Science.gov

Sample records for sim flight project

  1. QuakeSim Project Networking

    NASA Astrophysics Data System (ADS)

    Kong, D.; Donnellan, A.; Pierce, M. E.

    2012-12-01

    QuakeSim is an online computational framework focused on using remotely sensed geodetic imaging data to model and understand earthquakes. With the rise in online social networking over the last decade, many tools and concepts have been developed that are useful to research groups. In particular, QuakeSim is interested in the ability for researchers to post, share, and annotate files generated by modeling tools in order to facilitate collaboration. To accomplish this, features were added to the preexisting QuakeSim site that include single sign-on, automated saving of output from modeling tools, and a personal user space to manage sharing permissions on these saved files. These features implement OpenID and Lightweight Data Access Protocol (LDAP) technologies to manage files across several different servers, including a web server running Drupal and other servers hosting the computational tools themselves.

  2. SimGraph: A Flight Simulation Data Visualization Workstation

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Kenney, Patrick S.

    1997-01-01

    Today's modern flight simulation research produces vast amounts of time sensitive data, making a qualitative analysis of the data difficult while it remains in a numerical representation. Therefore, a method of merging related data together and presenting it to the user in a more comprehensible format is necessary. Simulation Graphics (SimGraph) is an object-oriented data visualization software package that presents simulation data in animated graphical displays for easy interpretation. Data produced from a flight simulation is presented by SimGraph in several different formats, including: 3-Dimensional Views, Cockpit Control Views, Heads-Up Displays, Strip Charts, and Status Indicators. SimGraph can accommodate the addition of new graphical displays to allow the software to be customized to each user s particular environment. A new display can be developed and added to SimGraph without having to design a new application, allowing the graphics programmer to focus on the development of the graphical display. The SimGraph framework can be reused for a wide variety of visualization tasks. Although it was created for the flight simulation facilities at NASA Langley Research Center, SimGraph can be reconfigured to almost any data visualization environment. This paper describes the capabilities and operations of SimGraph.

  3. Effect of Ceramic Ball and Hybrid Stainless Steel Bearing/Wheel Combinations on the Lifetime of a Precision Translation Stage for the SIM Flight Project

    NASA Technical Reports Server (NTRS)

    Lo, C. John; Klein, Kerry; Jones, William R., Jr.; Jansen, Mark J.; Wemhoner, Jens

    2009-01-01

    A study of hybrid material couples using the Spiral Orbit Tribometer (SOT) was initiated to investigate both lubricated (Pennzane X2000 and Brayco 815Z) and unlubricated Si3N4, 440C SS, Rex 20, Cronidur X30 and X40 plates with Cerbec SN-101-C (Si3N4) and 440C balls. The hybrid wheel/bearing assembly will be used on the Linear Optical Delay Line (LODL) stage as an element of the NASA Space Interferometry Mission (SIM). SIM is an orbiting interferometer linking a pair of telescopes within the spacecraft and, by using an interferometry technique and several precision optical stages, is able to measure the motions of known stars much better than current ground or space based systems. This measurement will provide the data to "infer" the existence of any plants, undetectable by other methods, orbiting these known stars.

  4. Flight projects overview

    NASA Technical Reports Server (NTRS)

    Levine, Jack

    1988-01-01

    Information is given in viewgraph form on the activities of the Flight Projects Division of NASA's Office of Aeronautics and Space Technology. Information is given on space research and technology strategy, current space flight experiments, the Long Duration Exposure Facility, the Orbiter Experiment Program, the Lidar In-Space Technology Experiment, the Ion Auxiliary Propulsion System, the Arcjet Flight Experiment, the Telerobotic Intelligent Interface Flight Experiment, the Cryogenic Fluid Management Flight Experiment, the Industry/University In-Space Flight Experiments, and the Aeroassist Flight Experiment.

  5. Recent Status of SIM Lite Astrometric Observatory Mission: Flight Engineering Risk Reduction Activities

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Dekens, Frank; Nemati, Bijan; An, Xin; Carson, Johnathan

    2010-01-01

    The SIM Lite Astrometric Observatory is a mission concept for a space-borne instrument to perform micro-arc-second narrow-angle astrometry to search 60 to 100 nearby stars for Earth-like planets, and to perform global astrometry for a broad astrophysics program. The instrument consists of two Michelson stellar interferometers and a telescope. The first interferometer chops between the target star and a set of reference stars. The second interferometer monitors the attitude of the instrument in the direction of the target star. The telescope monitors the attitude of the instrument in the other two directions. The main enabling technology development for the mission was completed during phases A & B. The project is currently implementing the developed technology onto flight-ready engineering models. These key engineering tasks will significantly reduce the implementation risks during the flight phases C & D of the mission. The main optical interferometer components, including the astrometric beam combiner, the fine steering optical mechanism, the path-length-control and modulation optical mechanisms, focal-plane camera electronics and cooling heat pipe, are currently under development. Main assemblies are built to meet flight requirements and will be subjected to flight qualification level environmental testing (random vibration and thermal cycling) and performance testing. This paper summarizes recent progress in engineering risk reduction activities.

  6. Denoising and Multivariate Analysis of Time-Of-Flight SIMS Images

    SciTech Connect

    Wickes, Bronwyn; Kim, Y.; Castner, David G.

    2003-08-30

    Time-of-flight SIMS (ToF-SIMS) imaging offers a modality for simultaneously visualizing the spatial distribution of different surface species. However, the utility of ToF-SIMS datasets may be limited by their large size, degraded mass resolution and low ion counts per pixel. Through denoising and multivariate image analysis, regions of similar chemistries may be differentiated more readily in ToF-SIMS image data. Three established denoising algorithms down-binning, boxcar and wavelet filtering were applied to ToF-SIMS images of different surface geometries and chemistries. The effect of these filters on the performance of principal component analysis (PCA) was evaluated in terms of the capture of important chemical image features in the principal component score images, the quality of the principal component

  7. Using TOF-SIMS for Evaluation of Flight Hardware

    NASA Astrophysics Data System (ADS)

    Goreva, Y. S.; McCoy, T. J.

    2012-09-01

    We use Time-of-Flight Secondary Ion Mass Spectrometry to evaluate GENESIS silicon wafer solar wind collectors as well as candidate materials for construction of the OSIRIS-REx asteroid regolith collection mechanism.

  8. C60 SIMS with a Hybrid-Quadrupole Orthogonal time-of-flight Mass Spectrometer

    PubMed Central

    Carado, Anthony; Passarelli, M. K.; Kozole, Joseph; Wingate, J. E.; Winograd, Nicholas; Loboda, A. V.

    2009-01-01

    A hybrid quadrupole orthogonal time-of-flight mass spectrometer optimized for MALDI and electrospray ionization has been equipped with a C60 cluster ion source. This configuration is shown to exhibit a number of characteristics that improve the performance of traditional time-of-flight secondary ion mass spectrometry (SIMS) experiments for the analysis of complex organic materials, and potentially, for chemical imaging. Specifically, the primary ion beam is operated as a continuous rather than a pulsed beam, resulting in up to 4 orders of magnitude greater ion fluence on the target. The secondary ions are extracted at very low voltage into 8 millitorr of N2 gas introduced for collisional focusing and cooling purposes. This extraction configuration is shown to yield secondary ions that rapidly lose memory of the mechanism of their birth, yielding tandem mass spectra that are identical for SIMS and MALDI. With implementation of ion trapping, the extraction efficiency is shown to be equivalent to that found in traditional TOF-SIMS machines. Examples are given, for a variety of substrates that illustrate mass resolution of 12,000–15,600 with mass range for inorganic compounds to m/z 40,000. Preliminary chemical mapping experiments show that with added sensitivity, imaging in the MS/MS mode of operation is straightforward. In general, the combination of MALDI and SIMS is shown to add capabilities to each technique, providing a robust platform for TOF-SIMS experiments that already exists in a large number of laboratories. PMID:18844371

  9. Flight Project Data Book

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Office of Space Science and Applications (OSSA) is responsible for the overall planning, directing, executing, and evaluating that part of the overall NASA program that has the goal of using the unique characteristics of the space environment to conduct a scientific study of the universe, to understand how the Earth works as an integrated system, to solve practical problems on Earth, and to provide the scientific and technological research foundation for expanding human presence beyond Earth orbit into the solar system. OSSA guides its program toward leadership through its pursuit of excellence across the full spectrum of disciplines. OSSA pursues these goals through an integrated program of ground-based laboratory research and experimentation, suborbital flight of instruments on airplanes, balloons, and sounding rockets; flight of instruments and the conduct of research on the Shuttle/Spacelab system and on Space Station Freedom; and development and flight of automated Earth-orbiting and interplanetary spacecraft. The OSSA program is conducted with the participation and support of other Government agencies and facilities, universities throughout the United States, the aerospace contractor community, and all of NASA's nine Centers. In addition, OSSA operates with substantial international participation in many aspects of our Space Science and Applications Program. OSSA's programs currently in operation, those approved for development, and those planned for future missions are described.

  10. Flight Mechanics Project

    NASA Technical Reports Server (NTRS)

    Steck, Daniel

    2009-01-01

    This report documents the generation of an outbound Earth to Moon transfer preliminary database consisting of four cases calculated twice a day for a 19 year period. The database was desired as the first step in order for NASA to rapidly generate Earth to Moon trajectories for the Constellation Program using the Mission Assessment Post Processor. The completed database was created running a flight trajectory and optimization program, called Copernicus, in batch mode with the use of newly created Matlab functions. The database is accurate and has high data resolution. The techniques and scripts developed to generate the trajectory information will also be directly used in generating a comprehensive database.

  11. Studies of polyisobutylene using time-of-flight secondary ion mass spectrometry (TOF-SIMS)

    NASA Astrophysics Data System (ADS)

    Xu, Keyang; Proctor, Andrew; Hercules, David M.

    1995-05-01

    A series of polyisobutylenes (PIBs) with average molecular weights from 800 to 4 × 105 were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The PIB spectra consist of a sequence of repeating patterns. Four clusters are observed within each pattern. Each cluster corresponds to several species, which are neutral fragments generated from polymer chain scission, cationized by a silver ion. The species formed have various numbers of double bonds and/or rings, and are separated by two mass units. The data indicate that the average molecular weight of PIB affects the ion formation. It changes the relative cluster intensities in a pattern, and also varies the cluster structures. More fragment-ion species can be detected from a high molecular weight polymer, and the unsaturated fragments are predominant. In addition to the large fragments, small fragment ions also provide information about some structurally important features.

  12. SIM Lite Astrometric Observatory progress report

    NASA Astrophysics Data System (ADS)

    Marr, James C., IV; Shao, Michael; Goullioud, Renaud

    2010-07-01

    The SIM Lite Astrometric Observatory (aka SIM Lite), a micro-arcsecond astrometry space mission, has been developed in response to NASA's indefinite deferral of the SIM PlanetQuest mission. The SIM Lite mission, while significantly more affordable than the SIM PlanetQuest mission concept, still addresses the full breadth of SIM science envisioned by two previous National Research Council (NRC) Astrophysics Decadal Surveys at the most stringent "Goal" level of astrometric measurement performance envisioned in those surveys. Over the past two years, the project has completed the conceptual design of the SIM Lite mission using only the completed SIM technology; published a 250 page book describing the science and mission design (available at the SIM website: http://sim.jpl.nasa.gov); been subject to an independent cost and technical readiness assessment by the Aerospace Corporation; and submitted a number of information responses to the NRC Astro2010 Decadal Survey. The project also conducted an exoplanet-finding capability double blind study that clearly demonstrated the ability of the mission to survey 60 to 100 nearby sun-like dwarf stars for terrestrial, habitable zone planets in complex planetary systems. Additionally, the project has continued Engineering Risk Reduction activities by building brassboard (form, fit & function to flight) version of key instrument elements and subjecting them to flight qualification environmental and performance testing. This paper summarizes the progress over the last two years and the current state of the SIM Lite project.

  13. SIM Lite Astrometric Observatory Progress Report

    NASA Technical Reports Server (NTRS)

    Marr, James C., IV; Shao, Michael; Goullioud, Renaud

    2010-01-01

    The SIM Lite Astrometric Observatory (aka SIM Lite), a micro-arcsecond astrometry space mission, has been developed in response to NASA's indefinite deferral of the SIM PlanetQuest mission. The SIM Lite mission, while significantly more affordable than the SIM PlanetQuest mission concept, still addresses the full breadth of SIM science envisioned by two previous National Research Council (NRC) Astrophysics Decadal Surveys at the most stringent 'Goal' level of astrometric measurement performance envisioned in those surveys. Over the past two years, the project has completed the conceptual design of the SIM Lite mission using only the completed SIM technology; published a 250 page book describing the science and mission design (available at the SIM website: http://sim.jpl.nasa.gov); been subject to an independent cost and technical readiness assessment by the Aerospace Corporation; and submitted a number of information responses to the NRC Astro2010 Decadal Survey. The project also conducted an exoplanet-finding capability double blind study that clearly demonstrated the ability of the mission to survey 60 to 100 nearby sun-like dwarf stars for terrestrial, habitable zone planets in complex planetary systems. Additionally, the project has continued Engineering Risk Reduction activities by building brassboard (form, fit and function to flight) version of key instrument elements and subjecting them to flight qualification environmental and performance testing. This paper summarizes the progress over the last two years and the current state of the SIM Lite project.

  14. X-43C Flight Demonstrator Project Overview

    NASA Technical Reports Server (NTRS)

    Moses, Paul L.

    2003-01-01

    The X-43C Flight Demonstrator Project is a joint NASA-USAF hypersonic propulsion technology flight demonstration project that will expand the hypersonic flight envelope for air-breathing engines. The Project will demonstrate sustained accelerating flight through three flights of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs will be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA's Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center off the coast of California over water in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration (approximately 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 (approximately 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air-Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides the background for NASA's current hypersonic flight demonstration efforts.

  15. Time-of-flight SIMS/MSRI reflectron mass analyzer and method

    DOEpatents

    Smentkowski, Vincent S.; Gruen, Dieter M.; Krauss, Alan R.; Schultz, J. Albert; Holecek, John C.

    1999-12-28

    A method and apparatus for analyzing the surface characteristics of a sample by Secondary Ion Mass Spectroscopy (SIMS) and Mass Spectroscopy of Recoiled Ions (MSRI) is provided. The method includes detecting back scattered primary ions, low energy ejected species, and high energy ejected species by ion beam surface analysis techniques comprising positioning a ToF SIMS/MSRI mass analyzer at a predetermined angle .theta., where .theta. is the angle between the horizontal axis of the mass analyzer and the undeflected primary ion beam line, and applying a specific voltage to the back ring of the analyzer. Preferably, .theta. is less than or equal to about 120.degree. and, more preferably, equal to 74.degree.. For positive ion analysis, the extractor, lens, and front ring of the reflectron are set at negative high voltages (-HV). The back ring of the reflectron is set at greater than about +700V for MSRI measurements and between the range of about +15 V and about +50V for SIMS measurements. The method further comprises inverting the polarity of the potentials applied to the extractor, lens, front ring, and back ring to obtain negative ion SIMS and/or MSRI data.

  16. Characterisation of 0.22 caliber rimfire gunshot residues by time-of-flight secondary ion mass spectrometry (TOF-SIMS): a preliminary study.

    PubMed

    Coumbaros, J; Kirkbride, K P; Klass, G; Skinner, W

    2001-06-01

    The application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) for the characterisation of gunshot residue (GSR) from 0.22 caliber rimfire ammunition is reported. Results obtained by TOF-SIMS were compared with conventional scanning electron microscopy (SEM) studies. As could be expected, TOF-SIMS exhibited greater elemental sensitivity than SEM equipped with energy dispersive X-ray detection (SEM-EDX), and was also capable of detecting fragments characteristic of inorganic compounds. This preliminary study indicates that TOF-SIMS offers substantial potential for forensic GSR examinations as a complementary technique to SEM-EDX. In addition TOF-SIMS is applicable to the analysis of individual particles in the typical size range encountered in GSR casework.

  17. Flight project data book, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Office of Space Science and Applications (OSSA) is responsible for planning, directing, executing, and evaluating that part of the overall NASA program that has as its goal the use of the unique characteristics of the space environment to conduct a scientific study of the universe, to solve practical problems on Earth, and to provide the scientific research foundation for expanding human presence beyond Earth into the solar system. OSSA manages the development of NASA's flight instrumentation for space science and applications including free flying spacecraft, Shuttle and Space Station payloads, and the suborbital sounding rockets, balloons, and aircraft programs. A summary is provided of future flight missions, including those approved and currently under development and those which appear in the OSSA strategic plan.

  18. Autonomous Formation Flight: Project Overview

    NASA Technical Reports Server (NTRS)

    Cole, Jennifer; Cobleigh, Brent; Vachon, Jake; Ray, Ronald J.; Ennix, Kimberly; Walsh, Kevin

    2008-01-01

    Objectives: a) Map the vortex effects; b) Formation Auto-Pilot Requirements. Two NASA F/A-18 aircraft in formation: a) NASA 845 Systems Research Aircraft; b) NASA 847 Support Aircraft. Flight Conditions: M = 0.56, 25000 feet (Subsonic condition); b) M = 0.86, 36000 feet (Transonic condition). Nose-To-Tail (N2T) Distances: 20, 55, 110 and 190 feet. Lessons learned: a) Controllable flight in vortex is possible with pilot feedback (displays); b) Position hold at best C(sub D), is attainable; c) Best drag location is close to max rolling moment; e) Drag reductions demonstrated up to 22% (WFE up to 20%); f) Induced drag results compare favorably with simple prediction model; g) "Sweet Spot" (lateral & vertical area > 25%) is larger than predicted; h) Larger wing overlaps result in sign reversals in roll, yaw; i) As predicted, favorable effects degrade gradually with increased nose-to-tail distances after peaking at 3 span lengths aft; and j) Demonstrated - over 100 N mi (>15%) range improvement and 650 lbs (14%) fuel savings on actual simulated F/A-18 cruise mission.

  19. Humanoid Flight Metabolic Simulator Project

    NASA Technical Reports Server (NTRS)

    Ross, Stuart

    2015-01-01

    NASA's Evolvable Mars Campaign (EMC) has identified several areas of technology that will require significant improvements in terms of performance, capacity, and efficiency, in order to make a manned mission to Mars possible. These include crew vehicle Environmental Control and Life Support System (ECLSS), EVA suit Portable Life Support System (PLSS) and Information Systems, autonomous environmental monitoring, radiation exposure monitoring and protection, and vehicle thermal control systems (TCS). (MADMACS) in a Suit can be configured to simulate human metabolism, consuming crew resources (oxygen) in the process. In addition to providing support for testing Life Support on unmanned flights, MADMACS will also support testing of suit thermal controls, and monitor radiation exposure, body zone temperatures, moisture, and loads.

  20. SIM PlanetQuest Key Project Precursor Observations to Detect Gas Giant Planets Around Young Stars

    NASA Technical Reports Server (NTRS)

    Tanner, Angelle; Beichman, Charles; Akeson, Rachel; Ghez, Andrea; Grankin, Konstantin N.; Herbst, William; Hillenbrand, Lynne; Huerta, Marcos; Konopacky, Quinn; Metchev, Stanimir; Mohanty, Subhanjoy; Prato, L.; Simon, Michal

    2008-01-01

    We present a review of precursor observing programs for the SIM PlanetQuest Key project devoted to detecting Jupiter mass planets around young stars. In order to ensure that the stars in the sample are free of various sources of astrometric noise that might impede the detection of planets, we have initiated programs to collect photometry, high contrast images, interferometric data and radial velocities for stars in both the Northern and Southern hemispheres. We have completed a high contrast imaging survey of target stars in Taurus and the Pleiades and found no definitive common proper motion companions within one arcsecond (140 AU) of the SIM targets. Our radial velocity surveys have shown that many of the target stars in Sco-Cen are fast rotators and a few stars in Taurus and the Pleiades may have sub-stellar companions. Interferometric data of a few stars in Taurus show no signs of stellar or sub-stellar companions with separations of <5 mas. The photometric survey suggests that approximately half of the stars initially selected for this program are variable to a degree (1(sigma) >0.1 mag) that would degrade the astrometric accuracy achievable for that star. While the precursor programs are still a work in progress, we provide a comprehensive list of all targets ranked according to their viability as a result of the observations taken to date. By far, the observable that removes the most targets from the SIM-YSO program is photometric variability.

  1. 2nd Generation QUATARA Flight Computer Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Keys, Andrew; Fraticelli, Jose Molina; Capo-Iugo, Pedro; Peeples, Steven

    2015-01-01

    Single core flight computer boards have been designed, developed, and tested (DD&T) to be flown in small satellites for the last few years. In this project, a prototype flight computer will be designed as a distributed multi-core system containing four microprocessors running code in parallel. This flight computer will be capable of performing multiple computationally intensive tasks such as processing digital and/or analog data, controlling actuator systems, managing cameras, operating robotic manipulators and transmitting/receiving from/to a ground station. In addition, this flight computer will be designed to be fault tolerant by creating both a robust physical hardware connection and by using a software voting scheme to determine the processor's performance. This voting scheme will leverage on the work done for the Space Launch System (SLS) flight software. The prototype flight computer will be constructed with Commercial Off-The-Shelf (COTS) components which are estimated to survive for two years in a low-Earth orbit.

  2. Storage Information Management System (SIMS) Spaceflight Hardware Warehousing at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kubicko, Richard M.; Bingham, Lindy

    1995-01-01

    Goddard Space Flight Center (GSFC) on site and leased warehouses contain thousands of items of ground support equipment (GSE) and flight hardware including spacecraft, scaffolding, computer racks, stands, holding fixtures, test equipment, spares, etc. The control of these warehouses, and the management, accountability, and control of the items within them, is accomplished by the Logistics Management Division. To facilitate this management and tracking effort, the Logistics and Transportation Management Branch, is developing a system to provide warehouse personnel, property owners, and managers with storage and inventory information. This paper will describe that PC-based system and address how it will improve GSFC warehouse and storage management.

  3. Deep Space Network utilization for flight projects, calendar year 1981

    NASA Technical Reports Server (NTRS)

    Adkins, C. L.; Goto, E. K.

    1982-01-01

    A report on the utilization of the Deep Space Network during calendar year 1981 in support of all flight projects is presented. The network expended 63% of its total capability in support of Space Flight projects.

  4. SIM-Lite Update

    NASA Technical Reports Server (NTRS)

    Shao, Michael

    2008-01-01

    Discussion focus on: SIM-Lite Instrument Update - 6m baseline, 50cm, approximately 900M cost; Technology Update - Systematic errors and floor; SIM-Lite terrestrial planet discovery capability; Double blind multiple planet study summary; and the changing landscape of exoplanet science and the role of SIM-Lite. Slides include technology to flight component engineering; instrumental systematic errors; ultra deep search for Earth clones; double blind test, astrometric detection of Earths in multiplanet systems; the current era of exoplanet science and where SIM-Lite fits in; the next frontier and where SIM-Lite fits in, why SIM is unique in discovering Earths; imaging planet status is uncertain without masses and ages; SIM role in establishing how planetary systems form and evolve; and SIM probes of broad planet mass range around young stars.

  5. Chemical and biological differentiation of three human breast cancer cell types using time-of-flight secondary ion mass spectrometry (TOF-SIMS)

    SciTech Connect

    Kulp, K S; Berman, E F; Knize, M G; Shattuck, D L; Nelson, E J; Wu, L; Montgomery, J L; Felton, J S; Wu, K J

    2006-01-09

    We use Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) to image and classify individual cells based on their characteristic mass spectra. Using statistical data reduction on the large data sets generated during TOF-SIMS analysis, similar biological materials can be differentiated based on a combination of small changes in protein expression, metabolic activity and cell structure. We apply this powerful technique to image and differentiate three carcinoma-derived human breast cancer cell lines (MCF-7, T47D and MDA-MB-231). In homogenized cells, we show the ability to differentiate the cell types as well as cellular compartments (cytosol, nuclear and membrane). These studies illustrate the capacity of TOF-SIMS to characterize individual cells by chemical composition, which could ultimately be applied to detect and identify single aberrant cells within a normal cell population. Ultimately, we anticipate characterizing rare chemical changes that may provide clues to single cell progression within carcinogenic and metastatic pathways.

  6. Analysis of organic and inorganic species on the surface of atmospheric aerosol using time-of-flight secondary ion mass spectrometry (TOF-SIMS)

    NASA Astrophysics Data System (ADS)

    Peterson, Richard E.; Tyler, Bonnie J.

    This work explores the utility of time-of-flight static secondary-ion mass spectrometry (TOF-SIMS) for the analysis of the surface organic layer on individual atmospheric aerosol particles. The surface sensitivity and minimal fragmentation available with TOF-SIMS suggest that it can be a powerful tool for the examination of the organic and inorganic species on the surface of individual particles. Cascade impactors were used to collect aerosol from summer 2000 Montana forest fires, winter snowmobile samples in Yellowstone National Park, Hawaiian lava and sea salt, from an Asian Dust event reaching Salt Lake City, Utah in April 2001 and from Salt Lake Valley summer urban aerosol. TOF-SIMS analysis and multivariate statistical techniques combined gave chemical and morphological information about the particles. Surfaces of the aerosol from forest fires, snowmobile exhaust, and sea salt were all dominated by aliphatic hydrocarbons and their amphiphilic derivatives. Each source showed a different organic chemical signature. The extent and composition of the organics layer which typically covers the surface of atmospheric particles are expected to effect all of the surface related aerosol properties such as health effects, the ability of the particle to activate and form cloud droplets, and the aggregation of particles as well as reactions between the particle and gas phase species.

  7. The Sim-SEQ Project: Comparison of Selected Flow Models for the S-3 Site

    SciTech Connect

    Mukhopadhyay, Sumit; Doughty, Christine A.; Bacon, Diana H.; Li, Jun; Wei, Lingli; Yamamoto, Hajime; Gasda, Sarah E.; Hosseini, Seyyed; Nicot, Jean-Philippe; Birkholzer, Jens

    2015-05-23

    Sim-SEQ is an international initiative on model comparison for geologic carbon sequestration, with an objective to understand and, if possible, quantify model uncertainties. Model comparison efforts in Sim-SEQ are at present focusing on one specific field test site, hereafter referred to as the Sim-SEQ Study site (or S-3 site). Within Sim-SEQ, different modeling teams are developing conceptual models of CO2 injection at the S-3 site. In this paper, we select five flow models of the S-3 site and provide a qualitative comparison of their attributes and predictions. These models are based on five different simulators or modeling approaches: TOUGH2/EOS7C, STOMP-CO2e, MoReS, TOUGH2-MP/ECO2N, and VESA. In addition to model-to-model comparison, we perform a limited model-to-data comparison, and illustrate how model choices impact model predictions. We conclude the paper by making recommendations for model refinement that are likely to result in less uncertainty in model predictions.

  8. 2010 NASA Dryden Flight Projects Video

    NASA Video Gallery

    NASA's Dryden Flight Research Center flew a wide variety of research, developmental and environmental science missions during 2010. This video montage produced by the NASA Dryden video team depicts...

  9. NASA Dryden 2010 Video Highlights Flight Projects

    NASA Video Gallery

    NASA's Dryden Flight Research Center flew a wide variety of research, developmental and environmental science missions during the last half of 2009 and the first half of 2010. This video montage de...

  10. Flight Research and Validation Formerly Experimental Capabilities Supersonic Project

    NASA Technical Reports Server (NTRS)

    Banks, Daniel

    2009-01-01

    This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).

  11. Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project

    NASA Technical Reports Server (NTRS)

    Bosworth, John

    2006-01-01

    A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions

  12. Real Time Imaging of Deuterium in a Duplex Stainless Steel Microstructure by Time-of-Flight SIMS

    PubMed Central

    Sobol, O.; Straub, F.; Wirth, Th.; Holzlechner, G.; Boellinghaus, Th.; Unger, W. E. S.

    2016-01-01

    For more than one century, hydrogen assisted degradation of metallic microstructures has been identified as origin for severe technical component failures but the mechanisms behind have not yet been completely understood so far. Any in-situ observation of hydrogen transport phenomena in microstructures will provide more details for further elucidation of these degradation mechanisms. A novel experiment is presented which is designed to elucidate the permeation behaviour of deuterium in a microstructure of duplex stainless steel (DSS). A hydrogen permeation cell within a TOF-SIMS instrument enables electrochemical charging with deuterium through the inner surface of the cell made from DSS. The outer surface of the DSS permeation cell exposed to the vacuum has been imaged by TOF-SIMS vs. increasing time of charging with subsequent chemometric treatment of image data. This in-situ experiment showed evidently that deuterium is permeating much faster through the ferrite phase than through the austenite phase. Moreover, a direct proof for deuterium enrichment at the austenite-ferrite interface has been found. PMID:26832311

  13. Dietary uptake of omega-3 fatty acids in mouse tissue studied by time-of-flight secondary ion mass spectrometry (TOF-SIMS).

    PubMed

    Sjövall, Peter; Rossmeisl, Martin; Hanrieder, Jörg; Kuda, Ondrej; Kopecky, Jan; Bryhn, Morten

    2015-07-01

    Dietary intake of omega-3 fatty acids is associated with considerable health benefits, including the prevention of metabolic disorders such as cardiovascular disease and type 2 diabetes. Furthermore, incorporation of the main omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), at the systemic level has been found to be more efficient when these fatty acids are supplied in the form of marine phospholipids compared to triglycerides. In this work, the uptake of omega-3 fatty acids and their incorporation in specific lipids were studied in adipose, skeletal muscle, and liver tissues of mice given high-fat diets with or without omega-3 supplements in the form of phospholipids or triglycerides using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results demonstrate significant uptake of EPA and DHA, and the incorporation of these fatty acids in specific lipid molecules, in all three tissue types in response to the dietary omega-3 supplements. Moreover, the results indicate reduced concentrations of arachidonic acid (AA) and depletion of lipids containing AA in tissue samples from mice given supplementary omega-3, as compared to the control mice. The effect on the lipid composition, in particular the DHA uptake and AA depletion, was found to be significantly stronger when the omega-3 supplement was supplied in the form of phospholipids, as compared to triglycerides. TOF-SIMS was found to be a useful technique for screening the lipid composition and simultaneously obtaining the spatial distributions of various lipid classes on tissue surfaces.

  14. F-15 837 IFCS Intelligent Flight Control System Project

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2007-01-01

    This viewgraph presentation reviews the use of Intelligent Flight Control System (IFCS) for the F-15. The goals of the project are: (1) Demonstrate Revolutionary Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions (2) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs. The motivation for the development are to reduce the chance and skill required for survival.

  15. The QuakeSim Project: Web Services for Managing Geophysical Data and Applications

    NASA Astrophysics Data System (ADS)

    Pierce, Marlon E.; Fox, Geoffrey C.; Aktas, Mehmet S.; Aydin, Galip; Gadgil, Harshawardhan; Qi, Zhigang; Sayar, Ahmet

    2008-04-01

    We describe our distributed systems research efforts to build the “cyberinfrastructure” components that constitute a geophysical Grid, or more accurately, a Grid of Grids. Service-oriented computing principles are used to build a distributed infrastructure of Web accessible components for accessing data and scientific applications. Our data services fall into two major categories: Archival, database-backed services based around Geographical Information System (GIS) standards from the Open Geospatial Consortium, and streaming services that can be used to filter and route real-time data sources such as Global Positioning System data streams. Execution support services include application execution management services and services for transferring remote files. These data and execution service families are bound together through metadata information and workflow services for service orchestration. Users may access the system through the QuakeSim scientific Web portal, which is built using a portlet component approach.

  16. NASA Space Flight Program and Project Management Handbook

    NASA Technical Reports Server (NTRS)

    Blythe, Michael P.; Saunders, Mark P.; Pye, David B.; Voss, Linda D.; Moreland, Robert J.; Symons, Kathleen E.; Bromley, Linda K.

    2014-01-01

    This handbook is a companion to NPR 7120.5E, NASA Space Flight Program and Project Management Requirements and supports the implementation of the requirements by which NASA formulates and implements space flight programs and projects. Its focus is on what the program or project manager needs to know to accomplish the mission, but it also contains guidance that enhances the understanding of the high-level procedural requirements. (See Appendix C for NPR 7120.5E requirements with rationale.) As such, it starts with the same basic concepts but provides context, rationale, guidance, and a greater depth of detail for the fundamental principles of program and project management. This handbook also explores some of the nuances and implications of applying the procedural requirements, for example, how the Agency Baseline Commitment agreement evolves over time as a program or project moves through its life cycle.

  17. ALEXIS small satellite project: initial flight results

    NASA Astrophysics Data System (ADS)

    Priedhorsky, William C.; Bloch, Jeffrey J.; Holden, Daniel H.; Roussel-Dupre, Diane C.; Smith, Barham W.; Dingler, Robert; Warner, Richard; Huffman, Greg; Miller, Robert; Dill, Bob; Fleeter, Richard

    1993-11-01

    We report the launch and rescue of the ALEXIS small satellite. ALEXIS is a 113-kg satellite that carries an ultrasoft x-ray telescope array and a high-speed VHF receiver/digitizer (BLACKBEARD), supported by a miniature spacecraft bus. It was launched by a Pegasus booster on 1993 April 25, but a solar paddle was damaged during powered flight. Initial attempts to contact ALEXIS were unsuccessful. The satellite finally responded in June, and was soon brought under control. Because the magnetometer had failed, the rescue required the development of new attitude control techniques. The telemetry system has performed nominally. The BLACKBEARD experiment was turned on shortly after contact, and has returned its first data. We discuss preliminary lessons learned from ALEXIS.

  18. The potential effects of tobacco control in China: projections from the China SimSmoke simulation model

    PubMed Central

    Rodríguez-Buño, Ricardo L; Hu, Teh-Wei; Moran, Andrew E

    2014-01-01

    Objective To use a computer simulation model to project the potential impact in China of tobacco control measures on smoking, as recommended by the World Health Organization Framework Convention on Tobacco Control (FCTC), being fully implemented. Design Modelling study. Setting China. Population Males and females aged 15-74 years. Intervention Incremental impact of more complete implementation of WHO FCTC policies simulated using SimSmoke, a Markov computer simulation model of tobacco smoking prevalence, smoking attributable deaths, and the impact of tobacco control policies. Data on China’s adult population, current and former smoking prevalence, initiation and cessation rates, and past policy levels were entered into SimSmoke in order to predict past smoking rates and to project future status quo rates. The model was validated by comparing predicted smoking prevalence with smoking prevalence measured in tobacco surveys from 1996-2010. Main outcome measures Projected future smoking prevalence and smoking attributable deaths from 2013-50. Results Status quo tobacco policy simulations projected a decline in smoking prevalence from 51.3% in 2015 to 46.5% by 2050 in males and from 2.1% to 1.3% in females. Of the individual FCTC recommended tobacco control policies, increasing the tobacco excise tax to 75% of the retail price was projected to be the most effective, incrementally reducing current smoking compared with the status quo by 12.9% by 2050. Complete and simultaneous implementation of all FCTC policies was projected to incrementally reduce smoking by about 40% relative to the 2050 status quo levels and to prevent approximately 12.8 million smoking attributable deaths and 154 million life years lost by 2050. Conclusions Complete implementation of WHO FCTC recommended policies would prevent more than 12.8 million smoking attributable deaths in China by 2050. Implementation of FCTC policies would alleviate a substantial portion of the tobacco related health

  19. SIM-PlanetQuest: progress report

    NASA Astrophysics Data System (ADS)

    Marr, James C., IV

    2006-06-01

    SIM-PlanetQuest is a NASA astrophysics mission that is implementing the National Research Counsel's recommended Astrometric Interferometry Mission (AIM) to develop the first, in-space, optical, long-baseline Michelson Stellar Interferometer for performing micro-arcsecond-level astrometry. This level of astrometric precision will enable characterization of planetary systems around nearby stars and enable a number of key investigations in astrophysics including calibration of the cosmological distance scale, stellar and galactic structure and evolution, and dark matter/energy distribution. This paper provides an update on the SIM-PlanetQuest Mission covering the results of the 2005 mission redesign and the recent completion of the last in a series of technology "gates." The SIM-PlanetQuest mission redesign was directed by NASA to recover eroded mass and power margins and to meet specific implementation cost targets. The resulting mission redesign met all redesign objectives with minimal impact to mission science performance. This paper provides the mission redesign objectives and describes the resulting mission and system design including changes in science capability. SIM-PlanetQuest also completed the last of eight major technology development gates that were established in 2001 by NASA, completing the enabling technology development. The technology development program, the last gate, and its significance to the project's flight verification and validation (V&V) approach are briefly described (covered in more detail in a separate paper at this conference). An update on project programmatic status and plans is also provided.

  20. LAMOST Project and its First Flight

    NASA Astrophysics Data System (ADS)

    Cui, Xianqun

    2009-01-01

    Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is an innovative telescope project with both large aperture (effective more than 4 meters) and wide field of view (5 degrees) to achieve the large scale spectroscopic survey observation. It is a horizontal meridian reflecting Schmidt configuration realized by an active reflecting deformable Schmidt plate. For achieving such an ambitious project with limited budget, both its primary mirror (6.67m X 6.05m) and Schmidt plate (5.74m X 4.4m) are segmented. Its large focal plane accommodates up to 4000 fibers, by which the collected light of distant and faint celestial objects down to 20.5 magnitudes is fed into the spectrographs, promising a very high spectrum acquiring rate of more than ten-thousands of spectra per night.This paper gives a general introduction on LAMOST project, its technical achievements and recent progress. Including verification on each sub-system in its early installation and test stage in 2007, which is with just its partial aperture, more than 200 optical fibers and one spectrograph. The scientific commissioning has been done and some preliminary results have been obtained. Then the engineering work on the whole telescope with 16 spectrographs and 4000 optical fibers in its focal plane have completed on site in August 2008. The first light of LAMOST with two to three thousands spectra during each observation was in late September of 2008.

  1. The Flight of the Phoenix: Interpersonal Aspects of Project Management

    ERIC Educational Resources Information Center

    Huffman, Brian J.; Kilian, Claire McCarty

    2012-01-01

    Although many classroom exercises use movies to focus on management and organizational behavior issues, none of those do so in the context of project management. This article presents such an exercise using "The Flight of the Phoenix", an incredibly rich story for any management class, which provides clear examples of organizational behavior…

  2. Methodologies for Improving Flight Project Information Capture, Storage, and Dissemination

    NASA Technical Reports Server (NTRS)

    Equils, Douglas J.

    2011-01-01

    This paper will discuss the drawbacks and risks of the current documentation paradigm, how Document QuickStart improves on that process and ultimately how this stream-lined approach will reduce risk and costs to the next generation of Flight Projects at JPL

  3. Dryden Flight Research Center Critical Chain Project Management Implementation

    NASA Technical Reports Server (NTRS)

    Hines, Dennis O.

    2012-01-01

    In Fiscal Year 2011 Dryden Flight Research Center (DFRC) implemented a new project management system called Critical Chain Project Management (CCPM). Recent NASA audits have found that the Dryden workforce is strained under increasing project demand and that multi-tasking has been carried to a whole new level at Dryden. It is very common to have an individual work on 10 different projects during a single pay period. Employee surveys taken at Dryden have identified work/life balance as the number one issue concerning employees. Further feedback from the employees indicated that project planning is the area needing the most improvement. In addition, employees have been encouraged to become more innovative, improve job skills, and seek ways to improve overall job efficiency. In order to deal with these challenges, DFRC management decided to adopt the CCPM system that is specifically designed to operate in a resource constrained multi-project environment. This paper will discuss in detail the rationale behind the selection of CCPM and the goals that will be achieved through this implementation. The paper will show how DFRC is tailoring the CCPM system to the flight research environment as well as laying out the implementation strategy. Results of the ongoing implementation will be discussed as well as change management challenges and organizational cultural changes. Finally this paper will present some recommendations on how this system could be used by selected NASA projects or centers.

  4. New challenges for Life Sciences flight project management

    NASA Technical Reports Server (NTRS)

    Huntoon, C. L.

    1999-01-01

    Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.

  5. New challenges for Life Sciences flight project management.

    PubMed

    Huntoon, C L

    1999-01-01

    Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.

  6. The SIM Lite Astrometric Observatory

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen C.

    2009-05-01

    SIM Lite is an observatory mission dedicated to precision astrometry. With a single measurement accuracy of 1 microarcsecond (µas) and a noise floor below 0.035 µas it will have the capability to do an extensive search for Earth-mass planets in the `habitable zone’ around several dozen of the nearest stars. SIM Lite maintains its wide-angle accuracy of 4 µas for all targets down to V = 19, limited only by observing time. This opens up a wide array of astrophysical problems. As a flexibly pointed instrument, it is a natural complement to sky surveys such as JMAPS and Gaia, and will tackle questions that don't require the acquisition of statistics on a large number of targets. It will provide accurate masses for the first time for a variety of exotic star types, including X-ray binaries; it will study the structure and evolution of our Galaxy through tidal streams from dwarf spheroidals and the trajectories of halo stars and galaxies. Its faint-target capability will enable the use of astrometric and photometric variability as a probe of the disk accretion and jet formation processes in blazars. SIM Lite will have an extensive GO (General Observer) program, open to all categories of astrometric science. The project successfully completed a series of technology milestones in 2005, and is currently under study by by NASA as a flight mission. The research described in this talk was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  7. Time-of-flight secondary ion mass spectrometry (ToF-SIMS)-based analysis and imaging of polyethylene microplastics formation during sea surf simulation.

    PubMed

    Jungnickel, H; Pund, R; Tentschert, J; Reichardt, P; Laux, P; Harbach, H; Luch, A

    2016-09-01

    Plastic particles smaller than 5mm, so called microplastics have the capability to accumulate in rivers, lakes and the marine environment and therefore have begun to be considered in eco-toxicology and human health risk assessment. Environmental microplastic contaminants may originate from consumer products like body wash, tooth pastes and cosmetic products, but also from degradation of plastic waste; they represent a potential but unpredictable threat to aquatic organisms and possibly also to humans. We investigated exemplarily for polyethylene (PE), the most abundant constituent of microplastic particles in the environment, whether such fragments could be produced from larger pellets (2mm×6mm). So far only few analytical methods exist to identify microplastic particles smaller than 10μm, especially no imaging mass spectrometry technique. We used at first time-of-flight secondary ion mass spectrometry (ToF-SIMS) for analysis and imaging of small PE-microplastic particles directly in the model system Ottawa sand during exposure to sea surf simulation. As a prerequisite, a method for identification of PE was established by identification of characteristic ions for PE out of an analysis of grinded polymer samples. The method was applied onto Ottawa sand in order to investigate the influence of simulated environmental conditions on particle transformation. A severe degradation of the primary PE pellet surface, associated with the transformation of larger particles into smaller ones already after 14days of sea surf simulation, was observed. Within the subsequent period of 14days to 1month of exposure the number of detected smallest-sized particles increased significantly (50%) while the second smallest fraction increased even further to 350%. Results were verified using artificially degraded PE pellets and Ottawa sand.

  8. Preliminary Model Comparison Results From the Sim-SEQ Project Using TOUGH2, STOMP, Eclipse, and VESA Approach

    SciTech Connect

    Mukhopadhyay, Sumit; Doughty, Christine A.; Bacon, Diana H.; Bacci, Giacomo; Govindan, Rajesh; Shi, Ji-Quan; Gasda, Sarah E.; Ramanathan, Ramya; Nicot, Jean-Philippe; Hosseini, Seyyed; Birkholzer, Jens

    2013-11-01

    Sim-SEQ is an international initiative on model comparison for geologic carbon sequestration (GCS), with an objective to understand and, if possible, quantify model uncertainties. Model comparison efforts in Sim-SEQ are initially limited to one specific field test site, hereafter referred to as the Sim-SEQ Study site (or S-3 site). Within Sim-SEQ, different modeling teams are developing conceptual models of CO2 injection at the S-3 site. One of the conceptual models, developed by the LBNL team, is based on TOUGH2/EOS7C. In this paper, we present some preliminary model predictions of the S-3 site using the TOUGH2/EOS7C simulator. We also compare the predictions of the TOUGH2 simulator with three other conceptual models, developed by three different organizations, of the S-3 site.

  9. Project LASER Volunteer, Marshall Space Flight Center Education Program

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Through Marshall Space Flight Center (MSFC) Education Department, over 400 MSFC employees have volunteered to support educational program during regular work hours. Project LASER (Learning About Science, Engineering, and Research) provides support for mentor/tutor requests, education tours, classroom presentations, and curriculum development. This program is available to teachers and students living within commuting distance of the NASA/MSFC in Huntsville, Alabama (approximately 50-miles radius). This image depicts students viewing their reflections in an x-ray mirror with Marshall optic engineer Vince Huegele at the Discovery Laboratory, which is an onsite MSFC laboratory facility that provides hands-on educational workshop sessions for teachers and students learning activities.

  10. Project SAFE: A Blueprint for Flight Standards. Part 1.

    DTIC Science & Technology

    1985-01-01

    The following chapters will describe the plan to modernize the Flight Standards System based on these findings. ,a IL 18 CHAPrtR 2 FORBAST AND...recouendations 08/15/85 Cllect and reviw regional bnpt 08/30/85 Determine appropriate action 09/13/85 Assign ation to appropriate ection 09/25/85 office...to the Vwget Modernization Program during this project, to avoid onflict or duplication of activities. AVS RMEE esue No. IR-IB Date of R =esum: Date

  11. Enabling Electric Propulsion for Flight

    NASA Technical Reports Server (NTRS)

    Ginn, Starr

    2014-01-01

    Description of current ARMD projects; Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project (new ARMD reorg), sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  12. Enabling Electric Propulsion for Flight

    NASA Technical Reports Server (NTRS)

    Ginn, Starr Renee

    2015-01-01

    Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project, sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  13. SIM Measurements Near and Far

    NASA Astrophysics Data System (ADS)

    Patterson, Richard J.; Anglada, G.; Kaplinghat, M.; Kuchner, M. J.; Olling, R.

    2010-01-01

    The results from four SIM Science Studies are presented. The "GAIA-SIM Legacy Project" analyzes the long-term astrometric benefits that arise from the currently sequential ordering of the GAIA and SIM missions. Several issues will affect any attempts to utilize the combined datasets, such as the reference frames used, and the precise coordinate definition of the observable quantities in both missions. The second project "Determining the nature of dark matter using proper motions of stars in the Milky Way satellites" is focused on developing methods that would allow the interpretation of SIM observations of these targets in order to derive the slope of the density of dark matter near the centers of dwarf spheroidal galaxies. Since steep density cusps are predicted from cold dark matter models, and shallow density slopes are expected in warm dark matter models, these observations should allow one to determine the microphysical properties of the dark matter particle. "Sizes and Shapes of Kuiper Belt Objects and Centaurs with SIM" investigated the use of SIM to target these primordial solar system objects, in order to measure precise sizes and shapes. This will involve using non-sidereal tracking, as well as visibility measurements using the co-linear guide interferometer baseline. The fourth project "1% Luminoisty-Independent Distances to nearby Galaxies with the Rotational Parallax Technique" investigates the use of this geometric method that can be used to sample a large part of the stellar disk of external galaxies (which allows non-axisymmetric motions to be determined). Accurate RP distances will facilitate detailed comparisons between almost all standard candles (MW, M31, M33, LMC, and NGC 4258). These cross-checks are crucial if we are to believe galaxy distances (and H0) at the 1% level. The SIM Science studies have been funded by the SIM Project Office, NASA/JPL.

  14. The SIM Lite Astrometric Observatory: engineering risk reduction activity

    NASA Astrophysics Data System (ADS)

    Goullioud, Renaud; Dekens, Frank; Nemati, Bijan; An, Xin; Hovland, Larry

    2010-07-01

    The SIM Lite Astrometric Observatory is a mission concept for a space-borne instrument to perform micro-arcsecond narrow-angle astrometry to search 60 to 100 nearby stars for Earth-like planets, and to perform global astrometry for a broad astrophysics program. The main enabling technology development for the mission was completed during phases A & B. While the project is waiting for the results of the ASTRO2010 Decadal Survey to proceed into flight implementation, the instrument team is currently converting the developed technology onto flight-ready engineering models. These key engineering tasks will significantly reduce the implementation risks during the flight phases C & D of the mission. The main optical interferometer components, including the astrometric beam combiner (ABC), the fine steering mechanism (FSM), the path-length control and modulation optical mechanisms (POM & MOM), focal plane camera electronics (ATC & FTC), camera cooling cryo-heat pipe, and the siderostat mechanism are currently under development. Main assemblies are built to meet flight requirements and have been or will be subjected to flight qualification level environmental testing (random vibration and thermal cycling) and performance testing. The Spectral Calibration Development Unit (SCDU), a white light interferometer testbed has recently demonstrated how to perform the spectral calibration of the instrument. The Guide 2 Telescope testbed (G2T) has demonstrated the 50 micro-arcsecond angle monitoring capability required by SIM Lite to perform astrometry. This paper summarizes recent progress in engineering risk reduction activities.

  15. Integrated Resilient Aircraft Control Project Full Scale Flight Validation

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2009-01-01

    Objective: Provide validation of adaptive control law concepts through full scale flight evaluation. Technical Approach: a) Engage failure mode - destabilizing or frozen surface. b) Perform formation flight and air-to-air tracking tasks. Evaluate adaptive algorithm: a) Stability metrics. b) Model following metrics. Full scale flight testing provides an ability to validate different adaptive flight control approaches. Full scale flight testing adds credence to NASA's research efforts. A sustained research effort is required to remove the road blocks and provide adaptive control as a viable design solution for increased aircraft resilience.

  16. Environmental Friendly Coatings and Corrosion Prevention For Flight Hardware Project

    NASA Technical Reports Server (NTRS)

    Calle, Luz

    2014-01-01

    Identify, test and develop qualification criteria for environmentally friendly corrosion protective coatings and corrosion preventative compounds (CPC's) for flight hardware an ground support equipment.

  17. Chemical research projects office fuel tank sealants review. [flight testing of fluorosilicone sealants

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Parker, J. A.

    1974-01-01

    The status of high-temperature fuel tank sealants for military and potentially commercial supersonic aircraft is examined. The interrelationships of NASA's sealants program comprise synthesis and development of new fluoroether elastomers, sealant prediction studies, flight simulation and actual flight testing of best state-of-the-art fluorosilicone sealants. The technical accomplishments of these projects are reviewed.

  18. SIM Configuration Evolution

    NASA Technical Reports Server (NTRS)

    Aaron, Kim M.

    2000-01-01

    The Space Interferometry Mission (SIM) is a space-based 10 m baseline Michelson interferometer. Planned for launch in 2005 aboard a Delta III launch vehicle, or equivalent, its primary objective is to measure the positions of stars and other celestial objects with an unprecedented accuracy of 4 micro arc seconds. With such an instrument, tremendous advancement can be expected in our understanding of stellar and galactic dynamics. Using triangulation from opposite sides of the orbit around the sun (i.e. by using parallax) one can measure the distance to any observable object in our galaxy. By directly measuring the orbital wobble of nearby stars, the mass and orbit of planets can be determined over a wide range of parameters. The distribution of velocity within nearby galaxies will be measurable. Observations of these and other objects will improve the calibration of distance estimators by more than an order of magnitude. This will permit a much better determination of the Hubble Constant as well as improving our overall understanding of the evolution of the universe. SIM has undergone several transformations, especially over the past year and a half since the start of Phase A. During this phase of a project, it is desirable to perform system-level trade studies, so the substantial evolution of the design that has occurred is quite appropriate. Part of the trade-off process has addressed two major underlying architectures: SIM Classic; and Son of SIM. The difference between these two architectures is related to the overall arrangement of the optical elements and the associated metrology system. Several different configurations have been developed for each architecture. Each configuration is the result of design choices that are influenced by many competing considerations. Some of the more important aspects will be discussed. The Space Interferometry Mission has some extremely challenging goals: millikelvin thermal stability, nanometer stabilization of optics

  19. A study of software management and guidelines for flight projects

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A survey of present software development policies and practices, and an analysis of these policies and practices are summarized. Background information necessary to assess the adequacy of present NASA flight software development approaches is presented.

  20. The SIM PlanetQuest Science Program

    NASA Technical Reports Server (NTRS)

    Edberg, Stephen J.; Traub, Wesley A.; Unwin, Stephen C.; Marr, James C., IV

    2007-01-01

    SIM PlanetQuest (hereafter, just SIM) is a NASA mission to measure the angular positions of stars with unprecedented accuracy. We outline the main astrophysical science programs planned for SIM, and related opportunities for community participation. We focus especially on SIM's ability to detect exoplanets as small as the Earth around nearby stars. The planned synergy between SIM and other planet-finding missions including Kepler and GAIA, and planet-characterizing missions including the James Webb Space Telescope (JWST), Terrestrial Planet Finder--Coronagraph (TPF-C), and Terrestrial Planet Finder--Interferometer (TPF-I), is a key element in NASA's Navigator Program to find Earth-like planets, determine their habitability, and search for signs of life in the universe. SIM's technology development is now complete and the project is proceeding towards a launch in the next decade.

  1. Topochemical Analysis of Cell Wall Components by TOF-SIMS.

    PubMed

    Aoki, Dan; Fukushima, Kazuhiko

    2017-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a recently developing analytical tool and a type of imaging mass spectrometry. TOF-SIMS provides mass spectral information with a lateral resolution on the order of submicrons, with widespread applicability. Sometimes, it is described as a surface analysis method without the requirement for sample pretreatment; however, several points need to be taken into account for the complete utilization of the capabilities of TOF-SIMS. In this chapter, we introduce methods for TOF-SIMS sample treatments, as well as basic knowledge of wood samples TOF-SIMS spectral and image data analysis.

  2. Eclipse project closeup of QF-106 under tow on takeoff on first flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    OFF THE GROUND - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 lifts off under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  3. Eclipse project QF-106 and C-141A takeoff on first tethered flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    TOW ROPE TAKEOFF - The Kelly Space & Technology (KST)/USAF Eclipse project's modified QF-106 and a USAF C-141A takeoff for the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  4. Eclipse project closeup of QF-106 under tow on first tethered flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Kelly Space and Technology (KST)/USAF/NASA Eclipse project's modified QF-106 is shown under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, is hosting the project, providing engineering and facility support as well as the project pilot, Mark Stucky. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  5. Flight Test Overview for UAS Integration in the NAS Project

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Hayes, Peggy S.; Kim, Sam K.; Bridges, Wayne; Marston, Michael

    2016-01-01

    The National Aeronautics and Space Administration is conducting a series of flight tests intended to support the reduction of barriers that prevent unmanned aircraft from flying without the required waivers from the Federal Aviation Administration. The most recent testing supported two separate test configurations. The first investigated the timing of Detect and Avoid (DAA) alerting thresholds using a radar-equipped unmanned vehicle and multiple live intruders flown at varying encounter geometries. The second configuration included a surrogate unmanned vehicle (flown from a ground control station, with a safety pilot on board) flying a mission in a virtual air traffic control airspace sector using research pilot displays and DAA advisories to maintain separation from live and virtual aircraft. The test was conducted over a seven-week span in the summer of 2015. The data from over 100 encounter sorties will be used to inform the RTCA Phase 1 Detect and Avoid and Command and Control Minimum Operating Performance Standards (MOPS) intended to be completed by the summer of 2016. Follow-on flight-testing is planned for the spring of 2016 to capture remaining encounters and support validation of the MOPS.

  6. Mars Science Laboratory Flight Software Boot Robustness Testing Project Report

    NASA Technical Reports Server (NTRS)

    Roth, Brian

    2011-01-01

    On the surface of Mars, the Mars Science Laboratory will boot up its flight computers every morning, having charged the batteries through the night. This boot process is complicated, critical, and affected by numerous hardware states that can be difficult to test. The hardware test beds do not facilitate testing a long duration of back-to-back unmanned automated tests, and although the software simulation has provided the necessary functionality and fidelity for this boot testing, there has not been support for the full flexibility necessary for this task. Therefore to perform this testing a framework has been build around the software simulation that supports running automated tests loading a variety of starting configurations for software and hardware states. This implementation has been tested against the nominal cases to validate the methodology, and support for configuring off-nominal cases is ongoing. The implication of this testing is that the introduction of input configurations that have yet proved difficult to test may reveal boot scenarios worth higher fidelity investigation, and in other cases increase confidence in the robustness of the flight software boot process.

  7. Planetary protection issues for Mars sample acquisition flight projects.

    PubMed

    Barengoltz, J B

    2000-01-01

    The planned NASA sample acquisition flight missions to Mars pose several interesting planetary protection issues. In addition to the usual forward contamination procedures for the adequate protection of Mars for the sake of future missions, there are reasons to ensure that the sample is not contaminated by terrestrial microbes from the acquisition mission. Recent recommendations by the Space Studies Board (SSB) of the National Research Council (United States), would indicate that the scientific integrity of the sample is a planetary protection concern (SSB, 1997). Also, as a practical matter, a contaminated sample would interfere with the process for its release from quarantine after return for distribution to the interested scientists. These matters are discussed in terms of the first planned acquisition mission.

  8. The balloon flights in the Tropics of the HIBISCUS project

    NASA Astrophysics Data System (ADS)

    Garnier, A.; Pommereau, J. P.; Cocquerez, P.; Held, G.

    2005-08-01

    HIBISCUS is a project for studying the dynamics, microphysics and chemistry of the Tropical Tropopause Layer based on balloon measurements. Thirteen heavy sondes and 18 short duration balloons of different types have been used for local process studies. Eight superpressure (BP) and 3 Infra Red Montgolfier (MIR) long duration balloons have been flown for extending the investigations at global scale around the world. Overall the campaign has been very successful operationally as well as scientifically. The paper provides a description of the balloons, the instruments and the strategy used for meeting at best the goals of the project.

  9. Management of Service Projects in Support of Space Flight Research

    NASA Technical Reports Server (NTRS)

    Love, J.

    2009-01-01

    Goal:To provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration . [HRP-47051] Specific Objectives: 1) Develop capabilities, necessary countermeasures, and technologies in support of human space exploration, focusing on mitigating the highest risks to human health and performance. 2) Define and improve human spaceflight medical, environmental, and human factors standards. 3) Develop technologies that serve to reduce medical and environmental risks, to reduce human systems resource requirements (mass, volume, power, data, etc.) and to ensure effective human-system integration across exploration systems. 4) Ensure maintenance of Agency core competencies necessary to enable risk reduction in the following areas: A. Space medicine B. Physiological and behavioral effects of long duration spaceflight on the human body C. Space environmental effects, including radiation, on human health and performance D. Space "human factors" [HRP-47051]. Service projects can form integral parts of research-based project-focused programs to provide specialized functions. Traditional/classic project management methodologies and agile approaches are not mutually exclusive paradigms. Agile strategies can be combined with traditional methods and applied in the management of service projects functioning in changing environments. Creative collaborations afford a mechanism for mitigation of constrained resource limitations.

  10. The NASA Dryden AAR Project: A Flight Test Approach to an Aerial Refueling System

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Murray, James E.; Campos, Norma V.

    2004-01-01

    The integration of uninhabited aerial vehicles (UAVs) into controlled airspace has generated a new era of autonomous technologies and challenges. Autonomous aerial refueling would enable UAVs to travel further distances and loiter for extended periods over time-critical targets. The NASA Dryden Flight Research Center recently has completed a flight research project directed at developing a dynamic hose and drogue system model to support the development of an automated aerial refueling system. A systematic dynamic model of the hose and drogue system would include the effects of various influences on the system, such as flight condition, hose and drogue type, tanker type and weight, receiver type, and tanker and receiver maneuvering. Using two NASA F/A-18 aircraft and a conventional hose and drogue aerial refueling store from the Navy, NASA has obtained flight research data that document the response of the hose and drogue system to these effects. Preliminary results, salient trends, and important lessons are presented.

  11. DAIDALUS Observations From UAS Integration in the NAS Project Flight Test 4

    NASA Technical Reports Server (NTRS)

    Vincent, Michael J.; Tsakpinis, Dimitrios

    2016-01-01

    In order to validate the Unmanned Aerial System (UAS) Detect-and-Avoid (DAA) solution proposed by standards body RTCA Inc., the National Aeronautics and Space Administration (NASA) UAS Integration in the NAS project, alongside industry members General Atomics and Honeywell, conducted the fourth flight test in a series at Armstrong Flight Research Center in Edwards, California. Flight Test 4 (FT4) investigated problems of interoperability with the TCAS collision avoidance system with a DAA system as well as problems associated with sensor uncertainty. A series of scripted flight encounters between the NASA Ikhana UAS and various "intruder" aircraft were flown while alerting and guidance from the DAA algorithm were recorded to investigate the timeliness of the alerts and correctness of the guidance triggered by the DAA system. The results found that alerts were triggered in a timely manner in most instances. Cases where the alerting and guidance was incorrect were investigated further.

  12. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote earth field sensing magnetometer and servo control building; and a remote power control and instrumentation building. The inner coils are 42-foot in diameter and a 10-foot by 10-foot opening through the outer coils accommodates spacecraft access to the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  13. New Science With SIM Lite: Introduction to the SIM Science Studies

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen C.

    2009-01-01

    The Space Interferometry Mission Lite (SIM Lite) will be the first optical interferometer in space designed for precision astrometry to 4 microarcseconds, on targets as faint as V=19. This flexibly-scheduled instrument will tackle a range of problems in modern astrophysics. In 2008, the SIM Lite Project and the NASA Exoplanet Science Institute (NExScI) solicited proposals for an opportunity entitled "SIM Science Studies". A total of 19 SIM Lite study projects were selected by an independent review panel. This paper is an introduction to the broad range of science topics represented by the studies. The purpose of the Studies is to enhance the science return from SIM Lite by supporting researchers to conduct concept studies that will lead to the most scientifically productive observations. The scope included all areas of astrophysics that are enabled by precision astrometry - including, modeling of dynamical or physical processes to be studied with SIM, the selection of suitable targets, assessment of instrument performance, and design of observing sequences to take best advantage of SIM Lite's flexible scheduling. These studies will stimulate new groups of researchers from our astronomy community to prepare the groundwork for the most effective use of SIM observing time in the future. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  14. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground-testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  15. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalosky, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  16. The SIM Time Network.

    PubMed

    Lombardi, Michael A; Novick, Andrew N; Lopez R, J Mauricio; Jimenez, Francisco; de Carlos Lopez, Eduardo; Boulanger, Jean-Simon; Pelletier, Raymond; de Carvalho, Ricardo J; Solis, Raul; Sanchez, Harold; Quevedo, Carlos Andres; Pascoe, Gregory; Perez, Daniel; Bances, Eduardo; Trigo, Leonardo; Masi, Victor; Postigo, Henry; Questelles, Anthony; Gittens, Anselm

    2011-01-01

    The Sistema Interamericano de Metrologia (SIM) is a regional metrology organization (RMO) whose members are the national metrology institutes (NMIs) located in the 34 nations of the Organization of American States (OAS). The SIM/OAS region extends throughout North, Central, and South America and the Caribbean Islands. About half of the SIM NMIs maintain national standards of time and frequency and must participate in international comparisons in order to establish metrological traceability to the International System (SI) of units. The SIM time network (SIMTN) was developed as a practical, cost effective, and technically sound way to automate these comparisons. The SIMTN continuously compares the time standards of SIM NMIs and produces measurement results in near real-time by utilizing the Internet and the Global Positioning System (GPS). Fifteen SIM NMIs have joined the network as of December 2010. This paper provides a brief overview of SIM and a technical description of the SIMTN. It presents international comparison results and examines the measurement uncertainties. It also discusses the metrological benefits that the network provides to its participants.

  17. The SIM Time Network

    PubMed Central

    Lombardi, Michael A.; Novick, Andrew N.; Lopez R, J. Mauricio; Jimenez, Francisco; de Carlos Lopez, Eduardo; Boulanger, Jean-Simon; Pelletier, Raymond; de Carvalho, Ricardo J.; Solis, Raul; Sanchez, Harold; Quevedo, Carlos Andres; Pascoe, Gregory; Perez, Daniel; Bances, Eduardo; Trigo, Leonardo; Masi, Victor; Postigo, Henry; Questelles, Anthony; Gittens, Anselm

    2011-01-01

    The Sistema Interamericano de Metrologia (SIM) is a regional metrology organization (RMO) whose members are the national metrology institutes (NMIs) located in the 34 nations of the Organization of American States (OAS). The SIM/OAS region extends throughout North, Central, and South America and the Caribbean Islands. About half of the SIM NMIs maintain national standards of time and frequency and must participate in international comparisons in order to establish metrological traceability to the International System (SI) of units. The SIM time network (SIMTN) was developed as a practical, cost effective, and technically sound way to automate these comparisons. The SIMTN continuously compares the time standards of SIM NMIs and produces measurement results in near real-time by utilizing the Internet and the Global Positioning System (GPS). Fifteen SIM NMIs have joined the network as of December 2010. This paper provides a brief overview of SIM and a technical description of the SIMTN. It presents international comparison results and examines the measurement uncertainties. It also discusses the metrological benefits that the network provides to its participants. PMID:26989584

  18. TPS In-Flight Health Monitoring Project Progress Report

    NASA Technical Reports Server (NTRS)

    Kostyk, Chris; Richards, Lance; Hudston, Larry; Prosser, William

    2007-01-01

    Progress in the development of new thermal protection systems (TPS) is reported. New approaches use embedded lightweight, sensitive, fiber optic strain and temperature sensors within the TPS. Goals of the program are to develop and demonstrate a prototype TPS health monitoring system, develop a thermal-based damage detection algorithm, characterize limits of sensor/system performance, and develop ea methodology transferable to new designs of TPS health monitoring systems. Tasks completed during the project helped establish confidence in understanding of both test setup and the model and validated system/sensor performance in a simple TPS structure. Other progress included complete initial system testing, commencement of the algorithm development effort, generation of a damaged thermal response characteristics database, initial development of a test plan for integration testing of proven FBG sensors in simple TPS structure, and development of partnerships to apply the technology.

  19. Preliminary flight trajectories for the Apollo Soyuz test project

    NASA Technical Reports Server (NTRS)

    Brooks, J. D.

    1973-01-01

    Preliminary data are documented for a typical launch window opening, a typical in-plane case, and a typical launch window closing trajectory, not necessarily in the same daily launch window, for the Apollo Soyuz test project mission. The Soyuz will be launched first and the Apollo will be launched on the first opportunity, 7 hours 21 minutes later. If the Apollo is unable to be launched on the first opportunity, four additional opportunities are available at 30 hours 56 minutes, 54 hours 31 minutes, 78 hours 05 minutes, and 101 hours 40 minutes. If the Apollo cannot be launched in this time frame, no further attempt will be made to launch and rendezvous with the first Soyuz. Soyuz will then be deorbited; however, a second Soyuz was made available for the same purposes.

  20. PRELIMINARY PROJECT PLAN FOR LANSCE INTEGRATED FLIGHT PATHS 11A, 11B, 12, and 13

    SciTech Connect

    D. H. BULTMAN; D. WEINACHT - AIRES CORP.

    2000-08-01

    This Preliminary Project Plan Summarizes the Technical, Cost, and Schedule baselines for an integrated approach to developing several flight paths at the Manual Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. For example, the cost estimate is intended to serve only as a rough order of magnitude assessment of the cost that might be incurred as the flight paths are developed. Further refinement of the requirements and interfaces for each beamline will permit additional refinement and confidence in the accuracy of all three baselines (Technical, Cost, Schedule).

  1. Computer-Aided Systems Engineering for Flight Research Projects Using a Workgroup Database

    NASA Technical Reports Server (NTRS)

    Mizukami, Masahi

    2004-01-01

    An online systems engineering tool for flight research projects has been developed through the use of a workgroup database. Capabilities are implemented for typical flight research systems engineering needs in document library, configuration control, hazard analysis, hardware database, requirements management, action item tracking, project team information, and technical performance metrics. Repetitive tasks are automated to reduce workload and errors. Current data and documents are instantly available online and can be worked on collaboratively. Existing forms and conventional processes are used, rather than inventing or changing processes to fit the tool. An integrated tool set offers advantages by automatically cross-referencing data, minimizing redundant data entry, and reducing the number of programs that must be learned. With a simplified approach, significant improvements are attained over existing capabilities for minimal cost. By using a workgroup-level database platform, personnel most directly involved in the project can develop, modify, and maintain the system, thereby saving time and money. As a pilot project, the system has been used to support an in-house flight experiment. Options are proposed for developing and deploying this type of tool on a more extensive basis.

  2. Accomplishments of the Advanced Reusable Technologies (ART) RBCC Project at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The focus of the NASA / Marshall Space Flight Center (MSFC) Advanced Reusable Technologies (ART) project is to advance and develop Rocket-Based Combined-Cycle (RBCC) technologies. The ART project began in 1996 as part of the Advanced Space Transportation Program (ASTP). The project is composed of several activities including RBCC engine ground testing, tool development, vehicle / mission studies, and component testing / development. The major contractors involved in the ART project are Aerojet and Rocketdyne. A large database of RBCC ground test data was generated for the air-augmented rocket (AAR), ramjet, scramjet, and ascent rocket modes of operation for both the Aerojet and Rocketdyne concepts. Transition between consecutive modes was also demonstrated as well as trajectory simulation. The Rocketdyne freejet tests were conducted at GASL in the Flight Acceleration Simulation Test (FAST) facility. During a single test, the FAST facility is capable of simulating both the enthalpy and aerodynamic conditions over a range of Mach numbers in a flight trajectory. Aerojet performed freejet testing in the Pebble Bed facility at GASL as well as direct-connect testing at GASL. Aerojet also performed sea-level static (SLS) testing at the Aerojet A-Zone facility in Sacramento, CA. Several flight-type flowpath components were developed under the ART project. Aerojet designed and fabricated ceramic scramjet injectors. The structural design of the injectors will be tested in a simulated scramjet environment where thermal effects and performance will be assessed. Rocketdyne will be replacing the cooled combustor in the A5 rig with a flight-weight combustor that is near completion. Aerojet's formed duct panel is currently being fabricated and will be tested in the SLS rig in Aerojet's A-Zone facility. Aerojet has already successfully tested a cooled cowl panel in the same facility. In addition to MSFC, other NASA centers have contributed to the ART project as well. Inlet testing

  3. TALARIS project update: Overview of flight testing and development of a prototype planetary surface exploration hopper

    NASA Astrophysics Data System (ADS)

    Rossi, Christopher; Cunio, Phillip M.; Alibay, Farah; Morrow, Joe; Nothnagel, Sarah L.; Steiner, Ted; Han, Christopher J.; Lanford, Ephraim; Hoffman, Jeffrey A.

    2012-12-01

    The TALARIS (Terrestrial Artificial Lunar And Reduced GravIty Simulator) project is intended to test GNC (Guidance, Navigation, and Control) algorithms on a prototype planetary surface exploration hopper in a dynamic environment with simulated reduced gravity. The vehicle is being developed by the Charles Stark Draper Laboratory and Massachusetts Institute of Technology in support of efforts in the Google Lunar X-Prize contest. This paper presents progress achieved since September 2010 in vehicle development and flight testing. Upgrades to the vehicle are described, including a redesign of the power train for the gravity-offset propulsion system and a redesign of key elements of the spacecraft emulator propulsion system. The integration of flight algorithms into modular flight software is also discussed. Results are reported for restricted degree of freedom (DOF) tests used to tune GNC algorithms on the path to a full 6-DOF hover-hop flight profile. These tests include 3-DOF tests on flat surfaces restricted to horizontal motion, and 2-DOF vertical tests restricted to vertical motion and 1-DOF attitude control. The results of tests leading up to full flight operations are described, as are lessons learned and future test plans.

  4. WWC Quick Review of the Report: "Scaling Up SimCalc Project: Can a Technology Enhanced Curriculum Improve Student Learning of Important Mathematics?"

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2008

    2008-01-01

    This study examines whether "SimCalc Mathworlds"[TM] improves students' knowledge of the algebra concepts of rate and proportionality. Strengths: The study is a well implemented randomized controlled trial (RCT) with acceptable sample attrition rates and no indications of other problems. Cautions: The study authors describe a rigorous…

  5. The HYTHIRM Project: Flight Thermography of the Space Shuttle During the Hypersonic Re-entry

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Tomek, Deborah M.; Berger, Karen T.; Zalameda, Joseph N.; Splinter, Scott C.; Krasa, Paul W.; Schwartz, Richard J.; Gibson, David M.; Tietjen, Alan B.; Tack, Steve

    2010-01-01

    dynamic range while mitigating the potential for saturation. Post flight, analysis tools were used to assess atmospheric effects and to convert the 2-D intensity images to 3-D temperature maps of the windward surface. Comparison of the spatially resolved global thermal measurements to surface thermocouples and CFD prediction is made. Successful demonstration of a quantitative, spatially resolved, global temperature measurement on the Shuttle suggests future applications towards hypersonic flight test programs within NASA, DoD and DARPA along with flight test opportunities supporting NASA's project Constellation.

  6. Sub-nanometer Level Model Validation of the SIM Interferometer

    NASA Technical Reports Server (NTRS)

    Korechoff, Robert P.; Hoppe, Daniel; Wang, Xu

    2004-01-01

    The Space Interferometer Mission (SIM) flight instrument will not undergo a full performance, end-to-end system test on the ground due to a number of constraints. Thus, analysis and physics-based models will play a significant role in providing confidence that SIM will meet its science goals on orbit. The various models themselves are validated against the experimental results obtained from the MicroArcsecond Metrology (MAM) testbed adn the Diffraction testbed (DTB). The metric for validation is provided by the SIM astrometric error budget.

  7. Project Morpheus: Lean Development of a Terrestrial Flight Testbed for Maturing NASA Lander Technologies

    NASA Technical Reports Server (NTRS)

    Devolites, Jennifer L.; Olansen, Jon B.

    2015-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.

  8. Space flight risk data collection and analysis project: Risk and reliability database

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The focus of the NASA 'Space Flight Risk Data Collection and Analysis' project was to acquire and evaluate space flight data with the express purpose of establishing a database containing measurements of specific risk assessment - reliability - availability - maintainability - supportability (RRAMS) parameters. The developed comprehensive RRAMS database will support the performance of future NASA and aerospace industry risk and reliability studies. One of the primary goals has been to acquire unprocessed information relating to the reliability and availability of launch vehicles and the subsystems and components thereof from the 45th Space Wing (formerly Eastern Space and Missile Command -ESMC) at Patrick Air Force Base. After evaluating and analyzing this information, it was encoded in terms of parameters pertinent to ascertaining reliability and availability statistics, and then assembled into an appropriate database structure.

  9. X-37 Flight Demonstrator Project: Capabilities for Future Space Transportation System Development

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2004-01-01

    The X-37 Approach and Landing Vehicle (ALTV) is an automated (unmanned) spacecraft designed to reduce technical risk in the descent and landing phases of flight. ALTV mission requirements and Orbital Vehicle (OV) technology research and development (R&D) goals are formulated to validate and mature high-payoff ground and flight technologies such as Thermal Protection Systems (TPS). It has been more than three decades since the Space Shuttle was designed and built. Real-world hardware experience gained through the multitude of X-37 Project activities has expanded both Government and industry knowledge of the challenges involved in developing new generations of spacecraft that can fulfill the Vision for Space Exploration.

  10. The Shuttle Student Involvement Project for Secondary Schools - Reports on first flights

    NASA Technical Reports Server (NTRS)

    Ladwig, A.; Wilson, G. P.

    1982-01-01

    During the 1980-81 academic year, NASA established the Shuttle Student Involvement Project for Secondary Schools (SSIP), an annual competition which invites students to propose experiments suitable for flight aboard the Space Shuttle. The purpose of the project is to stimulate the teaching and study of science and engineering among students in grades 9 through 12. Results of the first year of the project have been reported. The second competition was announced in September 1981. With a February 1, 1982 deadline, 2,800 proposals were submitted. Twenty national winners were announced in May 1982. NASA is now pairing the 20 winners with a corporate sponsor and with a NASA scientist or engineer to work with the student. Most SSIP experiments are performed in the Orbiter's mid-deck, and receive up to one hour of crew time. Attention is given to the desired outcomes of SSIP, and the SSIP experiments.

  11. Biochemical imaging of tissues by SIMS for biomedical applications

    NASA Astrophysics Data System (ADS)

    Lee, Tae Geol; Park, Ji-Won; Shon, Hyun Kyong; Moon, Dae Won; Choi, Won Woo; Li, Kapsok; Chung, Jin Ho

    2008-12-01

    With the development of optimal surface cleaning techniques by cluster ion beam sputtering, certain applications of SIMS for analyzing cells and tissues have been actively investigated. For this report, we collaborated with bio-medical scientists to study bio-SIMS analyses of skin and cancer tissues for biomedical diagnostics. We pay close attention to the setting up of a routine procedure for preparing tissue specimens and treating the surface before obtaining the bio-SIMS data. Bio-SIMS was used to study two biosystems, skin tissues for understanding the effects of photoaging and colon cancer tissues for insight into the development of new cancer diagnostics for cancer. Time-of-flight SIMS imaging measurements were taken after surface cleaning with cluster ion bombardment by Bi n or C 60 under varying conditions. The imaging capability of bio-SIMS with a spatial resolution of a few microns combined with principal component analysis reveal biologically meaningful information, but the lack of high molecular weight peaks even with cluster ion bombardment was a problem. This, among other problems, shows that discourse with biologists and medical doctors are critical to glean any meaningful information from SIMS mass spectrometric and imaging data. For SIMS to be accepted as a routine, daily analysis tool in biomedical laboratories, various practical sample handling methodology such as surface matrix treatment, including nano-metal particles and metal coating, in addition to cluster sputtering, should be studied.

  12. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    NASA Technical Reports Server (NTRS)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  13. Teaching healthcare marketing via community research: the LifeFlight project.

    PubMed

    Cellucci, Leigh W

    2005-01-01

    Undergraduate students in Healthcare Administration programs may benefit from cooperative learning strategies such as participation in community research. Collaborating with local healthcare facilities on class projects also encourages more active engagement between the academic and practice communities. This purpose of this paper is to briefly describe one collaborative venture undertakenby undergraduates in a Marketing for Healthcare Organizations class and a LifeFlight program at a local hospital. The students carried out a survey of members in the program, conducted a SWOT analysis, and made relevant recommendations. Student evaluations of this experience were positive, as was the hospital's assessment.

  14. Taking the Measure of the Universe : Precision Astrometry with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Allen, Ronald J.; Beichman, Charles A.; Boboltz, David; Catanzarite, Joseph H.; Chaboyer, Brian C.; Ciardi, David R.; Edberg, Stephen J.; Fey, Alan L.; Fischer, Debra A.; Gelino, Christopher R.; Gould, Andrew P.; Grillmair, Carl; Henry, Todd J.; Johnston, Kathryn V.; Johnston, Kenneth J.; Jones, Dayton L.; Kulkarni, Shrinivas R.; Law, Nicholas M.; Majewski, Steven R.; Makarov, Valeri V.; Marcy, Geoffrey W.; Meier, David L.

    2008-01-01

    Precision astrometry at microarcsecond accuracy has application to a wide range of astrophysical problems. This paper is a study of the science questions that can be addressed using an instrument with flexible scheduling that delivers parallaxes at about 4 microarcsec (microns)as) on targets as faint as V = 20, and differential accuracy of 0.6 (microns)as on bright targets. The science topics are drawn primarily from the Team Key Projects, selected in 2000, for the Space Interferometry Mission PlanetQuest (SIM PlanetQuest). We use the capabilities of this mission to illustrate the importance of the next level of astrometric precision in modern astrophysics. SIM PlanetQuest is currently in the detailed design phase, having completed in 2005 all of the enabling technologies needed for the flight instrument. It will be the first space-based long baseline Michelson interferometer designed for precision astrometry. SIM will contribute strongly to many astronomical fields including stellar and galactic astrophysics, planetary systems around nearby stars, and the study of quasar and AGN nuclei. Using differential astrometry SIM will search for planets with masses as small as an Earth orbiting in the 'habitable zone' around the nearest stars, and could discover many dozen if Earth-like planets are common. It will characterize the multiple-planet systems that are now known to exist, and it will be able to search for terrestrial planets around all of the candidate target stars in the Terrestrial Planet Finder and Darwin mission lists. It will be capable of detecting planets around young stars, thereby providing insights into how planetary systems are born and how they evolve with time. Precision astrometry allows the measurement of accurate dynamical masses for stars in binary systems. SIM will observe significant numbers of very high- and low-mass stars, providing stellar masses to 1%, the accuracy needed to challenge physical models. Using precision proper motion

  15. F/A-18 Performance Benefits Measured During the Autonomous Formation Flight Project

    NASA Technical Reports Server (NTRS)

    Vachon, M. Jake; Ray, Ronald J.; Walsh, Kevin R.; Ennix, Kimberly

    2003-01-01

    The Autonomous Formation Flight (AFF) project at the NASA Dryden Flight Research Center (Edwards, California) investigated performance benefits resulting from formation flight, such as reduced aerodynamic drag and fuel consumption. To obtain data on performance benefits, a trailing F/A-18 airplane flew within the wing tip-shed vortex of a leading F/A-18 airplane. The pilot of the trail airplane used advanced station-keeping technology to aid in positioning the trail airplane at precise locations behind the lead airplane. The specially instrumented trail airplane was able to obtain accurate fuel flow measurements and to calculate engine thrust and vehicle drag. A maneuver technique developed for this test provided a direct comparison of performance values while flying in and out of the vortex. Based on performance within the vortex as a function of changes in vertical, lateral, and longitudinal positioning, these tests explored design-drivers for autonomous stationkeeping control systems. Observations showed significant performance improvements over a large range of trail positions tested. Calculations revealed maximum drag reductions of over 20 percent, and demonstrated maximum reductions in fuel flow of just over 18 percent.

  16. Eclipse project QF-106 and C-141A climbs out under tow on first tethered flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    TOW LAUNCH DEMONSTRATION - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 climbs out under tow by a USAF C-141A on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort

  17. JPL's Approach for Helping Flight Project Managers Meet Today's Management Challenges

    NASA Technical Reports Server (NTRS)

    Leising, Charles J.

    2004-01-01

    All across NASA project managers are facing tough new challenges. NASA has imposed increased oversight and the number of projects at Centers such as JPL has exploded from a handful of large projects to a much greater number of smaller ones. Experienced personnel are retiring at increasing rates and younger, less experienced managers are being rapidly promoted up the ladder. Budgets are capped, competition among NASA Centers and Federally Funded Research and Development Centers (FFRDCs) has increased significantly and there is no longer any tolerance to cost overruns. On top of all this, implementation schedules have been reduced by 25 to 50% to reduce run-out costs, making it even more difficult to define requirements, validate heritage assumptions and make accurate cost estimates during the early phases of the life-cycle.JPL's executive management, under the leadership of the Associate Director for Flight Projects and Mission Success, have attempted to meet these challenges by improving operations in five areas: (1) increased standardization, where it is judged to have significant benefit; (2) better balance and more effective partnering between projects and the line management; (3) increased infrastructure support; (4) improved management training; and (5) more effective review and oversight.

  18. Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim

    2016-01-01

    The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.

  19. Automatization Project for the Carl-Zeiss-Jena Coudè Telescope of the Simón Bolívar Planetarium I. The Electro-Mechanic System

    NASA Astrophysics Data System (ADS)

    Núñez, A.; Maharaj, A.; Muñoz, A. G.

    2009-05-01

    The ``Complejo Científico, Cultural y Turístico Simón Bolívar'' (CCCTSB), located in Maracaibo, Venezuela, lodges the Simón Bolívar Planetarium and an 150 mm aperture, 2250 mm focal length Carl-Zeiss-Jena Coudè refractor telescope. In this work we discuss the schematics for the automatization project of this Telescope, the planned improvements, methodology, engines, micro-controllers, interfaces and the uptodate status of the project. This project is working on the first two levels of the automation pyramid, the sensor -- actuator level and the control or Plant floor level. The Process control level correspond to the software related section. This mean that this project work immediately with the electrical, electronic and mechanical stuffs, and with the assembler micro controller language. All the pc related stuff, like GUI (Graphic user interfaces), remote control, Grid database, and others, correspond to the next two automation pyramid levels. The idea is that little human intervention will be required to manipulate the telescope, only giving a pair of coordinates to ubicate and follow an object on the sky. A set of three servomotors, coupling it with the telescope with a gear box, are going to manipulate right ascension, declination and focus movement. For the dome rotation, a three phase induction motor will be used. For dome aperture/closure it is suggested a DC motor powered with solar panels. All those actuators are controlled by a 8 bits micro-controller, which receive the coordinate imput, the signal from the position sensors and have the PID control algorithm. This algorithm is tuned based on the mathematical model of the telescope electro-mechanical instrumentation.

  20. UAS Integration in the NAS Project: Flight Test 3 Data Analysis of JADEM-Autoresolver Detect and Avoid System

    NASA Technical Reports Server (NTRS)

    Gong, Chester; Wu, Minghong G.; Santiago, Confesor

    2016-01-01

    The Unmanned Aircraft Systems Integration in the National Airspace System project, or UAS Integration in the NAS, aims to reduce technical barriers related to safety and operational challenges associated with enabling routine UAS access to the NAS. The UAS Integration in the NAS Project conducted a flight test activity, referred to as Flight Test 3 (FT3), involving several Detect-and-Avoid (DAA) research prototype systems between June 15, 2015 and August 12, 2015 at the Armstrong Flight Research Center (AFRC). This report documents the flight testing and analysis results for the NASA Ames-developed JADEM-Autoresolver DAA system, referred to as 'Autoresolver' herein. Four flight test days (June 17, 18, 22, and July 22) were dedicated to Autoresolver testing. The objectives of this test were as follows: 1. Validate CPA prediction accuracy and detect-and-avoid (DAA, formerly known as self-separation) alerting logic in realistic flight conditions. 2. Validate DAA trajectory model including maneuvers. 3. Evaluate TCAS/DAA interoperability. 4. Inform final Minimum Operating Performance Standards (MOPS). Flight test scenarios were designed to collect data to directly address the objectives 1-3. Objective 4, inform final MOPS, was a general objective applicable to the UAS in the NAS project as a whole, of which flight test is a subset. This report presents analysis results completed in support of the UAS in the NAS project FT3 data review conducted on October 20, 2015. Due to time constraints and, to a lesser extent, TCAS data collection issues, objective 3 was not evaluated in this analysis.

  1. Use Of The Operational Air Quality Monitor (AQM) For In-Flight Water Testing Project

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel

    2014-01-01

    A primary requirement for manned spaceflight is Environmental Health which ensures air and water contaminants, acoustic profiles, microbial flora, and radiation exposures within the cabin are maintained to levels needed for crew health and for vehicle system functionality. The reliance on ground analyses of returned samples is a limitation in the current environmental monitoring strategy that will prevent future Exploration missions beyond low-Earth orbit. This proposal attempts to address this shortcoming by advancing in-flight analyses of water and air. Ground analysis of in-flight, air and water samples typically employ vapor-phase analysis by gas chromatography-mass spectrometry (GC-MS) to identify and quantify organic compounds present in the samples. We envision the use of newly-developed direct ionization approaches as the most viable avenue leading towards an integrated analytical platform for the monitoring of water, air, and, potentially bio-samples in the cabin environment. Development of an in-flight instrument capable of analyzing air and water samples would be the logical next step to meeting the environmental monitoring needs of Exploration missions. Currently, the Air Quality Monitor (AQM) on-board ISS provides this specific information for a number of target compounds in the air. However, there is a significant subset of common target compounds between air and water. Naturally, the following question arises, "Can the AQM be used for both air and water quality monitoring?" Previous directorate-level IR&D funding led to the development of a water sample introduction method for mass spectrometry using electrothermal vaporization (ETV). This project will focus on the integration of the ETV with a ground-based AQM. The capabilities of this integrated platform will be evaluated using a subset of toxicologically important compounds.

  2. Radio frequency interference protection of communications between the Deep Space Network and deep space flight projects

    NASA Technical Reports Server (NTRS)

    Johnston, D. W. H.

    1981-01-01

    The increasing density of electrical and electronic circuits in Deep Space Station systems for computation, control, and numerous related functions has combined with the extension of system performance requirements calling for higher speed circuitry along with broader bandwidths. This has progressively increased the number of potential sources of radio frequency interference inside the stations. Also, the extension of spectrum usage both in power and frequency as well as the greater density of usage at all frequencies for national and international satellite communications, space research, Earth resource operations and defense, and particularly the huge expansion of airborne electronic warfare and electronic countermeasures operations in the Mojave area have greatly increased the potential number and severity of radio frequency interference incidents. The various facets of this problem and the efforts to eliminate or minimize the impact of interference on Deep Space Network support of deep space flight projects are described.

  3. SimITK: model driven engineering for medical imaging

    NASA Astrophysics Data System (ADS)

    Trezise, Melissa; Gobbi, David; Cordy, James; Abolmaesumi, Purang; Mousavi, Parvin

    2014-03-01

    The Insight Segmentation and Registration Toolkit (ITK) is a highly utilized open source medical imaging library providing chiefly the functionality to register, segment, and filter medical images. Although extremely powerful, ITK has a steep learning curve for users with little or no background in programming. It was for this reason that SimITK was developed. SimITK wraps ITK into the model driven engineering environment Simulink, a part of the Matlab development suite. The first released version of SimITK was a proof of concept, and demonstrated that ITK could be wrapped successfully in Simulink. In this paper a new version of SimITK is presented where ITK classes are wrapped using a fully automated process. In addition, SimITK is transitioned to successfully support ITK version 4, in order to remain current with the ITK project. SimITK includes thirty-seven image filters, twelve optimizers, and nineteen transform classes from ITK version 4 which are successfully wrapped and tested, and can be quickly and easily combined to perform medical imaging tasks. These classes were chosen to represent a broad range of usability, and to allow for greater flexibility when creating registration pipelines. SimITK has the potential to reduce the learning curve for ITK and allow the user to focus on developing workflows and algorithms. A release of SimITK along with tutorials and videos is available at www.simitkvtk.com.

  4. TOF-SIMS analysis of polymers

    NASA Astrophysics Data System (ADS)

    Wien, Karl

    1997-08-01

    When solid polymers are irradiated with heavy ions, atomic and molecular particles are ejected from the uppermost layers of the surface. A technique to determine the mass spectrum of the charged fraction of these particles is time-of-flight secondary-ion-mass spectrometry, TOF-SIMS. The present article describes, how the mass spectra measured with polymers are generally structured and under which conditions the various types of secondary ions like cationized oligomers, fragment ions and "fingerprint" ions are observable. The mechanisms leading to formation and ejection of the ions are not well understood. At bombarding energies of 10 keV, they are mainly based on atomic collision processes, at 100 MeV on the electronic excitation of the solid in the vicinity of the nuclear track. Processes, which are capable to desorb large organic molecules, seem not to work with oligomers of similar mass. Mass spectrometry of "real world" polymers, i.e. thick samples, depends mostly on the low-mass fingerprint spectrum, which can be produced by keV MeV SIMS. Modern TOF-SIMS instruments are equipped with a pulsed ion gun and an energy focussing ion mirror. They provide high mass resolution ( {m}/{Δm} ⋍ 10000 ) and high transmission (20-50%). Examples of applications are given, like the determination of mean molecular weights or investigations of radiation induced modifications of polymers.

  5. Preparation of Flight Operations and IWS Integration of the CELIAS Experiment on the SOHO Spacecraft

    NASA Technical Reports Server (NTRS)

    Ipavich, Fred

    1996-01-01

    During this reporting time period, the following activities took place: (1) generation of several versions of the CELIAS (STOF/SEM/CTOF/MTOF/DPU) commissioning timeline for the first 180 days after launch; (2) identification of several problems with the CELIAS portion of the Project Data Base (PDB); (3) attendance of the Science Operations Working Group (SOWG) Meetings (November 1994, February 1995, May 1995) and Flight Operations Review Meeting (July 1995); (4) participation in Flight Operation Simulations SIM 1 (November 14-18, 1994), SIM 2 (May 1-4, 1995) and SIM3 (August 7-11, 1995); and (5) participation in the Ground System Compatibility Test Rehearsal (April 24-28) 1995), GSCT #2 (May 30-June 14, 1995), GSCT #3 (September 12-22 1995), and GSCT #4b (October 30-November 5, 1995).

  6. SIM PlanetQuest: Science with the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen (Editor); Turyshev, Slava (Editor)

    2004-01-01

    SIM - the Space Interferometry Mission - will perform precision optical astrometry on objects as faint as R magnitude 20. It will be the first space-based astrometric interferometer, operating in the optical band with a 10-m baseline. The Project is managed by the Jet Propulsion Laboratory, California Institute of Technology, in close collaboration with two industry partners, Lockheed Martin Missiles and Space, and TRW Inc., Space and Electronics Group. Launch of SIM is currently planned for 2009. In its wide-angle astrometric mode, SIM will yield 4 microarcsecond absolute position and parallax measurements. Astrometric planet searches will be done in a narrow-angle mode, with an accuracy of 4 microarcseconds or better in a single measurement. As a pointed rather than a survey instrument, SIM will maintain.its astrometric accuracy down to the faintest, magnitudes, opening up the opportunity for astrometry of active galactic nuclei to better than 10 pas. SIM will define a new astrometric reference frame, using a grid of approximately 1500 stars with positions accurate to 4 microarcseconds. The SIM Science Team comprises the Principal Investigators of ten Key Projects, and five Mission Scientists contributing their expertise to specific areas of the mission. Their science programs cover a wide range of topics in Galactic and extragalactic astronomy. They include: searches for low-mass planets - including analogs to our own solar system - tlie formation and dynamics of our Galaxy, calibration of the cosmic distance scale, and fundamental stellar astrophysics. All of the science observing on SIM is competitively awarded; the Science Team programs total about 40% of the total available, and the remainder will be assigned via future NASA competitions. This report is a compilation of science summaries by members of the Science Team, and it illustrates the wealth of scientific problems that microarcsecond-precision astrometry can contribute to. More information on SIM

  7. The HexSim Model

    EPA Science Inventory

    HexSim version 2.0 is soon to be released by EPA's Western Ecology Division (WED). More than three years of work have gone into the development of this tool, which grew out of an EPA model called PATCH. HexSim makes it possible for non-programmers to develop sophisticated simula...

  8. Developing a corss-project support system during mission operations: Deep Space 1 extended mission flight control

    NASA Technical Reports Server (NTRS)

    Scarffe, V. A.

    2002-01-01

    NASA is focusing on small, low-cost spacecraft for both planetary and earth science missions. Deep Space 1 (DS1) was the first mission to be launched by the NMP. The New Millennium Project (NMP) is designed to develop and test new technology that can be used on future science missions with lower cost and risk. The NMP is finding ways to reduce cost not only in development, but also in operations. DS 1 was approved for an extended mission, but the budget was not large, so the project began looking into part time team members shared with other projects. DS1 launched on October 24, 1998, in it's primary mission it successfully tested twelve new technologies. The extended mission started September 18, 1999 and ran through the encounter with Comet Borrelly on September 22,2001. The Flight Control Team (FCT) was one team that needed to use part time or multi mission people. Circumstances led to a situation where for the few months before the Borrelly encounter in September of 2001 DSl had no certified full time Flight Control Engineers also known as Aces. This paper examines how DS 1 utilized cross-project support including the communication between different projects, and the how the tools used by the Flight Control Engineer fit into cross-project support.

  9. Review and Analysis of Selected Items Management (SIM) Inventory Program Aboard US Surface Ships

    DTIC Science & Technology

    2005-12-01

    project attempts to assess the impact of this correlation in satisfying the TYCOM’s SIM inventory goals. Additionally, this project examines shipboard...criteria are met. Conversely, SIM items may also be declassified becoming non-SIM items whenever they no longer satisfy the criteria for retention as...requisitions or demands, that are filled or satisfied immediately from shipboard on-hand stock. Figures 1 and 2 below show the computation formula for both

  10. FoilSim: Basic Aerodynamics Software Created

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth A.

    1999-01-01

    FoilSim is interactive software that simulates the airflow around various shapes of airfoils. The graphical user interface, which looks more like a video game than a learning tool, captures and holds the students interest. The software is a product of NASA Lewis Research Center s Learning Technologies Project, an educational outreach initiative within the High Performance Computing and Communications Program (HPCCP).This airfoil view panel is a simulated view of a wing being tested in a wind tunnel. As students create new wing shapes by moving slider controls that change parameters, the software calculates their lift. FoilSim also displays plots of pressure or airspeed above and below the airfoil surface.

  11. Development of a Low-Cost Sub-Scale Aircraft for Flight Research: The FASER Project

    NASA Technical Reports Server (NTRS)

    Owens, Donald B.; Cox, David E.; Morelli, Eugene A.

    2006-01-01

    An inexpensive unmanned sub-scale aircraft was developed to conduct frequent flight test experiments for research and demonstration of advanced dynamic modeling and control design concepts. This paper describes the aircraft, flight systems, flight operations, and data compatibility including details of some practical problems encountered and the solutions found. The aircraft, named Free-flying Aircraft for Sub-scale Experimental Research, or FASER, was outfitted with high-quality instrumentation to measure aircraft inputs and states, as well as vehicle health parameters. Flight data are stored onboard, but can also be telemetered to a ground station in real time for analysis. Commercial-off-the-shelf hardware and software were used as often as possible. The flight computer is based on the PC104 platform, and runs xPC-Target software. Extensive wind tunnel testing was conducted with the same aircraft used for flight testing, and a six degree-of-freedom simulation with nonlinear aerodynamics was developed to support flight tests. Flight tests to date have been conducted to mature the flight operations, validate the instrumentation, and check the flight data for kinematic consistency. Data compatibility analysis showed that the flight data are accurate and consistent after corrections are made for estimated systematic instrumentation errors.

  12. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface

    NASA Astrophysics Data System (ADS)

    Park, Ji-Won; Jeong, Hyobin; Kang, Byeongsoo; Kim, Su Jin; Park, Sang Yoon; Kang, Sokbom; Kim, Hark Kyun; Choi, Joon Sig; Hwang, Daehee; Lee, Tae Geol

    2015-06-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) emerges as a promising tool to identify the ions (small molecules) indicative of disease states from the surface of patient tissues. In TOF-SIMS analysis, an enhanced ionization of surface molecules is critical to increase the number of detected ions. Several methods have been developed to enhance ionization capability. However, how these methods improve identification of disease-related ions has not been systematically explored. Here, we present a multi-dimensional SIMS (MD-SIMS) that combines conventional TOF-SIMS and metal-assisted SIMS (MetA-SIMS). Using this approach, we analyzed cancer and adjacent normal tissues first by TOF-SIMS and subsequently by MetA-SIMS. In total, TOF- and MetA-SIMS detected 632 and 959 ions, respectively. Among them, 426 were commonly detected by both methods, while 206 and 533 were detected uniquely by TOF- and MetA-SIMS, respectively. Of the 426 commonly detected ions, 250 increased in their intensities by MetA-SIMS, whereas 176 decreased. The integrated analysis of the ions detected by the two methods resulted in an increased number of discriminatory ions leading to an enhanced separation between cancer and normal tissues. Therefore, the results show that MD-SIMS can be a useful approach to provide a comprehensive list of discriminatory ions indicative of disease states.

  13. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface.

    PubMed

    Park, Ji-Won; Jeong, Hyobin; Kang, Byeongsoo; Kim, Su Jin; Park, Sang Yoon; Kang, Sokbom; Kim, Hark Kyun; Choi, Joon Sig; Hwang, Daehee; Lee, Tae Geol

    2015-06-05

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) emerges as a promising tool to identify the ions (small molecules) indicative of disease states from the surface of patient tissues. In TOF-SIMS analysis, an enhanced ionization of surface molecules is critical to increase the number of detected ions. Several methods have been developed to enhance ionization capability. However, how these methods improve identification of disease-related ions has not been systematically explored. Here, we present a multi-dimensional SIMS (MD-SIMS) that combines conventional TOF-SIMS and metal-assisted SIMS (MetA-SIMS). Using this approach, we analyzed cancer and adjacent normal tissues first by TOF-SIMS and subsequently by MetA-SIMS. In total, TOF- and MetA-SIMS detected 632 and 959 ions, respectively. Among them, 426 were commonly detected by both methods, while 206 and 533 were detected uniquely by TOF- and MetA-SIMS, respectively. Of the 426 commonly detected ions, 250 increased in their intensities by MetA-SIMS, whereas 176 decreased. The integrated analysis of the ions detected by the two methods resulted in an increased number of discriminatory ions leading to an enhanced separation between cancer and normal tissues. Therefore, the results show that MD-SIMS can be a useful approach to provide a comprehensive list of discriminatory ions indicative of disease states.

  14. The European project CASAM for the protection of commercial airliners in flight

    NASA Astrophysics Data System (ADS)

    Vergnolle, Jean-François

    2007-10-01

    As part of mass transportation systems, commercial aircraft are a potential target for terrorists because they represent one of the best achievements of our society. As a result, an attack would have a large psychological impact on people and economic activity. Several European Commission-funded Research and Technology programs, such as SAFEE and PALMA, are dedicated to technologies and systems that will be implemented onboard aircraft in the near future to increase the security of commercial flights. One of these programs, CASAM, is focusing on a potential solution to reduce aircraft vulnerability against Man Portable Air Defense Systems (MANPADS) during takeoff, ascent and landing. A specific onboard jamming system will be developed, meeting stringent yet competitive requirements that deal with high reliability, low cost and minimal installation constraints. The overall objective of the CASAM Project1 is to design and validate a closed-loop, laser-based DIRCM (Directed IR Countermeasure) module for jamming fired missiles. It will comply with commercial air transportation constraints, including the normal air traffic control rules. For example, the following aspects will be considered: - Environmental friendliness for ground objects and inhabitants close to airports, aircraft safety (maintenance, handling and usage) and high efficiency against the recognized threats; - Upgradability for further and future disseminated threats - Adherence to commercial operation budgets and processes

  15. NSTA-NASA Shuttle Student Involvement Project. Experiment Results: Insect Flight Observation at Zero Gravity

    NASA Technical Reports Server (NTRS)

    Nelson, T. E.; Peterson, J. R.

    1982-01-01

    The flight responses of common houseflies, velvetbean caterpillar moths, and worker honeybees were observed and filmed for a period of about 25 minutes in a zero-g environment during the third flight of the Space Shuttle Vehicle (flight number STS-3; March 22-30, 1982). Twelve fly puparia, 24 adult moths, 24 moth pupae, and 14 adult bees were loaded into an insect flight box, which was then stowed aboard the Shuttle Orbiter, the night before the STS-3 launch at NASA's Kennedy Space Center (KSC). The main purpose of the experiment was to observe and compare the flight responses of the three species of insects, which have somewhat different flight control mechanisms, under zero-g conditions.

  16. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  17. Sims for Science: Powerful Tools to Support Inquiry-Based Teaching

    ERIC Educational Resources Information Center

    Perkins, Katherine K.; Loeblein, Patricia J.; Dessau, Kathryn L.

    2010-01-01

    Since 2002, the PhET Interactive Simulations project at the University of Colorado has been working to provide learning tools for students and teachers. The project has developed over 85 interactive simulations--or sims--for teaching and learning science. Although these sims can be used in a variety of ways, they are specifically designed to make…

  18. Draft INFL Guideline on SIMS

    SciTech Connect

    Kristo, M J

    2012-04-02

    Secondary Ion Mass Spectrometry (SIMS) is used for elemental and isotopic analysis of solid samples. The greatest strength of SIMS is the ability to analyze very small areas (as small as 50 nm using the CAMECA NanoSIMS, for example) and to generate high-spatial resolution maps of the distribution of elements and isotopes within the sample. The measurement of the isotopic composition of sample is usually straightforward, only requiring the analysis of the sample and that of an isotopic reference material for determination of the mass bias of the instrument. Quantification of elements, however, involves the analysis of matrix matched standards for the determination of the relative sensitivity factor (a function of both the element to be analyzed and the matrix). SIMS is commonly used in nuclear forensics for exploring the heterogeneity of the material on fine spatial scale.

  19. Launch Vehicle Flight Report - Nasa Project Apollo Little Joe 2 Qualification Test Vehicle 12-50-1

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The Little Joe II Qualification Test Vehicle, Model 12-50-1, was launched from Army Launch Area 3 {ALA-3) at White Sands Missile Range, New Mexico, on 28 August 1963. This was the first launch of this class of boosters. The Little Joe II Launch Vehicle was designed as a test vehicle for boosting payloads into flight. For the Apollo Program, its mission is to serve as a launch vehicle for flight testing of the Apollo spacecraft. Accomplishment of this mission requires that the vehicle be capable of boosting the Apollo payload to parameters ranging from high dynamic pressures at low altitude to very high altitude flight. The fixed-fin 12-50 version was designed to accomplish the low-altitude parameter. The 12-51 version incorporates an attitude control system to accomplish the high altitude mission. This launch was designed to demonstrate the Little Joe II capability of meeting the high dynamic pressure parameter for the Apollo Program. For this test, a boiler-plate version of the Apollo capsule, service module and escape tower were attached to the launch vehicle to simulate weight, center of gravity and aerodynamic shape of the Apollo configuration. No attempt was made to separate the payload in flight. The test was conducted in compliance with Project Apollo Flight Mission Directive for QTV-1, NASA-MSC, dated 3 June 1963, under authority of NASA Contract NAS 9-492,

  20. Numerical CFD Simulation and Test Correlation in a Flight Project Environment

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.; Lung, S. F.; Ibrahim, A. H.

    2015-01-01

    This paper presents detailed description of a novel CFD procedure and comparison of its solution results to that obtained by other available CFD codes as well as actual flight and wind tunnel test data pertaining to the GIII aircraft, currently undergoing flight testing at AFRC.

  1. Comprehensive Application of Time-of-flight Secondary Ion Mass Spectrometry (TOF-SIMS) for Ionic Imaging and Bio-energetic Analysis of Club Drug-induced Cognitive Deficiency

    PubMed Central

    Youn, Su-Chung; Chen, Li-You; Chiou, Ruei-Jen; Lai, Te-Jen; Liao, Wen-Chieh; Mai, Fu-Der; Chang, Hung-Ming

    2015-01-01

    Excessive exposure to club drug (GHB) would cause cognitive dysfunction in which impaired hippocampal Ca2+-mediated neuroplasticity may correlate with this deficiency. However, the potential changes of in vivo Ca2+ together with molecular machinery engaged in GHB-induced cognitive dysfunction has never been reported. This study aims to determine these changes in bio-energetic level through ionic imaging, spectrometric, biochemical, morphological, as well as behavioral approaches. Adolescent rats subjected to GHB were processed for TOF-SIMS, immunohistochemistry, biochemical assay, together with Morris water maze to detect the ionic, molecular, neurochemical, and behavioral changes of GHB-induced cognitive dysfunction, respectively. Extent of oxidative stress and bio-energetics were assessed by levels of lipid peroxidation, Na+/K+ ATPase, cytochrome oxidase, and [14C]-2-deoxyglucose activity. Results indicated that in GHB intoxicated rats, decreased Ca2+ imaging and reduced NMDAR1, nNOS, and p-CREB reactivities were detected in hippocampus. Depressed Ca2+-mediated signaling corresponded well with intense oxidative stress, diminished Na+/K+ ATPase, reduced COX, and decreased 2-DG activity, which all contributes to the development of cognitive deficiency. As impaired Ca2+-mediated signaling and oxidative stress significantly contribute to GHB-induced cognitive dysfunction, delivering agent(s) that improves hippocampal bio-energetics may thus serve as a promising strategy to counteract the club drug-induced cognitive dysfunction emerging in our society nowadays. PMID:26674573

  2. Comprehensive Application of Time-of-flight Secondary Ion Mass Spectrometry (TOF-SIMS) for Ionic Imaging and Bio-energetic Analysis of Club Drug-induced Cognitive Deficiency.

    PubMed

    Youn, Su-Chung; Chen, Li-You; Chiou, Ruei-Jen; Lai, Te-Jen; Liao, Wen-Chieh; Mai, Fu-Der; Chang, Hung-Ming

    2015-12-17

    Excessive exposure to club drug (GHB) would cause cognitive dysfunction in which impaired hippocampal Ca(2+)-mediated neuroplasticity may correlate with this deficiency. However, the potential changes of in vivo Ca(2+) together with molecular machinery engaged in GHB-induced cognitive dysfunction has never been reported. This study aims to determine these changes in bio-energetic level through ionic imaging, spectrometric, biochemical, morphological, as well as behavioral approaches. Adolescent rats subjected to GHB were processed for TOF-SIMS, immunohistochemistry, biochemical assay, together with Morris water maze to detect the ionic, molecular, neurochemical, and behavioral changes of GHB-induced cognitive dysfunction, respectively. Extent of oxidative stress and bio-energetics were assessed by levels of lipid peroxidation, Na(+)/K(+) ATPase, cytochrome oxidase, and [(14)C]-2-deoxyglucose activity. Results indicated that in GHB intoxicated rats, decreased Ca(2+) imaging and reduced NMDAR1, nNOS, and p-CREB reactivities were detected in hippocampus. Depressed Ca(2+)-mediated signaling corresponded well with intense oxidative stress, diminished Na(+)/K(+) ATPase, reduced COX, and decreased 2-DG activity, which all contributes to the development of cognitive deficiency. As impaired Ca(2+)-mediated signaling and oxidative stress significantly contribute to GHB-induced cognitive dysfunction, delivering agent(s) that improves hippocampal bio-energetics may thus serve as a promising strategy to counteract the club drug-induced cognitive dysfunction emerging in our society nowadays.

  3. Results from SIM's Thermo-Opto-Mechanical (TOM3) Testbed

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Lindensmith, C. A.; Hahn, I.

    2006-01-01

    Future space-based optical interferometers, such as the Space Interferometer Mission Planet Quest (SIM), require thermal stability of the optical wavefront to the level of picometers in order to produce astrometric data at the micro-arc-second level. In SIM, the internal path of the interferometer will be measured with a small metrology beam whereas the starlight fringe position is estimated from a large concentric annular beam. To achieve the micro-arc-second observation goal for SIM, it is necessary to maintain the optical path difference between the central and the outer annulus portions of the wavefront of the front-end telescope optics to a few tens of picometers. The Thermo-Opto-Mecha nical testbed (TOM3) was developed at the Jet Propulsion Laboratory to measure thermally induced optical deformations of a full-size flight-like beam compressor and siderostat, the two largest optics on SIM, in flight-like thermal environments. A Common Path Heterodyne Interferometer (COPHI) developed at JPL was used for the fine optical path difference measurement as the metrology sensor. The system was integrated inside a large vacuum chamber in order to mitigate the atmospheric and thermal disturbances. The siderostat was installed in a temperature-controlled thermal shroud inside the vacuum chamber, creating a flight-like thermal environment. Detailed thermal and structural models of the test articles (siderostat and compressor) were also developed for model prediction and correlation of the thermal deformations. Experimental data shows SIM required thermal stability of the test articles and good agreement with the model predictions.

  4. Spacewedge #1 in Flight

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Wedge. The Spacewedge was a flattened biconical airframe joined to a ram-air parafoil with a custom harness. In the manual control mode, the vehicle was flown using a radio uplink. In its autonomous mode, it was controlled using a small computer that received input from onboard sensors. Selected sensor data was recorded onto several onboard data loggers. Two Spacewedge shapes were used for four airframes representing generic hypersonic vehicle configurations. Spacewedge vehicles were 48 inches long, 30 inches wide, and 21 inches high. Their basic weight was 120 pounds, although different configurations weighed from 127 to 184 pounds. Potential uses for Spacewedge-based technology include deployable, precision, autonomous landing systems, such as the one deployed by the X-38 crew return vehicle; planetary probes; booster recovery systems; autonomous gliding parachute systems on military aircraft ejection seats; offset delivery of military cargoes; and delivery of humanitarian aid to hard-to-reach locations. Dryden employees involved with the Spacewedge program included R. Dale Reed, who originated the concept of conducting a subscale flight test at Dryden and participated in the actual testing. Alexander Sim managed the flight project and participated in its documentation. James Murray served as the principal Dryden investigator and as the lead for all systems integration for Phases I and II (the Spacewedge phases).

  5. Defining and Applying Limits for Test and Flight Through the Project Lifecycle GSFC Standard. [Scope: Non-Cryogenic Systems Tested in Vacuum

    NASA Technical Reports Server (NTRS)

    Mosier, Carol

    2015-01-01

    The presentation will be given at the Annual Thermal Fluids Analysis Workshop (TFAWS 2015, NCTS 21070-15) hosted by the Goddard SpaceFlight Center (GSFC) Thermal Engineering Branch (Code 545). The powerpoint presentation details the process of defining limits throughout the lifecycle of a flight project.

  6. Research project evaluates the effect of national culture on flight crew behaviour.

    PubMed

    Helmreich, R L; Merritt, A C; Sherman, P J

    1996-10-01

    The role of national culture in flight crew interactions and behavior is examined. Researchers surveyed Asian, European, and American flight crews to determine attitudes about crew coordination and cockpit management. Universal attitudes among pilots are identified. Culturally variable attitudes among pilots from 16 countries are compared. The role of culture in response to increasing cockpit automation is reviewed. Culture-based challenges to crew resource management programs and multicultural organizations are discussed.

  7. PhoSim: Photon Simulator

    NASA Astrophysics Data System (ADS)

    Peterson, John R.; Jernigan, J. Garrett

    2013-07-01

    The Photon Simulator (PhoSim) is a set of fast photon Monte Carlo codes used to calculate the physics of the atmosphere, telescope, and detector by using modern numerical techniques applied to comprehensive physical models. PhoSim generates images by collecting photons into pixels. The code takes the description of what astronomical objects are in the sky at a particular time (the instance catalog) as well as the description of the observing configuration (the operational parameters) and produces a realistic data stream of images that are similar to what a real telescope would produce. PhoSim was developed for large aperture wide field optical telescopes, such as the planned design of LSST. The initial version of the simulator also targeted the LSST telescope and camera design, but the code has since been broadened to include existing telescopes of a related nature. The atmospheric model, in particular, includes physical approximations that are limited to this general context.

  8. Status of the Development of Flight Power Processing Units for the NASAs Evolutionary Xenon Thruster - Commercial (NEXT-C) Project

    NASA Technical Reports Server (NTRS)

    Aulisio, Michael V.; Pinero, Luis R.; White, Brandon L.; Hickman, Tyler A.; Bontempo, James J.; Hertel, Thomas A.; Birchenough, Arthur G.

    2016-01-01

    A pathfinder prototype unit and two flight power processing units (PPUs) are being developed by the Aerojet Rocketdyne Corporation in Redmond, Washington and ZIN Technologies in Cleveland, Ohio, in support of the NEXT-C Project. This project is being led by the NASA Glenn Research Center in Cleveland, Ohio, and will also yield two flight thrusters. This hardware is being considered to be provided as Government Furnished Equipment for the New Frontiers Program, and is applicable to a variety of planetary science missions and astrophysics science missions. The design of the NEXT-C PPU evolves from the hardware fabricated under the NEXT technology development project. The power processing unit operates from two sources: a wide input 80 to 160 V high-power bus and a nominal 28 V low-power bus. The unit includes six power supplies. Four power supplies (beam, accelerator, discharge, and neutralizer keeper) are needed for steady state operation, while two cathode heater power supplies (neutralizer and discharge) are utilized during thruster startup. The unit in total delivers up to 7 kW of regulated power to a single gridded-ion thruster. Significant modifications to the initial design include: high-power adaptive-delay control, upgrade of design to EEE-INST-002 compliance, telemetry accuracy improvements, incorporation of telemetry to detect plume-mode operation, and simplification of the design in select areas to improve manufacturability and commercialization potential. The project is presently in the prototype phase and preparing for qualification level environmental testing.

  9. AVIRIS performance during the 1987 flight season: An AVIRIS project assessment and summary of the NASA-sponsored performance evaluation

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Porter, Wallace M.; Reimer, John H.; Chrien, Thomas G.; Green, Robert O.

    1988-01-01

    Results are presented of the assessment of AVIRIS performance during the 1987 flight season by the AVIRIS project and the earth scientists who were chartered by NASA to conduct an independent data quality and sensor performance evaluation. The AVIRIS evaluation program began in late June 1987 with the sensor meeting most of its design requirements except for signal-to-noise ratio in the fourth spectrometer, which was about half of the required level. Several events related to parts failures and design flaws further reduced sensor performance over the flight season. Substantial agreement was found between the assessments by the project and the independent investigators of the effects of these various factors. A summary of the engineering work that is being done to raise AVIRIS performance to its required level is given. In spite of degrading data quality over the flight season, several exciting scientific results were obtained from the data. These include the mapping of the spatial variation of atmospheric precipitable water, detection of environmentally-induced shifts in the spectral red edge of stressed vegetation, detection of spectral features related to pigment, leaf water and ligno-cellulose absorptions in plants, and the identification of many diagnostic mineral absorption features in a variety of geological settings.

  10. "SP.ACE" 2013-2015: ASGARD Balloon and BIFROST Parabolic Flights: Latest Developments in Hands-On Space Education Projects for Secondary School Students

    NASA Astrophysics Data System (ADS)

    de Schrijver, E.; Chameleva, H.; Degroote, C.; D'Haese, Z.; Paice, C.; Plas, H.; Van den Bossche, A.; Vander Donckt, L.; Vander Vost, J.

    2015-09-01

    Flight opportunities on high-altitude ASGARD balloons offered to secondary schools worldwide since 20 1 1 have led to an ever more rapidly increasing number of project proposals. The introduction of beginners' and ‘advanced classes of experiments is hoped to draw in even larger numbers of interested school teams. Furthermore, and in cooperation with ESERO (European Space Education Resources Office), workshops and documentation are being prepared to introduce teachers and students alike to the world of microcontrollers and sensors. A student parabolic flight programme called BIFROST (Brussels' Initiative to provide Flight Research Opportunities to STudents) was initiated to meet the rising demand for hands-on space education projects and the desire to cover the widest possible range of scientific and/or technical domains, which essentially calls for a variety of flight platforms: cansats, balloons and parabolic flight.

  11. The telerobot workstation testbed for the shuttle aft flight deck: A project plan for integrating human factors into system design

    NASA Technical Reports Server (NTRS)

    Sauerwein, Timothy

    1989-01-01

    The human factors design process in developing a shuttle orbiter aft flight deck workstation testbed is described. In developing an operator workstation to control various laboratory telerobots, strong elements of human factors engineering and ergonomics are integrated into the design process. The integration of human factors is performed by incorporating user feedback at key stages in the project life-cycle. An operator centered design approach helps insure the system users are working with the system designer in the design and operation of the system. The design methodology is presented along with the results of the design and the solutions regarding human factors design principles.

  12. Inducible neuronal inactivation of Sim1 in adult mice causes hyperphagic obesity.

    PubMed

    Tolson, Kristen P; Gemelli, Terry; Meyer, Donna; Yazdani, Umar; Kozlitina, Julia; Zinn, Andrew R

    2014-07-01

    Germline haploinsufficiency of human or mouse Sim1 is associated with hyperphagic obesity. Sim1 encodes a transcription factor required for proper formation of the paraventricular (PVN), supraoptic, and anterior periventricular hypothalamic nuclei. Sim1 expression persists in these neurons in adult mice, raising the question of whether it plays a physiologic role in regulation of energy balance. We previously showed that Sim1 heterozygous mice had normal numbers of PVN neurons that were hyporesponsive to melanocortin 4 receptor agonism and showed reduced oxytocin expression. Furthermore, conditional postnatal neuronal inactivation of Sim1 also caused hyperphagic obesity and decreased hypothalamic oxytocin expression. PVN projections to the hindbrain, where oxytocin is thought to act to modulate satiety, were anatomically intact in both Sim1 heterozygous and conditional knockout mice. These experiments provided evidence that Sim1 functions in energy balance apart from its role in hypothalamic development but did not rule out effects of Sim1 deficiency on postnatal hypothalamic maturation. To address this possibility, we used a tamoxifen-inducible, neural-specific Cre transgene to conditionally inactivate Sim1 in adult mice with mature hypothalamic circuitry. Induced Sim1 inactivation caused increased food and water intake and decreased expression of PVN neuropeptides, especially oxytocin and vasopressin, with no change in energy expenditure. Sim1 expression was not required for survival of PVN neurons. The results corroborate previous evidence that Sim1 acts physiologically as well as developmentally to regulate body weight. Inducible knockout mice provide a system for studying Sim1's physiologic function in energy balance and identifying its relevant transcriptional targets in the hypothalamus.

  13. Description of convective-scale numerical weather simulation use in a flight simulator within the Flysafe project

    NASA Astrophysics Data System (ADS)

    Pradier-Vabre, S.; Forster, C.; Heesbeen, W. W. M.; Pagé, C.; Sénési, S.; Tafferner, A.; Bernard-Bouissières, I.; Caumont, O.; Drouin, A.; Ducrocq, V.; Guillou, Y.; Josse, P.

    2009-03-01

    Within the framework of the Flysafe project, dedicated tools aiming at improving flight safety are developed. In particular, efforts are directed towards the development of the Next Generation-Integrated Surveillance System (NG-ISS), i.e. a combination of new on-board systems and ground-based tools which provides the pilot with integrated information on three risks playing a major role in aircraft accidents: collision with another aircraft, collision with terrain, and adverse weather conditions. For the latter, Weather Information Management Systems (WIMSs) based on nowcasts of atmospheric hazards are developed. This paper describes the set-up of a test-bed for the NG-ISS incorporating two types of WIMS data, those related to aircraft in-flight icing and thunderstorm risks. The test-bed is based on convective-scale numerical simulations of a particular weather scenario with thunderstorms and icing in the area of the Innsbruck airport. Raw simulated fields as well as more elaborate diagnostics (synthetic reflectivity and satellite brightness temperature) feed both the flight simulator including the NG-ISS and the algorithms in charge of producing WIMS data. WIMS outputs based on the synthetic data are discussed, and it is indicated that the high-resolution simulated fields are beneficial for the NG-ISS test-bed purposes and its technical feasibility.

  14. TOF-SIMS Analysis of Red Color Inks of Writing and Printing Tools on Questioned Documents.

    PubMed

    Lee, Jihye; Nam, Yun Sik; Min, Jisook; Lee, Kang-Bong; Lee, Yeonhee

    2016-05-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a well-established surface technique that provides both elemental and molecular information from several monolayers of a sample surface while also allowing depth profiling or image mapping to be performed. Static TOF-SIMS with improved performances has expanded the application of TOF-SIMS to the study of a variety of organic, polymeric, biological, archaeological, and forensic materials. In forensic investigation, the use of a minimal sample for the analysis is preferable. Although the TOF-SIMS technique is destructive, the probing beams have microsized diameters so that only small portion of the questioned sample is necessary for the analysis, leaving the rest available for other analyses. In this study, TOF-SIMS and attenuated total reflectance Fourier transform infrared (ATR-FTIR) were applied to the analysis of several different pen inks, red sealing inks, and printed patterns on paper. The overlapping areas of ballpoint pen writing, red seal stamping, and laser printing in a document were investigated to identify the sequence of recording. The sequence relations for various cases were determined from the TOF-SIMS mapping image and the depth profile. TOF-SIMS images were also used to investigate numbers or characters altered with two different red pens. TOF-SIMS was successfully used to determine the sequence of intersecting lines and the forged numbers on the paper.

  15. ToF-SIMS PCA analysis of Myrtus communis L.

    NASA Astrophysics Data System (ADS)

    Piras, F. M.; Dettori, M. F.; Magnani, A.

    2009-06-01

    Nowadays there is a growing interest of researchers for the application of sophisticated analytical techniques in conjunction with statistical data analysis methods to the characterization of natural products to assure their authenticity and quality, and for the possibility of direct analysis of food to obtain maximum information. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) in conjunction with principal components analysis (PCA) are applied to study the chemical composition and variability of Sardinian myrtle ( Myrtus communis L.) through the analysis of both berries alcoholic extracts and berries epicarp. ToF-SIMS spectra of berries epicarp show that the epicuticular waxes consist mainly of carboxylic acids with chain length ranging from C20 to C30, or identical species formed from fragmentation of long-chain esters. PCA of ToF-SIMS data from myrtle berries epicarp distinguishes two groups characterized by a different surface concentration of triacontanoic acid. Variability in antocyanins, flavonols, α-tocopherol, and myrtucommulone contents is showed by ToF-SIMS PCA analysis of myrtle berries alcoholic extracts.

  16. Astrophysics Goals of the SIM PlanetQuest Mission

    NASA Astrophysics Data System (ADS)

    Unwin, S. C.

    2005-05-01

    The Space Interferometry Mission PlanetQuest (SIM PlanetQuest), will be NASA's first space-based instrument capable of microarcsecond astrometry, and it will attack a wide range of topics in extrasolar planet detection, stellar, and galactic astrophysics. Precision astrometry is one of the cornerstones of modern astrophysics. This paper serves as an introduction to a series of papers highlighting some of the science SIM PlanetQuest will be capable of. The project is currently in project Phase B, with a projected launch in 2010. SIM PlanetQuest astrometry at a level approaching 1 microarcsecond over a narrow field will enable searches for planets with close to terrestrial masses. It will fully characterize the multiple-planet systems already known to exist, and will search for planets around young stars, to help us understand their formation and evolution. At a global astrometric accuracy of around 4 microarcseconds, it will deliver very accurate distances to many interesting stellar types, including exotic systems such as black hole binaries. Precision proper motions will allow SIM PlanetQuest to probe the galactic mass distribution, and through studies of tidal tails, the formation and evolution of the galactic halo. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  17. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry James; Haering, Ed; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of NASAs ongoing effort to bring supersonic commercial travel to the public, NASA Dryden Flight Research Center and NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response. Such tests will go towards building a dataset that governing agencies like the Federal Aviation Administration and International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. Until WSPR, there had never been an effort that studied the response of people in their own homes and performing daily activities to non-traditional, low sonic booms.WSPR was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle. Other partners included Gulfstream Aerospace Corporation, Pennsylvania State University, Tetra Tech, and Fidell Associates, Inc.A major objective of the effort included exposing a community with the sonic boom magnitudes and occurrences expected in high-air traffic regions with a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data was collected using multiple survey methods. The research focused on essential elements of community response testing including subject recruitment, survey methods, instrumentation systems, flight planning and operations, and data analysis methods.This paper focuses on NASAs role in the efforts

  18. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    NASA Technical Reports Server (NTRS)

    Cliatt, Larry J., II; Haering, Edward A., Jr.; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response (WSPR). Such tests will be applied to building a dataset that governing agencies such as the Federal Aviation Administration and the International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. The WSPR test was the first such effort that studied responses to non-traditional low sonic booms while the subject persons were in their own homes and performing daily activities.The WSPR test was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle (El Segundo, California). Other partners included Gulfstream Aerospace Corporation (Savannah, Georgia); Pennsylvania State University (University Park, Pennsylvania); Tetra Tech, Inc. (Pasadena, California); and Fidell Associates, Inc. (Woodland Hills, California).A major objective of the effort included exposing a community to the sonic boom magnitudes and occurrences that would be expected to occur in high-air traffic regions having a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data were collected using multiple

  19. M2-F3 and project personnel after the 100th flight

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The 100th flight of the heavy-weight lifting bodies was completed on October 5, 1972, with pilot Bill Dana soaring to an altitude of 66,300 feet and a Mach number of 1.370 (about 904 miles per hour) in the M2-F3. This was call for a celebration as the crew responsible for maintaining and operating the vehicle, the engineers who requested the flight, the pilots who flew the M2, and the Director of the NASA Flight Research Center gather in front of the M2-F3 lifting body for a photograph. Kneeling left to right are Bill Dana, (unknown person),* Jay King, and Herb Anderson. In the cockpit is Bill Szuwalski. Standing left to right are: Dale Reed, Robert Kempel, Milt Thompson, Bill Clifton, an Air Force fire fighter, Jerry Brandt, Johnny Armstrong, an Air Force fire fighter, Gary Layton, Jack Kolf, Ming Tang, (unknown person),* Byron Gibbs, Joe Huxman, (unknown person)*, Bill Mersereau, Bill Arnold, John Manke, Dr. Bill Winters, (unknown person)*, Bill LePage, Glenn Ford, Lee Scherer, Director of Center, (two unknown people),* Stan Butchart, and Berwin Kock. *=Identification incomplete at this time.)

  20. Astronaut Biography Project for Countermeasures of Human Behavior and Performance Risks in Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Banks, Akeem

    2012-01-01

    This final report will summarize research that relates to human behavioral health and performance of astronauts and flight controllers. Literature reviews, data archival analyses, and ground-based analog studies that center around the risk of human space flight are being used to help mitigate human behavior and performance risks from long duration space flights. A qualitative analysis of an astronaut autobiography was completed. An analysis was also conducted on exercise countermeasure publications to show the positive affects of exercise on the risks targeted in this study. The three main risks targeted in this study are risks of behavioral and psychiatric disorders, risks of performance errors due to poor team performance, cohesion, and composition, and risks of performance errors due to sleep deprivation, circadian rhythm. These three risks focus on psychological and physiological aspects of astronauts who venture out into space on long duration space missions. The purpose of this research is to target these risks in order to help quantify, identify, and mature countermeasures and technologies required in preventing or mitigating adverse outcomes from exposure to the spaceflight environment

  1. Ratio estimation in SIMS analysis

    NASA Astrophysics Data System (ADS)

    Ogliore, R. C.; Huss, G. R.; Nagashima, K.

    2011-09-01

    The determination of an isotope ratio by secondary ion mass spectrometry (SIMS) traditionally involves averaging a number of ratios collected over the course of a measurement. We show that this method leads to an additive positive bias in the expectation value of the estimated ratio that is approximately equal to the true ratio divided by the counts of the denominator isotope of an individual ratio. This bias does not decrease as the number of ratios used in the average increases. By summing all counts in the numerator isotope, then dividing by the sum of counts in the denominator isotope, the estimated ratio is less biased: the bias is approximately equal to the ratio divided by the summed counts of the denominator isotope over the entire measurement. We propose a third ratio estimator (Beale's estimator) that can be used when the bias from the summed counts is unacceptably large for the hypothesis being tested. We derive expressions for the variance of these ratio estimators as well as the conditions under which they are normally distributed. Finally, we investigate a SIMS dataset showing the effects of ratio bias, and discuss proper ratio estimation for SIMS analysis.

  2. SHARP-B2: Flight Test Objectives, Project Implementation and Initial Results

    NASA Technical Reports Server (NTRS)

    Salute, Joan; Bull, Jeff; Rasky, Dan; Keese, David; Arnold, Jim (Technical Monitor)

    2001-01-01

    On September 28, 2000 the SHARP-B2 flight experiment was launched from Vandenberg Air Force Base, California. SHARP-B2 is the 2nd Ballistic flight test in the SHARP (Slender Hypervelocity Aerothermodynamic Research Probes) program which develops and tests new thermal protection materials and sharp body concepts. The flight tested Ultra-High Temperature Ceramics (UHTCs), which may radically change the design and performance of future aerospace vehicles. The new designs may overturn an age-old tenet of aerodynamics: that blunt-body aerospace vehicles, but not those with sharp leading edges, can survive the searing temperatures created as the vehicles tear through the atmosphere. Sharp leading edges offer numerous advantages over the blunt-body design currently in use. They could allow a space shuttle or crew return vehicle to maneuver in space more like an airplane and potentially allow astronauts to return to Earth from anywhere on orbit. They may allow improved astronaut safety by decreasing the risk of aborting into the ocean. They may reduce the electromagnetic interference that causes the communications blackouts that plague reentering blunt-body space vehicles. Reducing the amount of drag could lead to a reduction in propulsion requirements. Planetary probes could make use of sharp-body technology for aerobraking and to maximize their maneuvering capability. SHARP-B2 was a joint effort among NASA Ames, Sandia National Laboratories, the U.S. Air Force and the U.S. Army. It was funded by the Pathfinder Program at NASA's Marshall Space Flight Center. The SHARP-B2 payload was carried aboard a U.S. Air Force Minuteman III missile carrying a modified Mk 12A reentry vehicle (RV), which blasted off from Vandenberg Air Force Base near Lompoc, CA, at 3:01 a.m. PDT on Sept. 28. The RV was equipped with four 5. 1 inch-long strakes, or sharp leading edges. Each strake contained three UHTCs: ZrB2/SiC/C; ZrB2/SiC; and HfB2/SiC. Once it reached an altitude of about 400

  3. WEC-Sim (Wave Energy Converter - SIMulator)

    SciTech Connect

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-source code to model WECs.

  4. Using ToF-SIMS to study industrial surface phenomena

    NASA Astrophysics Data System (ADS)

    Smentkowski, Vincent S.; Keenan, Michael R.; Arlinghaus, Henrik

    2016-10-01

    Time of flight secondary ion mass spectrometry (ToF-SIMS) is frequently used to analyze industrial samples since it offers high (ppb) detection sensitivity, very high surface specificity (analysis of the top 1-3 surface layers during a spectral/image acquisition), high mass resolution (allowing the analyst the ability to separate Cu from C5H3 for instance), the ability to detect hydrogen, high depth resolution for depth profile measurements, and detection of high-mass fragments associated with molecular species/additives. In this manuscript, we demonstrate the advantages of ToF-SIMS including the ability to measure trace quantities of unexpected species on the surfaces of devices, and the ability to extract high-mass resolution information from data sets which were collected at degraded mass resolution. The importance of applying unbiased multivariate statistical analysis (MVSA) to the complete set of measured data is also demonstrated.

  5. Sequencing Information Management System (SIMS). Final report

    SciTech Connect

    Fields, C.

    1996-02-15

    A feasibility study to develop a requirements analysis and functional specification for a data management system for large-scale DNA sequencing laboratories resulted in a functional specification for a Sequencing Information Management System (SIMS). This document reports the results of this feasibility study, and includes a functional specification for a SIMS relational schema. The SIMS is an integrated information management system that supports data acquisition, management, analysis, and distribution for DNA sequencing laboratories. The SIMS provides ad hoc query access to information on the sequencing process and its results, and partially automates the transfer of data between laboratory instruments, analysis programs, technical personnel, and managers. The SIMS user interfaces are designed for use by laboratory technicians, laboratory managers, and scientists. The SIMS is designed to run in a heterogeneous, multiplatform environment in a client/server mode. The SIMS communicates with external computational and data resources via the internet.

  6. High-resolution SIMS depth profiling of nanolayers.

    SciTech Connect

    Baryshev, S. V.; Zinovev, A. V.; Tripa, C. E.; Pellin, M. J.; Peng, Q.; Elam, J. W.; Veryovkin, I. V.

    2012-10-15

    Although the fundamental physical limits for depth resolution of secondary ion mass spectrometry are well understood in theory, the experimental work to achieve and demonstrate them is still ongoing. We report results of high-resolution TOF SIMS (time-of-flight secondary ion mass spectrometry) depth profiling experiments on a nanolayered structure, a stack of 16 alternating MgO and ZnO {approx}5.5 nm layers grown on a Si substrate by atomic layer deposition. The measurements were performed using a newly developed approach implementing a low-energy direct current normally incident Ar{sup +} ion beam for ion milling (250 eV and 500 eV energy), in combination with a pulsed 5 keV Ar{sup +} ion beam at 60{sup o} incidence for TOF SIMS analysis. By this optimized arrangement, a noticeably improved version of the dual-beam (DB) approach to TOF SIMS depth profiling is introduced, which can be dubbed gentleDB. The mixing-roughness-information model was applied to detailed analysis of experimental results. It revealed that the gentleDB approach allows ultimate depth resolution by confining the ion beam mixing length to about two monolayers. This corresponds to the escape depth of secondary ions, the fundamental depth resolution limitation in SIMS. Other parameters deduced from the measured depth profiles indicated that a single layer thickness is equal to 6 nm so that the 'flat' layer thickness d is 3 nm and the interfacial roughness {sigma} is 1.5 nm, thus yielding d + 2{sigma} = 6 nm. We have demonstrated that gentleDB TOF SIMS depth profiling with noble gas ion beams is capable of revealing the structural features of a stack of nanolayers, resolving its original surface and estimating the roughness of interlayer interfaces, information which is difficult to obtain by traditional approaches.

  7. CASAM: a European R&T project for the protection of commercial aircrafts in flight

    NASA Astrophysics Data System (ADS)

    Tholl, Hans Dieter; Vergnolle, Jean-Francois

    2008-10-01

    CASAM (Civil Aircraft Security Against Manpads) is a Framework Program 6 (FP 6) Project launched by the European Commission, DG Research-Aeronautics, binding together a group of 18 companies and research institutions from majors to SMEs. The global objective of the CASAM Project is to design, build, test and validate on ground a closed-loop laser-based DIRCM (Directed IR Countermeasure) equipment for jamming an infrared guided missile fired against a commercial airliner. The broad expertise of the CASAM team allows to address all technical, financial and legal matters dealing with the challenging topic of protecting civilian aircrafts against MANPADS. This paper reviews the main aspects of the projects.

  8. Mars In-Situ Propellant Production Precursor (MIP) Flight Demonstration Project: Overview

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.; Ratliff, J. E.; Baird, R. S.; Sanders, G. B.; Johnson, K. R.; Karlmann, P. B.; Juanero, K. J.; Baraona, C. R.; Landis, G. A.; Jenkins, P. P.; Scheiman, D. A.

    1999-01-01

    Strategic planning for human missions of exploration to Mars has conclusively identified in-situ propellant production (ISPP) as an enabling technology. A team of scientists and engineers from NASA's Johnson Space Center, Jet Propulsion Laboratory, and Lewis Research Center is preparing the MARS ISPP PRECURSOR (MIP) Flight Demonstration. The objectives of MIP are to characterize the performance of processes and hardware which are important to ISPP concepts and to demonstrate how these processes and hardware interact with the Mars environment. Operating this hardware in the actual Mars environment is extremely important due to both uncertainties in our knowledge of the Mars environment as well as because of conditions that cannot be adequately simulated on Earth. The MIP Flight Demonstration is a payload onboard the MARS SURVEYOR Lander and will be launched in April 2001. MIP will be the first hardware to utilize the indigenous resources of a planet or moon. Its successful operation will pave the way for future robotic and human missions to rely on propellants produced using Martian resources as feedstock.

  9. Mars In-Situ Propellant Production Precursor (MIP) Flight Demonstration Project: Overview

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.; Ratliff, J. E.; Sanders, G. B.; Johnson, K. R.; Karlmann, P. B.; Juanero, K. J.; Barona, C. R.; Landis, G. A.; Jenkins, P. P.; Scheiman, D. A.

    1999-01-01

    Strategic planning for human missions of exploration to Mars has conclusively identified in-situ propellant production (ISPP) as an enabling technology. A team of scientists and engineers from NASA's Johnson Space Center, Jet Propulsion Laboratory, and Lewis Research Center is preparing the MARS ISPP Precursors (MIP) Flight Demonstration. The objectives of MIP are to characterize the performance of processes and hardware which are important to ISPP concepts and to demonstrate how these processes and hardware interact with the Mars environment. Operating this hardware in the actual Mars environment is extremely important due to both uncertainties in our knowledge of the Mars environment as well as because of conditions that cannot be adequately simulated on Earth. The MIP Flight Demonstration is a payload onboard the MARS SURVEYOR Lander and will be launched in April 2001. MIP will be the first hardware to utilize the indigenous resources of a planet or moon. Its successful operation will pave the way for future robotic and human missions to rely on propellants produced using Martian resources as feedstock.

  10. USAF Flight Test Investigation of Focused Sonic Booms: Project Have Bears

    NASA Technical Reports Server (NTRS)

    Downing, Micah; Zamot, Noel; Moss, Chris; Morin, Daniel; Wolski, Ed; Chung, Sukhwan; Plotkin, Kenneth; Maglieri, Domenic

    1996-01-01

    Supersonic operations from military aircraft generate sonic booms that can affect people, animals and structures. A substantial experimental data base exists on sonic booms for aircraft in steady flight and confidence in the predictive techniques has been established. All the focus sonic boom data that are in existence today were collected during the 60's and 70's as part of the information base to the US Supersonic Transport program and the French Jericho studies for the Concorde. These experiments formed the data base to develop sonic boom propagation and prediction theories for focusing. There is a renewed interest in high-speed transports for civilian application. Moreover, today's fighter aircraft have better performance capabilities, and supersonic flights ars more common during air combat maneuvers. Most of the existing data on focus booms are related to high-speed civil operations such as transitional linear accelerations and mild turns. However, military aircraft operating in training areas perform more drastic maneuvers such as dives and high-g turns. An update and confirmation of USAF prediction capabilities is required to demonstrate the ability to predict and control sonic boom impacts, especially those produced by air combat maneuvers.

  11. A project management system for the X-29A flight test program

    NASA Technical Reports Server (NTRS)

    Stewart, J. F.; Bauer, C. A.

    1983-01-01

    The project-management system developed for NASA's participation in the X-29A aircraft development program is characterized from a theoretical perspective, as an example of a system appropriate to advanced, highly integrated technology projects. System-control theory is applied to the analysis of classical project-management techniques and structures, which are found to be of closed-loop multivariable type; and the effects of increasing project complexity and integration are evaluated. The importance of information flow, sampling frequency, information holding, and delays is stressed. The X-29A system is developed in four stages: establishment of overall objectives and requirements, determination of information processes (block diagrams) definition of personnel functional roles and relationships, and development of a detailed work-breakdown structure. The resulting system is shown to require a greater information flow to management than conventional methods. Sample block diagrams are provided.

  12. A perspective on 15 years of proof-of-concept aircraft development and flight research at Ames-Moffett by the Rotorcraft and Powered-Lift Flight Projects Division, 1970-1985

    NASA Technical Reports Server (NTRS)

    Few, David D.

    1987-01-01

    A proof-of-concept (POC) aircraft is defined and the concept of interest described for each of the six aircraft developed by the Ames-Moffet Rotorcraft and Powered-Lift Flight Projects Division from 1970 through 1985; namely, the OV-10, the C-8A Augmentor Wing, the Quiet Short-Haul Research Aircraft (QSRA), the XV-15 Tilt Rotor Research Aircraft (TRRA), the Rotor Systems Research Aircraft (RSRA)-compound, and the yet-to-fly RSRA/X-Wing Aircraft. The program/project chronology and most noteworthy features of the concepts are reviewed. The paper discusses the significance of each concept and the project demonstrating it; it briefly looks at what concepts are on the horizon as potential POC research aircraft and emphasizes that no significant advanced concept in aviation technology has ever been accepted by civilian or military users without first completing a demonstration through flight testing.

  13. Port-O-Sim Object Simulation Application

    NASA Technical Reports Server (NTRS)

    Lanzi, Raymond J.

    2009-01-01

    Port-O-Sim is a software application that supports engineering modeling and simulation of launch-range systems and subsystems, as well as the vehicles that operate on them. It is flexible, distributed, object-oriented, and realtime. A scripting language is used to configure an array of simulation objects and link them together. The script is contained in a text file, but executed and controlled using a graphical user interface. A set of modules is defined, each with input variables, output variables, and settings. These engineering models can be either linked to each other or run as standalone. The settings can be modified during execution. Since 2001, this application has been used for pre-mission failure mode training for many Range Safety Scenarios. It contains range asset link analysis, develops look-angle data, supports sky-screen site selection, drives GPS (Global Positioning System) and IMU (Inertial Measurement Unit) simulators, and can support conceptual design efforts for multiple flight programs with its capacity for rapid six-degrees-of-freedom model development. Due to the assembly of various object types into one application, the application is applicable across a wide variety of launch range problem domains.

  14. TOF-SIMS analysis of magnetic materials in chum salmon head

    NASA Astrophysics Data System (ADS)

    Yano, Akira; Aoyagi, Satoka

    2008-12-01

    A piece of tissue extracted from a chum salmon Oncorhynchus keta head was measured with time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to evaluate the distribution and composition of magnetic materials in the tissue, which may concern with geomagnetic navigation of long-distance migrating salmon. Several depositions of iron compounds were detected in the tissue by TOF-SIMS analysis. Comparing with total ion images providing a topological tissue structure, specific distribution of iron ion in the tissue was clearly shown. Higher magnification TOF-SIMS analysis revealed the existence of the aggregations of iron particles. Iron oxide clusters comprising many submicron particles were also detected in the tissue using scanning electron microscopy and X-ray analysis, suggesting the common existence of submicron-scale iron oxides in salmon heads. These results suggest that TOF-SIMS analysis is a valid method to clarify detailed structures and chemical properties of candidate magnetoreceptors in fish heads.

  15. The Lightcraft project: Flight technology for a hypersonic mass transit system

    NASA Technical Reports Server (NTRS)

    Myrabo, Leik; Bouchard, Kenneth

    1992-01-01

    Rensselaer Polytechnic Institute has been developing transatmospheric 'Lightcraft' technology aimed at creating an efficient, economically affordable, hypersonic mass transportation system. The system utilizes laser-energized airbreathing engines to accelerate minimum-volume passenger capsules. The system gains a high level of reliability by using remote 'centralized' space power sources, e.g., satellite solar power stations. The most critical portion of the Lightcraft's acceleration trajectory involves flight propulsion at hypersonic velocities within the Earth's atmosphere, using a 'Magneto-Hydro-Dynamic (MHD) Fanjet' mode. Of all the propulsion modes proposed for the Lightcraft's combined-cycle engine, the MHD-Fanjet mode has received the least critical inquiry, largely because of its complexity. During the 1991-1992 academic year, Rensselaer's ADP teams produced a detailed conceptual design for the MHD-Fanjet engine, including the specific details of its integration with the other three propulsive modes. To facilitate this process, students built a full-scale mockup of a 1/12th section of this annular engine, complete with a working model of the shroud translation system. The class also made preliminary design calculations for the double-dipole, 'cuspfield' superconducting magnets that provide the external magnetic field needed by the MHD air accelerator, as well as for an onboard microwave power system to enhance the electrical conductivity of the air plasma working fluid. In addition, a large hypersonic model of the MHD accelerator was designed for future tests in RPI's Hypersonic Shock Tunnel in order to validate present analytical performance models. Another group continued design work on a full-sized prototype of a one-person 'Mercury Lightcraft' (a transatmospheric flight simulator), with major emphasis on the detailed design of the major structure, robotic landing gear, and exterior aeroshell.

  16. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    SciTech Connect

    Subhash Chandra

    2008-05-30

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  17. Computers Take Flight: A History of NASA's Pioneering Digital Fly-By-Wire Project

    NASA Technical Reports Server (NTRS)

    Tomayko, James E.

    2000-01-01

    An overview of the NASA F-8 Fly-by Wire project is presented. The project made two significant contributions to the new technology: (1) a solid design base of techniques that work and those that do not, and (2) credible evidence of good flying qualities and the ability of such a system to tolerate real faults and to continue operation without degradation. In 1972 the F-8C aircraft used in the program became he first digital fly-by-wire aircraft to operate without a mechanical backup system.

  18. The German Joint Project "Flexible CIGSe Thin Film Solar Cells for Space Flight

    NASA Astrophysics Data System (ADS)

    Zajac, Kai; Brunner, Sebastian; John, Ralf; Kaufmann, Christian A.; Otte, Karsten; Rahm, Andreas; Kessler, Friedrich

    2008-09-01

    The purpose of the presented joint project is the development and verification of a flexible, lightweight and highly efficient Cu(In,Ga)Se2 (CIGSe) thin film solar cell technology on polyimide foil substrate for use in space. Due to the worldwide leading present German activities on the field of chalcopyrite based thin film solar cells a harmonisation of resources shall push this development. Furthermore, this project supports the European Space Agency (ESA) program for the development of thin film solar cell technology for space applications. Recent results of substrate evaluation and CIGSe solar cell and module manufacturing on polyimide foil substrate are presented.

  19. Flight Test Results from the NF-15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated Stabilator Failure

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Williams-Hayes, Peggy S.

    2007-01-01

    Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.

  20. Flight Test Results from the NF-15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated Stabilator Failure

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Williams-Hayes, Peggy S.

    2010-01-01

    Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.

  1. When Work Takes Flight: Research Results from the EMERGENCE Project. IES Report.

    ERIC Educational Resources Information Center

    Huws, U., Ed.

    The EMERGENCE project reviewed literature on eWork characterization, extent, and distribution and dynamics of its development in 15 European Union (EU) countries and 3 newly associated states (NAS). It identified 12 factors that influenced international diffusion of eWork. Employer survey results showed individual forms of eWork were outweighed in…

  2. Discovery of Planetary Systems With SIM

    DTIC Science & Technology

    2008-01-01

    planetary systems. In the past five years, over 70 extrasolar planets have been discovered by precision Doppler surveys, most by members of this SIM team...We are using the data base of information gleaned from our Doppler survey to choose the best targets for a new SIM planet search. In the same way that...our Doppler database now serves SIM, our team will return a recon- naissance database to focus Terresrial Planet Finder (TPF) into a more productive

  3. Search for Terrestrial Planets with SIM Planet Quest

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.

    2006-01-01

    SIM is an astrometric mission that will be capable of 1 microarcsec relative astrometric accuracy in a single measurement of approx.1000 sec. The search for terrestrial planets in the habitable zone around nearby stars is one of the main science goals of the project. In 2001, NASA through the peer review process selected 10 key projects, two of which had as its goal, the search for terrestrial planets around nearby stars. The two teams, one led by G. Marcy (UC Berkeley) and one lead by M. Shao (JPL), have an extensive preparatory science program underway. This paper describes the status of this activity as well as the technology status of SIM's narrow angle astrometry capability, to reach 1 uas in a single epoch measure and its ability to average multiple epoch measurements to well below 1 uas.

  4. Preparation of Flight Operations and IWS Integration of the CELIAS Experiment on the SOHO Spacecraft

    NASA Technical Reports Server (NTRS)

    Ipavich, Fred

    1996-01-01

    During this annual progress report time period, the following activities took place: (1) Generation of several versions of the CELIAS (STOF/SEM/CTOF/MTOF/DPU) commissioning timeline for the first 180 days after launch. These were written and submitted by A. Galvin after consultation (phone, fax, e-mail, meetings) with the CELIAS Instrument Manager and Lead-Co-I's. (2) Identification of several problems with the CELIAS portion of the Project Data Base (PDB). (3) Meetings with the Flight Operations Team regarding PDB, critical commands, etc. (4) Attend Science Operations Working Group (SOWG) Meetings (November 1994, February 1995, May 1995) and Flight Operations Review Meeting (July 1995). (5) Participate in Flight Operation Simulations SIM 1 (November 14-18, 1994), SIM 2 (May 1-4, 1995) and SIM3 (August 7-11, 1995). (6) Participate in the Ground System Compatibility Test Rehearsal (April 24- 28, 1995), GSCT #2 (May 30-June 14, 1995), GSCT #3 (September 12-22, 1995), and GSCT #4b (October 30-November 5, 1995). A small portion of the documentation for the above cited activities is appended.

  5. An evaluation of the total quality management implementation strategy for the advanced solid rocket motor project at NASA's Marshall Space Flight Center. M.S. Thesis - Tennessee Univ.

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Sullivan, Kenneth W.

    1991-01-01

    An evaluation of the NASA's Marshall Space Flight Center (MSFC) strategy to implement Total Quality Management (TQM) in the Advanced Solid Rocket Motor (ASRM) Project is presented. The evaluation of the implementation strategy reflected the Civil Service personnel perspective at the project level. The external and internal environments at MSFC were analyzed for their effects on the ASRM TQM strategy. Organizational forms, cultures, management systems, problem solving techniques, and training were assessed for their influence on the implementation strategy. The influence of ASRM's effort was assessed relative to its impact on mature projects as well as future projects at MSFC.

  6. Combining endoscopic ultrasound with Time-Of-Flight PET: The EndoTOFPET-US Project

    NASA Astrophysics Data System (ADS)

    Frisch, Benjamin

    2013-12-01

    The EndoTOFPET-US collaboration develops a multimodal imaging technique for endoscopic exams of the pancreas or the prostate. It combines the benefits of high resolution metabolic imaging with Time-Of-Flight Positron Emission Tomography (TOF PET) and anatomical imaging with ultrasound (US). EndoTOFPET-US consists of a PET head extension for a commercial US endoscope and a PET plate outside the body in coincidence with the head. The high level of miniaturization and integration creates challenges in fields such as scintillating crystals, ultra-fast photo-detection, highly integrated electronics, system integration and image reconstruction. Amongst the developments, fast scintillators as well as fast and compact digital SiPMs with single SPAD readout are used to obtain the best coincidence time resolution (CTR). Highly integrated ASICs and DAQ electronics contribute to the timing performances of EndoTOFPET. In view of the targeted resolution of around 1 mm in the reconstructed image, we present a prototype detector system with a CTR better than 240 ps FWHM. We discuss the challenges in simulating such a system and introduce reconstruction algorithms based on graphics processing units (GPU).

  7. Probing Aqueous Surfaces by ToF-SIMS

    SciTech Connect

    Yu, Xiao-Ying; Yang, Li; Zhu, Zihua; Cowin, James P.; Iedema, Martin J.

    2011-10-01

    We report the first observations of aqueous surfaces by a time-of-flight secondary ion mass spectrometer (ToF-SIMS) via a self-contained microfluidic module compatible in vacuum. The interface uses a microfluidic channel with a 3 {micro}m diameter window into the flowing fluid beneath it. This window supports the liquid against the vacuum by the liquid's surface tension and limits the high-density vapor region traversed by the probe beams to only a few micrometers. We demonstrate detections of aqueous surfaces such as deuterium water and sodium iodide (NaI) solution through the small aperture by ToF-SIMS. Even more, molecular signals (M-H-) of glutamic acid (C5H8NO4-) are observed. ToF-SIMS coupled with the novel interface provides a molecular recognition capability, making it a great choice to detect short-lifetime reaction intermediates in aqueous solutions. This novel microfluidic interface makes multimodal vacuum based analysis of liquid surface possible.

  8. The Undergraduate Student Instrument Project (USIP) - building the STEM workforce by providing exciting, multi-disciplinary, student-led suborbital flight projects.

    NASA Astrophysics Data System (ADS)

    Dingwall, B. J.

    2015-12-01

    NASA's Science Mission Directorate (SMD) recognizes that suborbital carriers play a vital role in training our country's future science and technology leaders. SMD created the Undergraduate Student Instrument Project (USIP) to offer students the opportunity to design, build, and fly instruments on NASA's unique suborbital research platforms. This paper explores the projects, the impact, and the lessons learned of USIP. USIP required undergraduate teams to design, build, and fly a scientific instrument in 18 months or less. Students were required to form collaborative multidisciplinary teams to design, develop and build their instrument. Teams quickly learned that success required skills often overlooked in an academic environment. Teams quickly learned to share technical information in a clear and concise manner that could be understood by other disciplines. The aggressive schedule required team members to hold each other accountable for progress while maintaining team unity. Unanticipated problems and technical issues led students to a deeper understanding of the need for schedule and cost reserves. Students exited the program with a far deeper understanding of project management and team dynamics. Through the process of designing and building an instrument that will enable new research transforms students from textbook learners to developers of new knowledge. The initial USIP project funded 10 undergraduate teams that flew a broad range of scientific instruments on scientific balloons, sounding rockets, commercial rockets and aircraft. Students were required to prepare for and conduct the major reviews that are an integral part of systems development. Each project conducted a Preliminary Design Review, Critical Design Review and Mission Readiness review for NASA officials and flight platform providers. By preparing and presenting their designs to technical experts, the students developed a deeper understanding of the technical and programmatic project pieces that

  9. Molecular and Cellular Characterization of Space Flight Effects on Microvascular Endothelial Cell Function - PreparatoryWork for the SFEF Project

    NASA Astrophysics Data System (ADS)

    Balsamo, Michele; Barravecchia, Ivana; Mariotti, Sara; Merenda, Alessandra; De Cesari, Chiara; Vukich, Marco; Angeloni, Debora

    2014-12-01

    Exposure to microgravity during space flight (SF) of variable length induces suffering of the endothelium (the cells lining all blood vessels), mostly responsible for health problems found in astronauts and animals returning from space. Of interest to pre-nosological medicine, the effects of microgravity on astronauts are strikingly similar to the consequences of sedentary life, senescence and degenerative diseases on Earth, although SF effects are accelerated and reversible. Thus, microgravity is a significant novel model for better understanding of common pathologies. A comprehensive cell and molecular biology study is needed in order to explain pathophysiological findings after SFs. This project will study the effects of microgravity and cosmic radiation on endothelial cells (ECs) cultured on the International Space Station through analysis of 1) cell transcriptome, 2) DNA methylome, 3) DNA damage and cell senescence, 4) variations in cell cycle and cell morphology. This project has been selected by the European Space Agency and the Italian Space Agency and is presently in preparation. The ground study presented here was performed to determine the biological and engineering requirements that will allow us to retrieve suitable samples after culturing, fixing and storing ECs in space. We expect to identify molecular pathways activated by space microgravity in microvascular ECs, which may shed light on pathogenic molecular mechanisms responsible for endothelial suffering shared by astronauts and individuals affected with aging, degenerative and sedentary life-associated pathologies on Earth.

  10. Hanford Soil Inventory Model (SIM) Rev. 1 Users Guide

    SciTech Connect

    Simpson, Brett C.; Corbin, Rob A.; Anderson, Michael J.; Kincaid, Charles T.

    2006-09-25

    The focus of the development and application of a soil inventory model as part of the Remediation and Closure Science (RCS) Project managed by PNNL was to develop a probabilistic approach to estimate comprehensive, mass balanced-based contaminant inventories for the Hanford Site post-closure setting. The outcome of this effort was the Hanford Soil Inventory Model (SIM). This document is a user's guide for the Hanford SIM. The principal project requirement for the SIM was to provide comprehensive quantitative estimates of contaminant inventory and its uncertainty for the various liquid waste sites, unplanned releases, and past tank farm leaks as a function of time and location at Hanford. The majority, but not all of these waste sites are in the 200 Areas of Hanford where chemical processing of spent fuel occurred. A computer model capable of performing these calculations and providing satisfactory quantitative output representing a robust description of contaminant inventory and uncertainty for use in other subsequent models was determined to be satisfactory to address the needs of the RCS Project. The ability to use familiar, commercially available software on high-performance personal computers for data input, modeling, and analysis, rather than custom software on a workstation or mainframe computer for modeling, was desired.

  11. AXAF SIM focus mechanism study

    NASA Astrophysics Data System (ADS)

    Tananbaum, H. D.; Whitbeck, E.

    1994-02-01

    The design requirements and initial design concept for the AXAF-I Science Instrument Module (SIM) were reviewed at Ball on September 29, 1993. The concept design SIM focus mechanism utilizes a planetary gearset, with redundant motors, to drive a large ring (called 'main housing bearing') via a spur gearset. This large drive ring actuates three tangent bar links (called 'push rods'), which in turn actuate three levers (called 'pin levers'). Each of the three pin levers rotates an 'eccentric pin,' which in turn moves the base of a bipod flexure in both the radial (normal to optical axis) and axial (focus along optical axis) directions. Three bipod flexures are employed, equally spaced at 120 degrees apart, the base of each being translated in the two directions as described above. A focus adjustment is made by rotating the drive ring, which drives the push rods and therefore the pin levers, which in turn rotate the eccentric pins, finally imparting the two motions to the base of each of the bipod flexures. The axial translation (focus adjustment) of the focused structure is the sum of the direct axial motion plus axial motion which comes from uniformly squeezing the three bipod bases radially inward. SAO documented the following concerns regarding the focus mechanism in memo WAP-FY94-001, dated October 7, 1993: (1) The focus adjustment depends, in large part, on the structural properties (stiffnesses and end fixities) of the bipod flexures, push rods, pin levers and eccentric pins. If these properties are not matched very well, then lateral translations as well as unwanted rotations of the focussed structure will accompany focus motion. In addition, the stackup of linkage tolerances and any nonuniform wear in the linkages will result in the same unwanted motions. Thermal gradients will also affect these motions. At the review Ball did not present supporting analyses to support their choice of this design concept. (2) The proposed 'primary' method of measuring focus

  12. Influence of Containment on the Growth of Silicon-Germanium: A Materials Science Flight Project

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2012-01-01

    A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction. The plans for the flight experiments will be described.

  13. SIM Planetquest Science and Technology: A Status Report

    NASA Technical Reports Server (NTRS)

    Edberg, Stephen J.; Laskin, Robert A.; Marr, James C., IV; Unwin, Stephen C.; Shao, Michael

    2007-01-01

    component positions throughout the whole test assembly has been demonstrated to the required picometer level. Technology transfer to the SIM flight team is now well along.

  14. EngineSim: Turbojet Engine Simulator Adapted for High School Classroom Use

    NASA Technical Reports Server (NTRS)

    Petersen, Ruth A.

    2001-01-01

    EngineSim is an interactive educational computer program that allows users to explore the effect of engine operation on total aircraft performance. The software is supported by a basic propulsion web site called the Beginner's Guide to Propulsion, which includes educator-created, web-based activities for the classroom use of EngineSim. In addition, educators can schedule videoconferencing workshops in which EngineSim's creator demonstrates the software and discusses its use in the educational setting. This software is a product of NASA Glenn Research Center's Learning Technologies Project, an educational outreach initiative within the High Performance Computing and Communications Program.

  15. UAS Integration in the NAS Project: Integrated Test and Evaluation (IT&E) Flight Test 3. Revision E

    NASA Technical Reports Server (NTRS)

    Marston, Michael

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  16. Key Technologies for Hypersonic Sustained Flight Assessed within LAPCAT and ATLLAS Projects

    NASA Astrophysics Data System (ADS)

    Steelant, J.

    2009-01-01

    LAPCAT and ATLLAS are two EC funded projects to explore long-term aspects related to high- speed transport. Within both projects, a total of 19 partners are involved including 6 industries, 7 research institutions and 6 universities representing 7 EU member states. The main topics of both studies are related to technical feasibility studies and technology development related to high-speed flows within a range from Mach 3 to 8. The following items are the major objectives of these studies: overall design for high-speed transports with proper development and validation of engine-airframe integration tools and methodology high-speed airbreathing cycle analysis: precooled turbo-ramjet up to dual mode ramjets off- and on-design behaviour of engine and airframe dedicated experiments to evaluate the design in various operation points development and characterisation of lightweight, temperature resistant materials cooling techniques and their interaction with the aerothermal loads for both the airframe and propulsion components. The preliminary vehicle concepts will direct the conditions and constraints for the different topics highlighted as well as for the experiments and simulations

  17. Modeling wildlife populations with HexSim

    EPA Science Inventory

    HexSim is a framework for constructing spatially-explicit, individual-based computer models designed for simulating terrestrial wildlife population dynamics and interactions. HexSim is useful for a broad set of modeling applications including population viability analysis for on...

  18. Secondary Ion Mass Spectrometry SIMS XI

    NASA Astrophysics Data System (ADS)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  19. Comparison of Coupled Radiative Flow Solutions with Project Fire 2 Flight Data

    NASA Technical Reports Server (NTRS)

    Olynick, David R.; Henline, W. D.; Chambers, Lin Hartung; Candler, G. V.

    1995-01-01

    A nonequilibrium, axisymmetric, Navier-Stokes flow solver with coupled radiation has been developed for use in the design or thermal protection systems for vehicles where radiation effects are important. The present method has been compared with an existing now and radiation solver and with the Project Fire 2 experimental data. Good agreement has been obtained over the entire Fire 2 trajectory with the experimentally determined values of the stagnation radiation intensity in the 0.2-6.2 eV range and with the total stagnation heating. The effects of a number of flow models are examined to determine which combination of physical models produces the best agreement with the experimental data. These models include radiation coupling, multitemperature thermal models, and finite rate chemistry. Finally, the computational efficiency of the present model is evaluated. The radiation properties model developed for this study is shown to offer significant computational savings compared to existing codes.

  20. Thermal Design and Analysis of the Supersonic Flight Dynamics Test Vehicle for the Low Density Supersonic Decelerator Project

    NASA Technical Reports Server (NTRS)

    Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria

    2013-01-01

    The thermal design and analysis of the experimental Supersonic Flight Dynamics Test (SFDT) vehicle is presented. The SFDT vehicle is currently being designed as a platform to help demonstrate key technologies for NASA's Low Density Supersonic Decelerator (LDSD) project. The LDSD project is charged by NASA's Office of the Chief Technologist (OCT) with the task of advancing the state of the art in Mars Entry, Descent, and Landing (EDL) systems by developing and testing three new technologies required for landing heavier payloads on Mars. The enabling technologies under development consist of a large 33.5 meter diameter Supersonic Ringsail (SSRS) parachute and two different types of Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class, SIAD-R, that inflates to a 6 meter diameter torus, and an exploration class, SIAD-E, that inflates to an 8 meter diameter isotensoid. As part of the technology development effort, the various elements of the new supersonic decelerator system must be tested in a Mars-like environment. This is currently planned to be accomplished by sending a series of SFDT vehicles into Earth's stratosphere. Each SFDT vehicle will be lifted to a stable float altitude by a large helium carrier balloon. Once at altitude, the SFDT vehicles will be released from their carrier balloon and spun up via spin motors to provide trajectory stability. An onboard third stage solid rocket motor will propel each test vehicle to supersonic flight in the upper atmosphere. After main engine burnout, each vehicle will be despun and testing of the deceleration system will begin: first an inflatable decelerator will be deployed around the aeroshell to increase the drag surface area, and then the large parachute will be deployed to continue the deceleration and return the vehicle back to the Earth's surface. The SFDT vehicle thermal system must passively protect the vehicle structure and its components from cold temperatures experienced during the

  1. Sonic Boom Research at NASA Dryden: Objectives and Flight Results from the Lift and Nozzle Change Effects on Tail Shock (LaNCETS) Project

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.

    2009-01-01

    The principal objective of the Supersonics Project is to develop and validate multidisciplinary physics-based predictive design, analysis and optimization capabilities for supersonic vehicles. For aircraft, the focus will be on eliminating the efficiency, environmental and performance barriers to practical supersonic flight. Previous flight projects found that a shaped sonic boom could propagate all the way to the ground (F-5 SSBD experiment) and validated design tools for forebody shape modifications (F-5 SSBD and Quiet Spike experiments). The current project, Lift and Nozzle Change Effects on Tail Shock (LaNCETS) seeks to obtain flight data to develop and validate design tools for low-boom tail shock modifications. Attempts will be made to alter the shock structure of NASA's NF-15B TN/837 by changing the lift distribution by biasing the canard positions, changing the plume shape by under- and over-expanding the nozzles, and changing the plume shape using thrust vectoring. Additional efforts will measure resulting shocks with a probing aircraft (F-15B TN/836) and use the results to validate and update predictive tools. Preliminary flight results are presented and are available to provide truth data for developing and validating the CFD tools required to design low-boom supersonic aircraft.

  2. Time-of-flight mass spectrometry of DNA laser-ablated from frozen aqueous solutions: applications to the Human Genome Project

    NASA Astrophysics Data System (ADS)

    Williams, Peter W.; Schieltz, David; Nelson, Randall W.; Chou, Chau-Wen; Luo, Cong-Wen; Thomas, Robert

    1993-06-01

    Techniques have been developed to volatilize intact massive DNA molecules using pulsed laser ablation of thin frozen films of aqueous DNA solutions. Electrophoresis assay of the ablated DNA shows that molecules as massive as approximately 400,000 Da can be ablated intact. It has been possible to obtain time-of-flight mass spectra of ablated multicomponent mixtures of single-stranded DNA with masses up to approximately 18,000 Da (a 60-nucleotide DNA oligomer). The possible application of time-of-flight mass spectrometry to the analysis and readout of DNA sequence mixtures, and the potential thereby to accelerate the Human Genome project, are discussed.

  3. Comparison of Coupled Radiative Navier-Stokes Flow Solutions with the Project Fire II Flight Data

    NASA Technical Reports Server (NTRS)

    Olynick, David R.; Henline, William D.; Chambers, Lin Hartung; Candler, Graham V,; Rasky, Daniel J. (Technical Monitor)

    1994-01-01

    A nonequilibrium, axisymmetric, Navier-Stokes flow solver with coupled radiation has been developed to use in the design of thermal protection systems for vehicles where radiation effects are important. The present method has been compared with an existing flow and radiation solver and with the Project Fire II experimental data. Very good agreement has been obtained over the entire Fire II trajectory with the experimentally determined values of the stagnation radiation intensity in the .2 to 6.2 eV range and with the total stagnation heating. The agreement was significantly better than previous numerical predictions. The effects of a number of flow models are examined to determine which combination of physical models produces the best agreement with the experimental data. These models include radiation coupling, multi-temperature thermal models, finite-rate chemistry, and a quasi-steady-state or Boltzmann assumption for the calculation of the excited electronic states. Finally, the computational efficiency of the present model is evaluated. The radiation properties model developed for this study is shown to offer significant computational savings compared to existing codes.

  4. Long duration flights of stratospheric balloons in the frame of the Taranis project

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenael; Catoire, Valery; Huret, Nathalie

    The satellite instrument TARANIS will be dedicated to the study of the Transient Luminous Events (TLE) above storms, and of the energy transfers between the Earth atmosphere and space. Such phenomena can affect the atmospheric chemistry. Stratospheric balloon instruments can be used for the detection of stratospheric ozone and nitrogen chemistry perturbations induced by these high energy phenomena. Obviously, it is difficult to know in advance when such phenomena can occur and then to be ready for opportune launching of a stratospheric balloon. Then, we propose to use long duration balloons that can reside in the lower and middle stratosphere for more than one week. Open stratospheric balloons could be used for such purpose. Some tests have shown that these balloons could stay several days in the middle stratosphere (around an altitude of 30 km) and can carry heavy gondolas, typically up to 200 kg. Such balloon can flown over large storms and cloud expanses without any risk. In the frame of the TARANIS project, we propose to use such balloons with gondolas carrying different kinds of instruments. Ozone and NO2 measurements can be conducted using remote sensing techniques, using Moon and Sun as light source (SALOMON-type instrument). The integrated path length of the measurements is between tens and few hundreds of km. Following the motion of the balloon (carried by winds) and the motion of the Moon and Sun, a part of the stratosphere above the balloon float motion can be sampled. On the other hand, the estimation of the position of the NO2 enhancements cannot be accurately determined. The second technique involves in situ measurements (SPIRIT-type instrument). In this case, the location of the enhancements can be accurately determined, as well as the absolute values of the species concentrations. On the other hand, the probability of detection is smaller than with remote sensing techniques. Finally, instruments dedicated to the detection of atmospheric "terrestrial

  5. Flight Test Series 3: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Sternberg, Daniel; Valkov, Steffi

    2015-01-01

    This document is a flight test report from the Operational perspective for Flight Test Series 3, a subpart of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) project. Flight Test Series 3 testing began on June 15, 2015, and concluded on August 12, 2015. Participants included NASA Ames Research Center, NASA Armstrong Flight Research Center, NASA Glenn Research Center, NASA Langley Research center, General Atomics Aeronautical Systems, Inc., and Honeywell. Key stakeholders analyzed their System Under Test (SUT) in two distinct configurations. Configuration 1, known as Pairwise Encounters, was subdivided into two parts: 1a, involving a low-speed UAS ownship and intruder(s), and 1b, involving a high-speed surrogate ownship and intruder. Configuration 2, known as Full Mission, involved a surrogate ownship, live intruder(s), and integrated virtual traffic. Table 1 is a summary of flights for each configuration, with data collection flights highlighted in green. Section 2 and 3 of this report give an in-depth description of the flight test period, aircraft involved, flight crew, and mission team. Overall, Flight Test 3 gathered excellent data for each SUT. We attribute this successful outcome in large part from the experience that was acquired from the ACAS Xu SS flight test flown in December 2014. Configuration 1 was a tremendous success, thanks to the training, member participation, integration/testing, and in-depth analysis of the flight points. Although Configuration 2 flights were cancelled after 3 data collection flights due to various problems, the lessons learned from this will help the UAS in the NAS project move forward successfully in future flight phases.

  6. Some applications of SIMS in conservation science, archaeometry and cosmochemistry

    NASA Astrophysics Data System (ADS)

    McPhail, D. S.

    2006-07-01

    Some applications of SIMS in conservation science, archaeometry and cosmochemistry are described. Ultra-low energy SIMS depth profiling and TOF-SIMS imaging are used to study the corrosion of low-lime glass vessels from the V&A museum. Static SIMS and focused ion beam (FIB) SIMS are used to study the effects of laser cleaning on museum artefacts. Archaeological glass from Raqqa, Syria is studied with FIB-SIMS and micrometeorite impacts on space vessels are studied with FIB and FIB-SIMS. The new analytical challenges provided to the SIMS community by these materials are presented and the ethical issues associated with sampling and destructive analysis discussed.

  7. Impact of Sim1 gene dosage on the development of the paraventricular and supraoptic nuclei of the hypothalamus.

    PubMed

    Duplan, Sabine Michaëlle; Boucher, Francine; Alexandrov, Lubomir; Michaud, Jacques L

    2009-12-01

    The bHLH-PAS transcription SIM1 is required for the development of all neurons of the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus. Mice with a loss of Sim1 die within a few days of birth, presumably because of the lack of a PVN and SON. In contrast, mice with a decrease of Sim1 survive, are hyperphagic and become obese. The mechanism by which Sim1 controls food intake remains unclear. Here we show that the development of specific PVN and SON cell types is sensitive to Sim1 gene dosage. Sim1 haploinsufficiency reduces the number of vasopressin (AVP)- and oxytocin-producing cells in the PVN by about 50 and 80%, respectively, but does not affect the development of Crh, Trh and Ss neurons. A decrease of AVP-producing cells increases the sensitivity of Sim1 heterozygous mice to chronic dehydration. Moreover, retrograde labelling showed a 70% reduction of PVN neurons projecting to the dorsal vagal complex, raising the possibility that a decrease of these axons contributes to the hyperphagia of Sim1(+/-) mice. Sim1 haploinsufficiency is thus associated with a decrease of several PVN/SON cell types, which has the potential of affecting distinct homeostatic processes.

  8. Balloon launched decelerator test program: Post-flight test report, BLDT vehicle AV-3, Viking 1975 project

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.

    1973-01-01

    The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-3 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anaomalies encounters during the mission is included.

  9. Balloon launched decelerator test program: Post-flight test report, BLDT vehicle AV-2, Viking 1975 project

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.

    1972-01-01

    The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-2 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anomalies encounters during the mission is included.

  10. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project, UAS Control and Non-Payload Communication System Phase-1 Flight Test Results

    NASA Technical Reports Server (NTRS)

    Griner, James H.

    2014-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current status of the prototype radio development, and results from phase 1 flight tests conducted during 2013.

  11. Imaging and differentiation of mouse embryo tissues by ToF-SIMS

    SciTech Connect

    Wu, L; Lu, X; Kulp, K; Knize, M; Berman, E; Nelson, E; Felton, J; Wu, K J

    2006-06-16

    Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) equipped with a gold ion gun was used to image mouse embryos and differentiate tissue types (brain, spinal cord, skull, rib, heart and liver). Embryos were paraffin-embedded and then de-paraffinized. The robustness and repeatability of the method was determined by analyzing nine tissue slices from three different embryos over a period of several weeks. Using Principal Component Analysis (PCA) to reduce the spectral data generated by ToF-SIMS, histopathologically identified tissue types of the mouse embryos can be differentiated based on the characteristic differences in their mass spectra. These results demonstrate the ability of ToF-SIMS to determine subtle chemical differences even in fixed histological specimens.

  12. Design of Launch Vehicle Flight Control Augmentors and Resulting Flight Stability and Control (Center Director's Discretionary Fund Project 93-05, Part III)

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1997-01-01

    This publication presents the control requirements, the details of the designed Flight Control Augmentor's (FCA's), the static stability and dynamic stability wind tunnel test programs, the static stability and control analyses, the dynamic stability characteristics of the experimental Launch Vehicle (LV) with the designed FCA's, and a consideration of the elastic vehicle. Dramatic improvements in flight stability have been realized with all the FCA designs; these ranged from 41 percent to 72 percent achieved by the blunt TE design. The control analysis showed that control increased 110 percent with only 3 degrees of FCA deflection. The dynamic stability results showed improvements with all FCA designs tested at all Mach numbers tested. The blunt TE FCA's had the best overall dynamic stability results. Since the lowest elastic vehicle frequency must be well separated from that of the control system, the significant frequencies and modes of vibration have been identified, and the response spectra compared for the experimental LV in both the conventional and the aft cg configuration. Although the dynamic response was 150 percent greater in the aft cg configuration, the lowest bending mode frequency decreased by only 2.8 percent.

  13. Three-Dimensional Ballistocardiography and Seismocardiography in Parabolic Flight: Preliminary Results from the ESA B3D Project

    NASA Astrophysics Data System (ADS)

    Migeotte, P.-F.; De Ridder, S.; Neyt, X.; Pattyn, N.; Di Rienzo, M.; Beck, L.; Gauger, P.; Limper, U.; Prisk, G. K.; Rusanov, V.; Funtova, I.; Baevsky, R. M.; Tank, J.

    2013-02-01

    Ballistocardiography (BCG) is a technique that had a large interest in cardiology between the fifties and eighties. Typically BCG consisted in the recording of mechanical acceleration (Acc), caused by cardiac activity, on a subject lying on a table. As Acc was recorded only in the 2-dimensions (2D) of the horizontal plane, the antero-posterior (Z-axis) component was often neglected. From past experiments conducted in space [1,2] it was suggested that this component was comparable in magnitude to the other two and that Ballistocardiography should be recorded in three dimensions (3D). These observations and the recent modest regain of interest in the BCG technique were the starting point of the B3D project selected by ESA for the definition phase after the AO-2009. We recorded 3D Acc at various positions on the surface of the body (close to the centre of mass (CM), at the apex of the heart and on the sternum) of 8 healthy volunteers during free floating periods of parabolic flight (PF) manoeuvre (ESA 55th and DLR 19th PF campaigns conducted on-board the A300-zéroG airplane of NOVESPACE). Out of the many recordings collected, only a very limited number provided body Acc free from artefacts. Nevertheless, our results show that Seismocardiograms (SCG) and Ballistocardiograms (BCG) waves were qualitatively and quantitatively comparable in the frontal plane while larger differences were present along the antero-posterior component. Our limited number of artefact free episodes demonstrates the intrinsic difficulties of 3D recordings of SCG and BCG in PF and thus the need for a study in sustained microgravity. Moreover, our results confirm that the ventro-dorsal component of BCG is of similar amplitude as the other two which further demonstrates that the three components are essential to provide a physiological interpretation of BCG and SCG signals.

  14. Investigation of the cosmetic ingredient distribution in the stratum corneum using NanoSIMS imaging

    NASA Astrophysics Data System (ADS)

    Tanji, N.; Okamoto, M.; Katayama, Y.; Hosokawa, M.; Takahata, N.; Sano, Y.

    2008-12-01

    In order to understand the mechanisms of action of cosmetic ingredients, it is important to establish the distribution of the component agents within the epidermis of the skin. To date, time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been used to detect cosmetic ingredients in the skin. However, it is technically difficult to investigate the distribution of the agents in the stratum corneum using TOF-SIMS. Therefore, an analytical method with higher spatial resolution is required. In this study, we investigated an imaging analysis technique based on NanoSIMS to detect cosmetic ingredients in the skin. Pig skin was used as a model for human skin. The sample was treated with a cosmetic formulation containing 15N-labelled pseudo-ceramide (SLE). The sample was frozen with liquid nitrogen and cross-sections were cut using a cryomicrotome. As a result, the fine layer structure of the corneocytes was clearly observed by using NanoSIMS. Our studies indicate that SLE penetrates into the stratum corneum via an intercellular route. We conclude that application of NanoSIMS analysis can contribute to a better understanding of the function of cosmetic ingredients in the skin.

  15. Investigation of natural dyes and ancient textiles from korea using TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Lee, Yeonhee; Lee, Jihye; Kim, Youngsoo; Choi, Seokchan; Ham, Seung Wook; Kim, Kang-Jin

    2008-12-01

    The identification of the colorants used on ancient textiles provides a historical pathway to the understanding of the processes associated with one of the oldest of chemical technologies, namely textile dyeing. In this paper, time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used to detect dyes on textiles avoiding the time-consuming and destructive extraction procedures necessary for the spectrophotometric and chromatographic methods previously used. The plant dyes investigated belong to a variety of chemical groups, which include curcumin, crocin, carthamin, purpurin, alizarin, brazilin, shikonin, and indigo. Reference textile samples were prepared with dye extracts of plants and were characterized by TOF-SIMS. TOF-SIMS spectra for the dyed textiles showed element ions from metallic mordants, specific fragment ions, and molecular ions from organic dyes. Remnant dyes on excavated textiles have also been identified using TOF-SIMS. The ancient textile sample showed the presence of indigo clearly, although the fiber itself had degraded badly. From the results, it was concluded that most of plant dyes can be identified with TOF-SIMS and it is a very promising technique for the archaeology field.

  16. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect

    Williams, Ryan; Baker, Arnold Barry; Drennen, Thomas E.

    2009-12-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, greenhouse gas emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks (switchgrass, corn stover, forest residue, and farmed trees), biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion ratio, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the structure and methodology of AltSim, presents results, and provides a detailed sensitivity analysis. The Energy Independence and Security Act (EISA) of 2007 sets a goal for the increased use of biofuels in the U.S., ultimately reaching 36 billion gallons by 2022. AltSim's base case assumes EPA projected feedstock costs in 2022 (EPA, 2009). For the base case assumptions, AltSim estimates per gallon production costs for the five ethanol feedstocks (corn, switchgrass, corn stover, forest residue, and farmed trees) of $1.86, $2.32, $2.45, $1.52, and $1.91, respectively. The projected production cost of biodiesel is $1.81/gallon. The estimates for CTL without biomass range from $1.36 to $2.22. With biomass, the estimated costs increase, ranging from $2.19 per gallon for the CTL option with 8% biomass to $2.79 per gallon for the CTL option with 30% biomass and carbon capture and sequestration. AltSim compares the greenhouse gas emissions (GHG) associated with both the production and consumption of the various fuels. EISA allows fuels emitting 20% less greenhouse gases (GHG) than conventional gasoline and diesels to qualify as renewable fuels. This allows several of the CBTL

  17. Multielement analysis of interplanetary dust particles using TOF-SIMS

    NASA Technical Reports Server (NTRS)

    Stephan, T.; Kloeck, W.; Jessberger, E. K.; Rulle, H.; Zehnpfenning, J.

    1993-01-01

    Sections of three stratospheric particles (U2015G1, W7029*A27, and L2005P9) were analyzed with TOF-SIMS (Time Of Flight-Secondary Ion Mass Spectrometry) continuing our efforts to investigate the element distribution in interplanetary dust particles (IDP's) with high lateral resolution (approximately 0.2 micron), to examine possible atmospheric contamination effects, and to further explore the abilities of this technique for element analysis of small samples. The samples, previously investigated with SXRF (synchrotron X-ray fluorescence analysis), are highly enriched in Br (Br/Fe: 59 x CI, 9.2 x CI, and 116 x CI, respectively). U2015G1 is the IDP with the by far highest Zn/Fe-ratio (81 x CI) ever reported in chondritic particles.

  18. Progress on SIM-Lite brassboard interferometer integration and test

    NASA Astrophysics Data System (ADS)

    Hahn, I.; Weilert, M.; An, X.; Kuan, G.; Hovland, L. E.; Smythe, R.; Hovland, E.; Krylo, R.; Fisher, M.; Chang, Z.; Cepeda-Rizo, J.; Shields, J.; Ahmed, A.; Fathpour, N.; Carson, J.; Nicaise, F.; Morales, M.; Dekens, F.; Goullioud, R.

    2010-07-01

    Main brassboard Michelson interferometer components have been recently developed for the future flight phase implementations of SIM Lite mission. These brassboard components include two fine steering mirrors, pathlength modulation and cyclic averaging optics and astrometric beam combiner assembly. Field-independent performance tests will be performed in a vacuum chamber using two siderostats in retro-reflecting positions and a white light stimulus. The brightness and color dependence of the angle and fringe tracking performance will be measured. The performance of filtering algorithms will be tested in a simulated spacecraft attitude control system perturbation. To demonstrate capability of a dim star observation, the angle and fringe tracking CCD sensors are cooled to -110 C using a cold diode heat pipe system. The new feed-forward control (angle and path-length) algorithms for the dim star observation will be tested as well. In this paper, we will report the recent progress toward the integration and performance tests of the brassboard interferometer.

  19. A Virtual Research Environment for a Secondary Ion Mass Spectrometer (SIMS)

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, M.; Schäfer, L.; Klump, J.; Galkin, A.

    2013-12-01

    Overview: This poster describes the development of a Virtual Research Environment for the Secondary Ion Mass Spectrometer (SIMS) at GFZ Potsdam. Background: Secondary Ion Mass Spectrometers (SIMS) are extremely sensitive instruments for analyzing the surfaces of solid and thin film samples. These instruments are rare, expensive and experienced operators are very highly sought after. As such, measurement time is a precious commodity, until now only accessible to small numbers of researchers. The challenge: The Virtual SIMS Project aims to set up a Virtual Research Environment for the operation of the CAMECA IMS 1280-HR instrument at the GFZ Potsdam. The objective of the VRE is to provide SIMS access not only to researchers locally present in Potsdam but also to scientists working with SIMS cooperation partners in e.g., South Africa, Brazil or India. The requirements: The system should address the complete spectrum of laboratory procedures - from online application for measurement time, to remote access for data acquisition to data archiving for the subsequent publication and for future reuse. The approach: The targeted Virtual SIMS Environment will consist of a: 1. Web Server running the Virtual SIMS website providing general information about the project, lab access proposal forms and calendar for the timing of project related tasks. 2. LIMS Server, responsible for scheduling procedures, data management and, if applicable, accounting and billing. 3. Remote SIMS Tool, devoted to the operation of the experiment within a remote control environment. 4. Publishing System, which supports the publication of results in cooperation with the GFZ Library services. 5. Training Simulator, which offers the opportunity to rehearse experiments and to prepare for possible events such as a power outages or interruptions to broadband services. First results: The SIMS Virtual Research Environment will be mainly based on open source software, the only exception being the CAMECA IMS

  20. Stellar and Galactic Astrophysics with SIM

    NASA Astrophysics Data System (ADS)

    Gould, A.

    2001-05-01

    SIM will revolutionize stellar and Galactic astrophysics by tackling new questions that could never previously be addressed and making order of magnitude improvements in key parameters. SIM will measure R0 and Theta0 to <2 will enable precise measurements of the Milky Way mass and rotation curve. It will probe the Galactic 3-D mass distribution by 2 independent methods. By calibrating the RR Lyrae MV-[Fe/H] relation as well as obtaining direct distances to clusters and halo field objects, SIM will precisely date halo and globular-cluster formation as a function of metallicity. SIM will obtain 1 measurements for 200 stars of all types ranging from brown dwarfs (BD) to O stars from a broad range of metallicities, including both binaries and single stars, and it will yield precision measurements of white dwarf (WD) and black hole (BH) remnants as well. SIM microlensing will take an unbiased census of all objects in the Galactic bulge, both dark (BD WD NS BH) and luminous, and will resolve the nature of the dark-halo (MACHO) candidates currently being detected toward the LMC.

  1. High resolution TOF - SIMS depth profiling of nano-film multilayers

    SciTech Connect

    Bhushan, K. G.; Mukundhan, R.; Gupta, S. K.

    2013-02-05

    We present the results of depth profiling studies conducted using an indigenously developed dual-beam high resolution Time-of-Flight Secondary Ion Mass Spectrometer (TOF-SIMS) on thinfilm W-C-W multilayer structure grown on Si substrate. Opto 8 layers could be clearly identified. Mixing of layers is seen which from analysis using roughness model calculations indicate a mixing thickness of about 2nm that correspond to the escape depth of secondary ions from the sample.

  2. Discovery of Planetary Systems With SIM

    NASA Technical Reports Server (NTRS)

    Marcy, Geoffrey W.; Butler, Paul R.; Frink, Sabine; Fischer, Debra; Oppenheimer, Ben; Monet, David G.; Quirrenbach, Andreas; Scargle, Jeffrey D.

    2004-01-01

    We are witnessing the birth of a new observational science: the discovery and characterization of extrasolar planetary systems. In the past five years, over 70 extrasolar planets have been discovered by precision Doppler surveys, most by members of this SIM team. We are using the data base of information gleaned from our Doppler survey to choose the best targets for a new SIN planet search. In the same way that our Doppler database now serves SIM, our team will return a reconnaissance database to focus Terrestrial Planet Finder (TPF) into a more productive, efficient mission.

  3. Design data brochure: SIMS prototype system 2

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Information is provided on the design and performance of the IBM SIMS Prototype System 2, solar domestic hot water system, for single family residences. The document provides sufficient data to permit procurement, installation, operation, and maintenance by qualified architectural engineers or contractors.

  4. Multivariate Analysis Strategies for Processing ToF-SIMS Images of Biomaterials

    PubMed Central

    Tyler, Bonnie J.; Rayal, Gaurav; Castner, David G.

    2007-01-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a hyperspectral imaging technique. Each pixel in a two-dimensional ToF-SIMS image (or each voxel in a three-dimensional ToF-SIMS image) contains a full mass spectrum. Thus, multivariate analysis methods are being increasingly used to process biomaterial ToF-SIMS images so the maximum amount of information can be extracted from the images. This study examines the use of principal component analysis (PCA) and maximum autocorrelation factors (MAF) on four different ToF-SIMS images. These images were selected because they represent significant challenges for biomedical ToF-SIMS image processing (topographical features, low count rates, surface contaminants, etc.). With PCA four different types of scaling methods (auto, root mean, filter, and shift variance scaling) were used. The effect of two preprocessing methods (normalization and mean centering) was also examined for both PCA and MAF. The more computational intense MAF provided the best results for all the images investigated in this study, doing the best job of reducing the number of variables required to describe the image, enhancing image contrast and recovering key spectral features. MAF was particularly good at identifying subtle features that were often lost in PCA and impossible to visualize in single peak images. However, the combination of PCA with either root mean or shift variance scaling provided similar results to MAF. Thus, these combinations offer promising alternatives to MAF for working with large data sets encountered in three-dimensional imaging. Also, the new method of filter scaling is promising for processing low count rate images with salt and pepper noise. Normalization proved an important tool for deconvoluting chemical effects from topographic and/or matrix effects. Mean centering aided in reducing the dimensionality of the data, but in one case resulted in a loss of information. PMID:17335898

  5. Flight Dynamics Analysis Branch

    NASA Technical Reports Server (NTRS)

    Stengle, Tom; Flores-Amaya, Felipe

    2000-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in fiscal year 2000. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics, spacecraft trajectory, attitude analysis, and attitude determination and control. The FDAB currently provides support for missions and technology development projects involving NASA, government, university, and private industry.

  6. siMS Score: Simple Method for Quantifying Metabolic Syndrome

    PubMed Central

    Soldatovic, Ivan; Vukovic, Rade; Culafic, Djordje; Gajic, Milan; Dimitrijevic-Sreckovic, Vesna

    2016-01-01

    Objective To evaluate siMS score and siMS risk score, novel continuous metabolic syndrome scores as methods for quantification of metabolic status and risk. Materials and Methods Developed siMS score was calculated using formula: siMS score = 2*Waist/Height + Gly/5.6 + Tg/1.7 + TAsystolic/130—HDL/1.02 or 1.28 (for male or female subjects, respectively). siMS risk score was calculated using formula: siMS risk score = siMS score * age/45 or 50 (for male or female subjects, respectively) * family history of cardio/cerebro-vascular events (event = 1.2, no event = 1). A sample of 528 obese and non-obese participants was used to validate siMS score and siMS risk score. Scores calculated as sum of z-scores (each component of metabolic syndrome regressed with age and gender) and sum of scores derived from principal component analysis (PCA) were used for evaluation of siMS score. Variants were made by replacing glucose with HOMA in calculations. Framingham score was used for evaluation of siMS risk score. Results Correlation between siMS score with sum of z-scores and weighted sum of factors of PCA was high (r = 0.866 and r = 0.822, respectively). Correlation between siMS risk score and log transformed Framingham score was medium to high for age groups 18+,30+ and 35+ (0.835, 0.707 and 0.667, respectively). Conclusions siMS score and siMS risk score showed high correlation with more complex scores. Demonstrated accuracy together with superior simplicity and the ability to evaluate and follow-up individual patients makes siMS and siMS risk scores very convenient for use in clinical practice and research as well. PMID:26745635

  7. CET exSim: mineral exploration experience via simulation

    NASA Astrophysics Data System (ADS)

    Wong, Jason C. 13Holden, Eun-Jung 1Kovesi, Peter 1McCuaig, T. Campbell 1Hronsky, Jon

    2013-08-01

    Undercover mineral exploration is a challenging task as it requires understanding of subsurface geology by relying heavily on remotely sensed (i.e. geophysical) data. Cost-effective exploration is essential in order to increase the chance of success using finite budgets. This requires effective decision-making in both the process of selecting the optimum data collection methods and in the process of achieving accuracy during subsequent interpretation. Traditionally, developing the skills, behaviour and practices of exploration decision-making requires many years of experience through working on exploration projects under various geological settings, commodities and levels of available resources. This implies long periods of sub-optimal exploration decision-making, before the necessary experience has been successfully obtained. To address this critical industry issue, our ongoing research focuses on the development of the unique and novel e-learning environment, exSim, which simulates exploration scenarios where users can test their strategies and learn the consequences of their choices. This simulator provides an engaging platform for self-learning and experimentation in exploration decision strategies, providing a means to build experience more effectively. The exSim environment also provides a unique platform on which numerous scenarios and situations (e.g. deposit styles) can be simulated, potentially allowing the user to become virtually familiarised with a broader scope of exploration practices. Harnessing the power of computer simulation, visualisation and an intuitive graphical user interface, the simulator provides a way to assess the user's exploration decisions and subsequent interpretations. In this paper, we present the prototype functionalities in exSim including: simulation of geophysical surveys, follow-up drill testing and interpretation assistive tools.

  8. YF-17 in Flight

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Northrop Aviation YF-17 technology demonstrator aircraft in flight during a 1976 flight research program at NASA's Dryden Flight Research Center, Edwards, California. From May 27 to July 14, 1976, the Dryden Flight Research Center, Edwards, California, flew the Northrop Aviation YF-17 technology demonstrator to test the high-performance U.S. Air Force fighter at transonic speeds. The objectives of the seven-week flight test program included the study of maneuverability of this aircraft at transonic speeds and the collection of in-flight pressure data from around the afterbody of the aircraft to improve wind-tunnel predictions for future fighter aircraft. Also studied were stability and control and buffeting at high angles of attack as well as handling qualities at high load factors. Another objective of this program was to familiarize center pilots with the operation of advanced high-performance fighter aircraft. During the seven-week program, all seven of the center's test pilots were able to fly the aircraft with Gary Krier serving as project pilot. In general the pilots reported no trouble adapting to the aircraft and reported that it was easy to fly. There were no familiarization flights. All 25 research flights were full-data flights. They obtained data on afterbody pressures, vertical-fin dynamic loads, agility, pilot physiology, and infrared signatures. Average flight time was 45 minutes, although two flights involving in-flight refueling lasted approximately one hour longer than usual. Dryden Project Manager Roy Bryant considered the program a success. Center pilots felt that the aircraft was generations ahead of then current active military aircraft. Originally built for the Air Force's lightweight fighter program, the YF-17 Cobra left Dryden to support the Northrop/Navy F-18 Program. The F-18 Hornet evolved from the YF-17.

  9. HepSim: A Repository with Predictions for High-Energy Physics Experiments

    DOE PAGES

    Chekanov, S. V.

    2015-01-01

    A file repository for calculations of cross sections and kinematic distributions using Monte Carlo generators for high-energy collisions is discussed. The repository is used to facilitate effective preservation and archiving of data from theoretical calculations and for comparisons with experimental data. The HepSim data library is publicly accessible and includes a number of Monte Carlo event samples with Standard Model predictions for current and future experiments. The HepSim project includes a software package to automate the process of downloading and viewing online Monte Carlo event samples. Data streaming over a network for end-user analysis is discussed.

  10. Extended duration orbiter medical project countermeasure to reduce post space flight orthostatic intolerance (LBNP) (STS-50/USML-1)

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Boettcher, Sheila W.

    1994-01-01

    During the STS-50/USML-1 mission and five other Shuttle flights, decompression of the legs and lower abdomen ('lower body negative pressure,' LBNP) was used: (1) to apply a standardized stress to the cardiovascular system, to document the loss of orthostatic function during an extended period in weightlessness, and (2) to test its efficacy as a treatment which may be used to protect astronauts from gravitationally-induced fainting during and after reentry on Space Shuttle flights. The loss of orthostatic tolerance (as determined by LBNP) occured even earlier than indicated by similar testing on Skylab (1973-1974). The treatment was shown to be effective in reversing some of the effects of extended weightlessness on the cardiovascular system for at least one day after treatment.

  11. Evaluation of biomolecular distributions in rat brain tissues by means of ToF-SIMS using a continuous beam of Ar clusters.

    PubMed

    Nakano, Shusuke; Yokoyama, Yuta; Aoyagi, Satoka; Himi, Naoyuki; Fletcher, John S; Lockyer, Nicholas P; Henderson, Alex; Vickerman, John C

    2016-06-08

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides detailed chemical structure information and high spatial resolution images. Therefore, ToF-SIMS is useful for studying biological phenomena such as ischemia. In this study, in order to evaluate cerebral microinfarction, the distribution of biomolecules generated by ischemia was measured with ToF-SIMS. ToF-SIMS data sets were analyzed by means of multivariate analysis for interpreting complex samples containing unknown information and to obtain biomolecular mapping indicated by fragment ions from the target biomolecules. Using conventional ToF-SIMS (primary ion source: Bi cluster ion), it is difficult to detect secondary ions beyond approximately 1000 u. Moreover, the intensity of secondary ions related to biomolecules is not always high enough for imaging because of low concentration even if the masses are lower than 1000 u. However, for the observation of biomolecular distributions in tissues, it is important to detect low amounts of biological molecules from a particular area of tissue. Rat brain tissue samples were measured with ToF-SIMS (J105, Ionoptika, Ltd., Chandlers Ford, UK), using a continuous beam of Ar clusters as a primary ion source. ToF-SIMS with Ar clusters efficiently detects secondary ions related to biomolecules and larger molecules. Molecules detected by ToF-SIMS were examined by analyzing ToF-SIMS data using multivariate analysis. Microspheres (45 μm diameter) were injected into the rat unilateral internal carotid artery (MS rat) to cause cerebral microinfarction. The rat brain was sliced and then measured with ToF-SIMS. The brain samples of a normal rat and the MS rat were examined to find specific secondary ions related to important biomolecules, and then the difference between them was investigated. Finally, specific secondary ions were found around vessels incorporating microspheres in the MS rat. The results suggest that important biomolecules related to cerebral

  12. In situ molecular imaging of hydrated biofilm in a microfluidic reactor by ToF-SIMS

    SciTech Connect

    Hua, Xin; Yu, Xiao-Ying; Wang, Zhaoying; Yang, Li; Liu, Bingwen; Zhu, Zihua; Tucker, Abigail E.; Chrisler, William B.; Hill, Eric A.; Thevuthasan, Suntharampillai; Lin, Yuehe; Liu, Songqin; Marshall, Matthew J.

    2014-02-26

    The first results of using a novel single channel microfluidic reactor to enable Shewanella biofilm growth and in situ characterization using time-of-flight secondary ion mass spectrometry (ToF-SIMS) in the hydrated environment are presented. The new microfluidic interface allows direct probing of the liquid surface using ToF-SIMS, a vacuum surface technique. The detection window is an aperture of 2 m in diameter on a thin silicon nitride (SiN) membrane and it allows direct detection of the liquid surface. Surface tension of the liquid flowing inside the microchannel holds the liquid within the aperture. ToF-SIMS depth profiling was used to drill through the SiN membrane and the biofilm grown on the substrate. In situ 2D imaging of the biofilm in hydrated state was acquired, providing spatial distribution of the chemical compounds in the biofilm system. This data was compared with a medium filled microfluidic reactor devoid of biofilm and dried biofilm samples deposited on clean silicon wafers. Principle Component Analysis (PCA) was used to investigate these observations. Our results show that imaging biofilms in the hydrated environment using ToF-SIMS is possible using the unique microfluidic reactor. Moreover, characteristic biofilm fatty acids fragments were observed in the hydrated biofilm grown in the microfluidic channel, illustrating the advantage of imaging biofilm in its native environment.

  13. ToF-SIMS of tissues: “Lessons learned” from mice and women

    PubMed Central

    Gamble, Lara J.; Graham, Daniel J.; Bluestein, Blake; Whitehead, Nicholas P.; Hockenbery, David; Morrish, Fionnuala; Porter, Peggy

    2015-01-01

    The ability to image cells and tissues with chemical and molecular specificity could greatly expand our understanding of biological processes. The subcellular resolution mass spectral imaging capability of time of flight secondary ion mass spectrometry (ToF-SIMS) has the potential to acquire chemically detailed images. However, the complexities of biological systems combined with the sensitivity of ToF-SIMS require careful planning of experimental methods. Tissue sample preparation methods of formalin fixation followed by paraffin embedding (FFPE) and OCT embedding are compared. Results show that the FFPE can potentially be used as a tissue sample preparation protocol for ToF-SIMS analysis if a cluster ion presputter is used prior to analysis and if nonlipid related tissue features are the features of interest. In contrast, embedding tissue in OCT minimizes contamination and maintains lipid signals. Various data acquisition methodologies and analysis options are discussed and compared using mouse breast and diaphragm muscle tissue. Methodologies for acquiring ToF-SIMS 2D images are highlighted along with applications of multivariate analysis to better identify specific features in a tissue sections when compared to H&E images of serial sections. Identification of tissue features is necessary for researchers to visualize a molecular map that correlates with specific biological features or functions. Finally, lessons learned from sample preparation, data acquisition, and data analysis methods developed using mouse models are applied to a preliminary analysis of human breast tumor tissue sections. PMID:25708638

  14. ToF-SIMS Investigation of the Effectiveness of Acid-Cleaning procedures for Genesis Solar Wind Collectors

    NASA Technical Reports Server (NTRS)

    Goreva, Y. S.; Humanyun, M.; Burnett, D. S.; Jurewicz, A. J.; Gonzalez, C. P.

    2014-01-01

    ToF-SIMS images of Genesis sample surfaces contain an incredible amount of important information, but they also show that the crash-derived surface contamination has many components, presenting a challenge to cleaning. Within the variability, we have shown that there are some samples which appear to be clean to begin with, e.g. 60471, and some are more contaminated. Samples 60493 and 60500 are a part of a focused study of the effectiveness of aqua regia and/or sulfuric acid cleaning of small flight Si implanted with Li-6 using ToF-SIMS.

  15. Model Comparison and Uncertainty Quantification for Geologic Carbon Storage. The Sim-SEQ Initiative

    SciTech Connect

    Mukhopadhyay, Sumit; Hou, Zhangshuan; Gosink, Luke J.; Bacon, Diana H.; Doughty, Christine A.; Li, J. J.; Wei, L.; Gasda, S.; Bacci, Giacomo; Govindan, Rajesh; Shi, Ji-Quan; Yamamoto, H.; Ramanathan, Ramya; Nicot, Jean-Philippe; Hosseini, Seyyed; Birkholzer, Jens; Bonneville, Alain

    2013-08-07

    Sim-SEQ is a model comparison initiative for geologic carbon storage (GCS). In Sim-SEQ, fifteen different modeling teams are developing conceptual models for flow and transport of an injected CO2 plume at the Sim-SEQ study site (or the S-3 site) located near Cranfield, Mississippi. The objective of the project is to understand the sources of model uncertainty in GCS, and if possible, to quantify these uncertainties through comparison of the different conceptual models and also through comparison with observed data from the S-3 site. In this paper, we compare six different conceptual models of the S-3 site, and present a preliminary uncertainty analysis of these six models using a generalized linear model approach. We show that differences in model conceptualization and interpretation of site characterization data caus a significant range in predictions.

  16. Analysis of Nickel Silicides by SIMS and LEAP

    SciTech Connect

    Ronsheim, Paul; McMurray, Jeff; Flaitz, Philip; Parks, Christopher

    2007-09-26

    Ni-silicides formed by a variety of processing techniques were studied with secondary ion mass spectroscopy (SIMS) and local electrode atom probe (LEAP registered ) analysis. SIMS provided 1-D chemical analysis over an approximately 60 micron diameter area. LEAP provided 3-D atom identities and locations over an approximately 100-150 nm diameter area. It was determined that the 200 deg. C drive-in anneal results in a Ni{sub 3}Si{sub 2} phase, which is converted to NiSi at temperatures between 360 deg. C-400 deg. C. LEAP detects no As or Pt segregation after the 200 deg. C drive-in anneal, but did quantify As segregation of up to 7% of the material composition just inside the NiSi-Si interface after the phase-formation anneal. The presence of oxygen at the interface results in a silicide chemical surface roughness of up to 3.5 nm as compared to 0.5 nm with a clean, non-oxidized surface. Silicide stability was demonstrated over the phase-formation-temperature range of 360 deg. C - 400 deg. C including when a second rapid thermal anneal step was used. LEAP analysis was also able to quantify the surface roughness of the interface as a function of anneal temperature and the non-uniform Pt and As distribution across the silicide surface as viewed in 2-D surface projection.

  17. History of Manned Space Flight

    NASA Technical Reports Server (NTRS)

    1975-01-01

    U.S. manned space projects from Mercury Redstone 3 through Skylab 4 are briefly described including dates, flight duration, crew, and number of earth/moon orbits. The flight costs of each project are itemized. Highlights in the history of the manned space program from 1957 to February, 1974 are included.

  18. SIMS analysis: Development and evaluation program summary

    SciTech Connect

    Groenewold, G.S.; Appelhans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1996-11-01

    This report provides an overview of the ``SIMS Analysis: Development and Evaluation Program``, which was executed at the Idaho National Engineering Laboratory from mid-FY-92 to the end of FY-96. It should be noted that prior to FY-1994 the name of the program was ``In-Situ SIMS Analysis``. This report will not go into exhaustive detail regarding program accomplishments, because this information is contained in annual reports which are referenced herein. In summary, the program resulted in the design and construction of an ion trap secondary ion mass spectrometer (IT-SIMS), which is capable of the rapid analysis of environmental samples for adsorbed surface contaminants. This instrument achieves efficient secondary ion desorption by use of a molecular, massive ReO{sub 4}{sup {minus}} primary ion particle. The instrument manages surface charge buildup using a self-discharging principle, which is compatible with the pulsed nature of the ion trap. The instrument can achieve high selectivity and sensitivity using its selective ion storage and MS/MS capability. The instrument was used for detection of tri-n-butyl phosphate, salt cake (tank cake) characterization, and toxic metal speciation studies (specifically mercury). Technology transfer was also an important component of this program. The approach that was taken toward technology transfer was that of component transfer. This resulted in transfer of data acquisition and instrument control software in FY-94, and ongoing efforts to transfer primary ion gun and detector technology to other manufacturers.

  19. NASA's Rodent Research Project: Validation of Flight Hardware, Operations and Science Capabilities for Conducting Long Duration Experiments in Space

    NASA Technical Reports Server (NTRS)

    Choi, S. Y.; Beegle, J. E.; Wigley, C. L.; Pletcher, D.; Globus, R. K.

    2015-01-01

    Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL/6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNA later at less than or equal to -80 C (n=2/group) until their return to Earth. Remaining carcasses were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls, housed in standard cages, and Ground Controls (GC), housed in flight hardware within an environmental chamber. FLT mice appeared more physically active on-orbit than GC, and behavior analysis are in progress. Upon return to Earth, there were no differences in body weights between FLT and GC at the end of the 37 days in space. RNA was of high quality (RIN greater than 8.5). Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were optimally processed in the laboratory. Liver samples collected from the intact frozen FLT carcasses had RNA RIN of 7.27 +/- 0.52, which was lower than that of the samples processed on-orbit, but similar to those obtained from the control group intact carcasses. Nonetheless, the RNA samples from the intact carcasses were acceptable for the most demanding transcriptomic analyses. Adrenal glands, thymus and spleen (organs associated with stress response) showed no significant difference in weights between FLT and GC. Enzymatic activity was also not significantly different. Over 3,000 tissues collected from the four groups of mice have become available for the Biospecimen Sharing

  20. Distinguishing Monosaccharide Stereo- and Structural Isomers with ToF-SIMS and Multivariate Statistical Analysis

    SciTech Connect

    Berman, E F; Kulp, K S; Knize, M G; Wu, L; Nelson, E J; Nelson, D O; Wu, K J

    2006-05-04

    Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is utilized to examine the mass spectra and fragmentation patterns of seven isomeric monosaccharides. Multivariate statistical analysis techniques, including principal component analysis (PCA), allow discrimination of the extremely similar mass spectra of stereoisomers. Furthermore, PCA identifies those fragment peaks which vary significantly between spectra. Heavy isotope studies confirm that these peaks are indeed sugar fragments, allow identification of the fragments, and provide clues to the fragmentation pathways. Excellent reproducibility is shown by multiple experiments performed over time and on separate samples. This study demonstrates the combined selectivity and discrimination power of ToF-SIMS and PCA, and suggests new applications of the technique including differentiation of subtle chemical changes in biological samples that may provide insights into cellular processes, disease progress, and disease diagnosis.

  1. TOF-SIMS measurements for toxic air pollutants adsorbed on the surface of airborne particles

    NASA Astrophysics Data System (ADS)

    Tomiyasu, Bunbunoshin; Hoshi, Takahiro; Owari, Masanori; Nihei, Yoshimasa

    2003-01-01

    Three kinds of particulate matter were collected: diesel and gasoline exhaust particles emitted directly from exhaust nozzle, and suspended particulate matter (SPM) near the traffic route. Soxhlet extraction was performed on each sample. By gas-chromatograph-mass spectrometer (GC-MS) analysis of these extracts, di-ethyl phthalate and di- n-butyl phthalate were detected from the extract of SPM and diesel exhaust particles (DEPs). Because these phthalates were sometimes suspected as contamination, time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurements were also performed on the samples collected at the same environment. By comparing obtained spectra, it is clear that these environmental endocrine disrupters (EEDs) were adsorbed on DEP surface. Thus, we concluded that the combination of conventional method and TOF-SIMS measurement is one of the most powerful techniques for analyzing the toxic air pollutants adsorbed on SPM surface.

  2. Latest applications of 3D ToF-SIMS bio-imaging.

    PubMed

    Fletcher, John S

    2015-03-10

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a rapidly developing technique for the characterization of a wide range of materials. Recently, advances in instrumentation and sample preparation approaches have provided the ability to perform 3D molecular imaging experiments. Polyatomic ion beams, such as C60, and gas cluster ion beams, often Arn (n = 500-4000), substantially reduce the subsurface damage accumulation associated with continued bombardment of organic samples with atomic beams. In this review, the capabilities of the technique are discussed and examples of the 3D imaging approach for the analysis of model membrane systems, plant single cell, and tissue samples are presented. Ongoing challenges for 3D ToF-SIMS imaging are also discussed along with recent developments that might offer improved 3D imaging prospects in the near future.

  3. Principal component analysis of TOF-SIMS spectra, images and depth profiles: an industrial perspective

    NASA Astrophysics Data System (ADS)

    Pacholski, Michaeleen L.

    2004-06-01

    Principal component analysis (PCA) has been successfully applied to time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra, images and depth profiles. Although SIMS spectral data sets can be small (in comparison to datasets typically discussed in literature from other analytical techniques such as gas or liquid chromatography), each spectrum has thousands of ions resulting in what can be a difficult comparison of samples. Analysis of industrially-derived samples means the identity of most surface species are unknown a priori and samples must be analyzed rapidly to satisfy customer demands. PCA enables rapid assessment of spectral differences (or lack there of) between samples and identification of chemically different areas on sample surfaces for images. Depth profile analysis helps define interfaces and identify low-level components in the system.

  4. Chemical differences between sapwood and heartwood of Chamaecyparis obtusa detected by ToF-SIMS

    NASA Astrophysics Data System (ADS)

    Saito, K.; Mitsutani, T.; Imai, T.; Matsushita, Y.; Yamamoto, A.; Fukushima, K.

    2008-12-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to investigate the distribution of elements, Na, Mg, Al, K, and Ca, and lignin, in the contiguous growth rings including the sapwood/heartwood boundary in Hinoki cypress ( Chamaecyparis obtusa). Lignin was distributed almost uniformly from sapwood to heartwood. The concentrations of most of the elements showed a drastic increase or decrease in the transition zone between sapwood and heartwood. The ToF-SIMS mapping analysis showed that most of the elements predominantly localized in the ray parenchyma cells in the inner transition zone and heartwood, while the elements showed no localization and distributed almost uniformly in the outer transition zone near sapwood. The result suggests that the ray parenchyma cells play a role in behaviors of elements during the transition from sapwood to heartwood.

  5. Tof-Sims Application for Evaluating the Atomic Structure of New Bone Substitute Material

    NASA Astrophysics Data System (ADS)

    Oteri, G.; Pisanom, M.; Cicciù, M.

    2016-05-01

    The aim of this experimental study is to evaluate, in vitro, the chemical composition and the micromorphological structure of a bone substitute material surface. This material is based on calcium triphosphate and hydroxyapatite microgranules. Some results of a preliminary surface study of the above mentioned bioceramic materials are reported. The study has been carried out by means of time-of-flight secondary ion mass spectrometry (TOF-SIMS), complemented by X-ray photoelectron spectrometry (XPS) measurements. Whereas XPS data supplies the average surface composition of the system, TOF-SIMS supplies laterally and depth resolved information on the sample. This preliminary study confirms the properties of osteoconduction and scaffold features of the material. Moreover, a possible osteoinductive capability could be due to the presence of surface micropores, which could help in the attraction of bone morphogenetic protein (BMP), thus promoting the osteogenesis.

  6. Optimized conditions for selective gold flotation by ToF-SIMS and ToF-LIMS

    NASA Astrophysics Data System (ADS)

    Chryssoulis, S. L.; Dimov, S. S.

    2004-06-01

    This work describes a comprehensive characterization of the factors controlling the floatability of free gold from flotation test using reagents (collectors) at plant concentration levels. A relationship between the collectors loadings on gold particles and their surface composition has been established. The findings of this study show that silver activates gold flotation and there is a strong correlation between the surface concentration of silver and the loading of certain collectors. The organic surface analysis was done by ToF-SIMS while the inorganic surface analysis was carried out by time-of-flight laser ionization mass spectrometry (ToF-LIMS). The developed testing protocol based on ToF-LIMS and ToF-SIMS complementary surface analysis allows for optimization of the flotation scheme and hence improved gold recovery.

  7. Preliminary Verification and Validation of WEC-Sim, an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect

    Ruehl, K.; Michelen, C.; Kanner, S.; Lawson, M.; Yu, Y. H.

    2014-03-01

    To promote and support the wave energy industry, a wave energy converter (WEC) design tool, WEC-Sim, is being developed by Sandia National Laboratories and the National Renewable Energy Laboratory. In this paper, the WEC-Sim code is used to model a point absorber WEC designed by the U.S. Department of Energy's reference model project. Preliminary verification was performed by comparing results of the WEC-Sim simulation through a code-to-code comparison, utilizing the commercial codes ANSYS-AQWA, WaveDyn, and OrcaFlex. A preliminary validation of the code was also performed by comparing WEC-Sim simulation results to experimental wave tank tests.

  8. Research and Technology, 1987, Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Guerny, Gene (Editor); Moe, Karen (Editor); Paddack, Steven (Editor); Soffen, Gerald (Editor); Sullivan, Walter (Editor); Ballard, Jan (Editor)

    1987-01-01

    Research at Goddard Space Flight Center during 1987 is summarized. Topics addressed include space and earth sciences, technology, flight projects and mission definition studies, and institutional technology.

  9. CTA simulations with CORSIKA/sim lowbar telarray

    SciTech Connect

    Bernloehr, K.

    2008-12-24

    While current atmospheric Cherenkov installations consist of only a few telescopes each, future installations will be far more complex. Monte Carlo simulations have become an essential tool for the design and optimisation of such installations. The CORSIKA air-shower simulation code and the sim lowbar telarray code for simulation of arrays of Cherenkov telescopes have been used to simulate several candidate configurations of the future Cherenkov Telescope Array (CTA) in detail. Together with other detailed and simplified simulations the resulting data provide the basis for the ongoing optimisation of CTA over a wide energy range. In this paper, the simulation methods are outlined and preliminary results on a number of configurations are presented. It is demonstrated that the initial goals of the CTA project can be achieved with available technology, at least in the medium and high energy range (about 100 GeV to 100 TeV)

  10. Detection and distribution of lithium in Mg-Li-Al based alloy by ToF-SIMS

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod

    2016-12-01

    Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) is used to investigate the surface as well as bulk microstructural features of novel Mg-Li-Al based alloy namely Mg-9Li-7Al-3Sn-1Zn (LATZ9531). ToF-SIMS study indicates that there are six multi-oxide layers present within the surface film of LATZ9531. Furthermore, The presence of Li containing phase has been qualitatively confirmed based on the high number of Li-ion counts in SIMS, and the same is verified quantitatively by using electron probe microanalysis (EPMA). The novel approach may be useful to determine the chemical composition of the phases in various alloys which has lighter alloying elements such as lithium.

  11. Simulation-Based e-Learning Tools for Science,Engineering, and Technology Education(SimBeLT)

    NASA Astrophysics Data System (ADS)

    Davis, Doyle V.; Cherner, Y.

    2006-12-01

    The focus of Project SimBeLT is the research, development, testing, and dissemination of a new type of simulation-based integrated e-learning set of modules for two-year college technical and engineering curricula in the areas of thermodynamics, fluid physics, and fiber optics that can also be used in secondary schools and four-year colleges. A collection of sophisticated virtual labs is the core component of the SimBeLT modules. These labs will be designed to enhance the understanding of technical concepts and underlying fundamental principles of these topics, as well as to master certain performance based skills online. SimBeLT software will help educators to meet the National Science Education Standard that "learning science and technology is something that students do, not something that is done to them". A major component of Project SimBeLT is the development of multi-layered technology-oriented virtual labs that realistically mimic workplace-like environments. Dynamic data exchange between simulations will be implemented and links with instant instructional messages and data handling tools will be realized. A second important goal of Project SimBeLT labs is to bridge technical skills and scientific knowledge by enhancing the teaching and learning of specific scientific or engineering subjects. SimBeLT builds upon research and outcomes of interactive teaching strategies and tools developed through prior NSF funding (http://webphysics.nhctc.edu/compact/index.html) (Project SimBeLT is partially supported by a grant from the National Science Foundation DUE-0603277)

  12. Time of flight mass spectrometry of DNA laser-ablated from frozen aqueous solutions: applications to the Human Genome Project

    NASA Astrophysics Data System (ADS)

    Williams, Peter

    1994-02-01

    Time of flight mass spectrometry offers an extremely rapid and accurate alternative to gel electrophoresis for sizing DNA fragments in the Sanger sequencing process, if large single-stranded DNA molecules can be volatilized and ionized without fragmentation. A process based on pulsed laser ablation of thin frozen films of DNA solutions has been shown to ablate intact DNA molecules up to [approximate]400 kDa in mass, and also has been shown to yield molecular ions of single-stranded DNA up to [approximate]18 500 Da. The theoretical basis and the progress to date in this approach are described and the potential impact of mass spectrometry on large-scale DNA sequencing is discussed.

  13. Nanoscale imaging of Li and B in nuclear waste glass, a comparison of ToF-SIMS, NanoSIMS, and APT: Nanoscale imaging of Li and B in nuclear waste glass

    SciTech Connect

    Wang, Zhaoying; Liu, Jia; Zhou, Yufan; Neeway, James J.; Schreiber, Daniel K.; Crum, Jarrod V.; Ryan, Joseph V.; Wang, Xue-Lin; Wang, Fuyi; Zhu, Zihua

    2016-06-02

    It has been very difficult to use popular elemental imaging techniques to image Li and B distribution in glass samples with nanoscale resolution. In this study, atom probe tomography (APT), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and nanoscale secondary ion mass spectrometry (NanoSIMS) were used to image the distribution of Li and B in two representative glass samples. APT can provide three-dimensional Li and B imaging with very high spatial resolution (≤ 2 nm). In addition, absolute quantification of Li and B is possible, though room remains to improve accuracy. However, the major drawbacks of APT include limited field of view (normally ≤ 100 × 100 × 500 nm3) and poor sample compatibility. As a comparison, ToF-SIMS and NanoSIMS are sample-friendly with flexible field of view (up to 500 × 500 μm2 and image stitching is feasible); however, lateral resolution is limited to only about 100 nm. Therefore, SIMS and APT can be regarded as complementary techniques for nanoscale imaging Li and B in glass and other novel materials.

  14. Chemical Imaging of the Cell Membrane by NanoSIMS

    SciTech Connect

    Weber, P K; Kraft, M L; Frisz, J F; Carpenter, K J; Hutcheon, I D

    2010-02-23

    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid rafts in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a

  15. CystiSim - An Agent-Based Model for Taenia solium Transmission and Control.

    PubMed

    Braae, Uffe Christian; Devleesschauwer, Brecht; Gabriël, Sarah; Dorny, Pierre; Speybroeck, Niko; Magnussen, Pascal; Torgerson, Paul; Johansen, Maria Vang

    2016-12-01

    Taenia solium taeniosis/cysticercosis was declared eradicable by the International Task Force for Disease Eradication in 1993, but remains a neglected zoonosis. To assist in the attempt to regionally eliminate this parasite, we developed cystiSim, an agent-based model for T. solium transmission and control. The model was developed in R and available as an R package (http://cran.r-project.org/package=cystiSim). cystiSim was adapted to an observed setting using field data from Tanzania, but adaptable to other settings if necessary. The model description adheres to the Overview, Design concepts, and Details (ODD) protocol and consists of two entities-pigs and humans. Pigs acquire cysticercosis through the environment or by direct contact with a tapeworm carrier's faeces. Humans acquire taeniosis from slaughtered pigs proportional to their infection intensity. The model allows for evaluation of three interventions measures or combinations hereof: treatment of humans, treatment of pigs, and pig vaccination, and allows for customary coverage and efficacy settings. cystiSim is the first agent-based transmission model for T. solium and suggests that control using a strategy consisting of an intervention only targeting the porcine host is possible, but that coverage and efficacy must be high if elimination is the ultimate goal. Good coverage of the intervention is important, but can be compensated for by including an additional intervention targeting the human host. cystiSim shows that the scenarios combining interventions in both hosts, mass drug administration to humans, and vaccination and treatment of pigs, have a high probability of success if coverage of 75% can be maintained over at least a four year period. In comparison with an existing mathematical model for T. solium transmission, cystiSim also includes parasite maturation, host immunity, and environmental contamination. Adding these biological parameters to the model resulted in new insights in the potential

  16. CystiSim – An Agent-Based Model for Taenia solium Transmission and Control

    PubMed Central

    Gabriël, Sarah; Dorny, Pierre; Speybroeck, Niko; Magnussen, Pascal; Torgerson, Paul; Johansen, Maria Vang

    2016-01-01

    Taenia solium taeniosis/cysticercosis was declared eradicable by the International Task Force for Disease Eradication in 1993, but remains a neglected zoonosis. To assist in the attempt to regionally eliminate this parasite, we developed cystiSim, an agent-based model for T. solium transmission and control. The model was developed in R and available as an R package (http://cran.r-project.org/package=cystiSim). cystiSim was adapted to an observed setting using field data from Tanzania, but adaptable to other settings if necessary. The model description adheres to the Overview, Design concepts, and Details (ODD) protocol and consists of two entities—pigs and humans. Pigs acquire cysticercosis through the environment or by direct contact with a tapeworm carrier's faeces. Humans acquire taeniosis from slaughtered pigs proportional to their infection intensity. The model allows for evaluation of three interventions measures or combinations hereof: treatment of humans, treatment of pigs, and pig vaccination, and allows for customary coverage and efficacy settings. cystiSim is the first agent-based transmission model for T. solium and suggests that control using a strategy consisting of an intervention only targeting the porcine host is possible, but that coverage and efficacy must be high if elimination is the ultimate goal. Good coverage of the intervention is important, but can be compensated for by including an additional intervention targeting the human host. cystiSim shows that the scenarios combining interventions in both hosts, mass drug administration to humans, and vaccination and treatment of pigs, have a high probability of success if coverage of 75% can be maintained over at least a four year period. In comparison with an existing mathematical model for T. solium transmission, cystiSim also includes parasite maturation, host immunity, and environmental contamination. Adding these biological parameters to the model resulted in new insights in the potential

  17. Rim Sim: A Role-Play Simulation

    USGS Publications Warehouse

    Barrett, Robert C.; Frew, Suzanne L.; Howell, David G.; Karl, Herman A.; Rudin, Emily B.

    2003-01-01

    Rim Sim is a 6-hour, eight-party negotiation that focuses on creating a framework for the long-term disaster-recovery efforts. It involves a range of players from five countries affected by two natural disasters: a typhoon about a year ago and an earthquake about 6 months ago. The players are members of an International Disaster Working Group (IDWG) that has been created by an international commission. The IDWG has been charged with drawing up a framework for managing two issues: the reconstruction of regionally significant infrastructure and the design of a mechanism for allocating funding to each country for reconstruction of local infrastructure and ongoing humanitarian needs. The first issue will involve making choices among five options (two harbor options, two airport options, and one rail-line option), each of which will have three levels at which to rebuild. The second issue will involve five starting-point options. Participants are encouraged to invent other options for both issues. The goal of Rim Sim is to raise questions about traditional approaches to disaster-preparedness planning and reconstruction efforts in an international setting, in this case the Pacific Rim. Players must confront the reverberating effects of disasters and the problems of using science and technical information in decisionmaking, and are introduced to a consensus-building approach emphasizing face-to-face dialog and multinational cooperation in dealing with humanitarian concerns, as well as long-term efforts to reconstruct local and regional infrastructure. The Rim Sim simulation raises four key points: ripple effects of disasters, role of science, multiparty negotiation, and building personal relationships.

  18. NanoSIMS Imaging Alternation Layers of a Leached SON68 Glass Via A FIB-made Wedged Crater

    SciTech Connect

    Wang, Yi-Chung; Schreiber, Daniel K.; Neeway, James J.; Thevuthasan, Suntharampillai; Evans, James E.; Ryan, Joseph V.; Zhu, Zihua; Wei, Wei

    2014-11-01

    Currently, nuclear wastes are commonly immobilized into glasses because of their long-term durability. Exposure to water for long periods of time, however, will eventually corrode the waste form and is the leading potential avenue for radionuclide release into the environment. Because such slow processes cannot be experimentally tested, the prediction of release requires a thorough understanding the mechanisms governing glass corrosion. In addition, due to the exceptional durability of glass, much of the testing must be performed on high-surface-area powders. A technique that can provide accurate compositional profiles with very precise depth resolution for non-flat samples would be a major benefit to the field. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profiling is an excellent tool that has long been used to examine corrosion layers of glass. The roughness of the buried corrosion layers, however, causes the corresponding SIMS depth profiles to exhibit erroneously wide interfaces. In this study, NanoSIMS was used to image the cross-section of the corrosion layers of a leached SON68 glass sample. A wedged crater was prepared by a focused ion beam (FIB) instrument to obtain a 5× improvement in depth resolution for NanoSIMS measurements. This increase in resolution allowed us to confirm that the breakdown of the silica glass network is further from the pristine glass than a second dissolution front for boron, another glass former. The existence of these two distinct interfaces, separated by only ~20 nm distance in depth, was not apparent by traditional ToF-SIMS depth profiling but has been confirmed also by atom probe tomography. This novel sample geometry will be a major benefit to efficient NanoSIMS sampling of irregular interfaces at the nanometer scale that would otherwise be obscured within ToF-SIMS depth profiles.

  19. Simulation of multi-photon emission isotopes using time-resolved SimSET multiple photon history generator

    SciTech Connect

    Chiang, Chih-Chieh; Lin, Hsin-Hon; Lin, Chang-Shiun; Chuang, Keh-Shih; Jan, Meei-Ling

    2015-07-01

    Abstract-Multiple-photon emitters, such as In-111 or Se-75, have enormous potential in the field of nuclear medicine imaging. For example, Se-75 can be used to investigate the bile acid malabsorption and measure the bile acid pool loss. The simulation system for emission tomography (SimSET) is a well-known Monte Carlo simulation (MCS) code in nuclear medicine for its high computational efficiency. However, current SimSET cannot simulate these isotopes due to the lack of modeling of complex decay scheme and the time-dependent decay process. To extend the versatility of SimSET for simulation of those multi-photon emission isotopes, a time-resolved multiple photon history generator based on SimSET codes is developed in present study. For developing the time-resolved SimSET (trSimSET) with radionuclide decay process, the new MCS model introduce new features, including decay time information and photon time-of-flight information, into this new code. The half-life of energy states were tabulated from the Evaluated Nuclear Structure Data File (ENSDF) database. The MCS results indicate that the overall percent difference is less than 8.5% for all simulation trials as compared to GATE. To sum up, we demonstrated that time-resolved SimSET multiple photon history generator can have comparable accuracy with GATE and keeping better computational efficiency. The new MCS code is very useful to study the multi-photon imaging of novel isotopes that needs the simulation of lifetime and the time-of-fight measurements. (authors)

  20. In Situ Reactivity and TOF SIMS Analysis of Surfaces Prepared by Soft and Reactive Landing of Mass Selected Ions

    SciTech Connect

    Johnson, Grant E.; Lysonski, Michael; Laskin, Julia

    2010-07-01

    An instrument has been designed and constructed that enables in situ reactivity and time of flight secondary ion mass spectrometry (TOF-SIMS) analysis of surfaces prepared or modified through soft- and reactive landing of mass-selected polyatomic cations and anions. The apparatus employs an electrospray ion source coupled to a high transmission electrodynamic ion funnel, two focusing collision quadrupoles, a large 19 mm diameter quadrupole mass filter, and a quadrupole bender that deflects the ion beam, thereby preventing neutral contaminants from impinging on the deposition surface. The ion soft landing apparatus is coupled to a commercial TOF-SIMS instrument permitting the introduction of surfaces into vacuum and SIMS analysis before and after ion deposition without breaking vacuum. To facilitate a comparison of the current TOF-SIMS instrument with the in situ Fourier transform ion cyclotron resonance (FT-ICR-SIMS) deposition apparatus constructed previously, dications of the cyclic peptide Gramicidin S (GS) and the photoactive organonometallic complex ruthenium tris-bipyridine (Ru(bpy)3) were soft landed onto fluorinated self-assembled monolayer (FSAM) on gold surfaces. In both cases similarities and differences were observed in the secondary ion mass spectra, with the TOF-SIMS results, in general, characterized by greater sensitivity, larger dynamic range, less fragmentation, and fewer in-plume reactions than the corresponding FT-ICR-SIMS spectra. The charge reduction kinetics of both the doubly and singly protonated GS cations on the FSAM surface were also examined as was the influence of the primary gallium ion (Ga+) flux on the efficiency of these processes. In addition, we demonstrate that the new instrument enables detailed studies of the reactivity of catalytically active species immobilized by soft- and reactive landing towards gaseous reagents.

  1. TOF-SIMS imaging of chlorhexidine-digluconate transport in frozen hydrated biofilms of the fungus Candida albicans

    NASA Astrophysics Data System (ADS)

    Tyler, Bonnie J.; Rangaranjan, Srinath; Möller, Jörg; Beumer, Andre'; Arlinghaus, Heinrich F.

    2006-07-01

    The diffusion of the anti-microbial chlorhexidine digluconate (CHG) has been studied in C. albicans biofilms by time-of-flight secondary-ion mass spectrometry (TOF-SIMS). C. albicans has been shown to become resistant to common anti-microbial agents, including CHG, when growing as a biofilm. Mass transport resistance within biofilms has commonly been suggested as a resistance mechanism, but measurement of transport for most anti-microbial agents in biofilms has proven extremely difficult because of the heterogeneity of the biofilms and the difficulty in detecting these agents within an intact biofilm. In this study, TOF-SIMS has been used to study the transport of CHG and glucose in a frozen hydrated biofilm. The TOF-SIMS images reveal a progression of CHG from the top of the biofilm to its base with time. Images suggest that there are channels within the biofilm and show preferential binding of CHG to cellular components of the biofilm. Additionally, both living and dead cells can be identified in the TOF-SIMS images by the sequestration of K + and the presence of cell markers. This study demonstrates that TOF-SIMS has the unique potential to simultaneously observe the presence of an antimicrobial agent, concentration of nutrients, and the viability of the cell population.

  2. QuakeSim 2.0

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay W.; Lyzenga, Gregory A.; Granat, Robert A.; Norton, Charles D.; Rundle, John B.; Pierce, Marlon E.; Fox, Geoffrey C.; McLeod, Dennis; Ludwig, Lisa Grant

    2012-01-01

    QuakeSim 2.0 improves understanding of earthquake processes by providing modeling tools and integrating model applications and various heterogeneous data sources within a Web services environment. QuakeSim is a multisource, synergistic, data-intensive environment for modeling the behavior of earthquake faults individually, and as part of complex interacting systems. Remotely sensed geodetic data products may be explored, compared with faults and landscape features, mined by pattern analysis applications, and integrated with models and pattern analysis applications in a rich Web-based and visualization environment. Integration of heterogeneous data products with pattern informatics tools enables efficient development of models. Federated database components and visualization tools allow rapid exploration of large datasets, while pattern informatics enables identification of subtle, but important, features in large data sets. QuakeSim is valuable for earthquake investigations and modeling in its current state, and also serves as a prototype and nucleus for broader systems under development. The framework provides access to physics-based simulation tools that model the earthquake cycle and related crustal deformation. Spaceborne GPS and Inter ferometric Synthetic Aperture (InSAR) data provide information on near-term crustal deformation, while paleoseismic geologic data provide longerterm information on earthquake fault processes. These data sources are integrated into QuakeSim's QuakeTables database system, and are accessible by users or various model applications. UAVSAR repeat pass interferometry data products are added to the QuakeTables database, and are available through a browseable map interface or Representational State Transfer (REST) interfaces. Model applications can retrieve data from Quake Tables, or from third-party GPS velocity data services; alternatively, users can manually input parameters into the models. Pattern analysis of GPS and seismicity data

  3. ToF-SIMS imaging of PE/PP polymer using multivariate analysis

    NASA Astrophysics Data System (ADS)

    Miyasaka, Toyomitsu; Ikemoto, Takashi; Kohno, Teiichiro

    2008-12-01

    The distribution of polyethylene (PE) and polypropylene (PP) in PE/PP blended-polymer film was determined by applying principal components analysis (PCA) and multivariate curve resolution (MCR) to time-of-flight secondary ion mass spectroscopy (ToF-SIMS) imaging, together with preprocessing by pixel binning, normalization, and autoscaling to increase image contrast by reducing topographic and charge-distribution effects. The PE/PP distribution was confirmed by MVA conducted on the image data over static limit. The MCR score with normalized-autoscaling was found to give the PE/PP distribution distinctly.

  4. Space Flight Software Development Software for Intelligent System Health Management

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.; Crumbley, Tim

    2004-01-01

    The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.

  5. 20th Century NASA History: Mercury Manned Orbital Capsule Detail Specification and Project Mercury Capsule Flight Operations Manual

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The detailed preparation required in attempting a mission of the magnitude and scope of PROJECT MERCURY obviously cannot and need not be covered in a document of the handbook type. Prior to any actual attempt to launch a manned capsule, many weeks will be spent in an extensive training and familiarization program. The information contained in this manual, therefore, will pre-suppose a detailed knowledge of the capsule systems and will be confined, for the most part, to procedural data.

  6. Experimental Results for SimFuels

    SciTech Connect

    Buck, Edgar C.; Casella, Andrew M.; Skomurski, Frances N.; MacFarlan, Paul J.; Soderquist, Chuck Z.; Wittman, Richard S.; Mcnamara, Bruce K.

    2012-08-22

    Assessing the performance of Spent (or Used) Nuclear Fuel (UNF) in geological repository requires quantification of time-dependent phenomena that may influence its behavior on a time-scale up to millions of years. A high-level waste repository environment will be a dynamic redox system because of the time-dependent generation of radiolytic oxidants and reductants and the corrosion of Fe-bearing canister materials. One major difference between used fuel and natural analogues, including unirradiated UO2, is the intense radiolytic field. The radiation emitted by used fuel can produce radiolysis products in the presence of water vapor or a thin-film of water that may increase the waste form degradation rate and change radionuclide behavior. To study UNF, we have been working on producing synthetic UO2 ceramics, or SimFuels that can be used in testing and which will contain specific radionuclides or non-radioactive analogs so that we can test the impact of radiolysis on fuel corrosion without using actual spent fuel. Although, testing actual UNF would be ideal for understanding the long term behavior of UNF, it requires the use of hot cells and is extremely expensive. In this report, we discuss, factors influencing the preparation of SimFuels and the requirements for dopants to mimic the behavior of UNF. We have developed a reliable procedure for producing large grain UO2 at moderate temperatures. This process will be applied to a series of different formulations.

  7. SIMS and TEM Analysis of Niobium Bicrystals

    SciTech Connect

    Maheshwari, P; Griffis, D P; Stevie, F A; Zhou, C; Ciovati, G; Myneni, R; Spradlin, J K; Rigsbee, M

    2011-07-01

    The behaviour of interstitial impurities(C,O,N,H) on the Nb surface with respect to grain boundaries may affect cavity performance. Large grain Nb makes possible the selection of bicrystal samples with a well defined grain boundary. In this work, Dynamic SIMS was used to analyze two Nb bicrystal samples, one of them heat treated and the other non heat treated (control). H levels were found to be higher for the non heat treated sample and a difference in the H intensity and sputtering rate was also observed across the grain boundary for both the samples. TEM results showed that the bicrystal interface showed no discontinuity and the oxide layer was uniform across the grain boundary for both the samples. TOF-SIMS imaging was also performed to analyze the distribution of the impurities across the grain boundary in both the samples. C was observed to be segregated along the grain boundary for the control sample, while H and O showed a difference in signal intensity across the grain boundary. Crystal orientation appears to have an important role in the observed sputtering rate and impurity ion signal differences both across the grain boundary and between samples

  8. The Development and Implementation of Ground Safety Requirements for Project Orion Abort Flight Testing - A Case Study

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul D.; Williams, Jeffrey G.; Condzella, Bill R.

    2008-01-01

    A rigorous set of detailed ground safety requirements is required to make sure that ground support equipment (GSE) and associated planned ground operations are conducted safely. Detailed ground safety requirements supplement the GSE requirements already called out in NASA-STD-5005. This paper will describe the initial genesis of these ground safety requirements, the establishment and approval process and finally the implementation process for Project Orion. The future of the requirements will also be described. Problems and issues encountered and overcame will be discussed.

  9. NanoSIMS analysis of arsenic and selenium in cereal grain

    SciTech Connect

    Moore, Katie L.; Schröder, Markus; Lombi, Enzo; Zhao, Fang-Jie; McGrath, Steve P.; Hawkesford, Malcolm J.; Shewry, Peter R.; Grovenor, Chris R.M.

    2012-09-05

    Cereals are an important source of selenium (Se) to humans and many people have inadequate intakes of this essential trace element. Conversely, arsenic (As) is toxic and may accumulate in rice grain at levels that pose a health risk. Knowledge of the localization of selenium and arsenic within the cereal grain will aid understanding of their deposition patterns and the impact of processes such as milling. High-resolution secondary ion mass spectrometry (NanoSIMS) was used to determine the localization of Se in wheat (Triticum aestivum) and As in rice (Oryza sativa). Combined synchrotron X-ray fluorescence (S-XRF) and NanoSIMS analysis utilized the strengths of both techniques. Selenium was concentrated in the protein surrounding the starch granules in the starchy endosperm cells and more homogeneously distributed in the aleurone cells but with Se-rich hotspots. Arsenic was concentrated in the subaleurone endosperm cells in association with the protein matrix rather than in the aleurone cells. NanoSIMS indicated that the high intensity of As identified in the S-XRF image was localized in micron-sized hotspots near the ovular vascular trace and nucellar projection. This is the first study showing subcellular localization in grain samples containing parts per million concentrations of Se and As. There is good quantitative agreement between NanoSIMS and S-XRF.

  10. SimCoach: An Intelligent Virtual Human System for Proving Healthcare Information and Support

    DTIC Science & Technology

    2010-08-01

    serve the role of virtual therapists is still fraught with both technical and ethical concerns, the SimCoach project does not aim to become a “doc in...initiating care. While we believe that the use of virtual humans to serve the role of virtual therapists is still fraught with both technical and ethical...Joe Weizenbaum. In 1966, he wrote a language analysis program called ELIZA that was designed to imitate a Rogerian therapist . The system allowed a

  11. Molecular imaging of cannabis leaf tissue with MeV-SIMS method

    NASA Astrophysics Data System (ADS)

    Jenčič, Boštjan; Jeromel, Luka; Ogrinc Potočnik, Nina; Vogel-Mikuš, Katarina; Kovačec, Eva; Regvar, Marjana; Siketić, Zdravko; Vavpetič, Primož; Rupnik, Zdravko; Bučar, Klemen; Kelemen, Mitja; Kovač, Janez; Pelicon, Primož

    2016-03-01

    To broaden our analytical capabilities with molecular imaging in addition to the existing elemental imaging with micro-PIXE, a linear Time-Of-Flight mass spectrometer for MeV Secondary Ion Mass Spectrometry (MeV-SIMS) was constructed and added to the existing nuclear microprobe at the Jožef Stefan Institute. We measured absolute molecular yields and damage cross-section of reference materials, without significant alteration of the fragile biological samples during the duration of measurements in the mapping mode. We explored the analytical capability of the MeV-SIMS technique for chemical mapping of the plant tissue of medicinal cannabis leaves. A series of hand-cut plant tissue slices were prepared by standard shock-freezing and freeze-drying protocol and deposited on the Si wafer. We show the measured MeV-SIMS spectra showing a series of peaks in the mass area of cannabinoids, as well as their corresponding maps. The indicated molecular distributions at masses of 345.5 u and 359.4 u may be attributed to the protonated THCA and THCA-C4 acids, and show enhancement in the areas with opened trichome morphology.

  12. Understanding Earthquake Fault Systems Using QuakeSim Analysis and Data Assimilation Tools

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Glasscoe, Margaret; Granat, Robert; Rundle, John; McLeod, Dennis; Al-Ghanmi, Rami; Grant, Lisa

    2008-01-01

    We are using the QuakeSim environment to model interacting fault systems. One goal of QuakeSim is to prepare for the large volumes of data that spaceborne missions such as DESDynI will produce. QuakeSim has the ability to ingest distributed heterogenous data in the form of InSAR, GPS, seismicity, and fault data into various earthquake modeling applications, automating the analysis when possible. Virtual California simulates interacting faults in California. We can compare output from long time history Virtual California runs with the current state of strain and the strain history in California. In addition to spaceborne data we will begin assimilating data from UAVSAR airborne flights over the San Francisco Bay Area, the Transverse Ranges, and the Salton Trough. Results of the models are important for understanding future earthquake risk and for providing decision support following earthquakes. Improved models require this sensor web of different data sources, and a modeling environment for understanding the combined data.

  13. Freeze-Etching and Vapor Matrix Deposition for ToF-SIMS Imaging of Single Cells

    PubMed Central

    Piehowski, Paul D.; Kurczy, Michael E.; Willingham, David; Parry, Shawn; Heien, Michael L.; Winograd, Nicholas; Ewing, Andrew G.

    2008-01-01

    Freeze-etching, the practice of removing excess surface water from a sample through sublimation into the vacuum of the analysis environment, has been extensively used in conjunction with electron microscopy. Here, we apply this technique to time-of-flight secondary-ion mass spectrometry (ToF-SIMS) imaging of cryogenically preserved single cells. By removing the excess water which condenses onto the sample in vacuo, a uniform surface is produced that is ideal for imaging by static SIMS. We demonstrate that the conditions employed to remove deposited water do not adversely affect cell morphology and do not redistribute molecules in the topmost surface layers. In addition, we found water can be controllably redeposited onto the sample at temperatures below −100 °C in vacuum. The redeposited water increases the ionization of characteristic fragments of biologically interesting molecules 2-fold without loss of spatial resolution. The utilization of freeze-etch methodology will increase the reliability of cryogenic sample preparations for SIMS analysis by providing greater control of the surface environment. Using these procedures, we have obtained high quality spectra with both atomic bombardment as well as C60+ cluster ion bombardment. PMID:18570446

  14. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

    DOE PAGES

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan; ...

    2017-02-24

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less

  15. Detection and quantification of benzodiazepines in hair by ToF-SIMS: preliminary results

    NASA Astrophysics Data System (ADS)

    Audinot, J.-N.; Yegles, M.; Labarthe, A.; Ruch, D.; Wennig, R.; Migeon, H.-N.

    2003-01-01

    Successful results have been obtained in detection and quantification of buprenorphine in urine and hemolysed blood by time of flight-secondary ion mass spectrometry (ToF-SIMS). The present work is focused on four molecules of the benzodiazepine's family: nordiazepam, aminoflunitrozepam, diazepam and oxazepam. These drugs remain difficult to analyse in routine clinical and forensic toxicology because of their thermal instability and low therapeutic range (0.5-5 ng/ml). Internal standards are prepared by means of deuterated molecules. The benzadiazepine and their deuterated form (nordiazepam-D5, amino-flunitrazepam-D3, diazepam-D5 and oxazepam-D5) were added, in known concentration, in urine. These molecules were then extracted with several methods (pH, solvent, etc.) and, after adsorption on a noble metal, analysed by ToF-SIMS. The paper will focus for the different molecules on the comparison of the different preparation procedures, the optimisation of the SIMS conditions, the limits of detection and the limits of quantification.

  16. TOF-SIMS study of red sealing-inks on paper and its forensic applications

    NASA Astrophysics Data System (ADS)

    Lee, Jihye; Lee, Chiwoo; Lee, Kangbong; Lee, Yeonhee

    2008-12-01

    Red sealing-ink samples are frequently submitted to forensic laboratories for identification and comparison in a wide variety of criminal and civil cases. The non-destructive identification of sealing-inks on paper is of important to preserve as large an amount of a fraudulent check, forged document, or other such evidence as possible for use in legal proceedings. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) for the analysis of red sealing-inks on paper surfaces was investigated. TOF-SIMS spectra were employed to identify elements and organic compounds in red sealing-inks. An analysis was performed on five sealing-inks of red color manufactured in Korea, Japan, and China. Several fibers from specific sealing-ink sample on paper can be removed leaving little evidence of tampering and can be distinguished from other sealing-inks. Overlapped area of sealing-ink and ballpoint pen in the document was also investigated in order to identify the sequence of recording. Therefore, this study shows that TOF-SIMS is a useful technique for the non-destructive analysis of red sealing-inks on paper.

  17. Future Flight Decks

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Abbott, Kathy H.; Abbott, Terence S.; Schutte, Paul C.

    1998-01-01

    The evolution of commercial transport flight deck configurations over the past 20-30 years and expected future developments are described. Key factors in the aviation environment are identified that the authors expect will significantly affect flight deck designers. One of these is the requirement for commercial aviation accident rate reduction, which is probably required if global commercial aviation is to grow as projected. Other factors include the growing incrementalism in flight deck implementation, definition of future airspace operations, and expectations of a future pilot corps that will have grown up with computers. Future flight deck developments are extrapolated from observable factors in the aviation environment, recent research results in the area of pilot-centered flight deck systems, and by considering expected advances in technology that are being driven by other than aviation requirements. The authors hypothesize that revolutionary flight deck configuration changes will be possible with development of human-centered flight deck design methodologies that take full advantage of commercial and/or entertainment-driven technologies.

  18. Eclipse takeoff and flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions

  19. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara; Mount, Frances

    2004-01-01

    The first human space flight, in the early 1960s, was aimed primarily at determining whether humans could indeed survive and function in micro-gravity. Would eating and sleeping be possible? What mental and physical tasks could be performed? Subsequent programs increased the complexity of the tasks the crew performed. Table 1 summarizes the history of U.S. space flight, showing the projects, their dates, crew sizes, and mission durations. With over forty years of experience with human space flight, the emphasis now is on how to design space vehicles, habitats, and missions to produce the greatest returns to human knowledge. What are the roles of the humans in space flight in low earth orbit, on the moon, and in exploring Mars?

  20. X-43A Final Flight Observations

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie

    2011-01-01

    The presentation will provide an overview of the final flight of the NASA X-43A project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The first flight, conducted on June 2, 2001, was unsuccessful and resulted in a nine-month mishap investigation. A two-year return to flight effort ensued and concluded when the second Mach 7 flight was successfully conducted on March 27, 2004. The third and final flight, which occurred on November 16, 2004, was the first Mach 10 flight demonstration of an airframe-integrated, scramjet-powered, hypersonic vehicle. As such, the final flight presented first time technical challenges in addition to final flight project closeout concerns. The goals and objectives for the third flight as well as those for the project will be presented. The configuration of the Hyper-X stack including the X-43A, Hyper-X launch vehicle, and Hyper-X research vehicle adapter wil also be presented. Mission differences, vehicle modifications and lessons learned from the first and second flights as they applied to the third flight will also be discussed. Although X-43A flight 3 was always planned to be the final flight of the X-43A project, the X-43 program had two other vehicles and corresponding flight phases in X-43C and X-43B. Those other projects never manifested under the X-43 banner and X-43A flight 3 also became the final flight of X-43 program.

  1. The Human Space Life Sciences Critical Path Roadmap Project: A Strategy for Human Space Flight through Exploration-Class Missions

    NASA Technical Reports Server (NTRS)

    Sawin, Charles F.

    1999-01-01

    The product of the critical path roadmap project is an integrated strategy for mitigating the risks associated with human exploration class missions. It is an evolving process that will assure the ability to communicate the integrated critical path roadmap. Unlike previous reports, this one will not sit on a shelf - it has the full support of the JSC Space and Life Sciences Directorate (SA) and is already being used as a decision making tool (e.g., budget and investigation planning for Shuttle and Space Station mission). Utility of this product depends on many efforts, namely: providing the required information (completed risk data sheets, critical question information, technology data). It is essential to communicate the results of the critical path roadmap to the scientific community - this meeting is a good opportunity to do so. The web site envisioned for the critical path roadmap will provide the capability to communicate to a broader community and to track and update the system routinely.

  2. SIM regional comparison of ac-dc current transfer difference SIM.EM-K12

    NASA Astrophysics Data System (ADS)

    Di Lillo, Lucas

    2015-01-01

    The ac-dc current transfer difference identified as SIM.EM.K-12 began in July 2010 and was completed in September 2012. Six NMIs in the SIM region and one NMI in the AFRIMET region took part: NRC (Canada), NIST (United States of America), CENAM (Mexico), INTI (Argentina), UTE (Uruguay), INMETRO (Brazil) and NIS (Egypt). The comparisons were proposed to assess the measurement capabilities in ac-dc current transfer difference of the participants NMIs. The ac-dc current transfer differences of the travelling standard had been measured at 10 mA and 5 A at 10 Hz, 55 Hz, 1 kHz, 10 kHz, 20 kHz, 50 kHz and 100 kHz. The test points were selected to link the results with the equivalent CCEM Key Comparisons (CCEM-K12), through three NMIs participating in both SIM and CCEM key comparisons (INTI, NRC and NIST). The report shows the degree of equivalence in the SIM region and also the degree of equivalence with the corresponding CCEM reference value. The results of all participants support the values and uncertainties of the applicable CMC entries for ac-dc current transfer difference in the Key Comparison Database held at the BIPM. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  3. Flight Analogs (Bed Rest Research)

    NASA Video Gallery

    Flight Analogs / Bed Rest Research Projects provide NASA with a ground based research platform to complement space research. By mimicking the conditions of weightlessness in the human body here on ...

  4. NASA's Robotic Lander Takes Flight

    NASA Video Gallery

    On Wednesday, June 8, the lander prototype managed by the Robotic Lunar Lander Development Project at NASA's Marshall Space Flight Center in Huntsville, Ala., hovered autonomously for 15 seconds at...

  5. Performance of a Microfluidic Device for In Situ ToF-SIMS Analysis of Selected Organic Molecules at Aqueous Surfaces

    SciTech Connect

    Yang, Li; Zhu, Zihua; Yu, Xiao-Ying; Thevuthasan, Suntharampillai; Cowin, James P.

    2013-04-03

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a unique surface analysis technique because it can provide molecular recognition for organic and biological molecules. However, analyzing aqueous solution surfaces by ToF-SIMS is difficult, because ToF-SIMS is a high-vacuum technique, while the vapor pressure of water is about 2.3 kPa at room temperature (20 C). We designed and fabricated a self-contained microfluidic device, enabling in situ analysis of aqueous surfaces by scanning electron microscope (SEM) and ToF-SIMS, which has been briefly reported.1,2 In this study, we report more performance data, focusing on the performance of this device for in situ analysis of organic molecules at aqueous surfaces using ToF-SIMS. Three representative organic compounds (formic acid, glycerol, and glutamic acid) were tested, and their molecular signals were successfully observed. The device can be self-running in vacuum for 8 hours, and SIMS measurements are feasible at any time in this time range. The stability of this device under primary ion beam bombardment is also impressive. High fluence (6 × 1012 ions cm-2 s-1) measurements can be operated continuously for up to 30 minutes without any significant damage to the aperture. However, extra-high fluence measurements (>1 × 1014 ions cm-2 s-1) may lead to liquid bumping in the aperture, and the aqueous solutions may spread out quickly. Signal reproducibility is reasonably good, and relative standard deviation (RSD) for molecular ion signals can be controlled to be smaller than ±15% for consecutive measurements. Measurements at long time intervals (e.g., 60 min) show RSDs of ±40-50%. In addition, the detection limits of formic acid, glycerol, and glutamic acid are estimated to be 0.04%, 0.008%, and 0.002% (weight ratio), respectively.

  6. An Unsupervised MVA Method to Compare Specific Regions in Human Breast Tumor Tissue Samples Using ToF-SIMS

    PubMed Central

    Bluestein, Blake M.; Morrish, Fionnuala; Graham, Daniel J.; Guenthoer, Jamie; Hockenbery, David; Porter, Peggy; Gamble, Lara J.

    2016-01-01

    Imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS) and principal component analysis (PCA) were used to investigate two sets of pre- and post-chemotherapy human breast tumor tissue sections to characterize lipids associated with tumor metabolic flexibility and response to treatment. The micron spatial resolution imaging capability of ToF-SIMS provides a powerful approach to attain spatially-resolved molecular and cellular data from cancerous tissues not available with conventional imaging techniques. Three ca. 1 mm2 areas per tissue section were analyzed by stitching together 200 μm × 200 μm raster area scans. A method to isolate and analyze specific tissue regions of interest by utilizing PCA of ToF-SIMS images is presented, which allowed separation of cellularized areas from stromal areas. These PCA-generated regions of interest were then used as masks to reconstruct representative spectra from specifically stromal or cellular regions. The advantage of this unsupervised selection method is a reduction in scatter in the spectral PCA results when compared to analyzing all tissue areas or analyzing areas highlighted by a pathologist. Utilizing this method, stromal and cellular regions of breast tissue biopsies taken pre- versus post-chemotherapy demonstrate chemical separation using negatively-charged ion species. In this sample set, the cellular regions were predominantly all cancer cells. Fatty acids (i.e. palmitic, oleic, and stearic), monoacylglycerols, diacylglycerols and vitamin E profiles were distinctively different between the pre- and post-therapy tissues. These results validate a new unsupervised method to isolate and interpret biochemically distinct regions in cancer tissues using imaging ToF-SIMS data. In addition, the method developed here can provide a framework to compare a variety of tissue samples using imaging ToF-SIMS, especially where there is section-to-section variability that makes it difficult to use a serial hematoxylin and

  7. Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams.

    PubMed

    Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol

    2016-06-09

    The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration.

  8. Quantitative imaging of trace B in Si and SiO{sub 2} using ToF-SIMS

    SciTech Connect

    Smentkowski, Vincent S.

    2015-09-15

    Changes in the oxidation state of an element can result in significant changes in the ionization efficiency and hence signal intensity during secondary ion mass spectrometry (SIMS) analysis; this is referred to as the SIMS matrix effect [Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, edited by R. G. Wilson, F. A. Stevie, and C. W. Magee (Wiley, New York, 1990)]. The SIMS matrix effect complicates quantitative analysis. Quantification of SIMS data requires the determination of relative sensitivity factors (RSFs), which can be used to convert the as measured intensity into concentration units [Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, edited by R. G. Wilson, F. A. Stevie, and C. W. Magee (Wiley, New York, 1990)]. In this manuscript, the authors report both: RSFs which were determined for quantification of B in Si and SiO{sub 2} matrices using a dual beam time of flight secondary ion mass spectrometry (ToF-SIMS) instrument and the protocol they are using to provide quantitative ToF-SIMS images and line scan traces. The authors also compare RSF values that were determined using oxygen and Ar ion beams for erosion, discuss the problems that can be encountered when bulk calibration samples are used to determine RSFs, and remind the reader that errors in molecular details of the matrix (density, volume, etc.) that are used to convert from atoms/cm{sup 3} to other concentration units will propagate into errors in the determined concentrations.

  9. Development of a Flight Simulation Data Visualization Workstation

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Chen, Ronnie; Kenney, Patrick S.; Koval, Christopher M.; Hutchinson, Brian K.

    1996-01-01

    Today's moderm flight simulation research produces vast amounts of time sensitive data. The meaning of this data can be difficult to assess while in its raw format . Therefore, a method of breaking the data down and presenting it to the user in a graphical format is necessary. Simulation Graphics (SimGraph) is intended as a data visualization software package that will incorporate simulation data into a variety of animated graphical displays for easy interpretation by the simulation researcher. Although it was created for the flight simulation facilities at NASA Langley Research Center, SimGraph can be reconfigured to almost any data visualization environment. This paper traces the design, development and implementation of the SimGraph program, and is intended to be a programmer's reference guide.

  10. Auto-Coding UML Statecharts for Flight Software

    NASA Technical Reports Server (NTRS)

    Benowitz, Edward G; Clark, Ken; Watney, Garth J.

    2006-01-01

    Statecharts have been used as a means to communicate behaviors in a precise manner between system engineers and software engineers. Hand-translating a statechart to code, as done on some previous space missions, introduces the possibility of errors in the transformation from chart to code. To improve auto-coding, we have developed a process that generates flight code from UML statecharts. Our process is being used for the flight software on the Space Interferometer Mission (SIM).

  11. Changes in the molecular ion yield and fragmentation of peptides under various primary ions in ToF-SIMS and matrix-enhanced ToF-SIMS.

    PubMed

    Körsgen, Martin; Tyler, Bonnie J; Pelster, Andreas; Lipinsky, Dieter; Dreisewerd, Klaus; Arlinghaus, Heinrich F

    2016-06-01

    Time of flight secondary ion mass spectrometry (ToF-SIMS) is a powerful technique for the nanoanalysis of biological samples, but improvements in sensitivity are needed in order to detect large biomolecules, such as peptides, on the individual cell level at physiological concentrations. Two promising options to improve the sensitivity of SIMS to large peptides are the use of cluster primary ions to increase desorption of intact molecules or the use of matrix-assisted laser desorption/ionization (MALDI) matrices to increase the ionization probability. In this paper, the authors have combined these two approaches in order to improve understanding of the interaction between ionization and fragmentation processes. The peptides bradykinin and melittin were prepared as neat monolayers on silicon, in a Dextran-40 matrix and in two common MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxy cinnamic acid (HCCA). ToF-SIMS spectra of these samples were collected using a range of small Bi cluster primary ions and large Ar cluster primary ions. The trends observed in the molecular ion yield and the [M+H](+)/C4H8N(+) ratio with primary ion cluster size were sample system dependent. The molecular ion yield of the bradykinin was maximized by using 30 keV Bi3 (+) primary ions in a DHB matrix but in the HCCA matrix, the maximum molecular ion yield was obtained by using 30 keV Bi7 (+) primary ions. In contrast, the molecular ion yield for melittin in both matrices was greatest using 20 keV Ar2000 (+) primary ions. Improvements in the molecular ion yield were only loosely correlated with a decrease in small fragment ions. The data indicate a complex interplay between desorption processes and ion formation processes which mean that the optimal analytical conditions depend on both the target analyte and the matrix.

  12. SimTool - An object based approach to simulation construction

    NASA Technical Reports Server (NTRS)

    Crues, Edwin Z.; Yazbeck, Marwan E.; Edwards, H. C.; Barnette, Randall D.

    1993-01-01

    The creation and maintenance of large complex simulations can be a difficult and error prone task. A number of interactive and automated tools have been developed to aid in simulation construction and maintenance. Many of these tools are based upon object oriented analysis and design concepts. One such tool, SimTool, is an object based integrated tool set for the development, maintenance, and operation of large, complex and long lived simulations. This paper discusses SimTool's object based approach to simulation design, construction and execution. It also discusses the services provided to various levels of SimTool users to assist them in a wide range of simulation tasks. Also, with the aid of an implemented and working simulation example, this paper discusses SimTool's key design and operational features. Finally, this paper presents a condensed discussion of SimTool's Entity-Relationship-Attribute (ERA) modeling approach.

  13. The role of SIMS in cultural heritage studies

    NASA Astrophysics Data System (ADS)

    Dowsett, Mark; Adriaens, Annemie

    2004-11-01

    Secondary ion mass spectrometry (SIMS) is a highly sensitive chemical analysis technique available in variants, which are top monolayer specific (static SIMS) or which can extract micro-volume analyses or depth profiles (dynamic SIMS). The technique offers ppm or even ppb atomic sensitivity for the consumption of extremely small sample volumes. In the area of cultural heritage, SIMS has been applied to a diverse range of problems including technology and authenticity, origin and provenance, degradation processes, such as corrosion and weathering, and conservation. In this paper, the basic attributes and limitations of the technique are described. An outline is given of applications to glasses (obsidian dating, conservation of stained glass and Venetian glass), metals (simulated archaeological bronzes), pigments and human remains, focusing on conservation problems such as the assessment and suppression of corrosion, other degrading processes, identification of materials using speciation. The topic of ultra low energy SIMS, newly applied to cultural heritage materials, is briefly described.

  14. Project Planet Earth: A Joint Project Between the NASA/Goddard Space Flight Center and the Girl Scouts of Central Maryland

    NASA Technical Reports Server (NTRS)

    Mattoo, Shana; Remer, Lorraine; Anderson, Terry; Johnson, Courtrina; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Scientists of the NASA/GSFC and the staff of the Girl Scouts of Central Maryland (GSCM) have teamed up to introduce more girls and young women to earth system science. The girls now have the opportunity to earn the specially designed Planet Earth Council Patch. The Patch program includes a set of requirements tailored to the specific age level of the girl and the resource material to help the girl complete the requirements. At completion of the requirements the girl is awarded a patch to sew onto the back of her sash or vest. Girls do hands-on physical experiments, practice taking data, visit science centers and perform skits in order to complete the requirements. In addition to the Patch program, Project Planet Earth continues to encourage strong collaboration between the Girl Scouts of Maryland and NASA/GSFC. Girls volunteer at the GSFC visitor center during community events and in turn scientists are called on as keynote speakers and consultants for the Council. A special science interest group is forming for the teenage Girl Scouts of the Council that will network with scientists and help these young women pursue their interests, find internships and make career decisions.

  15. The NEEMO Project: A Report on how NASA Utilizes the "Aquarius" Undersea Habitat as an Analog for Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Reagan, Marc; Todd, William

    2003-01-01

    NEEMO is the NASA Extreme Environment Mission Operations, a cooperative project between NASA and the National Oceanic and Atmospheric Administration (NOAA). NEEMO was created and is managed by the Mission Operations Directorate at the Johnson Space Center in Houston, Texas. On the NOAA side, the National Undersea Research Center (NURC) in Key Largo, FL, with the help of the University of North Carolina at Wilmington, manages and operates the Aquarius Program. NEEMO was developed by astronaut training specialists to utilize an undersea research habitat as a multi-objective mission analog for long-duration space flight. Each mission was designed to expose astronauts to extreme environments for training purposes and to research crew behavior, habitability, and space analog life sciences. All of this was done much in the model of a space mission utilizing specific crew procedures, mission rules and timelines. Objectives of the missions were very diverse and contained many of the typical space mission type activities such as EV As (also known as extra vehicular activities), in-habitat science and research, and educational, public outreach, and media events. Five missions, dubbed NEEMO 1-5, were conducted between October 2001 and July 2003, the longest of which (NEEMO 5) lasted 14 days.

  16. In Situ Characterization of Hydrated Proteins in Water by SALVI and ToF-SIMS

    SciTech Connect

    Yu, Jiachao; Zhou, Yufan; Hua, Xin; Zhu, Zihua; Yu, Xiao-Ying

    2016-01-01

    We demonstrate in situ chemical imaging of protein biomolecules in the aqueous solution using System for Analysis at the Liquid Vacuum Interface (SALVI) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The fibronectin protein film was immobilized on the silicon nitride (SiN) membrane forming the SALVI detection area. During ToF-SIMS analysis, three modes of analysis were conducted including high spatial resolution mass spectra, two-dimensional (2D) imaging, and depth profiling. Mass spectra were acquired in both positive and negative modes. Deionized water was also analyzed as a reference sample. Our results show that fibronectin film in water has more distinct and stronger water cluster peaks compared to water alone. Characteristic peaks of amino acid fragments are also observable in the hydrated protein ToF-SIMS spectra. These results illustrate that protein molecule adsorption on a surface can be studied dynamically using SALVI and ToF-SIMS in the liquid environment.

  17. Combination of ToF-SIMS imaging and AFM to study the early stages of corrosion in Al-Cu thin films

    SciTech Connect

    Seyeux, A.; Missert, Nancy; Frankel, Gerald; Unocic, Kinga A; Klein, L. H.; Galtayries, A.; Marcus, P

    2011-01-01

    The pitting corrosion of Al-Cu thin film alloys was investigated using samples that were heat treated in air to form through-thickness Al2Cu particles within an Al-0.5%Cu matrix. Time-of-Flight SIMS (ToF-SIMS) analysis revealed Cu-rich regions 250 - 800 nm in lateral extent near the metal/oxide interface. Following exposure that generated pitting corrosion, secondary electron, secondary ion, and AFM images showed pits with size and density similar to those of the Cu-rich regions. The role of the Cu-rich regions is addressed.

  18. An Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Bull, James B.; Lanzi, Raymond J.

    2007-01-01

    The Autonomous Flight Safety System (AFSS) being developed by NASA s Goddard Space Flight Center s Wallops Flight Facility and Kennedy Space Center has completed two successful developmental flights and is preparing for a third. AFSS has been demonstrated to be a viable architecture for implementation of a completely vehicle based system capable of protecting life and property in event of an errant vehicle by terminating the flight or initiating other actions. It is capable of replacing current human-in-the-loop systems or acting in parallel with them. AFSS is configured prior to flight in accordance with a specific rule set agreed upon by the range safety authority and the user to protect the public and assure mission success. This paper discusses the motivation for the project, describes the method of development, and presents an overview of the evolving architecture and the current status.

  19. Waveguide Harmonic Generator for the SIM

    NASA Technical Reports Server (NTRS)

    Chang, Daniel; Poberezhskiy, Ilya; Mulder, Jerry

    2008-01-01

    A second-harmonic generator (SHG) serves as the source of the visible laser beam in an onboard calibration scheme for NASA's planned Space Interferometry Mission (SIM), which requires an infrared laser beam and a visible laser beam coherent with the infrared laser beam. The SHG includes quasi-phase-matched waveguides made of MgO-doped, periodically poled lithium niobate, pigtailed with polarization- maintaining optical fibers. Frequency doubling by use of such waveguides affords the required combination of coherence and sufficient conversion efficiency for the intended application. The spatial period of the poling is designed to obtain quasi-phase- matching at a nominal middle excitation wavelength of 1,319.28 nm. The SHG is designed to operate at a warm bias (ambient temperature between 20 and 25 C) that would be maintained in its cooler environment by use of electric heaters; the heater power would be adjusted to regulate the temperature precisely and thereby maintain the required precision of the spatial period. At the state of development at the time of this reporting, the SHG had been packaged and subjected to most of its planned space-qualification tests.

  20. Bioforensics: Characterization of biological weapons agents by NanoSIMS

    SciTech Connect

    Weber, P K; Ghosal, S; Leighton, T J; Wheeler, K E; Hutcheon, I D

    2007-02-26

    The anthrax attacks of Fall 2001 highlight the need to develop forensic methods based on multiple identifiers to determine the origin of biological weapons agents. Genetic typing methods (i.e., DNA and RNA-based) provide one attribution technology, but genetic information alone is not usually sufficient to determine the provenance of the material. Non-genetic identifiers, including elemental and isotopic signatures, provide complementary information that can be used to identify the means, geographic location and date of production. Under LDRD funding, we have successfully developed the techniques necessary to perform bioforensic characterization with the NanoSIMS at the individual spore level. We have developed methods for elemental and isotopic characterization at the single spore scale. We have developed methods for analyzing spore sections to map elemental abundance within spores. We have developed rapid focused ion beam (FIB) sectioning techniques for spores to preserve elemental and structural integrity. And we have developed a high-resolution depth profiling method to characterize the elemental distribution in individual spores without sectioning. We used these newly developed methods to study the controls on elemental abundances in spores, characterize the elemental distribution of in spores, and to study elemental uptake by spores. Our work under this LDRD project attracted FBI and DHS funding for applied purposes.

  1. SIMS analysis: Development and evaluation 1994 summary report

    SciTech Connect

    Groenewold, G.S.; Appelhans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1994-12-01

    Secondary ion mass spectrometry (SIMS) was evaluated for applicability to the characterization of salt cake and environmental samples. Salt cake is representative of waste found in radioactive waste storage tanks located at Hanford and at other DOE sites; it consists of nitrate, nitrite, hydroxide, and ferrocyanide salts, and the samples form the tanks are extremely radioactive. SIMS is an attractive technology for characterizing these samples because it has the capability for producing speciation information with little or no sample preparation, and it generates no additional waste. Experiments demonstrated that substantial speciation information could be readily generated using SIMS: metal clusters which include nitrate, nitrite, hydroxide, carbonate, cyanide, ferrocyanide and ferricyanide were observed. In addition, the mechanism of SIMS desorption of tributyl phosphate (TBP) was clearly identified, and minimum detection limit studies involving TBP were performed. Procurements leading to the construction of an ion trap SIMS instrument were initiated. Technology transfer of SIMS components to three instrument vendors was initiated. For FY-95, the SIMS evaluation program has been redirected toward identification of metal species on environmental samples.

  2. Orion Abort Flight Test

    NASA Technical Reports Server (NTRS)

    Hayes, Peggy Sue

    2010-01-01

    The purpose of NASA's Constellation project is to create the new generation of spacecraft for human flight to the International Space Station in low-earth orbit, the lunar surface, as well as for use in future deep-space exploration. One portion of the Constellation program was the development of the Orion crew exploration vehicle (CEV) to be used in spaceflight. The Orion spacecraft consists of a crew module, service module, space adapter and launch abort system. The crew module was designed to hold as many as six crew members. The Orion crew exploration vehicle is similar in design to the Apollo space capsules, although larger and more massive. The Flight Test Office is the responsible flight test organization for the launch abort system on the Orion crew exploration vehicle. The Flight Test Office originally proposed six tests that would demonstrate the use of the launch abort system. These flight tests were to be performed at the White Sands Missile Range in New Mexico and were similar in nature to the Apollo Little Joe II tests performed in the 1960s. The first flight test of the launch abort system was a pad abort (PA-1), that took place on 6 May 2010 at the White Sands Missile Range in New Mexico. Primary flight test objectives were to demonstrate the capability of the launch abort system to propel the crew module a safe distance away from a launch vehicle during a pad abort, to demonstrate the stability and control characteristics of the vehicle, and to determine the performance of the motors contained within the launch abort system. The focus of the PA-1 flight test was engineering development and data acquisition, not certification. In this presentation, a high level overview of the PA-1 vehicle is given, along with an overview of the Mobile Operations Facility and information on the White Sands tracking sites for radar & optics. Several lessons learned are presented, including detailed information on the lessons learned in the development of wind

  3. Chemical Imaging on Liver Steatosis Using Synchrotron Infrared and ToF-SIMS Microspectroscopies

    PubMed Central

    Le Naour, François; Bralet, Marie-Pierre; Debois, Delphine; Sandt, Christophe; Guettier, Catherine; Dumas, Paul; Brunelle, Alain; Laprévote, Olivier

    2009-01-01

    Fatty liver or steatosis is a frequent histopathological change. It is a precursor for steatohepatitis that may progress to cirrhosis and in some cases to hepatocellular carcinoma. In this study we addressed the in situ composition and distribution of biochemical compounds on tissue sections of steatotic liver using both synchrotron FTIR (Fourier transform infrared) and ToF-SIMS (time of flight secondary ion mass spectrometry) microspectroscopies. FTIR is a vibrational spectroscopy that allows investigating the global biochemical composition and ToF-SIMS lead to identify molecular species in particular lipids. Synchrotron FTIR microspectroscopy demonstrated that bands linked to lipid contribution such as -CH3 and -CH2 as well as esters were highly intense in steatotic vesicles. Moreover, a careful analysis of the -CH2 symmetric and anti-symmetric stretching modes revealed a slight downward shift in spectra recorded inside steatotic vesicles when compared to spectra recorded outside, suggesting a different lipid environment inside the steatotic vesicles. ToF-SIMS analysis of such steatotic vesicles disclosed a selective enrichment in cholesterol as well as in diacylglycerol (DAG) species carrying long alkyl chains. Indeed, DAG C36 species were selectively localized inside the steatotic vesicles whereas DAG C30 species were detected mostly outside. Furthermore, FTIR detected a signal corresponding to olefin (C = C, 3000-3060 cm−1) and revealed a selective localization of unsaturated lipids inside the steatotic vesicles. ToF-SIMS analysis definitely demonstrated that DAG species C30, C32, C34 and C36 carrying at least one unsaturated alkyl chain were selectively concentrated into the steatotic vesicles. On the other hand, investigations performed on the non-steatotic part of the fatty livers have revealed important changes when compared to the normal liver. Although the non-steatotic regions of fatty livers exhibited normal histological aspect, IR spectra

  4. Autonomous Flight Safety System - Phase III

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Autonomous Flight Safety System (AFSS) is a joint KSC and Wallops Flight Facility project that uses tracking and attitude data from onboard Global Positioning System (GPS) and inertial measurement unit (IMU) sensors and configurable rule-based algorithms to make flight termination decisions. AFSS objectives are to increase launch capabilities by permitting launches from locations without range safety infrastructure, reduce costs by eliminating some downrange tracking and communication assets, and reduce the reaction time for flight termination decisions.

  5. Understanding Flight

    SciTech Connect

    Anderson, David

    2001-01-31

    Through the years the explanation of flight has become mired in misconceptions that have become dogma. Wolfgang Langewiesche, the author of 'Stick and Rudder' (1944) got it right when he wrote: 'Forget Bernoulli's Theorem'. A wing develops lift by diverting (from above) a lot of air. This is the same way that a propeller produces thrust and a helicopter produces lift. Newton's three laws and a phenomenon called the Coanda effect explain most of it. With an understanding of the real physics of flight, many things become clear. Inverted flight, symmetric wings, and the flight of insects are obvious. It is easy to understand the power curve, high-speed stalls, and the effect of load and altitude on the power requirements for lift. The contribution of wing aspect ratio on the efficiency of a wing, and the true explanation of ground effect will also be discussed.

  6. Probing nanoparticles and nanoparticle-conjugated biomolecules using time-of-flight secondary ion mass spectrometry.

    PubMed

    Kim, Young-Pil; Shon, Hyun Kyong; Shin, Seung Koo; Lee, Tae Geol

    2015-01-01

    Bio-conjugated nanoparticles have emerged as novel molecular probes in nano-biotechnology and nanomedicine and chemical analyses of their surfaces have become challenges. The time-of-flight (TOF) secondary ion mass spectrometry (SIMS) has been one of the most powerful surface characterization techniques for both nanoparticles and biomolecules. When combined with various nanoparticle-based signal enhancing strategies, TOF-SIMS can probe the functionalization of nanoparticles as well as their locations and interactions in biological systems. Especially, nanoparticle-based SIMS is an attractive approach for label-free drug screening because signal-enhancing nanoparticles can be designed to directly measure the enzyme activity. The chemical-specific imaging analysis using SIMS is also well suited to screen nanoparticles and nanoparticle-biomolecule conjugates in complex environments. This review presents some recent applications of nanoparticle-based TOF-SIMS to the chemical analysis of complex biological systems.

  7. Functionalization of poly(ε-caprolactone) surface with lactose-modified chitosan via alkaline hydrolysis: ToF-SIMS characterization.

    PubMed

    Tortora, Luca; Concolato, Sofia; Urbini, Marco; Giannitelli, Sara Maria; Basoli, Francesco; Rainer, Alberto; Trombetta, Marcella; Orsini, Monica; Mozetic, Pamela

    2016-06-23

    Functionalization of poly(ε-caprolactone) (PCL) was performed via hydrolysis and subsequent grafting of lactose-modified chitosan (chitlac) at two different degrees of derivatization (9% and 64%). Time of flight secondary ion mass spectrometry (ToF-SIMS) and multivariate analysis (principal component analysis) were successfully applied to the characterization of PCL surface chemistry, evidencing changes in the biopolymer surface following base-catalyzed hydrolysis treatment. ToF-SIMS analysis also confirmed positive EDC/NHS-catalyzed (EDC: N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide; NHS: N-hydroxysuccinimide) immobilization of chitlac onto activated PCL surface, with formation of amide bonds between PCL surface carboxyl groups and amine residues of chitlac. Yield of grafting reaction was also shown to be dependent upon the lactosilation degree of chitlac.

  8. A ToF-SIMS investigation of the corrosion behavior of Mg alloy AM50 in atmospheric environments

    NASA Astrophysics Data System (ADS)

    Esmaily, M.; Malmberg, P.; Shahabi-Navid, M.; Svensson, J. E.; Johansson, L. G.

    2016-01-01

    The redistribution of chloride and sodium ions after the NaCl-induced atmospheric corrosion of Mg alloy AM50 was investigated by means of Time-of-Flight Ion Mass Spectroscopy (ToF-SIMS). The samples were exposed at -4 and 22 °C in the presence of 400 ppm CO2. The results confirm the presence of less conductive electrolyte, and thus, less movement of ionic species (including sodium and chloride) in the electrolyte layer formed on the surface of samples exposed at the sub-zero temperature. Besides, ToF-SIMS analysis showed the presence of an Al-containing surface film formed on the alloy surface after exposure at high relative humidity.

  9. SIM key comparison for luminous flux. SIM.PR-K4

    NASA Astrophysics Data System (ADS)

    Matamoros, Carlos H.; Ohno, Yoshi; Zwinkels, Joanne; Cogno, Jorge A.; Couceiro, Iakyra B.

    2016-01-01

    In compliance with the established BIPM and CCPR policies and guidelines on comparisons, the SIM Photometry and Radiometry Working Group decided to conduct a key comparison on total luminous flux in order to provide an opportunity for its member National Metrology Institutes (NMIs) that did not participate in the CCPR-K4 comparison, to get a link to the reference value obtained for this quantity (the lumen) and to derive the corresponding degrees of equivalence. This SIM.PR-K4 was piloted by Centro Nacional de Metrología (CENAM), the NMI of Mexico and included the participation of five laboratories: CENAM (Mexico), INTI (Argentina), INMETRO (Brazil), NIST (USA, linking lab), and NRC (Canada, linking lab). The comparison, conducted in star type scheme, was run using three to four lamps per participant, and results are given in this report, including the unilateral degrees of equivalence. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCPR, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. Astrometric Planet Searches with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.; March, Geoffrey W.

    2007-01-01

    SIM will search for planets with masses as small as the Earth's orbiting in the habitable zones' around more than 100 of the stars and could discover many dozen if Earth-like planets are common. With a planned 'Deep Survey' of 100-450 stars (depending on desired mass sensitivity) SIM will search for terrestrial planets around all of the candidate target stars for future direct detection missions such as Terrestrial Planet Finder and Darwin, SIM's 'Broad Survey' of 2010 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity technique. In particular, SIM will search for planets around young stars providing insights into how planetary systems are born and evolve with time.

  11. ToF-SIMS and XPS study of ancient papers

    NASA Astrophysics Data System (ADS)

    Benetti, Francesca; Marchettini, Nadia; Atrei, Andrea

    2011-01-01

    The surface composition of 18th century papers was investigated by means of ToF-SIMS and XPS. The aim of the present study was to explore the possibility of using these surface sensitive methods to obtain information which can help to determine the manufacturing process, provenance and state of conservation of ancient papers. The ToF-SIMS results indicate that the analyzed papers were sized by gelatin and that alum was added as hardening agent. The paper sheets produced in near geographical areas but in different paper mills exhibit a similar surface composition and morphology of the fibers as shown by the ToF-SIMS measurements. The ToF-SIMS and the XPS results indicate that a significant fraction of the cellulose fibers is not covered by the gelatin layer. This was observed for the ancient papers and for a modern handmade paper manufactured according to the old recipes.

  12. Perseus Post-flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  13. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle in flight at the Dryden Flight Research Center, Edwards, California in 1991. Perseus is one of several remotely-piloted aircraft designed for high-altitude, long-endurance scientific sampling missions being evaluated under the ERAST program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially

  14. Space Flight: The First 30 Years

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A history of space flight from Project Mercury to the Space Shuttle is told from the perspective of NASA flight programs. Details are given on Mercury missions, Gemini missions, Apollo missions, Skylab missions, the Apollo-Soyuz Test Project, and the Space Shuttle missions.

  15. Combined SIMS, NanoSIMS, FTIR, and SEM Studies of OH in Nominally Anhydrous Minerals (NAMs)

    NASA Astrophysics Data System (ADS)

    Mosenfelder, J. L.; Le Voyer, M.; Rossman, G. R.; Guan, Y.; Bell, D. R.; Asimow, P. D.; Eiler, J.

    2010-12-01

    The accurate analysis of trace concentrations of hydrogen in NAMs is a long-standing problem, with wide-ranging implications in geology and planetology. SIMS and FTIR are two powerful and complementary analytical tools capable of measuring concentrations down to levels of less than 1 ppm H2O. Both methods, however, are subject to matrix effects and rely on other techniques such as manometry or nuclear reaction analysis (NRA) for quantitative calibration. We compared FTIR and SIMS data for a wide variety of NAMs: olivine, orthopyroxene, clinopyroxene, pyrope and grossular garnet, rutile, zircon, kyanite, andalusite, and sillimanite. Some samples were also characterized using high-resolution FE-SEM to assess the potential contribution of submicrocopic inclusions to the analyses. For SIMS, we use high mass resolution (≥5000 MRP) to measure 16O1H, using 30Si and/or 18O as reference isotopes. We use both primary standards, measured independently using manometry or NRA (e.g., [1]), and secondary standards, measured using polarized FTIR referenced back to calibrations developed on primary standards. Our major focus was on on olivine, for which we collected repeated calibration data with both SIMS and NanoSIMS, bracketing measurements of H diffusion profiles in both natural and experimentally annealed crystals at levels of 5-100 ppm H2O. With both instruments we establish low blanks (≤5 ppm) and high precision (typically less than 5% 2-σ errors in 16O1H/30Si), critical requirements for the low concentration levels being measured. Assessment of over 300 analyses on 11 olivines allows us to evaluate the suitability of different standards, several of which are in use in other laboratories [2,3,4]. Seven olivines, with 0-125 ppm H2O, give highly reproducible results and allow us to establish well-constrained calibration slopes with high correlation coefficients (r2 = 0.98-99), in contrast to previous studies [2,3,4]. However, four kimberlitic megacrysts with 140-243 ppm H

  16. Autonomous Formation Flight

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard S.; Cobleigh, Brent

    2004-01-01

    NASA's Strategic Plan for the Aerospace Technology Enterprise includes ambitious objectives focused on affordable air travel, reduced emissions, and expanded aviation-system capacity. NASA Dryden Flight Research Center, in cooperation with NASA Ames Research Center, the Boeing Company, and the University of California, Los Angeles, has embarked on an autonomous-formation-flight project that promises to make significant strides towards these goals. For millions of years, birds have taken advantage of the aerodynamic benefit of flying in formation. The traditional "V" formation flown by many species of birds (including gulls, pelicans, and geese) enables each of the trailing birds to fly in the upwash flow field that exists just outboard of the bird immediately ahead in the formation. The result for each trailing bird is a decrease in induced drag and thus a reduction in the energy needed to maintain a given speed. Hence, for migratory birds, formation flight extends the range of the system of birds over the range of birds flying solo. The Autonomous Formation Flight (AFF) Project is seeking to extend this symbiotic relationship to aircraft.

  17. The Enlisted Steady State-Simulation (ESS-SIM) Tool

    DTIC Science & Technology

    2014-07-01

    The Enlisted Steady State-Simulation ( ESS -SIM) Tool David M. Rodney • Peggy A. Golfin • Molly F. McIntosh DIM-2014-U-007587-Final July 2014 This...situation. We built and made use of a simulation model, ESS -Sim (Enlisted Steady- State Simulation), to obtain insights into attainable levels of...fleet manning and estimate the impact of policy changes on fleet man- ning. This information memorandum describes this model. Model overview We built ESS

  18. Radial Velocities and Binarity of Southern SIM Grid Stars

    DTIC Science & Technology

    2015-01-01

    MNRAS 446, 2055–2058 (2015) doi:10.1093/mnras/stu2239 Radial velocities and binarity of southern SIM grid stars Valeri V. Makarov1‹ and Stephen C...ABSTRACT We present analysis of precision radial velocities (RV) of 1134 mostly red giant stars in the southern sky, selected as candidate astrometric...grid objects for the Space Interferometry Mis- sion (SIM). Only a few (typically, two or three) spectroscopic observations per star have been collected

  19. New Atomic Ion SIMS Facility at the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Grabowski, K. S.; Fazel, K. C.; Fahey, A. J.

    2014-12-01

    Mass spectrometry of particulates and few micrometer regions of samples by Secondary Ion Mass Spectrometry (SIMS) is a very useful analytical tool. However, there are limitations caused by interferences from molecular species, such as hydrides, oxides, and carbides. Above mass 90 u, these interferences (> 104 M/ΔM) can exceed the resolving power of SIMS. Accelerator Mass Spectrometry (AMS) is capable of eliminating such molecular ion interferences, but lacks spatial information and generally requires use of negative ions. This requirement limits its sensitivity, since actinide and lanthanide elements preferentially generate positive atomic ions (~104 : 1). The Naval Research Laboratory (NRL) has installed a hybrid SIMS-AMS system, using a Single Stage AMS as a replacement for the normal Cameca IMS 4f SIMS electron multiplier detector. The NRL design enables analysis of either positive or negative ions. Thus, this system offers the potential to provide SIMS-like particle and micro-scale analysis without a forest of signals from molecular species, and is capable of measuring important positive atomic ions. This should improve measurement sensitivity and precision to determine isotopic distributions of actinides, lanthanides, and transition metals; and elemental abundances of trace species in particles or small features. Initial measurements show that molecule intensities can be reduced by seven orders of magnitude while atomic ion intensities are only diminished ~50%. We have chosen to call this instrument an atomic ion SIMS, or ai-SIMS, for short. The effect of basic operational parameters such as ion energy, charge state, molecule destruction gas and its pressure will be described, and examples of the benefits and capabilities of ai-SIMS will be presented.

  20. SIMS prototype system 1 test results: Engineering analysis

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The space and domestic water solar heating system designated SIMS Prototype Systems 1 was evaluated. The test system used 720 ft (gross) of Solar Energy Products Air Collectors, a Solar Control Corporation SAM 20 Air Handler with Model 75-175 control unit, a Jackson Solar Storage tank with Rho Sigma Mod 106 controller, and 20 tons of rack storage. The test data analysis performed evaluates the system performance and documents the suitability of SIMS Prototype System 1 hardware for field installation.

  1. Balancing Training Techniques for Flight Controller Certification

    NASA Technical Reports Server (NTRS)

    Gosling, Christina

    2011-01-01

    Training of ground control teams has been a difficult task in space operations. There are several intangible skills that must be learned to become the steely eyed men and women of mission control who respond to spacecraft failures that can lead to loss of vehicle or crew if handled improperly. And as difficult as training is, it can also be costly. Every day, month or year an operator is in training, is a day that not only they are being trained without direct benefit to the organization, but potentially an instructor or mentor is also being paid for hours spent assisting them. Therefore, optimization of the training flow is highly desired. Recently the Expedition Division (DI) at Johnson Space Flight Center has recreated their training flows for the purpose of both moving to an operator/specialist/instructor hierarchy and to address past inefficiencies in the training flow. This paper will discuss the types of training DI is utilizing in their new flows, and the balance that has been struck between the ideal learning environments and realistic constraints. Specifically, the past training flow for the ISS Attitude Determination and Control Officer will be presented, including drawbacks that were encountered. Then the new training flow will be discussed and how a new approach utilizes more training methods and teaching techniques. We will look at how DI has integrated classes, workshops, checkouts, module reviews, scenarios, OJT, paper sims, Mini Sims, and finally Integrated Sims to balance the cost and timing of training a new flight controller.

  2. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  3. MARS Flight Engineering Status

    SciTech Connect

    Fast, James E.; Dorow, Kevin E.; Morris, Scott J.; Thompson, Robert C.; Willett, Jesse A.

    2010-04-06

    The Multi-sensor Airborne Radiation Survey Flight Engineering project (MARS FE) has designed a high purity germanium (HPGe) crystal array for conducting a wide range of field measurements. In addition to the HPGe detector system, a platform-specific shock and vibration isolation system and environmental housing have been designed to support demonstration activities in a maritime environment on an Unmanned Surface Vehicle (USV). This report describes the status of the equipment as of the end of FY09.

  4. Chemometric and Statistical Analyses of ToF-SIMS Spectra of Increasingly Complex Biological Samples

    SciTech Connect

    Berman, E S; Wu, L; Fortson, S L; Nelson, D O; Kulp, K S; Wu, K J

    2007-10-24

    Characterizing and classifying molecular variation within biological samples is critical for determining fundamental mechanisms of biological processes that will lead to new insights including improved disease understanding. Towards these ends, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to examine increasingly complex samples of biological relevance, including monosaccharide isomers, pure proteins, complex protein mixtures, and mouse embryo tissues. The complex mass spectral data sets produced were analyzed using five common statistical and chemometric multivariate analysis techniques: principal component analysis (PCA), linear discriminant analysis (LDA), partial least squares discriminant analysis (PLSDA), soft independent modeling of class analogy (SIMCA), and decision tree analysis by recursive partitioning. PCA was found to be a valuable first step in multivariate analysis, providing insight both into the relative groupings of samples and into the molecular basis for those groupings. For the monosaccharides, pure proteins and protein mixture samples, all of LDA, PLSDA, and SIMCA were found to produce excellent classification given a sufficient number of compound variables calculated. For the mouse embryo tissues, however, SIMCA did not produce as accurate a classification. The decision tree analysis was found to be the least successful for all the data sets, providing neither as accurate a classification nor chemical insight for any of the tested samples. Based on these results we conclude that as the complexity of the sample increases, so must the sophistication of the multivariate technique used to classify the samples. PCA is a preferred first step for understanding ToF-SIMS data that can be followed by either LDA or PLSDA for effective classification analysis. This study demonstrates the strength of ToF-SIMS combined with multivariate statistical and chemometric techniques to classify increasingly complex biological samples

  5. TOF SIMS analysis and generation of white photoluminescence from strontium silicate codoped with europium and terbium

    SciTech Connect

    Tshabalala, Modiehi A.; Swart, Hendrik C.; Ntwaeaborwa, Odireleng M.

    2014-03-15

    White light emitting terbium (Tb{sup 3+}) and europium (Eu{sup 3+}) codoped strontium silicate (Sr{sub 2}SiO{sub 4}) phosphors were prepared by a solid state reaction process. The structure, particle morphology, chemical composition, ion distribution, photoluminescence (PL), and decay characteristics of the phosphors were analyzed by x-ray diffraction (XRD), scanning electron microscopy (SEM), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and PL spectroscopy, respectively. The XRD data showed that our Sr{sub 2}SiO{sub 4} composed of two phases, namely, β-Sr{sub 2}SiO{sub 4} and α′-Sr{sub 2}SiO{sub 4}, and the α′-Sr{sub 2}SiO{sub 4} phase was more prominent than the β-Sr{sub 2}SiO{sub 4} phase. The SEM micrographs showed that the particles were agglomerated together and they did not have definite shapes. All ions (i.e., negative and positive) present in our materials were identified by TOF-SIMS. In addition, the chemical imaging performed with the TOF-SIMS demonstrated how the individual ions including the dopants (Eu{sup 3+} and Tb{sup 3+}) were distributed in the host lattice. White photoluminescence was observed when the Sr{sub 2}SiO{sub 4}:Tb{sup 3+}, Eu{sup 3+} phosphor was excited at 239 nm using a monochromatized xenon lamp as the excitation source. The phosphor exhibited fast decay lifetimes implying that it is not a good candidate for long afterglow applications.

  6. Surface Immobilized Antibody Orientation Determined using ToF-SIMS and Multivariate Analysis.

    PubMed

    Welch, Nicholas G; Madiona, Robert M T; Payten, Thomas B; Easton, Christopher D; Pontes-Braz, Luisa; Brack, Narelle; Scoble, Judith A; Muir, Benjamin W; Pigram, Paul J

    2017-03-27

    Antibody orientation at solid phase interfaces plays a critical role in the sensitive detection of biomolecules during immunoassays. Correctly oriented antibodies with solution-facing antigen binding regions have improved antigen capture as compared to their randomly oriented counterparts. Direct characterization of oriented proteins with surface analysis methods still remains a challenge however surface sensitive techniques such as Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) provide information-rich data that can be used to probe antibody orientation. Diethylene glycol dimethyl ether plasma polymers (DGpp) functionalized with chromium (DGpp+Cr) have improved immunoassay performance that is indicative of preferential antibody orientation. Herein, ToF-SIMS data from proteolytic fragments of anti-EGFR antibody bound to DGpp and DGpp+Cr are used to construct artificial neural network (ANN) and principal component analysis (PCA) models indicative of correctly oriented systems. Whole antibody samples (IgG) test against each of the models indicated preferential antibody orientation on DGpp+Cr. Cross-reference between ANN and PCA models yield 20 mass fragments associated with F(ab')2 region representing correct orientation, and 23 mass fragments associated with the Fc region representing incorrect orientation. Mass fragments were then compared to amino acid fragments and amino acid composition in F(ab')2 and Fc regions. A ratio of the sum of the ToF-SIMS ion intensities from the F(ab')2 fragments to the Fc fragments demonstrated a 50% increase in intensity for IgG on DGpp+Cr as compared to DGpp. The systematic data analysis methodology employed herein offers a new approach for the investigation of antibody orientation applicable to a range of substrates.

  7. Surface study of collagen/poloxamine hydrogels by a 'deep freezing' ToF-SIMS approach.

    PubMed

    Sosnik, Alejandro; Sodhi, Rana N S; Brodersen, Peter M; Sefton, Michael V

    2006-04-01

    In order to determine the presence of collagen molecules at the surface of a collagen-modified poloxamine hydrogel (a semi-interpenetrating network), the surface composition was studied using Time-of-Flight Secondary Ion Mass Spectra (ToF-SIMS). Collagen was added to the poloxamine hydrogel (poloxamine is a commercially available four-arm poly(ethylene oxide)/poly(propylene oxide) block copolymer, PEO/PPO) to promote the attachment of endothelial or liver cells. X-ray photoelectron spectroscopy (XPS) of dry samples showed a sharp increase in the N content from 0.6% in a pure poloxamine hydrogel to 8.8% in the collagen-containing material. Afterwards, the surface was studied by a 'deep freezing' ToF-SIMS approach under progressive heating from -120 to -60 degrees C. The positive spectrum of collagen/poloxamine at -65 degrees C displayed distinct signals corresponding to different amino acid fragments such as CH4N+ (30 m/z, Gly), C3HN2+ (43 m/z, Arg), C2H6N+ (44 m/z, Ala) and C4H5N2+(81m/z, His) and others corresponding to the PEO and PPO blocks of poloxamine. In addition, the negative spectrum showed peaks at 26 m/z (CN-), 32 m/z (S-) and 42 m/z (CNO-) characteristic of fragments of the collagen molecule. Imaging experiments indicated the homogeneous distribution of the collagen on the surface. These results supported the use of ToF-SIMS for the surface characterization of hydrated hydrogels and confirmed the collagen presence as the means whereby cells attach to the modified poloxamine matrix.

  8. SimER: An advanced three-dimensional environmental risk assessment code for contaminated land and radioactive waste disposal applications

    SciTech Connect

    Kwong, S.; Small, J.; Tahar, B.

    2007-07-01

    SimER (Simulations of Environmental Risks) is a powerful performance assessment code developed to undertake assessments of both contaminated land and radioactive waste disposal. The code can undertake both deterministic and probabilistic calculations, and is fully compatible with all available best practice guidance and regulatory requirements. SimER represents the first time-dependent performance assessment code capable of providing a detailed representation of system evolution that is designed specifically to address issues found across UK nuclear sites. The code adopts flexible input language with build-in unit checking to model the whole system (i.e. near-field, geosphere and biosphere) in a single code thus avoiding the need for any time consuming data transfer and the often laborious interface between the different codes. This greatly speeds up the assessment process and has major quality assurance advantages. SimER thus provides a cost-effective tool for undertaking projects involving risk assessment from contaminated land assessments through to full post-closure safety cases and other work supporting key site endpoint decisions. A Windows version (v1.0) of the code was first released in June 2004. The code has subsequently been subject to further testing and development. In particular, Viewers have been developed to provide users with visual information to assist the development of SimER models, and output can now be produced in a format that can be used by the FieldView software to view the results and produce animation from the SimER calculations. More recently a Linux version of the code has been produced to extend coverage to the commonly used platform bases and offer an improved operating environment for probabilistic assessments. Results from the verification of the SimER code for a sample of test cases for both contaminated land and waste disposal applications are presented. (authors)

  9. Flight Simulation.

    DTIC Science & Technology

    1986-09-01

    PROCEEDINGS No.408 Flight Simulation DTIC !ELECTE NOVO505s ’ D -J DISTRIBUTION AND AVAILABILITY I I •k i nimy fle-"-- THE MISSION OF AGARI) The mission of...recherche. Ie d ~veloppement et lentrainement. Les objectifs du symposium de la commmission m~canique de vol de L’AGARD 6taient de fournir une description...tttbution Availjbiily CcodeS AvailI a.- d or Dist Spe~cial FLIGHT MECHANICS PANEL OFFICERS Chairman: Dr Ing. P.Hamcl Deputy Chairman: Dr Ing. A.Filisetti

  10. An Investigation of Hydrogen Depth Profiling Using ToF-SIMS

    SciTech Connect

    Zhu, Zihua; Shutthanandan, V.; Engelhard, Mark H.

    2012-02-01

    Hydrogen depth distributions in silicon, zinc oxide and glass are of great interest in material research and industry. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used for hydrogen depth profiling for many years. However, some critical information, such as optimal instrumental settings and detection limits, is not easily available from previous publications. In this work, optimal instrumental settings and detection limits of hydrogen in silicon, zinc oxide and common glass were investigated. The recommended experimental settings for hydrogen depth profiling using ToF-SIMS are: (1) keeping pressure in the analysis chamber as low as possible, (2) using a cesium beam for sputtering and monitoring the H{sup -} signal, (3) employing monatomic ion analysis beams with the highest currents, and (4) using interlace mode. In addition, monatomic secondary ions from a matrix are recommended as references to normalize the H{sup -} signal. Detection limits of hydrogen are limited by pressure of residual gases in the analysis chamber. The base pressure of the analysis chamber (with samples) is about 7 x 10{sup -10} mbar in this study, and the corresponding detection limits of hydrogen in silicon, zinc oxide, and common glass are 1.3 x 10{sup 18} atoms/cm{sup 3}, 1.8 x 10{sup 18} atoms/cm{sup 3}, and 5.6 x 10{sup 18} atoms/cm{sup 3}, respectively.

  11. The impact of detergents on the tissue decellularization process: A ToF-SIMS study.

    PubMed

    White, Lisa J; Taylor, Adam J; Faulk, Denver M; Keane, Timothy J; Saldin, Lindsey T; Reing, Janet E; Swinehart, Ilea T; Turner, Neill J; Ratner, Buddy D; Badylak, Stephen F

    2017-03-01

    Biologic scaffolds are derived from mammalian tissues, which must be decellularized to remove cellular antigens that would otherwise incite an adverse immune response. Although widely used clinically, the optimum balance between cell removal and the disruption of matrix architecture and surface ligand landscape remains a considerable challenge. Here we describe the use of time of flight secondary ion mass spectroscopy (ToF-SIMS) to provide sensitive, molecular specific, localized analysis of detergent decellularized biologic scaffolds. We detected residual detergent fragments, specifically from Triton X-100, sodium deoxycholate and sodium dodecyl sulphate (SDS) in decellularized scaffolds; increased SDS concentrations from 0.1% to 1.0% increased both the intensity of SDS fragments and adverse cell outcomes. We also identified cellular remnants, by detecting phosphate and phosphocholine ions in PAA and CHAPS decellularized scaffolds. The present study demonstrates ToF-SIMS is not only a powerful tool for characterization of biologic scaffold surface molecular functionality, but also enables sensitive assessment of decellularization efficacy.

  12. Lipid analysis of eight human breast cancer cell lines with ToF-SIMS

    PubMed Central

    Robinson, Michael A.; Graham, Daniel J.; Morrish, Fionnuala; Hockenbery, David; Gamble, Lara J.

    2015-01-01

    In this work, four triple negative (TN) cell lines, three ER+ and PR+ receptor positive (RP) cell lines, and one ER+, PR+, and HER2+ cell line were chemically distinguished from one another using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and principal component analysis (PCA). PCA scores separation was observed between the individual cell lines within a given classification (TN and RP) and there were distinctly different trends found in the fatty acid and lipid compositions of the two different classifications. These trends indicated that the RP cell lines separated out based on the carbon chain length of the lipids while the TN cell lines showed separation based on cholesterol-related peaks (in the positive ion data). Both cell types separated out by trends in fatty acid chain length and saturation in the negative ions. These chemical differences may be manifestations of unique metabolic processes within each of the different cell lines. Additionally, the HER2+ cell line was distinguished from three other RP cell types as having a unique distribution of fatty acids including anticorrelation to 18-carbon chain fatty acids. As these cell lines could not be grown in the same growth media, a combination of chemical fixation, rinsing, C60+ presputtering, and selection of cellular regions-of-interest is also presented as a successful method to acquire ToF-SIMS data from cell lines grown in different media. PMID:26319020

  13. TOF-SIMS analysis of adipose tissue from patients with chronic kidney disease

    NASA Astrophysics Data System (ADS)

    Sjövall, Peter; Johansson, Björn; Belazi, Dalila; Stenvinkel, Peter; Lindholm, Bengt; Lausmaa, Jukka; Schalling, Martin

    2008-12-01

    In this work, time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used for detecting systematic variations in the spatial and compositional distributions of lipids in human tissue samples. Freeze-dried sections of subcutaneous adipose tissue from six chronic kidney disease (CKD) patients and six control subjects were analysed by TOF-SIMS using 25 keV Bi 3+ primary ions. Principal component analysis of signal intensities from different fatty acids, diacylglycerol and triacylglycerol ions showed evidence for systematic variations in the lipid distributions between different samples. The main observed difference in the spectra was a concerted variation in the signal intensities from the saturated lipids relative to the unsaturated lipids, while variations in the fatty acid chain lengths were considerably weaker. Furthermore, the three samples showing the lowest degree of saturation came from CKD patients, while three of the four samples with the highest degree of saturation were from control subjects, indicating that low saturation levels in the glycerol lipid distribution may be more frequent in patients with CKD. Systematic differences in the spatial distributions between saturated and unsaturated glycerol lipids were observed in several analysed areas.

  14. ToF-SIMS cluster ion imaging of hippocampal CA1 pyramidal rat neurons

    NASA Astrophysics Data System (ADS)

    Francis, J. T.; Nie, H.-Y.; Taylor, A. R.; Walzak, M. J.; Chang, W. H.; MacFabe, D. F.; Lau, W. M.

    2008-12-01

    Recent studies have demonstrated the power of time-of-flight secondary ion mass spectrometry (ToF-SIMS) cluster ion imaging to characterize biological structures, such as that of the rat central nervous system. A large number of the studies to date have been carried out on the "structural scale" imaging several mm 2 using mounted thin sections. In this work, we present our ToF-SIMS cluster ion imaging results on hippocampal rat brain neurons, at the cellular and sub-cellular levels. As a part of an ongoing investigation to examine gut linked metabolic factors in autism spectrum disorders using a novel rat model, we have observed a possible variation in hippocampal Cornu ammonis 1 (CA1) pyramidal neuron geometry in thin, paraformaldehyde fixed brain sections. However, the fixation process alters the tissue matrix such that much biochemical information appears to be lost. In an effort to preserve as much as possible this original information, we have established a protocol using unfixed thin brain sections, along with low dose, 500 eV Cs + pre-sputtering that allows imaging down to the sub-cellular scale with minimal sample preparation.

  15. Contaminant characterization on hair and fiber surfaces using imaging TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Groenewold, Gary S.; Gresham, Garold L.; Gianotto, Anita K.; Avci, Recep

    1999-02-01

    Imaging time-of-flight secondary ion mass spectrometry (SIMS) was used to evaluate the detection of contaminant chemicals on the surfaces of single synthetic textile and canine hair fibers. The results of the study showed that a variety of chemical classes can be detected. Both cocaine and heroin could be easily observed as intact protonated molecules ([M + H]+) in the cation spectra acquired from textile fibers. Two organophosphates were evaluated: malathion, which is a common pesticide, and pinacolyl methyl phosphonic acid (PMPA), which is the principal degradation product of the nerve agent soman (a close relative of sarin). Malathion could be observed as (CH3O)2P(equalsS)S-, which is formed by thiophosphate cleavage of the intact malathion. PMPA is observed as the conjugate base ([PMPA - H]-). Surfactant chemicals found in hair care products were successfully detected on single hair fibers. Specifically, alkyl sulfates, ethoxylated alkyl sulfates, silicones, and alkylammonium compounds could be readily identified in spectra acquired from single hair fiber samples exposed to shampoo and/or conditioner. Generally, the results of the study show that imaging SIMS is applicable to single fiber analysis, for a range of adsorbed compound types. The forensic application of this instrumental approach has not been widely recognized. However, the ability of the technique to acquire specific chemical information from trace samples clearly points to applications where the need for chemical analysis is great, but the amount of sample is limited.

  16. Detection of chlorinated pesticides on the surface of fungus using ToF-SIMS

    NASA Astrophysics Data System (ADS)

    Cliff, B.; Weibel, D. E.; Lockyer, N. P.; Jungnickel, H.; Stephens, G.; Vickerman, J. C.

    2003-01-01

    Chlorinated organic compounds are commonly used as pesticides (e.g. Lindane or DDT); unfortunately these compounds have the ability to be concentrated in aquatic and terrestrial food chains causing environmental problems due to their toxicity. Therefore there is a need for their removal using wastewater treatment plants. It is known that these pollutants adsorb on to the surface of the fungi Rhizopus arrizus from a water solution. However the actual mode of biosorption is unknown. We aim to investigate this interaction further using time-of-flight (ToF)-SIMS. Samples of fungus were grown in aqueous solutions containing Lindane then freeze-dried, the presence of Lindane was independently quantified by a gas chromatography-electron capture detector technique. The samples were then subjected to ToF-SIMS analysis. Evidence for Lindane was seen on the surface of the fungus, however it became apparent that the Lindane was too volatile for such an analysis. This rapid deterioration of signal is preventing a more in depth study of the interaction between Lindane and R. arrhizus. However it is anticipated that by utilising a frozen-hydrated sample preparation technique, of a type currently being developed at UMIST, that these challenges would be overcome.

  17. In situ reactivity and TOF-SIMS analysis of surfaces prepared by soft and reactive landing of mass-selected ions.

    PubMed

    Johnson, Grant E; Lysonski, Michael; Laskin, Julia

    2010-07-01

    An instrument has been designed and constructed that enables in situ reactivity and time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis of surfaces prepared or modified through soft and reactive landing of mass-selected polyatomic cations and anions. The apparatus employs an electrospray ion source coupled to a high transmission electrodynamic ion funnel, two focusing collision quadrupoles, a large 19 mm diameter quadrupole mass filter, and a quadrupole bender that deflects the ion beam, thereby preventing neutral contaminants from impinging on the deposition surface. The ion soft landing apparatus is coupled to a commercial TOF-SIMS instrument permitting the introduction of surfaces into vacuum and SIMS analysis before and after ion deposition without breaking vacuum. To facilitate a comparison of the current TOF-SIMS instrument with the in situ Fourier transform ion cyclotron resonance (FTICR-SIMS) deposition apparatus constructed previously, dications of the cyclic peptide Gramicidin S (GS) and the photoactive organonometallic complex ruthenium tris-bipyridine (Ru(bpy)(3)) were soft-landed onto fluorinated self-assembled monolayer (FSAM) on gold surfaces. In both cases, similarities and differences were observed in the secondary ion mass spectra, with the TOF-SIMS results, in general, characterized by greater sensitivity, larger dynamic range, less fragmentation, and fewer in-plume reactions than the corresponding FTICR-SIMS spectra. The charge reduction kinetics of both the doubly and singly protonated GS cations on the FSAM surface were also examined as was the influence of the primary gallium ion (Ga(+)) flux on the efficiency of these processes. In addition, we demonstrate that the new instrument enables detailed studies of the reactivity of catalytically active species immobilized by soft and reactive landing toward gaseous reagents.

  18. Surface chemical characterization of 2.5-microm particulates (PM2.5) from air pollution in Salt Lake City using TOF-SIMS, XPS, and FTIR.

    PubMed

    Zhu, Y J; Olson, N; Beebe, T P

    2001-08-01

    Particulate matter with a diameter of 2.5 microm collected in Salt Lake City (SLC PM2.5) was studied using TOF-SIMS (time-of-flight secondary-ion mass spectrometry), XPS (X-ray photoelectron spectroscopy), and FTIR (Fourier transform infrared spectroscopy). The high spatial resolution and high surface sensitivity of TOF-SIMS allow the surfaces of individual particulates to be analyzed. The high mass-resolution of TOF-SIMS provides good separation of signals from different chemical species at the same nominal mass, and the extremely high detection sensitivity of TOF-SIMS makes the detection of trace elements possible. Metallic elements such as Li, Na, Mg, Al, K, Ca, Cr, Mn, Fe, Cu, Zn, Cs, and Bi were detected by TOF-SIMS on the surface of SLC PM25. The uranium ion U+ together with its oxide ions UO+ and UO2+ were also found. Inorganic compounds detected include oxides, hydroxides, nitrates, sulfates, silicates, borates, chlorides, etc. Organic compounds detected include hydrocarbons, alcohols, aldehydes, ethers, carboxylic acids, amines, amides, nitriles, etc. A number of polycyclic aromatic hydrocarbons (PAH) and nitrated polycyclic aromatic hydrocarbons were detected by TOF-SIMS. High-resolution XPS Cls spectrum shows functional groups such as C-O, CO2, C-CO2, C-C, and C-H and aromatic pi-pi* shake-up transitions. High-resolution XPS O 1s spectrum indicates the coexistence of different oxygen compounds on the surface of PM2.5. FTIR results confirm the presence of various organic compounds in SLC PM2.5 detected by TOF-SIMS and XPS.

  19. Chemical and structural analysis of the bone-implant interface by TOF-SIMS, SEM, FIB and TEM: Experimental study in animal

    NASA Astrophysics Data System (ADS)

    Palmquist, Anders; Emanuelsson, Lena; Sjövall, Peter

    2012-06-01

    Although bone-anchored implants are widely used in reconstructive medicine, the mechanism of osseointegration is still not fully understood. Novel analytical tools are needed to further understand this process, where both the chemical and structural aspects of the bone-implant interface are important. The aim of this study was to evaluate the advantages of combining time-of-flight secondary ion mass spectroscopy (TOF-SIMS) with optical (LM), scanning (SEM) and transmission electron microscopy (TEM) techniques for studying the bone-implant interface of bone-anchored implants. Laser-modified titanium implants with surrounded bone retrieved after 8 weeks healing in rabbit were dehydrated and resin embedded. Three types of sample preparation were studied to evaluate the information gained by combining TOF-SIMS, SEM, FIB and TEM. The results show that imaging TOF-SIMS can provide detailed chemical information, which in combination with structural information from microscopy methods provide a more complete characterization of anatomical structures at the bone-implant interface. By investigating various sample preparation techniques, it is shown that grinded cross section samples can be used for chemical imaging using TOF-SIMS, if careful consideration of potential preparation artifacts is taken into account. TOF-SIMS analysis of FIB-prepared bone/implant cross section samples show distinct areas corresponding to bone tissue and implant with a sharp interface, although without chemical information about the organic components.

  20. In situ chemical probing of the electrode-electrolyte interface by ToF-SIMS

    SciTech Connect

    Liu, Bingwen; Yu, Xiao-Ying; Zhu, Zihua; Hua, Xin; Yang, Li; Wang, Zhaoying

    2014-01-01

    A portable vacuum interface allowing direct probing of the electrode-electrolyte interface was developed. A classical electrochemical system consisting of gold working electrode, platinum counter electrode, platinum reference electrode, and potassium iodide electrolyte was used to demonstrate real-time observation of the gold iodide adlayer on the electrode and chemical species as a result of redox reactions using cyclic voltammetry (CV) and the time-of-flight secondary ion mass spectrometry (ToF-SIMS, a vacuum-based surface analytical technique) simultaneously. This microfluidic electrochemical probe provides a new way to investigate the surface region with adsorbed molecules and region of diffused layer with chemical speciation in liquids in situ by surface sensitive techniques.

  1. Corner cube model for internal metrology system of Space Interferometer Mission (SIM)

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Korechoff, Robert; Heflin, Mike; Sievers, Lisa

    2006-01-01

    A corner cube (CC) articulation model has been developed to evaluate the SIM internal metrology (IntMet) optical delay bias (with the accuracy of picometer) due to the component imperfections, such as vertex offset, reflection coating index error, dihedral error, and surface figure error at each facet. This physics-based and MATLAB-implemented geometric optics model provides useful guidance on the flight system design, integration, and characterization. The first portion of this paper covers the CC model details. Then several feature of the model, such as metrology beam footprint visualization, roofline straddling/crossing analysis, and application to drive the sub-system design and the error budget flow-down, are demonstrated in the second part.

  2. Brassboard Astrometric Beam Combiner (ABC) development for the Space Interferometry Mission (SIM)

    NASA Astrophysics Data System (ADS)

    Jeganathan, Muthu; Kuan, Gary; Rud, Mike; Lin, Sean; Sutherland, Kristen; Moore, James; An, Xin

    2008-07-01

    The Astrometric Beam Combiner (ABC) is a critical element of the Space Interferometry Mission (SIM) that performs three key functions: coherently combine starlight from two siderostats; individually detect starlight for angle tracking; and disperse and detect the interferometric fringes. In addition, the ABC contains: a stimulus, cornercubes and shutters for in-orbit calibration; several tip/tilt mirror mechanisms for in-orbit alignment; and internal metrology beam launcher for pathlength monitoring. The detailed design of the brassboard ABC (which has the form, fit and function of the flight unit) is complete, procurement of long-lead items is underway, and assembly and testing is expected to be completed in Spring 2009. In this paper, we present the key requirements for the ABC, details of the completed optical and mechanical design as well as plans for assembly and alignment.

  3. Corner cube model for Microarcsec Metrology (MAM) testbed in Space Interferometer Mission (SIM)

    NASA Astrophysics Data System (ADS)

    Wang, Xu

    2005-02-01

    A corner cube model is developed to calculate the SIM internal metrology optical delay bias (with the accuracy of picometer) due to the component imperfections, such as vertex offset, coating index error, dihedral error, and gimbal offset. This physics-based and Matlab-implemented ray-trace model provides useful guidance on the flight system design, integration, and characterization. In this paper, the details of the corner cube model will be described first. Then the sub-nanometer level model validation through the MAM testbed will be presented. Finally several examples of the model application, such as the metrology delay bias minimization, design parameter error budget (or tolerance) allocation, and the metrology beam prints visualization, will be shown.

  4. LCMS/MS and TOF-SIMS identification of the color bodies on the surface of a polymer.

    PubMed

    Moore, Colin; McKeown, Pat

    2005-03-01

    The source of discoloration on a polymer surface can often be identified by washing the surface of the discolored polymer to collect the color bodies, then analyzing the washings using liquid chromatography-mass spectrometry (LCMS), with an in-line ultraviolet (UV) detector set at the optimum wavelength for the particular color bodies. A reference sample having no discoloration is also analyzed in the same way. In this paper, results from this methodology are compared with direct time of flight-secondary ion mass spectrometry (TOF-SIMS) analysis of a discolored polymer. The benefits and shortcomings of each methodology are discussed.

  5. SIMS: addressing the problem of heterogeneity in databases

    NASA Astrophysics Data System (ADS)

    Arens, Yigal

    1997-02-01

    The heterogeneity of remotely accessible databases -- with respect to contents, query language, semantics, organization, etc. -- presents serious obstacles to convenient querying. The SIMS (single interface to multiple sources) system addresses this global integration problem. It does so by defining a single language for describing the domain about which information is stored in the databases and using this language as the query language. Each database to which SIMS is to provide access is modeled using this language. The model describes a database's contents, organization, and other relevant features. SIMS uses these models, together with a planning system drawing on techniques from artificial intelligence, to decompose a given user's high-level query into a series of queries against the databases and other data manipulation steps. The retrieval plan is constructed so as to minimize data movement over the network and maximize parallelism to increase execution speed. SIMS can recover from network failures during plan execution by obtaining data from alternate sources, when possible. SIMS has been demonstrated in the domains of medical informatics and logistics, using real databases.

  6. Post-Flight Assessment of Low Density Supersonic Decelerator Flight Dynamics Test 2 Simulation

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; White, Joseph P.; Striepe, Scott A.; Queen, Eric M.; O'Farrel, Clara; Ivanov, Mark C.

    2016-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its second Supersonic Flight Dynamics Test (SFDT-2) on June 8, 2015. The Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics tools used to simulate and predict the flight performance and was a major tool used in the post-flight assessment of the flight trajectory. This paper compares the simulation predictions with the reconstructed trajectory. Additionally, off-nominal conditions seen during flight are modeled in the simulation to reconcile the predictions with flight data. These analyses are beneficial to characterize the results of the flight test and to improve the simulation and targeting of the subsequent LDSD flights.

  7. Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.

  8. SIMS analysis of extended impact features on LDEF experiment

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Jessberger, E. K.; Simon, C.; Stadermann, F. J.; Swan, P.; Walker, R.; Zinner, E.

    1991-01-01

    Discussed here are the first Secondary Ion Mass Spectroscopy (SIMS) analysis of projectile material deposited in extended impact features on Ge wafers from the trailing edge. Although most capture cells lost their plastic film covers, they contain extended impact features that apparently were produced by high velocity impacts when the plastic foils were still intact. Detailed optical scanning of all bare capture cells from the trailing edge revealed more than 100 impacts. Fifty-eight were selected by scanning electron microscope (SEM) inspection as prime candidates for SIMS analysis. Preliminary SIMS measurements were made on 15 impacts. More than half showed substantial enhancements of Mg, Al, Si, Ca, and Fe in the impact region, indicating micrometeorites as the projectiles.

  9. Nutritional Biochemistry of Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  10. Apollo Project

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Langley personnel at Cape Canaveral during preliminary checkout of Project FIRE velocity package before launch. Project FIRE (Flight Investigation Reentry Environment) studied the effects of reentry heating on spacecraft materials. It involved both wind tunnel and flight tests, although the majority were tests with Atlas rockets and recoverable reentry packages. These flight tests took place at Cape Canaveral in Florida. Wind tunnel tests were made in several Langley tunnels including the Unitary Plan Wind Tunnel, the 8-foot High-Temperature Tunnel and the 9- x 6-Foot Thermal Structures Tunnel.

  11. In Situ SIMS and IR Spectroscopy of Well-Defined Surfaces Prepared by Soft Landing of Mass-Selected Ions

    SciTech Connect

    Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.

  12. In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions

    PubMed Central

    Johnson, Grant E.; Gunaratne, K. Don Dasitha; Laskin, Julia

    2014-01-01

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces. PMID:24961913

  13. Switchable 1,8-diazabicycloundec-7-ene and 1-hexanol ionic liquid analyzed by liquid ToF-SIMS

    SciTech Connect

    Yao, Juan; Zhou, Yufan; Sui, Xiao; Lao, David; Heldebrant, David; Zhu, Zihua; Yu, Xiao-Ying

    2016-06-01

    Switchable ionic liquids (SWIL) play an important role in green chemistry. Due to the nature of SWIL chemistry, such as air sensitivity and pressure and temperature dependence, it is difficult to characterize SWIL using vacuum-based surface techniques. The fully CO2 loaded and none-loaded DBU and hexanol mixtures, a SWIL system, were analyzed in situ by time-of-flight secondary ion mass spectrometry (ToF-SIMS) coupled with the System for Analysis at the Liquid Vacuum Interface (SALVI), respectively. The DBU/Hexanol/CO2 SWIL was injected into the microchannel before liquid SIMS analysis. Bi3+ primary ion beam was used. The positive and negative spectra of the SWIL chemical components are presented. The characteristic peaks m/z 153 (reduced DBU) in the positive mode and m/z 101 (oxidized hexanol) in negative mode were observed. In addition, ion pair peaks including m/z 253, 319, 305, 451 in the positive mode and m/z 145, 223, 257 in the negative mode are first observed using this approach. These results demonstrate that the SALVI microfluidic reactor enables the vacuum-based surface technique (i.e., ToF-SIMS) for in situ characterization of challenging liquid samples such as ionic liquids.

  14. VentSim: a simulation model of cardiopulmonary physiology.

    PubMed

    Rutledge, G W

    1994-01-01

    VentSim is a quantitative model that predicts the effects of alternative ventilator settings on the cardiopulmonary physiology of critically ill patients. VentSim is an expanded version of the physiologic model in VentPlan, an application that provides ventilator-setting recommendations for patients in the intensive care unit. VentSim includes a ventilator component, an airway component, and a circulation component. The ventilator component predicts the pressures and airflows that are generated by a volume-cycled, constant-flow ventilator. The airway component has anatomic and physiologic deadspace compartments, and two alveolar compartments that participate in gas exchange with two pulmonary blood-flow compartments in the circulatory component. The circulatory component also has a shunt compartment that allows a fraction of blood flow to bypass gas exchange in the lungs, and a tissue compartment that consumes oxygen and generates carbon dioxide. The VentSim model is a set of linked first-order difference equations, with control variables that correspond to the ventilator settings, dependent variables that correspond to the physiologic state, and one independent variable, time. Because the model has no steady state solution, VentSim solves the equations by numeric integration, which is computation intensive. Simulation results demonstrate that VentSim predicts the effects of a variety of physiologic abnormalities that cannot be represented in less complex models such as the VentPlan model. For a ventilator-management application, the time-critical nature of ventilator-setting decisions limits the use of complex models. Advanced ventilator-management applications may include a mechanism to select patient-specific models that balance the trade-off of benefit of model detail and cost of computation delay.

  15. Altitude-Compensating Nozzle (ACN) Project: Planning for Dual-Bell Rocket Nozzle Flight Testing on the NASA F-15B

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

    2013-01-01

    For more than a half-century, several types of altitude-compensating nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Although the dual-bell rocket nozzle has been thoroughly studied, this nozzle has still not been tested in a relevant flight environment. This poster presents the top-level rationale and preliminary plans for conducting flight research with the dual-bell rocket nozzle, while exhausting the plume into the freestream flow field at various altitudes. The primary objective is to gain a greater understanding of the nozzle plume sensitivity to freestream flight effects, which will also include detailed measurements of the plume mode transition within the nozzle. To accomplish this goal, the NASA F-15B is proposed as the testbed for advancing the technology readiness level of this greatly-needed capability. All proposed tests include the quantitative performance analysis of the dual-bell rocket nozzle as compared with the conventional-bell nozzle.

  16. Virus and Bacterial Cell Chemical Analysis by NanoSIMS

    SciTech Connect

    Weber, P; Holt, J

    2008-07-28

    In past work for the Department of Homeland Security, the LLNL NanoSIMS team has succeeded in extracting quantitative elemental composition at sub-micron resolution from bacterial spores using nanometer-scale secondary ion mass spectrometry (NanoSIMS). The purpose of this task is to test our NanoSIMS capabilities on viruses and bacterial cells. This initial work has proven successful. We imaged Tobacco Mosaic Virus (TMV) and Bacillus anthracis Sterne cells using scanning electron microscopy (SEM) and then analyzed those samples by NanoSIMS. We were able resolve individual viral particles ({approx}18 nm by 300 nm) in the SEM and extract correlated elemental composition in the NanoSIMS. The phosphorous/carbon ratio observed in TMV is comparable to that seen in bacterial spores (0.033), as was the chlorine/carbon ratio (0.11). TMV elemental composition is consistent from spot to spot, and TMV is readily distinguished from debris by NanoSIMS analysis. Bacterial cells were readily identified in the SEM and relocated in the NanoSIMS for elemental analysis. The Ba Sterne cells were observed to have a measurably lower phosphorous/carbon ratio (0.005), as compared to the spores produced in the same run (0.02). The chlorine/carbon ratio was approximately 2.5X larger in the cells (0.2) versus the spores (0.08), while the fluorine/carbon ratio was approximately 10X lower in the cells (0.008) than the spores (0.08). Silicon/carbon ratios for both cells and spores encompassed a comparable range. The initial data in this study suggest that high resolution analysis is useful because it allows the target agent to be analyzed separate from particulates and other debris. High resolution analysis would also be useful for trace sample analysis. The next step in this work is to determine the potential utility of elemental signatures in these kinds of samples. We recommend bulk analyses of media and agent samples to determine the range of media compositions in use, and to determine how

  17. On the frontier: Flight research at Dryden 1946-1981

    NASA Technical Reports Server (NTRS)

    Hallion, R. P.

    1984-01-01

    The history of flight research at the NASA Hugh L. Dryden Flight Research Center is recounted. The period of emerging supersonic flight technology (1944 to 1959) is reviewed along with the era of flight outside the Earth's atmosphere (1959 to 1981). Specific projects such as the X-15, Gemini, Apollo, and the space shuttle are addressed. The flight chronologies of various aircraft and spacecraft are given.

  18. Pathfinder aircraft flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder research aircraft's wing structure is clearly defined as it soars under a clear blue sky during a test flight from Dryden Flight Research Center, Edwards, California, in November of 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  19. ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse

    NASA Astrophysics Data System (ADS)

    Voras, Zachary E.; deGhetaldi, Kristin; Wiggins, Marcie B.; Buckley, Barbara; Baade, Brian; Mass, Jennifer L.; Beebe, Thomas P.

    2015-11-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as

  20. High resolution metabolite imaging in the hippocampus following neonatal exposure to the environmental toxin BMAA using ToF-SIMS.

    PubMed

    Hanrieder, Jörg; Gerber, Lorenz; Persson Sandelius, Åsa; Brittebo, Eva B; Ewing, Andrew G; Karlsson, Oskar

    2014-07-16

    The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) is suggested to be linked with neurodegenerative disease. In a rat model, neonatal exposure to BMAA induced selective uptake in the hippocampus and caused cell loss, mineralization and astrogliosis as well as learning and memory impairments in adulthood. Moreover, neonatal exposure resulted in increased protein ubiquitination in the cornus ammonis 1 (CA1) region of the adult hippocampus indicating that BMAA may induce protein aggregation. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) based imaging is a powerful technology for spatial profiling of small molecular weight compounds in biological tissues with high chemical specificity and high spatial resolution. The aim of this study was to characterize neurochemical changes in the hippocampus of six month-old rats treated neonatally (postnatal days 9-10) with BMAA. Multivariate data analysis of whole section ToF-SIMS scans was performed to delineate anatomical regions of interest based on their chemical distribution pattern. Further analysis of spectral data obtained from the outlined anatomical regions, including CA1 and dentate gyrus (DG) revealed BMAA-induced long-term changes. Increased levels of phospholipids and protein fragments in the histopathologically altered CA1 region as well as phosphate depletion in the DG were observed. Moreover, high resolution SIMS imaging revealed a specific localization of phosphatidylcholine lipids, protein signals and potassium in the histopathologically altered CA1. These findings demonstrate that ToF-SIMS based imaging is a powerful approach for probing biochemical changes in situ and might serve as promising technique for investigating neurotoxin-induced brain pathology.

  1. High Resolution Metabolite Imaging in the Hippocampus Following Neonatal Exposure to the Environmental Toxin BMAA Using ToF-SIMS

    PubMed Central

    2014-01-01

    The environmental neurotoxin β-N-methylamino-l-alanine (BMAA) is suggested to be linked with neurodegenerative disease. In a rat model, neonatal exposure to BMAA induced selective uptake in the hippocampus and caused cell loss, mineralization and astrogliosis as well as learning and memory impairments in adulthood. Moreover, neonatal exposure resulted in increased protein ubiquitination in the cornus ammonis 1 (CA1) region of the adult hippocampus indicating that BMAA may induce protein aggregation. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) based imaging is a powerful technology for spatial profiling of small molecular weight compounds in biological tissues with high chemical specificity and high spatial resolution. The aim of this study was to characterize neurochemical changes in the hippocampus of six month-old rats treated neonatally (postnatal days 9–10) with BMAA. Multivariate data analysis of whole section ToF-SIMS scans was performed to delineate anatomical regions of interest based on their chemical distribution pattern. Further analysis of spectral data obtained from the outlined anatomical regions, including CA1 and dentate gyrus (DG) revealed BMAA-induced long-term changes. Increased levels of phospholipids and protein fragments in the histopathologically altered CA1 region as well as phosphate depletion in the DG were observed. Moreover, high resolution SIMS imaging revealed a specific localization of phosphatidylcholine lipids, protein signals and potassium in the histopathologically altered CA1. These findings demonstrate that ToF-SIMS based imaging is a powerful approach for probing biochemical changes in situ and might serve as promising technique for investigating neurotoxin-induced brain pathology. PMID:24779349

  2. The Composition of Bovine Peritubular Dentin: Matching TOF-SIMS, Scanning Electron Microscopy and Biochemical Component Distributions

    PubMed Central

    Gotliv, Bat Ami; Veis, Arthur

    2008-01-01

    Peritubular dentin (PTD) is a hypermineralized phase within the dentinal tubules in some vertebrate teeth as an interface between the intertubular dentin (ITD) and the cell processes. Our aim has been to understand the composition, structure and role of PTD as a mineralized tissue. We have utilized the technique of time of flight secondary ion mass spectrometry (TOF-SIMS) to map the distribution of positive and negative inorganic ions as well as organic components in the fully mineralized, intact PTD structure in bovine tooth cross-sections, and correlated these with scanning electron microscopy (SEM) in standard and backscatter modes. In recent work, we developed a procedure to freeze fracture the teeth and separate PTD from the less dense ITD by the use of aqueous sodium phosphotungstate step density gradients, after degrading the ITD collagen with NaOCl. Here, PTD-containing fragments were characterized by SEM and TOF-SIMS surface structure analysis. The TOF-SIMS data show that the isolated PTD does not contain collagen, but its surface is rich in glutamic acid-containing protein(s). The TOF-SIMS spectra also indicated that the intact PTD fragments contain phospholipids, and chemical analyses showed phosphatidylserine, phosphatidylinositol and phosphatidylcholine as the principal lipid components. In SEM sections, untreated PTD shows as a smooth collar around the tubule, but after digestion with ethylenediamine to remove all organic components, the porous nature of the mineral phase of small, thin platy apatite crystals becomes evident. Thus, the organic matrix of PTD appears to be a proteolipid-phospholipid complex. PMID:18728348

  3. Lipid specific molecular ion emission as a function of the primary ion characteristics in TOF-SIMS.

    PubMed

    Adams, Kendra J; DeBord, John Daniel; Fernandez-Lima, Francisco

    2016-09-01

    In the present work, the emission characteristics of lipids as a function of the primary ion cluster size and energy were studied using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Characteristic fragmentation patterns for common lipids are described, and changes in secondary ion (SI) yields using various primary ion beams are reported. In particular, emission characteristics were studied for pairs of small polyatomic and nanoparticle primary ion beams (e.g., Bi3(+) versus Ar1000(+) and Au3(+) versus Au400(+4)) based on the secondary ion yield of characteristic fragment and intact molecular ions as a function of the lipid class. Detailed descriptions of the fragmentation patterns are shown for positive and negative mode TOF-SIMS. Results demonstrate that the lipid structure largely dictates the spectral presence of molecular and/or fragment ions in each ionization mode due to the localization of the charge carrier (head group or fatty acid chain). Our results suggest that the larger the energy per atom for small polyatomic projectiles (Bi3(+) and Au3(+)), the larger the SI yield; in the case of nanoparticle projectiles, the SI increase with primary ion energy (200-500 keV range) for Au400(+4) and with the decrease of the energy per atom (10-40 eV/atom range) for Arn=500-2000(+) clusters. The secondary ion yield of the molecular ion of lipids from a single standard or from a mixture of lipids does not significantly change with the primary ion identity in the positive ion mode TOF-SIMS and slightly decreases in the negative ion mode TOF-SIMS.

  4. Asset Analysis and Operational Concepts for Separation Assurance Flight Testing at Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Costa, Guillermo J.; Arteaga, Ricardo A.

    2011-01-01

    A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.

  5. Sims to Teen Second Life: Transition of the SimSavvy Girls to Tech Savvy Isle

    ERIC Educational Resources Information Center

    Johnson, Barbara Z.; King, Elizabeth; Hayes, Elisabeth

    2008-01-01

    In its second year, the Tech Savvy Girls Project adopted "Teen Second Life" as a platform for interest-driven learning and designed projects and objects around themes important to them and their futures as technology-using, creative people. By using the building tools in an open-ended virtual world, they were able to pursue interests common to…

  6. O-Isotope Features of Chondrules from Recent SIMS Studies

    NASA Astrophysics Data System (ADS)

    Tenner, T. J.; Ushikubo, T.; Nakashima, D.; Schrader, D. L.; Weisberg, M. K.; Kimura, M.; Kita, N. T.

    2017-02-01

    We highlight results of recent chondrule O-isotope studies by SIMS: (1) primary and secondary features based on the level of isotope homogeneity, (2) comparing ranges of host and relict data among chondrites, (3) O-isotope vs. major element links.

  7. Progress in cellular analysis using ToF-SIMS

    NASA Astrophysics Data System (ADS)

    Lockyer, N. P.; Vickerman, J. C.

    2004-06-01

    The analysis of cellular biochemistry represents an exciting frontier for ToF-SIMS. The rewards of opening up the life sciences arena are extremely high and a number of groups are demonstrating significant progress towards this goal. However, there are many challenges to be overcome, including sample preparation, sensitivity of detection and data interpretation. In this paper we review some strategies for meeting these challenges. We report the preparation of microbial and mammalian cells using rapid freezing and freeze-fracture to preserve cellular chemistry in a 'life-like' state. ToF-SIMS images of both frozen-hydrated and freeze-dried samples reveal molecular information from single cells, including components of the cell wall, membrane and cytoplasm. The use of Au + primary ions provides increased yields of molecular ions from cellular samples, compared to Ga + bombardment. Polyatomic primary ions such as Au n+ and C 60+ provide even higher yields, extending the mass range of detected biomolecules. The application of principal component analysis aids interpretation of the complex ToF-SIMS spectra from cellular samples. This ToF-SIMS/PCA approach allows the classification of yeast cells from different species and strains, and non-malignant and malignant cancer cells derived from different metastatic sites.

  8. Kite: Status of the External Metrology Testbed for SIM

    NASA Technical Reports Server (NTRS)

    Dekens, Frank G.; Alvarez-Salazar, Oscar; Azizi, Alireza; Moser, Steven; Nemati, Bijan; Negron, John; Neville, Timothy; Ryan, Daniel

    2004-01-01

    Kite is a system level testbed for the External Metrology system of the Space Interferometry Mission (SIM). The External Metrology System is used to track the fiducial that are located at the centers of the interferometer's siderostats. The relative changes in their positions needs to be tracked to tens of picometers in order to correct for thermal measurements, the Kite testbed was build to test both the metrology gauges and out ability to optically model the system at these levels. The Kite testbed is an over-constraint system where 6 lengths are measured, but only 5 are needed to determine the system. The agreement in the over-constrained length needs to be on the order of 140 pm for the SIM Wide-Angle observing scenario and 8 pm for the Narrow-Angle observing scenario. We demonstrate that we have met the Wide-Angle goal with our current setup. For the Narrow-Angle case, we have only reached the goal for on-axis observations. We describe the testbed improvements that have been made since our initial results, and outline the future Kite changes that will add further effects that SIM faces in order to make the testbed more SIM like.

  9. Sim4cc: a cross-species spliced alignment program.

    PubMed

    Zhou, Leming; Pertea, Mihaela; Delcher, Arthur L; Florea, Liliana

    2009-06-01

    Advances in sequencing technologies have accelerated the sequencing of new genomes, far outpacing the generation of gene and protein resources needed to annotate them. Direct comparison and alignment of existing cDNA sequences from a related species is an effective and readily available means to determine genes in the new genomes. Current spliced alignment programs are inadequate for comparing sequences between different species, owing to their low sensitivity and splice junction accuracy. A new spliced alignment tool, sim4cc, overcomes problems in the earlier tools by incorporating three new features: universal spaced seeds, to increase sensitivity and allow comparisons between species at various evolutionary distances, and powerful splice signal models and evolutionarily-aware alignment techniques, to improve the accuracy of gene models. When tested on vertebrate comparisons at diverse evolutionary distances, sim4cc had significantly higher sensitivity compared to existing alignment programs, more than 10% higher than the closest competitor for some comparisons, while being comparable in speed to its predecessor, sim4. Sim4cc can be used in one-to-one or one-to-many comparisons of genomic and cDNA sequences, and can also be effectively incorporated into a high-throughput annotation engine, as demonstrated by the mapping of 64,000 Fagus grandifolia 454 ESTs and unigenes to the poplar genome.

  10. SIMS prototype system 3 test results: Engineering analysis

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The results obtained during testing of a closed hydronic drain down solar system designed for space and hot water heating is presented. Data analysis is included which documents the system performance and verifies the suitability of SIMS Prototype System 3 for field installation.

  11. SimSum: An Empirically Founded Simulation of Summarizing.

    ERIC Educational Resources Information Center

    Endres-Niggemeyer, Brigitte

    2000-01-01

    Describes SimSum (Simulation of Summarizing), which simulates 20 real-world working steps of expert summarizers. Presents an empirically founded cognitive model of summarizing and demonstrates that human summarization strategies can be simulated. Discusses current research in automatic summarization, summarizing in the World Wide Web, and…

  12. ToF-SIMS analysis of a polymer microarray composed of poly(meth)acrylates with C6 derivative pendant groups.

    PubMed

    Hook, Andrew L; Scurr, David J

    2016-04-01

    Surface analysis plays a key role in understanding the function of materials, particularly in biological environments. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides highly surface sensitive chemical information that can readily be acquired over large areas and has, thus, become an important surface analysis tool. However, the information-rich nature of ToF-SIMS complicates the interpretation and comparison of spectra, particularly in cases where multicomponent samples are being assessed. In this study, a method is presented to assess the chemical variance across 16 poly(meth)acrylates. Materials are selected to contain C6 pendant groups, and ten replicates of each are printed as a polymer microarray. SIMS spectra are acquired for each material with the most intense and unique ions assessed for each material to identify the predominant and distinctive fragmentation pathways within the materials studied. Differentiating acrylate/methacrylate pairs is readily achieved using secondary ions derived from both the polymer backbone and pendant groups. Principal component analysis (PCA) is performed on the SIMS spectra of the 16 polymers, whereby the resulting principal components are able to distinguish phenyl from benzyl groups, mono-functional from multi-functional monomers and acrylates from methacrylates. The principal components are applied to copolymer series to assess the predictive capabilities of the PCA. Beyond being able to predict the copolymer ratio, in some cases, the SIMS analysis is able to provide insight into the molecular sequence of a copolymer. The insight gained in this study will be beneficial for developing structure-function relationships based upon ToF-SIMS data of polymer libraries.

  13. ToF‐SIMS analysis of a polymer microarray composed of poly(meth)acrylates with C6 derivative pendant groups

    PubMed Central

    Scurr, David J.

    2016-01-01

    Surface analysis plays a key role in understanding the function of materials, particularly in biological environments. Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) provides highly surface sensitive chemical information that can readily be acquired over large areas and has, thus, become an important surface analysis tool. However, the information‐rich nature of ToF‐SIMS complicates the interpretation and comparison of spectra, particularly in cases where multicomponent samples are being assessed. In this study, a method is presented to assess the chemical variance across 16 poly(meth)acrylates. Materials are selected to contain C6 pendant groups, and ten replicates of each are printed as a polymer microarray. SIMS spectra are acquired for each material with the most intense and unique ions assessed for each material to identify the predominant and distinctive fragmentation pathways within the materials studied. Differentiating acrylate/methacrylate pairs is readily achieved using secondary ions derived from both the polymer backbone and pendant groups. Principal component analysis (PCA) is performed on the SIMS spectra of the 16 polymers, whereby the resulting principal components are able to distinguish phenyl from benzyl groups, mono‐functional from multi‐functional monomers and acrylates from methacrylates. The principal components are applied to copolymer series to assess the predictive capabilities of the PCA. Beyond being able to predict the copolymer ratio, in some cases, the SIMS analysis is able to provide insight into the molecular sequence of a copolymer. The insight gained in this study will be beneficial for developing structure–function relationships based upon ToF‐SIMS data of polymer libraries. © 2016 The Authors Surface and Interface Analysis Published by John Wiley & Sons Ltd. PMID:27134321

  14. Development practices and lessons learned in developing SimPEG

    NASA Astrophysics Data System (ADS)

    Cockett, R.; Heagy, L. J.; Kang, S.; Rosenkjaer, G. K.

    2015-12-01

    Inverse modelling provides a mathematical framework for constructing a model of physical property distributions in the subsurface that are consistent with the data collected in geophysical surveys. The geosciences are increasingly moving towards the integration of geological, geophysical, and hydrological information to better characterize the subsurface. This integration must span disciplines and is not only challenging scientifically, but additionally the inconsistencies between conventions often makes implementations complicated, non­ reproducible, or inefficient. SimPEG is an open-source, multi-university effort aimed at providing a generalized framework for solving forward and inverse problems. SimPEG includes finite volume discretizations on structured and unstructured meshes, interfaces to standard numerical solver packages, convex optimization algorithms, model parameterizations, and visualization routines. The SimPEG package (http://simpeg.xyz) supports an ecosystem of forward and inverse modelling applications, including electromagnetics, vadose zone flow, seismic, and potential­ fields, that are all written with a common interface and toolbox. The goal of SimPEG is to support a community of researchers with well-tested, extensible tools, and encourage transparency and reproducibility both of the SimPEG software and the geoscientific research it is applied to. In this presentation, we will share some of the lessons we have learned in designing the modular infrastructure, testing and development practices of SimPEG. We will discuss our use of version control, extensive unit-testing, continuous integration, documentation, issue tracking, and resources that facilitate communication between existing team members and allows new researchers to get involved. These practices have enabled the use of SimPEG in research, industry, and education as well as the ability to support a growing number of dependent repositories and applications. We hope that sharing our

  15. The 2013 German-Russian BION-M1 Joint Flight Project: Skeletal Muscle and Neuromuscular Changes in Mice Housed for 30 Days in a Biosatellite on Orbit

    NASA Astrophysics Data System (ADS)

    Blottner, Dieter; Shenkman, Boris; Salanova, Michele

    Exposure to microgravity results in various structural, biochemical and molecular changes of the skeletal neuromuscular system. The BION Joint Flight Proposal between the Charité Berlin Center of Space Medicine (www.zwmb.de) in Berlin, and the Institute of Biomedical Problem (IMBP) in Moscow, provided an exciting opportunity for a more detailed analysis of neuromuscular changes in mice (C57/bl6) exposed to real microgravity housed for 30 days in a BION M1 biosatellite on orbit. The mice from the BION flight group (n=5) were compared to three different on-ground control groups (Flight control, BION-ground and Vivarium, each n=5 mice). We started to analyse various skeletal muscles from the hind limbs or trunk. Apart from routine structural and biochemical analysis (fiber size and type distribution, slow/fastMyHC) we test the hypothesis for the presence of a microgravity-induced sarcolemma-cytosolic protein shift of nitric oxide synthase (NOS) and partial loss in neuromuscular synapse scaffold protein (Homer) immunoexpression known to be prone to disuse in mice or humans (hind limb unloading, bed rest) as previously shown (Sandonà D et al., PLoS One, 2012, Salanova M et al., FASEB J, 2011). National Sponsors: Federal Ministry of Economics and Technology (BMWi) via the German AeroSpace Board, DLR e.V., Bonn-Oberkassel, Germany (#50WB1121); Contract RAS-IMBP/Charité Berlin # Bion-M1/2013

  16. Application of the Abridged SimSmoke model to four Eastern Mediterranean countries

    PubMed Central

    Levy, David T; Fouad, Heba; Levy, Jeffrey; Dragomir, Anca D; El Awa, Fatima

    2015-01-01

    Introduction The WHO established the MPOWER policy package to boost the implementation of the WHO Framework Convention for Tobacco Control (WHO FCTC) in 2008 and to provide practical guidance on policies effective at reducing smoking rates. An easily applied Abridged SimSmoke was developed to help countries gauge the effect of these policies using data from the WHO MPOWER/WHO Report (MPOWER Report) and is applied to four Eastern Mediterranean countries. Methods The number of smokers in a country is calculated using the country’s smoking prevalence and population. Policy effect sizes, based on previously validated SimSmoke models, are applied to the smoker populations to determine the reduction in the number of smokers resulting from implementing policies. The number of smoking-attributable deaths is derived based on findings that half of those smokers alive today will die from smoking. Results Within 40 years, implementing the complete set of MPOWER policies is projected to reduce smoking prevalence by 29% (range 15%, 41%) and avert almost 1 (range 0.5, 1.4) million deaths in Egypt, reduce smoking prevalence by 52% (range 36%, 66%) and avert 156 000 (106 000, 196 000) deaths in Lebanon, reduce smoking prevalence by 56% (range 40%, 69%) and avert 3.5 (range 2.5, 4.3) million deaths in Pakistan, and reduce smoking prevalence by 37% (range 21%, 51%) and avert 245 000 (range 138 000, 334 000) deaths in Tunisia. Conclusions The Abridged SimSmoke model has been used to show the number of deaths from smoking and how MPOWER policies can be used to reach the WHO non-communicable deaths voluntary target for cigarette use reduction in four countries. PMID:26080365

  17. Quantitative analysis of biomolecules by time-of-flight secondary-ion mass spectrometry: Fundamental considerations

    SciTech Connect

    Muddiman, D.C.; Nicola, A.J.; Proctor, A.

    1995-12-31

    Static Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS) has been applied to investigate an extensive assortment of analytical systems; from semiconductors to DNA sequencing. Recently, the TOF-SIMS method has been successfully applied to real biological systems. This report focuses on some important aspects that must be taken into consideration when conducting measurements on biomaterials in order to observe the potential the TOF-SIMS method affords. The current data are presented using Cyclosporin A (CsA, 1202 Da) and cocaine (303 Da) as model compounds. CsA is observed in the TOF-SIMS mass spectrum predominately as a Ag-cationized species and cocaine as a protonated species; thus, they are complementary probe molecules.

  18. Seasat. Volume 2: Flight systems

    NASA Technical Reports Server (NTRS)

    Pounder, E. (Editor)

    1980-01-01

    Flight systems used in the Seasat Project are described. Included are (1) launch operation; (2) satellite performance after launch; (3) sensors that collected data; and (4) the launch vehicle that placed the satellite into Earth orbit. Techniques for sensor management are explained.

  19. Robotic Lander Completes Multiple Outdoor Flight

    NASA Video Gallery

    NASA’s Robotic Lander Development Project in Huntsville, Ala., has successfully completed seven autonomous outdoor flight tests of a lander prototype, dubbed Mighty Eagle. On Oct. 14, Mighty Eagl...

  20. Surface Analysis of Stratospheric Particles with TOF-SIMS: Bromine Enrichments Due to Contamination

    NASA Astrophysics Data System (ADS)

    Stephan, T.; Rost, D.; Jessberger, E. K.

    1995-09-01

    Volatile element enrichments compared to CI abundances in stratospheric interplanetary dust particles especially for Br have been interpreted as due to atmospheric contamination processes [1] or, less substantiated, as being indicative for a new type of chondritic material [2, 3]. Although only little is known about the actual Br concentration in the stratosphere, it is well accepted that halogens play an important role in stratospheric chemistry and therefore contamination processes have to be excluded before a Br-rich chondritic parent body can be speculated on. The analysis of the lateral distribution of halogens in IDPs with high-resolution imaging TOF-SIMS (time-of-flight secondary-ion-mass-spectrometry) [4] may help to solve the controversy about the ubiquity of Br in stratospheric IDPs. Besides controversially discussed theoretical models which try to test correlations between Br-content and stratospheric residence time or surface areas [5, 6, 7], first observational hints for halogen contamination of at least two chondritic IDPs were found for W7029E5, where Br- salt nanocrystals of presumably atmospheric origin were observed [5], and for L2006G1, which showed a halogen-rich exterior rim [8]. TOF-SIMS with its extremely high surface sensitivity -- the information depth is in the order of a few atomic monolayers -- seems to be suitable for a systematic search for surface correlated halogens in IDPs. Although, in general, plane surfaces are required for TOF-SIMS measurements, particle analysis is possible with this technique [9], though quantification is highly complicated due to topographic effects on secondary ion production and detection probability. We analyzed five stratospheric particles from small area collector U2071 which were previously investigated with SEM-EDX [10]. Silicone oil on the surfaces of some particles could still be detected with TOF-SIMS, even after extensive hexane rinsing. In three cases (chondritic particles U2071B7a, F3, and H1a

  1. Detection of surface mobility of poly (2, 3, 4, 5, 6-pentafluorostyrene) films by in situ variable-temperature ToF-SIMS and contact angle measurements.

    PubMed

    Fu, Yi; Lau, Yiu-Ting R; Weng, Lu-Tao; Ng, Kai-Mo; Chan, Chi-Ming

    2014-10-01

    Poly (2, 3, 4, 5, 6-pentafluorostyrene) (5FPS) was prepared by bulk radical polymerization. The spin-cast films of this polymer were analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) at various temperatures ranging from room temperature to 120°C. Principal component analysis (PCA) of the ToF-SIMS data revealed a transition temperature (T(T)) at which the surface structure of 5FPS was rearranged. A comparison between the results of the PCA of ToF-SIMS spectra obtained on 5FPS and polystyrene (PS) indicate that the pendant groups of 5FPS and PS moved in exactly opposite directions as the temperature increased. More pendant groups of 5FPS and PS migrated from the bulk to the surface and verse versa, respectively, as the temperature increased. These results clearly support the view that the abrupt changes in the normalized principal component 1 value was caused by the surface reorientation of the polymers and not by a change in the ion fragmentation mechanism at temperatures above the T(T). Contact angle measurement, which is another extremely surface sensitive technique, was used to monitor the change in the surface tension as a function of temperature. A clear T(T) was determined by the contact angle measurements. The T(T) values determined by contact angle measurements and ToF-SIMS were very similar.

  2. Assessing the potential of ToF-SIMS as a complementary approach to investigate cement-based materials — Applications related to alkali–silica reaction

    SciTech Connect

    Bernard, Laetitia; Leemann, Andreas

    2015-02-15

    In this study, the potential of time-of-flight secondary ion mass spectrometry (ToF-SIMS) for the application in cement-based materials is assessed in combination and comparison with scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). Mortar, concrete and samples from model systems providing products formed by the alkali–silica reaction (ASR) were studied. ToF-SIMS provides qualitative data on alkalis in cases where EDX reaches its limits in regard to detectable concentration, lateral resolution and atomic number of the elements. Due to its high in-depth resolution of a few atomic monolayers, thin layers of reaction products can be detected on the surfaces and chemically analyzed with ToF-SIMS. Additionally, it delivers information on the molecular conformation within the ASR product, its hydrogen content and its isotope ratios, information not provided by EDX. Provided the samples are carefully prepared, ToF-SIMS opens up new possibilities in the analysis of cement-based materials.

  3. Autonomous, In-Flight Crew Health Risk Management for Exploration-Class Missions: Leveraging the Integrated Medical Model for the Exploration Medical System Demonstration Project

    NASA Technical Reports Server (NTRS)

    Butler, D. J.; Kerstman, E.; Saile, L.; Myers, J.; Walton, M.; Lopez, V.; McGrath, T.

    2011-01-01

    The Integrated Medical Model (IMM) captures organizational knowledge across the space medicine, training, operations, engineering, and research domains. IMM uses this knowledge in the context of a mission and crew profile to forecast risks to crew health and mission success. The IMM establishes a quantified, statistical relationship among medical conditions, risk factors, available medical resources, and crew health and mission outcomes. These relationships may provide an appropriate foundation for developing an in-flight medical decision support tool that helps optimize the use of medical resources and assists in overall crew health management by an autonomous crew with extremely limited interactions with ground support personnel and no chance of resupply.

  4. Quantitative ToF-SIMS studies of protein drug release from biodegradable polymer drug delivery membranes

    NASA Astrophysics Data System (ADS)

    Burns, Sarah A.; Gardella, Joseph A.

    2008-12-01

    Biodegradable polymers are of interest in developing strategies to control protein drug delivery. The protein that was used in this study is Keratinocyte Growth Factor (KGF) which is a protein involved in the re-epithelialization process. The protein is stabilized in the biodegradable polymer matrix during formulation and over the course of polymer degradation with the use of an ionic surfactant Aerosol-OT (AOT) which will encapsulate the protein in an aqueous environment. The release kinetics of the protein from the surface of these materials requires precise timing which is a crucial factor in the efficacy of this drug delivery system. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used in the same capacity to identify the molecular ion peak of the surfactant and polymer and use this to determine surface concentration. In the polymer matrix, the surfactant molecular ion peak was observed in the positive and negative mode at m/ z 467 and 421, respectively. These peaks were determined to be [AOT + Na +] and [AOT - Na +]. These methods are used to identify the surfactant and protein from the polymer matrix and are used to measure the rate of surface accumulation. The second step was to compare this accumulation rate with the release rate of the protein into an aqueous solution during the degradation of the biodegradable film. This rate is compared to that from fluorescence spectroscopy measurements using the protein autofluorescence from that released into aqueous solution [C.M. Mahoney, J. Yu, A. Fahey, J.A.J. Gardella, SIMS depth profiling of polymer blends with protein based drugs, Appl. Surf. Sci. 252 (2006), 6609-6614.].

  5. TOF-SIMS with argon gas cluster ion beams: a comparison with C60+.

    PubMed

    Rabbani, Sadia; Barber, Andrew M; Fletcher, John S; Lockyer, Nicholas P; Vickerman, John C

    2011-05-15

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is an established technique for the characterization of solid sample surfaces. The introduction of polyatomic ion beams, such as C(60), has provided the associated ability to perform molecular depth-profiling and 3D molecular imaging. However, not all samples perform equally under C(60) bombardment, and it is probably naïve to think that there will be an ion beam that will be applicable in all situations. It is therefore important to explore the potential of other candidates. A systematic study of the suitability of argon gas cluster ion beams (Ar-GCIBs) of general composition Ar(n)(+), where n = 60-3000, as primary particles in TOF-SIMS analysis has been performed. We have assessed the potential of the Ar-GCIBs for molecular depth-profiling in terms of damage accumulation and sputter rate and also as analysis beams where spectral quality and secondary ion yields are considered. We present results with direct comparison with C(60) ions on the same sample in the same instrument on polymer, polymer additive, and biomolecular samples, including lipids and small peptides. Large argon clusters show reduced damage accumulation compared with C(60) with an approximately constant sputter rate as a function of Ar cluster size. Further, on some samples, large argon clusters produce changes in the mass spectra indicative of a more gentle ejection mechanism. However, there also appears to be a reduction in the ionization of secondary species as the size of the Ar cluster increases.

  6. IRVE-II Post-Flight Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    O'Keefe, Stephen A.; Bose, David M.

    2010-01-01

    NASA s Inflatable Re-entry Vehicle Experiment (IRVE) II successfully demonstrated an inflatable aerodynamic decelerator after being launched aboard a sounding rocket from Wallops Flight Facility (WFF). Preliminary day of flight data compared well with pre-flight Monte Carlo analysis, and a more complete trajectory reconstruction performed with an Extended Kalman Filter (EKF) approach followed. The reconstructed trajectory and comparisons to an attitude solution provided by NASA Sounding Rocket Operations Contract (NSROC) personnel at WFF are presented. Additional comparisons are made between the reconstructed trajectory and pre and post-flight Monte Carlo trajectory predictions. Alternative observations of the trajectory are summarized which leverage flight accelerometer measurements, the pre-flight aerodynamic database, and on-board flight video. Finally, analysis of the payload separation and aeroshell deployment events are presented. The flight trajectory is reconstructed to fidelity sufficient to assess overall project objectives related to flight dynamics and overall, IRVE-II flight dynamics are in line with expectations

  7. Flight deck engine advisor

    NASA Technical Reports Server (NTRS)

    Shontz, W. D.; Records, R. M.; Antonelli, D. R.

    1992-01-01

    The focus of this project is on alerting pilots to impending events in such a way as to provide the additional time required for the crew to make critical decisions concerning non-normal operations. The project addresses pilots' need for support in diagnosis and trend monitoring of faults as they affect decisions that must be made within the context of the current flight. Monitoring and diagnostic modules developed under the NASA Faultfinder program were restructured and enhanced using input data from an engine model and real engine fault data. Fault scenarios were prepared to support knowledge base development activities on the MONITAUR and DRAPhyS modules of Faultfinder. An analysis of the information requirements for fault management was included in each scenario. A conceptual framework was developed for systematic evaluation of the impact of context variables on pilot action alternatives as a function of event/fault combinations.

  8. Angular Diameters, Temperatures, And Luminosities Of Massive Stars: Prospects For Sim-lite

    NASA Astrophysics Data System (ADS)

    Richardson, Noel; Gies, D.; Ridgway, S.; Boyajian, T.; Aufdenberg, J. P.; Ireland, M.; Schaefer, G.; CHARA

    2009-05-01

    O and B stars are among the brightest stars observable in galaxies, and are often considered signs of recent star formation or used for distance estimates. However, the fundamental properties of these stars (temperature and luminosity) are poorly understood because we do not have accurate distances and diameters of nearby O and B stars. SIM Lite will be able to provide parallaxes for these bright stars accurate to 1% at a distance of 2.6 kpc. Long Baseline Optical Interferometry, from instruments such as CHARA/PAVO, can yield temperatures and luminosities accurate to 5% for these stars once the distance is known from SIM. Here we present an initial observing list for the CHARA array and the PAVO (R band) beam combiner, as well as spectral energy distributions for the sample. These SEDs will provide a direct comparison for angular diameter measurements of hot stars that will be measured with the CHARA array in the next year. This project is supported by NASA-JPL#1349293

  9. JetStar in flight

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This 18-second movie clip shows the NASA Dryden Lockheed C-140 JetStar in flight with its pylon-mounted air-turbine-drive system used to gather information on the acoustic characteristics of subscale advanced design propellers. Data was gathered through 28 flush-mounted microphones on the skin of the aircraft. From 1976 to 1987 the NASA Lewis Research Center, Cleveland, Ohio -- today known as the Glenn Research Center -- engaged in research and development of an advanced turboprop concept in partnership with Hamilton Standard, Windsor Locks, Connecticut, the largest manufacturer of propellers in the United States. The Advanced Turboprop Project took its impetus from the energy crisis of the early 1970's and sought to produce swept propeller blades that would increase efficiency and reduce noise. As the project progressed, Pratt & Whitney, Allison Gas Turbine Division of General Motors, General Electric, Gulfstream, Rohr Industries, Boeing, Lockheed, and McDonnell Douglas, among others, also took part. NASA Lewis did the much of the ground research and marshaled the resources of these and other members of the aeronautical community. The team came to include the NASA Ames Research Center, Langley Research Center, and the Ames-Dryden Flight Research Facility (before and after that time, the Dryden Flight Research Center). Together, they brought the propeller to the flight research stage, and the team that worked on the project won the coveted Collier Trophy for its efforts in 1987. To test the acoustics of the propeller the team developed, it mounted propeller models on a C-140 JetStar aircraft fuselage at NASA Dryden. The JetStar was modified with the installation of an air-turbine-drive system. The drive motor, with a test propeller, was mounted on a pylon atop the JetStar. The JetStar was equipped with an array of 28 microphones flush-mounted in the fuselage of the aircraft beneath the propeller. Microphones mounted on the wings and on an accompanying Learjet chase

  10. F-16XL ship #1 (#849) during first flight of the Digital Flight Control System (DFCS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    After completing its first flight with the Digital Flight Control System on December 16, 1997, the F-16XL #1 aircraft began a series of envelope expansion flights. On January 27 and 29, 1998, it successfully completed structural clearance tests, as well as most of the load testing Only flights at Mach 1.05 at 10,000 feet, Mach 1.1 at 15,000 feet, and Mach 1.2 at 20,000 feet remained. During the next flight, on February 4, an instrumentation problem cut short the planned envelope expansion tests. After the problem was corrected, the F-16XL returned to flight status, and on February 18 and 20, flight control and evaluation flights were made. Two more research flights were planned for the following week, but another problem appeared. During the ground start up, project personnel noticed that the leading edge flap moved without being commanded. The Digital Flight Control Computer was sent to the Lockheed-Martin facility at Fort Worth, where the problem was traced to a defective chip in the computer. After it was replaced, the F-16XL #1 flew a highly successful flight controls and handling qualities evaluation flight on March 26, clearing the way for the final tests. The final limited loads expansion flight occurred on March 31, and was fully successful. As a result, the on-site Lockheed-Martin loads engineer cleared the aircraft to Mach 1.8. The remaining two handling qualities and flight control evaluation flights were both made on April 3, 1998. These three flights concluded the flight test portion of the DFCS upgrade.

  11. Teaching the Teacher: Tutoring SimStudent Leads to More Effective Cognitive Tutor Authoring

    ERIC Educational Resources Information Center

    Matsuda, Noboru; Cohen, William W.; Koedinger, Kenneth R.

    2015-01-01

    SimStudent is a machine-learning agent initially developed to help novice authors to create cognitive tutors without heavy programming. Integrated into an existing suite of software tools called Cognitive Tutor Authoring Tools (CTAT), SimStudent helps authors to create an expert model for a cognitive tutor by tutoring SimStudent on how to solve…

  12. Separation of bacterial cells by free flow electrophoresis under microgravity: A result of the SpaceLab-Japan project on Space Shuttle flight STS-47

    NASA Astrophysics Data System (ADS)

    Akiba, Teruhiko; Nishi, Atsuko; Takaoki, Muneo; Matsumiya, Hiroyuki; Tomita, Fusao; Usami, Ron; Nagaoka, Shunji

    1995-08-01

    We demonstrated free flow electrophoresis (FFE) of charged cells under microgravity, where gravitational effects are almost eliminated. Separation of a mixture of three bacterial strains (mutants of Salmonella typhimurium LT2) by FFE was conducted on NASA Space Shuttle flight STS-47 (September 1992). The experiment was designed to differentiate three strains having different lipopolysaccharide core structures in the cell membrane. The results were compared to those of ground experiments, in order to examine whether or not FFE in a weightless environment provides distinct advantages. Smooth strain SL1027 and rough strain SL3749 migrated to two separated fractions. The quality (viability) and the yields of the separated samples were sufficient to show the advantage of microgravity. Another rough strain, SL1102, exhibited unexpected electrophoretic behavior, which prevented the complete resolution of the three strains. All the strains were recovered as viable cells after 8 days of flight. The present study suggests that electrophoretic separation of bacterial cells is much more effective under microgravity conditions with relatively good resolution in comparison with the ground operation.

  13. Boundary Layer Transition Flight Experiment Overview

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.; Garske, Michael T.; Saucedo, Luis A.; Kinder, Gerald R.; Micklos, Ann M.

    2011-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS-128, STS-131 and STS-133 as well as Space Shuttle Endeavour for STS-134. Additional instrumentation was installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLT FE Project with emphasis on the STS-131 and STS-133 results. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that empirically correlated predictions for boundary layer transition onset time closely match the flight data, while predicted surface temperatures were significantly higher than observed flight temperatures. A thermocouple anomaly observed on a number of the missions is discussed as are a number of the mitigation actions that will be taken on the final flight, STS-134, including potential alterations of the flight trajectory and changes to the flight instrumentation.

  14. Investigations of semiconductor devices using SIMS; diffusion, contamination, process control

    NASA Astrophysics Data System (ADS)

    Lee, Jae Cheol; Won, Jeongyeon; Chung, Youngsu; Lee, Hyungik; Lee, Eunha; Kang, Donghun; Kim, Changjung; Choi, Jinhak; Kim, Jeomsik

    2008-12-01

    We have surveyed 22,155 analyses issues to know the portion of surface analysis at the total analyses activities. According to the survey result, the contribution of SIMS in the total analyses issues was about 7%. The portions of semiconductor process control, composition and contamination in the SIMS analyses issues are 25%, 29% and 16%, respectively. In this article, some examples of the semiconductor device process control, identification of contaminants, and failure analyses have been reviewed. The behavior of H, O, and Ti at the Pt/Ti/GaInZnO interfaces and their influences on the electrical property of thin film transistor are demonstrated. Also discolor issues including organic material contamination problem on Au pad are discussed in detail.

  15. Dynamic modeling of cellular populations within iBioSim.

    PubMed

    Stevens, Jason T; Myers, Chris J

    2013-05-17

    As the complexity of synthetic genetic circuits increases, modeling is becoming a necessary first step to inform subsequent experimental efforts. In recent years, the design automation community has developed a wealth of computational tools for assisting experimentalists in designing and analyzing new genetic circuits at several scales. However, existing software primarily caters to either the DNA- or single-cell level, with little support for the multicellular level. To address this need, the iBioSim software package has been enhanced to provide support for modeling, simulating, and visualizing dynamic cellular populations in a two-dimensional space. This capacity is fully integrated into the software, capitalizing on iBioSim's strengths in modeling, simulating, and analyzing single-celled systems.

  16. SIM Interferometer Testbed (SCDU) Status and Recent Results

    NASA Technical Reports Server (NTRS)

    Nemati, Bijan; An, Xin; Goullioud, Renaud; Shao, Michael; Shen, Tsae-Pyng; Wehmeier, Udo J.; Weilert, Mark A.; Wang, Xu; Werne, Thomas A.; Wu, Janet P.; Zhai, Chengxing

    2010-01-01

    SIM Lite is a space-borne stellar interferometer capable of searching for Earth-size planets in the habitable zones of nearby stars. This search will require measurement of astrometric angles with sub micro-arcsecond accuracy and optical pathlength differences to 1 picometer by the end of the five-year mission. One of the most significant technical risks in achieving this level of accuracy is from systematic errors that arise from spectral differences between candidate stars and nearby reference stars. The Spectral Calibration Development Unit (SCDU), in operation since 2007, has been used to explore this effect and demonstrate performance meeting SIM goals. In this paper we present the status of this testbed and recent results.

  17. Green Flight Challenge

    NASA Video Gallery

    The CAFE Green Flight Challenge sponsored by Google will be held at the CAFE Foundation Flight Test Center at Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. The Green Flight Challeng...

  18. SimGen: A General Simulation Method for Large Systems.

    PubMed

    Taylor, William R

    2017-02-03

    SimGen is a stand-alone computer program that reads a script of commands to represent complex macromolecules, including proteins and nucleic acids, in a structural hierarchy that can then be viewed using an integral graphical viewer or animated through a high-level application programming interface in C++. Structural levels in the hierarchy range from α-carbon or phosphate backbones through secondary structure to domains, molecules, and multimers with each level represented in an identical data structure that can be manipulated using the application programming interface. Unlike most coarse-grained simulation approaches, the higher-level objects represented in SimGen can be soft, allowing the lower-level objects that they contain to interact directly. The default motion simulated by SimGen is a Brownian-like diffusion that can be set to occur across all levels of representation in the hierarchy. Links can also be defined between objects, which, when combined with large high-level random movements, result in an effective search strategy for constraint satisfaction, including structure prediction from predicted pairwise distances. The implementation of SimGen makes use of the hierarchic data structure to avoid unnecessary calculation, especially for collision detection, allowing it to be simultaneously run and viewed on a laptop computer while simulating large systems of over 20,000 objects. It has been used previously to model complex molecular interactions including the motion of a myosin-V dimer "walking" on an actin fibre, RNA stem-loop packing, and the simulation of cell motion and aggregation. Several extensions to this original functionality are described.

  19. ToF–SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse

    PubMed Central

    deGhetaldi, Kristin; Wiggins, Marcie B.; Buckley, Barbara; Baade, Brian; Mass, Jennifer L.; Beebe, Thomas P.

    2016-01-01

    Time-of-flight secondary ion mass spectrometry (ToF–SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF–SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment–binder interactions. In this study, ToF–SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905–1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF–SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting’s complex restoration history. ToF–SIMS’s ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM–EDX, and SR-FTIR. The relatively high sensitivity offered by ToF–SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium

  20. The bHLH/Per-Arnt-Sim transcription factor SIM2 regulates muscle transcript myomesin2 via a novel, non-canonical E-box sequence

    PubMed Central

    Woods, Susan; Farrall, Alexandra; Procko, Carl; Whitelaw, Murray L.

    2008-01-01

    Despite a growing number of descriptive studies that show Single-minded 2 (Sim2) is not only essential for murine survival, but also upregulated in colon, prostate and pancreatic tumours, there is a lack of direct target genes identified for this basic helix–loop–helix/PAS transcription factor. We have performed a set of microarray experiments aimed at identifying genes that are differentially regulated by SIM2, and successfully verified that the Myomesin2 (Myom2) gene is SIM2-responsive. Although SIM2 has been reported to be a transcription repressor, we find that SIM2 induces transcription of Myom2 and activates the Myom2 promoter sequence when co-expressed with the heterodimeric partner protein, ARNT1, in human embryonic kidney cells. Truncation and mutation of the Myom2 promoter sequence, combined with chromatin immunoprecipitation studies in cells, has lead to the delineation of a non-canonical E-box sequence 5′-AACGTG-3′ that is bound by SIM2/ARNT1 heterodimers. Interestingly, in immortalized human myoblasts knock down of Sim2 results in increased levels of Myom2 RNA, suggesting that SIM2 is acting as a repressor in these cells and so its activity is likely to be highly context dependent. This is the first report of a direct SIM2/ARNT1 target gene with accompanying analysis of a functional response element. PMID:18480125

  1. HyBoLT Flight Experiment

    NASA Technical Reports Server (NTRS)

    Chen, Fang-Jeng (Frank); Berry, Scott A.

    2010-01-01

    HyBoLT was a Hypersonic Boundary Layer Transition flight experiment funded by the Hypersonics Project of the Fundamental Aeronautics Program in NASA's Aeronautics Research Mission Directorate. The HyBoLT test article mounted on the top of the ALV X-1 rocket was launched from Virginia's Wallops Island on August 22, 2008. Unfortunately a problem in the rocket's flight control system caused the vehicle to veer off the designed flight course. Launch officials activated a self-destruct mechanism in the rocket's nose cone after 20 seconds into flight. This report is a closeout document about the HyBoLT flight experiment. Details are provided of the objectives and approach associated with this experimental program as well as the 20 seconds flight data acquired before the vehicle was destroyed.

  2. Identification of Mineral Phases on Basalt Surfaces by Imaging SIMS.

    PubMed

    Ingram, J C; Groenewold, G S; Olson, J E; Gianotto, A K; McCurry, M O

    1999-05-01

    A method for the identification of mineral phases on basalt surfaces utilizing secondary ion mass spectrometry (SIMS) with imaging capability is described. The goal of this work is to establish the use of imaging SIMS for characterization of the surface of basalt. The basalt surfaces were examined by interrogating the intact basalt (heterogeneous mix of mineral phases) as well as mineral phases that have been separated from the basalt samples. Mineral separates from the basalt were used to establish reference spectra for the specific mineral phases. Electron microprobe and X-ray photoelectron spectroscopy were used as supplemental techniques for providing additional characterization of the basalt. Mineral phases that make up the composition of the basalt were identified from single-ion images which were statistically grouped. The statistical grouping is performed by utilizing a program that employs a generalized learning vector quantization technique. Identification of the mineral phases on the basalt surface is achieved by comparing the mass spectra from the statistically grouped regions of the basalt to the mass spectral results from the mineral separates. The results of this work illustrate the potential for using imaging SIMS to study adsorption chemistry at the top surface of heterogeneous mineral samples.

  3. SIMS analysis: Development and evaluation 1995 summary report

    SciTech Connect

    Groenewold, G.S.; Appelhans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1995-10-01

    Secondary ion mass spectrometry (SIMS) was evaluated for characterizing Hg salts. It was found that sulfate and chloride species could be identified directly without sample preparation. Mercuric oxide could be identified by complexation with formic acid. Hg nitrates could be identified by complexation with cyclohexylamine (CHA). Laser desorption ion trap MS was evaluated for characterizing EDTA on environmental samples. No intact EDTA ions were observed, but a series of EDTA fragment ions were visible, particularly on basalt and soil. An ion trap SIMS was developed: a perrhenate ion gun was interfaced to a Teledyne ion trap spectrometer, and the entire device was mounted on a cart. The technology was demonstrated using a prototype ion trap SIMS instrument for detecting Hg{center_dot}CHA complexes formed from nitrate salts. Intensity of the ion gun was improved, and the surface damage of the particle was small, and ion gun technology transfer to Phi-Evans, Inc. is being considered. Two technology end users are at INEL`s Central Facilities Area 674 pond and acid pit of the Radioactive Waste Management Complex; target problem at both sites is the need for Hg speciation on soil samples.

  4. Exploratory analysis of TOF-SIMS data from biological surfaces

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Seetharaman; Fletcher, John S.; Henderson, Alex; Lockyer, Nicholas P.; Vickerman, John C.

    2008-12-01

    The application of multivariate analytical tools enables simplification of TOF-SIMS datasets so that useful information can be extracted from complex spectra and images, especially those that do not give readily interpretable results. There is however a challenge in understanding the outputs from such analyses. The problem is complicated when analysing images, given the additional dimensions in the dataset. Here we demonstrate how the application of simple pre-processing routines can enable the interpretation of TOF-SIMS spectra and images. For the spectral data, TOF-SIMS spectra used to discriminate bacterial isolates associated with urinary tract infection were studied. Using different criteria for picking peaks before carrying out PC-DFA enabled identification of the discriminatory information with greater certainty. For the image data, an air-dried salt stressed bacterial sample, discussed in another paper by us in this issue, was studied. Exploration of the image datasets with and without normalisation prior to multivariate analysis by PCA or MAF resulted in different regions of the image being highlighted by the techniques.

  5. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  6. Long duration IR montgolfier and super-pressure balloon flights at the tropics for invetigating the impact of deep convection on transport, chemistry and microphysics in the UTLS region: The Hibiscus Project

    NASA Astrophysics Data System (ADS)

    Garnier, A.; Pommereau, J.; Letrenne, G.

    The HIBISCUS project is to study the uplift of tropospheric air, lightning, water- vapour injection and radiative impact on the lower stratosphere associated to deep convection at the tropics. The main field campaign planned in Brazil during the Austral summer of 2003-04 is to combined measurements around the world by remote sensing from Infra-Red Montgolfier (MIR) and in-situ from constant level super-pressure balloons (BP). Remote sensing includes profiling of O3, NO 2, H2O and atmospheric extinction in the upper troposphere and the lower stratosphere by UV-Vis spectrometry and aerosol and sub-visible cirrus by a micro-lidar. In-situ measurements are those of water vapour, ozone and clouds at constant level at the tropopause level around 17 km. In preparation to HIBISCUS, several preliminary MIR and BP test flights have been conducted in the tropics and in the Arctic which allow to better understand the anticipated performances of the approach. The goal of the presentation is to describe the results already achieved during those test flights and the undergoing developments for fulfilling the scientific goals of HIBISCUS.

  7. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  8. A Chief Engineer's View of the NASA X-43A Scramjet Flight Test

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.; Corpening, Griffin P.; Sherrill, Robert

    2005-01-01

    This paper presents an overview of the preparation and execution of the first two flights of the NASA X-43A scramjet flight test project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The first flight, conducted on June 2, 2001, was unsuccessful and resulted in a nine-month mishap investigation. A two-year return to flight effort ensued and concluded when the second Mach 7 flight was successfully conducted on March 27, 2004. The challenges faced by the project team as they prepared the first ever scramjet-powered airplane for flight are presented. Modifications made to the second flight vehicle as a result of the first flight failure and the return to flight activities are discussed. Flight results and lessons learned are also presented.

  9. NASA's Flight Opportunities Program

    NASA Video Gallery

    NASA's Flight Opportunities Program is facilitating low-cost access to suborbital space, where researchers can test technologies using commercially developed vehicles. Suborbital flights can quickl...

  10. Sounding Rockets as a Real Flight Platform for Aerothermodynamic Cfd Validation of Hypersonic Flight Experiments

    NASA Astrophysics Data System (ADS)

    Stamminger, A.; Turner, J.; Hörschgen, M.; Jung, W.

    2005-02-01

    This paper describes the possibilities of sounding rockets to provide a platform for flight experiments in hypersonic conditions as a supplement to wind tunnel tests. Real flight data from measurement durations longer than 30 seconds can be compared with predictions from CFD calculations. This paper will regard projects flown on sounding rockets, but mainly describe the current efforts at Mobile Rocket Base, DLR on the SHarp Edge Flight EXperiment SHEFEX.

  11. Recent Progress Towards Space Applications Of Thin Film Solar Cells- The German Joint Project 'Flexible CIGSE Thin Film Solar Cells For Space Flight' And OOV

    NASA Astrophysics Data System (ADS)

    Brunner, Sebastian; Zajac, Kai; Nadler, Michael; Seifart, Klaus; Kaufmann, Christian A.; Caballero, Raquel; Schock, Hans-Werner; Hartmann, Lars; Otte, Karten; Rahm, Andreas; Scheit, Christian; Zachmann, Hendrick; Kessler, Friedrich; Wurz, Roland; Schulke, Peter

    2011-10-01

    A group of partners from an academic and industrial background are developing a flexible Cu(In,Ga)Se2 (CIGSe) thin film solar cell technology on a polyimide substrate that aims to be a future alternative to current rigid solar cell technologies for space applications. In particular on missions with high radiation volumes, the superior tolerance of chalcopyrite based thin film solar cell (TFSC) technologies with respect to electron and proton radiation, when compared to the established Si- or III-V based technologies, can be advantageous. Of all thin film technologies, those based on CIGSe have the highest potential to reach attractive photovoltaic conversion efficiencies and combine these with low weight in order to realize high power densities on solar cell and generator level. The use of a flexible substrate ensures a high packing density. A working demonstrator is scheduled for flight this year.

  12. XPS and ToF-SIMS analysis of natural rubies and sapphires heat-treated in a reducing (5 mol% H 2/Ar) atmosphere

    NASA Astrophysics Data System (ADS)

    Achiwawanich, S.; James, B. D.; Liesegang, J.

    2008-12-01

    Surface effects on Mong Hsu rubies and Kanchanaburi sapphires after heat treatment in a controlled reducing atmosphere (5 mol% H 2/Ar) have been investigated using advanced surface science techniques including X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Visual appearance of the gemstones is clearly affected by the heat treatment in a reducing atmosphere. Kanchanaburi sapphires, in particular, exhibit Fe-containing precipitates after the heat treatment which have not been observed in previous studies under an inert atmosphere. Significant correlation between changes in visual appearance of the gemstones and variations in surface concentration of trace elements, especially Ti and Fe are observed. The XPS and ToF-SIMS results suggest that; (1) a reducing atmosphere affects the oxidation state of Fe; (2) dissociation of Fe-Ti interaction may occur during heat treatment.

  13. Current projects in Fuzzy Control

    NASA Technical Reports Server (NTRS)

    Sugeno, Michio

    1990-01-01

    Viewgraphs on current projects in fuzzy control are presented. Three projects on helicopter flight control are discussed. The projects are (1) radio control by oral instructions; (2) automatic autorotation entry in engine failure; and (3) unmanned helicopter for sea rescue.

  14. Histological analysis of pollen-pistil interactions in sour passion fruit plants (Passiflora edulis Sims).

    PubMed

    Madureira, Hérika Chagas; Pereira, Telma Nair Santana; Da Cunha, Maura; Klein, Denise Espellet

    2012-08-01

    The success of sexual plant reproduction is directly influenced by specific interactions between the pollen and pistil. Light, fluorescence and scanning electron microscopy techniques were used to evaluate the steps of pollination in sour passion fruit plants (Passiflora edulis Sims). In the compatible interaction, pollen tubes grow through stigma projections towards the ovary. The pollen grain surface was found to be spheroidal and to consist of heteroreticulate exine with six colpi. Furthermore, analysis in vivo of pollen-pistil interactions indicated that stigmas of flowers 24 hours before anthesis are unable to discriminate compatible (genetically unrelated) and incompatible (genetically related) pollen grains. Taken together, these results provide insight into the cellular mechanisms underlying pollination in passion fruit plants.

  15. Model Comparison in Subsurface Science: The DECOVALEX and Sim-SEQ Initiatives (Invited)

    NASA Astrophysics Data System (ADS)

    Birkholzer, J. T.; Mukhopadhyay, S.; Rutqvist, J.; Tsang, C.

    2013-12-01

    , the DECOVALEX project has played a major role in improving our understanding of coupled THM processes in fractured rock and buffer/backfill materials, a subject of importance to performance assessment of a radioactive waste geologic repository. The second example is the Sim-SEQ project, a relatively recent model comparison initiative addressing multi-phase processes relevant in geologic carbon sequestration. Like DECOVALEX, Sim-SEQ is not about benchmarking, but rather about evaluating model building efforts in a broad and comprehensive sense. In Sim-SEQ, sixteen international modeling teams are building their own models for a specific carbon sequestration site referred to as the Sim-SEQ Study site (the S-3 site). The S-3 site is patterned after the ongoing SECARB Phase III Early Test site in southwestern Mississippi, where CO2 is injected into a fluvial sandstone unit with high vertical and lateral heterogeneity. The complex geology of the S-3 site, its location in the water leg of a CO2-EOR field with a strong water drive, and the presence of methane in the reservoir brine make this a challenging task, requiring the modelers to use their best judgment in making a large number of choices about how to model various processes and properties of the system.

  16. Automated SIMS Isotopic Analysis Of Small Dust Particles

    NASA Astrophysics Data System (ADS)

    Nittler, L.; Alexander, C.; Gyngard, F.; Morgand, A.; Zinner, E. K.

    2009-12-01

    The isotopic compositions of sub-μm to μm sized dust grains are of increasing interest in cosmochemistry, nuclear forensics and terrestrial aerosol research. Because of its high sensitivity and spatial resolution, Secondary Ion Mass Spectrometry (SIMS) is the tool of choice for measuring isotopes in such small samples. Indeed, SIMS has enabled an entirely new sub-field of astronomy: presolar grains in meteorites. In recent years, the development of the Cameca NanoSIMS ion probe has extended the reach of isotopic measurements to particles as small as 100 nm in diameter, a regime where isotopic precision is strongly limited by the total number of atoms in the sample. Many applications require obtaining isotopic data on large numbers of particles, necessitating the development of automated techniques. One such method is isotopic imaging, wherein images of multiple isotopes are acquired, each containing multiple dispersed particles, and image processing is used to determine isotopic ratios for individual particles. This method is powerful, but relatively inefficient for raster-based imaging on the NanoSIMS. Modern computerized control of instrumentation has allowed for another approach, analogous to commercial automated SEM-EDS particle analysis systems, in which images are used solely to locate particles followed by fully automated grain-by-grain analysis. The first such system was developed on the Carnegie Institution’s Cameca ims-6f, and was used to generate large databases of presolar grains. We have recently developed a similar system for the NanoSIMS, whose high sensitivity allows for smaller grains to be analyzed with less sample consumption than is possible with the 6f system. The 6f and NanoSIMS systems are functionally identical: an image of dispersed grains is obtained with sufficient statistical precision for an algorithm to identify the positions of individual particles, the primary ion beam is deflected to each particle in turn and rastered in a small

  17. Supercritical Wing Technology: A Progress Report on Flight Evaluations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The papers in this compilation were presented at the NASA Symposium on "Supercritical Wing Technology: A Progress Report on Flight Evaluation" held at the NASA Flight Research Center, Edwards, Calif., on February 29, 1972. The purpose of the symposium was to present timely information on flight results obtained with the F-8 and T-2C supercritical wing configurations, discuss comparisons with wind-tunnel predictions, and project [ ] flight programs planned for the F-8 and F-III (TACT) airplanes.

  18. Apollo experience report: Flight planning for manned space operations

    NASA Technical Reports Server (NTRS)

    Oneill, J. W.; Cotter, J. B.; Holloway, T. W.

    1972-01-01

    The history of flight planning for manned space missions is outlined, and descriptions and examples of the various evolutionary phases of flight data documents from Project Mercury to the Apollo Program are included. Emphasis is given to the Apollo flight plan. Time line format and content are discussed in relationship to the manner in which they are affected by the types of flight plans and various constraints.

  19. F-18 SRA in flight

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Dryden Flight Research Center, Edwards, California, is using this early-model F-18 Hornet as a flying research platform to evaluate a number of emerging technologies in aircraft control and information systems. The Systems Research Aircraft, a pre-production two-seat version of the twin-engine tactical fighter aircraft, has been extensively modified for its research role. Among projects flown on the plane are experiments to evaluate fiber optics for flight-critical control systems, advanced air data acquisition systems, and electrically-powered flight control actuators which do not require connection to the aircraft central hydraulic system. The new technologies could lead to lighter and more efficient aircraft designs with higher performance and greater safety.

  20. Extending a Flight Management Computer for Simulation and Flight Experiments

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.; Sugden, Paul C.

    2005-01-01

    In modern transport aircraft, the flight management computer (FMC) has evolved from a flight planning aid to an important hub for pilot information and origin-to-destination optimization of flight performance. Current trends indicate increasing roles of the FMC in aviation safety, aviation security, increasing airport capacity, and improving environmental impact from aircraft. Related research conducted at the Langley Research Center (LaRC) often requires functional extension of a modern, full-featured FMC. Ideally, transport simulations would include an FMC simulation that could be tailored and extended for experiments. However, due to the complexity of a modern FMC, a large investment (millions of dollars over several years) and scarce domain knowledge are needed to create such a simulation for transport aircraft. As an intermediate alternative, the Flight Research Services Directorate (FRSD) at LaRC created a set of reusable software products to extend flight management functionality upstream of a Boeing-757 FMC, transparently simulating or sharing its operator interfaces. The paper details the design of these products and highlights their use on NASA projects.

  1. Mission operations and command assurance: Flight operations quality improvements

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Potts, Sherrill S.; Witkowski, Mona M.

    1994-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous solving among flight teams and provides continuous process improvement to reduce risk in mission operations by addressing human factors. The MO&CA task has evolved from participating as a member of the spacecraft team, to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  2. Gauging the Effect of U.S. Tobacco Control Policies From 1965 Through 2014 Using SimSmoke

    PubMed Central

    Levy, David T.; Meza, Rafael; Zhang, Yian; Holford, Theodore R.

    2015-01-01

    Introduction The year 2014 marked the 50th Anniversary of the first Surgeon General’s Report. This paper estimates the effect of tobacco control policies in the U.S. after the 1964 Report using the SimSmoke tobacco control simulation model. Methods SimSmoke uses National Health Interview Survey data from 1965 through 2012 on smoking prevalence, initiation, and -cessation rates, and incorporates policies implemented since 1965. The model projects smoking prevalence and smoking-attributable deaths (SADs) from 1965 through 2065 and is validated against National Health Interview Survey data. Counterfactual scenarios with policies constant since 1965 and with individual policies are estimated. Analysis was conducted in February 2014. Results SimSmoke generally validated well over the time period 1965 through 2012. As a result of all policies, smoking prevalence is estimated to have fallen by almost 55% by 2014 with a total of 2 million SADs s averted from 1965 through 2014, increasing to 20.1 million SADs by 2065. The Fairness Doctrine is estimated to have reduced adult smoking prevalence by about 24% by 2014 and averted 10.4 million SADs by 2065, while price increases reduced smoking prevalence by 24% by 2014 and averted 7.3 million SADs by 2065. Smoke-free air laws, cessation treatment, and tobacco control spending individually reduced smoking rates by 3%–5.5% by 2014. Conclusions By 2014, SimSmoke predicts a 53% reduction in smoking rates and almost 2 million SADs averted due to polices implemented since the 1964 Surgeon General’s Report, with most of the health benefit still to occur in future years. PMID:26673484

  3. CalSimHydro Tool - A Web-based interactive tool for the CalSim 3.0 Hydrology Prepropessor

    NASA Astrophysics Data System (ADS)

    Li, P.; Stough, T.; Vu, Q.; Granger, S. L.; Jones, D. J.; Ferreira, I.; Chen, Z.

    2011-12-01

    CalSimHydro, the CalSim 3.0 Hydrology Preprocessor, is an application designed to automate the various steps in the computation of hydrologic inputs for CalSim 3.0, a water resources planning model developed jointly by California State Department of Water Resources and United States Bureau of Reclamation, Mid-Pacific Region. CalSimHydro consists of a five-step FORTRAN based program that runs the individual models in succession passing information from one model to the next and aggregating data as required by each model. The final product of CalSimHydro is an updated CalSim 3.0 state variable (SV) DSS input file. CalSimHydro consists of (1) a Rainfall-Runoff Model to compute monthly infiltration, (2) a Soil moisture and demand calculator (IDC) that estimates surface runoff, deep percolation, and water demands for natural vegetation cover and various crops other than rice, (3) a Rice Water Use Model to compute the water demands, deep percolation, irrigation return flow, and runoff from precipitation for the rice fields, (4) a Refuge Water Use Model that simulates the ponding operations for managed wetlands, and (5) a Data Aggregation and Transfer Module to aggregate the outputs from the above modules and transfer them to the CalSim SV input file. In this presentation, we describe a web-based user interface for CalSimHydro using Google Earth Plug-In. The CalSimHydro tool allows users to - interact with geo-referenced layers of the Water Budget Areas (WBA) and Demand Units (DU) displayed over the Sacramento Valley, - view the input parameters of the hydrology preprocessor for a selected WBA or DU in a time series plot or a tabular form, - edit the values of the input parameters in the table or by downloading a spreadsheet of the selected parameter in a selected time range, - run the CalSimHydro modules in the backend server and notify the user when the job is done, - visualize the model output and compare it with a base run result, - download the output SV file to be

  4. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  5. UAS in the NAS Flight Test Series 3 Overview

    NASA Technical Reports Server (NTRS)

    Murphy, James R.

    2015-01-01

    The UAS Integration in the NAS Project is conducting a series of flight tests to acheive the following objectives: 1.) Validate results previously collected during project simulations with live data 2.) Evaluate TCAS IISS interoperability 3.) Test fully integrated system in a relevant live test environment 4.) Inform final DAA and C2 MOPS 5.) Reduce risk for Flight Test Series 4.

  6. Microgravity Flight - Accommodating Non-Human Primates

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1994-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of

  7. Centennial of Flight Educational Outreach

    NASA Technical Reports Server (NTRS)

    McCarthy, Marianne (Technical Monitor); Miller, Susan (Technical Monitor); Vanderpool, Celia

    2003-01-01

    The Centennial of Flight Education Outreach project worked with community partners to disseminate NASA Education materials and the Centennial of Flight CD-ROM as a vehicle to increase national awareness of NASA's Aerospace Education products, services and programs. The Azimuth Education Foundation and the Ninety Nines, an International Women Pilots Association, Inc. were chartered to conduct education outreach to the formal and informal educational community. The Dryden Education Office supported the development of a training and information distribution program that established a national group of prepared Centennial of Flight Ambassadors, with a mission of community education outreach. These Ambassadors are members of the Ninety Nines and through the Azimuth Foundation, they assisted the AECC on the national level to promote and disseminate Centennial of Flight and other educational products. Our objectives were to explore partnership outreach growth opportunities with consortium efforts between organizations. This project directly responded to the highlights of NASA s Implementation Plan for Education. It was structured to network, involve the community, and provide a solid link to active educators and current students with NASA education information. Licensed female pilots who live and work in local communities across the nation carried the link. This partnership has been extremely gratifying to all of those Ninety-Nines involved, and they eagerly look forward to further work opportunities.

  8. NASA - Human Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    The presentation covers five main topical areas. The first is a description of how things work in the microgravity environment such as convection and sedimentation. The second part describes the effects of microgravity on human physiology. This is followed by a description of the hazards of space flight including the environment, the space craft, and the mission. An overview of biomedical research in space, both on shuttle and ISS is the fourth section of the presentation. The presentation concludes with a history of space flight from Ham to ISS. At CART students (11th and 12th graders from Fresno Unified and Clovis Unified) are actively involved in their education. They work in teams to research real world problems and discover original solutions. Students work on projects guided by academic instructors and business partners. They will have access to the latest technology and will be expected to expand their learning environment to include the community. They will focus their studies around a career area (Professional Sciences, Advanced Communications, Engineering and Product Development, or Global Issues).

  9. Star Confusion Effect on SIM PlanetQuest Astrometric Performance

    NASA Technical Reports Server (NTRS)

    Zhai, C.; Yu, M.; Milman, M.; Fathpour, N.; Morales, M.; Nemati, B.; Regehr, M.; Heflin, M.; Sievers, L.

    2007-01-01

    SIM PlanetQuest will measure star positions to an accuracy of a few microarcseconds using precise white light fringe measurements. One challenge for SIM observation scenario is "star confusion," where multiple stars are present in the instrument field of view. This is especially relevant for observing dim science targets because the density of number of stars increases rapidly with star magnitude. We study the effect of star confusion on the SIM astrometric performance due to systematic fringe errors caused by the extra photons from the confusion star(s}. Since star confusion from multiple stars may be analyzed as a linear superposition of the effect from single star confusion, we quantify the astrometric errors due to single star confusion surveying over many spectral types, including AOV, FOV, K5III, and MOV, and for various visual magnitude differences. To the leading order, the star confusion effect is characterized by the magnitude difference, spectral difference, and the angular separation between the target and confusion stars.Strategies for dealing with star confusion are presented. For example, since the presence of additional sources in the field of view leads to inconsistent delay estimates from different channels, with sufficient signal to noise ratio, the star confusion can be detected using chi-square statistics of fringe measurements from multiple spectral channels. An interesting result is that the star confusion can be detected even though the interferometer cannot resolve the separation between the target and confusion stars when their spectra are sufficiently different. Other strategies for mitigating the star confusion effect are also discussed.

  10. neXtSIM: a new Lagrangian sea ice model

    NASA Astrophysics Data System (ADS)

    Rampal, Pierre; Bouillon, Sylvain; Ólason, Einar; Morlighem, Mathieu

    2016-05-01

    The Arctic sea ice cover has changed drastically over the last decades. Associated with these changes is a shift in dynamical regime seen by an increase of extreme fracturing events and an acceleration of sea ice drift. The highly non-linear dynamical response of sea ice to external forcing makes modelling these changes and the future evolution of Arctic sea ice a challenge for current models. It is, however, increasingly important that this challenge be better met, both because of the important role of sea ice in the climate system and because of the steady increase of industrial operations in the Arctic. In this paper we present a new dynamical/thermodynamical sea ice model called neXtSIM that is designed to address this challenge. neXtSIM is a continuous and fully Lagrangian model, whose momentum equation is discretised with the finite-element method. In this model, sea ice physics are driven by the combination of two core components: a model for sea ice dynamics built on a mechanical framework using an elasto-brittle rheology, and a model for sea ice thermodynamics providing damage healing for the mechanical framework. The evaluation of the model performance for the Arctic is presented for the period September 2007 to October 2008 and shows that observed multi-scale statistical properties of sea ice drift and deformation are well captured as well as the seasonal cycles of ice volume, area, and extent. These results show that neXtSIM is an appropriate tool for simulating sea ice over a wide range of spatial and temporal scales.

  11. Analysis of Chemotherapeutic Drug Delivery at the Single Cell Level Using 3D-MSI-TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Vanbellingen, Quentin P.; Castellanos, Anthony; Rodriguez-Silva, Monica; Paudel, Iru; Chambers, Jeremy W.; Fernandez-Lima, Francisco A.

    2016-12-01

    In this work, we show the advantages of label-free, tridimensional mass spectrometry imaging using dual beam analysis (25 keV Bi3 +) and depth profiling (20 keV with a distribution centered at Ar1500 +) coupled to time of flight secondary ion mass spectrometry (3D-MSI-TOF-SIMS) for the study of A-172 human glioblastoma cell line treated with B-cell lymphoma 2 (Bcl-2) inhibitor ABT-737. The high spatial ( 250 nm) and high mass resolution (m/Δm 10,000) of TOF-SIMS permitted the localization and identification of the intact, unlabeled drug molecular ion ( m/z 811.26 C42H44ClN6O5S2 - [M - H]-) as well as characteristic fragment ions. We propose a novel approach based on the inspection of the drug secondary ion yield, which showed a good correlation with the drug concentration during cell treatment at therapeutic dosages (0-200 μM with 4 h incubation). Chemical maps using endogenous molecular markers showed that the ABT-737 is mainly localized in subsurface regions and absent in the nucleus. A semiquantitative workflow is proposed to account for the biological cell diversity based on the spatial distribution of endogenous molecular markers (e.g., nuclei and cytoplasm) and secondary ion confirmation based on the ratio of drug-specific fragments to molecular ion as a function of the therapeutic dosage.

  12. Analysis of Chemotherapeutic Drug Delivery at the Single Cell Level Using 3D-MSI-TOF-SIMS.

    PubMed

    Vanbellingen, Quentin P; Castellanos, Anthony; Rodriguez-Silva, Monica; Paudel, Iru; Chambers, Jeremy W; Fernandez-Lima, Francisco A

    2016-12-01

    In this work, we show the advantages of label-free, tridimensional mass spectrometry imaging using dual beam analysis (25 keV Bi3(+)) and depth profiling (20 keV with a distribution centered at Ar1500(+)) coupled to time of flight secondary ion mass spectrometry (3D-MSI-TOF-SIMS) for the study of A-172 human glioblastoma cell line treated with B-cell lymphoma 2 (Bcl-2) inhibitor ABT-737. The high spatial (~250 nm) and high mass resolution (m/Δm ~10,000) of TOF-SIMS permitted the localization and identification of the intact, unlabeled drug molecular ion (m/z 811.26 C42H44ClN6O5S2(-) [M - H](-)) as well as characteristic fragment ions. We propose a novel approach based on the inspection of the drug secondary ion yield, which showed a good correlation with the drug concentration during cell treatment at therapeutic dosages (0-200 μM with 4 h incubation). Chemical maps using endogenous molecular markers showed that the ABT-737 is mainly localized in subsurface regions and absent in the nucleus. A semiquantitative workflow is proposed to account for the biological cell diversity based on the spatial distribution of endogenous molecular markers (e.g., nuclei and cytoplasm) and secondary ion confirmation based on the ratio of drug-specific fragments to molecular ion as a function of the therapeutic dosage. Graphical Abstract ᅟ.

  13. Applicability of ToF-SIMS for monitoring compositional changes in bone in a long-term animal model

    PubMed Central

    Henss, Anja; Rohnke, Marcus; El Khassawna, Thaqif; Govindarajan, Parameswari; Schlewitz, Gudrun; Heiss, Christian; Janek, Juergen

    2013-01-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a well-established technique in material sciences but has not yet been widely explored for implementation in life sciences. Here, we demonstrate the applicability and advantages of ToF-SIMS analysis for the study of minerals and biomolecules in osseous tissue. The locally resolved analysis of fragment ions deriving from the sample surface enables imaging and differentiation of bone tissue and facilitates histology on non-stained cross sections. In a rat model, bilateral ovariectomy combined with either a multi-deficiency diet or steroid treatment was carried out to create osteoporotic conditions. We focused our study on the Ca content of the mineralized tissue and monitored its decline. Calcium mass images of cross sections show the progressive degenerative changes in the bone. We observed a decreased Ca concentration in the edge region of the trabeculae and a decline in the Ca/P ratio. Additionally, we focused on the non-mineralized matrix and identified fragment ions that are characteristic for the collagen matrix. We observed trabeculae with wide ranges of non-mineralized collagen for the diet group owing to an impaired mineralization process. Here, the advantage of coeval monitoring of collagen and minerals indicated an osteomalacic model rather than an osteoporotic one. PMID:23864501

  14. Molecular imaging of enhanced Na + expression in the liver of total sleep deprived rats by TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Ming; Chen, Bo-Jung; Wu, Un-In; Huang, Yi-Lun; Mai, Fu-Der

    2008-12-01

    Sleep disorder is associated with metabolic disturbances, which was related to oxidative stress and subsequently sodium overload. Since liver plays important roles in metabolic regulation, present study is aimed to determine whether hepatic sodium, together with oxidative stress, would significantly alter after total sleep deprivation (TSD). Sodium ion was investigated by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Parameter for oxidative stress was examined by heat shock protein-25 (HSP-25) immunohistochemistry. TOF-SIMS spectrum indicated that hepatic Na +/K + ratio counting as 82.41 ± 9.5 was obtained in normal rats. Sodium ions were distributed in hepatocytes with several aggregations. However, following TSD, the intensity for Na +/K + ratio was relatively increased (101.94 ± 6.9) and signals for sodium image were strongly expressed throughout hepatocytes without spatial localization. Quantitative analysis revealed that HSP-25 staining intensity is 1.78 ± 0.27 in TSD rats, which was significantly higher than that of normal ones (0.68 ± 0.15). HSP-25 augmentation suggests that hepatocytes suffer from oxidative stress following TSD. Concerning oxidative stress induced sodium overload would impair metabolic function; enhanced hepatic sodium expression after TSD may be a major cause of TSD relevant metabolic diseases.

  15. Up-regulation of Na + expression in the area postrema of total sleep deprived rats by TOF-SIMS analysis

    NASA Astrophysics Data System (ADS)

    Mai, Fu-Der; Chen, Bo-Jung; Ling, Yong-Chien; Wu, Un-In; Huang, Yi-Lun; Chang, Hung-Ming

    2008-12-01

    Area postrema (AP) is a circumventricular organ plays an important role in sodium homeostasis and cardiovascular regulation. Since sleep deficiency will cause cardiovascular dysfunction, the present study aims to determine whether sodium level would significantly alter in AP following total sleep deprivation (TSD). Sodium level was investigated in vivo by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Clinical manifestation of cardiovascular function was demonstrated by mean arterial pressure (MAP) values. Results indicated that in normal rats, TOF-SIMS spectrum revealed a major peak of sodium ion counting as 5.61 × 10 5 at m/ z 23. The sodium ions were homogeneous distributed in AP without specific localization. However, following TSD, the sodium intensity was relatively increased (6.73 × 10 5) and the signal for sodium image was strongly expressed throughout AP with definite spatial distribution. MAP of TSD rats is 138 ± 5 mmHg, which is significantly higher than that of normal ones (121 ± 3 mmHg). Regarding AP is an important area for sodium sensation and development of hypernatremic related sympatho-excitation; up-regulation of sodium expression following TSD suggests that high sodium level might over-activate AP, through complex neuronal networks involving in sympathetic regulation, which could lead to the formation of TSD relevant cardiovascular diseases.

  16. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution.

    PubMed

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution. Graphical Abstract ᅟ.

  17. TOF-SIMS investigation of the distribution of a cosmetic ingredient in the epidermis of the skin

    NASA Astrophysics Data System (ADS)

    Okamoto, Masayuki; Tanji, Noriyuki; Katayama, Yasushi; Okada, Joji

    2006-07-01

    In order to understand the mechanisms of the functions of a cosmetic ingredient, it is important to know the distribution of its agents in the epidermis of the skin. Imaging analysis of these agents by microscopic methods are quite difficult, and only a few studies have been reported to date. We analyzed the penetration of cosmetic ingredients into the skin using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Pig skin treated with a cosmetic preparation was used as a model for the human epidermis. The sample was embedded in resin or glue and cross-sections were carefully cut using an ultramicrotome. After the appropriate sample preparation methods were determined, the synthetic pseudo-ceramides contained in the cosmetic preparation were detected as individual molecular ion peaks and it was revealed that these agents are able to penetrate the stratum corneum tissue. TOF-SIMS analysis detects these agents as separated masses and it is thus considered to be one of the most versatile methods of high resolution imaging analysis of such species.

  18. Multi-spectroscopic analysis of cholesterol gallstone using TOF-SIMS, FTIR and UV-Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Jaswal, Brij Bir S.; Kumar, Vinay; Swart, H. C.; Sharma, Jitendra; Rai, Pradeep K.; Singh, Vivek K.

    2015-10-01

    For the first time, spatial distribution of major and trace elements has been studied in cholesterol gallstones using time-of-flight secondary mass ion mass spectrometry (TOF-SIMS). The TOF-SIMS has been used to study the elemental constituents of the center and surface parts of the gallstone sample. We have classified the gallstone sample using Fourier transform spectroscopy. The detected elements in cholesterol gallstone sample were carbon (C), hydrogen (H), calcium (Ca), sodium (Na), potassium (K), strontium (Sr), copper (Cu), iron (Fe), chromium (Cr), mercury (Hg) and lead (Pb). The detected molecules in the cholesterol gallstone were CH3 +, CO3 +, CaCO3 + and C3H+. Our results revealed that the contents of these elements in cholesterol gallstone were higher in the center part than that in the surface part. In the present paper, we have also presented the UV-Vis spectroscopic studies of the center and surface parts of the gallstone sample which indicated the presence of a higher content of cholesterol in the surface part and bilirubin in the center part.

  19. ToF-SIMS analysis of chemical heterogenities in inkjet micro-array printed drug/polymer formulations.

    PubMed

    Scoutaris, Nikolaos; Hook, Andrew L; Gellert, Paul R; Roberts, Clive J; Alexander, Morgan R; Scurr, David J

    2012-02-01

    Three different formulations comprising two drugs, felodipine and hydrochlorothiazide (HCT) and two polymers, poly(vinyl pyrolidone) (PVP) and poly(lactic-co-glycolic acid) (PLGA) were inkjet printed as micro-dot arrays and analysed on an individual micro-spot basis by time-of-flight secondary ion mass spectrometry (ToF-SIMS). For the HCT/PLGA formulation, the spots showed heterogeneity of the drug and other chemical constituents. To further investigate these heterogeneities, multivariate curve resolution was applied to the ToF-SIMS hyperspectral image datasets. This approach successfully identified distinct chemical components elucidating the HCT, PLGA, substrate material, and contaminants based on sulphur, phosphorous and sodium chloride. Spots printed using either of the drugs with PVP exhibited full substrate coverage and a uniform distribution of the active ingredient along with all other constituents within the printed spot area. This represents the preferred situation in terms of stability and controlling the release of a drug from a polymer matrix.

  20. Rapid discrimination of the causal agents of urinary tract infection using ToF-SIMS with chemometric cluster analysis

    NASA Astrophysics Data System (ADS)

    Fletcher, John S.; Henderson, Alexander; Jarvis, Roger M.; Lockyer, Nicholas P.; Vickerman, John C.; Goodacre, Royston

    2006-07-01

    Advances in time of flight secondary ion mass spectrometry (ToF-SIMS) have enabled this technique to become a powerful tool for the analysis of biological samples. Such samples are often very complex and as a result full interpretation of the acquired data can be extremely difficult. To simplify the interpretation of these information rich data, the use of chemometric techniques is becoming widespread in the ToF-SIMS community. Here we discuss the application of principal components-discriminant function analysis (PC-DFA) to the separation and classification of a number of bacterial samples that are known to be major causal agents of urinary tract infection. A large data set has been generated using three biological replicates of each isolate and three machine replicates were acquired from each biological replicate. Ordination plots generated using the PC-DFA are presented demonstrating strain level discrimination of the bacteria. The results are discussed in terms of biological differences between certain species and with reference to FT-IR, Raman spectroscopy and pyrolysis mass spectrometric studies of similar samples.

  1. Relative quantification of phospholipid accumulation in the PC12 cell plasma membrane following phospholipid incubation using TOF-SIMS imaging

    PubMed Central

    Lanekoff, Ingela; Sjövall, Peter; Ewing, Andrew G.

    2011-01-01

    Time of flight secondary ion mass spectrometry (TOF-SIMS) imaging has been used to investigate the incorporation of phospholipids into the plasma membrane of PC12 cells after incubation with phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The incubations were done at concentrations previously shown to change the rate of exocytosis in model cell lines. The use of TOF-SIMS in combination with an in situ freeze fracture device enables the acquisition of ion images from the plasma membrane in single PC12 cells. By incubating cells with deuterated phospholipids and acquiring ion images at high mass resolution, specific deuterated fragment ions were used to monitor the incorporation of lipids into the plasma membrane. The concentration of incorporated phospholipids relative to the original concentration of PC was thus determined. The observed relative amounts of phospholipid accumulation in the membrane ranges from 0.5 to 2 percent following 19 hours of incubation with PC at 100 to 300 μM and from 1 to 9 percent following incubation with PE at the same concentrations. Phospholipid accumulation is therefore shown to be dependent on the concentration in the surrounding media. In combination with previous exocytosis results, the present data suggests that very small changes in the plasma membrane phospholipid concentration are sufficient to produce significant effects on important cellular processes, such as exocytosis in PC12 cells. PMID:21563801

  2. Spatiotemporal lipid profiling during early embryo development of Xenopus laevis using dynamic ToF-SIMS imaging.

    PubMed

    Tian, Hua; Fletcher, John S; Thuret, Raphael; Henderson, Alex; Papalopulu, Nancy; Vickerman, John C; Lockyer, Nicholas P

    2014-09-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging has been used for the direct analysis of single intact Xenopus laevis embryo surfaces, locating multiple lipids during fertilization and the early embryo development stages with subcellular lateral resolution (∼4 μm). The method avoids the complicated sample preparation for lipid analysis of the embryos, which requires selective chemical extraction of a pool of samples and chromatographic separation, while preserving the spatial distribution of biological species. The results show ToF-SIMS is capable of profiling multiple components (e.g., glycerophosphocholine, SM, cholesterol, vitamin E, diacylglycerol, and triacylglycerol) in a single X. laevis embryo. We observe lipid remodeling during fertilization and early embryo development via time course sampling. The study also reveals the lipid distribution on the gamete fusion site. The methodology used in the study opens the possibility of studying developmental biology using high resolution imaging MS and of understanding the functional role of the biological molecules.

  3. Comparative analysis of lignin peroxidase and manganese peroxidase activity on coniferous and deciduous wood using ToF-SIMS.

    PubMed

    MacDonald, Jacqueline; Goacher, Robyn E; Abou-Zaid, Mamdouh; Master, Emma R

    2016-09-01

    White-rot fungi are distinguished by their ability to efficiently degrade lignin via lignin-modifying type II peroxidases, including manganese peroxidase (MnP) and lignin peroxidase (LiP). In the present study, time-of flight secondary ion mass spectrometry (ToF-SIMS) was used to evaluate lignin modification in three coniferous and three deciduous wood preparations following treatment with commercial preparations of LiP and MnP from two different white-rot fungi. Percent modification of lignin was calculated as a loss of intact methoxylated lignin over nonfunctionalized aromatic rings, which is consistent with oxidative cleavage of methoxy moieties within the lignin structure. Exposure to MnP resulted in greater modification of lignin in coniferous compared to deciduous wood (28 vs. 18 % modification of lignin); and greater modification of G-lignin compared to S-lignin within the deciduous wood samples (21 vs. 12 %). In contrast, exposure to LiP resulted in similar percent modification of lignin in all wood samples (21 vs 22 %), and of G- and S-lignin within the deciduous wood (22 vs. 23 %). These findings suggest that the selected MnP and LiP may particularly benefit delignification of coniferous and deciduous wood, respectively. Moreover, the current analysis further demonstrates the utility of ToF-SIMS for characterizing enzymatic modification of lignin in wood fibre along with potential advantages over UV and HPCL-MS detection of solubilized delignification products.

  4. In situ SEM and ToF-SIMS analysis of IgG conjugated gold nanoparticles at aqueous surfaces

    SciTech Connect

    Yang, Li; Zhu, Zihua; Yu, Xiao-Ying; Rodek, Gene; Saraf, Laxmikant V.; Thevuthasan, Suntharampillai; Cowin, James P.

    2014-04-01

    In this study, we report new results of in situ study of 5 nm goat anti-mouse IgG gold nanoparticles in a novel portable vacuum compatible microfluidic device using scanning electron microscope (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The unique feature of the liquid flow cell is that the detection window is open to the vacuum allowing direct probing of the liquid surface. The flow cell is composed of a silicon nitride (SiN) membrane and polydimethylsiloxane (PDMS), and it is fully compatible with vacuum operations for surface analysis. The aperture can be drilled through the 100 nm SiN membrane using a focused ion beam. Characteristic signals of the conjugated gold nanoparticles were successfully observed through the aperture by both energy-dispersive X-ray spectroscopy (EDX) in SEM and ToF-SIMS. Comparison was also made among wet samples, dry samples, and liquid sample in the flow cell using SEM/EDX. Stronger gold signal can be observed in our novel portable device by SEM/EDX compared with the wet or dry samples, respectively. Our results indicate that analyses of the nanoparticle components are better made in their native liquid environment. This is made possible using our unique microfluidic flow cell.

  5. Differentiation of Calcium Carbonate Polymorphs by Surface Analysis Techniques – An XPS and TOF-SIMS study

    PubMed Central

    Ni, Ming; Ratner, Buddy D.

    2013-01-01

    Calcium carbonate has evoked interest owing to its use as a biomaterial, and for its potential in biomineralization. Three polymorphs of calcium carbonate, i.e. calcite, aragonite, and vaterite were synthesized. Three conventional bulk analysis techniques, Fourier transform infrared (FTIR), X-ray diffraction (XRD), and SEM, were used to confirm the crystal phase of each polymorphic calcium carbonate. Two surface analysis techniques, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS), were used to differentiate the surfaces of these three polymorphs of calcium carbonate. XPS results clearly demonstrate that the surfaces of these three polymorphs are different as seen in the Ca(2p) and O(1s) core-level spectra. The different atomic arrangement in the crystal lattice, which provides for a different chemical environment, can explain this surface difference. Principal component analysis (PCA) was used to analyze the TOF-SIMS data. Three polymorphs of calcium carbonate cluster into three different groups by PCA scores. This suggests that surface analysis techniques are as powerful as conventional bulk analysis to discriminate calcium carbonate polymorphs. PMID:25031482

  6. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution

    NASA Astrophysics Data System (ADS)

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F.

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution.

  7. Spatiotemporal lipid profiling during early embryo development of Xenopus laevis using dynamic ToF-SIMS imaging

    PubMed Central

    Tian, Hua; Fletcher, John S.; Thuret, Raphael; Henderson, Alex; Papalopulu, Nancy; Vickerman, John C.; Lockyer, Nicholas P.

    2014-01-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging has been used for the direct analysis of single intact Xenopus laevis embryo surfaces, locating multiple lipids during fertilization and the early embryo development stages with subcellular lateral resolution (∼4 μm). The method avoids the complicated sample preparation for lipid analysis of the embryos, which requires selective chemical extraction of a pool of samples and chromatographic separation, while preserving the spatial distribution of biological species. The results show ToF-SIMS is capable of profiling multiple components (e.g., glycerophosphocholine, SM, cholesterol, vitamin E, diacylglycerol, and triacylglycerol) in a single X. laevis embryo. We observe lipid remodeling during fertilization and early embryo development via time course sampling. The study also reveals the lipid distribution on the gamete fusion site. The methodology used in the study opens the possibility of studying developmental biology using high resolution imaging MS and of understanding the functional role of the biological molecules. PMID:24852167

  8. Surface Characterization of Populus during Caldicellulosiruptor bescii Growth by TOF-SIMS Analysis

    DOE PAGES

    Tolbert, Allison K.; Young, Jenna M.; Jung, Seokwon; ...

    2017-01-30

    Caldicellulosiruptor bescii is a thermophilic, anaerobic bacterium that is capable of utilizing unpretreated biomass in addition to breaking down cellulose and hemicellulose into simple sugars. Despite the fact that C. bescii must first bind to the surface of the biomass, there has been no analysis of the morphological or chemical changes to the biomass surface as a result of incubation with the micro-organism. To understand more about C. bescii growth, juvenile poplar stems were sectioned (80 μm thick) and incubated with C. bescii beyond the typical 24 h experiment length. Monitoring the cell counts during incubation revealed a biphasic growthmore » pattern. The impact the micro-organism had on the surface was determined by scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), which showed physical crevices in the cell wall caused by the C. bescii along with a decrease of polysaccharide ions and an increase in lignin ions on the poplar surface. Employing infrared microspectroscopy, the decreasing trend was corroborated.« less

  9. TOF-SIMS Analysis of Hydrogen in Niobium, From 160 deg. K to 475 deg. K

    SciTech Connect

    P. Maheshwari, A.D. Batchelor, D.P. Griffis, F.A. Stevie, C. Zhou, G. Ciovati, R. Myneni, M. Rigsbee

    2011-07-25

    Niobium (Nb) is the material of choice for superconducting radio frequency (SRF) cavities due to its high critical temperature and critical magnetic field. Interstitial impurity elements such as H directly influence the efficiency of these cavities. Quantification of H in Nb is difficult since H is extremely mobile in Nb with a very high diffusion coefficient even at room temperature. In the presented work, Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS) was used to characterize H in Nb over a wide temperature range (160°K to 475°K) in situ to check for changes in mobility. Multiple experiments showed that as the specimen temperature is decreased below 300 °K, the H/Nb intensity changes by first increasing and then decreasing drastically at temperatures below 200°K. As specimen temperature is increased from 300°K to 450°K, the H/Nb intensity decreases. Remarkably, the H intensity with respect to Nb increases with time at 475°K (approximately 200°C). Correlation between this data and the H-Nb phase diagram appears to account for the H behaviour.

  10. Quantitative ToF-SIMS Studies of Protein Drug Release from Biodegradable Polymer Drug Delivery Membranes

    PubMed Central

    Burns, Sarah A.; Gardella, Joseph A.

    2008-01-01

    Biodegradable polymers are of interest in developing strategies to control protein drug delivery. The protein that was used in this study is Keratinocyte Growth Factor (KGF) which is a protein involved in the re-epithelialization process. The protein is stabilized in the biodegradable polymer matrix during formulation and over the course of polymer degradation with the use of an ionic surfactant Aerosol-OT (AOT) which will encapsulate the protein in an aqueous environment. The release kinetics of the protein from the surface of these materials requires precise timing which is a crucial factor in the efficacy of this drug delivery system. Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) was used in the same capacity to identify the molecular ion peak of the surfactant and polymer and use this to determine surface concentration. In the polymer matrix, the surfactant molecular ion peak was observed in the positive and negative mode at m/z 467 and 421, respectively. These peaks were determined to be [AOT + Na+] and [AOT−Na+]-. These methods are used to identify the surfactant and protein from the polymer matrix and are used to measure the rate of surface accumulation. The second step was to compare this accumulation rate with the release rate of the protein into an aqueous solution during the degradation of the biodegradable film. This rate is compared to that from fluorescence spectroscopy measurements using the protein autofluorescence from that released into aqueous solution. PMID:20016666

  11. Training for emergency response with RimSim:Response!

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce D.; Schroder, Konrad A.

    2009-05-01

    Since developing and promoting a Pacific Rim community emergency response simulation software platform called RimSim, the PARVAC team at the University of Washington has developed a variety of first responder agents who can participate within a response simulation. Agents implement response heuristics and communications strategies in conjunction with live players trying to develop their own heuristics and communications strategies to participate in a successful community response crisis. The effort is facilitated by shared visualization of the affected geographical extent. We present initial findings from interacting with a wide variety of mixed agent simulation sessions and make the software available for others to perform their own experiments.e

  12. Summer Institute for Mathematics and Science teachers (SIMS). Final report

    SciTech Connect

    1994-07-01

    The Summer Institute for Mathematics and Science Teachers (SIMS) was to provide training for science and mathematics educators in strategies and techniques to use for educating and motivating historically under-represented populations. The Institute featured 40 hours of training over five days, July 13-17, 1993 plus half-day follow-up training November 13, 1993 and April 30, 1994. The objective of the training was to include sensitization to cultural and gender issues, and to instruct participants in the utilization of a variety of techniques and activities for encouraging historically under-represented groups to take more advanced science and mathematics courses.

  13. X-38 - First Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Reminiscent of the lifting body research flights conducted more than 30 years earlier, NASA's B-52 mothership lifts off carrying a new generation of lifting body research vehicle--the X-38. The X-38 was designed to help develop an emergency crew return vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also

  14. X-38 - First Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In a scene reminiscent of the lifting body research flights conducted more than 30 years earlier, this photo shows a close-up view of NASA's B-52 mothership as it lifts off carrying a new generation of lifting body research vehicle--the X-38. The X-38 was designed to help develop an emergency crew return vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the

  15. Future Flight Central

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA 'Future Flight Central,' the world's first full-scale virtual airport control tower, opened December 13, 1999 at NASA Ames Research Center, Moffett Field, California. Constructed at a cost of $10 million, the two story facility was jointly funded by NASA and the Federal Aviation Administration (FAA). The facility is designed to test ways to solve potential air and ground traffic problems at commercial airports under realistic airport conditions and configurations. The facility provides an opportunity for airlines and airports to mitigate passenger delays by fine tuning airport hub operations, gate management, ramp movement procedures, and various other airport improvements. Twelve rear projection screens provide a seamless 360 degree high- resolution view of the airport or other screens being depicted. The imaging system, powered by supercomputers, provides a realistic view of weather conditions, enviromental and seasonal effects and the movement of up to 200 active aircraft and ground vehicles.

  16. X-4 in flight

    NASA Technical Reports Server (NTRS)

    1951-01-01

    In the early days of transonic flight research, many aerodynamicists believed that eliminating conventional tail surfaces could reduce the problems created by shock wave interaction with the tail's lifting surfaces. To address this issue, the Army Air Forces's Air Technical Service awarded a contract to Northrop Aircraft Corporation on 5 April 1946 to build a piloted 'flying laboratory.' Northrop already had experience with tailless flying wing designs such as the N-1M, N-9M, XB-35, and YB-49. Subsequently, the manufacturer built two semi-tailless X-4 research aircraft, the first of which flew half a century ago. The X-4 was designed to investigate transonic compressibility effects at speeds near Mach 0.85 to 0.88, slightly below the speed of sound. Northrop project engineer Arthur Lusk designed the aircraft with swept wings and a conventional fuselage that housed two turbojet engines. It had a vertical stabilizer, but no horizontal tail surfaces. It was one of the smallest X-planes ever built, and every bit of internal space was used for systems and instrumentation. The first X-4 arrived at Muroc Air Force Base by truck on 15 November 1948. Over the course of several weeks, engineers conducted static tests, and Northrop test pilot Charles Tucker made initial taxi runs. Although small of stature, he barely fit into the diminutive craft. Tucker, a veteran Northrop test pilot, had previously flown the XB-35 and YB-49 flying wing bomber prototypes. Prior to flying for Northrop, he had logged 400 hours in jet airplanes as a test pilot for Lockheed and the Air Force. He would now be responsible for completing the contractor phase of the X-4 flight test program. Finally, all was ready. Tucker climbed into the cockpit, and made the first flight on 15 December 1948. It only lasted 18 minutes, allowing just enough time for the pilot to become familiar with the basic handling qualities of the craft. The X-4 handled well, but Tucker noted some longitudinal instability at all

  17. Software tools of the Computis European project to process mass spectrometry images.

    PubMed

    Robbe, Marie-France; Both, Jean-Pierre; Prideaux, Brendan; Klinkert, Ivo; Picaud, Vincent; Schramm, Thorsten; Hester, Atfons; Guevara, Victor; Stoeckli, Markus; Roempp, Andreas; Heeren, Ron M A; Spengler, Bernhard; Gala, Olivier; Haan, Serge

    2014-01-01

    Among the needs usually expressed by teams using mass spectrometry imaging, one that often arises is that for user-friendly software able to manage huge data volumes quickly and to provide efficient assistance for the interpretation of data. To answer this need, the Computis European project developed several complementary software tools to process mass spectrometry imaging data. Data Cube Explorer provides a simple spatial and spectral exploration for matrix-assisted laser desorption/ionisation-time of flight (MALDI-ToF) and time of flight-secondary-ion mass spectrometry (ToF-SIMS) data. SpectViewer offers visualisation functions, assistance to the interpretation of data, classification functionalities, peak list extraction to interrogate biological database and image overlay, and it can process data issued from MALDI-ToF, ToF-SIMS and desorption electrospray ionisation (DESI) equipment. EasyReg2D is able to register two images, in American Standard Code for Information Interchange (ASCII) format, issued from different technologies. The collaboration between the teams was hampered by the multiplicity of equipment and data formats, so the project also developed a common data format (imzML) to facilitate the exchange of experimental data and their interpretation by the different software tools. The BioMap platform for visualisation and exploration of MALDI-ToF and DESI images was adapted to parse imzML files, enabling its access to all project partners and, more globally, to a larger community of users. Considering the huge advantages brought by the imzML standard format, a specific editor (vBrowser) for imzML files and converters from proprietary formats to imzML were developed to enable the use of the imzML format by a broad scientific community. This initiative paves the way toward the development of a large panel of software tools able to process mass spectrometry imaging datasets in the future.

  18. Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM

    NASA Astrophysics Data System (ADS)

    Aoki, Dan; Hanaya, Yuto; Akita, Takuya; Matsushita, Yasuyuki; Yoshida, Masato; Kuroda, Katsushi; Yagami, Sachie; Takama, Ruka; Fukushima, Kazuhiko

    2016-08-01

    To clarify the role of coniferin in planta, semi-quantitative cellular distribution of coniferin in quick-frozen Ginkgo biloba L. (ginkgo) was visualized by cryo time-of-flight secondary ion mass spectrometry and scanning electron microscopy (cryo-TOF-SIMS/SEM) analysis. The amount and rough distribution of coniferin were confirmed through quantitative chromatography measurement using serial tangential sections of the freeze-fixed ginkgo stem. The lignification stage of the sample was estimated using microscopic observations. Coniferin distribution visualized at the transverse and radial surfaces of freeze-fixed ginkgo stem suggested that coniferin is stored in the vacuoles, and showed good agreement with the assimilation timing of coniferin to lignin in differentiating xylem. Consequently, it is suggested that coniferin is stored in the tracheid cells of differentiating xylem and is a lignin precursor.

  19. Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM

    PubMed Central

    Aoki, Dan; Hanaya, Yuto; Akita, Takuya; Matsushita, Yasuyuki; Yoshida, Masato; Kuroda, Katsushi; Yagami, Sachie; Takama, Ruka; Fukushima, Kazuhiko

    2016-01-01

    To clarify the role of coniferin in planta, semi-quantitative cellular distribution of coniferin in quick-frozen Ginkgo biloba L. (ginkgo) was visualized by cryo time-of-flight secondary ion mass spectrometry and scanning electron microscopy (cryo-TOF-SIMS/SEM) analysis. The amount and rough distribution of coniferin were confirmed through quantitative chromatography measurement using serial tangential sections of the freeze-fixed ginkgo stem. The lignification stage of the sample was estimated using microscopic observations. Coniferin distribution visualized at the transverse and radial surfaces of freeze-fixed ginkgo stem suggested that coniferin is stored in the vacuoles, and showed good agreement with the assimilation timing of coniferin to lignin in differentiating xylem. Consequently, it is suggested that coniferin is stored in the tracheid cells of differentiating xylem and is a lignin precursor. PMID:27510918

  20. Flapping Wing Flight Dynamic Modeling

    DTIC Science & Technology

    2011-08-22

    Hummingbird [5]. This particular study focuses on the diculty of determining what models are most impor- tant to consider when trying to accurately...Projects Agency TTO Document, 1996. [5] Nano Hummingbird , Website, 2011. [6] Fry, S. N., Sayaman, R., and Dickinson, M. H., The Aerodynamics of Free...and Jategaonkar, R. V., Evolution of Flight Vehicle System Identication, Journal of Aircraft , Vol. 33, 1996, pp. 928. [40] Hedrick, T. L

  1. Quantitative time-of-flight secondary ion mass spectrometry for the characterization of multicomponent adsorbed protein films

    NASA Astrophysics Data System (ADS)

    Wagner, M. S.; Shen, M.; Horbett, T. A.; Castner, David G.

    2003-01-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is ideal for the characterization of adsorbed proteins due to its chemical specificity and surface sensitivity. We have employed ToF-SIMS and multivariate analysis to determine the surface composition of adsorbed protein films from binary mixtures, blood serum, and blood plasma. Good correlation between ToF-SIMS data and independent radiolabeling studies was achieved for binary mixtures, though these results depended on the substrate. Qualitative insight into the composition of the serum and plasma protein films was obtained via comparison to standard single protein film spectra. ToF-SIMS and multivariate analysis were able to measure the surface composition of multicomponent adsorbed protein films.

  2. Use of Cumulative Degradation Factor Prediction and Life Test Result of the Thruster Gimbal Assembly Actuator for the Dawn Flight Project

    NASA Technical Reports Server (NTRS)

    Lo, C. John; Brophy, John R.; Etters, M. Andy; Ramesham, Rajeshuni; Jones, William R., Jr.; Jansen, Mark J.

    2009-01-01

    The Dawn Ion Propulsion System is the ninth project in NASA s Discovery Program. The Dawn spacecraft is being developed to enable the scientific investigation of the two heaviest main-belt asteroids, Vesta and Ceres. Dawn is the first mission to orbit two extraterrestrial bodies, and the first to orbit a main-belt asteroid. The mission is enabled by the onboard Ion Propulsion System (IPS) to provide the post-launch delta-V. The three Ion Engines of the IPS are mounted on Thruster Gimbal Assembly (TGA), with only one engine operating at a time for this 10-year mission. The three TGAs weigh 14.6 kg.

  3. Anticipatory Water Management in Phoenix using Advanced Scenario Planning and Analyses: WaterSim 5

    NASA Astrophysics Data System (ADS)

    Sampson, D. A.; Quay, R.; White, D. D.; Gober, P.; Kirkwood, C.

    2013-12-01

    Complexity, uncertainty, and variability are inherent properties of linked social and natural processes; sustainable resource management must somehow consider all three. Typically, a decision support tool (using scenario analyses) is used to examine management alternatives under suspected trajectories in driver variables (i.e., climate forcing's, growth or economic projections, etc.). This traditional planning focuses on a small set of envisioned scenarios whose outputs are compared against one-another in order to evaluate their differing impacts on desired metrics. Human cognition typically limits this to three to five scenarios. However, complex and highly uncertain issues may require more, often much more, than five scenarios. In this case advanced scenario analysis provides quantitative or qualitative methods that can reveal patterns and associations among scenario metrics for a large ensemble of scenarios. From this analysis, then, a smaller set of heuristics that describe the complexity and uncertainty revealed provides a basis to guide planning in an anticipatory fashion. Our water policy and management model, termed WaterSim, permits advanced scenario planning and analysis for the Phoenix Metropolitan Area. In this contribution we examine the concepts of advanced scenario analysis on a large scale ensemble of scenarios using our work with WaterSim as a case study. For this case study we created a range of possible water futures by creating scenarios that encompasses differences in water supplies (our surrogates for climate change, drought, and inherent variability in riverine flows), population growth, and per capital water consumption. We used IPCC estimates of plausible, future, alterations in riverine runoff, locally produced and vetted estimates of population growth projections, and empirical trends in per capita water consumption for metropolitan cities. This ensemble consisted of ~ 30, 700 scenarios (~575 k observations). We compared and contrasted

  4. SIMS and NanoSIMS analyses of Mesoproterozoic individual microfossils indicating continuous oxygen-producing photosynthesis in Proterozoic Ocean

    NASA Astrophysics Data System (ADS)

    Peng, X.; Guo, Z.; House, C. H.; Chen, S.; Ta, K.

    2015-12-01

    Well-preserved microfossils in the stromatolites from the Gaoyuzhuang Formation (~1500Ma), which is younger than the Gunflint Formation (~1880Ma) and older than the Bitter Springs Formation (~850Ma), may play key roles in systematizing information about the evolution of early life and environmental changes in the Proterozoic Ocean. Here, a combination of light microscopy (LM), scanning electron microscopy (SEM), focused ion beam (FIB), nano-scale secondary ion mass spectrometry (NanoSIMS) and secondary ion mass spectrometry (SIMS) were employed to characterize the morphology, elemental distributions and carbon isotope values of individual microfossils in the stromatolites from the Gaoyuahzuang Formation. Light microscopy analyses show that abundant filamentous and coccoid microfossils are exceptionally well preserved in chert. NanoSIMS analyses show that metabolically important elements such as 12C-, 13C-, 12C14N-, 32S-, and 34S- are concentrated in these microfossils and that the variations in the concentrations of these elements are similar, establishing the elemental distributions in incontestably biogenic microstructures. Carbon isotope (δ13C) values of individual microfossils range from -32.2‰ ± 0.9‰ to -23.3‰ ± 1.0‰ (weighted mean= -28.9‰ ± 0.1‰), consistent with carbon fixation via the Calvin cycle. The elevated δ13C values of the microfossils from Early-, Meso- to Late Proterozoic Era, possibly indicate decreasing CO2 and increasing O2 concentrations in the Proterozoic atmosphere. Our results, for the first time, provided the element distributions and cell specific carbon isotope values on convincing Mesoproterozoic cyanobacterial fossils, supporting continuous oxygen-producing photosynthesis in the Proterozoic Ocean.

  5. X-38 Ship #2 in Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), descends at a steep angle during a July 1999 test flight at the Dryden Flight Research Center, Edwards, California. It was the fourth free flight of the test vehicles in the X-38 program, and the second free flight test of Vehicle 132 or Ship 2. The goal of this flight was to release the vehicle from a higher altitude -- 31,500 feet -- and to fly the vehicle longer -- 31 seconds -- than any previous X-38 vehicle had yet flown. The project team also conducted aerodynamic verification maneuvers and checked improvements made to the drogue parachute.

  6. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.

  7. Autonomous Flight Safety System Road Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.; Zoemer, Roger D.; Forney, Chris S.

    2005-01-01

    On February 3, 2005, Kennedy Space Center (KSC) conducted the first Autonomous Flight Safety System (AFSS) test on a moving vehicle -- a van driven around the KSC industrial area. A subset of the Phase III design was used consisting of a single computer, GPS receiver, and UPS antenna. The description and results of this road test are described in this report.AFSS is a joint KSC and Wallops Flight Facility project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations.

  8. cFE/CFS (Core Flight Executive/Core Flight System)

    NASA Technical Reports Server (NTRS)

    Wildermann, Charles P.

    2008-01-01

    This viewgraph presentation describes in detail the requirements and goals of the Core Flight Executive (cFE) and the Core Flight System (CFS). The Core Flight Software System is a mission independent, platform-independent, Flight Software (FSW) environment integrating a reusable core flight executive (cFE). The CFS goals include: 1) Reduce time to deploy high quality flight software; 2) Reduce project schedule and cost uncertainty; 3) Directly facilitate formalized software reuse; 4) Enable collaboration across organizations; 5) Simplify sustaining engineering (AKA. FSW maintenance); 6) Scale from small instruments to System of Systems; 7) Platform for advanced concepts and prototyping; and 7) Common standards and tools across the branch and NASA wide.

  9. Apollo - FIRE Project

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Schematic drawing of Project FIRE Velocity Package. This was the design of a package used for flight tests with the Atlas rockets. Project FIRE (Flight Investigation Reentry Environment) studied the effects of reentry heating on spacecraft materials. It involved both wind tunnel and flight tests, although the majority were tests with Atlas rockets and recoverable reentry packages. These flight tests took place at Cape Canaveral in Florida. Wind tunnel tests were made in several Langley tunnels including the Unitary Plan Wind Tunnel, the 8-foot High-Temperature Tunnel and the 9x6-Foot Thermal Structures Tunnel.

  10. Apollo - Project Fire

    NASA Technical Reports Server (NTRS)

    1964-01-01

    60-foot sphere used during flight tests for Project FIRE. (Shot #2): Project FIRE (Flight Investigation Reentry Environment) studied the effects of reentry heating on spacecraft materials. It involved both wind tunnel and flight tests, although the majority were tests with Atlas rockets and recoverable reentry packages. These flight tests took place at Cape Canaveral in Florida. Wind tunnel tests were made in several Langley tunnels including the Unitary Plan Wind Tunnel, the 8-foot High-Temperature Tunnel and the 9- x 6-Foot Thermal Structures Tunnel.

  11. NanoSIMS and more: New tools in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Hoppe, P.

    2016-01-01

    Primitive Solar System materials contain nm- to μm-sized presolar grains that formed in the winds of evolved stars and in the ejecta of stellar explosions. These samples of stardust can be analysed in terrestrial laboratories with sophisticated analytical instrumentation in great detail. Of particular importance are coordinated studies of individual grains by Secondary Ion Mass Spectrometry (SIMS), Resonance Ionization Mass Spectrometry (RIMS) and Focused Ion Beam/Transmission Electron Microscopy (FIB/TEM) from which detailed information on isotopic compositions and mineralogies can be obtained. A key tool is the NanoSIMS 50 ion probe which permits to do isotope measurements of light and many intermediate-mass elements with spatial resolutions of <100 nm. A new type of RIMS instrument, “CHILI”, is currently under construction and is aimed to provide <100 nm resolution for isotope studies of intermediate-mass and heavy elements. Another promising analysis technique for future studies is Atom Probe Tomography (APT) which might be useful to create 3D-elemental and isotopic maps of presolar grains at the nanometer scale.

  12. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect

    Baker, Arnold Barry; Williams, Ryan; Drennen, Thomas E.; Klotz, Richard

    2007-10-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production costs, carbon dioxide emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL) and coal (coal to liquid, or CTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the preliminary results from the model. For the base cases, CTL and cellulosic ethanol are the least cost fuel options, at $1.60 and $1.71 per gallon, respectively. Base case assumptions do not include tax or other credits. This compares to a $2.35/gallon production cost of gasoline at September, 2007 crude oil prices ($80.57/barrel). On an energy content basis, the CTL is the low cost alternative, at $12.90/MMBtu, compared to $22.47/MMBtu for cellulosic ethanol. In terms of carbon dioxide emissions, a typical vehicle fueled with cellulosic ethanol will release 0.48 tons CO{sub 2} per year, compared to 13.23 tons per year for coal to liquid.

  13. On the SIMS Ionization Probability of Organic Molecules

    NASA Astrophysics Data System (ADS)

    Popczun, Nicholas J.; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas

    2017-03-01

    The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α+) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10-5. Our lab has developed a method for the direct determination of α+ in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C24H12), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C60 cluster projectiles is of the order of 10-3, with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event.

  14. Precision Linear Actuator for Space Interferometry Mission (SIM) Siderostat Pointing

    NASA Technical Reports Server (NTRS)

    Cook, Brant; Braun, David; Hankins, Steve; Koenig, John; Moore, Don

    2008-01-01

    'SIM PlanetQuest will exploit the classical measuring tool of astrometry (interferometry) with unprecedented precision to make dramatic advances in many areas of astronomy and astrophysics'(1). In order to obtain interferometric data two large steerable mirrors, or Siderostats, are used to direct starlight into the interferometer. A gimbaled mechanism actuated by linear actuators is chosen to meet the unprecedented pointing and angle tracking requirements of SIM. A group of JPL engineers designed, built, and tested a linear ballscrew actuator capable of performing submicron incremental steps for 10 years of continuous operation. Precise, zero backlash, closed loop pointing control requirements, lead the team to implement a ballscrew actuator with a direct drive DC motor and a precision piezo brake. Motor control commutation using feedback from a precision linear encoder on the ballscrew output produced an unexpected incremental step size of 20 nm over a range of 120 mm, yielding a dynamic range of 6,000,000:1. The results prove linear nanometer positioning requires no gears, levers, or hydraulic converters. Along the way many lessons have been learned and will subsequently be shared.

  15. On the SIMS Ionization Probability of Organic Molecules.

    PubMed

    Popczun, Nicholas J; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas

    2017-03-06

    The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α(+)) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10(-5). Our lab has developed a method for the direct determination of α(+) in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C24H12), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C60 cluster projectiles is of the order of 10(-3), with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event. Graphical Abstract .

  16. Elemental and isotopic imaging of biological samples using NanoSIMS.

    PubMed

    Kilburn, Matt R; Clode, Peta L

    2014-01-01

    With its low detection limits and the ability to analyze most of the elements in the periodic table, secondary ion mass spectrometry (SIMS) represents one of the most versatile in situ analytical techniques available, and recent developments have resulted in significant advantages for the use of imaging mass spectrometry in biological and biomedical research. Increases in spatial resolution and sensitivity allow detailed interrogation of samples at relevant scales and chemical concentrations. Advances in dynamic SIMS, specifically with the advent of NanoSIMS, now allow the tracking of stable isotopes within biological systems at subcellular length scales, while static SIMS combines subcellular imaging with molecular identification. In this chapter, we present an introduction to the SIMS technique, with particular reference to NanoSIMS, and discuss its application in biological and biomedical research.

  17. Flight Test Engineering

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen

    2013-01-01

    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  18. Sim(n-2):Very Special Relativity and its Deformations, Holonomy and Quantum Corrections

    SciTech Connect

    Gibbons, G. W.

    2009-05-01

    I review some recent work on the applications of Sim(n-2), the maximal subroup of the Lorentz group SO(n-1,1). Topics covered include Myrheim's formula for the volume of Aleaxandrov open sets, Lorentz Violation and Very Special Relativity, deformations of Sim(n-2) and Bogoslovky's Finsler model, metrics with holonony Sim(n-2) and the possible absence of quantum corrections.

  19. Project Schoolflight

    ERIC Educational Resources Information Center

    Owen, Ben

    1975-01-01

    Describes "Project School Flight" which is an idea originated by the Experimental Aircraft Association to provide the opportunity for young people to construct a light aircraft in the schools as part of a normal class. Address included of Experimental Aircraft Association for interested persons. (BR)

  20. Role of Corticosteroids in Bone Loss During Space Flight

    NASA Technical Reports Server (NTRS)

    Wronski, Thomas J.; Halloran, Bernard P.; Miller, Scott C.

    1998-01-01

    The primary objective of this research project is to test the hypothesis that corticosteroids contribute to the adverse skeletal effects of space flight. To achieve this objective, serum corticosteroids, which are known to increase during space flight, must be maintained at normal physiologic levels in flight rats by a combination of adrenalectomy and corticosteroid supplementation via implanted hormone pellets. Bone analyses in these animals will then be compared to those of intact flight rats that, based on past experience, will undergo corticosteroid excess and bone loss during space flight. The results will reveal whether maintaining serum corticosteroids at physiologic levels in flight rats affects the skeletal abnormalities that normally develop during space flight. A positive response to this question would indicate that the bone loss and decreased bone formation associated with space flight are mediated, at least in part, by corticosteroid excess.

  1. SimCoach Evaluation: A Virtual Human Intervention to Encourage Service-Member Help-Seeking for Posttraumatic Stress Disorder and Depression

    DTIC Science & Technology

    2015-01-01

    Intervention to Encourage Service-Member Help-Seeking for Posttraumatic Stress Disorder and Depression C O R P O R A T I O N Report Documentation Page Form...Posttraumatic Stress Disorder and Depression 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...38 A.2. SimCoach Beta–Provided Recommendations for Coaching for Depressive Symptoms

  2. Effect of fabrication parameters on three-dimensional nanostructures of bulk heterojunctions imaged by high-resolution scanning ToF-SIMS.

    PubMed

    Yu, Bang-Ying; Lin, Wei-Chun; Wang, Wei-Ben; Iida, Shin-Ichi; Chen, Sun-Zen; Liu, Chia-Yi; Kuo, Che-Hung; Lee, Szu-Hsian; Kao, Wei-Lun; Yen, Guo-Ji; You, Yun-Wen; Liu, Chi-Ping; Jou, Jwo-Huei; Shyue, Jing-Jong

    2010-02-23

    Solution processable fullerene and copolymer bulk heterojunctions are widely used as the active layers of solar cells. In this work, scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used to examine the distribution of [6,6]phenyl-C61-butyric acid methyl ester (PCBM) and regio-regular poly(3-hexylthiophene) (rrP3HT) that forms the bulk heterojunction. The planar phase separation of P3HT:PCBM is observed by ToF-SIMS imaging. The depth profile of the fragment distribution that reflects the molecular distribution is achieved by low energy Cs(+) ion sputtering. The depth profile clearly shows a vertical phase separation of P3HT:PCBM before annealing, and hence, the inverted device architecture is beneficial. After annealing, the phase segregation is suppressed, and the device efficiency is dramatically enhanced with a normal device structure. The 3D image is obtained by stacking the 2D ToF-SIMS images acquired at different sputtering times, and 50 nm features are clearly differentiated. The whole imaging process requires less than 2 h, making it both rapid and versatile.

  3. Testing of a Methane Cryogenic Heat Pipe with a Liquid Trap Turn-Off Feature for use on Space Interferometer Mission (SIM)

    NASA Technical Reports Server (NTRS)

    Cepeda-Rizo, Juan; Krylo, Robert; Fisher, Melanie; Bugby, David C.

    2011-01-01

    Camera cooling for SIM presents three thermal control challenges; stable operation at 163K (110 C), decontamination heating to +20 C, and a long span from the cameras to the radiator. A novel cryogenic cooling system based on a methane heat pipe meets these challenges. The SIM thermal team, with the help of heat pipe vendor ATK, designed and tested a complete, low temperature, cooling system. The system accommodates the two SIM cameras with a double-ended conduction bar, a single methane heat pipe, independent turn-off devices, and a flight-like radiator. The turn ]off devices consist of a liquid trap, for removing the methane from the pipe, and an electrical heater to raise the methane temperature above the critical point thus preventing two-phase operation. This is the first time a cryogenic heat pipe has been tested at JPL and is also the first heat pipe to incorporate the turn-off features. Operation at 163K with a methane heat pipe is an important new thermal control capability for the lab. In addition, the two turn-off technologies enhance the "bag of tricks" available to the JPL thermal community. The successful test program brings this heat pipe to a high level of technology readiness.

  4. Quantitative TOF-SIMS analysis of oligomeric degradation products at the surface of biodegradable poly(alpha-hydroxy acid)s.

    PubMed

    Lee, Joo-Woon; Gardella, Joseph A

    2002-09-01

    This paper reports the development of a new method for quantification of the hydrolytic surface degradation kinetics of biodegradable poly(alpha-hydroxy acid)s using time-of-flight secondary ion mass spectrometry (TOF-SIMS). We report results from static SIMS spectra of a series of poly(alpha-hydroxy acid)s including poly(glycolic acid), poly(L-lactic acid), and random poly(D,L-lactic acid-co-glycolic acid) hydrolyzed in various buffer systems. The distribution of the most intense peak intensities of ions generated in high mass range of the spectrum reflects the intact degradation products (oligomeric hydrolysis products) of each biodegradable polymer. First, a detailed analysis of the oligomeric ions is given based on rearrangement of the intact hydrolysis products. The pattern of ions can distinguish both degradation-generated intact oligomers and their fragment ion peaks with a variety of combinations of each repeat unit. Then, the integration and summation of the area of all ion peaks with the same number of repeat units is proposed as a measurement that provides a more accurate MW average than the typically used method which counts only the most intense peak. The multiple ion summation method described in this paper would be practical in the improvement of quantitative TOF-SIMS studies as a better data reduction method, especially in the surface degradation kinetics of biodegradable polymers.

  5. Space Flight Immunodeficiency

    NASA Technical Reports Server (NTRS)

    Shearer, William T.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has had sufficient concern for the well-being of astronauts traveling in space to create the National Space Biomedical Research Institute (NSBRI), which is investigating several areas of biomedical research including those of immunology. As part of the Immunology, Infection, and Hematology Team, the co-investigators of the Space Flight Immunodeficiency Project began their research projects on April 1, 1998 and are now just into the second year of work. Two areas of research have been targeted: 1) specific immune (especially antibody) responses and 2) non-specific inflammation and adhesion. More precise knowledge of these two areas of research will help elucidate the potential harmful effects of space travel on the immune system, possibly sufficient to create a secondary state of immunodeficiency in astronauts. The results of these experiments are likely to lead to the delineation of functional alterations in antigen presentation, specific immune memory, cytokine regulation of immune responses, cell to cell interactions, and cell to endothelium interactions.

  6. HIDEC F-15 adaptive engine control system flight test results

    NASA Technical Reports Server (NTRS)

    Smolka, James W.

    1987-01-01

    NASA-Ames' Highly Integrated Digital Electronic Control (HIDEC) flight test program aims to develop fully integrated airframe, propulsion, and flight control systems. The HIDEC F-15 adaptive engine control system flight test program has demonstrated that significant performance improvements are obtainable through the retention of stall-free engine operation throughout the aircraft flight and maneuver envelopes. The greatest thrust increase was projected for the medium-to-high altitude flight regime at subsonic speed which is of such importance to air combat. Adaptive engine control systems such as the HIDEC F-15's can be used to upgrade the performance of existing aircraft without resort to expensive reengining programs.

  7. The Hydrogen Futures Simulation Model (H[2]Sim) technical description.

    SciTech Connect

    Jones, Scott A.; Kamery, William; Baker, Arnold Barry; Drennen, Thomas E.; Lutz, Andrew E.; Rosthal, Jennifer Elizabeth

    2004-10-01

    Hydrogen has the potential to become an integral part of our energy transportation and heat and power sectors in the coming decades and offers a possible solution to many of the problems associated with a heavy reliance on oil and other fossil fuels. The Hydrogen Futures Simulation Model (H2Sim) was developed to provide a high level, internally consistent, strategic tool for evaluating the economic and environmental trade offs of alternative hydrogen production, storage, transport and end use options in the year 2020. Based on the model's default assumptions, estimated hydrogen production costs range from 0.68 $/kg for coal gasification to as high as 5.64 $/kg for centralized electrolysis using solar PV. Coal gasification remains the least cost option if carbon capture and sequestration costs ($0.16/kg) are added. This result is fairly robust; for example, assumed coal prices would have to more than triple or the assumed capital cost would have to increase by more than 2.5 times for natural gas reformation to become the cheaper option. Alternatively, assumed natural gas prices would have to fall below $2/MBtu to compete with coal gasification. The electrolysis results are highly sensitive to electricity costs, but electrolysis only becomes cost competitive with other options when electricity drops below 1 cent/kWhr. Delivered 2020 hydrogen costs are likely to be double the estimated production costs due to the inherent difficulties associated with storing, transporting, and dispensing hydrogen due to its low volumetric density. H2Sim estimates distribution costs ranging from 1.37 $/kg (low distance, low production) to 3.23 $/kg (long distance, high production volumes, carbon sequestration). Distributed hydrogen production options, such as on site natural gas, would avoid some of these costs. H2Sim compares the expected 2020 per mile driving costs (fuel, capital, maintenance, license, and registration) of current technology internal combustion engine (ICE) vehicles

  8. Mission operations and command assurance: Instilling quality into flight operations

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Witkowski, Mona M.; Bruno, Kristin J.; Potts, Sherrill S.

    1993-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous process improvement to reduce the probability of radiating incorrect commands to a spacecraft. The MO&CA task has evolved from participating as a member of the spacecraft team to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  9. 'Mighty Eagle' Takes Flight

    NASA Video Gallery

    The "Mighty Eagle," a NASA robotic prototype lander, had a successful first untethered flight Aug. 8 at the Marshall Center. During the 34-second flight, the Mighty Eagle soared and hovered at 30 f...

  10. Autonomous Soaring Flight Results

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    A viewgraph presentation on autonomous soaring flight results for Unmanned Aerial Vehicles (UAV)'s is shown. The topics include: 1) Background; 2) Thermal Soaring Flight Results; 3) Autonomous Dolphin Soaring; and 4) Future Plans.

  11. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  12. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  13. GENIE Flight Test Results and System Overview

    NASA Technical Reports Server (NTRS)

    Brady, Tye; Paschall, Stephen, II; Crain, Timothy P., II; Demars, Kyle; Bishop, Robert

    2011-01-01

    NASA has envisioned a suite of lander test vehicles that will be flown in Earth s atmosphere to incrementally demonstrate applicable lunar lander performance in the terrestrial environment. As each terrestrial rocket progresses in maturity, relevant space flight technology matures to a higher technology readiness level, preparing it for inclusion on a future lunar lander design.. NASA s "Project M" lunar mission concept flew its first terrestrial rocket, RR1, in June 2010 in Caddo Mills, Texas. The Draper Laboratory built GENIE (Guidance Embedded Navigator Integration Environment) successfully demonstrated accurate, real time, embedded performance of Project M navigation and guidance algorithms in a highly dynamic environment. The RR1 vehicle, built by Armadillo Aerospace, performed a successful 60 second free flight and gave the team great confidence in Project M s highly reliable and robust GNC system design and implementation. This paper provides an overview of the GENIE system and describes recent flight performance test results onboard the RR1 terrestrial rocket.

  14. X-38 in Flight during Second Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward the desert floor under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA

  15. X-38 in Flight during Second Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward a desert lakebed under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA

  16. Campaign 1.7 Pu Aging. Development of Time of Flight Secondary Ion Mass Spectroscopy

    SciTech Connect

    Venhaus, Thomas J.

    2015-09-09

    The first application of Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) to an aged plutonium surface has resulted in a rich set of surface chemistry data, as well as some unexpected results. FY15 was highlighted by not only the first mapping of hydrogen-containing features within the metal, but also a prove-in series of experiments using the system’s Sieverts Reaction Cell. These experiments involved successfully heating the sample to ~450 oC for nearly 24 hours while the sample was dosed several times with hydrogen, followed by an in situ ToF-SIMS analysis. During this year, the data allowed for better and more consistent identification of the myriad peaks that result from the SIMS sputter process. In collaboration with the AWE (U.K), the system was also fully aligned for sputter depth profiling for future experiments.

  17. Tobacco Policies in Louisiana: Recommendations for Future Tobacco Control Investment from SimSmoke, a Policy Simulation Model.

    PubMed

    Levy, David; Fergus, Cristin; Rudov, Lindsey; McCormick-Ricket, Iben; Carton, Thomas

    2016-02-01

    Despite the presence of tobacco control policies, Louisiana continues to experience a high smoking burden and elevated smoking-attributable deaths. The SimSmoke model provides projections of these health outcomes in the face of existing and expanded (simulated) tobacco control polices. The SimSmoke model utilizes population data, smoking rates, and various tobacco control policy measures from Louisiana to predict smoking prevalence and smoking-attributable deaths. The model begins in 1993 and estimates are projected through 2054. The model is validated against existing Louisiana smoking prevalence data. The most powerful individual policy measure for reducing smoking prevalence is cigarette excise tax. However, a comprehensive cessation treatment policy is predicted to save the most lives. A combination of tobacco control policies provides the greatest reduction in smoking prevalence and smoking-attributable deaths. The existing Louisiana excise tax ranks as one of the lowest in the country and the legislature is against further increases. Alternative policy measures aimed at lowering prevalence and attributable deaths are: cessation treatments, comprehensive smoke-free policies, and limiting youth access. These three policies have a substantial effect on smoking prevalence and attributable deaths and are likely to encounter more favor in the Louisiana legislature than increasing the state excise tax.

  18. X-38 Ship #2 in Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The X-38, a research vehicle built to help develop technology for an emergency Crew Return Vehicle (CRV), descends under its steerable parachute during a July 1999 test flight at the Dryden Flight Research Center, Edwards, California. It was the fourth free flight of the test vehicles in the X-38 program, and the second free flight test of Vehicle 132 or Ship 2. The goal of this flight was to release the vehicle from a higher altitude (31,500 feet) and to fly the vehicle longer (31 seconds) than any previous X-38 vehicle had yet flown. The project team also conducted aerodynamic verification maneuvers and checked improvements made to the drogue parachute. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the- shelf equipment to significantly decrease development costs.

  19. Overview With Results and Lessons Learned of the X-43A Mach 10 Flight

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.; Bahm, Catherine; Corpening, Griffin P.; Sherrill, Robert

    2005-01-01

    This paper provides an overview of the final flight of the NASA X-43A project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The third and final flight, November 16, 2004, was the first Mach 10 flight demonstration of an airframe-integrated, scramjet-powered, hypersonic vehicle. The goals and objectives for the project as well as those for the third flight are presented. The configuration of the Hyper-X stack including the X-43A, Hyper-X launch vehicle, and Hyper-X research vehicle adapter is discussed. The second flight of the X-43A was successfully conducted on March 27, 2004. Mission differences, vehicle modifications and lessons learned from the second flight as they applied to the third flight are also discussed. An overview of flight 3 results is presented.

  20. In Flight, Online

    ERIC Educational Resources Information Center

    Lucking, Robert A.; Wighting, Mervyn J.; Christmann, Edwin P.

    2005-01-01

    The concept of flight for human beings has always been closely tied to imagination. To fly like a bird requires a mind that also soars. Therefore, good teachers who want to teach the scientific principles of flight recognize that it is helpful to share stories of their search for the keys to flight. The authors share some of these with the reader,…

  1. SIMS analysis of high-performance accelerator niobium

    SciTech Connect

    Maheshwari, P.; Stevie, F. A.; Myneni, Ganapati Rao; Rigsbee, J, M.; Dhakal, Pashupati; Ciovati, Gianluigi; Griffis, D. P.

    2014-11-01

    Niobium is used to fabricate superconducting radio frequency accelerator modules because of its high critical temperature, high critical magnetic field, and easy formability. Recent experiments have shown a very significant improvement in performance (over 100%) after a high-temperature bake at 1400 degrees C for 3h. SIMS analysis of this material showed the oxygen profile was significantly deeper than the native oxide with a shape that is indicative of diffusion. Positive secondary ion mass spectra showed the presence of Ti with a depth profile similar to that of O. It is suspected that Ti is associated with the performance improvement. The source of Ti contamination in the anneal furnace has been identified, and a new furnace was constructed without Ti. Initial results from the new furnace do not show the yield improvement. Further analyses should determine the relationship of Ti to cavity performance.

  2. Caesium sputter ion source compatible with commercial SIMS instruments.

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.; Materials Science Division; Univ. Warwick; Ioffe Physical-Technical Inst.; Ghent Univ.; Univ. Antwerp

    2006-01-01

    A simple design for a caesium sputter cluster ion source compatible with commercially available secondary ion mass spectrometers is reported. This source has been tested with the Cameca IMS 4f instrument using the cluster Si{sub n}{sup -} and Cu{sub n}{sup -} ions, and will shortly be retrofitted to the floating low energy ion gun (FLIG) of the type used on the Cameca 4500/4550 quadruple instruments. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of analytical capabilities of the SIMS instrument due to the non-additive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ions with the same impact energy.

  3. Further Studies into Synthetic Image Generation using CameoSim

    DTIC Science & Technology

    2011-08-01

    Sandstone Varnishes and Lake Bed are standard CameoSim Materials. The thermal properties of materials that were changed were the transpiration factor...0.02 0.9 0.005 0.545 2.38 0.002 0.17 Lake Bed 0.5 0.5 10 0.545 2.64 ∞ 0.14 Sandstone 0 0 10 2.7 0.92 ∞ 2.01 Sandstone Varnished 0 0 10 1.7 0.92...Sandstone Quick 3D 1 Quick3D 3 - 1 Varnished Sandstone Quick 3D 1 Quick3D 3 - 1 Lakebed Quick 2D 3 - - - - The material mixes and the bump

  4. Li Isotope Studies of Olivine in Mantle Xenoliths by SIMS

    NASA Technical Reports Server (NTRS)

    Bell, D. R.; Hervig, R. L.; Buseck, P. R.

    2005-01-01

    Variations in the ratio of the stable isotopes of Li are a potentially powerful tracer of processes in planetary and nebular environments [1]. Large differences in the 7Li/6Li ratio between the terrestrial upper mantle and various crustal materials make Li isotope composition a potentially powerful tracer of crustal recycling processes on Earth [2]. Recent SIMS studies of terrestrial mantle and Martian meteorite samples report intra-mineral Li isotope zoning [3-5]. Substantial Li isotope heterogeneity also exists within and between the components of chondritic meteorites [6,7]. Experimental studies of Li diffusion suggest the potential for rapid isotope exchange at elevated temperatures [8]. Large variations in 7Li, exceeding the range of unaltered basalts, occur in terrestrial mantle-derived xenoliths from individual localities [9]. The origins of these variations are not fully understood.

  5. An Overview of Flight Test Results for a Formation Flight Autopilot

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.; Ryan, Jack; Allen, Michael J.; Jacobson, Steven R.

    2002-01-01

    The first flight test phase of the NASA Dryden Flight Research Center Autonomous Formation Flight project has successfully demonstrated precision autonomous station-keeping of an F/A-18 research airplane with a second F/A-18 airplane. Blended inertial navigation system (INS) and global positioning system (GPS) measurements have been communicated across an air-to-air telemetry link and used to compute relative-position estimates. A precision research formation autopilot onboard the trailing airplane controls lateral and vertical spacing while the leading airplane operates under production autopilot control. Four research autopilot gain sets have been designed and flight-tested, and each exceeds the project design requirement of steady-state tracking accuracy within 1 standard deviation of 10 ft. Performance also has been demonstrated using single- and multiple-axis inputs such as step commands and frequency sweeps. This report briefly describes the experimental formation flight systems employed and discusses the navigation, guidance, and control algorithms that have been flight-tested. An overview of the flight test results of the formation autopilot during steady-state tracking and maneuvering flight is presented.

  6. A comparative study on detection of organic surface modifiers on mineral grains by TOF-SIMS, VUV SALI TOF-SIMS and VUV SALI with laser desorption

    NASA Astrophysics Data System (ADS)

    Dimov, S. S.; Chryssoulis, S. L.

    2004-06-01

    Results from a comparative study on the detection of organic collectors by TOF-SIMS, vacuum ultraviolet surface analysis by laser ionization with TOF-SIMS detection (VUV SALI TOF-SIMS) and VUV SALI with laser desorption (VUV TOF-LIMS) are reported. The study was carried out on a PHI 7200 TOF-SIMS instrument upgraded with two lasers: one for laser desorption and another one for VUV laser postionization. A systematic analysis of the laser desorption process lead to a set of optimized desorption parameters and desorption of molecules with a controlled level of fragmentation. The recorded spectra of organic collectors by VUV SALI with laser desorption are characterized by strong parent peaks and simpler fragmentation patterns, which allow for easy molecular identification. Advantages and limitations of the three techniques for analysis of organic collectors on mineral grains are discussed.

  7. Stirling to Flight Initiative

    NASA Technical Reports Server (NTRS)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    Flight (S2F) initiative with the objective of developing a 100-500 We Stirling generator system. Additionally, a different approach is being devised for this initiative to avoid pitfalls of the past, and apply lessons learned from the recent ASRG experience. Two key aspects of this initiative are a Stirling System Technology Maturation Effort, and a Surrogate Mission Team (SMT) intended to provide clear mission pull and requirements context. The S2F project seeks to lead directly into a DOE flight system development of a new SRG. This paper will detail the proposed S2F initiative, and provide specifics on the key efforts designed to pave a forward path for bringing Stirling technology to flight.

  8. Flight Avionics Sequencing Telemetry (FAST) DIV Latching Display

    NASA Technical Reports Server (NTRS)

    Moore, Charlotte

    2010-01-01

    The NASA Engineering (NE) Directorate at Kennedy Space Center provides engineering services to major programs such as: Space Shuttle, Inter national Space Station, and the Launch Services Program (LSP). The Av ionics Division within NE, provides avionics and flight control syste ms engineering support to LSP. The Launch Services Program is respons ible for procuring safe and reliable services for transporting critical, one of a kind, NASA payloads into orbit. As a result, engineers mu st monitor critical flight events during countdown and launch to asse ss anomalous behavior or any unexpected occurrence. The goal of this project is to take a tailored Systems Engineering approach to design, develop, and test Iris telemetry displays. The Flight Avionics Sequen cing Telemetry Delta-IV (FAST-D4) displays will provide NASA with an improved flight event monitoring tool to evaluate launch vehicle heal th and performance during system-level ground testing and flight. Flight events monitored will include data from the Redundant Inertial Fli ght Control Assembly (RIFCA) flight computer and launch vehicle comma nd feedback data. When a flight event occurs, the flight event is ill uminated on the display. This will enable NASA Engineers to monitor c ritical flight events on the day of launch. Completion of this project requires rudimentary knowledge of launch vehicle Guidance, Navigatio n, and Control (GN&C) systems, telemetry, and console operation. Work locations for the project include the engineering office, NASA telem etry laboratory, and Delta launch sites.

  9. With a long flight data probe extending from its nose, this F/A-18A has been modified to conduct fli

    NASA Technical Reports Server (NTRS)

    2001-01-01

    With a long flight data probe extending from its nose, this F/A-18A has been modified to conduct flight research in the Active Aeroelastic Wing (AAW) project at NASA's Dryden Flight Research Center, Edwards, California.

  10. Apollo - Project FIRE

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Project FIRE (Flight Investigation Reentry Environment) studied the effects of reentry heating on spacecraft materials. It involved both wind tunnel and flight tests, although the majority were tests with Atlas rockets and recoverable reentry packages. These flight tests took place at Cape Canaveral in Florida. Wind tunnel tests were made in several Langley tunnels including the Unitary Plan Wind Tunnel, the 8-foot High-Temperature Tunnel and the 9x6-Foot Thermal Structures Tunnel.

  11. Parallel detection, quantification, and depth profiling of peptides with dynamic-secondary ion mass spectrometry (D-SIMS) ionized by C60(+)-Ar(+) co-sputtering.

    PubMed

    Chang, Chi-Jen; Chang, Hsun-Yun; You, Yun-Wen; Liao, Hua-Yang; Kuo, Yu-Ting; Kao, Wei-Lun; Yen, Guo-Ji; Tsai, Meng-Hung; Shyue, Jing-Jong

    2012-03-09

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) using pulsed C(60)(+) primary ions is a promising technique for analyzing biological specimens with high surface sensitivities. With molecular secondary ions of high masses, multiple molecules can be identified simultaneously without prior separation or isotope labeling. Previous reports using the C(60)(+) primary ion have been based on static-SIMS, which makes depth profiling complicated. Therefore, a dynamic-SIMS technique is reported here. Mixed peptides in the cryoprotectant trehalose were used as a model for evaluating the parameters that lead to the parallel detection and quantification of biomaterials. Trehalose was mixed separately with different concentrations of peptides. The peptide secondary ion intensities (normalized with respect to those of trehalose) were directly proportional to their concentration in the matrix (0.01-2.5 mol%). Quantification curves for each peptide were generated by plotting the percentage of peptides in trehalose versus the normalized SIMS intensities. Using these curves, the parallel detection, identification, and quantification of multiple peptides was achieved. Low energy Ar(+) was used to co-sputter and ionize the peptide-doped trehalose sample to suppress the carbon deposition associated with C(60)(+) bombardment, which suppressed the ion intensities during the depth profiling. This co-sputtering technique yielded steadier molecular ion intensities than when using a single C(60)(+) beam. In other words, co-sputtering is suitable for the depth profiling of thick specimens. In addition, the smoother surface generated by co-sputtering yielded greater depth resolution than C(60)(+) sputtering. Furthermore, because C(60)(+) is responsible for generating the molecular ions, the dosage of the auxiliary Ar(+) does not significantly affect the quantification curves.

  12. Advanced flight software reconfiguraton

    NASA Technical Reports Server (NTRS)

    Porcher, Bryan

    1991-01-01

    Information is given in viewgraph form on advanced flight software reconfiguration. Reconfiguration is defined as identifying mission and configuration specific requirements, controlling mission and configuration specific data, binding this information to the flight software code to perform specific missions, and the release and distribution of the flight software. The objectives are to develop, demonstrate, and validate advanced software reconfiguration tools and techniques; to demonstrate reconfiguration approaches on Space Station Freedom (SSF) onboard systems displays; and to interactively test onboard systems displays, flight software, and flight data.

  13. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  14. Transformation of Printed Course Materials into Self Instructional Materials (SIMs): Some Basic Issues.

    ERIC Educational Resources Information Center

    Rausaria, R. R.; Bhushan, Bharat

    2001-01-01

    Discussion of the use of self-instructional materials (SIMs) in distance learning at Indira Gandhi National Open University (IGNOU) and State Open Universities (SOUs) in India. Focuses on the need for Correspondence Course Institutes in conventional Indian universities to transform printed course materials into SIMs. Discusses revision and…

  15. The Pedagogical Benefits of "SimCity" in Urban Geography Education

    ERIC Educational Resources Information Center

    Kim, Minsung; Shin, Jungyeop

    2016-01-01

    This article investigated the pedagogical potential of the "SimCity" simulation game in an urban geography course. University students used "SimCity" to build their own cities and applied a wide range of theories to support their urban structures. Moreover, the students critically evaluated the logic and functioning of the…

  16. Towards a SIM-Less Existence: The Evolution of Smart Learning Networks

    ERIC Educational Resources Information Center

    Al-Khouri, Ali M.

    2015-01-01

    This article proposes that the widespread availability of wireless networks creates a case in which there is no real need for SIM cards. Recent technological developments offer the capability to outperform SIM cards and provide more innovative dimensions to current systems of mobility. In this context of changing realities in the domain of…

  17. Evaluating the MaizSim model in simulating potential corn growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Models that simply calculate crop growth rate as the product of intercepted light and radiation use efficiency may not be able to adequately simulate plant growth under stress conditions. We developed a new corn model MaizSim. In MaizSim, photosynthesis is mechanistically related to environmental co...

  18. Students' Expression of Affect in an Inner-City SimCalc Classroom

    ERIC Educational Resources Information Center

    Schorr, Roberta Y.; Goldin, Gerald A.

    2008-01-01

    This research focuses on some of the affordances provided by SimCalc software, suggesting that its use can have important consequences for students' mathematical affect and motivation. We describe an episode in an inner-city SimCalc environment illustrating our approach to the study of affect in the mathematics classroom. We infer students'…

  19. Evaluation of simSchool: An Instructional Simulation for Pre-Service Teachers

    ERIC Educational Resources Information Center

    Deale, Deb; Pastore, Ray

    2014-01-01

    This study uses theory-based design principles to evaluate the effectiveness of an instructional simulation, simSchool. It begins by examining the simulation and evaluation literature, followed by an evaluation of the simSchool software. It is a Web-based simulation designed to emulate various students (reactions) in order to provide practice for…

  20. Simazine (SIM) Effects on Serum Testosterone and Testicular Function in the Juvenile Wistar Rat

    EPA Science Inventory

    Chlorotriazine herbicides, such as SIM, are used extensively in the U.S. each year and both the parent compound and the metabolites are detected in ground water in areas of major usage. Previously we found that SIM exposure from postnatal day 23 to 53 increased serum testosterone...