khan, Abbas; Shah, Mohib; Anwar, Saad

    2018-01-01

    This study deals with the synthesis and physicochemical investigation of silver nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of silver nitrate with the plant extract, silver nanoparticles were rapidly fabricated. The synthesized particles were characterized by using UV-visible spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AgNPs was confirmed by noting the change in colour through visual observations as well as via UV-Vis spectroscopy. UV-Vis spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 440 nm. FTIR was used to identify the chemical composition of silver nanoparticles and Ag-capped plant extract. The presence of elemental silver was also confirmed through EDX analysis. The SEM analysis of the silver nanoparticles showed that they have a uniform spherical shape with an average size in the range of 40-78 nm. This green system showed better capping and stabilizing agent for the fine particles. Further, in vitro the antioxidant activity of Monotheca buxifolia (Flac.) and Ag-capped with the plant was also evaluated using FeCl3/K3Fe (CN)6 essay.

  15. Electroless silver plating on PET fabric initiated by in situ reduction of polyaniline

    NASA Astrophysics Data System (ADS)

    Mu, Shipeng; Xie, Huayang; Wang, Wei; Yu, Dan

    2015-10-01

    Novel electroless silver plating poly(ethylene terephthalate) (PET) fabric was prepared by a two-step procedure. In the first step, the in situ polymerized polyaniline (PANI) occurred on the fabric surface in the presence of ammonium persulfate (APS). Then, Ag(0) species reduced from silver nitrate (AgNO3) by in situ reduction of PANI were used as catalyst to initiate electroless silver plating. Hence, this composite material was prepared by conductive polymer combined with electroless plating. The silver layer on PET fabric surface was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX) as well as X-ray photoelectron spectroscopy (XPS). The results showed that the silver layer was plated uniformly and compactly with surface resistance about 0.1 Ω/sq on average. The shielding effectiveness (SE) of silver-plated PET fabric was around 50-90 dB, which was considered to have potential applications in electromagnetic shielding materials. Thermogravimetric (TG) analysis was carried out to study thermal stability. The antibacterial tests demonstrated that the silver-plated fabric exhibited excellent antibacterial activity against Staphylococcus aureus and Escherichia coli both with 100%.

  16. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia

    NASA Astrophysics Data System (ADS)

    Amaladhas, T. Peter; Sivagami, S.; Akkini Devi, T.; Ananthi, N.; Priya Velammal, S.

    2012-12-01

    In this study Cassia angustifolia (senna) is used for the environmentally friendly synthesis of silver nanoparticles. Stable silver nanoparticles having symmetric surface plasmon resonance (SPR) band centred at 420 nm were obtained within 10 min at room temperature by treating aqueous solutions of silver nitrate with C. angustifolia leaf extract. The water soluble components from the leaves, probably the sennosides, served as both reducing and capping agents in the synthesis of silver nanoparticles. The nanoparticles were characterized using UV-Vis, Fourier transform infrared (FTIR) spectroscopic techniques and transmission electron microscopy (TEM). The nanoparticles were poly-dispersed, spherical in shape with particle size in the range 9-31 nm, the average size was found to be 21.6 nm at pH 11. The zeta potential was -36.4 mV and the particles were stable for 6 months. The crystalline phase of the nanoparticles was confirmed from the selected area diffraction pattern (SAED). The rate of formation and size of silver nanoparticles were pH dependent. Functional groups responsible for capping of silver nanoparticles were identified from the FTIR spectrum. The synthesized silver nanoparticles exhibited good antibacterial potential against Escherichia coli and Staphylococcus aureus.

  17. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Beederman, M.; Vogler, S.; Hyman, H.H.

    1959-07-14

    The separation of rathenium from a rathenium containing aqueous solution is described. The separation is accomplished by adding sodium nitrite, silver nitrate and ozone to the ruthenium containing aqueous solution to form ruthenium tetroxide and ihen volatilizing off the ruthenium tetroxide.

  18. 75 FR 28488 - Silver Nitrate; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... water and surface water are derived mainly from mineralization of soil organic matter as well as from application of mineral fertilizers. The EPA IRIS lists an oral RfD for chronic noncarcinogenic health effects...

  19. 40 CFR 415.533 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true [Reserved] 415.533 Section 415.533 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.533...

  20. 40 CFR 415.533 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true [Reserved] 415.533 Section 415.533 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.533...

  1. 40 CFR 415.533 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true [Reserved] 415.533 Section 415.533 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.533...

  2. 40 CFR 415.533 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true [Reserved] 415.533 Section 415.533 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.533...

  3. 40 CFR 415.533 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false [Reserved] 415.533 Section 415.533 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Silver Nitrate Production Subcategory § 415.533...

  4. Mycosynthesis of silver nanoparticles using Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.:Fr.) P. Karst. and their role as antimicrobials and antibiotic activity enhancers.

    PubMed

    Karwa, A; Gaikwad, Swapnil; Rai, Mahendra K

    2011-01-01

    Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum, has been used over the ages as highly medicinal herb in the Orient. Many useful properties of this fungus are still being studied; we report here a new facet of this "elixir of life" as a mycosource for synthesis of metal nanoparticles. Treating the extracellular suspension filtrate of the mycelia of G. lucidum with silver nitrate reduces the metal ions to nanoparticles. Optical detection followed by confirmation through spectroscopic analysis suggests that this fungus can be used for the purpose of safe and sure synthesis of silver nanoparticles, demand for which is growing day by day in all fields of human life. LM-20 analysis of these G. lucidum-synthesised nanoparticles reveals the polydispersity and distribution of silver nanoparticles in the range of 10-70 nm with an average size of 45 nm and a concentration of 0.37 x 108 particles/mL. FT-IR spectrum confirms the stability of these nanoparticles due to presence of amide linkages and protein capping. These nanoparticles have shown strong bactericidal activity against test pathogens Staphylococcus aureus and Escherichia coli, and also exhibited their efficiency in enhancing the activity of the synthetic antibiotic tetracycline. The method of synthesising silver nanoparticles and its bactericidal effect discussed here can be used for environment-friendly and economically feasible production for different applications where chemically synthesized nanoparticles cause undesirable effects.

  5. Effect of O2, N2 and H2 on annealing of pad printed high conductive Ag-Cu nano-alloy electrodes

    NASA Astrophysics Data System (ADS)

    Manjunath, G.; Anusha, P.; Salian, Ashritha; Gupta, Bikesh; Mandal, Saumen

    2018-01-01

    In this study, annealing of pad printed Ag-Cu based conducting ink was studied in oxidizing, inert and reducing atmosphere to verify its oxidation dependent conductivity. Ag-Cu manually was formulated adopting polyol method; where silver nitrate and copper nitrate serve as initial metal precursors. Polyvinylpyrrolidone (PVP), ethylene glycol and sodium borohydride act as a stabilizer, solvent and reducing agent respectively. The nanoalloys were with an average particle size ˜48 ± 15 nm, capped with polyvinylpyrrolidone to avoid agglomeration and stable in non-polar solvents. Formation of nanoalloy, Ag 90 wt%-Cu 10 wt%, was verified through a peak shift in UV-visible spectroscopy, found at 470 nm along with Nelson-Relay curve fitting and x-ray photoelectron spectroscopy study. The calculated lattice parameter of nanoalloy ˜4.034 Å, was in between pure silver and copper. The crystallite size was calculated using Debye-Scherrer, Williamson-Hall isotropic strain model and Halder-Wagner method. Electrode patterns were printed on a glass substrate by pad printing and were annealed under O2, N2 and H2 atmosphere to study the oxidation kinetics of copper. A maximum conductivity of -6.6 × 105 S m-1 was observed in inert atmosphere annealing as the conductivity is solely depends on the oxidation of copper; appears with uttermost Cu0 and least Cu2+ in x-ray photoelectron spectroscopy. High conductive space required between manually and dispersion ink can have a potential application as an electrode in printed electronics. Further refinement of size of the nanopaticles by polyol method could help to obtain the effect of quantum confinement.

  6. Green synthesis of silver nanoparticles by Ricinus communis var. carmencita leaf extract and its antibacterial study

    NASA Astrophysics Data System (ADS)

    Ojha, Sunita; Sett, Arghya; Bora, Utpal

    2017-09-01

    In this study, we report synthesis of silver nanoparticles (RcAgNPs) from silver nitrate solution using methanolic leaf extract of Ricinus communis var. carmencita. The polyphenols present in the leaves reduce Ag++ ions to Ag0 followed by a color change. Silver nanoparticle formation was ensured by surface plasmon resonance between 400 nm to 500 nm. Crystallinity of the synthesized nanoparticles was confirmed by UHRTEM, SAED and XRD analysis. The capping of phytochemicals and thermal stability of RcAgNPs were assessed by FTIR spectra and TGA analysis, respectively. It also showed antibacterial activity against both gram positive and gram negative strains. RcAgNPs were non-toxic against normal cell line (mouse fibroblast cell line L929) at lower concentrations (80 µg ml-1).

  7. Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(−)-myrtenol nitrate

    PubMed Central

    Hiatt-Gipson, Glyn D; Mills, Graham P; Reeves, Claire E

    2016-01-01

    Summary Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a ’halide for nitrate’ substitution. Employing readily available starting materials, reagents and Horner–Wadsworth–Emmons chemistry the synthesis of easily separable, synthetically versatile ‘key building blocks’ (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, ’off the shelf’ materials. Exploiting their reactivity we have studied their ability to undergo an ‘allylic halide for allylic nitrate’ substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates (‘isoprene nitrates’) in 66–80% overall yields. Using NOESY experiments the elucidation of the carbon–carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our ‘halide for nitrate’ substitution chemistry we outline the straightforward transformation of (1R,2S)-(−)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(−)-myrtenol nitrate. PMID:27340495

  8. Engineered Escherichia coli Silver-Binding Periplasmic Protein That Promotes Silver Tolerance

    PubMed Central

    Hall Sedlak, Ruth; Hnilova, Marketa; Grosh, Carolynn; Fong, Hanson; Baneyx, Francois; Schwartz, Dan; Sarikaya, Mehmet; Tamerler, Candan

    2012-01-01

    Silver toxicity is a problem that microorganisms face in medical and environmental settings. Through exposure to silver compounds, some bacteria have adapted to growth in high concentrations of silver ions. Such adapted microbes may be dangerous as pathogens but, alternatively, could be potentially useful in nanomaterial-manufacturing applications. While naturally adapted isolates typically utilize efflux pumps to achieve metal resistance, we have engineered a silver-tolerant Escherichia coli strain by the use of a simple silver-binding peptide motif. A silver-binding peptide, AgBP2, was identified from a combinatorial display library and fused to the C terminus of the E. coli maltose-binding protein (MBP) to yield a silver-binding protein exhibiting nanomolar affinity for the metal. Growth experiments performed in the presence of silver nitrate showed that cells secreting MBP-AgBP2 into the periplasm exhibited silver tolerance in a batch culture, while those expressing a cytoplasmic version of the fusion protein or MBP alone did not. Transmission electron microscopy analysis of silver-tolerant cells revealed the presence of electron-dense silver nanoparticles. This is the first report of a specifically engineered metal-binding peptide exhibiting a strong in vivo phenotype, pointing toward a novel ability to manipulate bacterial interactions with heavy metals by the use of short and simple peptide motifs. Engineered metal-ion-tolerant microorganisms such as this E. coli strain could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo. PMID:22286990

  9. Microleakage in conservative cavities varying the preparation method and surface treatment

    PubMed Central

    ATOUI, Juliana Abdallah; CHINELATTI, Michelle Alexandra; PALMA-DIBB, Regina Guenka; CORONA, Silmara Aparecida Milori

    2010-01-01

    Objective To assess microleakage in conservative class V cavities prepared with aluminum-oxide air abrasion or turbine and restored with self-etching or etch-and-rinse adhesive systems. Material and Methods Forty premolars were randomly assigned to 4 groups (I and II: air abrasion; III and IV: turbine) and class V cavities were prepared on the buccal surfaces. Conditioning approaches were: groups I/III - 37% phosphoric acid; groups II/IV -self-priming etchant (Tyrian-SPe). Cavities were restored with One Step Plus/Filtek Z250. After finishing, specimens were thermocycled, immersed in 50% silver nitrate, and serially sectioned. Microleakage at the occlusal and cervical interfaces was measured in mm and calculated by a software. Data were subjected to ANOVA and Tukey’s test (α=0.05). Results Forty premolars were randomly assigned to 4 groups (I and II: air abrasion; III and IV: turbine) and class V cavities were prepared on the buccal surfaces. Conditioning approaches were: groups I/III - 37% phosphoric acid; groups II/IV -self-priming etchant (Tyrian-SPe). Cavities were restored with One Step Plus/Filtek Z250. After finishing, specimens were thermocycled, immersed in 50% silver nitrate, and serially sectioned. Microleakage at the occlusal and cervical interfaces was measured in mm and calculated by a software. Data were subjected to ANOVA and Tukey’s test (α=0.05). Conclusion Marginal seal of cavities prepared with aluminum-oxide air abrasion was different from that of conventionally prepared cavities, and the etch-and-rinse system promoted higher marginal seal at both enamel and dentin margins. PMID:20835580

  10. Silver nanoparticles: in vivo toxicity in zebrafish embryos and a comparison to silver nitrate

    NASA Astrophysics Data System (ADS)

    Mosselhy, Dina A.; He, Wei; Li, Dan; Meng, Yaping; Feng, Qingling

    2016-08-01

    The wide antimicrobial administration of silver nanoparticles (AgNPs) has raised the risks associated with their exposure. However, there is lack of robust toxicological data for the applied AgNPs to be in line with their wide antimicrobial applications. This study therefore set out to assess the in vivo toxicity of two different sizes of AgNPs using zebrafish embryos ( Danio rerio) as a brilliant in vivo model. The pivotal role of size of AgNPs in the toxicity was highlighted, wherein the smaller AgNPs (Ag-9 nm) exhibited more embryo toxicities than the larger particles (Ag-30 nm). Much uncertainty still exists about whether the cause of in vivo toxicity of AgNPs is the physicochemical properties of AgNPs or the released silver ions (Ag+). Therefore, another purpose of this study is to compare the toxicity of AgNPs with silver nitrate (AgNO3) in terms of mortality, hatchability and cardiac rates, and a series of phenotypic endpoints of zebrafish embryos. Collectively, the present results point towards the remarkable size-dependent toxicity of AgNPs. Wherein, the smaller AgNPs (9 ± 2 nm) induce increased mortality rates and decreased hatchability rates than the larger particles (30 ± 5 nm) in a dose-dependent manner. Besides, AgNPs and AgNO3 induce holistic different toxic mortality and hatchability rates. We have also found striking discrepancies in the phenotypic defects that were induced by AgNPs and AgNO3. The significant phenotypic defect induced by AgNPs is the axial deformity, while it is the deposition of Ag+ on the embryonic chorion for AgNO3. Therefore, it is proposed that AgNPs and AgNO3 induce different in vivo toxicities.

  11. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles.

    PubMed

    Monteiro, Douglas Roberto; Gorup, Luiz Fernando; Takamiya, Aline Satie; de Camargo, Emerson Rodrigues; Filho, Adhemar Colla Ruvolo; Barbosa, Debora Barros

    2012-01-01

    The aim of this study was to evaluate a denture base resin containing silver colloidal nanoparticles through morphological analysis to check the distribution and dispersion of these particles in the polymer and by testing the silver release in deionized water at different time periods. A Lucitone 550 denture resin was used, and silver nanoparticles were synthesized by reduction of silver nitrate with sodium citrate. The acrylic resin was prepared in accordance with the manufacturers' instructions, and silver nanoparticle suspension was added to the acrylic resin monomer in different concentrations (0.05, 0.5, and 5 vol% silver colloidal). Controls devoid of silver nanoparticles were included. The specimens were stored in deionized water at 37°C for 7, 15, 30, 60, and 120 days, and each solution was analyzed using atomic absorption spectroscopy. Silver was not detected in deionized water regardless of the silver nanoparticles added to the resin and of the storage period. Micrographs showed that with lower concentrations, the distribution of silver nanoparticles was reduced, whereas their dispersion was improved in the polymer. Moreover, after 120 days of storage, nanoparticles were mainly located on the surface of the nanocomposite specimens. Incorporation of silver nanoparticles in the acrylic resin was evidenced. Moreover, silver was not detected by the detection limit of the atomic absorption spectrophotometer used in this study, even after 120 days of storage in deionized water. Silver nanoparticles are incorporated in the PMMA denture resin to attain an effective antimicrobial material to help control common infections involving oral mucosal tissues in complete denture wearers. © 2011 by the American College of Prosthodontists.

  12. The Reduction of Sulfuryl Chloride at Teflon-Bonded Carbon Cathodes

    DTIC Science & Technology

    1980-07-01

    titrated mulating cathodes, along with their BET surface potentiometrically with standardized silver nitrate areas. Shawinigan black possesses the...assembly steps when individually dissolved can be titrated through were accomplished in the glove box. iodimetry or iodometry, respectively (7). If

  13. Chemistry of ground water in the Silver Springs basin, Florida, with an emphasis on nitrate

    USGS Publications Warehouse

    Phelps, G.G.

    2004-01-01

    The Silver Springs group, in central Marion County, Florida, has a combined average discharge rate of 796 cubic feet per second and forms the headwaters of the Silver River. The springs support a diverse ecosystem and are an important cultural and economic resource. Concentrations of nitrite-plus-nitrate (nitrate-N) in water from the Main Spring increased from less than 0.5 milligrams per liter (mg/L) in the 1960s to about 1.0 mg/L in 2003. The Upper Floridan aquifer supplies the ground water to support spring discharge. This aquifer is at or near land surface in much of the ground-water basin; nutrients leached at land surface can easily percolate downward into the aquifer. Sources of nitrogen in ground water in the Silver Springs basin include atmospheric deposition, fertilizers used by agricultural and urban activities, and human and animal wastes. During 2000-2001, 56 wells in the area contributing recharge to Silver Springs were sampled for major ions, nutrients, and some trace constituents. Selected wells also were sampled for a suite of organic constituents commonly found in domestic and industrial wastewater and for the ratio of nitrogen isotopes (15N/14N) to better understand the sources of nitrate. Wells were selected to be representative of both confined and unconfined conditions of the Upper Floridan aquifer, as well as a variety of land-use types. Data from this study were compared to data collected from 25 wells in 1989-90. Concentrations of nitrate-N in ground water during this study ranged from less than the detection limit of 0.02 to 12 mg/L, with a median of 1.2 mg/L. For data from 1989-90, the range was from less than 0.02 to 3.6 mg/L, with a median of 1.04 mg/L. Water from wells in agricultural land-use areas had the highest median nitrate-N concentration (1.7 mg/L), although it is uncertain if the 12 mg/L maximum concentration was influenced by land-use activities or proximity to a septic tank. The median value for all urban land-use areas was 1.15 mg/L. Because fewer wells were in rangeland or forested areas, those categories were grouped together. The median concentration for that group was 0.09 mg/L. The ratio of 15N/14N in ground-water samples ranged from -0.5 to 11.5 per mil. The median value for ground-water samples from 35 wells, 4.9 per mil, is near the top of the range that indicates inorganic nitrogen sources. In agricultural areas, the median 15N/14N was 4.8 per mil, indicating mostly inorganic (fertilizer) sources. In urban areas, the median 15N/14N was 5.4 per mil, indicating more influence of organic nitrogen (N) sources. Thus, in both agricultural and urban areas, fertilizer is an important inorganic source of N in ground water (and, therefore, in spring water as well). The influence of organic N is more apparent in urban areas than in agricultural areas. Two distinct 15N/14N values were observed in water from the Main Spring, one indicating an inorganic nitrogen source and the other indicating a mixture of sources with a strong influence of organic nitrogen. Thirty-five wells and three springs of the Silver Springs group (the Main Spring, the Abyss, and the Blue Grotto) were sampled for a suite of 63 compounds common in wastewater. A total of 38 compounds was detected, nearly all in very low concentrations. The most frequently detected compound was the insecticide N,N-diethyl-meta-toluamide (DEET), which was detected in water from 27 wells and all three springs. The presence or absence of DEET in ground-water samples did not seem to be related to land use; however, hydrogeologic conditions at the well sites (confined or unconfined) generally did affect the presence or absence of DEET in the ground water. DEET also appears to be a useful tracer for the presence of reused water. Water samples were collected from the Main Spring and two other springs of the Silver Springs group and analyzed for concentrations of dissolved gasses and for chlorofluorocarbons (CFCs), sulfur hexaflu

  14. Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters† †Electronic supplementary information (ESI) available: Experimental details and additional structural, physicochemical and optical characterisation. See DOI: 10.1039/c6tc00260a Click here for additional data file.

    PubMed Central

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan

    2016-01-01

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal–organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4′-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications. PMID:28496980

  15. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    NASA Astrophysics Data System (ADS)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  16. Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms

    NASA Astrophysics Data System (ADS)

    Xing, Ruimin; Liu, Shanhu; Tian, Shufang

    2011-10-01

    In this study, silver sulfide nanoworms were prepared via a rapid microwave-assisted hydrothermal method by reacting silver nitrate and thioacetamide in the aqueous solution of the Bovine Serum Albumin (BSA) protein. The morphology, composition, and crystallinity of the nanoworms were characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results show that the nanoworms were assembled by multiple adjacent Ag2S nanoparticles and stabilized by a layer of BSA attached to their surface. The nanoworms have the sizes of about 50 nm in diameter and hundreds of nanometers in length. The analyses of high-resolution TEM and their correlative Fast Fourier Transform (FFT) indicate that the adjacent Ag2S nanoparticles grow by misoriented attachment at the connective interfaces to form the nanoworm structure. In vitro assays on the human cervical cancer cell line HeLa show that the nanoworms exhibit good biocompatibility due to the presence of BSA coating. This combination of features makes the nanoworms attractive and promising building blocks for advanced materials and devices.

  17. One pot light assisted green synthesis, storage and antimicrobial activity of dextran stabilized silver nanoparticles.

    PubMed

    Hussain, Muhammad Ajaz; Shah, Abdullah; Jantan, Ibrahim; Tahir, Muhammad Nawaz; Shah, Muhammad Raza; Ahmed, Riaz; Bukhari, Syed Nasir Abbas

    2014-12-03

    Green synthesis of nanomaterials finds the edge over chemical methods due to its environmental compatibility. Herein, we report green synthesis of silver nanoparticles (Ag NPs) mediated with dextran. Dextran was used as a stabilizer and capping agent to synthesize Ag NPs using silver nitrate (AgNO3) under diffused sunlight conditions. UV-vis spectra of as synthesized Ag nanoparticles showed characteristic surface plasmon band in the range from ~405-452 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies showed spherical Ag NPs in the size regime of ~50-70 nm. Face centered cubic lattice of Ag NPs was confirmed by powder X-ray diffraction (PXRD). FT-IR spectroscopy confirmed that dextran not only acts as reducing agent but also functionalizes the surfaces of Ag NPs to make very stable dispersions. Moreover, on drying, the solution of dextran stabilized Ag NPs resulted in the formation of thin films which were found stable over months with no change in the plasmon band of pristine Ag NPs. The antimicrobial assay of the as synthesized Ag NPs showed remarkable activity. Being significantly active against microbes, the Ag NPs can be explored for antimicrobial medical devices.

  18. In vitro cytotoxicity and antibacterial activity of silver-coated electrospun polycaprolactone/gelatine nanofibrous scaffolds.

    PubMed

    Lim, Mim Mim; Sultana, Naznin

    2016-12-01

    The development of nano-sized scaffolds with antibacterial properties that mimic the architecture of tissue is one of the challenges in tissue engineering. In this study, polycaprolactone (PCL) and PCL/gelatine (Ge) (70:30) nanofibrous scaffolds were fabricated using a less toxic and common solvent, formic acid and an electrospinning technique. Nanofibrous scaffolds were coated with silver (Ag) in different concentrations of silver nitrate (AgNO 3 ) aqueous solution (1.25, 2.5, 5, and 10 %) by using dipping method, drying and followed by ultraviolet (UV) photoreduction. The PCL/Ge (70:30) nanofibrous scaffold had an average fibre diameter of 155.60 ± 41.13 nm. Characterization showed that Ag was physically entrapped in both the PCL and PCL/Ge (70:30) nanofibrous scaffolds. Ag + ions release study was performed and showed much lesser release amount than the maximum toxic concentration of Ag + ions in human cells. Both scaffolds were non-toxic to cells and demonstrated antibacterial effects towards Gram-positive Bacillus cereus (B. cereus) and Gram-negative Escherichia coli (E. coli). The Ag/PCL/Ge (70:30) nanofibrous scaffold has potential for tissue engineering as it can protect wounds from bacterial infection and promote tissue regeneration.

  19. Silver nanoparticles synthesized using aqueous leaf extract of Ziziphus oenoplia (L.) Mill: Characterization and assessment of antibacterial activity.

    PubMed

    Soman, Soumya; Ray, J G

    2016-10-01

    Biological approach to synthesis of metal nanoparticles using aqueous leaf extract is a highly relevant and recent theme in nanotechnological research. Phytosynthesized AgNPs have better inhibitory and antimicrobial effects compared to aqueous leaf extract and silver nitrate. In the present investigation crystalline silver nanoparticles (AgNPs) with size of 10nm have been successfully synthesized using aqueous leaf extract (AQLE) of Ziziphus oenoplia (L.) Mill., which act as both reducing as well as capping agent. The particles were characterized using UV Visible spectroscopy, HRTEM-EDAX, XRD, FT-IR and DLS. An evaluation of the anti bacterial activity was carried out using Agar well diffusion method and MIC determination against four bacterial strains, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi; the AgNPs exhibited quite high antibacterial activity. Furthermore, bactericidal studies with TEM at different time intervals after AgNPs treatment showed the presence of AgNPs near cell membrane of bacteria at about 30min exposure and the bacterial-lysis was found completed at 24h. This gave an insight on the mechanism of bacterial-lysis by direct damage to the cell membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts

    PubMed Central

    Ishida, Kelly; Cipriano, Talita Ferreira; Rocha, Gustavo Miranda; Weissmüller, Gilberto; Gomes, Fabio; Miranda, Kildare; Rozental, Sonia

    2013-01-01

    The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus . PMID:24714966

  1. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts.

    PubMed

    Ishida, Kelly; Cipriano, Talita Ferreira; Rocha, Gustavo Miranda; Weissmüller, Gilberto; Gomes, Fabio; Miranda, Kildare; Rozental, Sonia

    2014-04-01

    The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus.

  2. Detection of colloidal silver chloride near solubility limit

    NASA Astrophysics Data System (ADS)

    Putri, K. Y.; Adawiah, R.

    2018-03-01

    Detection of nanoparticles in solution has been made possible by several means; one of them is laser-induced breakdown detection (LIBD). LIBD is able to distinguish colloids of various sizes and concentrations. This technique has been used in several solubility studies. In this study, the formation of colloids in a mixed system of silver nitrate and sodium chloride was observed by acoustic LIBD. Silver chloride has low solubility limit, therefore LIBD measurement is appropriate. Silver and chloride solutions with equal concentrations, set at below and above the solubility of silver chloride as the expected solid product, were mixed and the resulting colloids were observed. The result of LIBD measurement showed that larger particles were present as more silver and chloride introduced. However, once the concentrations exceeded the solubility limit of silver chloride, the detected particle size seemed to be decreasing, hence suggested the occurrence of coprecipitation process. This phenomenon indicated that the ability of LIBD to detect even small changes in colloid amounts might be a useful tool in study on formation and stability of colloids, i.e. to confirm whether nanoparticles synthesis has been successfully performed and whether the system is stable or not.

  3. Antibacterial performance on plasma polymerized heptylamine films loaded with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chun; Lin, Chia-Chun; Lin, Chih-Hao; Wang, Meng-Jiy

    2017-01-01

    The antibacterial performance of the plasma-polymerized (pp) heptylamine thin films loaded with silver nanoparticles was evaluated against the colonization of Escherichia coli and Staphylococcus aureus. The properties including the thickness and chemical composition of the as deposited HApp films were modulated by adjusting plasma parameters. The acquired results showed that the film thickness was controlled in the range of 20 to 400 nm by adjusting deposition time. The subsequent immersion of the HApp thin films in silver nitrate solutions result in the formation of amine-metal complexes, in which the silver nanoparticles were reduced directly on the matrices to form Ag@HApp. The reduction reaction of silver was facilitated by applying NaBH4 as a reducing agent. The results of physicochemical analyses including morphological analysis and ellipsometry revealed that the silver nanoparticles were successfully reduced on the HApp films, and the amount of reduced silver was closely associated which the thickness of the plasma-polymerized films, the concentration of applied metal ions solutions, and the time of immobilization. Regarding the antibacterial performance, the Ag@HApp films reduced by NaBH4 showed antibacterial abilities of 70.1 and 68.2% against E. coli and S. aureus, respectively.

  4. Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes

    PubMed Central

    Raza, Muhammad Akram; Kanwal, Zakia; Rauf, Anum; Sabri, Anjum Nasim; Riaz, Saira; Naseem, Shahzad

    2016-01-01

    Silver nanoparticles (AgNPs) of different shapes and sizes were prepared by solution-based chemical reduction routes. Silver nitrate was used as a precursor, tri-sodium citrate (TSC) and sodium borohydride as reducing agents, while polyvinylpyrrolidone (PVP) was used as a stabilizing agent. The morphology, size, and structural properties of obtained nanoparticles were characterized by scanning electron microscopy (SEM), UV-visible spectroscopy (UV-VIS), and X-ray diffraction (XRD) techniques. Spherical AgNPs, as depicted by SEM, were found to have diameters in the range of 15 to 90 nm while lengths of the edges of the triangular particles were about 150 nm. The characteristic surface plasmon resonance (SPR) peaks of different spherical silver colloids occurring in the wavelength range of 397 to 504 nm, whereas triangular particles showed two peaks, first at 392 nm and second at 789 nm as measured by UV-VIS. The XRD spectra of the prepared samples indicated the face-centered cubic crystalline structure of metallic AgNPs. The in vitro antibacterial properties of all synthesized AgNPs against two types of Gram-negative bacteria, Pseudomonas aeruginosa and Escherichia coli were examined by Kirby–Bauer disk diffusion susceptibility method. It was noticed that the smallest-sized spherical AgNPs demonstrated a better antibacterial activity against both bacterial strains as compared to the triangular and larger spherical shaped AgNPs. PMID:28335201

  5. Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent.

    PubMed

    Tamboli, Mohaseen S; Kulkarni, Milind V; Patil, Rajendra H; Gade, Wasudev N; Navale, Shalaka C; Kale, Bharat B

    2012-04-01

    Silver-polyaniline (Ag-PANI) nanocomposite was synthesized by in situ polymerization method using ammonium persulfate (APS) as an oxidizing agent in the presence of dodecylbenzene sulfonic acid (DBSA) and silver nitrate (AgNO(3)). The as synthesized Ag-PANI nanocomposite was characterized by using different analytical techniques such as UV-visible (UV-vis) and Fourier transform Infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV-visible spectra of the synthesized nanocomposite showed a sharp peak at ~420 nm corresponding to the surface plasmon resonance (SPR) of the silver nanoparticles (AgNPs) embedded in the polymer matrix which is overlapped by the polaronic peak of polyaniline appearing at that wavelength. Nanowires of Ag-PANI nanocomposite with diameter 50-70 nm were observed in FE-SEM and TEM. TGA has indicated an enhanced thermal stability of nanocomposite as compared to that of pure polymer. The Ag-PANI nanocomposite has shown an antibacterial activity against model organisms, a gram positive Bacillus subtilis NCIM 6633 in Mueller-Hinton (MH) medium, which is hitherto unattempted. The Ag-PANI nanocomposite with monodispersed AgNPs is considered to have potential applications in sensors, catalysis, batteries and electronic devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Antibacterial Activity of Polyaniline Coated Silver Nanoparticles Synthesized from Piper Betle Leaves Extract.

    PubMed

    Mamun Or Rashida, Md; Shafiul Islam, Md; Azizul Haque, Md; Arifur Rahman, Md; Tanvir Hossain, Md; Abdul Hamid, Md

    2016-01-01

    Plants or natural resources have been found to be a good alternative method for nanoparticles synthesis. In this study, polyaniline coated silver nanoparticles (AgNPs) synthesized from Piper betle leaves extract were investigated for their antibacterial activity. Silver nanoparticles were prepared from the reduction of silver nitrate and NaBH4 was used as reducing agent. Silver nanoparticles and extracts were mixed thoroughly and then coated by polyaniline. Prepared nanoparticles were characterized by Visual inspection, Ultraviolet-visible spectroscopy (UV), Fourier transform infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) techniques. Antibacterial activities of the synthesized silver nanoparticles were tested against Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. UV-Vis spectrum of reaction mixture showed strong absorption peak with centering at 400 nm. The FT-IR results imply that Ag-NPs were successfully synthesized and capped with bio-compounds present in P. betle. TEM image showed that Ag-NPs formed were well dispersed with a spherical structures and particle size ranging from 10 to 30 nm. The result revealed that Ag-Extract NPs showed 32.78±0.64 mm zone of inhibition against S. aureus, whereas norfloxacin (positive control) showed maximum 32.15±0.40 mm zone of inhibition for S. aureus. Again, maximum zone of inhibition 29.55±0.45 mm was found for S. typhi, 27.12±0.38 mm for E. coli and 21.95±0.45 mm for P. aeruginosa. The results obtained by this study can't be directly extrapolated to human; so further studies should be undertaken to established the strong antimicrobial activity of Ag-Extract NPs for drug development program.

  7. Antibacterial Activity of Polyaniline Coated Silver Nanoparticles Synthesized from Piper Betle Leaves Extract

    PubMed Central

    Mamun Or Rashida, Md.; Shafiul Islam, Md.; Azizul Haque, Md.; Arifur Rahman, Md.; Tanvir Hossain, Md.; Abdul Hamid, Md.

    2016-01-01

    Plants or natural resources have been found to be a good alternative method for nanoparticles synthesis. In this study, polyaniline coated silver nanoparticles (AgNPs) synthesized from Piper betle leaves extract were investigated for their antibacterial activity. Silver nanoparticles were prepared from the reduction of silver nitrate and NaBH4 was used as reducing agent. Silver nanoparticles and extracts were mixed thoroughly and then coated by polyaniline. Prepared nanoparticles were characterized by Visual inspection, Ultraviolet-visible spectroscopy (UV), Fourier transform infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) techniques. Antibacterial activities of the synthesized silver nanoparticles were tested against Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. UV–Vis spectrum of reaction mixture showed strong absorption peak with centering at 400 nm. The FT-IR results imply that Ag-NPs were successfully synthesized and capped with bio-compounds present in P. betle. TEM image showed that Ag-NPs formed were well dispersed with a spherical structures and particle size ranging from 10 to 30 nm. The result revealed that Ag-Extract NPs showed 32.78±0.64 mm zone of inhibition against S. aureus, whereas norfloxacin (positive control) showed maximum 32.15±0.40 mm zone of inhibition for S. aureus. Again, maximum zone of inhibition 29.55±0.45 mm was found for S. typhi, 27.12±0.38 mm for E. coli and 21.95±0.45 mm for P. aeruginosa. The results obtained by this study can’t be directly extrapolated to human; so further studies should be undertaken to established the strong antimicrobial activity of Ag-Extract NPs for drug development program. PMID:27642330

  8. 40 CFR 415.532 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... available (BPT): Subpart BA—Silver Nitrate Pollutant or pollutant property BPT limitations Maximum for any 1...

  9. 40 CFR 415.532 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, any existing point... available (BPT): Subpart BA—Silver Nitrate Pollutant or pollutant property BPT limitations Maximum for any 1...

  10. Somatic embryogenesis in Hedychium bousigonianum

    USDA-ARS?s Scientific Manuscript database

    An efficient primary somatic embryo (SE) and secondary somatic embryo (SSE) production system was developed for the ornamental ginger Hedychium bousigonianum Pierre ex Gagnepain. Addition of two ethylene inhibitors, salicylic acid (SA) and silver nitrate (AgNO3), to the culture media improved the sy...

  11. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties.

    PubMed

    Ashour, Asmaa A; Raafat, Dina; El-Gowelli, Hanan M; El-Kamel, Amal H

    2015-01-01

    The growing threat of microbial resistance against traditional antibiotics has prompted the development of several antimicrobial nanoparticles (NPs), including silver NPs (AgNPs). In this article, a simple and eco-friendly method for the synthesis of AgNPs using the cranberry powder aqueous extract is reported. Cranberry powder aqueous extracts (0.2%, 0.5%, and 0.8% w/v) were allowed to interact for 24 hours with a silver nitrate solution (10 mM) at 30°C at a ratio of 1:10. The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy and their concentrations were determined using atomic absorption spectroscopy. The prepared NPs were evaluated by transmission electron microscopy, measurement of ζ-potential, and Fourier-transform infrared spectroscopy. The in vitro antimicrobial properties of AgNPs were then investigated against several microbial strains. Finally, in vivo appraisal of both wound-healing and antimicrobial properties of either plain AgNPs (prepared using 0.2% extract) or AgNP-Pluronic F-127 gel was conducted in a rat model after induction of a Staphylococcus aureus ATCC 6538P wound infection. The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy, where a surface-plasmon resonance absorption peak was observed between 432 and 438 nm. Both size and concentration of the formed AgNPs increased with increasing concentration of the extracts. The developed NPs were stable, almost spherical, and polydisperse, with a size range of 1.4-8.6 nm. The negative ζ-potential values, as well as Fourier-transform infrared spectroscopy analysis, indicated the presence of a capping agent adsorbed onto the surface of the particles. In vitro antimicrobial evaluation revealed a size-dependent activity of the AgNPs against the tested organisms. Finally, AgNPs prepared using 0.2% extract exhibited a substantial in vivo healing potential for full-thickness excision wounds in rats. AgNPs were successfully synthesized from a silver nitrate solution through a simple green route, using cranberry powder aqueous extract as a reducing as well as capping agent.

  12. Biosynthesis of silver nanoparticles using bark extracts of Butea monosperma (Lam.) Taub. and study of their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Das, Manoja; Smita, Soumya Shuvra

    2018-03-01

    Biosynthesis of silver nanoparticles was achieved using bark extract of Butea monosperma (Lam.) Taub., a native plant of Indian subcontinent and southeast Asia. The plant parts are familiar for ailment of different diseases. The bioactive compounds present in bark of the plant were extracted with Soxhlet extractor. Silver nitrate (AgNO3) was used as a raw material for preparation of silver nanoparticles (AgNPs). The ratio of bark extract and silver nitrate solution for synthesis of AgNPs was standardized as 3:5. The change in colour of the solution from pale yellow to deep brown can be correlated to reduction reaction catalyzed by plant bioactive compounds. The formation of AgNPs was confirmed by UV-Vis spectrophotometer. The surface plasmon resonance (SPR) maxima, λmax, were recorded at 452 nm. SPR indicates the nature and type of particles present in the solution. The suitable concentration of AgNO3 was found to be 10 mM to carry out reduction reaction with the bark extract. Alkaline environment (pH 9) suitably promotes the reaction. FTIR graph of synthesized AgNPs shows the shifting peak of 3265.0 wavelength/cm and 1635.40 wavelength/cm indicates that AgNPs were coated with plant biomolecules, which is attributed to the stabilization of AgNPs. XRD and SEM photograph of the AgNPs showed that they were spherical in shape and capped with bioactive compounds. Thus, the synthesized AgNPs are more stable, less toxic and homogenous in shape. The average diameter of the nanoparticles was 81 nm. The synthesized AgNPs had efficacy against a Gram-negative bacteria (Escherichia coli), a Gram-positive bacteria (Staphylococcus aureus), and a mold (Aspergillus niger). The maximum conversion was 66%. From the present investigation, it can be concluded that the bioactive compounds present in the bark of Butea have the capacity to reduce silver ion into silver nanoparticles in aqueous condition and the synthesized AgNPs are stabilized and loss toxic. Moreover, they also possess antimicrobial properties against human pathogens.

  13. Artificial neural network assisted kinetic spectrophotometric technique for simultaneous determination of paracetamol and p-aminophenol in pharmaceutical samples using localized surface plasmon resonance band of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Khodaveisi, Javad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Rohani Moghadam, Masoud; Hormozi-Nezhad, Mohammad Reza

    2015-03-01

    Spectrophotometric analysis method based on the combination of the principal component analysis (PCA) with the feed-forward neural network (FFNN) and the radial basis function network (RBFN) was proposed for the simultaneous determination of paracetamol (PAC) and p-aminophenol (PAP). This technique relies on the difference between the kinetic rates of the reactions between analytes and silver nitrate as the oxidizing agent in the presence of polyvinylpyrrolidone (PVP) which is the stabilizer. The reactions are monitored at the analytical wavelength of 420 nm of the localized surface plasmon resonance (LSPR) band of the formed silver nanoparticles (Ag-NPs). Under the optimized conditions, the linear calibration graphs were obtained in the concentration range of 0.122-2.425 μg mL-1 for PAC and 0.021-5.245 μg mL-1 for PAP. The limit of detection in terms of standard approach (LODSA) and upper limit approach (LODULA) were calculated to be 0.027 and 0.032 μg mL-1 for PAC and 0.006 and 0.009 μg mL-1 for PAP. The important parameters were optimized for the artificial neural network (ANN) models. Statistical parameters indicated that the ability of the both methods is comparable. The proposed method was successfully applied to the simultaneous determination of PAC and PAP in pharmaceutical preparations.

  14. Synthesis and study of silver nanoparticles for antibacterial activity against Escherichia coli and Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Hoa Vu, Xuan; Thanh Tra Duong, Thi; Pham, Thi Thu Ha; Kha Trinh, Dinh; Huong Nguyen, Xuan; Dang, Van-Son

    2018-06-01

    The colloidal silver solution was synthesized by reducing silver nitrate () using sodium borohydride () and starch as a stabilizer agent. The size and optical properties of synthesized AgNPs were characterized by UV-Vis spectroscopy, Fourier transform-infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The effects of several parameters on AgNPs were also investigated. The results have shown that the size of synthesized spherical silver nanoparticles was and disperse in water. The synthesized AgNPs of his study exhibited a strong antibacterial activity against Gram-negative bacteria Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The average zones of inhibition of AgNPs were of 7.7 mm for bacteria E. coli and 7.0 mm for S. aureus. In this study, the zone of inhibition of AgNPs was also compared to the reference antibiotics drug.

  15. Reusable magnetic nanobiocatalyst for synthesis of silver and gold nanoparticles.

    PubMed

    Mazumder, Jahirul Ahmed; Ahmad, Razi; Sardar, Meryam

    2016-12-01

    In the present work, we describe a simple procedure for the biosynthesis of nanosilver and gold by the reduction of silver nitrate and auric chloride respectively using a nanobiocatalyst. The nanobiocatalyst was prepared by covalent coupling of alpha amylase on (3-aminopropyl)triethoxysilane (APTES) modified iron oxide magnetic nanoparticles. The nanobiocatalyst retains 77% of its activity as compared to free alpha amylase. The nanobiocatalyst can be used up to three consecutive cycles for the synthesis of nano silver and gold. The biosynthesized nanoparticles after each cycle were characterized by UV-vis spectrophotometer, Dynamic Light Spectroscopy (DLS), Transmission Electron Microscope (TEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Silver and gold nanoparticles of same morphology and dimensions were formed in each cycle. The procedure for synthesis of nanoparticles using an immobilized enzyme is eco-friendly and can be used repeatedly. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Silver-modified mobile phase for normal-phase liquid chromatographic determination of prostaglandins and their 5,6-trans isomers in prostaglandin bulk drugs and triacetin solutions.

    PubMed

    Kissinger, L D; Robins, R H

    1985-03-15

    A silver-modified, normal-phase, high-performance liquid chromatographic system has been developed for prostaglanding bulk drugs and triacetin solutions. Silver nitrate present in the mobile phase results in high selectivity for cis/trans isomers with conventional silica columns. Prostaglandins were esterified with alpha-bromo-2'-acetonaphthone prior to chromatography to provide high detectability at 254 nm. For dilute triacetin solutions, a sample preparation scheme based on gravity-flow chromatography with silica columns was developed to isolate the prostaglandin from triacetin prior to derivatization. The analytical technique was applied to triacetin solutions containing as little as 10 micrograms/ml arbaprostil [15-(R)-methyl-PGE2].

  17. Temperature evolution in silver nanoparticle doped PETN composite

    NASA Astrophysics Data System (ADS)

    Kameswari, D. P. S. L.; Kiran, P. Prem

    2018-04-01

    Optical absorption and the associated spatio-temporal evolution of temperature silver nanoparticles doped energetic material composite is presented. Silver nanoparticles of radii 10 - 150 nm are doped in Penta Erythrtol Tetra Nitrate (PETN), a secondary energetic material to form the composite materials. Of all the composites the ones doped with 35 nm sized nanoparticles have shown maximum absorption at excitation wavelength of 532 nm. The spatio-temporal evolution of temperature within these composites up on excitation with ns laser pulses of energy density 0.5 J/cm2 is studied. The role of particle sizes on the temperature of composites is studied and a maximum temperature of 2200 K at the nanoparticle interface is observed for 35 nm doped PETN composite.

  18. Active systems based on silver-montmorillonite nanoparticles embedded into bio-based polymer matrices for packaging applications.

    PubMed

    Incoronato, A L; Buonocore, G G; Conte, A; Lavorgna, M; Nobile, M A Del

    2010-12-01

    Silver-montmorillonite (Ag-MMT) antimicrobial nanoparticles were obtained by allowing silver ions from nitrate solutions to replace the Na(+) of natural montmorillonite and to be reduced by thermal treatment. The Ag-MMT nanoparticles were embedded in agar, zein, and poly(ε-caprolactone) polymer matrices. These nanocomposites were tested in vitro with a three-strain cocktail of Pseudomonas spp. to assess antimicrobial effectiveness. The results indicate that Ag-MMT nanoparticles embedded into agar may have antimicrobial activity against selected spoilage microorganisms. No antimicrobial effects were recorded with active zein and poly(ε-caprolactone). The water content of the polymeric matrix was the key parameter associated with antimicrobial effectiveness of this active system intended for food packaging applications.

  19. In situ laser-induced photochemical silver substrate synthesis and sequential SERS detection in a flow cell.

    PubMed

    Herman, Krisztian; Szabó, László; Leopold, Loredana F; Chiş, Vasile; Leopold, Nicolae

    2011-05-01

    A new, simple, and effective approach for multianalyte sequential surface-enhanced Raman scattering (SERS) detection in a flow cell is reported. The silver substrate was prepared in situ by laser-induced photochemical synthesis. By focusing the laser on the 320 μm inner diameter glass capillary at 0.5 ml/min continuous flow of 1 mM silver nitrate and 10 mM sodium citrate mixture, a SERS active silver spot on the inner wall of the glass capillary was prepared in a few seconds. The test analytes, dacarbazine, 4-(2-pyridylazo)resorcinol (PAR) complex with Cu(II), and amoxicillin, were sequentially injected into the flow cell. Each analyte was adsorbed to the silver surface, enabling the recording of high intensity SERS spectra even at 2 s integration times, followed by desorption from the silver surface and being washed away from the capillary. Before and after each analyte passed the detection window, citrate background spectra were recorded, and thus, no "memory effects" perturbed the SERS detection. A good reproducibility of the SERS spectra obtained under flow conditions was observed. The laser-induced photochemically synthesized silver substrate enables high Raman enhancement, is characterized by fast preparation with a high success rate, and represents a valuable alternative for silver colloids as SERS substrate in flow approaches.

  20. [Neuronal organization of thalamic nucleus reticularis in adult man].

    PubMed

    Berezhnaia, L A

    2005-01-01

    The neuronal content of human thalamic nucleus reticularis was studied in serial sections cut in sagittal and frontal projections and impregnated with silver nitrate using Golgi method. The neuronal content of human thalamic nucleus reticularis was found to be more diverse than previously reported in animals and man. Besides two types of sparsely-branched long-dendritic spineless R1 and R2 neurons, this nucleus contained spiny cells. Medium and small-sized sparsely-branched short-dendritic neurons and densely-branched spiny cells were demonstrated. The principle of organization of human thalamic nucleus reticularis is described.

  1. Synthesis, kinetics and photocatalytic study of "ultra-small" Ag-NPs obtained by a green chemistry method using an extract of Rosa 'Andeli' double delight petals.

    PubMed

    Suárez-Cerda, Javier; Alonso-Nuñez, Gabriel; Espinoza-Gómez, Heriberto; Flores-López, Lucía Z

    2015-11-15

    This paper reports the effect of different concentrations of Rosa 'Andeli' double delight petals aqueous extract (PERA) in the synthesis of silver nanoparticles (Ag-NPs), using an easy green chemistry method. Its kinetics study and photocatalytic activity were also evaluated. The Ag-NPs were obtained using an aqueous silver nitrate solution (AgNO3) with 9.66% w/v, 7.25% w/v, and 4.20% w/v PERA as both reducing-stabilizing agent. The formation of the Ag-NPs was demonstrated by analysis of UV-vis spectroscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). TEM analysis shows spherical nanoparticles in shape and size between ∼0.5 and 1.4nm. A comparative study was done to determine which concentration was the best reducing-stabilizing agent, and we found out that "ultra-small" nanoparticles (0.5-1.1nm) were obtained with 9.66% w/v of PERA. The size of the Ag-NPs depends on the concentration of PERA and Ag(I). The reaction of formation of "ultra-small" Ag-NPs, proved to be first order for metallic precursor (silver) and second order for reducing-stabilizing agent (PERA). The Ag-NPs showed photocatalytic activity, in degradation of commercial dye with an efficiency of 95%. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Analysis of Trans Fat in Edible Oils with Cooking Process

    PubMed Central

    Song, Juhee; Park, Joohyeok; Jung, Jinyeong; Lee, Chankyu; Gim, Seo Yeoung; Ka, HyeJung; Yi, BoRa; Kim, Mi-Ja; Kim, Cho-il

    2015-01-01

    Trans fat is a unsaturated fatty acid with trans configuration and separated double bonds. Analytical methods have been introduced to analyze trans fat content in foods including infrared (IR) spectroscopy, gas chromatography (GC), Fourier transform-infrared (FT-IR) spectroscopy, reverses-phase silver ion high performance liquid chromatography, and silver nitrate thin layer chromatography. Currently, FT-IR spectroscopy and GC are mostly used methods. Trans fat content in 6 vegetable oils were analyzed and processing effects including baking, stir-frying, pan-frying, and frying on the formation of trans fat in corn oil was evaluated by GC. Among tested vegetable oils, corn oil has 0.25 g trans fat/100 g, whereas other oils including rapeseed, soybean, olive, perilla, and sesame oils did not have detectable amount of trans fat content. Among cooking methods, stir-frying increased trans fat in corn oil whereas baking, pan-frying, and frying procedures did not make changes in trans fat content compared to untreated corn oils. However, the trans fat content was so low and food label can be declared as ‘0’ trans based on the regulation of Ministry of Food ad Drug Safety (MFDS) (< 2 g/100 g edible oil). PMID:26483890

  3. Structure elucidation and degradation kinetic study of Ofloxacin using surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    El-Zahry, Marwa R.; Lendl, Bernhard

    2018-03-01

    A simple, fast and sensitive surface enhanced Raman spectroscopy (SERS) method for quantitative determination of fluoroquinolone antibiotic Ofloxacin (OFX) is presented. Also the stability behavior of OFX was investigated by monitoring the SERS spectra of OFX after various degradation processes. Acidic, basic and oxidative force degradation processes were applied at different time intervals. The forced degradation conditions were conducted and followed using SERS method utilizing silver nanoparticles (Ag NPs) as a SERS substrate. The Ag NPs colloids were prepared by reduction of silver nitrate using polyethyelene glycol (PEG) as a reducing and stabilizing agent. Validation tests were done in accordance with International Conference on Harmonization (ICH) guidelines. The calibration curve with a correlation coefficient (R = 0.9992) was constructed as a relationship between the concentration range of OFX (100-500 ng/ml) and SERS intensity at 1394 cm- 1 band. LOD and LOQ values were calculated and found to be 23.5 ng/ml and 72.6 ng/ml, respectively. The developed method was applied successfully for quantitation of OFX in different pharmaceutical dosage forms. Kinetic parameters were calculated including rate constant of the degradation of the studied antibiotic.

  4. Simple method for quantifying microbiologically assisted chloramine decay in drinking water.

    PubMed

    Sathasivan, Arumugam; Fisher, Ian; Kastl, George

    2005-07-15

    In a chloraminated drinking water distribution system, monochloramine decays due to chemical and microbiological reactions. For modeling and operational control purposes, it is necessary to know the relative contribution of each type of reaction, but there was no method to quantify these contributions separately. A simple method was developed to do so. It compares monochloramine decay rates of processed (0.2 microm filtered or microbiologically inhibited by adding 100 microg of silver/L as silver nitrate) and unprocessed samples under controlled temperature conditions. The term microbial decay factor (Fm) was defined and derived from this method, to characterize the relative contribution of microbiologically assisted monochloramine decay to the total monochloramine decay observed in bulk water. Fm is the ratio between microbiologically assisted monochloramine decay and chemical decay of a given water sample measured at 20 degrees C. One possible use of the method is illustrated, where a service reservoir's bulk and inlet waters were sampled twice and analyzed for both the traditional indicators and the microbial decay factor. The microbial decay factor values alone indicated that more microbiologically assisted monochloramine decay was occurring in one bulk water than the other. In contrast, traditional nitrification indicators failed to show any difference. Further analysis showed that the microbial decay factor is more sensitive and that it alone can provide an early warning.

  5. Facile synthesis of biocompatible gold nanoparticles with organosilicone-coated surface properties

    NASA Astrophysics Data System (ADS)

    Xia, Lijin; Yi, Sijia; Lenaghan, Scott C.; Zhang, Mingjun

    2012-07-01

    In this study, a simple method for one-step synthesis of gold nanoparticles has been developed using an organosilicone surfactant, Silwet L-77, as both a reducing and capping agent. Synthesis of gold nanoparticles using this method is rapid and can be conducted conveniently at ambient temperature. Further refinement of the method, through the addition of sodium hydroxide and/or silver nitrate, allowed fine control over the size of spherical nanoparticles produced. Coated on the surface with organosilicone, the as-prepared gold nanoparticles were biocompatible and stable over the pH range from 5 to 12, and have been proven effective at transportation into MC3T3 osteoblast cells. The proposed method is simple, fast, and can produce size-controlled gold nanoparticles with unique surface properties for biomedical applications.

  6. Detection of marginal leakage of Class V restorations in vitro by micro-computed tomography.

    PubMed

    Zhao, X Y; Li, S B; Gu, L J; Li, Y

    2014-01-01

    This in vitro study evaluated the efficacy of micro-computed tomography (CT) in marginal leakage detection of Class V restorations. Standardized Class V preparations with cervical margins in dentin and occlusal margins in enamel were made in 20 extracted human molars and restored with dental bonding agents and resin composite. All teeth were then immersed in 50% ammoniacal silver nitrate solution for 12 hours, followed by a developing solution for eight hours. Each restoration was scanned by micro-CT, the depth of marginal silver leakage in the central scanning section was measured, and the three-dimensional images of the silver leakage around each restoration were reconstructed. Afterward, all restorations were cut through the center and examined for leakage depth using a microscope. The silver leakage depth of each restoration obtained by the micro-CT and the microscope were compared for equivalency. The silver leakage depth in cervical walls observed by micro-CT and microscope showed no significant difference; however, in certain cases the judgment of leakage depth in the occlusal wall in micro-CT image was affected by adjacent enamel structure, providing less leakage depth than was observed with the microscope (p<0.01). Micro-CT displayed the three-dimensional image of the leakage around the Class V restorations with clear borders only in the dentin region. It can be concluded that micro-CT can detect nondestructively the leakage around a resin composite restoration in two and three dimensions, with accuracy comparable to that of the conventional microscope method in the dentin region but with inferior accuracy in the enamel region.

  7. Poly[mu2-(N-hydroxypyridine-2-carboxamidine)-mu2-nitrato-silver(I)].

    PubMed

    Cui, Ai-Li; Han, Peng; Yang, Hui-Juan; Wang, Ru-Ji; Kou, Hui-Zhong

    2007-12-01

    In the title complex, [Ag(NO3)(C6H7N3O)]n or [Ag(NO3)(pyaoxH2)] (pyaoxH2 is N-hydroxypyridine-2-carboxamidine), the Ag+ ion is bridged by the pyaoxH2 ligands and nitrate anions, giving rise to a two-dimensional molecular structure. Each pyaoxH2 ligand coordinates to two Ag+ ions using its pyridyl and carboxamidine N atoms, and the OH and the NH2 groups are uncoordinated. Each nitrate anion uses two O atoms to coordinate to two Ag+ ions. The Ag...Ag separation via the pyaoxH2 bridge is 2.869 (1) A, markedly shorter than that of 6.452 (1) A via the nitrate bridge. The two-dimensional structure is fishscale-like, and can be described as pyaoxH2-bridged Ag2 nodes that are further linked by nitrate anions. Hydrogen bonding between the amidine groups and the nitrate O atoms connects adjacent layers into a three-dimensional network.

  8. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad.

    PubMed

    Satyavani, K; Gurudeeban, S; Ramanathan, T; Balasubramanian, T

    2011-09-26

    An increasingly common application is the use of silver nanoparticles for antimicrobial coatings, wound dressings, and biomedical devices. In this present investigation, we report, biomedical potential of silver nanopaticles synthesized from calli extract of Citrullus colocynthis on Human epidermoid larynx carcinoma (HEp -2) cell line. The callus extract react with silver nitrate solution confirmed silver nanoparticles synthesis through the steady change of greenish colour to reddish brown and characterized by using FT-IR, AFM. Toxicity on HEp 2 cell line assessed using MTT assay, caspase -3 assay, Lactate dehydrogenase leakage assay and DNA fragmentation assay. The synthesized silver nanoparticles were generally found to be spherical in shape with size 31 nm by AFM. The molar concentration of the silver nanoparticles solution in our present study is 1100 nM/10 mL. The results exhibit that silver nanoparticles mediate a dose-dependent toxicity for the cell tested, and the silver nanoparticles at 500 nM decreased the viability of HEp 2 cells to 50% of the initial level. LDH activities found to be significantly elevated after 48 h of exposure in the medium containing silver nanoparticles when compared to the control and Caspase 3 activation suggested that silver nanoparticles caused cell death through apoptosis, which was further supported by cellular DNA fragmentation, showed that the silver nanoparticles treated HEp2 cells exhibited extensive double strand breaks, thereby yielding a ladder appearance (Lane 2), while the DNA of control HEp2 cells supplemented with 10% serum exhibited minimum breakage (Lane 1). This study revealed completely would eliminate the use of expensive drug for cancer treatment.

  9. In vitro cytotoxity of silver: implication for clinical wound care.

    PubMed

    Poon, Vincent K M; Burd, Andrew

    2004-03-01

    In this study, we look at the cytotoxic effects of silver on keratinocytes and fibroblasts. We have assessed the viability of monolayer cultures using the MTT and BrdU assays. The composition of the culture medium and also the culture technique were modified to assess the effects of culture 'environment' on the susceptibility of the cells to the toxic action of silver. Further in vitro, experiments were performed using tissue culture models to allow cellular behavior in three dimensional planes which more closely simulated in vivo behavior. The silver source was both silver released from silver nitrate solution but also nanocrystalline silver released from a commercially available dressing. The results show that silver is highly toxic to both keratinocytes and fibroblasts in monolayer culture. When using optimized and individualized culture the fibroblasts appear to be more sensitive to silver than keratinocytes. However, when both cell types were grown in the same medium their viability was the same. Using tissue culture models again indicated an 'environmental effect' with decreased sensitivity of the cells to the cytotoxic effects of the silver. Nevertheless in these studies the toxic dose of skin cells ranging from 7 x 10(-4) to 55 x 10(-4)% was similar to that of bacteria. These results suggest that consideration of the cytotoxic effects of silver and silver-based products should be taken when deciding on dressings for specific wound care strategies. This is important when using keratinocyte culture, in situ, which is playing an increasing role in contemporary wound and burn care.

  10. [Dentinal hypersensitivity in periodontal disease. Aetiology Aetiology--management].

    PubMed

    Andronikaki-Faldani, A; Kamma, I

    1988-01-01

    The exposure of dentine has a multifactoral aetiology and pain may frequently be elicited by a number of stimuli. Management of dentinal hypersensitivity tends to be empirical because of the lack of knowledge concerning the mechanism of pain transmission through dentine. Nevertheless, whichever theory proves to be correct, occlusion of dentinal tubules would appear an essential prerequisite for an effective desensitising agent. A large number of compounds as well as iontophoresis have been employed in the management of dentinal hypersensitivity. These desensitising agents are: sodium, fluoride, stannous fluoride, sodium monofluorophosphate, strontium chloride, calcium hydroxide, potassium nitrate, silver nitrate, formalin, corticosteroids, resins, varnishes and glass ionomers. The most effective of the compounds mentioned above, are fluorides used as gels, varnishes, mouthwashes or toothpastes, strontium chloride and potassium nitrate.

  11. Synthesis and Optical Properties of Silver Bicrystalline Nanowires

    NASA Astrophysics Data System (ADS)

    Sun, Yugang; Xia, Younan

    2002-11-01

    This paper describes a solution-phase route to the large-scale synthesis of silver nanowires with diameters in the range of 30-40 nm, and lengths up to ~50 μm. The initial step of this synthesis involved the formation of Pt nanoparticles by reducing PtCl2 with ethylene glycol (EG) refluxed at ~160 °C. These Pt nanoparticles could serve as seeds for the growth of silver (formed by reducing AgNO3 with EG) through heterogeneous nucleation process because their crystal structures and lattice constants matched closely. In the presence of poly(vinyl pyrrolidone) (PVP), the growth of silver could be led to a highly anisotropic mode with formation of uniform nanowires. UV-visible spectroscopy was used to track the growth process of silver nanowires because different silver nanostructures exhibited distinctive surface plasmon resonance peaks at different frequencies. SEM, TEM, XRD, and electron diffraction were used to characterize these silver nanowires, indicating the formation of a highly pure face-centered cubic phase, as well as uniform diameter and bicrystalline structure. The morphology of these silver nanostructures could be varied from particles and rods to long wires by tuning the reaction conditions, including reaction temperature, and the ratio of PVP to silver nitrate. These silver nanowires could be used as sacrificial templates to synthesize gold nanotubes via a template-engaged replacement reaction. The dispersion of gold nanotubes exhibited a strong extinction peak in the red regime, which was around 760 nm.

  12. Impact of chlorination on silver elution from ceramic water filters.

    PubMed

    Lyon-Marion, Bonnie A; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S; Pennell, Kurt D

    2018-06-05

    Applying silver nanoparticles (nAg) or silver nitrate (AgNO 3 ) to ceramic water filters improves microbiological efficacy, reduces biofilm formation, and protects stored water from recontamination. A challenge in ceramic filter production is adding sufficient silver to achieve these goals without exceeding the maximum recommended silver concentration in drinking water. Silver release is affected by silver type, application method, and influent water chemistry. Despite a lack of data, there is an assumption that chlorinated water should not be used as influent water because it may increase silver elution. Thus, the objective of this work was to systematically evaluate the impact of chlorinated water (0-4 mg/L free chlorine residual, FCR) on silver release from ceramic filter disks painted with casein-coated nAg, painted with AgNO 3 , or containing fired-in nAg over a range of ionic strength (IS = 0-10 mM as NaNO 3 ) in the presence or absence of natural organic matter (NOM). Influent deionized water containing chlorine increased silver release 2-5-fold compared to controls. However, this effect of chlorine was mitigated at higher IS (≥1 mM) or in the presence of NOM (3 mg C/L). For filter disks painted with nAg or AgNO 3 , silver release increased with increasing IS (with or without chlorine), and effluent concentrations remained above the World Health Organization (WHO) guideline of 0.1 mg/L even after 30 h (80 pore volumes, PVs) of flow with a background solution of 10 mM NaNO 3 . Silver speciation (nAg vs. Ag + ) was monitored in effluent samples from painted or fired-in nAg filter disks. Results indicated that in general, greater than 90% of the eluted silver was due to Ag + dissolution rather than nAg release. Additionally, a filter disk prepared with fired-in nAg exhibited a lower % released in the nanoparticle form (nAg = 5% of total Ag in effluent) compared to painted on nAg (nAg = 14% of total Ag in effluent). The findings of this study suggest that chlorinated influent water has minimal impact on silver elution from ceramic filters under simulated natural water conditions, and thus, the recommendation to avoid the use of chlorinated water with ceramic filters is not necessary under most conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. 40 CFR 415.531 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... results from the production or use of any raw material, intermediate product, finished product, by-product... product, by-product or waste product by means of (1) rainfall runoff; (2) accidental spills; (3... shall apply to this subpart. (b) The term product shall mean silver nitrate. (c) The term process...

  14. Photochemical Synthesis of Silver Nanodecahedrons and Related Nanostructures for Plasmonic Field Enhancement Applications

    NASA Astrophysics Data System (ADS)

    Lu, Haifei

    Noble-metal nanocrystals have received considerable attention in recent years for their size and shape dependent localized surface Plasmon resonances (LSPR). Various applications based on colloidal nanoparticles, such as surface enhanced Raman scattering (SERS), surface enhanced fluorescence (SEF), plasmonic sensing, photothermal therapy etc., have been broadly explored in the field of biomedicine, because of their extremely large optical scattering and absorption cross sections, as well as giant electric field enhancement on their surface. However, despite its high chemical stability, gold exhibits quite large losses and electric field enhancement is comparatively weaker than silver. Silver nanoparticles synthesized by the traditional technique only cover an LSPR ranged from 420~500 nm. On the other hand, the range of 500~660 nm, which is covered by several easily available commercial laser lines, very limited colloidal silver nanostructures with controllable size and shape have been reported, and realization of tuning the resonance to longer wavelengths is very important for the practical applications. In this thesis, a systematic study on photochemical synthesis of silver nanodecahedrons (NDs) and related nanostructures, and their plasmonic field enhancements are presented. First, the roles of chemicals and the light source during the formation of silver nanoparticles have been studied. We have also developed a preparation route for the production size-controlled silver nanodecahedrons (LSPR range 420 ~ 660 nm) in high purity. Indeed our experiments indicate that both the chemicals and the light sources can affect the shape and purity of final products. Adjusting the molar ratio between sodium citrate and silver nitrate can help to control the crystal structure following rapid reduction from sodium borohydride. Light from a blue LED (465 nm) can efficiently transform the polyvinylpyrrolidone stabilized small silver nanoparticles into silver NDs through photo excitation. These silver NDs acting as seeds can be re-grown into larger silver NDs with LSPR ranging from 490 nm to 590 nm, upon receiving LED irradiation with emission close to the LSPR of silver ND seeds, which are suspended in a precursor solution containing small silver nanoparticles. With the aid of centrifugation, silver NDs with high purity can be obtained. Furthermore, silver ND with a broad tuning range (LSPR 490 ~ 660 nm) can be synthesized from these seeds using irradiation from a 500 nm LED. Second, the optical properties of silver NDs and their SERS application for sensitive molecular detection are presented. Raman signal obtained from silver NDs show remarkable advantage over noble nanoparticles of other shaped, thus revealing their strong localized field enhancement. Experimental results demonstrate that average enhancement factor from individual silver ND may be as high as 106. In order to explore their application for biosensing and bioimaging, stable silica coated SERS tags based on silver ND producing high Raman intensity have been studied. Our experiment results indicate that 10-8 M 4-MBA in solution can be detected by silver NDs modified silicon chip through SERS. Simulation result on the geometry of silver ND/silica spacer/gold film/substrate shows that the Raman sensitivity of the NDs modified chip can be further improved with the insertion of a dielectric/conductor film between them. Finally, we present a photochemical method for the preparation of silver nanostructures preparation with the use of 633 nm laser. Silver nanostructures composed of silver nanoplates could be grown from small silver nanoparticles deposited on a glass substrate. The periodicity of the silver nanostructures is several micrometers, revealing that this photochemical method has the potential for "writing" silver pattern on a solid substrate. Raman spectroscopy has also been explored for real-time monitoring of silver nanostructure growth and SERS hotspots formation.

  15. The influence of H{sub 2}O{sub 2} concentration to the structure of silicon nanowire growth by metal-assisted chemical etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omar, Hafsa, E-mail: mrshafsaomar@gmail.com; Jani, Abdul Mutalib Md., E-mail: abdmutalib@perlis.uitm.edu.my; Abdullah, Saifollah, E-mail: saifollah@salam.utm.edu.my

    2016-07-06

    A simple and low cost method to produce well aligned silicon nanowires at large areas using Ag-assisted chemical etching at room temperature were presented. The structure of silicon nanowires growth by metal-assisted chemical etching was observed. Prior to the etching, the silicon nanowires were prepared by electroless metal deposited (EMD) in solution containing hydrofluoric acid and hydrogen peroxide in Teflon vessel. The silver particle was deposited on substrate by immersion in hydrofluoric acid and silver nitrate solution for sixty second. The silicon nanowires were growth in different hydrogen peroxide concentration which are 0.3M, 0.4M, 0.5M and 0.6M and 0.7M.The influencemore » of hydrogen peroxide concentration to the formation of silicon nanowires was studied. The morphological properties of silicon nanowires were investigated using field emission scanning electron microscopy (FESEM) and Energy Dispersive X-Ray Spectroscopy (EDS).« less

  16. Soda-based glass fabricated from Thailand quartz sands doped with silver compound

    NASA Astrophysics Data System (ADS)

    Won-in, Krit; Dararutana, Pisutti

    2012-10-01

    Yellow colored glass which used for luxury art glass in ancient time was fabricated by the addition of silver compound into the molten glass. It was proved that it was actually silver nanoparticle technology. In this work, the SiO2-(Na2O,K2O)-CaO-B2O3-Al2O3-MgO glass system was prepared in the laboratory scale based on local quartz sands from Trat Province, eastern area of Thailand as the silica raw material. Various concentrations of silver nitrate were added. After the complete conventional melting process, the bubble-free yellow glasses were yielded. Physical and optical properties such as density, refractive index and optical absorption spectra were measured. Scanning electron microscope coupled with energy dispersive spectroscopy was carried out to study their morphology. The refractive indices and densities were increased as the increase of the silver contents. Electron micrographs showed the presence of silver nanoparticle in the glass matrix. UV-VIS spectra were in good agreement with that found from SEM measurements and corresponded with the universally accepted. It was also showed that the more brilliance on the surface of the glass products was obtained after firing with a gas torch.

  17. Fluorescence properties of Yb3+-Er3+ co-doped phosphate glasses containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Martínez Gámez, Ma A.; Vallejo H, Miguel A.; Kiryanov, A. V.; Licea-Jiménez, L.; Lucio M, J. L.; Pérez-García, S. A.

    2018-04-01

    Er3+-Yb3+ co-doped phosphate glasses containing silver nitrate (SN), were fabricated. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) analyses were used to evidence the nucleation and presence of silver nanoparticles (SNP). The basic parameters of the glasses were inspected by means of absorption and fluorescence spectra, and fluorescence lifetimes under excitation at 916 nm (in-band of Yb3+), and at 406 nm (in-band of surface plasmon resonance given by the presence of SNP). The spectra as well as estimates for the basic parameters defining the lasing/amplifying potential of the glasses were studied as a function of SN concentration. The experimental results indicate that by increasing the SN content an enhancement of Er3+/Yb3+ fluorescence takes place.

  18. Antarctic polar stratospheric aerosols: The roles of nitrates, chlorides and sulfates

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Snetsinger, K. G.; Goodman, J. K.; Ferry, G. V.; Oberbeck, V. R.; Verma, S.; Fong, W.

    1988-01-01

    Nitric and hydrochloric acids have been postulated to condense in the winter polar stratosphere to become an important component of polar stratospheric clouds. One implication is that the removal of NO(y) from the gas phase by this mechanism allows high Cl(x) concentrations to react with O3, because the formation of ClNO3 is inhibited. Contributions of NO3 and Cl to the stratospheric aerosol were determined during the 1987 Airborne Antarctic Ozone Experiment by testing for the presence of nitrates and chlorides in the condensed phase. Aerosol particles were collected on four 500 micron diameter gold wires, each pretreated differently to give results that were specific to certain physical and chemical aerosol properties. One wire was carbon-coated for concentration and size analyses by scanning electron microscopy; X-ray energy dispersive analyses permitted the detection of S and Cl in individual particles. Three more wires were coated with Nitron, barium chloride and silver nitrate, respectively, to detect nitrate, sulfate and chloride in aerosol particles. All three ions, viz., sulfates, nitrates and chlorides were detected in the Antarctic stratospheric aerosol. In terms of number concentrations, the aerosol was dominated by sulfates, followed by chlorides and nitrates. An inverse linear regression can be established between nitrate concentrations and ozone mixing ratio, and between temperature and nitrates.

  19. Biogenic synthesis, optimisation and antibacterial efficacy of extracellular silver nanoparticles using novel fungal isolate Aspergillus fumigatus MA.

    PubMed

    Sarsar, Vikas; Selwal, Manjit K; Selwal, Krishan K

    2016-08-01

    To eliminate the elaborate processes employed in other non-biological-based protocols and low cost production of silver nanoparticles (AgNPs), this study reports biogenic synthesis of AgNPs using silver salt precursor with aqueous extract of Aspergillus fumigates MA. Influence of silver precursor concentrations, concentration ratio of fungal extract and silver nitrate, contact time, reaction temperature and pH are evaluated to find their effects on AgNPs synthesis. Ultraviolet-visible spectra gave surface plasmon resonance at 420 nm for AgNPs. Fourier transform infrared spectroscopy and X-ray diffraction techniques further confirmed the synthesis and crystalline nature of AgNPs, respectively. Transmission electron microscopy observed spherical shapes of synthesised AgNPs within the range of 3-20 nm. The AgNPs showed potent antimicrobial efficacy against various bacterial strains. Thus, the results of the current study indicate that optimisation process plays a pivotal role in the AgNPs synthesis and biogenic synthesised AgNPs might be used against bacterial pathogens; however, it necessitates clinical studies to find out their potential as antibacterial agents.

  20. An in vitro test of the efficacy of an anti-biofilm wound dressing.

    PubMed

    Said, Jawal; Walker, Michael; Parsons, David; Stapleton, Paul; Beezer, Anthony E; Gaisford, Simon

    2014-10-20

    Broad-spectrum antimicrobial agents, such as silver, are increasingly being formulated into medicated wound dressings in order to control colonization of wounds by opportunistic pathogens. Medicated wound dressings have been shown in-vitro to be effective against planktonic cultures, but in-vivo bacteria are likely to be present in biofilms, which makes their control and eradication more challenging. Recently, a functional wound dressing (AQUACEL(®) Ag+ Extra™ (AAg + E)) has been developed that in addition to silver contains two agents (ethylenediaminetetraacetic acid (EDTA) and benzethonium chloride (BC)) designed to disrupt biofilms. Here, the efficacy of AAg + E is demonstrated using a biofilm model developed in an isothermal microcalorimeter. The biofilm was seen to remain viable in the presence of unmedicated dressing, silver-containing dressing or silver nitrate solution. In the presence of AAg + E, however, the biofilm was eradicated. Control experiments showed that neither EDTA nor BC alone had a bactericidal effect, which means it is the synergistic action of EDTA and BC disrupting the biofilm with silver being bactericidal that leads to the product's efficacy. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Silver Diamine Fluoride in Pediatric Dentistry Training Programs: Survey of Graduate Program Directors.

    PubMed

    Nelson, Travis; Scott, Joanna M; Crystal, Yasmi O; Berg, Joel H; Milgrom, Peter

    2016-01-01

    The purpose of this study was to investigate practice, teaching, and perceived barriers to the use of silver diamine fluoride and other caries control agents in U.S. pediatric dentistry residency programs. A 14-question survey regarding use and teaching of caries control agents was sent via email to residency program directors in 2015. Survey participants responded, using a web-based survey tool, by completing a paper and pencil survey instrument, or by interview. Surveys were completed by 74 directors or associate directors (87 percent adjusted response rate). More than a quarter (25.7 percent) reported use of silver diamine fluoride, with 68.9 percent expecting to increase use. The use of silver diamine fluoride was not associated with region or program type. Programs reported commonly used caries control agents of fluoride varnish (100 percent), acidulated phosphate fluoride foam (48.6 percent), silver nitrate (9.5 percent), and povidone iodine (1.3 percent). Most felt silver diamine fluoride should be used only with high-risk patients (89.2 percent), and the majority agreed it could be used in primary and permanent teeth. The most frequently reported barrier to use of silver diamine fluoride was parental acceptance (91.8 percent). Silver diamine fluoride is being rapidly adopted in graduate pediatric dentistry training programs, with the majority expecting to incorporate it into their teaching clinics and curricula.

  2. Simulation of the potentiodynamic and galvanostatic phase formation in melts

    NASA Astrophysics Data System (ADS)

    Isaev, V. A.; Grishenkova, O. V.; Kosov, A. V.; Semerikova, O. L.; Zaykov, Yu. P.

    2017-02-01

    A general scheme is used to consider the initial stages of electrocrystallization under potentiodynamic and galvanostatic conditions. Proposed theoretical models are shown to agree well with the experimental results obtained during the electrodeposition of silver crystals on an iridium microelectrode from nitrate melt containing an excess background electrolyte.

  3. The Use and Evaluation of Videodiscs in the Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Russell, Arlene A.; And Others

    1985-01-01

    Describes a quantitative evaluation of an interactive videodisc program in which students measure the temperature dependence of the solubility product of lead chloride by titration of chloride with silver nitrate using a Mohr titration. Student reaction (based on responses made using the program, quiz answers, and laboratory performance) was…

  4. Federal and State Water Quality Standards/Guidelines for Selected Parameters.

    DTIC Science & Technology

    1979-02-01

    isopropyl methylphosphonate) Dioctyl adipate Dioctyl azelate Diphenyl sulfoxide 1,4-Dithiane DNT (Dinitrotoluene) DNT (All isomers) Endr in Fluoride...dye (1-Methylaminoanthraquinone) Silver Sodium Sodium styphnate Strontium nitrate Strontium oxalate Strontium peroxide Sulfate Tetrachlorobenzene...Cyclohexanol Cyclohexanone Cyclopentanone Diethyl amine Diphenyl sulfoxide 1,4-Dithiane DNT (Dinitrotoluene) Fluoride Hardness, total

  5. 'Chocolate' silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity.

    PubMed

    Chowdhury, Neelika Roy; MacGregor-Ramiasa, Melanie; Zilm, Peter; Majewski, Peter; Vasilev, Krasimir

    2016-11-15

    Silver nanoparticles (AgNPs) have emerged as a powerful weapon against antibiotic resistant microorganisms. However, most conventional AgNPs syntheses require the use of hazardous chemicals and generate toxic organic waste. Hence, in recent year's, plant derived and biomolecule based synthetics have has gained much attention. Cacao has been used for years for its medicinal benefits and contains a powerful reducing agent - oxalic acid. We hypothesized that, due to the presence of oxalic acid, cacao extract is capable of reducing silver nitrate (AgNO3) to produce AgNPs. In this study, AgNPs were synthesized by using natural cacao extract as a reducing and stabilizing agent. The reaction temperature, time and reactant molarity were varied to optimize the synthesis yield. UV-visible spectroscopy (UV-vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM) characterization demonstrated that the synthesized AgNPs were spherical particles ranging in size from 35 to 42.5nm. The synthesized AgNPs showed significant antibacterial activity against clinically relevant pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis. Importantly, these green AgNPs are not cytotoxic to human dermal fibroblasts (HDFs) at concentrations below 32μg/ml. We conclude that cacao-based synthesis is a reproducible and sustainable method for the generation of stable antimicrobial silver nanoparticles with low cytotoxicity to human cells. The AgNPs synthesized in this work have promising properties for applications in the biomedical field. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Phyto-assisted synthesis of bio-functionalised silver nanoparticles and their potential anti-oxidant, anti-microbial and wound healing activities.

    PubMed

    Mohanta, Yugal Kishore; Biswas, Kunal; Panda, Sujogya Kumar; Bandyopadhyay, Jaya; De, Debashis; Jayabalan, Rasu; Bastia, Akshaya Kumar; Mohanta, Tapan Kumar

    2017-12-01

    Bio- synthesis of silver nanoparticles (AgNPs) was made by using the aqueous leaf extract of Ardisia solanacea. Rapid formation of AgNPs was observed from silver nitrate upon treatment with the aqueous extract of A. solanacea leaf. The formation and stability of the AgNPs in the colloidal solution were monitored by UV-visible spectrophotometer. The mean particle diameter of AgNPs was calculated from the DLS with an average size ∼4 nm and ∼65 nm. ATR-FTIR spectroscopy confirmed the presence of alcohols, aldehydes, flavonoids, phenols and nitro compounds in the leaf which act as the stabilizing agent. Antimicrobial activity of the synthesized AgNPs was performed using agar well diffusion and broth dilution method against the Gram-positive and Gram-negative bacteria. Further, robust anti-oxidative potential was evaluated by DPPH assay. The highest antimicrobial activity of synthesized AgNPs was found against Pseudomonas aeruginosa (28.2 ± 0.52 mm) whereas moderate activity was found against Bacillus subtilis (16.1 ± 0.76), Candida kruseii (13.0 ± 1.0), and Trichophyton mentagrophytes (12.6 ± 1.52). Moreover, the potential wound healing activity was observed against the BJ-5Ta normal fibroblast cell line. Current research revealed that A. solanacea was found to be a suitable source for the green synthesis of silver nanoparticles.

  7. 2D-DIGE in Proteomics.

    PubMed

    Pasquali, Matias; Serchi, Tommaso; Planchon, Sebastien; Renaut, Jenny

    2017-01-01

    The two-dimensional difference gel electrophoresis method is a valuable approach for proteomics. The method, using cyanine fluorescent dyes, allows the co-migration of multiple protein samples in the same gel and their simultaneous detection, thus reducing experimental and analytical time. 2D-DIGE, compared to traditional post-staining 2D-PAGE protocols (e.g., colloidal Coomassie or silver nitrate), provides faster and more reliable gel matching, limiting the impact of gel to gel variation, and allows also a good dynamic range for quantitative comparisons. By the use of internal standards, it is possible to normalize for experimental variations in spot intensities and gel patterns. Here we describe the experimental steps we follow in our routine 2D-DIGE procedure that we then apply to multiple biological questions.

  8. Catalytic effects of silver plasmonic nanoparticles on the redox reaction leading to ABTS˙+ formation studied using UV-visible and Raman spectroscopy.

    PubMed

    Garcia-Leis, A; Jancura, D; Antalik, M; Garcia-Ramos, J V; Sanchez-Cortes, S; Jurasekova, Z

    2016-09-29

    ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) is a compound extensively employed to evaluate the free radical trapping capacity of antioxidant agents and complex mixtures such as biological fluids or foods. This evaluation is usually performed by using a colourimetric experiment, where preformed ABTS radical cation (ABTS˙ + ) molecules are reduced in the presence of an antioxidant causing an intensity decrease of the specific ABTS˙ + UV-visible absorption bands. In this work we report a strong effect of silver plasmonic nanoparticles (Ag NPs) on ABTS leading to the formation of ABTS˙ + . The reaction of ABTS with Ag NPs has been found to be dependent on the interfacial and plasmonic properties of NPs. Specifically, this reaction is pronounced in the presence of spherical nanoparticles prepared by the reduction of silver nitrate with hydroxylamine (AgH) and in the case of star-shaped silver nanoparticles (AgNS). On the other hand, spherical nanoparticles prepared by the reduction of silver nitrate with citrate apparently do not react with ABTS. Additionally, the formation of ABTS˙ + is investigated by surface-enhanced Raman scattering (SERS) and the assignment of the most intense vibrational bands of this compound is performed. The SERS technique enables us to detect this radical cation at very low concentrations of ABTS (∼2 μM). Altogether, these findings allow us to suggest the use of ABTS/Ag NPs-systems as reliable and easy going substrates to test the antioxidant capacity of various compounds, even at concentrations much lower than those usually used in the spectrophotometric assays. Moreover, we have suggested that ABTS could be employed as a suitable agent to investigate the interfacial and plasmonic properties of the metal nanoparticles and, thus, to characterize the nanoparticle metal systems employed for various purposes.

  9. Green-synthetized silver nanoparticles for Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) using a mobile instrument

    NASA Astrophysics Data System (ADS)

    Poggialini, F.; Campanella, B.; Giannarelli, S.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Safi, A.; Palleschi, V.

    2018-03-01

    When compared to other analytical techniques, LIBS shows relatively low precision and, generally, high Limits of Detection (LODs). Until recently, the attempts in improving the LIBS performances have been based on the use of more stable/powerful lasers, high sensitivity detectors or controlled environmental parameters. This can hinder the competitiveness of LIBS by increasing the instrumental setup cost and the difficulty of operation. Sample treatment has proved to be a viable and simple way to increase the LIBS signal; in particular, the Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) methodology uses a deposition of metal nanoparticles on the sample to greatly increase the emission of the LIBS plasma. In this work, we used a simple, fast, "green" and low-cost method to synthetize silver nanoparticles by using coffee extract as reducing agents for a silver nitrate solution. This allowed us to obtain nanoparticles of about 25 nm in diameter. We then explored the application of such nanoparticles to the NELIBS analysis of metallic samples with a mobile LIBS instrument. By adjusting the laser parameters and optimizing the sample preparation procedure, we obtained a NELIBS signal that is 4 times the LIBS one. This showed the potential of green-synthetized nanoparticle for NELIBS applications and suggests the possibility of an in-situ application of the technique.

  10. Preparation of Superhydrophobic Film on Ti Substrate and Its Anticorrosion Property

    PubMed Central

    Zhu, Min; Tang, Wenchuan; Huang, Luyao; Zhang, Dawei; Du, Cuiwei; Yu, Gaohong; Chen, Ming; Chowwanonthapunya, Thee

    2017-01-01

    Superhydrophobic films were fabricated on a titanium substrate with or without anodizing by using a self-assembling method. Firstly, the pretreatments of mechanical polishing/anodizing or mechanical polishing only were conducted, respectively. Subsequently, the preparation of polydopamine film layer, deposition of nano-silver particles, and post modification of 1H,1H,2H,2H-perfluorodecanethiol were performed on the surface of the pretreated substrate. The surface morphologies, compositions, wettability, and corrosion resistance of the films were investigated with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), water contact angle measurements, and electrochemical tests, respectively. Meanwhile, the effect of the deposition time in the silver nitrate solution on the hydrophobicity of the specimen surface was investigated. The result showed that with the increase of deposition time, the hydrophobic property enhanced gradually. The surface deposited for 7 h exhibited an optimum hydrophobic effect, which was characterized with a large water contact angle (WCA) of 154°, and the surface was rather rough and covered by a relatively uniform layer of micro-nano silver particles. The excellent hydrophobicity was attributed to a rough stratified microstructure along with the low surface energy. The electrochemical measurements showed that the existence of the superhydrophobic film can effectively enhance the corrosion resistance of Ti samples. PMID:28772987

  11. Effects of different operating parameters on the particle size of silver chloride nanoparticles prepared in a spinning disk reactor

    NASA Astrophysics Data System (ADS)

    Dabir, Hossein; Davarpanah, Morteza; Ahmadpour, Ali

    2015-07-01

    The aim of this research was to present an experimental method for large-scale production of silver chloride nanoparticles using spinning disk reactor. Silver nitrate and sodium chloride were used as the reactants, and the protecting agent was gelatin. The experiments were carried out in a continuous mode by injecting the reactants onto the surface of the spinning disk, where a chemical precipitation reaction took place to form AgCl particles. The effects of various operating variables, including supersaturation, disk rotational speed, reactants flow rate, disk diameter, and excess ions, on the particle size of products were investigated. In addition, the AgCl nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. According to the results, smaller AgCl particles are obtained under higher supersaturations and also higher disk rotation speeds. Moreover, in the range of our investigation, the use of lower reactants flow rates and larger disk diameter can reduce the particle size of products. The non-stoichiometric condition of reactants has a significant influence on the reduction in particle aggregation. It was also found that by optimizing the operating conditions, uniform AgCl nanoparticles with the mean size of around 37 nm can be produced.

  12. Preparation of Superhydrophobic Film on Ti Substrate and Its Anticorrosion Property.

    PubMed

    Zhu, Min; Tang, Wenchuan; Huang, Luyao; Zhang, Dawei; Du, Cuiwei; Yu, Gaohong; Chen, Ming; Chowwanonthapunya, Thee

    2017-06-08

    Superhydrophobic films were fabricated on a titanium substrate with or without anodizing by using a self-assembling method. Firstly, the pretreatments of mechanical polishing/anodizing or mechanical polishing only were conducted, respectively. Subsequently, the preparation of polydopamine film layer, deposition of nano-silver particles, and post modification of 1H,1H,2H,2H-perfluorodecanethiol were performed on the surface of the pretreated substrate. The surface morphologies, compositions, wettability, and corrosion resistance of the films were investigated with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), water contact angle measurements, and electrochemical tests, respectively. Meanwhile, the effect of the deposition time in the silver nitrate solution on the hydrophobicity of the specimen surface was investigated. The result showed that with the increase of deposition time, the hydrophobic property enhanced gradually. The surface deposited for 7 h exhibited an optimum hydrophobic effect, which was characterized with a large water contact angle (WCA) of 154°, and the surface was rather rough and covered by a relatively uniform layer of micro-nano silver particles. The excellent hydrophobicity was attributed to a rough stratified microstructure along with the low surface energy. The electrochemical measurements showed that the existence of the superhydrophobic film can effectively enhance the corrosion resistance of Ti samples.

  13. Towards Environmentally-benign Nanoengineering: Antimicrobial Nanoparticles Based on Silver-infused Lignin Cores

    NASA Astrophysics Data System (ADS)

    Richter, Alexander Philipp

    Engineered nanomaterials are capable of solving challenges in industries important to society such as energy, agriculture, and health care. Antimicrobial silver nanoparticles (AgNPs) are the most widely used nanoparticles by number of commercial products in commerce today. However, the increased introduction of AgNPs in industrial applications may lead to discharge of persistent nanoparticles in the environment and undesired impacts on living organisms. This dissertation will present a new class of antimicrobial environmentallybenign nanoparticles (EbNPs) designed with green chemistry principles, which can serve as highly efficient microbicide substitutes of the AgNPs. The EbNP core is made of biodegradable lignin, and is infused with an optimal amount of silver ions. We report on the fabrication of environmentally benign nanoparticles (EbNPs) using two types of lignin precursors with simple, inexpensive, and non-toxic processes, (i) by employing a solvent exchange precipitation method at room temperature and (ii) by applying an environmentally friendly water-based acid precipitation method. The synthesis of Organosolv (High Purity Lignin) nanoparticles via antisolvent flash precipitation method in water resulted in particles in the size range of 45 to 250 nm in diameter. We investigate the synthesis parameters of Kraft (Indulin AT) lignin nanoparticles by flash precipitation induced by pH drop in ethylene glycol. Furthermore, we evaluate the ionic strength and pH stability of both lignin nanoparticle suspensions and highlight differences in the systems. After silver ion infusion of Indulin AT nanoparticles followed by surface modification, we show that the EbNPs exhibit higher antimicrobial activity towards Gram-negative human pathogens Escherichia coli and Pseudomonas aeruginosa and Gram-positive human pathogens Staphylococcus epidermidis in direct comparison with silver nanoparticles and silver nitrate solution, and that the particles are effective against quaternary ammonium resistant Ralstonia bacteria. The enhanced antimicrobial action is due to highly-biocidal silver ions released from the EbNP matrix at the cell. High-throughput bioactivity screening using mammalian cell and zebrafish embryo assays performed in collaboration with the U.S. Environmental Protection Agency did not reveal increased safety concerns of the EbNPs, when compared to equivalent amount of AgNPs or AgNO3 solution. The silver ion functionalized EbNPs exhibit broad spectrum microbicide action and are capable of neutralizing common gram-negative human pathogens as well as quaternary amineresistant bacteria, while using ten times less silver when compared with conventional AgNPs and AgNO3 aqueous solution. We envisage that the overall environmental impact of silver ion functionalized EbNPs is likely to be significantly smaller when compared to AgNPs. As more general impact, the approach of engineering environmentally-benign lignin-core nanoparticles with matching functionality to persistent nanoparticles illustrates how green chemistry principles including atom economy, use of renewable feedstocks, and design for degradation can be applied to design more sustainable nanomaterials with increased functionality and decreased environmental footprint.

  14. Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa.

    PubMed

    Kumari, Rima; Barsainya, Manjari; Singh, Devendra Pratap

    2017-02-01

    Biogenic synthesis of silver nanoparticles (AgNPs) using extracellular metabolites from the bacterium Pseudomonas aeruginosa DM1 offers an eco-friendly and sustainable way of metal nanoparticle synthesis. The present work highlights the biotransformation of silver nitrate solution into AgNP, mediated by extracellular secondary metabolite pyoverdine, a siderophore produced by P. aeruginosa. The bioreduction of silver ions into AgNPs by using pyoverdine was recorded in terms of Fourier transform infrared spectroscopy (FTIR) analysis and color change in the reaction mixture (AgNO 3 + pyoverdine) from pale yellow to dark brown with absorption maxima at 415 nm. The results of X-ray diffraction (XRD) analysis of AgNPs showed its crystalline face-centered cubic structure. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) pictures of AgNPs showed spherical morphology of AgNP in the range of 45-100 nm, with tendency of agglomerations. The energy-dispersive X-ray (EDX) analysis of particles provided strong signal of elemental silver with few minor peaks of other impurities. The present approach offers a unique in vitro method of metal nanoparticle synthesis by exogenously produced bacterial secondary metabolites, where direct contact between the toxic metal and biological resource material can be avoided. The biologically synthesized AgNPs are found to have anti-algal effects against two species of Chlorella (Chlorella vulgaris and Chlorella pyenoidosa), as indicated by zone of growth inhibition on algal culture plates. Further results exhibit concentration-dependent progressive inhibition of chlorophyll content in the algal cells by AgNPs, confirming the algicidal effect of AgNPs.

  15. Point-of-Use Removal of Cryptosporidium parvum from Water: Independent Effects of Disinfection by Silver Nanoparticles and Silver Ions and by Physical Filtration in Ceramic Porous Media.

    PubMed

    Abebe, Lydia S; Su, Yi-Hsuan; Guerrant, Richard L; Swami, Nathan S; Smith, James A

    2015-11-03

    Ceramic water filters (CWFs) impregnated with silver nanoparticles are a means of household-level water treatment. CWFs remove/deactivate microbial pathogens by employing two mechanisms: metallic disinfection and physical filtration. Herein we report on the independent effects of silver salt and nanoparticles on Cryptosporidium parvum and the removal of C. parvum by physical filtration in porous ceramic filter media. Using a murine (mouse) model, we observed that treatment of oocysts with silver nitrate and proteinate-capped silver nanoparticles resulted in decreased infection relative to untreated oocysts. Microscopy and excystation experiments were conducted to support the disinfection investigation. Heat and proteinate-capped silver-nanoparticle treatment of oocysts resulted in morphological modifications and decreased excystation rates of sporozoites. Subsequently, disk-shaped ceramic filters were produced to investigate the transport of C. parvum. Two factors were varied: sawdust size and clay-to-sawdust ratio. Five disks were prepared with combinations of 10, 16, and 20 mesh sawdust and sawdust percentage that ranged from 9 to 11%. C. parvum removal efficiencies ranged from 1.5 log (96.4%) to 2.1 log (99.2%). The 16-mesh/10% sawdust had the greatest mean reduction of 2.1-log (99.2%), though there was no statistically significant difference in removal efficiency. Based on our findings, physical filtration and silver nanoparticle disinfection likely contribute to treatment of C. parvum for silver impregnated ceramic water filters, although the contribution of physical filtration is likely greater than silver disinfection.

  16. Characterization of the hydrology, water chemistry, and aquatic communities of selected springs in the St. Johns River Water Management District, Florida, 2004

    USGS Publications Warehouse

    Phelps, G.G.; Walsh, Stephen J.; Gerwig, Robert M.; Tate, William B.

    2006-01-01

    The hydrology, water chemistry, and aquatic communities of Silver Springs, De Leon Spring, Gemini Springs, and Green Spring in the St. Johns River Water Management District, Florida, were studied in 2004 to provide a better understanding of each spring and to compile data of potential use in future water-management decisions. Ground water that discharges from these and other north-central Florida springs originates from the Upper Floridan aquifer of the Floridan aquifer system, a karstic limestone aquifer that extends throughout most of the State's peninsula. This report summarizes data about flow, water chemistry, and aquatic communities, including benthic invertebrates, fishes, algae, and aquatic macrophytes collected by the U.S. Geological Survey, the St. Johns River Water Management District, and the Florida Department of Environmental Protection during 2004, as well as some previously collected data. Differences in water chemistry among these springs reflect local differences in water chemistry in the Upper Floridan aquifer. The three major springs sampled at the Silver Springs group (the Main Spring, Blue Grotto, and the Abyss) have similar proportions of cations and anions but vary in nitrate and dissolved oxygen concentrations. Water from Gemini Springs and Green Spring has higher proportions of sodium and chloride than the Silver Springs group. Water from De Leon Spring also has higher proportions of sodium and chloride than the Silver Springs group but lower proportions of calcium and bicarbonate. Nitrate concentrations have increased over the period of record at all of the springs except Green Spring. Compounds commonly found in wastewater were found in all the springs sampled. The most commonly detected compound was the insect repellant N,N'-diethyl-methyl-toluamide (DEET), which was found in all the springs sampled except De Leon Spring. The pesticide atrazine and its degradate 2-chloro-4-isopropylamino-6-amino-s-triazine (CIAT) were detected in water from the Silver Springs group and in both boils at Gemini Springs. No pesticides were detected in water samples from De Leon Spring and Green Spring. Evidence of denitrification was indicated by the presence of excess nitrogen gas in water samples from most of the springs. Aquatic communities varied among the springs. Large floating mats of cyanobacteria (blue-green algae), identified as Lyngbya wollei, were observed in De Leon Spring during all sampling events in 2004. At Gemini Springs, the dominant periphyton was Rhizoclonium sp. Of the three springs sampled for benthic invertebrates, De Leon Spring had the highest overall species richness and most disturbance intolerant species (Florida Index = 4). Green Spring had the lowest species richness of the springs sampled. Based on qualitative comparisons, overall macroinvertebrate species richness seemed to be negatively related to magnesium, potassium, sodium, and specific conductance. Invertebrate abundance was greatest when dissolved oxygen and nitrate were high but phosphorus and potassium concentrations were low. Dipteran abundance seemed to be positively associated with specific conductance and total organic carbon but negatively associated with nitrate-N. Amphipods were the numerically dominant group collected in most (six of nine) collections. Shifts in amphipod abundance of the two species collected (Gammarus sp. and Hyalella azteca) varied by season among the three springs, but there were no trends evident in the variation. Fish populations were relatively species-rich at the Silver Springs group, De Leon Spring, and Gemini Springs, but not at Green Spring. Nonindigenous fish species were observed at all springs except Green Spring.

  17. Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium.

    PubMed

    Topuz, Emel; van Gestel, Cornelis A M

    2015-12-01

    The aim of the present study was to evaluate the effect of silver nanoparticles (AgNPs) on Enchytraeus crypticus, applying a combined toxicokinetics and toxicodynamics approach to understand the relationship between survival and the development of internal Ag concentrations in the animals over time. Toxicity tests were conducted in medium composed of well-defined aqueous solutions added to inert quartz sand to avoid the complexity of soil conditions. Citrate-coated AgNPs (AgNP-Cit) and polyvinylpyrrolidone-coated AgNPs (AgNP-PVP) were tested and compared with silver nitrate (AgNO3), which was used as a positive control for Ag ion effects. The median lethal concentration (LC50) values based on Ag concentrations in the solution phase of the test medium decreased over time and reached steady state after 7 d, with AgNO3 and AgNP-PVP being more toxic than AgNP-Cit. Slow dissolution may explain the low uptake kinetics and lower toxicity of AgNP-Cit compared with the other 2 Ag forms. The LC50 values based on internal Ag concentrations in the animals were almost stable over time, highlighting the importance of integrating toxicokinetics and toxicodynamics and relating survival with internal Ag concentrations. Neither survival-based elimination rates nor internal LC50s in the organisms showed any significant evidence of nano-specific effects for both AgNPs, although they suggested some uptake of particulate Ag for AgNP-Cit. The authors conclude that the toxicity of both types of AgNP probably is mainly attributable to the release of Ag ions. © 2015 SETAC.

  18. Rapid Extracellular Biosynthesis of Silver Nanoparticles by Cunninghamella phaeospora Culture Supernatant

    PubMed Central

    Ghareib, Mohamed; Tahon, Medhat Abu; Saif, Mona Mostafa; El-Sayed Abdallah, Wafaa

    2016-01-01

    The development of green approaches for the biosynthesis of silver nanoparticles (AgNPs) is of prime significance in the field of nanotechnology research. A fast and eco-friendly protocol for the biosynthesis of extracellular AgNPs using culture supernatant (CS) from the fungus Cunninghamella phaeospora was studied in this work. This CS was proved as a potential new source for the extracellular biosynthesis of AgNPs. The AgNPs were formed at 100 oC and pH 9 within four min of contact between CS and 1mM silver nitrate (AgNO3) solution. Nitrate reductase (NR) was confirmed to play a pivotal role in the biosynthesis of AgNPs. The enzyme expressed its highest activity at 80 oC and pH 9. At 100 oC the enzyme retained 70% of its original activity for one hour. The half-life (T1/2) of the enzyme activity was calculated to be 1.55 h confirming its thermostability. The produced AgNPs were characterized by UV-Vis spectroscopy, high resolution-transmission electron microscope (HR-TEM) and x-ray diffraction (XRD). These NPs showed an absorption peak at 415 nm in UV-Vis spectrum corresponding to the plasmon resonance of AgNPs. Transmission electron micrographs revealed the production of monodispersed spherical NPs with average particle size 14 nm. XRD spectrum of the NPs confirmed the formation of metallic crystalline silver. It was also suggested that the aromatic amino acids play a role in the biosynthesis process. The current research provided an insight on the green biosynthesis of AgNPs including some mechanistic aspects using a new mycogenic source. PMID:28243290

  19. Stable Silver Nanoparticles Synthesis by Citrus Sinensis (Orange) and Assessing Activity Against Food Poisoning Microbes.

    PubMed

    Naila, Arooj; Nadia, Dar; Zahoor, Qadir Samra

    2014-10-01

    Silver nanoparticles are considered as good antimicrobial agent. AgNPs were synthesized by mixing silver nitrate solution with citrus sinesis extract for 2 h at 37 °C and analyzed by UV-visible spectra, SEM, XRD, and FTIR. AgNPs were tested against B. subtilis, Shigella, S. aureus, and E. coli. Minimum inhibitory concentration of AgNPs was 20 µg/mL for B. subtilis and Shigella and 30 µg/mL for S. aureus and E. coli. Antibiofilm activity (80% to 90%) was observed at 25 µg/mL. AgNPs were stable for five months with sustained antimicrobial activity. Biosynthesized AgNPs can be used to inhibit food poisoning microbial growth. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  20. Study of the effects of Shockwaves on Nano fluids

    NASA Astrophysics Data System (ADS)

    Shreekhar; Akhil, Mohan; Ram, Sai; Gopaiah, Venkata; Koundinya, Sandeep; Nagaraja, S. R.

    2018-02-01

    Nanofluids are fluids with nanoparticles dispersed in them. Due to the presence of Nano particles, these fluids exhibit unique properties that can used in various applications such as heat exchangers and in medical fields. However, due to agglomeration, the size of these particle increases, reducing their efficiency. In order to break the agglomeration, we are passing shockwaves in the fluid. Shockwaves theoretically carry energy which can be used to break the agglomerating particles. In this paper, silver nanoparticles were synthesized using silver nitrate. Tri sodium citrate was used as the reducing agent. Shock waves were passed to the fluid containing silver Nano particles. The changes in the Nano fluid was measured by a UV-Vis Spectrophotometer. With each shock passed, the fluid’s absorbance and wavelength peak was measured and compared with Nano fluid without shock.

  1. Silver ion chromatography for peak resolution enhancement: Application to the preparative separation of two sesquiterpenes using online heart-cutting LC-LC technique.

    PubMed

    Yang, Yang; Zhang, Yongmin; Wei, Chong; Li, Jing; Sun, Wenji

    2018-09-01

    Silver ion chromatography, utilizing columns packed with silver ions bonded to silica gel, has proved to be an invaluable technique for the analysis of some positional isomers. In this work, silver ion chromatography by combination with online heart-cutting LC-LC technique for the preparative separation of two sesquiterpenes positional isomers from a natural product was investigated. On the basis of the evaluation that silver ion content impacts on the separation, the laboratory-made silver ion columns, utilizing silica gel impregnated with 15% silver nitrate as column packing materials, were used for peak resolution improvement of these two isomers and the preparative separation of them in heart-cutting LC-LC. The relationship among the maximal sample load, flow rate and peak resolution in the silver ion column were optimized, and the performance of the silver ion column was compared with conventional C 18 column and silica gel column. Based on the developed chromatographic conditions, online heart-cutting LC-LC chromatographic separation system in combination with a silica gel column and a silver ion column that was applied to preparative separation of these two isomers from a traditional Chinese medicine, Inula racemosa Hook.f., was established. The results showed that the online heart-cutting LC-LC technique by combination of a silica gel column and a silver ion column for the preparative separation of these two positional isomers from this natural plant was superior to the preparative separation performed on a single-column system with C 18 column or silica gel column. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays.

    PubMed

    Guo, Xiaoqing; Li, Yan; Yan, Jian; Ingle, Taylor; Jones, Margie Yvonne; Mei, Nan; Boudreau, Mary D; Cunningham, Candice K; Abbas, Mazhar; Paredes, Angel M; Zhou, Tong; Moore, Martha M; Howard, Paul C; Chen, Tao

    2016-11-01

    The physicochemical characteristics of silver nanoparticles (AgNPs) may greatly alter their toxicological potential. To explore the effects of size and coating on the cytotoxicity and genotoxicity of AgNPs, six different types of AgNPs, having three different sizes and two different coatings, were investigated using the Ames test, mouse lymphoma assay (MLA) and in vitro micronucleus assay. The genotoxicities of silver acetate and silver nitrate were evaluated to compare the genotoxicity of nanosilver to that of ionic silver. The Ames test produced inconclusive results for all types of the silver materials due to the high toxicity of silver to the test bacteria and the lack of entry of the nanoparticles into the cells. Treatment of L5718Y cells with AgNPs and ionic silver resulted in concentration-dependent cytotoxicity, mutagenicity in the Tk gene and the induction of micronuclei from exposure to nearly every type of the silver materials. Treatment of TK6 cells with these silver materials also resulted in concentration-dependent cytotoxicity and significantly increased micronucleus frequency. With both the MLA and micronucleus assays, the smaller the AgNPs, the greater the cytotoxicity and genotoxicity. The coatings had less effect on the relative genotoxicity of AgNPs than the particle size. Loss of heterozygosity analysis of the induced Tk mutants indicated that the types of mutations induced by AgNPs were different from those of ionic silver. These results suggest that AgNPs induce cytotoxicity and genotoxicity in a size- and coating-dependent manner. Furthermore, while the MLA and in vitro micronucleus assay (in both types of cells) are useful to quantitatively measure the genotoxic potencies of AgNPs, the Ames test cannot.

  3. Visible light activity of Ag-loaded and guanidine nitrate-doped nano-TiO2: Degradation of dichlorophenol and antibacterial properties

    EPA Science Inventory

    To utilize visible light, co-doped nano-TiO2 was prepared via “one pot” synthesis using mild reaction conditions and benign precursors. Synthesis was optimized using an appropriate experimental design taking into account silver content and calcination temperature. The optimized ...

  4. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... agent in bottled water. (b) Hydrogen peroxide meets the specifications of the “Food Chemicals Codex... information on the availability of this material at NARA, call 202-741-6030 or go to: http://www.archives.gov... exceed 17 micrograms per kilogram in the treated bottled water, and the amount of hydrogen peroxide will...

  5. Chlorophyll, Carotenoid and Anthocyanin Accumulation in Mung Bean Seedling Under Clinorotation

    NASA Astrophysics Data System (ADS)

    Nakajima, Shusaku; Shiraga, Keiichiro; Suzuki, Tetsuhito; Kondo, Naoshi; Ogawa, Yuichi

    2017-12-01

    The accumulation of plant pigments in mung bean ( Vigna radiata L.) seedlings was measured after clinorotation (2 rpm for 2-4 days), and compared to a stationary control. The pigments measured included chlorophyll and carotenoid in primary leaves, and the anthocyanin in seedlings. While significant changes in chlorophyll and carotenoid accumulation were not observed during the initial 2 to 4 days of cultivation, by day 4 the seedlings grown on the clinostat had lower levels of anthocyanin, compared to those in the control seedlings. To further detail the cause for the observed reduction in anthocyanin accumulation under altered gravity conditions, seedlings were grown in the presence of silver nitrate, a known ethylene inhibitor, for 4 days, since it is known ethylene has a negative impact on anthocyanin accumulation. Silver nitrate promoted anthocyanin accumulation in the clinostat seedlings, and as a result there was no significant difference between the control and clinostat seedlings in anthocyanin accumulation. The results suggest that slow clinorotation negatively impacts anthocyanin pigmentation in mung bean seedlings, with endogenous ethylene suspected to be involved in this.

  6. Synthesis of highly conductive cotton fiber/nanostructured silver/polyaniline composite membranes for water sterilization application

    NASA Astrophysics Data System (ADS)

    Abu-Thabit, Nedal Y.; Basheer, Rafil A.

    2014-09-01

    Electrically conductive composite membranes (ECCMs) composed of cotton fibers, conductive polyaniline and silver nanostructures were prepared and utilized as electrifying filter membranes for water sterilization. Silver metal and polyaniline were formed in situ during the oxidative polymerization of aniline monomers in the presence of silver nitrate as weak oxidizing agent. The reaction was characterized by long induction period and the morphology of the obtained ECCMs contained silver nanoparticles and silver flakes of 500-1000 nm size giving a membrane electrical resistance in the range of 10-30 Ohm sq-1. However, when dimethylformamide (DMF) was employed as an auxiliary reducing agent to trigger and speed up the polymerization reaction, silver nanostructures such as wires, ribbons, plates were formed and were found to be embedded between polyaniline coating and cotton fibers. These ECCMs exhibited a slightly lower resistance in the range of 2-10 Ohm sq.-1 and, therefore, were utilized for the fabrication of a bacteria inactivation device. When water samples containing 107-108 CFU mL-1 E. coli bacteria were passed through the prepared ECCMs by gravity force, with a filtration rate of 0.8 L h-1 and at an electric potential of 20 V, the fabricated device showed 92% bacterial inactivation efficiency. When the treated solution was passed through the membrane for a second time under the same conditions, no E. coli bacteria was detected.

  7. Synthesis of positively charged hybrid PHMB-stabilized silver nanoparticles: the search for a new type of active substances used in plant protection products

    NASA Astrophysics Data System (ADS)

    Krutyakov, Yurii A.; Kudrinsky, Alexey A.; Gusev, Alexander A.; Zakharova, Olga V.; Klimov, Alexey I.; Yapryntsev, Alexey D.; Zherebin, Pavel M.; Shapoval, Olga A.; Lisichkin, Georgii V.

    2017-07-01

    Modern agriculture calls for a decrease in pesticide application, particularly in order to decrease the negative impact on the environment. Therefore the development of new active substances and plant protection products (PPP) to minimize the chemical load on ecosystems is a very important problem. Substances based on silver nanoparticles are a promising solution of this problem because of the fact that in correct doses such products significantly increase yields and decrease crop diseases while displaying low toxicity to humans and animals. In this paper we for the first time propose application of polymeric guanidine compounds with varying chain lengths (from 10 to 130 elementary links) for the design and synthesis of modified silver nanoparticles to be used as the basis of a new generation of PPP. Colloidal solutions of nanocrystalline silver containing 0.5 g l-1 of silver and 0.01-0.4 g l-1 of polyhexamethylene biguanide hydrochloride (PHMB) were obtained by reduction of silver nitrate with sodium borohydride in the presence of PHMB. The field experiment has shown that silver-containing solutions have a positive effect on agronomic properties of potato, wheat and apple. Also the increase in activity of such antioxidant system enzymes as peroxidase and catalase in the tissues of plants treated with nanosilver has been registered.

  8. Extracellular synthesis of silver nanoparticles by novel Pseudomonas veronii AS41G inhabiting Annona squamosa L. and their bactericidal activity.

    PubMed

    Baker, Syed; Mohan Kumar, K; Santosh, P; Rakshith, D; Satish, S

    2015-02-05

    In present investigation extracellular synthesis of silver nanoparticles were synthesized using cell free supernatant of Pseudomonas veronii AS41G isolated from Annona squamosa L. The bacterium significantly reduced silver nitrate to generate silver nanoparticles which was characterized with hyphenated techniques. Synthesis of silver nanoparticles preliminary confirmed by UV-Visible spectrophotometry with the intense peak at 410nm, Further FTIR analysis revealed the possible role of biomolecules in the supernatant responsible for mediating the nanoparticles formation. The XRD spectra exhibited the characteristic Bragg peaks of 100, 111, 200, and 220 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. TEM microgram showed polydispersity of nanoparticles with size ranging from 5 to 50nm. Synthesized silver nanoparticles showed antibacterial activity against human and environmental pathogens including MRSA. The study enlightens the role of biosynthesized silver nanoparticles as an emerging alternative for drug resistant microorganisms. The obtained results are promising enough to pave the environmentally benign nanoparticle synthesis processes without use of any toxic chemicals and also envision the emerging role of endophytes towards synthesis of nanoparticles. With scanty reports available on P.veronii species, a new role has been reported in this study which will be very valuable for future researchers working on it. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Extracellular synthesis of silver nanoparticles by novel Pseudomonas veronii AS41G inhabiting Annona squamosa L. and their bactericidal activity

    NASA Astrophysics Data System (ADS)

    Baker, Syed; Mohan Kumar, K.; Santosh, P.; Rakshith, D.; Satish, S.

    2015-02-01

    In present investigation extracellular synthesis of silver nanoparticles were synthesized using cell free supernatant of Pseudomonas veronii AS41G isolated from Annona squamosa L. The bacterium significantly reduced silver nitrate to generate silver nanoparticles which was characterized with hyphenated techniques. Synthesis of silver nanoparticles preliminary confirmed by UV-Visible spectrophotometry with the intense peak at 410 nm, Further FTIR analysis revealed the possible role of biomolecules in the supernatant responsible for mediating the nanoparticles formation. The XRD spectra exhibited the characteristic Bragg peaks of 1 0 0, 1 1 1, 2 0 0, and 2 2 0 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. TEM microgram showed polydispersity of nanoparticles with size ranging from 5 to 50 nm. Synthesized silver nanoparticles showed antibacterial activity against human and environmental pathogens including MRSA. The study enlightens the role of biosynthesized silver nanoparticles as an emerging alternative for drug resistant microorganisms. The obtained results are promising enough to pave the environmentally benign nanoparticle synthesis processes without use of any toxic chemicals and also envision the emerging role of endophytes towards synthesis of nanoparticles. With scanty reports available on P.veronii species, a new role has been reported in this study which will be very valuable for future researchers working on it.

  10. Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension.

    PubMed

    Scheckel, Kirk G; Luxton, Todd P; El Badawy, Amro M; Impellitteri, Christopher A; Tolaymat, Thabet M

    2010-02-15

    Assessments of the environmental fate and mobility of nanoparticles must consider the behavior of nanoparticles in relevant environmental systems that may result in speciation changes over time. Environmental conditions may act on nanoparticles to change their size, shape, and surface chemistry. Changing these basic characteristics of nanoparticles may result in a final reaction product that is significantly different than the initial nanomaterial. As such, basing long-term risk and toxicity on the initial properties of a nanomaterial may lead to erroneous conclusions if nanoparticles change upon release to the environment. The influence of aging on the speciation and chemical stability of silver and zinc oxide nanoparticles in kaolin suspensions was examined in batch reactors for up to 18 months. Silver nanoparticles remained unchanged in sodium nitrate suspensions; however, silver chloride was identified with the metallic silver nanoparticles in sodium chloride suspensions and may be attributed to an in situ silver chloride surface coating. Zinc oxide nanoparticles were rapidly converted via destabilization/dissolution mechanisms to Zn(2+) inner-sphere sorption complexes within 1 day of reaction and these sorption complexes were maintained through the 12 month aging processes. Chemical and physical alteration of nanomaterials in the environment must be examined to understand fate, mobility, and toxicology.

  11. Calixarene-based potentiometric ion-selective electrodes for silver.

    PubMed

    O'Connor, K M; Svehla, G; Harris, S J; McKervey, M A

    1992-11-01

    Four lipophilic sulphur and/or nitrogen containing calixarene derivatives have been tested as ionophores in Ag(I)-selective poly (vinyl chloride) membrane electrodes. All gave acceptable linear responses with one giving a response of 50 mV/dec in the Ag(I) ion activity range 10(-4)-10(-1)M and high selectivity towards other transition metals and sodium and potassium ions. This ionophore was also tested as a membrane coated glassy-carbon electrode where the sensitivity and selectivity of the conventional membrane electrode was found to be repeated. The latter electrode was then used in potentiometric titrations of halide ions with silver nitrate.

  12. Case series: Endoscopic management of fourth branchial arch anomalies.

    PubMed

    Watson, G J; Nichani, J R; Rothera, M P; Bruce, I A

    2013-05-01

    Fourth branchial arch anomalies represent <1% of all branchial anomalies and present as recurrent neck infections or suppurative thyroiditis. Traditionally, management has consisted of treatment of the acute infection followed by hemithyroidectomy, surgical excision of the tract and obliteration of the opening in the pyriform fossa. Recently, it has been suggested that endoscopic obliteration of the sinus tract alone using laser, chemo or electrocautery is a viable alternative to open surgery. To determine the results of endoscopic obliteration of fourth branchial arch fistulae in children in our institute. Retrospective case note review of all children undergoing endoscopic treatment of fourth branchial arch anomalies in the last 7 years at the Royal Manchester Children's Hospital. Patient demographics, presenting symptoms, investigations and surgical technique were analysed. The primary and secondary outcome measures were resolution of recurrent infections and incidence of surgical complications, respectively. In total 5 cases were identified (4 females and 1 male) aged between 3 and 12 years. All presented with recurrent left sided neck abscesses. All children underwent a diagnostic laryngo-tracheo-bronchoscopy which identified a sinus in the apex of the left pyriform fossa. This was obliterated using electrocautery in 1 patient, CO₂ laser/Silver Nitrate chemocautery in 2 patients and Silver Nitrate chemocautery in a further 2 patients. There were no complications and no recurrences over a mean follow-up period of 25 months (range 11-41 months). Endoscopic obliteration of pyriform fossa sinus is a safe method for treating fourth branchial arch anomalies with no recurrence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Systematic Review of Endoscopic Obliteration Techniques for Managing Congenital Piriform Fossa Sinus Tracts in Children.

    PubMed

    Lachance, Sophie; Chadha, Neil K

    2016-02-01

    Piriform fossa sinus tracts (PFSTs) are a recognized cause of recurrent deep neck infections in the pediatric population. Conventional management has historically required open resection, but over recent years minimally invasive endoscopic approaches to obliterate the pharyngeal opening of the sinus have been performed in many centers. However, there is a lack of clear evidence regarding the success rate and safety of these approaches. To determine the success rate of endoscopic management of PFST through a systematic review of the existing literature. MEDLINE (1964-2014) and bibliographies of identified papers. Two authors independently reviewed 170 abstracts and identified relevant studies for full-text review. Data were independently extracted from those studies, and the Oxford Centre for Evidence-Based Medicine guidelines were used to classify the level of evidence. Thirteen studies met the inclusion criteria, comprising a total of 84 patients. All included studies were evidence level 4 (case series). Various methods of obliterating the PFST were described: electrocautery (n = 39), laser (n = 19), trichloroacetic acid (n = 19), silver nitrate (n = 4), combination of silver nitrate and laser (n = 2), and fibrin glue (n = 1). The success rate for endoscopic management of PFST was 89.3% overall (90.5% in primary cases and 85.7% in revision cases). The only adverse event reported was temporary vocal cord immobility in 2.4% (n = 2) of cases. Endoscopic management of pediatric PFST appears to be safe and effective, as a primary option and for revision after open surgery. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  14. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles

    PubMed Central

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878

  15. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.

    PubMed

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.

  16. Construction of super - hydrophobic copper alloy surface by one - step mixed solution immersion method

    NASA Astrophysics Data System (ADS)

    Gu, Qiang; Chen, Ying; Chen, Dong; Zhang, Zeting

    2018-01-01

    This paper presents a method for preparing a super hydrophobic surface with a fast, simple, low-cost, one-step reaction by immersing copper alloy in an ethanol solution containing silver nitrate and myristic acid. The effects of reaction time, reaction temperature, reactant concentration and reaction time on the wettability of the material were studied. The surface wettability, appearance, chemical composition, durability and chemical stability of the prepared samples was measured by water contact angle (CA), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that when the reaction time is only 10min, the surface WCA of the prepared material can reach 154.9. This study provides an effective method for the rapid preparation of stable super hydrophobic surfaces.

  17. A Novel Method for Preparation of Gold NanoBipyramids Using Microwave Irradiation and Its Application in Immunosensors

    NASA Astrophysics Data System (ADS)

    Huynh, Trong Phat; Ngo, Vo Ke Thanh; Nguyen, Dang Giang; Nguyen, Hoang Phuong Uyen; Nghiem, Quoc Dat; Lam, Quang Vinh; Huynh, Thanh Dat

    2016-05-01

    Gold nanobipyramids (NBPs) have attracted attention for producing smart sensing devices as diagnostic tools in biotechnological and medical applications, because they show more advantageous plasmonic properties than comparable gold nanorods. Normally, NBPs were synthesized using seed-mediated growth process at room temperature. In this report, our group describes a method for synthesising of NBPs using microwave irradiation with ascorbic acid reduction and cetyltrimethylammonium bromide + silver nitrate (AgNO3) as capping agents. The advantages of this method are a highly effective approach to fast and uniform NBPs. The product was characterized by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and x-ray powder diffraction. As an application in quartz crystal microbalance immunosensors, NBPs is conjugated with the chloramphenicol antibodies for signal amplification to detect chloramphenicol residuals in the QCM system.

  18. Chromatographic analysis of phytochemicals components present in mangifera indica leaves for the synthesis of silver nanoparticles by AgNO3 reduction

    NASA Astrophysics Data System (ADS)

    Martínez-Bernett, D.; Silva-Granados, A.; Correa-Torres, S. N.; Herrera, A.

    2016-02-01

    It was studied the green synthesis of silver nanoparticles (AgNPs) from the reduction of a silver nitrate solution (1 and 10mM) in the presence of an extract of mangifera indica leaves. Phytochemicals components present in extracts of mango leaves were determined using a GC-MS chromatograph. The results showed the presence of the phenolic compound pyrogallol (26.9% wt/5mL of extract) and oleic acid (29.1% wt/5mL of extract), which are useful for the reduction of the metallic salt AgNO3 and the stabilization of silver nanoparticles. The synthesized nanoparticles were characterized by UV visible spectroscopy (UV-vis), evidencing absorbances at wavelengths of 417nm (AgNPs-1) and 414nm (AgNPs- 10), which are characteristic peaks of this metallic nanoparticles. Scanning Electron Microscopy (SEM) was used to determine the size of the synthesized nanoparticles. A particle size of about 28±7nm was observed for the AgNPs-1 sample and 26±5nm for the AgNPs-10. This suggests the advantages of green chemistry to obtain silver nanoparticles with a narrow size distribution.

  19. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource.

    PubMed

    Patil, Maheshkumar Prakash; Singh, Rahul Dheerendra; Koli, Prashant Bhimrao; Patil, Kalpesh Tumadu; Jagdale, Bapu Sonu; Tipare, Anuja Rajesh; Kim, Gun-Do

    2018-05-25

    The green and one-step synthesis of silver nanoparticles (AgNPs) has been proposed as simple and ecofriendly. In the present study, a flower extract of Madhuca longifolia was used for the reduction of silver nitrate into AgNPs, with phytochemicals from the flower extract as a reducing and stabilizing agents. The synthesized AgNPs were spherical and oval shaped and about 30-50 nm sizes. The appearance of a brown color in the reaction mixture is a primary indication of AgNPs formation, and it was confirmed by observing UV-visible spectroscopy peak at 436 nm. The Energy Dispersive X-ray spectra and X-ray diffraction analysis results together confirm that the synthesized nanoparticles contain silver and silver chloride nanoparticles. The Zeta potential analysis indicates presence of negative charges on synthesized AgNPs. The FT-IR study represents involvement of functional groups in AgNPs synthesis. Synthesized AgNPs shows potential antibacterial activity against Gram-positive and Gram-negative pathogens. M. longifolia flower is a good source for AgNPs synthesis and synthesized AgNPs are applicable as antibacterial agent in therapeutics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Microscale chemistry-based design of eco-friendly, reagent-saving and efficient pharmaceutical analysis: a miniaturized Volhard's titration for the assay of sodium chloride.

    PubMed

    Rojanarata, Theerasak; Sumran, Krissadecha; Nateetaweewat, Paksupang; Winotapun, Weerapath; Sukpisit, Sirarat; Opanasopit, Praneet; Ngawhirunpat, Tanasait

    2011-09-15

    This work demonstrates the extended application of microscale chemistry which has been used in the educational discipline to the real analytical purposes. Using Volhard's titration for the determination of sodium chloride as a paradigm, the reaction was downscaled to less than 2 mL conducted in commercially available microcentrifuge tubes and using micropipettes for the measurement and transfer of reagents. The equivalence point was determined spectrophotometrically on the microplates which quickened the multi-sample measurements. After the validation and evaluation with bulk and dosage forms, the downsized method showed good accuracy comparable to the British Pharmacopeial macroscale method and gave satisfactory precision (intra-day, inter-day, inter-analyst and inter-equipment) with the relative standard deviation of less than 0.5%. Interestingly, the amount of nitric acid, silver nitrate, ferric alum and ammonium thiocyanate consumed in the miniaturized titration was reduced by the factors of 25, 50, 50 and 215 times, respectively. The use of environmentally dangerous dibutyl phthalate was absolutely eliminated in the proposed method. Furthermore, the release of solid waste silver chloride was drastically reduced by about 25 folds. Therefore, microscale chemistry is an attractive, facile and powerful green strategy for the development of eco-friendly, safe, and cost-effective analytical methods suitable for a sustainable environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. [Rapid method of silver nitrate impregnation of elements of the peripheral nervous system suitable for celloidin and paraffin sections].

    PubMed

    Kolomiĭtsev, A K; Chaikovskiĭ, Iu B; Tereshchenko, T L

    1981-08-01

    According to the method of neural elements impregnation in the authors' modification, the object is fixed for 6-12 h in Lillie fluid cooled to 4 degrees C. Then the object is kept under tap water for 2-6 h. Frozen sections are prepared and kept in pure pyridine for 1-6 h. When the sections are embedded into paraffin or celloidin, they are put into alcohol solutions gradually decreasing their concentration until water is reached, then put into pyridine. In order to remove cellulose, the celloidin sections are treated in 3 portions of pyridine (in the 1st and 2nd-for 10 min, and in the 3d-for 6 h). Then they are washed under tap water for 2-4 h and in distilled water for 30-40 min. Further treatment is performed according to the methods by Bielschowsky - Gros, Kampos or Rasskazova. Excess silver is removed by treating the sections in 2% ammonium persulfate under the microscope control (the process is stopped by putting the sections into 7% sodium hyposulfate for 10 min). Then the sections are treated in 0.1% aurum chloride, in 5% hyposulfite to reveale the tissue background [corrected] and by means of routine histological techniques either after Brashet, Hale, PAS-positive reaction or other methods applied after fixation in Lillie fluid.

  2. Sodium bicarbonate secretion indicated by ultrastructural cytochemical localization of HCO3(-), Cl-, and Na+ ions on rat bile duct brush cells.

    PubMed

    Ogata, Takuro

    2005-12-01

    Brush cells are widely distributed in the digestive and respiratory apparatus, but their function is still unknown. Because brush cells (BC) are found in organs secreting NaHCO3, it was hypothesized that these cells may secrete NaHCO3. To test this possibility, rat common bile duct epithelia were examined by ultrastructural cytochemical methods for localizing HCO3(-), Cl-, and Na+ ions. All three ion precipitates were few in or on BCs of rats without stimulation. Lead carbonate precipitates, which localized HCO3(-) ions by the lead nitrate-osmium method, increased markedly on the surface of the microvilli (MV) of BCs after secretin or meal stimulation, but similar precipitates were few on the luminal surface of principal cells (PCs). Silver chloride precipitates, which indicate the presence of Cl- ions by the silver-osmium method, increased in the apical cytoplasm and in MV of BCs after secretin or meal stimulation, but they were few in PCs. Sodium pyroantimonate precipitates, which localize Na+ ions by the potassium pyroantimonate-osmium method, increased on the surface of the MV, along the basolateral membrane, and in the apical cytoplasm of BCs after secretin or meal stimulation, but they were few in PCs. These results strongly suggest that BCs may be a significant source of NaHCO3 secretion.

  3. Electrical Conductivity Measurements of Hydroxylammonium Nitrate: Design Considerations

    DTIC Science & Technology

    1986-04-01

    aqueous NaNO3 i• shown as well to indicate the similarity of this conductivity data with that cf HAN. The solubility of NaNO 3 in H120 is much less than... Wilmot , R-16 Commander Silver Spring, MD 20910 US Army Tank Automotive Command 1 Commander ATTN: AMSTA-TSL Naval Weapons Center Warren, MI 48397-5000

  4. The Effect That Comparing Molecular Animations of Varying Accuracy Has on Students' Submicroscopic Explanations

    ERIC Educational Resources Information Center

    Kelly, Resa M.; Akaygun, Sevil; Hansen, Sarah J. R.; Villalta-Cerdas, Adrian

    2017-01-01

    In this qualitative study, we examined how a group of seventeen first semester General Chemistry students responded when they were shown contrasting molecular animations of a reduction-oxidation (redox) reaction between solid copper and aqueous silver nitrate for which they first viewed a video of the actual experiment. The animations contrasted…

  5. Identification of Unknown Chloride Salts Using a Combination of Qualitative Analysis and Titration with Silver Nitrate: A General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Maines, Laina L.; Bruch, Martha D.

    2012-01-01

    General chemistry students often have difficulty writing balanced equations and performing stoichiometry calculations for precipitation reactions, in part because of difficulty understanding the symbolic notation used to represent chemical reactions. We have developed a problem-based experiment to improve student learning of these concepts, and…

  6. Synthesis and Decomposition Kinetic Studies of Bis(lutidine)silver(I) Nitrate Complexes as an Interdisciplinary Undergraduate Chemistry Experiment

    ERIC Educational Resources Information Center

    Monga, Vishakha; Bussie`re, Guillaume; Crichton, Paul; Daswani, Sailesh

    2016-01-01

    Interdisciplinary experiments are being offered in upper-division chemistry laboratory courses in an attempt to encourage students to make a connection between techniques learned in one discipline to affirm chemical principles that form the basis of chemical reactions in another chemistry discipline. A new interdisciplinary experiment is described…

  7. Chitosan and silver nanoparticles as pudding with raisins with antimicrobial properties.

    PubMed

    Rodríguez-Argüelles, M Carmen; Sieiro, Carmen; Cao, Roberto; Nasi, Lucia

    2011-12-01

    Chitosan nanoparticles (CS-NP) containing small silver nanoparticles are reported (Ag@CS-NP). CS-NP was synthesized using tripolyphosphate (TPP) as a polyanionic template. TPP also served to electrostatically attract Ag(+) inside CS-NP, where it was reduced by the terminal glucosamine units of the biopolymer. This procedure is environmental friendly, inexpensive, and permits the synthesis of very small AgNP (0.93-1.7 nm), with only a discrete dependence from the amount of silver nitrate used (5-200mg). The obtained hybrid nanocomposites Ag@CS-NP were characterized by DLS, HRTEM, and HAADF-STEM presenting a mean hydrodynamic diameter of 78 nm. The antimicrobial activity of Ag@CS-NP against Candida glabrata, Sacharomyces cerevisiae, Escherichia coli, Klebsiella pneumoniae, Salmonella, Staphylococcus aureus, and Bacillus cereus corresponded to MIC values lower than for AgNO(3). Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities

    NASA Astrophysics Data System (ADS)

    Suresh, Gopal; Gunasekar, Poosali Hariharan; Kokila, Dhanasegaran; Prabhu, Durai; Dinesh, Devadoss; Ravichandran, Nagaiya; Ramesh, Balasubramanian; Koodalingam, Arunagirinathan; Vijaiyan Siva, Ganesan

    2014-06-01

    Green synthesis of silver nanoparticles (AgNPs) using aqueous root extract of Delphinium denudatum (Dd) by reduction of Ag+ ions from silver nitrate solution has been investigated. The synthesized DdAgNPs were characterized by using UV-Vis spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR). The prepared DdAgNPs showed maximum absorbance at 416 nm and particles were polydispersed in nature, spherical in shape and the size of the particle obtained was ⩽85 nm. The DdAgNPs exhibited antibacterial activity against Staphylococcus aureus ATCC 6538, Bacillus cereus NCIM 2106, Escherichia coli ATCC 8739 and Pseudomonas aeruginosa ATCC 9027. The DdAgNPs showed potent larvicidal activity against second instar larvae of dengue vector Aedes aegypti with a LC50 value of 9.6 ppm.

  9. Development of CMC hydrogels loaded with silver nano-particles for medical applications.

    PubMed

    Hebeish, Ali; Hashem, M; El-Hady, M M Abd; Sharaf, S

    2013-01-30

    Innovative CMC-based hydrogels with great potentials for usage in medical area were principally synthesized as per two strategies .The first involved reaction of epichlorohydrin in alkaline medium containing silver nitrate to yield silver nano-particles (AgNPs)-loaded CMC hydrogel. While CMC acted as stabilizing for AgNPs, trisodium citrate was added to the reaction medium to assist CMC in establishing reduction of Ag(+) to AgNPs. The second strategy entailed preparation of CMC hydrogel which assists the in situ preparation of AgNPs under the same conditions. In both strategies, factors affecting the characterization of AgNPs-loaded CMC hydrogels were studied. Analysis and characterization of the so obtained hydrogels were performed through monitoring swelling behavior, FTIR spectroscopy, SEM, EDX, UV-vis spectrophotometer and TEM. Antimicrobial activity of the hydrogels was examined and mechanisms involved in their synthesis were reported. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Silver aids healing in the sterile skin wound: experimental studies in the laboratory rat.

    PubMed

    Lansdown, A B; Sampson, B; Laupattarakasem, P; Vuttivirojana, A

    1997-11-01

    Incisional wounds 15 mm long were induced surgically in the back skin of young adult Wistar rats. They were sutured and used as an experimental model in the therapeutic evaluation of daily applications of 0.5 mL of silver nitrate (SN) at 0.01, 0.1 or 1.0% w/v aqueous solution, or 0.5 g silver sulphadiazine (SSD) over a 10-day period. Control wounds received deionized water only. The silver preparations were not toxic but SN did stain the hair and superficial layers of the stratum corneum. The wounds remained microbiologically clean. Wounds exposed to SN (0.1 or 1.0%) or SSD healed more rapidly than controls. From about the fourth day of treatment, we noted a more rapid exteriorization of sutures, improved wound closure and an earlier loss of scabs and wound debris. Silver treatment appeared to reduce the inflammatory and granulation tissue phases of healing and enhance epidermal repair. Silver from SN was deposited as silver sulphide in extrafollicular hair shafts and superficial aspects of the skin and wound debris but not at deeper levels. Silver uptake was four-fold higher in damaged skin than in intact tissue. SSD was absorbed by intact and wounded skin but the silver did not precipitate as silver sulphide and its localization in the tissue is not known. Uptake of silver from SN or SSD was associated with changes in the concentrations of zinc and calcium in the skin. Zinc levels were depressed during the inflammatory and proliferative phases of healing and then increased. Zinc concentrations had normalized by 10 days when wound healing was achieved. Calcium levels remained higher than normal throughout the observation period. The mechanism of action of silver in advancing wound healing in the rat is unclear. Its ability to reduce the inflammatory and granulation phases of healing, and to invoke metallothionein production and influence metal ion binding are possibly important.

  11. Synthesis and characterization of amoxicillin derived silver nanoparticles: Its catalytic effect on degradation of some pharmaceutical antibiotics

    NASA Astrophysics Data System (ADS)

    Junejo, Y.; Güner, A.; Baykal, A.

    2014-10-01

    We synthesized novel amoxicillin derived silver nanoparticles (Amp-Ag (0) NPs) in aqueous solution by one-pot simple synthetic method by reducing silver nitrate by the help of amoxicillin antibiotic as a reducing/capping agent and NaOH as the catalyst for reaction enhancement. The formation of the Amp-Ag (0) NPs was monitored using UV-Vis absorption spectroscopy which confirmed the formation of Amp-Ag (0) NPs by exciting the typical surface plasmon absorption maxima at 404 nm. Transmission electron microscopy (TEM) confirmed the spherical morphology and monodispersed Amp-Ag (0) NPs with particle size 6.87 ± 2.2 nm. The antibacterial activities of the antibiotics were evaluated against Gram-negative bacteria Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa and Gram-positive bacteria Streptococcus pneumonia, Streptococcus pyogenes, Staphylococcus aureus by the disk diffusion method. Whereas standard antibiotics showed normal zone of inhibition, the reduced ones with Amp-Ag (0) NPs showed no inhibition zone. The antimicrobial results therefore reveal that newly synthesized Amp-Ag (0) NPs had an excellent catalytic activity as catalyst for the 100% reduction of antibiotics i.e. cefdinir, cefditoren, cefiximee, ceftriaxone sodium and doxycycline, which was carried out in just 2-5 min. They were recovered easily from reaction medium and reused with enhanced catalytic potential five times. Based upon these results it has been concluded that Amp-Ag (0) NPs are novel, rapid, and highly cost-effective for environmental safety against pollution by antibiotics in wastewater and extendable for control of other reducible contaminants as well.

  12. Biosynthesis of silver nanoparticles using Sida acuta extract for antimicrobial actions and corrosion inhibition potential.

    PubMed

    Idrees, Muhammad; Batool, Saima; Kalsoom, Tanzila; Raina, Sadaf; Sharif, Hafiz Muhammad Adeel; Yasmeen, Summera

    2018-02-12

    Nanotechnology exhibits a multidisciplinary area and gained interests for researchers. Nanoparticles produced via physical and chemical methods affects ecosystem drastically. Green synthesis is the charming technique that is inexpensive and safe for the environment. This study aimed to explore the antibacterial actions of as-synthesized silver nanoparticles (Ag-NPs) against Escherichia coli, Staphylococcus aureus and Streptococcus faecalis. Also, the anti-corrosion actions confirmed that the Ag-NPs proved as good inhibitors. In this way, Ag-NPs were prepared via biosynthesis technique by consuming the ground leaves and stem of 'Sida acuta' as a capping agent. The Ag-NPs were formed by irradiation of the aqueous solution of silver nitrate (AgNO 3 ) with extract of S. acuta stem and leaves. The as-synthesized reaction mixture of Ag-NPs was found to exhibit an absorbance band at 446-447 nm, by an UV/VIS spectrophotometer, which is a characteristic of Ag-NPs due to the surface plasmon resonance absorption band. The X-ray diffraction and transmission electron microscopy (TEM) were used for the confirmation of Ag-NPs' variety dimension, morphology and dispersion. The infrared spectra confirmed the bio-fabrication of the Ag-NPs displayed the existence of conceivable functional groups responsible for the bio-reduction and capping. The antimicrobial actions were measured and the zone of inhibition was compared with standard antibiotics.

  13. Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics.

    PubMed

    Rehan, Mohamed; Barhoum, Ahmed; Van Assche, Guy; Dufresne, Alain; Gätjen, Linda; Wilken, Ralph

    2017-05-01

    Herein, the highly multifunctional cotton fabric surfaces were designed with excellent coloration, UV-protection function, and antimicrobial activity. These multifunctional functions were developed by in-situ synthesis of silver nanoparticles (Ag NPs) into the cotton fabric surface using a simple green one-pot "UV-reduction" method. Cotton fabrics were pretreated with non-anionic detergent, immersed into alcoholic silver nitrate solution (concentration ranging from 100 to 500ppm), squeezed to remove excess solution and then exposed to UV-irradiation (range 320-400nm) for 1h. The influence UV-irradiation on the thermal, chemical, optical and biological properties of the cotton fabric surface was discussed in details. The UV-irradiation promotes reducing of Ag + ions and the cotton fabrics act as seed medium for Ag NPs formation by "heterogeneous nucleation". Increasing Ag + concentration (from 100 to 500ppm) results in Ag NPs of particle size (distribution) of 50-100nm. Interestingly, the Ag NPs exhibited different localized surface Plasmon resonance properties causing a coloration of the cotton fabrics with different color shades ranging from bright to dark brown with excellent color fastness properties. The treated cotton fabrics also show high protecting functions against UV-transmission (reduction of 65%) and Escherichia coli growth (99%). The side-effects of the UV-reduction process are further investigated. Published by Elsevier B.V.

  14. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications.

    PubMed

    Singh, Richa; Shedbalkar, Utkarsha U; Wadhwani, Sweety A; Chopade, Balu A

    2015-06-01

    Silver nanoparticles (AgNPs) have received tremendous attention due to their significant antimicrobial properties. Large numbers of reports are available on the physical, chemical, and biological syntheses of colloidal AgNPs. Since there is a great need to develop ecofriendly and sustainable methods, biological systems like bacteria, fungi, and plants are being employed to synthesize these nanoparticles. The present review focuses specifically on bacteria-mediated synthesis of AgNPs, its mechanism, and applications. Bacterial synthesis of extra- and intracellular AgNPs has been reported using biomass, supernatant, cell-free extract, and derived components. The extracellular mode of synthesis is preferred over the intracellular mode owing to easy recovery of nanoparticles. Silver-resistant genes, c-type cytochromes, peptides, cellular enzymes like nitrate reductase, and reducing cofactors play significant roles in AgNP synthesis in bacteria. Organic materials released by bacteria act as natural capping and stabilizing agents for AgNPs, thereby preventing their aggregation and providing stability for a longer time. Regulation over reaction conditions has been suggested to control the morphology, dispersion, and yield of nanoparticles. Bacterial AgNPs have anticancer and antioxidant properties. Moreover, the antimicrobial activity of AgNPs in combination with antibiotics signifies their importance in combating the multidrug-resistant pathogenic microorganisms. Multiple microbicidal mechanisms exhibited by AgNPs, depending upon their size and shape, make them very promising as novel nanoantibiotics.

  15. Production of electrospun polyvinyl alcohol/microbial synthesized silver nanoparticles scaffold for the treatment of fungating wounds

    NASA Astrophysics Data System (ADS)

    Yahyaei, Behrooz; Manafi, Sahebali; Fahimi, Bijan; Arabzadeh, Sepideh; Pourali, Parastoo

    2018-03-01

    Fungating wounds usually develop in patients with advanced cancer, which responds poorly to treatments. Such wounds can be treated using suitable dressings. For this purpose, a recent research produced a new type of wound dressing with antibacterial and anticancer properties. The culture supernatant of Fusarium oxysporum was challenged with silver nitrate and heated for 5 min. Production of silver nanoparticles (SNPs) was confirmed using spectrophotometer, transmission electron microscopy (TEM), and X-ray diffraction (XRD) analysis. A solution of 10% (w/w) poly vinyl alcohol (PVA) and different volumes of SNP solutions were provided, where each solution was separately used for electrospinning. The obtained PVA/SNPs film evaluated under morphological characterization using field emission scanning electron microscope (FE-SEM) and its antibacterial and anticancer activities were measured. Results confirmed the presence of SNPs in the reaction mixture with sizes less than 50 nm, spherical and oval in shapes. FE-SEM results confirmed that SNPs were seen inside and entrapped between PVA in the PVA/SNPs membrane, composed of 50% of each material. This film had acceptable antibacterial properties against four different bacterial strains and a good anticancer activity against the human melanoma cell line (COLO 792) in contrast to the control one. A recent research introduced a new and fast biological method for the synthesis of SNPs, having acceptable antibacterial and anticancer activities. Further studies are needed to support the obtained results.

  16. Shape- and Size-Controlled Synthesis of Silver Nanoparticles Using Aloe vera Plant Extract and Their Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Logaranjan, Kaliyaperumal; Raiza, Anasdass Jaculin; Gopinath, Subash C. B.; Chen, Yeng; Pandian, Kannaiyan

    2016-11-01

    Biogenic synthesis of silver nanoparticles (AgNP) was performed at room temperature using Aloe vera plant extract in the presence of ammoniacal silver nitrate as a metal salt precursor. The formation of AgNP was monitored by UV-visible spectroscopy at different time intervals. The shape and size of the synthesized particle were visualized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. These results were confirmed by X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses and further supported by surface-enhanced Raman spectroscopy/Raman scattering (SERS) study. UV-visible spectrum has shown a sharp peak at 420 nm and further evidenced by FTIR peak profile (at 1587.6, 1386.4, and 1076 cm-1 with corresponding compounds). The main band position with SERS was noticed at 1594 cm-1 (C-C stretching vibration). When samples were heated under microwave radiation, AgNP with octahedron shapes with 5-50 nm were found and this method can be one of the easier ways to synthesis anisotropic AgNP, in which the plant extract plays a vital role to regulate the size and shape of the nanoparticles. Enhanced antibacterial effects (two- to fourfold) were observed in the case of Aloe vera plant protected AgNP than the routinely synthesized antibiotic drugs.

  17. Silver Nanoparticles Synthesized Using Mint Extract and their Application in Chitosan/Gelatin Composite Packaging Film

    NASA Astrophysics Data System (ADS)

    Bhoir, Shraddha A.; Chawla, S. P.

    The present study reports synthesis of silver nanoparticles (AgNPs) using mint extract (ME) in the presence of polyvinyl alcohol (PVA) as capping material. PVA, ME and silver nitrate at concentration of 1%, 0.01% and 0.02%, respectively were found to be optimum for the synthesis of nanoparticles. The formation of AgNPs was confirmed by measuring surface plasmon resonance (SPR) peak. The intensity of SPR peak remained unaltered thus suggesting stability of colloid without aggregation during storage. The nanoparticles inhibited the growth of food borne bacteria namely Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus. The incorporation of these nanoparticles in chitosan and gelatin blend resulted in homogenous films. Mechanical properties and water vapor transmission rate of chitosan-gelatin films improved due to addition of AgNPs, whereas optical (opacity and UV light transmittance) and oxygen permeability properties remained unchanged. These films had the ability to inhibit growth of 5 log CFU of the above test organisms. These findings suggest that the AgNPs obtained by reduction of silver by ME can be effectively utilized to prepare antibacterial eco-friendly food packaging material.

  18. Metal colloids employed in the SERS of biomolecules: activation when exciting in the visible and near-infrared regions

    NASA Astrophysics Data System (ADS)

    García-Ramos, J. V.; Sánchez-Cortés, S.

    1997-03-01

    Silver, gold and copper colloids have been employed in the study of the nucleic bases cytosine, guanine, their alkyl derivatives 1-methylcytosine, 5-methylcytosine, 1,5-dimethylcytosine, 7-methylcytosine and 9-ethylguanosine. Cytidine, 5'-cytidinemonophosphate and 5'-adenosinemonophosphate have been also studied using silver and copper colloids. The interaction and orientation of these compounds on the metal colloids are interpreted on the basis of the SER spectra obtained, and further compared with interactions with the corresponding metallic ions in aqueous solution. Transmission electronic microscopy and ultraviolet-visible absorption spectroscopy were also employed to characterize the silver and copper colloids before and after aggregation by 1,5-dimethylcytosine. Information on the aggregation process is presented. The activation effect of chloride, perchlorate and nitrate anions on the silver colloids employed is studied for both the visible and near-infrared regions. An assessment of the effectiveness of each colloid is made at different excitation lines. Finally, an explanation of the mechanism through which these anions exert their activation effect is given on the basis of the morphologies of the particles contained in the colloid.

  19. [Detection of marginal leakage of Class V restorations in vitro by micro-CT].

    PubMed

    Gu, Lin-juan; Zhao, Xin-yi; Li, Shi-bao

    2012-09-01

    To evaluate the reliability and superiority of micro-CT in marginal leakage assessment of Class V restorations. Class V preparations with gingival margins in dentin and occlusal in enamel were made in sixteen extracted non-carious human molars and restored with dental bonding agents and composite resin. All teeth were then immersed in 50% ammonia-silver nitrate solution for 12 hours, followed by developing solution for 8 hours. Each restoration was scanned by a micro-CT and silver leakage was measured and three-dimensional image of the silver leakage alone cavity wall were reconstructed. Afterward, all restorations were sectioned and examined for leakage depth using a microscope. The silver leakage depth of each restoration obtained by micro-CT and microscope were compared for equivalency. The silver leakage depths in gingival wall obtained with micro-CT (0.78 mm) and microscope (0.74 mm) showed no significant difference (P > 0.05), while the judgment of leakage depths in occlusal wall in micro-CT image (0.40 mm) was affected by adjacent enamel structure, giving less leakage depths compared to microscope (0.72 mm)(P < 0.01). The three-dimensional shapes of the microleakages displayed clearly by micro-CT alone wall of Class V restorations were multiform and some leakages showed channels on their way to spreading. Micro-CT can detect precisely the silver leakage in the dentin wall of a restoration and display its three-dimensional shape fully. Enamel structure affects the detection of the silver leakage next to it.

  20. Comparison of short-term chronic and chronic silver toxicity to fathead minnows in unamended and sodium chloride-amended waters.

    PubMed

    Naddy, Rami B; Rehner, Anita B; McNerney, Gina R; Gorsuch, Joseph W; Kramer, James R; Wood, Chris M; Paquin, Paul R; Stubblefield, William A

    2007-09-01

    The chronic (early life stage [ELS]) and short-term chronic (STC) toxicity of silver (as silver nitrate) to fathead minnows (FHM) was determined concurrently in flow-through exposures (33 volume additions/d). Paired ELS (approximately 30 d) and STC (7 d) studies were conducted with and without the addition of 60 mg/L Cl (as NaCl). The paired studies in unamended water were later repeated using standard flow conditions (9 volume additions/d). The purpose of the paired studies was to determine if short-term chronic endpoints can be used to predict effects in ELS studies. For each experiment, a "split-chamber" design (organisms were held in a common exposure chamber) allowed the direct comparison between short-term and chronic exposures. It appeared that the chronic toxicity of silver was mitigated to some extent by NaCl addition. The maximum acceptable toxicant concentration for growth in the ELS study was 0.53 microg dissolved Ag/L under standard flow conditions. Early life stage and STC endpoints in all three studies typically agreed within a factor of two. Whole-body sodium and silver concentrations measured in individual fathead minnows during these studies showed an increase in silver body burdens and a decrease in sodium concentration. These results indicate that the STC study could be used as a surrogate test to estimate chronic toxicity and that the mechanism of chronic silver toxicity may be the same as for acute toxicity.

  1. Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine

    NASA Astrophysics Data System (ADS)

    Alarcon, E. I.; Vulesevic, B.; Argawal, A.; Ross, A.; Bejjani, P.; Podrebarac, J.; Ravichandran, R.; Phopase, J.; Suuronen, E. J.; Griffith, M.

    2016-03-01

    Despite the broad anti-microbial and anti-inflammatory properties of silver nanoparticles (AgNPs), their use in bioengineered corneal replacements or bandage contact lenses has been hindered due to their intense yellow coloration. In this communication, we report the development of a new strategy to pre-stabilize and incorporate AgNPs with different colours into collagen matrices for fabrication of corneal implants and lenses, and assessed their in vitro and in vivo activity.Despite the broad anti-microbial and anti-inflammatory properties of silver nanoparticles (AgNPs), their use in bioengineered corneal replacements or bandage contact lenses has been hindered due to their intense yellow coloration. In this communication, we report the development of a new strategy to pre-stabilize and incorporate AgNPs with different colours into collagen matrices for fabrication of corneal implants and lenses, and assessed their in vitro and in vivo activity. Electronic supplementary information (ESI) available: Collagen hydrogel, moulded as a cornea, prepared containing collagen protected AgNPs and representative images for collagen hydrogels, moulded as corneas, containing Blue AgNPs either unprotected or protected with LL37-SH; representative TEM images for Green-1 AgNPs prepared in this work; changes on surface plasmon band after synthesis for Green-2 AgNPs without LL37-SH; representative picture of the powder obtained for Green-1 AgNPs capped with LL37-SH after 72 h lyophilization, see main text; representative TEM images for Blue and Green-1 AgNPs prepared in this work; absorption spectra for the supernatants for collagen hydrogels containing Blue AgNPs; absorbance at 600 nm of PAO1 cultures prepared in 25% LB media incubated for 14 h at 37 °C in the presence of different concentrations of AgNPs, Green-1 or Blue, or silver nitrate; HECC cell density (cells per cm2) measured on gels with and without silver nitrate after 1 day of cell incubation; total silver concentration in tissue surrounding the implant area, see experimental, measured at 24 and 72 h post surgery; concentration of mouse IL-6 in homogenized skin tissue extracted from gel implant region after 24 h and 72 h. See DOI: 10.1039/c6nr01339b

  2. Role of Silver Salts Lattice Energy on Conductivity Drops in Chitosan Based Solid Electrolyte: Structural, Morphological and Electrical Characteristics

    NASA Astrophysics Data System (ADS)

    Aziz, Shujahadeen B.; Abdullah, Omed Gh.; Hussein, Sarkawt A.

    2018-03-01

    The influence of anion type on silver ion reduction and drop in direct current (DC) conductivity was investigated experimentally. The structural, optical, morphological and electrical properties of the samples were investigated using x-ray diffraction (XRD), ultraviolet-visible (UV-Vis), optical micrographs (OM) and impedance spectroscopy. The XRD results reveal significant disruption in the crystalline structure of chitosan (CS) for different concentrations of silver nitrate (AgNt) salt. The localized surface resonance plasmonic (LSRP) peaks that were observed for CS:AgNt samples, along with the white silver specs detected by OM technique confirm the formation of Ag nanoparticles. The appearance of obvious dark regions in the CS:AgNt system reveals the existence of a large percentage of amorphous domains. The nonexistence of spherulitic texture confirms the amorphous nature of the samples. The second semicircle in an impedance plot can be attributed to an Ag nanoparticle grain boundary. The established relationships between dielectric constant and carrier concentration and the behavior of dielectric constant versus salt concentration were used to explain the phenomenon of ion-ion association. The continuous increase of DC conductivity was noticed at high temperatures, which was then explained on the basis of lattice energy of silver salts. The influences of anion size on the rate of silver ion reductions are also interpreted.

  3. Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria.

    PubMed

    Velmurugan, Palanivel; Lee, Sang-Myeong; Cho, Min; Park, Jung-Hee; Seo, Sang-Ki; Myung, Hyun; Bang, Keuk-Soo; Oh, Byung-Taek

    2014-10-01

    We present a simple, eco-friendly synthesis of silver and gold nanoparticles using a natural polymer pine gum solution as the reducing and capping agent. The pine gum solution was combined with silver nitrate (AgNO3) or a chloroauric acid (HAuCl4) solution to produce silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), respectively. The reaction process was simple; formation of the nanoparticles was achieved by autoclaving the silver and gold ions with the pine gum. UV-Vis spectra showed surface plasmon resonance (SPR) for silver and gold nanoparticles at 432 and 539 nm, respectively. The elemental forms of AgNPs and AuNPs were confirmed by energy-dispersive X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy (FTIR) showed the biomolecules present in the pine gum, AgNPs, and AuNPs. Transmission electron microscopy (TEM) images showed the shape and size of AgNPs and AuNPs. The crystalline nature of synthesized AgNPs and AuNPs was confirmed by X-ray crystallography [X-ray diffraction (XRD)]. Application of synthesized AgNPs onto cotton fabrics and leather, in order to evaluate their antibacterial properties against odor- or skin infection-causing bacteria, is also discussed. Among the four tested bacteria, AgNP-coated cotton fabric and leather samples displayed excellent antibacterial activity against Brevibacterium linens.

  4. Bioconjugated nano-bactericidal complex for potent activity against human and phytopathogens with concern of global drug resistant crisis.

    PubMed

    Syed, Baker; Nagendra Prasad, M N; Mohan Kumar, K; Satish, S

    2018-10-01

    The present study emphasizes the need for novel antimicrobial agents to combat the global drug resistant crisis. The development of novel nanomaterials is reported to be of the alternative tool to combat drug resistant pathogens. In present investigation, bioconjugated nano-complex was developed from secondary metabolite secreted from endosymbiont. The endosymbiont capable of secreting antimicrobial metabolite was subjected to fermentation and the culture supernatant was assessed for purification of antimicrobial metabolite via bio-assay guided fraction techniques such as thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and column chromatography. The metabolite was characterized as 2,4-Diacetylphloroglucinol (2,4 DAPG) which was used to develop bioconjugated nano-complex by treating with 1 mM silver nitrate under optimized conditions. The purified metabolite 2,4 DAPG reduced silver nitrate to form bioconjugated nano-complex to form association with silver nanoparticles. The oxidized form of DAPG consists of four hard ligands that can conjugate on to the surface of silver nanoparticles cluster. The bioconjugation was confirmed with UV-visible spectroscopy which displayed the shift and shoulder peak in the absorbance spectra. This biomolecular interaction was further determined by the Fourier-transform spectroscopy (FTIR) and nuclear magnetic resonance (NMR) analyses which displayed different signals ascertaining the molecular binding of 2,4,DAPG with silver nanoparticles. The transmission electron microscopy (TEM) analysis revealed the cluster formation due to bioconjugation. The XRD analysis revealed the crystalline nature of nano-complex with the characteristic peaks indexed to Bragg's reflection occurring at 2θ angle which indicated the (111), (200), (220) and (311) planes. The activity of bioconjugated nano-complex was tested against 12 significant human and phytopathogens. Among all the test pathogens, Shigella flexneri (MTCC 1457) was the most sensitive organisms with 38.33 ± 0.33 zone of inhibition. The results obtained in the present investigation attribute development of nano-complex as one of the effective tools against multi-drug resistant infections across the globe. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. How Does Viewing One Computer Animation Affect Students' Interpretations of Another Animation Depicting the Same Oxidation-Reduction Reaction?

    ERIC Educational Resources Information Center

    Rosenthal, Deborah P.; Sanger, Michael J.

    2013-01-01

    Two groups of students were shown unnarrated versions of two different particulate-level computer animations of varying complexity depicting the oxidation-reduction reaction of aqueous silver nitrate and solid copper metal; one group saw the more simplified animation first and the more complex animation second while the other group saw these…

  6. Horace Poolaw: Photographer, Mentor, Grandfather

    ERIC Educational Resources Information Center

    Poolaw, Thomas

    2011-01-01

    There are at least 2,000 silver nitrate negatives in the Horace Poolaw collection, and as many stories to go along with them. If you begin to talk about one image, it leads from that story to the next, and the next, and pretty soon two or three hours have gone by. Rather than discussing in detail the images in the Horace Poolaw collection, the…

  7. Student Misinterpretations and Misconceptions Based on Their Explanations of Two Computer Animations of Varying Complexity Depicting the Same Oxidation-Reduction Reaction

    ERIC Educational Resources Information Center

    Rosenthal, Deborah P.; Sanger, Michael J.

    2012-01-01

    A group of 55 students were shown unnarrated versions of two different particulate-level computer animations of varying complexity depicting the oxidation-reduction reaction of aqueous silver nitrate and solid copper metal. These students were asked to explain their understanding of the chemical reaction based on their interpretations of these…

  8. Separation and preparation of xanthochymol and guttiferone E by high performance liquid chromatography and high speed counter-current chromatography combined with silver nitrate coordination reaction.

    PubMed

    Li, Jun; Gao, Ruixi; Zhao, Dan; Huang, Xianju; Chen, Yu; Gan, Fei; Liu, Hui; Yang, Guangzhong

    2017-08-18

    Xanthochymol (XCM) and guttiferone E (GFE), a pair of π bond benzophenone isomers from Garcinia xanthochymus, were once reported to be difficult or impossible to separate. The present study reports the successful separation of these two isomers through high performance liquid chromatography (HPLC), as well as their effective isolation using high speed counter-current chromatography (HSCCC) based on the silver nitrate (AgNO 3 ) coordination reaction. First, an effective HPLC separation system was developed, achieving a successful baseline separation with resolution of 2.0. Based on the partition coefficient (K) resolved by HPLC, the two-phase solvent system was determined as n-hexane, methanol and water with the uncommon volume ratio of 4:6:1. A crude extract of Garcinia xanthochymus (0.2g) was purified by normal HSCCC and refined with AgNO 3 -HSCCC. Monomers of XCM and GFE were identified by HPLC, mass spectrometry (MS) and nuclear magnetic resonance (NMR). The results demonstrate the separation and isolation of π bond benzophenone isomers using ordinary octadecyl silane (C 18 ) columns and HSCCC. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a AgCN based plating solution was used to replace Cu shell to form Au/Ag core-shell nanoparticles. These two plasmonic nanostructures were tested as substrates for Raman spectroscopy. It demonstrated that these plasmonic nanostructures could enhance Raman signal from the molecules on their surface. The results indicate that these plasmonic nanostructures could be utilized in many fields, such as such as biological and environmental sensors.

  10. Quantitative Proteomics Reveals Ecophysiological Effects of Light and Silver Stress on the Mixotrophic Protist Poterioochromonas malhamensis

    PubMed Central

    Kaschani, Farnusch; Graupner, Nadine; Grossmann, Lars; Jensen, Manfred; Ninck, Sabrina; Schulz, Florian; Rahmann, Sven; Boenigk, Jens; Kaiser, Markus

    2017-01-01

    Aquatic environments are heavily impacted by human activities including climate warming and the introduction of xenobiotics. Due to the application of silver nanoparticles as bactericidal agent the introduction of silver into the environment strongly has increased during the past years. Silver ions affect the primary metabolism of algae, in particular photosynthesis. Mixotrophic algae are an interesting test case as they do not exclusively rely on photosynthesis which may attenuate the harmful effect of silver. In order to study the effect of silver ions on mixotrophs, cultures of the chrysophyte Poterioochromonas malhamensis were treated in a replicate design in light and darkness with silver nitrate at a sub-lethal concentration. At five time points samples were taken for the identification and quantitation of proteins by mass spectrometry. In our analysis, relative quantitative protein mass spectrometry has shown to be a useful tool for functional analyses in conjunction with transcriptome reference sequences. A total of 3,952 proteins in 63 samples were identified and quantified, mapping to 4,829 transcripts of the sequenced and assembled transcriptome. Among them, 720 and 104 proteins performing various cellular functions were differentially expressed after eight days in light versus darkness and after three days of silver treatment, respectively. Specifically pathways of the energy and primary carbon metabolism were differentially affected by light and the utilization of expensive reactions hints to an energy surplus of P. malhamensis under light conditions. The excess energy is not invested in growth, but in the synthesis of storage metabolites. The effects of silver were less explicit, observable especially in the dark treatments where the light effect could not mask coinciding but weaker effects of silver. Photosynthesis, particularly the light harvesting complexes, and several sulphur containing enzymes were affected presumably due to a direct interference with the silver ions, mainly affecting energy supply. PMID:28056027

  11. Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Veerakumar, Kaliyan; Muthukumaran, Udaiyan; Hoti, S L; Mehlhorn, Heinz; Barnard, Donald R; Benelli, Giovanni

    2016-02-01

    Mosquito vectors are responsible for transmitting diseases such as malaria, dengue, chikungunya, Japanese encephalitis, dengue, and lymphatic filariasis. The use of synthetic insecticides to control mosquito vectors has caused physiological resistance and adverse environmental effects, in addition to high operational cost. Biosynthesis of silver nanoparticles has been proposed as an alternative to traditional control tools. In the present study, green synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Bauhinia variegata by reduction of Ag(+) ions from silver nitrate solution has been investigated. The bioreduced silver nanoparticles were characterized by UV–visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and X-ray diffraction analysis (XRD). Leaf extract and synthesized AgNPs were evaluated against the larvae of Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Compared to aqueous extract, synthesized AgNPs showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 and LC90 values of 41.96, 46.16, and 51.92 μg/mL and 82.93, 89.42, and 97.12 μg/mL, respectively. Overall, this study proves that B. variegata is a potential bioresource for stable, reproducible nanoparticle synthesis and may be proposed as an efficient mosquito control agent.

  12. Safety and efficacy of composite collagen-silver nanoparticle hydrogels as tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Alarcon, Emilio I.; Udekwu, Klas I.; Noel, Christopher W.; Gagnon, Luke B.-P.; Taylor, Patrick K.; Vulesevic, Branka; Simpson, Madeline J.; Gkotzis, Spyridon; Islam, M. Mirazul; Lee, Chyan-Jang; Richter-Dahlfors, Agneta; Mah, Thien-Fah; Suuronen, Erik J.; Scaiano, Juan C.; Griffith, May

    2015-11-01

    The increasing number of multidrug resistant bacteria has revitalized interest in seeking alternative sources for controlling bacterial infection. Silver nanoparticles (AgNPs), are amongst the most promising candidates due to their wide microbial spectrum of action. In this work, we report on the safety and efficacy of the incorporation of collagen coated AgNPs into collagen hydrogels for tissue engineering. The resulting hybrid materials at [AgNPs] < 0.4 μM retained the mechanical properties and biocompatibility for primary human skin fibroblasts and keratinocytes of collagen hydrogels; they also displayed remarkable anti-infective properties against S. aureus, S. epidermidis, E. coli and P. aeruginosa at considerably lower concentrations than silver nitrate. Further, subcutaneous implants of materials containing 0.2 μM AgNPs in mice showed a reduction in the levels of IL-6 and other inflammation markers (CCL24, sTNFR-2, and TIMP1). Finally, an analysis of silver contents in implanted mice showed that silver accumulation primarily occurred within the tissue surrounding the implant.The increasing number of multidrug resistant bacteria has revitalized interest in seeking alternative sources for controlling bacterial infection. Silver nanoparticles (AgNPs), are amongst the most promising candidates due to their wide microbial spectrum of action. In this work, we report on the safety and efficacy of the incorporation of collagen coated AgNPs into collagen hydrogels for tissue engineering. The resulting hybrid materials at [AgNPs] < 0.4 μM retained the mechanical properties and biocompatibility for primary human skin fibroblasts and keratinocytes of collagen hydrogels; they also displayed remarkable anti-infective properties against S. aureus, S. epidermidis, E. coli and P. aeruginosa at considerably lower concentrations than silver nitrate. Further, subcutaneous implants of materials containing 0.2 μM AgNPs in mice showed a reduction in the levels of IL-6 and other inflammation markers (CCL24, sTNFR-2, and TIMP1). Finally, an analysis of silver contents in implanted mice showed that silver accumulation primarily occurred within the tissue surrounding the implant. Electronic supplementary information (ESI) available: Representative absorption spectra of AgNP@collagen nanoparticles before and after lyophilization. Absorption spectra for the washes obtained from a 1.0 μM AgNP hydrogel over the course of 5 days. Area under the curve (AUC) calculated from the absorption spectra of 500 μm thickness collagen hydrogels prepared using different concentrations of AgNP@collagen. Selected Cryo-SEM images of BDDGE type I collagen-based hydrogels in the absence or presence of 1.0 μM AgNP. An image of a selected area of a collagen-based hydrogel prepared using AgNO3 instead of AgNP@collagen nanoparticles and Live/Dead staining of human skin fibroblasts taken for 24 hours. Growth inhibition profile for E. coli, S. aureus, S. epidermidis and P. aeruginosa in the presence of hydrogels containing AgNPs. See DOI: 10.1039/c5nr03826j

  13. Rapid Biosynthesis of AgNPs Using Soil Bacterium Azotobacter vinelandii With Promising Antioxidant and Antibacterial Activities for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Karunakaran, Gopalu; Jagathambal, Matheswaran; Gusev, Alexander; Torres, Juan Antonio Lopez; Kolesnikov, Evgeny; Kuznetsov, Denis

    2017-07-01

    Silver nanoparticles (AgNPs) are applied in various fields from electronics to biomedical applications as a result of their high surface-to-volume ratio. Even though different approaches are available for synthesis of AgNPs, a nontoxic method for the synthesis has not yet been developed. Thus, this study focused on developing an easy and ecofriendly approach to synthesize AgNPs using Azotobacter vinelandii culture extracts. The biosynthesized nanoparticles were further characterized by ultraviolet-visible (UV-Vis) spectroscopy, x-ray diffraction (XRD), Fourier transform infrared (FTIR), energy-dispersive spectrum, particle size distribution (PSD), and transmission electron microscopy (TEM). UV absorption noticed at 435 nm showed formation of AgNPs. The XRD pattern showed a face-centered cubic structure with broad peaks of 28.2°, 32.6°, 46.6°, 55.2°, 57.9°, and 67.8°. The FTIR confirmed the involvement of various functional groups in the biosynthesis of AgNPs. The PSD and TEM analyses showed spherical, well-distributed nanoparticles with an average size of 20-70 nm. The elemental studies confirmed the existence of pure AgNPs. The bacterial extract containing extracellular enzyme nitrate reductase converted silver nitrate into AgNPs. AgNPs significantly inhibited the growth of pathogenic bacteria such as Streptomyces fradiae (National Collection of Industrial Microorganisms (NCIM) 2419), Staphylococcus aureus (NCIM 2127), Escherichia coli (NCIM 2065), and Serratia marcescens (NCIM 2919). In addition, biosynthesized AgNPs were found to possess strong antioxidant activity. Thus, the results of this study revealed that biosynthesized AgNPs could serve as a lead in the development of nanomedicine.

  14. Comparative Evaluation of Sealing Ability of Three Newer Root Canal Obturating Materials Guttaflow, Resilon and Thermafil: An In Vitro Study

    PubMed Central

    H Bhandi, Shilpa; T S, Subhash

    2013-01-01

    Introduction: Microleakage continues to be a main reason for failure of root canal treatment where the challenge has been to achieve an adequate seal between the internal structure and the main obturating material. The objective of this study is to compare the sealing ability of 3 newer obturating materials GuttaFlow, Resilon/Epiphany system (RES) and Thermafil, using silver nitrate dye and observing under stereomicroscope. Methodology: Thirty single rooted teeth were divided into following groups. Group I : GuttaFlow ;Group II : Resilon /Epiphany sealer Group III : Thermafil with AH-Plus sealer. Teeth were decoronated and instrumented with profile rotary system and obturated with specified materials. Apical seal was determined by dye penetration method using silver nitrate. Then the specimens were transversely sectioned at each mm till 3 mm from the apex. Dye leakage was determined using stereomicroscope. Statistical analysis of the results was performed using Kruskall-Wallis test. Results: The results showed that Group II i.e., Resilon with Epiphany sealer showed the least amount of microleakage when compared to Group I i.e., GuttaFlow and Group III i.e., Thermafil with AH-plus sealer. Conclusion: Based on the results of this study it can be concluded that RES had higher sealing ability followed by Thermafil and GuttaFlow in vitro but further studies have to be carried out to make a direct correlation between these results and invivo situation. How to cite this article: Bhandi S H, Subhash T S. Comparative Evaluation of Sealing Ability of Three Newer Root Canal Obturating Materials Guttaflow, Resilon and Thermafil: An In Vitro Study. J Int Oral Health 2013; 5(1):54-65. PMID:24155579

  15. Differential Phytotoxic Impact of Plant Mediated Silver Nanoparticles (AgNPs) and Silver Nitrate (AgNO3) on Brassica sp.

    PubMed Central

    Vishwakarma, Kanchan; Shweta; Upadhyay, Neha; Singh, Jaspreet; Liu, Shiliang; Singh, Vijay P.; Prasad, Sheo M.; Chauhan, Devendra K.; Tripathi, Durgesh K.; Sharma, Shivesh

    2017-01-01

    Continuous formation and utilization of nanoparticles (NPs) have resulted into significant discharge of nanosized particles into the environment. NPs find applications in numerous products and agriculture sector, and gaining importance in recent years. In the present study, silver nanoparticles (AgNPs) were biosynthesized from silver nitrate (AgNO3) by green synthesis approach using Aloe vera extract. Mustard (Brassica sp.) seedlings were grown hydroponically and toxicity of both AgNP and AgNO3 (as ionic Ag+) was assessed at various concentrations (1 and 3 mM) by analyzing shoot and root length, fresh mass, protein content, photosynthetic pigments and performance, cell viability, oxidative damage, DNA degradation and enzyme activities. The results revealed that both AgNPs and AgNO3 declined growth of Brassica seedlings due to enhanced accumulation of AgNPs and AgNO3 that subsequently caused severe inhibition in photosynthesis. Further, the results showed that both AgNPs and AgNO3 induced oxidative stress as indicated by histochemical staining of superoxide radical and hydrogen peroxide that was manifested in terms of DNA degradation and cell death. Activities of antioxidants, i.e., ascorbate peroxidase (APX) and catalase (CAT) were inhibited by AgNPs and AgNO3. Interestingly, damaging impact of AgNPs was lesser than AgNO3 on Brassica seedlings which was due to lesser accumulation of AgNPs and better activities of APX and CAT, which resulted in lesser oxidative stress, DNA degradation and cell death. The results of the present study showed differential impact of AgNPs and AgNO3 on Brassica seedlings, their mode of action, and reasons for their differential impact. The results of the present study could be implied in toxicological research for designing strategies to reduce adverse impact of AgNPs and AgNO3 on crop plants. PMID:29075270

  16. Regulation of the Deposition Morphology of Inkjet-Printed Crystalline Materials via Polydopamine Functional Coatings for Highly Uniform and Electrically Conductive Patterns.

    PubMed

    Liu, Liang; Ma, Siyuan; Pei, Yunheng; Xiong, Xiao; Sivakumar, Preeth; Singler, Timothy J

    2016-08-24

    We report a method to achieve highly uniform inkjet-printed silver nitrate (AgNO3) and a reactive silver precursor patterns on rigid and flexible substrates functionalized with polydopamine (PDA) coatings. The printed AgNO3 patterns on PDA-coated substrates (glass and polyethylene terephthalate (PET)) exhibit a narrow thickness distribution ranging between 0.9 and 1 μm in the line transverse direction and uniform deposition profiles in the line axial direction. The deposited reactive silver precursor patterns on PDA-functionalized substrates also show "dome-shaped" morphology without "edge-thickened" structure due to "coffee-stain" effect. We posit that the highly uniform functional ink deposits formed on PDA-coated substrates are attributable to the strong binding interaction between the abundant catecholamine moieties at the PDA surface and the metallic silver cations (Ag(+) or Ag(NH3)(2+)) in the solutal inks. During printing of the ink rivulet and solvent evaporation, the substrate-liquid ink (S-L) interface is enriched with the silver-based cations and a solidification at the S/L interface is induced. The preferential solidification initiated at the S-L interface is further verified by the in situ visualization of the dynamic solidification process during solvent evaporation, and results suggest an enhanced crystal nucleation and growth localized at the S-L interface on PDA functionalized substrates. This interfacial interaction mediates solute transport in the liquid phase, resulting in the controlled enrichment of solute at the S-L interface and mitigated solute precipitation in both the contact line region and the liquid ink-vapor (L-V) interface due to evaporation. This mediated transport contributes to the final uniform solid deposition for both types of ink systems. This technique provides a complementary strategy for achieving highly uniform inkjet-printed crystalline structures, and can serve as an innovative foundation for high-precision additive delivery of functional materials.

  17. Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of its antibacterial and antitumor activity.

    PubMed

    Singh, Garvita; Babele, Piyoosh K; Shahi, Shailesh K; Sinha, Rajeshwar P; Tyagi, Madhu B; Kumar, Ashok

    2014-10-01

    In the present work, we describe a simple, cheap, and unexplored method for "green" synthesis of silver nanoparticles using cell extracts of the cyanobacterium Anabaena doliolum. An attempt was also made to test the antimicrobial and antitumor activities of the synthesized nanoparticles. Analytical techniques, namely UV-vis spectroscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and TEMselected area electron diffraction, were used to elucidate the formation and characterization of silver-cyanobacterial nanoparticles (Ag-CNPs). Results showed that the original color of the cell extract changed from reddish blue to dark brown after addition of silver nitrate solution (1 mM) within 1 h, suggesting the synthesis of Ag-CNPs. That the formation Ag-CNPs indeed occurred was also evident from the spectroscopic analysis of the reaction mixture, wherein a prominent peak at 420 nm was noted. TEM images revealed well-dispersed, spherical Ag- CNPs with a particle size in the range of 10-50 nm. The X-ray diffraction spectrum suggested a crystalline nature of the Ag-CNPs. FTIR analysis indicated the utilization of a hydroxyl (-OH) group in the formation of Ag-CNPs. Ag-CNPs exhibited strong antibacterial activity against three multidrug-resistant bacteria. Additionally, Ag-CNPs strongly affected the survival of Dalton's lymphoma and human carcinoma colo205 cells at a very low concentration. The Ag-CNPs-induced loss of survival of both cell types may be due to the induction of reactive oxygen species generation and DNA fragmentation, resulting in apoptosis. Properties exhibited by the Ag-CNP suggest that it may be used as a potential antibacterial and antitumor agent.

  18. A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves.

    PubMed

    Singh, Priyanka; Kim, Yeon Ju; Yang, Deok Chun

    2016-12-01

    The study highlights the synthesis of gold nanoparticles and silver nanoparticles by fresh leaves of Panax ginseng, an herbal medicinal plant. The reduction of auric chloride and silver nitrate led to the formation of gold and silver nanoparticles within 3 and 45 min, at 80°C, respectively. The developed methodology was rapid, facile, ecofriendly and the utmost significant is quite economical, which did not require subsequent processing for reduction or stabilization of nanoparticles. The nanoparticles were further characterized by Ultraviolet-visible spectroscopy (UV-vis) which showed the relevant peak for gold and silver nanoparticles at 578 and 420 nm, correspondingly. Field-emission transmission electron microscopy (FE-TEM) displayed the spherical shape of monodispersed nanoparticles. FE-TEM revealed that the gold nanoparticles were 10-20 nm and silver nanoparticles were 5-15 nm. The energy dispersive X-ray (EDX) and elemental mapping results indicated the maximum distribution of gold and silver elements in the respective nanoproducts, which further corresponds the purity. Further, the X-ray diffraction (XRD) results confirm the crystalline nature of synthesized nanoparticles. The biosynthesized AgNPs served as an efficient antimicrobial agent at 3 μg concentration against many pathogenic strains for instance, Escherichia coli, Salmonella enterica, Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus anthracis and Bacillus cereus. In addition, AgNPs showed complete inhibition of biofilm formation by S. aureus and Pseudomonas aeruginosa at 4 μg/ml concentration. Moreover, the AuNPs and AgNPs found as a potent anticoagulant agent. Thus, the study claims the rapid synthesis of gold and silver nanoparticles by fresh P. ginseng leaf extract and its biological applications.

  19. Protection of Metal Artifacts with the Formation of Metal–Oxalates Complexes by Beauveria bassiana

    PubMed Central

    Joseph, Edith; Cario, Sylvie; Simon, Anaële; Wörle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel

    2012-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal–oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L−1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal–oxalates can be used in the restoration and conservation of archeological and modern metal artifacts. The production of copper oxalates was confirmed directly using metallic pieces (both archeological and modern). The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal–oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates. However, the formation of a homogeneous layer on the object is not yet optimal. On silver, a co-precipitation of copper and silver oxalates occurred. As this greenish patina would not be acceptable on silver objects, silver reduction was explored as a tarnishing remediation. First experiments showed the transformation of silver nitrate into nanoparticles of elemental silver by an unknown extracellular mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artifacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals. PMID:22291684

  20. Silver nanocrystallites: Facile biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on Gram-negative and Gram-positive bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suresh, Anil K; Wang, Wei; Pelletier, Dale A

    Microorganisms have long been known to develop resistance to metal ions either by sequestering metals inside the cell or by effluxing them into the extracellular media. Here we report the biosynthesis of extracellular silver based single nanocrystallites of well-defined composition and homogeneous morphology utilizing the -proteobacterium, Shewanella oneidensis strain MR-1, upon incubation with an aqueous solution of silver nitrate. Further characterization of these particles revealed that the crystals consist of small, reasonably monodispersed spheres in the size range 2 11 nm (with an average of 4 1.5 nm). The bactericidal effect of these biologically synthesized silver nanoparticles (biogenic-Ag) are comparedmore » to similar chemically synthesized nanoparticles (colloidal silver [colloidal-Ag] and oleate capped silver [oleate-Ag]). The determination of the bactericidal effect of these different silver nanoparticles was assessed using both Gram-negative (E. coli) and Gram-positive (B. subtilis) bacteria and based on the diameter of the inhibition zone in disc diffusion tests, minimum inhibitory concentrations, Live/Dead staining assays, and atomic force microscopy. From a toxicity perspective, a clear synthesis procedure, and a surface coat- and strain-dependent inhibition were observed for silver nanoparticles. Biogenic-Ag was found to be of higher toxicity when compared to colloidal-Ag for both E. coli and B. subtilis. E. coli was found to be more resistant to either of these nanoparticles than B. subtilis. In contrast, Oleate-Ag was not toxic to either of the bacteria. These findings have important implications for the potential uses of Ag nanomaterials and for their fate in biological and environmental systems.« less

  1. 40 CFR Appendix III to Part 265 - EPA Interim Primary Drinking Water Standards

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false EPA Interim Primary Drinking Water... Water Standards Parameter Maximum level (mg/l) Arsenic 0.05 Barium 1.0 Cadmium 0.01 Chromium 0.05 Fluoride 1.4-2.4 Lead 0.05 Mercury 0.002 Nitrate (as N) 10 Selenium 0.01 Silver 0.05 Endrin 0.0002 Lindane...

  2. 40 CFR Appendix III to Part 265 - EPA Interim Primary Drinking Water Standards

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false EPA Interim Primary Drinking Water... Water Standards Parameter Maximum level (mg/l) Arsenic 0.05 Barium 1.0 Cadmium 0.01 Chromium 0.05 Fluoride 1.4-2.4 Lead 0.05 Mercury 0.002 Nitrate (as N) 10 Selenium 0.01 Silver 0.05 Endrin 0.0002 Lindane...

  3. Gamma-radiation induced synthesis of silver nanoparticles in gelatin and its application for radiotherapy dose measurements

    NASA Astrophysics Data System (ADS)

    Soliman, Y. S.

    2014-09-01

    A new gel dosimeter based on a radiation-sensitive silver nitrate was formulated and investigated for its potential use in γ-radiation treatment, from 3 to 100 Gy. This gel matrix is analyzed by UV-vis spectrophotometry and X-ray diffraction (XRD). Subjecting the gel to γ-rays produces Ag nanoparticles that exhibit a plasmon resonance absorption band at 450 nm. The intensity of this band increases linearly with the increase of absorbed dose up to 100 Gy. Stability of Ag nanoparticle in the dark at 6 °C is good. The overall uncertainty (2σ) of the gel dosimeter is estimated as ~4.65% in the dose range of 5-100 Gy.

  4. Fluorescent light mediated a green synthesis of silver nanoparticles using the protein extract of weaver ant larvae.

    PubMed

    Khamhaengpol, Arunrat; Siri, Sineenat

    2016-10-01

    Alternative to crude plant extracts, a crude protein extract derived from animal cells is one of the potential sources of biomolecules for mediating a reduction of silver ions and a formation of silver nanoparticles (AgNPs) under a mild condition, which very few works have been reported. This work demonstrated a use of the protein extract of weaver ant larvae as a bio-facilitator for a simple, green synthesis of AgNPs under fluorescent light at room temperature. The protein extract of weaver ant larvae exhibited the reducing and antioxidant activities, which assisted a formation of AgNPs in the reaction containing only silver nitrate under light exposure. Transmission electron microscopy images revealed the dispersed, spherical AgNPs with an average size of 7.87±2.54nm. The maximum surface plasmon resonance (SPR) band of the synthesized AgNPs was at 435nm. The energy-dispersive X-ray analysis revealed that silver was a major element of the particles. The identity of AgNPs was confirmed by X-ray diffraction pattern, selected area electron diffraction and high resolution transmission electron microscopy analyses, which demonstrated the planes of face centered cubic silver. The synthesized AgNPs showed antibacterial activity against both Escherichia coli and Staphylococcus aureus with the minimum bactericidal concentration (MBC) values equally at 250μg/ml, suggesting their potential application as an effective antibacterial agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Converting a Natural Protein Compartment into a Nanofactory for the Size-Constrained Synthesis of Antimicrobial Silver Nanoparticles.

    PubMed

    Giessen, Tobias W; Silver, Pamela A

    2016-12-16

    Engineered biological systems are used extensively for the production of high value and commodity organics. On the other hand, most inorganic nanomaterials are still synthesized via chemical routes. By engineering cellular compartments, functional nanoarchitectures can be produced under environmentally sustainable conditions. Encapsulins are a new class of microbial nanocompartments with promising applications in nanobiotechnology. Here, we engineer the Thermotoga maritima encapsulin EncTm to yield a designed compartment for the size-constrained synthesis of silver nanoparticles (Ag NPs). These Ag NPs exhibit uniform shape and size distributions as well as long-term stability. Ambient aqueous conditions can be used for Ag NP synthesis, while no reducing agents or solvents need to be added. The antimicrobial activity of the synthesized protein-coated or shell-free Ag NPs is superior to that of silver nitrate and citrate-capped Ag NPs. This study establishes encapsulins as an engineerable platform for the synthesis of biogenic functional nanomaterials.

  6. Green synthesis of silver nanoparticles and their application to cotton fabrics.

    PubMed

    Hebeish, A; El-Bisi, M K; El-Shafei, A

    2015-01-01

    Herein we present a green synthesis of silver nanoparticles (AgNPs) under the reducing action of sugar and the stabilizing action of polyethylene glycol (PEG). Factors affecting the synthesis notably molecular weight of PEG and concentrations of both sugar and silver nitrate were examined for the sake of optimization. Thus obtained AgNPs were characterized, by ultraviolet-visible (UV-vis) spectra for estimation of AgNPs formation and, Transmission electron microscopy (TEM) for determination of size and shape. AgNPs were applied with 1,2,3,4-butane tetracarboxylic acid (BTCA) and sodium hypophosphite (SHP) as a catalyst to cotton fabric. Application was performed according to the conventional pad-dry-cure technique. The treated fabrics were evaluated via monitoring morphological changes of the fibers using scanning electron microscopy (SEM), tensile strength and crease recovery angles in addition to bioassay of antimicrobial activity of the treated fabrics. Research output disclosed that PEG having molecular weight 2000 is the best among the other PEG used. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate.

    PubMed

    Buja, Oana-M; Gordan, Ovidiu D; Leopold, Nicolae; Morschhauser, Andreas; Nestler, Jörg; Zahn, Dietrich R T

    2017-01-01

    A microfluidic setup which enables on-line monitoring of residues of malachite green (MG) using surface-enhanced Raman scattering (SERS) is reported. The SERS active substrate was prepared via laser induced synthesis of silver or gold nanoparticles spot on the bottom of a 200 μm inner dimension glass capillary, by focusing the laser beam during a continuous flow of a mixture of silver nitrate or gold chloride and sodium citrate. The described microfluidic setup enables within a few minutes the monitoring of several processes: the synthesis of the SERS active spot, MG adsorption to the metal surface, detection of the analyte when saturation of the SERS signal is reached, and finally, the desorption of MG from the spot. Moreover, after MG complete desorption, the regeneration of the SERS active spot was achieved. The detection of MG was possible down to 10 -7 M concentration with a good reproducibility when using silver or gold spots as SERS substrate.

  8. Synthesis of Silver Embedded Poly(o-Anisidine) Molybdophosphate Nano Hybrid Cation-Exchanger Applicable for Membrane Electrode

    PubMed Central

    Khan, Anish; Khan, Aftab Aslam Parwaz; Asiri, Abdullah M.; Rub, Malik Abdul

    2014-01-01

    Poly(o-anisidine) molybdophosphate was expediently obtained by sol-gel mixing of Poly(o-anisidine) into the inorganic matrices of molybdophosphate, which was allowed to react with silver nitrate to the formation of poly(o-anisidine) molybdophosphate embedded silver nano composite. The composite was characterized by Fourier Transform Infrared Spectroscopy, X-ray powder diffraction, UV-Vis Spectrophotometry, Fluorescence Spectroscopy, Scanning Electron Microscopy/Energy-dispersive X-ray Spectroscopy and Thermogravimertic Analysis. Ion exchange capacity and distribution studies were carried out to understand the ion-exchange capabilities of the nano composite. On the basis of highest distribution studies, this nano composite cation exchanger was used as preparation of heavy metal ion selective membrane. Membrane was characterized for its performance as porosity and swelling later on was used for the preparation of membrane electrode for Hg(II), having better linear range, wide working pH range (2–4.5) with fast response in the real environment. PMID:24805257

  9. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Murali Krishna, I.; Bhagavanth Reddy, G.; Veerabhadram, G.; Madhusudhan, A.

    2016-06-01

    An economically viable and "green" process has been developed for the synthesis of silver nanoparticles (AgNPs) with an average size of 7 nm using non-toxic and renewable salmalia malabarica gum (SMG) as reducing and capping agent without using any chemical reducing agent. The effect of various parameters such as concentration of SMG and silver nitrate and reaction time for the synthesis of AgNPs was studied. The synthesized AgNPs are systematically characterized by UV/Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and Transmission electron microscopy. The resultant SMG-capped AgNPs are highly stable and had significant antibacterial action on both Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). The catalytic action of the SMG-capped AgNPs to initiate the reduction of 4-nitrophenol (4-NP) in the presence of NaBH4 has also been reported. The kinetics of the reaction was found to be of pseudo-first-order with respect to the 4-NP.

  10. Direct nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation.

    PubMed

    El Mel, Abdel-Aziz; Stephant, Nicolas; Gautier, Romain

    2016-10-06

    In this communication, we report on the growth, direct writing and nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation using a scanning electron microscope. The nanoblocks are produced by placing a droplet of an ethylene glycol solution containing silver nitrate and polyvinylpyrrolidone diluted in ethanol directly on a hot substrate heated up to 150 °C. Upon complete evaporation of the droplet, nanospheres, nano- and micro-triangles and nanoblocks made of silver-containing polymers, form over the substrate surface. Considering the nanoblocks as a model system, we demonstrate that such nanostructures are extremely sensitive to the e-beam extracted from the source of a scanning electron microscope operating at low acceleration voltages (between 5 and 7 kV). This sensitivity allows us to efficiently create various nanopatterns (e.g. arrays of holes, oblique slits and nanotrenches) in the material under e-beam irradiation. In addition to the possibility of writing, the nanoblocks revealed a self-healing ability allowing them to recover a relatively smooth surface after etching. Thanks to these properties, such nanomaterials can be used as a support for data writing and erasing on the nanoscale under low energy electron beam irradiation.

  11. Synthesis and standardization of biologically synthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Roy, Swarup; Das, Tapan Kumar

    2013-06-01

    The biological silver nanoparticle was synthesized extracellularly by using a fungi Aspergillus foetidus. The live cell filtrate of fungi has been used as reducing agent in the process of nanoparticles synthesis. In 50 ml cell filtrate a volume of AgNO3 stock solution was added to make finally the concentration as 1 mM of AgNO3 and allowed to shake in an incubator for several hrs in dark. The changed color was considered as the primary indication of nanoparticles formation and studies of UV-VIS, DLS, FTIR, AFM, TEM, EDS, Zeta pot. and nitrate reductase assay confirmed the same. It was indicated that stable & 20-40 nm roughly spherical shaped silver nanoparticles was formed. To standardize the nanoparticles biosynthesis different physical parameters like Substrate cone. (0-8 mM), PH-(5-12), Temp.-(5-50°C), incubation time (0-120) hrs and salinity (0.1-1.0 %) were investigated and it was observed that 4 mM AgNO3 conc., PH-9, Temp. -30°C, incubation time 72h and 0.2 % salinity were found to be optimum for the synthesis & stability of the silver nanoparticles.

  12. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Cakić, Milorad; Glišić, Slobodan; Nikolić, Goran; Nikolić, Goran M.; Cakić, Katarina; Cvetinov, Miroslav

    2016-04-01

    Dextran sulphate stabilized silver nanoparticles (AgNPs - DS) were synthesized from aqueous solution of silver nitrate (AgNO3) and dextran sulphate sodium salt (DS). The characterization of AgNPs - DS was performed by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and antimicrobial activity. The formation of AgNPs - DS was monitored by colour changes of the reaction mixture from yellowish to brown and by measuring the surface plasmon resonance absorption peak in UV-VIS spectra at 420 nm. The SEM analysis was used for size and shape determination of AgNPs - DS. The presence of elemental silver and its crystalline structure in AgNPs - DS were confirmed by EDX and XRD analyses. The possible functional groups of DS responsible for the reduction and stabilization of AgNPs were determinated by FTIR spectroscopy. The AgNPs - DS showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillus luteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.

  13. Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata.

    PubMed

    Monteiro, D R; Gorup, L F; Silva, S; Negri, M; de Camargo, E R; Oliveira, R; Barbosa, D B; Henriques, M

    2011-08-01

    The aim of this study was to evaluate the effect of silver nanoparticles (SN) against Candida albicans and Candida glabrata adhered cells and biofilms. SN (average diameter 5 nm) were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. Minimal inhibitory concentration (MIC) tests were performed for C. albicans (n = 2) and C. glabrata (n = 2) grown in suspension following the Clinical Laboratory Standards Institute microbroth dilution method. SN were applied to adhered cells (2 h) or biofilms (48 h) and after 24 h of contact their effect was assessed by enumeration of colony forming units (CFUs) and quantification of total biomass (by crystal violet staining). The MIC results showed that SN were fungicidal against all strains tested at very low concentrations (0.4-3.3 μg ml(-1)). Furthermore, SN were more effective in reducing biofilm biomass when applied to adhered cells (2 h) than to pre-formed biofilms (48 h), with the exception of C. glabrata ATCC, which in both cases showed a reduction ∼90%. Regarding cell viability, SN were highly effective on adhered C. glabrata and respective biofilms. On C. albicans the effect was not so evident but there was also a reduction in the number of viable biofilm cells. In summary, SN may have the potential to be an effective alternative to conventional antifungal agents for future therapies in Candida-associated denture stomatitis.

  14. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    NASA Astrophysics Data System (ADS)

    Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang

    2016-11-01

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag+ (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO3) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV-vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10-16 nm. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications.

  15. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization

    PubMed Central

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-01-01

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (106 ~ 109 Ω/◻). PMID:26839126

  16. A Filter-based Surface Enhanced Raman Spectroscopic Assay for Rapid Detection of Chemical Contaminants.

    PubMed

    Gao, Siyue; Glasser, Jessica; He, Lili

    2016-02-19

    We demonstrate a method to fabricate highly sensitive surface-enhanced Raman spectroscopic (SERS) substrates using a filter syringe system that can be applied to the detection of various chemical contaminants. Silver nanoparticles (Ag NPs) are synthesized via reduction of silver nitrate by sodium citrate. Then the NPs are aggregated by sodium chloride to form nanoclusters that could be trapped in the pores of the filter membrane. A syringe is connected to the filter holder, with a filter membrane inside. By loading the nanoclusters into the syringe and passing through the membrane, the liquid goes through the membrane but not the nanoclusters, forming a SERS-active membrane. When testing the analyte, the liquid sample is loaded into the syringe and flowed through the Ag NPs coated membrane. The analyte binds and concentrates on the Ag NPs coated membrane. Then the membrane is detached from the filter holder, air dried and measured by a Raman instrument. Here we present the study of the volume effect of Ag NPs and sample on the detection sensitivity as well as the detection of 10 ppb ferbam and 1 ppm ampicillin using the developed assay.

  17. Improving the visible light photocatalytic activity of mesoporous TiO2 via the synergetic effects of B doping and Ag loading

    NASA Astrophysics Data System (ADS)

    Tian, Baozhu; Shao, Zhimang; Ma, Yunfei; Zhang, Jinlong; Chen, Feng

    2011-11-01

    B-doped together with Ag-loaded mesoporous TiO2 (Ag/B-TiO2) was prepared by a two-step hydrothermal method in the presence of boric acid, triblock copolymer surfactant, and silver nitrate, followed by heat treatment. The obtained samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption. It was revealed that all samples consist of highly crystalline anatase with mesoporous structure. For Ag/B-TiO2, B was doped into TiO2 matrix in the form of both interstitial B and substitutional B while Ag was deposited on the surface of B-TiO2 in the form of metallic silver. Compared with the single B-doped or Ag-loaded TiO2 one, mesoporous Ag/B-TiO2 exhibits much higher visible light photocatalytic activity for the degradation of Rhodamine 6G, which can be ascribed to the synergistic effects of B doping and Ag loading by narrowing the band gap of the photocatalyst and preventing the fast recombination of the photogenerated charge carriers, respectively.

  18. Quantitative assessment of silver-stained nucleolar organizer region in odontogenic cysts to correlate the growth and malignant potentiality

    PubMed Central

    Biswas, Sailendra Nath; Paul, R R; Ray, Jay Gopal; Majumdar, Sumit; Uppala, Divya

    2017-01-01

    Context: The most common and important odontogenic cyst involving jaws is the odontogenic keratocyst (OKC) or primordial cyst, the dentigerous cyst and the radicular cyst. These cysts all though do not show similar behavior, they all have the potentiality to recur. Silver nitrate staining of the nucleolar organizer regions (AgNORs) of the benign and malignant lesions is becoming very useful as a diagnostic indicator. Thus, the aim of this study is to assess the diagnostic potential of AgNORs in the cystic epithelium of common odontogenic cysts. Materials and Methods: Archived specimens of odontogenic cysts were stained with hematoxylin and eosin stain and AgNOR stain. Results: The comparative evaluation of the AgNOR counts was done among the three varieties of odontogenic cysts, i.e., radicular cysts, dentigerous cysts and OKC and were observed that the mean for OKC was significantly higher than that of radicular cyst. Conclusion: Therefore, AgNor could be used as an efficient tool for comparative evaluation of microscopic features such as epithelial thickness, surface keratinization and mural proliferation in dentigerous cyst to that of the AgNOR count. PMID:29391734

  19. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization.

    PubMed

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-03

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻).

  20. In vitro susceptibility of spiroplasmas to heavy-metal salts.

    PubMed

    Whitmore, S C; Rissler, J F; Davis, R E

    1983-01-01

    The susceptibility of six spiroplasma strains to heavy-metal salt was characterized in terms of minimal inhibitory concentrations and minimal biocidal concentrations in broth tube dilution tests. The strains were most susceptible to mercuric chloride and silver nitrate; less susceptible to copper sulfate, cobalt chloride, lead nitrate, and cadmium sulfate; and least susceptible to nickel chloride and zinc sulfate. Spiroplasma citri strains Maroc R8A2 and C189 were the most susceptible to five of eight heavy-metal salts, and honeybee spiroplasma strain AS576 and Spiroplasma floricola strain 23-6 were generally the least susceptible. The difference between the minimal biocidal concentrations and the minimal inhibitory concentrations was greater for certain heavy-metal salts than for others.

  1. Optimizing the synthesis conditions of silver nanoparticles using corn starch and their catalytic reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Salaheldin, Hosam I.

    2018-06-01

    In this study, silver nanoparticles (SNPs) were synthesised in an aqueous solution of corn starch. To fabricate the SNPs, reaction conditions, such as varying silver nitrate () concentration, time, temperature and solution pH of the reaction, were optimized. Since, the optimum reaction conditions were found 1 mmo l‑1, 15 min and , respectively. Then, to study the role of pH on SNP synthesis, varying pH values of the solution (3, 5, 7, 9 and 11) were investigated. Subsequently, the obtained silver/starch nanocomposites were characterised using different techniques. The x-ray diffraction (XRD) results revealed that the particles were face-centred cubic (FCC), and had an average particle size of 7.5 nm. This was confirmed by high-resolution transmission electron microscopy (HR-TEM) images. Moreover, the synthesised SNPs, at different pH values, were used as nanocatalyst for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. Under optimum reaction conditions, the higher catalytic activity was obtained with SNPs synthesised at pH 11 compared to lower pH of 7 or 9. Therefore, the rapid, reproducible, cost-effective silver/starch nanocomposite can be widely used for various applications such as drug manufacturing (e.g. analgesics and antipyretics) and the removal of pollutants from wastewater.

  2. Cellulose nanocrystals as templates for cetyltrimethylammonium bromide mediated synthesis of Ag nanoparticles and their novel use in PLA films.

    PubMed

    Yalcinkaya, E E; Puglia, D; Fortunati, E; Bertoglio, F; Bruni, G; Visai, L; Kenny, J M

    2017-02-10

    In the present paper, we reported how cellulose nanocrystals (CNC) from microcrystalline cellulose have the capacity to assist in the synthesis of metallic nanoparticles chains. A cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as modifier for CNC surface. Silver nanoparticles were synthesized on CNC, and nanoparticle density and size were optimized by varying concentrations of nitrate and reducing agents, and the reduction time. The experimental conditions were optimized for the synthesis and the resulting Ag grafted CNC (Ag-g-CNC) were characterized by means of TGA, SEM, FTIR and XRD, and then introduced in PLA matrix. PLA nanocomposite containing silver grafted cellulose nanocrystals (PLA/0.5Ag-g-1CNC) was characterized by optical and thermal analyses and the obtained data were compared with results from PLA nanocomposites containing 1% wt. of CNC (PLA/1CNC), 0.5% wt. of silver nanoparticles (PLA/0.5Ag) and hybrid system containing CNC and silver in the same amount (PLA/1CNC/0.5Ag). The results demonstrated that grafting of silver nanoparticles on CNC positively affected the thermal degradation process and cold crystallization processes of PLA matrix. Finally, the antibacterial activity of the different systems was studied at various incubation times and temperatures, showing the best performance for PLA/1CNC/0.5Ag based nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Influence of silver doping on surface defect characteristics of TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, S. K., E-mail: surya@pu.ac.in; Rani, Mamta; Department of Physics, DAV University Jalandhar, - 144 001, Punjab

    2015-08-28

    In the present work, we proposed a novel silver doped TiO{sub 2} polyethylene conjugated films to improve the performance of DSSCs. Oxides nanoparticles dispersed in a semiconducting polymer form the active layer of a solar cell. Localized surface plasmon resonance effects associated with spatially dispersed silver (Ag) nanoparticles can be exploited to enhance the light-harvesting efficiency, the photocurrent density and the overall light-to electrical-energy-conversion efficiency of high-area DSSCs based TiO{sub 2} photoanodes. Silver doped titanium dioxide (TiO{sub 2}:Ag) is prepared by sol-gel technique and deposited on fluorine doped indium oxide (FTO) coated glass substrates by using doctor blade technique atmore » 550°C from aqueous solutions of titanium butoxide and silver nitrate precursors. The effect of Ag doping on electrical properties of films is studied. The Ag-TiO{sub 2} films are about 548 times more photosensitive as compare to the pure TiO{sub 2} sample. The presence of metallic Ag nanoparticles and oxygen vacancy on the surface of TiO{sub 2} nanoparticles promotes the separation of photogenerated electron-hole pairs and thus enhances the photosensitivity. Photoconduction mechanism of all prepared samples is investigated by performing transient photoconductivity measurements on TiO{sub 2} and Ag-TiO{sub 2} films keeping intensity of light constant.« less

  4. Preparative separation of α- and β-santalenes and (Z)-α- and (Z)-β-santalols using silver nitrate-impregnated silica gel medium pressure liquid chromatography and analysis of sandalwood oil.

    PubMed

    Daramwar, Pankaj P; Srivastava, Prabhakar Lal; Priyadarshini, Balaraman; Thulasiram, Hirekodathakallu V

    2012-10-07

    The major sesquiterpene constituents of East-Indian sandalwood oil (Z)-α- and (Z)-β-santalols have shown to be responsible for most of the biological activities and organoleptic properties of sandalwood oil. The work reported here describes the strategic use of medium pressure liquid chromatography (MPLC) for the separation of both α- and β-santalenes and (Z)-α- and (Z)-β-santalols. Silver nitrate impregnated silica gel was used as the stationary phase in MPLC for quantitative separation of α- and β-santalenes and (Z)-α- and (Z)-β-santalols with mobile phases hexane and dichloromethane, respectively. The purities of α-santalene and (Z)-α-santalol obtained were >96%; however, β-santalene and (Z)-β-santalol were obtained with their respective inseparable epi-isomers. Limits of quantification (LoQ) relative to the FID detector were measured for important sesquiterpene alcohols of heartwood oil of S. album using serial dilutions of the standard stock solutions and demonstrated that the quality of the commercial sandalwood oil can be assessed for the content of individual sesquiterpene alcohols regulated by Australian Standard (AS2112-2003), International Organization for Standardization ISO 3518:2002 (E) and European Union (E. U.).

  5. Tailoring the Hydrothermal Synthesis of Stainless Steel Wire Sieve-Supported Ag-Doped ZnO Nanowires to Optimize Their Photo-catalytic Activity

    NASA Astrophysics Data System (ADS)

    Jing, W. X.; Shi, J. F.; Xu, Z. P.; Jiang, Z. D.; Wei, Z. Y.; Zhou, F.; Wu, Q.; Cui, Q. B.

    2018-03-01

    Batches of un-doped and Ag-doped ZnO nanowires (ZnONWs) were prepared hydrothermally on stainless steel wire sieves at varied Zn2+ concentrations of the growth solution and at different Ag+ concentrations of the silver nitrate solution. Methylene blue solution was degraded with these as-prepared ZnONWs in the presences of ultraviolet irradiation. It is found that both the processing parameters greatly affect the surface textures, wettability, and photo-activity of the ZnONWs. The latter synthesizing parameter is optimized only after the former one has been finely regulated. The un-doped and Ag-doped ZnONWs at Zn2+ concentration of 75 mM of the growth solution and at Ag+ concentration of3 mM of the silver nitrate solution both produce Gaussian rough surfaces and in each batch are most hydrophilic. Therefore, in the related batch the contacting surface area of the catalyst is the largest, the hydroxyl radicals attached on the top ends of corresponding ZnONWs the most, and the catalytic activity of these catalysts the optimal. Besides these, the latter synthesizing parameter affects the photo-activity of Ag-doped ZnONWs more significantly than the former one does that of un-doped ZnONWs.

  6. Endothelial gaps and adherent leukocytes in allergen-induced early- and late-phase plasma leakage in rat airways.

    PubMed Central

    Baluk, P.; Bolton, P.; Hirata, A.; Thurston, G.; McDonald, D. M.

    1998-01-01

    Exposure of sensitized individuals to antigen can induce allergic responses in the respiratory tract, manifested by early and late phases of vasodilatation, plasma leakage, leukocyte influx, and bronchoconstriction. Similar responses can occur in the skin, eye, and gastrointestinal tract. The early-phase response involves mast cell mediators and the late-phase response is leukocyte dependent, but the mechanism of leakage is not understood. We sought to identify the leaky blood vessels, to determine whether these vessels contained endothelial gaps, and to analyze the relationship of the gaps to adherent leukocytes, using biotinylated lectins or silver nitrate to stain the cells in situ and Monastral blue as a tracer to quantify plasma leakage. Most of the leakage occurred in postcapillary venules (< 40-microns diameter), whereas most of the leukocyte migration (predominantly neutrophils) occurred in collecting venules. Capillaries and arterioles did not leak. Endothelial gaps were found in the leaky venules, both by silver nitrate staining and by scanning electron microscopy, and 94% of the gaps were distinct from sites of leukocyte adhesion or migration. We conclude that endothelial gaps contribute to both early and late phases of plasma leakage induced by antigen, but most leakage occurs upstream to sites of leukocyte adhesion. Images Figure 3 Figure 5 Figure 6 Figure 7 PMID:9626051

  7. Carotenoid stabilized gold and silver nanoparticles derived from the Actinomycete Gordonia amicalis HS-11 as effective free radical scavengers.

    PubMed

    Sowani, Harshada; Mohite, Pallavi; Damale, Shailesh; Kulkarni, Mohan; Zinjarde, Smita

    2016-12-01

    The Actinomycete Gordonia amicalis HS-11 produced orange pigments when cultivated on n-hexadecane as the sole carbon source. When cells of this pigmented bacterium were incubated with 1mM chloroauric acid (HAuCl 4 ) or silver nitrate (AgNO 3 ), pH 9.0, at 25°C, gold and silver nanoparticles, respectively, were obtained in a cell associated manner. It was hypothesized that the pigments present in the cells may be mediating metal reduction reactions. After solvent extraction and High Performance Liquid Chromatography, two major pigments displaying UV-vis spectra characteristic of carotenoids were isolated. These were identified on the basis of Atmospheric Pressure Chemical Ionization Mass Spectrometry (APCI-MS) in the positive mode as 1'-OH-4-keto-γ-carotene (Carotenoid K) and 1'-OH-γ-carotene (Carotenoid B). The hydroxyl groups present in the carotenoids were eliminated under alkaline conditions and provided the reducing equivalents necessary for synthesizing nanoparticles. Cell associated and carotenoid stabilized nanoparticles were characterized by different analytical techniques. In vitro free radical scavenging activities of cells (control, gold and silver nanoparticle loaded), purified carotenoids and carotenoid stabilized gold and silver nanoparticles were evaluated. Silver nanoparticle loaded cells and carotenoid stabilized silver nanoparticles exhibited improved nitric oxide (NO) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activities compared to their control and gold counterparts. This paper thus reports cell associated nanoparticle synthesis by G. amicalis, describes for the first time the role of carotenoid pigments in metal reduction processes and demonstrates enhanced free radical scavenging activities of the carotenoid stabilized nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Boron-doped diamond microdisc arrays: electrochemical characterisation and their use as a substrate for the production of microelectrode arrays of diverse metals (Ag, Au, Cu)via electrodeposition.

    PubMed

    Simm, Andrew O; Banks, Craig E; Ward-Jones, Sarah; Davies, Trevor J; Lawrence, Nathan S; Jones, Timothy G J; Jiang, Li; Compton, Richard G

    2005-09-01

    A novel boron-doped diamond (BDD) microelectrode array is characterised with electrochemical and atomic force microscopic techniques. The array consists of 40 micron-diameter sized BDD discs which are separated by 250 microns from their nearest neighbour in a hexagonal arrangement. The conducting discs can be electroplated to produce arrays of copper, silver or gold for analytical purposes in addition to operating as an array of BDD-microelectrodes. Proof-of-concept is shown for four separate examples; a gold plated array for arsenic detection, a copper plated array for nitrate analysis, a silver plated array for hydrogen peroxide monitoring and last, cathodic stripping voltammetry for lead at the bare BDD-array.

  9. Trace detection of perchlorate in industrial-grade emulsion explosive with portable surface-enhanced Raman spectroscopy.

    PubMed

    Nuntawong, N; Eiamchai, P; Limwichean, S; Wong-ek, B; Horprathum, M; Patthanasettakul, V; Leelapojanaporn, A; Nakngoenthong, S; Chindaudom, P

    2013-12-10

    Recent analyses by ion-exchange chromatography (IC) showed that, beside nitrate, the majority of the industrial-grade emulsion explosives, extensively used by most separatists in the southern Thailand insurgency, contained small traces of perchlorate anions. In demand for the faster, reliable, and simple detection methods, the portable detection of nitrate and perchlorate became the great interest for the forensic and field-investigators. This work proposed a unique method to detect the trace amount of perchlorate in seven industrial-grade emulsion explosives under the field tests. We utilized the combination of the portable Raman spectroscope, the developed surfaced-enhanced Raman substrates, and the sample preparation procedures. The portable Raman spectroscope with a laser diode of 785 nm for excitation and a thermoelectric-cooled CCD spectrometer for detection was commercially available. The SERS substrates, with uniformly distributed nanostructured silver nanorods, were fabricated by the DC magnetron sputtering system, based on the oblique-angle deposition technique. The sample preparation procedures were proposed based on (1) pentane extraction technique and (2) combustion technique, prior to being dissolved in the purified water. In comparison to the ion chromatography and the conventional Raman measurements, our proposed methods successfully demonstrated the highly sensitive detectability of the minimal trace amount of perchlorate from five of the explosives with minimal operating time. This work was therefore highly practical to the development for the forensic analyses of the post-blast explosive residues under the field-investigations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Determination of epichlorohydrin and 1,3-dichloro-2-propanol in synthesis of cationic etherifying reagent by headspace gas chromatography.

    PubMed

    Tao, Zheng-Yi; Chai, Xin-Sheng; Wu, Shu-Bin

    2011-09-16

    This study demonstrates a headspace gas chromatographic(HS-GC) technique for the determination of residual epichlorohydrin (ECH) and generated 1,3-dichloro-2-propanol (DCP) in synthesis process of 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHTAC). By a weight-based sampling method, coupled with significant dilution in 15.8% sodium sulfate and 0.1% silver nitrate mixed solution rapidly, the sample for HS-GC analysis is prepared. Based on the reaction stoichiometry, the conversion (R) of CHTAC during the synthesis process can be calculated from sampling weight and GC peak area. The results showed that the method has a good measurement precision (RSD<2.5%) and accuracy (recovery=101-104%) for the quantification of both ECH and DCP in the process samples. The present method is simple and accurate, which can be used for the efficient determination of the CHTAC conversion in the synthesis research. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Efficacy of Two Novel Anodic Coatings for Enhanced Corrosion Protection of Aluminum Armor Alloys

    DTIC Science & Technology

    2014-01-01

    nitrate solution of a given metal electrolytically impregnating the porous oxide with the desired metal (5)—for example, silicon (Si) and silver (Ag...performed using the same equipment and data acquisition program previously described. Cells were filled with a 3.5% sodium chloride solution and the...electrochemical impedance spectroscopy h hour HATE Hydraulic Adhesion Test Equipment in inch NaCl sodium chloride OCP open circuit potential OSD

  12. Determination of arsenic in geological materials by electrothermal atomic-absorption spectrometry after hydride generation

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.; Welsch, E.P.

    1979-01-01

    Rock and soil samples are decomposed with HClO4-HNO3; after further treatment, arsine is generated and absorbed in a dilute silver nitrate solution. Aliquots of this solution are injected into a carbon rod atomizer. Down to 1 ppm As in samples can be determined and there are no significant interferences, even from chromium in soils. Good results were obtained for geochemical reference samples. ?? 1979.

  13. Green synthesis, characterisation and bioactivity of plant-mediated silver nanoparticles using Decalepis hamiltonii root extract.

    PubMed

    Rashmi, Venkatasubbaiah; Sanjay, Konasur R

    2017-04-01

    Consistent search of plants for green synthesis of silver nanoparticles (SNPs) is an important arena in Nanomedicine. This study focuses on synthesis of SNPs using bioreduction of silver nitrate (AgNO 3 ) by aqueous root extract of Decalepis hamiltonii . The biosynthesis of SNPs was monitored by UV-vis analysis at absorbance maxima 432 nm. The fluorescence emission spectra of SNPs illustrated the broad emission peak 450-483 nm at different excitation wavelengths. The surface characteristics were studied by scanning electron microscope and atomic force microscopy, showed spherical shape of SNPs and dynamic light scattering analysis confirmed the average particle size 32.5 nm and the presence of metallic silver was confirmed by energy dispersive X-ray. Face centred cubic structure with crystal size 33.3 nm was revealed by powder X-ray diffraction. Fourier transform infrared spectroscopy indicated the biomolecules involved in the reduction mainly polyols and phenols present in root extracts were found to be responsible for the synthesis of SNPs. The stability and charge on SNPs were revealed by zeta potential analysis. In addition, on therapeutic forum, the synthesised SNPs elicit antioxidant and antimicrobial activity against Bacillus cereus , Bacillus licheniformis , Escherichia coli , Pseudomonas aeruginosa and Staphylococcus aureus .

  14. Versatile synthesis of PHMB-stabilized silver nanoparticles and their significant stimulating effect on fodder beet (Beta vulgaris L.).

    PubMed

    Gusev, Alexander А; Kudrinsky, Alexey A; Zakharova, Olga V; Klimov, Alexey I; Zherebin, Pavel M; Lisichkin, George V; Vasyukova, Inna A; Denisov, Albert N; Krutyakov, Yurii A

    2016-05-01

    Silver nanoparticles (AgNPs) are well-known bactericidal agents. However, information about the influence of AgNPs on the morphometric parameters and biochemical status of most important agricultural crops is limited. The present study reports the influence of AgNPs stabilized with cationic polymer polyhexamethylene biguanide hydrochloride (PHMB) on growth, development, and biochemical status of fodder beet Beta vulgaris L. under laboratory and greenhouse conditions. PHMB-stabilized AgNPs were obtained via sodium borohydride reduction of silver nitrate in an aqueous solution. The average diameter of thus prepared AgNPs was 10 nm. It appears that the results of experiments with laboratory-grown beets in the nanosilver-containing medium, where germination of seeds and growth of roots were suppressed, do not correlate with the results of greenhouse experiments. The observed growth-stimulating action of PHMB-stabilized AgNPs can be explained by the change of activity of oxidases and, consequently, by the change of auxins amount in plant tissues. In beets grown in the presence of PHMB-stabilized AgNPs no negative deviations of biological parameters from normal values were registered. Furthermore, the SEM/EDS examination revealed no presence of silver in the tissues of the studied plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Influence of salinity on the toxicity of silver nanoparticles (AgNPs) and silver nitrate (AgNO3) in halophilic microalgae, Dunaliella salina.

    PubMed

    Johari, Seyed Ali; Sarkheil, Mehrdad; Behzadi Tayemeh, Mohammad; Veisi, Shakila

    2018-06-13

    This study aim to evaluate the potential toxic effects of citrate coated silver nanoparticles (AgNPs) and ionic silver (AgNO 3 ) on marine microalgae Dunaliella salina under three different salinities (35, 70, and 140 g/L). The toxicity was investigated according to modified OECD guideline (No. 201) by 72 h exposure of microalgae to various concentrations of each of the chemicals in Walne's saline media. According to the results, the growth inhibitory effects of AgNPs and AgNO 3 increased significantly coincidence with increasing time and concentration compared to control (P < 0.05). The values of median inhibitory concentrations (IC 50 ) of AgNPs and AgNO 3 based on average specific growth rate and yield for D. salina increased significantly with elevation of water salinity from 35 to 140 g/L (P < 0.05). Toxicity of AgNO 3 based on IC 50 to D. salina was significantly higher than AgNPs at all salinities (P < 0.05). In conclusion, both AgNPs and AgNO 3 inhibited the growth of D. salina at different saltwater medium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Analysis of bacterial growth by UV/Vis spectroscopy and laser reflectometry

    NASA Astrophysics Data System (ADS)

    Peña-Gomar, Mary Carmen; Viramontes-Gamboa, Gonzalo; Peña-Gomar, Grethel; Ortiz Gutiérrez, Mauricio; Hernández Ramírez, Mariano

    2012-10-01

    This work presents a preliminary study on an experimental analysis of the lactobacillus bacterial growth in liquid medium with and without the presence of silver nanoparticles. The study aims to quantify the bactericidal effect of nanoparticles. Quantification of bacterial growth at different times was analyzed by spectroscopy UV/visible and laser reflectometry near the critical angle. From these two techniques the best results were obtained by spectroscopy, showing that as the concentration of silver nanoparticles increases, it inhibits the growth of bacteria, it only grows 63% of the population. Regarding Laser Reflectometry, the variation of reflectance near the critical angle is measured in real time. The observed results at short times are reasonable, since they indicate a gradual growth of the bacteria and the stabilization stage of the population. But at long time, the observed results show abrupt changes caused by temperature effects. The bacteria were isolated from samples taken from commercial yougurth, and cultured in MRS broth at pH 6.5, and controlled with citric acid and constant temperature of 32 °C. Separately, silver nanoparticles were synthesized at 3 °C from aqueous solutions of 1.0 mM silver nitrate and chemically reduced with sodium borohydride to 2.0 mM, with magnetic stirring.

  17. Noble metal superparticles and methods of preparation thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yugang; Hu, Yongxing

    A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution ismore » cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.« less

  18. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria.

    PubMed

    Naqvi, Syed Zeeshan Haider; Kiran, Urooj; Ali, Muhammad Ishtiaq; Jamal, Asif; Hameed, Abdul; Ahmed, Safia; Ali, Naeem

    2013-01-01

    Biological synthesis of nanoparticles is a growing innovative approach that is relatively cheaper and more environmentally friendly than current physicochemical processes. Among various microorganisms, fungi have been found to be comparatively more efficient in the synthesis of nanomaterials. In this research work, extracellular mycosynthesis of silver nanoparticles (AgNPs) was probed by reacting the precursor salt of silver nitrate (AgNO3) with culture filtrate of Aspergillus flavus. Initially, the mycosynthesis was regularly monitored by ultraviolet-visible spectroscopy, which showed AgNP peaks of around 400-470 nm. X-ray diffraction spectra revealed peaks of different intensities with respect to angle of diffractions (2θ) corresponding to varying configurations of AgNPs. Transmission electron micrographs further confirmed the formation of AgNPs in size ranging from 5-30 nm. Combined and individual antibacterial activities of the five conventional antibiotics and AgNPs were investigated against eight different multidrug-resistant bacterial species using the Kirby-Bauer disk-diffusion method. The decreasing order of antibacterial activity (zone of inhibition in mm) of antibiotics, AgNPs, and their conjugates against bacterial group (average) was; ciprofloxacin + AgNPs (23) . imipenem + AgNPs (21) > gentamycin + AgNPs (19) > vancomycin + AgNPs (16) > AgNPs (15) . imipenem (14) > trimethoprim + AgNPs (14) > ciprofloxacin (13) > gentamycin (11) > vancomycin (4) > trimethoprim (0). Overall, the synergistic effect of antibiotics and nanoparticles resulted in a 0.2-7.0 (average, 2.8) fold-area increase in antibacterial activity, which clearly revealed that nanoparticles can be effectively used in combination with antibiotics in order to improve their efficacy against various pathogenic microbes.

  19. Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies.

    PubMed

    Arumai Selvan, D; Mahendiran, D; Senthil Kumar, R; Kalilur Rahiman, A

    2018-03-01

    Phyto-synthesis of silver nanoparticles (AgNPs) was achieved using aqueous garlic, green tea and turmeric extracts, and characterized by different spectroscopic techniques. Phytochemical analysis revealed the presence of rich amount of biochemicals in these extracts, which serve as reducing and capping agents for converting silver nitrate into AgNPs. FT IR spectroscopy confirmed the role of biomolecules in the bioreduction and efficient stabilization of AgNPs. UV-Vis DRS spectra showed a band around 450 nm characteristics of AgNPs. XRD patterns revealed the crystalline nature of the synthesized AgNPs with fcc structure. SEM and TEM analysis revealed the spherical shape of the synthesized AgNPs with an average particle size of 8 nm. EDX analysis confirmed the purity of the synthesized AgNPs with a strong signal at 3.2 keV. The antioxidant activity was assessed by ABTS, DPPH, p-NDA, H 2 O 2 and DMSO scavenging assays, in which the AgNPs synthesized using green method showed remarkable activity with respect to the standard antioxidants ascorbic acid and rutin. In vitro cytotoxicity activity was tested on four cancer cell lines such as human breast adenocarcinoma (MCF-7), cervical (HeLa), epithelioma (Hep-2) and lung (A549) along with one normal human dermal fibroblasts (NHDF) cell line. The AgNPs synthesized using turmeric extract exhibits excellent antioxidant and cytotoxicity activity compared to that synthesized using other extracts. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application

    NASA Astrophysics Data System (ADS)

    Yu, Binyu; Leung, Kar Man; Guo, Qiuquan; Lau, Woon Ming; Yang, Jun

    2011-03-01

    TiO2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO2 and Ag-TiO2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO2 and TiO2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag0 state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm - 2 and in the dark respectively. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination.

  1. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles

    PubMed Central

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M

    2015-01-01

    Background Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. Methods The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet–visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. Results The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Conclusion Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties. PMID:25565802

  2. Green synthesis of silver nanoparticles using flower extract of Malva sylvestris and investigation of their antibacterial activity.

    PubMed

    Mahmoodi Esfanddarani, Hassan; Abbasi Kajani, Abolghasem; Bordbar, Abdol-Khalegh

    2018-06-01

    High-quality colloidal silver nanoparticles (AgNP) were synthesised via a green approach by using hydroalcoholic extracts of Malva sylvestris . Silver nitrate was used as a substrate ion while the plant extract successfully played the role of reducing and stabilising agents. The synthesised nanoparticles were carefully characterised by using transmission electron microscopy, atomic-force microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. The maximum absorption wavelengths of the colloidal solutions synthesised using 70 and 96% ethanol and 100% methanol, as extraction solvents, were 430, 485 and 504 nm, respectively. Interestingly, the size distribution of nanoparticles depended on the used solvent. The best particle size distribution belonged to the nanoparticles synthesised by 70% ethanol extract, which was 20-40 nm. The antibacterial activity of the synthesised nanoparticles was studied on Escherichia coli , Staphylococcus aureus and Streptococcus pyogenes using disk diffusion, minimum inhibitory concentrations and minimum bactericidal concentrations assays. The best antibacterial activity obtained for the AgNPs produced by using 96% ethanolic extract.

  3. Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad.

    PubMed

    Costa, C; Conte, A; Buonocore, G G; Del Nobile, M A

    2011-08-15

    In this work, silver-montmorillonite (Ag-MMT) antimicrobial nanoparticles have been obtained by allowing silver ions from nitrate solutions to replace the Na(+) of natural montmorillonite and then to be reduced by a thermal treatment. Ag-MMT were used as active antimicrobial compounds to improve the shelf life of fresh fruit salad. In order to assess their influence on product shelf life, sensorial and microbiological quality has been monitored during the storage. The microbiological quality was determined by monitoring the principal spoilage microorganisms (mesophilic and psychrotrophic bacteria, coliforms, lactic acid bacteria, yeasts and molds). Additionally, the evolution of sensorial quality was assessed by monitoring color, odor, firmness and product overall quality. The Ag-MMT nanoparticles seemed to be effective in inhibiting microbial growth, above all at the highest tested concentration. Consequently, the sensorial quality of samples stored in the active packaging appeared to be better preserved. Thus, experimental results showed that a significant shelf life prolongation of fresh fruit salad can be obtained by a straightforward new packaging system. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol.

    PubMed

    Alshehri, Saad M; Almuqati, Turki; Almuqati, Naif; Al-Farraj, Eida; Alhokbany, Norah; Ahamad, Tansir

    2016-10-20

    A novel catalyst for the reduction of 4-nitrophenol (4-NP) was prepared using carboxyl group-functionalized multiwalled carbon nanotubes (MWCNTs), polymer matrix, and silver nanoparticles (AgNPs). The AgNPs were prepared by the reduction of silver nitrate by trisodium citrate in the MWCNTs-polymer nanocomposite; the size of the synthesized AgNPs was found to be 3nm (average diameter). The synthesized nanocomposites were characterized using several analytical techniques. Ag@MWCNTs-polymer composite in the presence of sodium borohydride (NaBH4) in aqueous solution is an effective catalyst for the reduction of 4-NP. The apparent kinetics of reduction has a pseudo-first-order kinetics, and the rate constant and catalytic activity parameter were found to be respectively 7.88×10(-3)s(-1)and 11.64s(-1)g(-1). The MWCNTs-polymer nanocomposite renders stability to AgNPs against the environment and the reaction medium, which means that the Ag@MWCNTs-polymer composite can be re-used for many catalytic cycles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Synthesis and PPy loading for enhanced visible-light photocatalytic activity of new POMOFs containing silver chains

    NASA Astrophysics Data System (ADS)

    Sha, Jing-Quan; Yang, Xi-Ya; Sheng, Ning; Liu, Guo-Dong; Li, Ji-Sen; Yang, Jian-Bo

    2018-07-01

    A new polyoxometalate based hybrid compound containing Ag-Ag chain, [Ag29(trz)18][SiWV7WVI5O40] (Ag29SiW12), was synthesized by the simple one-step hydrothermal reaction of silver nitrate, 1, 2, 3- triazole (trz), and [SiW12O40]4- polyanion. Single crystal X-ray diffraction analysis shows that the [SiW12O40]4- polyanions as coordinating guests were successfully encapsulated into the metal-organic framework host matrix. The Keggin [SiW12O40]n- polyanions as templates and trz molecules as the small and delicate ligands play the decisive factors to the formation of silver chain. In addition, to improve the photocatalytic activity of the new compound Ag29SiW12, its polypyrrole (PPy) composite (PPy@Ag29SiW12) has been prepared and exhibits excellent photocatalytic activity (93.1% for MB and 48.8% for RhB) and selectivity adsorption (16.2 mg/g for MB and 1.60 mg/g for RhB) for organic dyes under the visible light radiation.

  6. Silver nanoparticles-containing dual-function hydrogels based on a guar gum-sodium borohydride system

    PubMed Central

    Dai, Lei; Nadeau, Ben; An, Xingye; Cheng, Dong; Long, Zhu; Ni, Yonghao

    2016-01-01

    Dual-function hydrogels, possessing both stimuli-responsive and self-healing properties, have recently attracted attention of both chemists and materials scientists. Here we report a new paradigm using natural polymer (guar gum, GG) and sodium borohydride (NaBH4), for the preparation of silver nanoparticles (AgNPs)-containing smart hydrogels in a simple, fast and economical way. NaBH4 performs as a reducing agent for AgNPs synthesis using silver nitrate (AgNO3) as the precursor. Meanwhile, sodium metaborate (NaBO2) (from NaBH4) behaves as a cross-linking agent between GG molecular chains. The AgNPs/GG hydrogels with excellent viscoelastic properties can be obtained within 3 min at room temperature without the addition of other cross-linkers. The resultant AgNPs/GG hydrogels are flowable and injectable, and they possess excellent pH/thermal responsive properties. Additionally, they exhibit rapid self-healing capacity. This work introduces a facile and scale-up way to prepare a class of hydrogels that can have great potential to biomedical and other industrial applications. PMID:27819289

  7. An in vitro study of silver and fluoride ions on remineralization of demineralized enamel and dentine.

    PubMed

    Zhi, Q H; Lo, E C M; Kwok, A C Y

    2013-03-01

    The purpose of this study was to compare the effect of silver fluoride, silver nitrate and potassium fluoride on remineralization of demineralized enamel and dentine in vitro. Forty premolars were cut into cuboidal blocks. Acid-resistant varnish was painted onto each block to cover all surfaces, except two windows, one in enamel and one in dentine. The tooth blocks were placed in demineralizing solution for 96 hours. They were then randomly divided into four groups of 10 blocks each and immersed in solutions of AgF, AgNO(3), KF or water for 3 minutes. Afterwards, they were immersed in a remineralizing solution for 108 hours. Micro CT scanning was conducted before and after remineralization. The increase in linear attentuation coefficient (LAC) for the enamel lesions after remineralization was 1.08/cm, 0.95/cm, 0.86/cm and 0.60/cm in the AgF, AgNO(3), KF and control groups, respectively (ANOVA, p < 0.001; AgF, AgNO(3), KF > control; AgF > KF). The increase in LAC for the dentine lesions was 1.01/cm, 0.92/cm, 0.88/cm and 0.53/cm, respectively (ANOVA, p < 0.001; AgF, AgNO(3), KF > control). Topical application of silver or fluoride ions can increase the mineral density of demineralized enamel and dentine lesions during remineralization. The synergistic effect of silver and fluoride ions is relatively small. © 2013 Australian Dental Association.

  8. Photobiosynthesis of stable and functional silver/silver chloride nanoparticles with hydrolytic activity using hyperthermophilic β-glucosidases with industrial potential.

    PubMed

    Araújo, Juscemácia N; Tofanello, Aryane; da Silva, Viviam M; Sato, Juliana A P; Squina, Fabio M; Nantes, Iseli L; Garcia, Wanius

    2017-09-01

    The β-glucosidases are important enzymes employed in a large number of processes and industrial applications, including biofuel production from biomass. Therefore, in this study, we reported for the first time the photobiosynthesis of stable and functional silver/silver chloride nanoparticles (Ag/AgCl-NPs) using two hyperthermostable bacterial β-glucosidases with industrial potential. The syntheses were straightforward and rapid processes carried out by mixing β-glucosidase and silver nitrate (in buffer 10mM Tris-HCl, pH 8) under irradiation with light (over a wavelength range of 450-600nm), therefore, compatible with the green chemistry procedure. Synthesized Ag/AgCl-NPs were characterized using a series of physical techniques. Absorption spectroscopy showed a strong absorption band centered at 460nm due to surface plasmon resonance of the Ag-NPs. X-ray diffraction analysis revealed that the Ag/AgCl-NPs were purely crystalline in nature. Under electron microscopy, Ag/AgCl-NPs of variable diameter ranging from 10 to 100nm can be visualized. Furthermore, electron microscopy, zeta potential and Fourier transform infrared spectroscopy results confirmed the presence of β-glucosidases coating and stabilizing the Ag/AgCl-NPs. Finally, the results showed that the enzymatic activities were maintained in the β-glucosidases assisted Ag/AgCl-NPs. The information described here should provide a useful basis for future studies of β-glucosidases assisted Ag/AgCl-NPs, including biotechnological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Pattern transition between periodic Liesegang pattern and crystal growth regime in reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Lagzi, István; Ueyama, Daishin

    2009-01-01

    The pattern transition between periodic precipitation pattern formation (Liesegang phenomenon) and pure crystal growth regimes is investigated in silver nitrate and potassium dichromate system in mixed agarose-gelatin gel. Morphologically different patterns were found depending on the quality of the gel, and transition between these typical patterns can be controlled by the concentration of gelatin in mixed gel. Effect of temperature and hydrodynamic force on precipitation pattern structure was also investigated.

  10. Influence of chlorhexidine digluconate concentration and application time on resin-dentin bond strength durability.

    PubMed

    Loguercio, Alessandro D; Stanislawczuk, Rodrigo; Polli, Luceli G; Costa, Jully A; Michel, Milton D; Reis, Alessandra

    2009-10-01

    Although it is known that chlorhexidine application may preserve resin-dentin bonds from degradation, the lowest optimal concentration and application time have yet to be established. This study evaluated the effects of different concentrations of chlorhexidine digluconate and different application times on the preservation of resin-dentin bonds formed using two etch-and-rinse adhesives. In experiment 1, after acid etching, the occlusal demineralized dentin was rewetted either with water or with 0.002, 0.02, 0.2, 2, or 4% chlorhexidine for 60 s. In experiment 2, the surfaces were rewetted with water, or with 0.002% or 2% chlorhexidine for 15 or 60 s. After this, both adhesives and composite resin were applied and light-cured. Bonded sticks (0.8 mm(2)) were tested under tension (0.5 mm min(-1)) immediately or after 6 months of storage in water. Two bonded sticks from each tooth were immersed in silver nitrate and analyzed quantitatively using scanning electron microscopy. Reductions in microtensile bond strengths and higher silver nitrate uptake were observed for both adhesives when the rewetting procedure was performed with water. Stable bonds were maintained for up to 6 months under all chlorhexidine conditions tested, irrespective of the chlorhexidine concentration and application time. The use of 0.002% chlorhexidine for 15 s seems to be sufficient to preserve resin-dentin interfaces over a 6-month period.

  11. Component Analysis and Identification of Black Tahitian Cultured Pearls From the Oyster Pinctada margaritifera Using Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Shi, L.; Wang, Y.; Liu, X.; Mao, J.

    2018-03-01

    Raman spectroscopy, ultraviolet, visible, and near infrared (UV-Vis-NIR) reflectance spectroscopy, and X-ray fluorescence (XRF) spectroscopy were used to characterize black Tahitian cultured pearls and imitations of these saltwater cultured pearls produced by γ-irradiation, and by coloring of cultured pearls with silver nitrate or organic dyes. Raman spectra indicated that aragonite was the major constituent of these four types of pearl. Using Raman spectroscopy at an excitation wavelength of 514 nm, black Tahitian cultured pearls exhibited characteristic 1100-1700 cm-1 bands. These bands were attributed to various organic components, including conchiolin and other black biological pigments. The peaks shown by saltwater cultured pearls colored with organic dyes varied with the type of dye used. Tahitian cultured and organic-dye-treated saltwater cultured pearls were easily identified by Raman spectroscopy. UV-Vis-NIR reflectance spectra showed bands at 408, 497, and 700 nm derived from porphyrin pigment and other black pigments. The spectra of dye-treated black saltwater pearls showed absorption peaks at 216, 261, 300, and 578 nm. The 261-nm absorption band disappeared from the spectra of γ-irradiated saltwater cultured pearls. This suggests the degradation of conchiolin in the γ-irradiated saltwater cultured pearls. XRF analysis revealed the presence of Ag on the surface of silver nitrate-dyed saltwater cultured pearls.

  12. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline

    NASA Astrophysics Data System (ADS)

    He, Yi; Peng, Rufang

    2014-11-01

    In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (˜25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng.

  13. Microleakage of adhesive restorative materials.

    PubMed

    Gladys, S; Van Meerbeek, B; Lambrechts, P; Vanherle, G

    2001-06-01

    To compare the marginal sealing ability of two conventional and one polyacid-modified resin-based composite, and two conventional and three resin-modified glass-ionomers in conventional cylindrical box cavities following a silver-staining microleakage evaluation method. In 80 freshly extracted and caries-free human third molars, three standardized cylindrical butt-joint cavities were prepared: the first cavity in coronal enamel, the second at the cemento-enamel junction (CEJ) and the third completely in root cementum. A control group of 10 additional teeth was chosen. After the cavities were restored randomly using the eight restorative materials tested, the specimens were first stored in distilled water at 37 degrees C for 7 days and then thermocycled (500 cycles). Thereafter, the specimens were centrifuged for 10 min in plastic bottles containing 50 wt% silver nitrate aqueous solution. The degree of microleakage was recorded at four different depths along the restoration margins using an optical stereomicroscope equipped with a measuring gauge. None of the tested systems prevented microleakage completely, but the extent of leakage decreased towards the bottom of the restorations. The resin-modified glass-ionomers performed better than the conventional resin-based composites and conventional glass-ionomers. Distinct leakage patterns were recorded among all materials investigated. Complete marginal sealing could still not be reached with the new adhesive restorative materials.

  14. Approximate Bayesian evaluations of measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Possolo, Antonio; Bodnar, Olha

    2018-04-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) includes formulas that produce an estimate of a scalar output quantity that is a function of several input quantities, and an approximate evaluation of the associated standard uncertainty. This contribution presents approximate, Bayesian counterparts of those formulas for the case where the output quantity is a parameter of the joint probability distribution of the input quantities, also taking into account any information about the value of the output quantity available prior to measurement expressed in the form of a probability distribution on the set of possible values for the measurand. The approximate Bayesian estimates and uncertainty evaluations that we present have a long history and illustrious pedigree, and provide sufficiently accurate approximations in many applications, yet are very easy to implement in practice. Differently from exact Bayesian estimates, which involve either (analytical or numerical) integrations, or Markov Chain Monte Carlo sampling, the approximations that we describe involve only numerical optimization and simple algebra. Therefore, they make Bayesian methods widely accessible to metrologists. We illustrate the application of the proposed techniques in several instances of measurement: isotopic ratio of silver in a commercial silver nitrate; odds of cryptosporidiosis in AIDS patients; height of a manometer column; mass fraction of chromium in a reference material; and potential-difference in a Zener voltage standard.

  15. Ergonomic Synthesis Suitable for Industrial Production of Silver-Festooned Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Khan, G. R.; Khan, R. A.

    2015-07-01

    For maximizing productivity, minimizing cost, time-boxing process and optimizing human effort, a single-step, cost-effective, ultra-fast and environmentally benign synthesis suitable for industrial production of nanocrystalline ZnO, and Ag-doped ZnO has been reported in this paper. The synthesis based on microwave-supported aqueous solution method used zinc acetate dehydrate and silver nitrate as precursors for fabrication of nanorods. The synthesized products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Vis-NIR spectroscopy. The undoped and Ag-doped ZnO nanorods crystallized in a hexagonal wurtzite structure having spindle-like morphology. The blue shift occurred at absorption edge of Ag-doped ZnO around 260 nm compared to 365 nm of bulk ZnO. The red shift occurred at Raman peak site of 434 cm-1 compared to characteristic wurtzite phase peak of ZnO (437 cm-1). The bandgap energies were found to be 3.10 eV, 3.11 eV and 3.18 eV for undoped, 1% Ag-doped, and 3% Ag-doped ZnO samples, respectively. The TEM results provided average particle sizes of 17 nm, 15 nm and 13 nm for undoped, and 1% and 3% Ag-doped ZnO samples, respectively.

  16. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, G.A.

    1985-03-05

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  17. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, George A.

    1986-01-01

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  18. In Situ Synthesis of Antimicrobial Silver Nanoparticles within Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry for Wound Healing Application.

    PubMed

    GhavamiNejad, Amin; Park, Chan Hee; Kim, Cheol Sang

    2016-03-14

    A multifunctional hydrogel that combines the dual functionality of both antifouling and antimicrobial capacities holds great potential for many bioapplications. Many approaches and different materials have been employed to synthesize such a material. However, a systematic study, including in vitro and in vivo evaluation, on such a material as wound dressings is highly scarce at present. Herein, we report on a new strategy that uses catecholic chemistry to synthesize antimicrobial silver nanoparticles impregnated into antifouling zwitterionic hydrogels. For this purpose, hydrophobic dopamine methacrylamide monomer (DMA) was mixed in an aqueous solution of sodium tetraborate decahydrate and DMA monomer became soluble after increasing pH to 9 due to the complexation between catechol groups and boron. Then, cross-linking polymerization of zwitterionic monomer was carried out with the solution of the protected dopamine monomer to produce a new hydrogel. When this new hydrogel comes in contact with a silver nitrate solution, silver nanoparticles (AgNPs) are formed in its structure as a result of the redox property of the catechol groups and in the absence of any other external reducing agent. The results obtained from TEM and XRD measurements indicate that AgNPs with diameters of around 20 nm had formed within the networks. FESEM images confirmed that the silver nanoparticles were homogeneously incorporated throughout the hydrogel network, and FTIR spectroscopy demonstrated that the catechol moiety in the polymeric backbone of the hydrogel is responsible for the reduction of silver ions into the AgNPs. Finally, the in vitro and in vivo experiments suggest that these mussel-inspired, antifouling, antibacterial hydrogels have great potential for use in wound healing applications.

  19. In vitro studies to show sequestration of matrix metalloproteinases by silver-containing wound care products.

    PubMed

    Walker, Michael; Bowler, Philip G; Cochrane, Christine A

    2007-09-01

    Excess or "uncontrolled" proteinase activity in the wound bed has been implicated as one factor that may delay or compromise wound healing. One proteinase group--matrix metalloproteinases--includes collagenases, elastase, and gelatinases and can be endogenous (cell) or exogenous (bacterial) in origin. A study was conducted to assess the ability of five silver-containing wound care products to reduce a known matrix metalloproteinase supernatant concentration in vitro. Four silver-containing wound dressings (a carboxy-methyl cellulose, a nanocrystalline, a hydro-alginate, and a collagen/oxidized regenerated cellulose composite dressing), along with a 0.5% aqueous silver nitrate [w/v] solution and controls for matrix metalloproteinase-2 and matrix metalloproteinase-9 sourced from ex vivo dermal tissue and blood monocytes, respectively, were used. Extracts were separated and purified using gelatine-Sepharose column chromatography and dialysis and polyacrylamide gel electrophoretic zymography was used to analyze specific matrix metalloproteinase activity. All dressings and the solution were shown to sequester both matrix metalloproteinases. The silver-containing carboxy-methyl cellulose dressing showed significantly greater sequestration for matrix metalloproteinase-2 at 6 and 24 hours (P< 0.001) compared to the other treatments. For matrix metalloproteinase-9, both the carboxy-methyl cellulose dressing and the oxidized regenerated cellulose dressing achieved significant sequestration when compared to the other treatments at 24 hours (P <0.001), which was maintained to 48 hours (P < 0.001). Results from this study show that silver-containing dressings are effective in sequestering matrix metalloproteinase-2 and -9 and that this can be achieved without a sacrificial protein (eg, collagen). Although the varying ability of wound dressings to sequester matrix metalloproteinases has been shown in vitro, further in vivo evidence is required to confirm these findings.

  20. Substrate thermal conductivity controls the ability to manufacture microstructures via laser-induced direct write

    NASA Astrophysics Data System (ADS)

    Tomko, John A.; Olson, David H.; Braun, Jeffrey L.; Kelliher, Andrew P.; Kaehr, Bryan; Hopkins, Patrick E.

    2018-01-01

    In controlling the thermal properties of the surrounding environment, we provide insight into the underlying mechanisms driving the widely used laser direct write method for additive manufacturing. We find that the onset of silver nitrate reduction for the formation of direct write structures directly corresponds to the calculated steady-state temperature rises associated with both continuous wave and high-repetition rate, ultrafast pulsed laser systems. Furthermore, varying the geometry of the heat affected zone, which is controllable based on in-plane thermal diffusion in the substrate, and laser power, allows for control of the written geometries without any prior substrate preparation. These findings allow for the advance of rapid manufacturing of micro- and nanoscale structures with minimal material constraints through consideration of the laser-controllable thermal transport in ionic liquid/substrate media.

Top