DOE Office of Scientific and Technical Information (OSTI.GOV)
Mozrzymas, Marek; Horodecki, Michał; Studziński, Michał
We consider the structure of algebra of operators, acting in n-fold tensor product space, which are partially transposed on the last term. Using purely algebraical methods we show that this algebra is semi-simple and then, considering its regular representation, we derive basic properties of the algebra. In particular, we describe all irreducible representations of the algebra of partially transposed operators and derive expressions for matrix elements of the representations. It appears that there are two kinds of irreducible representations of the algebra. The first one is strictly connected with the representations of the group S(n − 1) induced by irreduciblemore » representations of the group S(n − 2). The second kind is structurally connected with irreducible representations of the group S(n − 1)« less
On the index of noncommutative elliptic operators over C*-algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savin, Anton Yu; Sternin, Boris Yu
2010-05-11
We consider noncommutative elliptic operators over C*-algebras, associated with a discrete group of isometries of a manifold. The main result of the paper is a formula expressing the Chern characters of the index (Connes invariants) in topological terms. As a corollary to this formula a simple proof of higher index formulae for noncommutative elliptic operators is obtained. Bibliography: 36 titles.
Mastering algebra retrains the visual system to perceive hierarchical structure in equations.
Marghetis, Tyler; Landy, David; Goldstone, Robert L
2016-01-01
Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.
A path model for Whittaker vectors
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Kedem, Rinat; Turmunkh, Bolor
2017-06-01
In this paper we construct weighted path models to compute Whittaker vectors in the completion of Verma modules, as well as Whittaker functions of fundamental type, for all finite-dimensional simple Lie algebras, affine Lie algebras, and the quantum algebra U_q(slr+1) . This leads to series expressions for the Whittaker functions. We show how this construction leads directly to the quantum Toda equations satisfied by these functions, and to the q-difference equations in the quantum case. We investigate the critical limit of affine Whittaker functions computed in this way.
A set for relational reasoning: Facilitation of algebraic modeling by a fraction task.
DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J
2016-12-01
Recent work has identified correlations between early mastery of fractions and later math achievement, especially in algebra. However, causal connections between aspects of reasoning with fractions and improved algebra performance have yet to be established. The current study investigated whether relational reasoning with fractions facilitates subsequent algebraic reasoning using both pre-algebra students and adult college students. Participants were first given either a relational reasoning fractions task or a fraction algebra procedures control task. Then, all participants solved word problems and constructed algebraic equations in either multiplication or division format. The word problems and the equation construction tasks involved simple multiplicative comparison statements such as "There are 4 times as many students as teachers in a classroom." Performance on the algebraic equation construction task was enhanced for participants who had previously completed the relational fractions task compared with those who completed the fraction algebra procedures task. This finding suggests that relational reasoning with fractions can establish a relational set that promotes students' tendency to model relations using algebraic expressions. Copyright © 2016 Elsevier Inc. All rights reserved.
Algebraic perturbation theory for dense liquids with discrete potentials
NASA Astrophysics Data System (ADS)
Adib, Artur B.
2007-06-01
A simple theory for the leading-order correction g1(r) to the structure of a hard-sphere liquid with discrete (e.g., square-well) potential perturbations is proposed. The theory makes use of a general approximation that effectively eliminates four-particle correlations from g1(r) with good accuracy at high densities. For the particular case of discrete perturbations, the remaining three-particle correlations can be modeled with a simple volume-exclusion argument, resulting in an algebraic and surprisingly accurate expression for g1(r) . The structure of a discrete “core-softened” model for liquids with anomalous thermodynamic properties is reproduced as an application.
Robot Control Based On Spatial-Operator Algebra
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan
1992-01-01
Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily.
Gauge Theories of Vector Particles
DOE R&D Accomplishments Database
Glashow, S. L.; Gell-Mann, M.
1961-04-24
The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
NASA Astrophysics Data System (ADS)
Cirilo António, N.; Manojlović, N.; Salom, I.
2014-12-01
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.
Tensor models, Kronecker coefficients and permutation centralizer algebras
NASA Astrophysics Data System (ADS)
Geloun, Joseph Ben; Ramgoolam, Sanjaye
2017-11-01
We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.
Statecharts Via Process Algebra
NASA Technical Reports Server (NTRS)
Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance
1999-01-01
Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics
Line defect Schur indices, Verlinde algebras and U(1) r fixed points
NASA Astrophysics Data System (ADS)
Neitzke, Andrew; Yan, Fei
2017-11-01
Given an N=2 superconformal field theory, we reconsider the Schur index ℐ L ( q) in the presence of a half line defect L. Recently Cordova-Gaiotto-Shao found that ℐ L ( q) admits an expansion in terms of characters of the chiral algebra A introduced by Beem et al., with simple coefficients υ L, β ( q). We report a puzzling new feature of this expansion: the q → 1 limit of the coefficients υ L, β ( q) is linearly related to the vacuum expectation values 〈 L〉 in U(1) r -invariant vacua of the theory compactified on S 1. This relation can be expressed algebraically as a commutative diagram involving three algebras: the algebra generated by line defects, the algebra of functions on U(1) r -invariant vacua, and a Verlindelike algebra associated to A . Our evidence is experimental, by direct computation in the Argyres-Douglas theories of type ( A 1, A 2), ( A 1, A 4), ( A 1, A 6), ( A 1, D 3) and ( A 1, D 5). In the latter two theories, which have flavor symmetries, the Verlinde-like algebra which appears is a new deformation of algebras previously considered.
Simple nuclear C*-algebras not isomorphic to their opposites
Hirshberg, Ilan
2017-01-01
We show that it is consistent with Zermelo–Fraenkel set theory with the axiom of choice (ZFC) that there is a simple nuclear nonseparable C∗-algebra, which is not isomorphic to its opposite algebra. We can furthermore guarantee that this example is an inductive limit of unital copies of the Cuntz algebra O2 or of the canonical anticommutation relations (CAR) algebra. PMID:28559339
A convenient basis for the Izergin-Korepin model
NASA Astrophysics Data System (ADS)
Qiao, Yi; Zhang, Xin; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Wen-Li; Shi, Kangjie
2018-05-01
We propose a convenient orthogonal basis of the Hilbert space for the quantum spin chain associated with the A2(2) algebra (or the Izergin-Korepin model). It is shown that compared with the original basis the monodromy-matrix elements acting on this basis take relatively simple forms, which is quite similar as that for the quantum spin chain associated with An algebra in the so-called F-basis. As an application of our general results, we present the explicit recursive expressions of the Bethe states in this basis for the Izergin-Korepin model.
NASA Astrophysics Data System (ADS)
Robinson, Stephen
2015-03-01
Angular momentum is a notoriously difficult concept to grasp. Visualization often requires three-dimensional pictures of vectors pointing in seemingly arbitrary directions. A simple student-run laboratory experiment coupled with intuitive explanations by an instructor can clear up some of the inherent ambiguity of rotational motion. Specifically, the precessional period of a suspended spinning bicycle wheel can be related to the spinning frequency through a simple algebraic expression. An explanation of this precession apart from the concept of angular momentum will be given.
NASA Astrophysics Data System (ADS)
Mozrzymas, Marek; Studziński, Michał; Horodecki, Michał
2018-03-01
Herein we continue the study of the representation theory of the algebra of permutation operators acting on the n -fold tensor product space, partially transposed on the last subsystem. We develop the concept of partially reduced irreducible representations, which allows us to significantly simplify previously proved theorems and, most importantly, derive new results for irreducible representations of the mentioned algebra. In our analysis we are able to reduce the complexity of the central expressions by getting rid of sums over all permutations from the symmetric group, obtaining equations which are much more handy in practical applications. We also find relatively simple matrix representations for the generators of the underlying algebra. The obtained simplifications and developments are applied to derive the characteristics of a deterministic port-based teleportation scheme written purely in terms of irreducible representations of the studied algebra. We solve an eigenproblem for the generators of the algebra, which is the first step towards a hybrid port-based teleportation scheme and gives us new proofs of the asymptotic behaviour of teleportation fidelity. We also show a connection between the density operator characterising port-based teleportation and a particular matrix composed of an irreducible representation of the symmetric group, which encodes properties of the investigated algebra.
Dimensional analysis using toric ideals: primitive invariants.
Atherton, Mark A; Bates, Ronald A; Wynn, Henry P
2014-01-01
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.
A Compact Formula for Rotations as Spin Matrix Polynomials
Curtright, Thomas L.; Fairlie, David B.; Zachos, Cosmas K.
2014-08-12
Group elements of SU(2) are expressed in closed form as finite polynomials of the Lie algebra generators, for all definite spin representations of the rotation group. Here, the simple explicit result exhibits connections between group theory, combinatorics, and Fourier analysis, especially in the large spin limit. Salient intuitive features of the formula are illustrated and discussed.
ERIC Educational Resources Information Center
Crittenden, Barry D.
1991-01-01
A simple liquid-liquid equilibrium (LLE) system involving a constant partition coefficient based on solute ratios is used to develop an algebraic understanding of multistage contacting in a first-year separation processes course. This algebraic approach to the LLE system is shown to be operable for the introduction of graphical techniques…
Algebraic Turbulence-Chemistry Interaction Model
NASA Technical Reports Server (NTRS)
Norris, Andrew T.
2012-01-01
The results of a series of Perfectly Stirred Reactor (PSR) and Partially Stirred Reactor (PaSR) simulations are compared to each other over a wide range of operating conditions. It is found that the PaSR results can be simulated by a PSR solution with just an adjusted chemical reaction rate. A simple expression has been developed that gives the required change in reaction rate for a PSR solution to simulate the PaSR results. This expression is the basis of a simple turbulence-chemistry interaction model. The interaction model that has been developed is intended for use with simple one-step global reaction mechanisms and for steady-state flow simulations. Due to the simplicity of the model there is very little additional computational cost in adding it to existing CFD codes.
Derive Workshop Matrix Algebra and Linear Algebra.
ERIC Educational Resources Information Center
Townsley Kulich, Lisa; Victor, Barbara
This document presents the course content for a workshop that integrates the use of the computer algebra system Derive with topics in matrix and linear algebra. The first section is a guide to using Derive that provides information on how to write algebraic expressions, make graphs, save files, edit, define functions, differentiate expressions,…
NASA Astrophysics Data System (ADS)
Gainutdinov, A. M.; Read, N.; Saleur, H.
2016-01-01
We develop in this paper the principles of an associative algebraic approach to bulk logarithmic conformal field theories (LCFTs). We concentrate on the closed {gl(1|1)} spin-chain and its continuum limit—the {c=-2} symplectic fermions theory—and rely on two technical companion papers, Gainutdinov et al. (Nucl Phys B 871:245-288, 2013) and Gainutdinov et al. (Nucl Phys B 871:289-329, 2013). Our main result is that the algebra of local Hamiltonians, the Jones-Temperley-Lieb algebra JTL N , goes over in the continuum limit to a bigger algebra than {V}, the product of the left and right Virasoro algebras. This algebra, {S}—which we call interchiral, mixes the left and right moving sectors, and is generated, in the symplectic fermions case, by the additional field {S(z,bar{z})≡ S_{αβ} ψ^α(z)bar{ψ}^β(bar{z})}, with a symmetric form {S_{αβ}} and conformal weights (1,1). We discuss in detail how the space of states of the LCFT (technically, a Krein space) decomposes onto representations of this algebra, and how this decomposition is related with properties of the finite spin-chain. We show that there is a complete correspondence between algebraic properties of finite periodic spin chains and the continuum limit. An important technical aspect of our analysis involves the fundamental new observation that the action of JTL N in the {gl(1|1)} spin chain is in fact isomorphic to an enveloping algebra of a certain Lie algebra, itself a non semi-simple version of {sp_{N-2}}. The semi-simple part of JTL N is represented by {U sp_{N-2}}, providing a beautiful example of a classical Howe duality, for which we have a non semi-simple version in the full JTL N image represented in the spin-chain. On the continuum side, simple modules over {S} are identified with "fundamental" representations of {sp_∞}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadets, Boris; Karolinsky, Eugene; Pop, Iulia
2016-05-15
In this paper we continue to study Belavin–Drinfeld cohomology introduced in Kadets et al., Commun. Math. Phys. 344(1), 1-24 (2016) and related to the classification of quantum groups whose quasi-classical limit is a given simple complex Lie algebra #Mathematical Fraktur Small G#. Here we compute Belavin–Drinfeld cohomology for all non-skewsymmetric r-matrices on the Belavin–Drinfeld list for simple Lie algebras of type B, C, and D.
On the homotopy equivalence of simple AI-algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aristov, O Yu
1999-02-28
Let A and B be simple unital AI-algebras (an AI-algebra is an inductive limit of C*-algebras of the form BigOplus{sub i}{sup k}C([0,1],M{sub N{sub i}}). It is proved that two arbitrary unital homomorphisms from A into B such that the corresponding maps K{sub 0}A{yields}K{sub 0}B coincide are homotopic. Necessary and sufficient conditions on the Elliott invariant for A and B to be homotopy equivalent are indicated. Moreover, two algebras in the above class having the same K-theory but not homotopy equivalent are constructed. A theorem on the homotopy of approximately unitarily equivalent homomorphisms between AI-algebras is used in the proof, whichmore » is deduced in its turn from a generalization to the case of AI-algebras of a theorem of Manuilov stating that a unitary matrix almost commuting with a self-adjoint matrix h can be joined to 1 by a continuous path consisting of unitary matrices almost commuting with h.« less
NASA Astrophysics Data System (ADS)
Chicurel-Uziel, Enrique
2007-08-01
A pair of closed parametric equations are proposed to represent the Heaviside unit step function. Differentiating the step equations results in two additional parametric equations, that are also hereby proposed, to represent the Dirac delta function. These equations are expressed in algebraic terms and are handled by means of elementary algebra and elementary calculus. The proposed delta representation complies exactly with the values of the definition. It complies also with the sifting property and the requisite unit area and its Laplace transform coincides with the most general form given in the tables. Furthermore, it leads to a very simple method of solution of impulsive vibrating systems either linear or belonging to a large class of nonlinear problems. Two example solutions are presented.
NASA Astrophysics Data System (ADS)
Saveliev, M. V.; Vershik, A. M.
1989-12-01
We present an axiomatic formulation of a new class of infinitedimensional Lie algebras-the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras “continuum Lie algebras.” The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered.
ERIC Educational Resources Information Center
Wasserman, Nicholas H.
2014-01-01
Algebraic structures are a necessary aspect of algebraic thinking for K-12 students and teachers. An approach for introducing the algebraic structure of groups and fields through the arithmetic properties required for solving simple equations is summarized; the collective (not individual) importance of these axioms as a foundation for algebraic…
NASA Astrophysics Data System (ADS)
Foda, O.; Welsh, T. A.
2016-04-01
We study the Andrews-Gordon-Bressoud (AGB) generalisations of the Rogers-Ramanujan q-series identities in the context of cylindric partitions. We recall the definition of r-cylindric partitions, and provide a simple proof of Borodin’s product expression for their generating functions, that can be regarded as a limiting case of an unpublished proof by Krattenthaler. We also recall the relationships between the r-cylindric partition generating functions, the principal characters of {\\hat{{sl}}}r algebras, the {{\\boldsymbol{ M }}}r r,r+d minimal model characters of {{\\boldsymbol{ W }}}r algebras, and the r-string abaci generating functions, providing simple proofs for each. We then set r = 2, and use two-cylindric partitions to re-derive the AGB identities as follows. Firstly, we use Borodin’s product expression for the generating functions of the two-cylindric partitions with infinitely long parts, to obtain the product sides of the AGB identities, times a factor {(q;q)}∞ -1, which is the generating function of ordinary partitions. Next, we obtain a bijection from the two-cylindric partitions, via two-string abaci, into decorated versions of Bressoud’s restricted lattice paths. Extending Bressoud’s method of transforming between restricted paths that obey different restrictions, we obtain sum expressions with manifestly non-negative coefficients for the generating functions of the two-cylindric partitions which contains a factor {(q;q)}∞ -1. Equating the product and sum expressions of the same two-cylindric partitions, and canceling a factor of {(q;q)}∞ -1 on each side, we obtain the AGB identities.
A new exact method for line radiative transfer
NASA Astrophysics Data System (ADS)
Elitzur, Moshe; Asensio Ramos, Andrés
2006-01-01
We present a new method, the coupled escape probability (CEP), for exact calculation of line emission from multi-level systems, solving only algebraic equations for the level populations. The CEP formulation of the classical two-level problem is a set of linear equations, and we uncover an exact analytic expression for the emission from two-level optically thick sources that holds as long as they are in the `effectively thin' regime. In a comparative study of a number of standard problems, the CEP method outperformed the leading line transfer methods by substantial margins. The algebraic equations employed by our new method are already incorporated in numerous codes based on the escape probability approximation. All that is required for an exact solution with these existing codes is to augment the expression for the escape probability with simple zone-coupling terms. As an application, we find that standard escape probability calculations generally produce the correct cooling emission by the CII 158-μm line but not by the 3P lines of OI.
a Perspective on the Magic Square and the "special Unitary" Realization of Real Simple Lie Algebras
NASA Astrophysics Data System (ADS)
Santander, Mariano
2013-07-01
This paper contains the last part of the minicourse "Spaces: A Perspective View" delivered at the IFWGP2012. The series of three lectures was intended to bring the listeners from the more naive and elementary idea of space as "our physical Space" (which after all was the dominant one up to the 1820s) through the generalization of the idea of space which took place in the last third of the 19th century. That was a consequence of first the discovery and acceptance of non-Euclidean geometry and second, of the views afforded by the works of Riemann and Klein and continued since then by many others, outstandingly Lie and Cartan. Here we deal with the part of the minicourse which centers on the classification questions associated to the simple real Lie groups. We review the original introduction of the Magic Square "á la Freudenthal", putting the emphasis in the role played in this construction by the four normed division algebras ℝ, ℂ, ℍ, 𝕆. We then explore the possibility of understanding some simple real Lie algebras as "special unitary" over some algebras 𝕂 or tensor products 𝕂1 ⊗ 𝕂2, and we argue that the proper setting for this construction is not to confine only to normed division algebras, but to allow the split versions ℂ‧, ℍ‧, 𝕆‧ of complex, quaternions and octonions as well. This way we get a "Grand Magic Square" and we fill in all details required to cover all real forms of simple real Lie algebras within this scheme. The paper ends with the complete lists of all realizations of simple real Lie algebras as "special unitary" (or only unitary when n = 2) over some tensor product of two *-algebras 𝕂1, 𝕂2, which in all cases are obtained from ℝ, ℂ, ℂ‧, ℍ, ℍ‧, 𝕆, 𝕆‧ as sets, endowing them with a *-conjugation which usually but not always is the natural complex, quaternionic or octonionic conjugation.
ERIC Educational Resources Information Center
Merlin, Ethan M.
2013-01-01
This article describes how the author has developed tasks for students that address the missed "essence of the matter" of algebraic transformations. Specifically, he has found that having students practice "perceiving" algebraic structure--by naming the "glue" in the expressions, drawing expressions using…
Gary Achtemeier
2012-01-01
A cellular automata fire model represents âelementsâ of fire by autonomous agents. A few simple algebraic expressions substituted for complex physical and meteorological processes and solved iteratively yield simulations for âsuper-diffusiveâ fire spread and coupled surface-layer (2-m) fireâatmosphere processes. Pressure anomalies, which are integrals of the thermal...
ERIC Educational Resources Information Center
Okpube, Nnaemeka Michael; Anugwo, M. N.
2016-01-01
This study investigated the Card Games and Algebra tic-Tacmatics on Junior Secondary II Students' Achievement in Algebraic Expressions. Three research questions and three null hypotheses guided the study. The study adopted the pre-test, post-test control group design. A total of two hundred and forty (240) Junior Secondary School II students were…
Symmetries of hyper-Kähler (or Poisson gauge field) hierarchy
NASA Astrophysics Data System (ADS)
Takasaki, K.
1990-08-01
Symmetry properties of the space of complex (or formal) hyper-Kähler metrics are studied in the language of hyper-Kähler hierarchies. The construction of finite symmetries is analogous to the theory of Riemann-Hilbert transformations, loop group elements now taking values in a (pseudo-) group of canonical transformations of a simplectic manifold. In spite of their highly nonlinear and involved nature, infinitesimal expressions of these symmetries are shown to have a rather simple form. These infinitesimal transformations are extended to the Plebanski key functions to give rise to a nonlinear realization of a Poisson loop algebra. The Poisson algebra structure turns out to originate in a contact structure behind a set of symplectic structures inherent in the hyper-Kähler hierarchy. Possible relations to membrane theory are briefly discussed.
NASA Astrophysics Data System (ADS)
Manojlović, N.; Salom, I.
2017-10-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campoamor-Stursberg, R., E-mail: rutwig@mat.ucm.e
2008-05-15
By means of contractions of Lie algebras, we obtain new classes of indecomposable quasiclassical Lie algebras that satisfy the Yang-Baxter equations in its reformulation in terms of triple products. These algebras are shown to arise naturally from noncompact real simple algebras with nonsimple complexification, where we impose that a nondegenerate quadratic Casimir operator is preserved by the limiting process. We further consider the converse problem and obtain sufficient conditions on integrable cocycles of quasiclassical Lie algebras in order to preserve nondegenerate quadratic Casimir operators by the associated linear deformations.
Colored knot polynomials for arbitrary pretzel knots and links
Galakhov, D.; Melnikov, D.; Mironov, A.; ...
2015-04-01
A very simple expression is conjectured for arbitrary colored Jones and HOMFLY polynomials of a rich (g+1)-parametric family of pretzel knots and links. The answer for the Jones and HOMFLY is fully and explicitly expressed through the Racah matrix of Uq(SU N), and looks related to a modular transformation of toric conformal block. Knot polynomials are among the hottest topics in modern theory. They are supposed to summarize nicely representation theory of quantum algebras and modular properties of conformal blocks. The result reported in the present letter, provides a spectacular illustration and support to this general expectation.
Algebra for Babies: Exploring Natural Numbers in Simple Arrays. Occasional Paper Five
ERIC Educational Resources Information Center
Fluellen, Jerry E., Jr.
2008-01-01
In 12 audio taped sessions, three kindergarten children engaged algebra in a teaching for understanding, thematic project. Toni, Asa, and Cornel had one-on-one lessons dealing with simple natural numbers, patterns, and relationships. Along the way, each child studied one of Toni Morrison's Who's got game books to explore repetition patterns in…
The Effect of an Intelligent Tutoring System (ITS) on Student Achievement in Algebraic Expression
ERIC Educational Resources Information Center
Chien, Tsai Chen; Md. Yunus, Aida Suraya; Ali, Wan Zah Wan; Bakar, Ab. Rahim
2008-01-01
In this experimental study, use of Computer Assisted Instruction (CAI) followed by use of an Intelligent Tutoring System (CAI+ITS) was compared to the use of CAI (CAI only) in tutoring students on the topic of Algebraic Expression. Two groups of students participated in the study. One group of 32 students studied algebraic expression in a CAI…
NASA Astrophysics Data System (ADS)
Blajer, W.; Dziewiecki, K.; Kołodziejczyk, K.; Mazur, Z.
2011-05-01
Underactuated systems are featured by fewer control inputs than the degrees-of-freedom, m < n. The determination of an input control strategy that forces such a system to complete a set of m specified motion tasks is a challenging task, and the explicit solution existence is conditioned to differential flatness of the problem. The flatness-based solution denotes that all the 2 n states and m control inputs can be algebraically expressed in terms of the m specified outputs and their time derivatives up to a certain order, which is in practice attainable only for simple systems. In this contribution the problem is posed in a more practical way as a set of index-three differential-algebraic equations, and the solution is obtained numerically. The formulation is then illustrated by a two-degree-of-freedom underactuated system composed of two rotating discs connected by a torsional spring, in which the pre-specified motion of one of the discs is actuated by the torque applied to the other disc, n = 2 and m = 1. Experimental verification of the inverse simulation control methodology is reported.
Rational solutions of CYBE for simple compact real Lie algebras
NASA Astrophysics Data System (ADS)
Pop, Iulia; Stolin, Alexander
2007-04-01
In [A.A. Stolin, On rational solutions of Yang-Baxter equation for sl(n), Math. Scand. 69 (1991) 57-80; A.A. Stolin, On rational solutions of Yang-Baxter equation. Maximal orders in loop algebra, Comm. Math. Phys. 141 (1991) 533-548; A. Stolin, A geometrical approach to rational solutions of the classical Yang-Baxter equation. Part I, in: Walter de Gruyter & Co. (Ed.), Symposia Gaussiana, Conf. Alg., Berlin, New York, 1995, pp. 347-357] a theory of rational solutions of the classical Yang-Baxter equation for a simple complex Lie algebra g was presented. We discuss this theory for simple compact real Lie algebras g. We prove that up to gauge equivalence all rational solutions have the form X(u,v)={Ω}/{u-v}+t1∧t2+⋯+t∧t2n, where Ω denotes the quadratic Casimir element of g and {ti} are linearly independent elements in a maximal torus t of g. The quantization of these solutions is also emphasized.
A cluster bootstrap for two-loop MHV amplitudes
Golden, John; Spradlin, Marcus
2015-02-02
We apply a bootstrap procedure to two-loop MHV amplitudes in planar N=4 super-Yang-Mills theory. We argue that the mathematically most complicated part (the Λ 2 B 2 coproduct component) of the n-particle amplitude is uniquely determined by a simple cluster algebra property together with a few physical constraints (dihedral symmetry, analytic structure, supersymmetry, and well-defined collinear limits). Finally, we present a concise, closed-form expression which manifests these properties for all n.
On irregular singularity wave functions and superconformal indices
NASA Astrophysics Data System (ADS)
Buican, Matthew; Nishinaka, Takahiro
2017-09-01
We generalize, in a manifestly Weyl-invariant way, our previous expressions for irregular singularity wave functions in two-dimensional SU(2) q-deformed Yang-Mills theory to SU( N). As an application, we give closed-form expressions for the Schur indices of all ( A N - 1 , A N ( n - 1)-1) Argyres-Douglas (AD) superconformal field theories (SCFTs), thus completing the computation of these quantities for the ( A N , A M ) SCFTs. With minimal effort, our wave functions also give new Schur indices of various infinite sets of "Type IV" AD theories. We explore the discrete symmetries of these indices and also show how highly intricate renormalization group (RG) flows from isolated theories and conformal manifolds in the ultraviolet to isolated theories and (products of) conformal manifolds in the infrared are encoded in these indices. We compare our flows with dimensionally reduced flows via a simple "monopole vev RG" formalism. Finally, since our expressions are given in terms of concise Lie algebra data, we speculate on extensions of our results that might be useful for probing the existence of hypothetical SCFTs based on other Lie algebras. We conclude with a discussion of some open problems.
NASA Astrophysics Data System (ADS)
Guzzo, H.; Hernández, I.; Sánchez-Valenzuela, O. A.
2014-09-01
Finite dimensional semisimple real Lie superalgebras are described via finite dimensional semisimple complex Lie superalgebras. As an application of these results, finite dimensional real Lie superalgebras mathfrak {m}=mathfrak {m}_0 oplus mathfrak {m}_1 for which mathfrak {m}_0 is a simple Lie algebra are classified up to isomorphism.
University of Chicago School Mathematics Project (UCSMP) Algebra. WWC Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2009
2009-01-01
University of Chicago School Mathematics Project (UCSMP) Algebra is a one-year course covering three primary topics: (1) linear and quadratic expressions, sentences, and functions; (2) exponential expressions and functions; and (3) linear systems. Topics from geometry, probability, and statistics are integrated with the appropriate algebra.…
Seeing through Symbols: The Case of Equivalent Expressions.
ERIC Educational Resources Information Center
Kieran, Carolyn; Sfard, Anna
1999-01-01
Presents a teaching experiment to turn students from external observers into active participants in a game of algebra learning where students use graphs to build meaning for equivalence of algebraic expressions. Concludes that the graphic-functional approach seems to make the introduction to algebra much more meaningful for the learner. (ASK)
The operator algebra approach to quantum groups
Kustermans, Johan; Vaes, Stefaan
2000-01-01
A relatively simple definition of a locally compact quantum group in the C*-algebra setting will be explained as it was recently obtained by the authors. At the same time, we put this definition in the historical and mathematical context of locally compact groups, compact quantum groups, Kac algebras, multiplicative unitaries, and duality theory. PMID:10639116
Generalized Lotka—Volterra systems connected with simple Lie algebras
NASA Astrophysics Data System (ADS)
Charalambides, Stelios A.; Damianou, Pantelis A.; Evripidou, Charalambos A.
2015-06-01
We devise a new method for producing Hamiltonian systems by constructing the corresponding Lax pairs. This is achieved by considering a larger subset of the positive roots than the simple roots of the root system of a simple Lie algebra. We classify all subsets of the positive roots of the root system of type An for which the corresponding Hamiltonian systems are transformed, via a simple change of variables, to Lotka-Volterra systems. For some special cases of subsets of the positive roots of the root system of type An, we produce new integrable Hamiltonian systems.
Spatial-Operator Algebra For Flexible-Link Manipulators
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Rodriguez, Guillermo
1994-01-01
Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.
Towards a model of pion generalized parton distributions from Dyson-Schwinger equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moutarde, H.
2015-04-10
We compute the pion quark Generalized Parton Distribution H{sup q} and Double Distributions F{sup q} and G{sup q} in a coupled Bethe-Salpeter and Dyson-Schwinger approach. We use simple algebraic expressions inspired by the numerical resolution of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly check the support and polynomiality properties, and the behavior under charge conjugation or time invariance of our model. We derive analytic expressions for the pion Double Distributions and Generalized Parton Distribution at vanishing pion momentum transfer at a low scale. Our model compares very well to experimental pion form factor or parton distribution function data.
ERIC Educational Resources Information Center
Hillegeist, Eleanor; Epstein, Kenneth
The study examined the relationship between language and mathematics with 11 classes of deaf students taking Algebra 1 or Algebra 2 at the Gallaudet University School of Preparatory Studies. Specifically, the study attempted to predict the difficulty of a variety of relatively simple algebra problems based on the abstractness of the math and the…
An Uncommon Approach to a Common Algebraic Error
ERIC Educational Resources Information Center
Rossi, Paul S.
2008-01-01
The basic rules of elementary algebra can often appear beyond the grasp of many students. Even though most subjects, including calculus, prove to be more difficult, it is the simple rules of algebra that continue to be the "thorn in the side" of many mathematics students. In this paper we present a result intended to help students achieve a…
Chinese Algebra: Using Historical Problems to Think about Current Curricula
ERIC Educational Resources Information Center
Tillema, Erik
2005-01-01
The Chinese used the idea of generating equivalent expressions for solving problems where the problems from a historical Chinese text are studied to understand the ways in which the ideas can lead into algebraic calculations and help students to learn algebra. The texts unify algebraic problem solving through complex algebraic thought and afford…
ERIC Educational Resources Information Center
Muschla, Judith A.; Muschla, Gary Robert; Muschla, Erin
2011-01-01
Many students have trouble grasping algebra. In this book, bestselling authors Judith, Gary, and Erin Muschla offer help for math teachers who must instruct their students (even those who are struggling) about the complexities of algebra. In simple terms, the authors outline 150 classroom-tested lessons, focused on those concepts often most…
Three-dimensional polarization algebra.
R Sheppard, Colin J; Castello, Marco; Diaspro, Alberto
2016-10-01
If light is focused or collected with a high numerical aperture lens, as may occur in imaging and optical encryption applications, polarization should be considered in three dimensions (3D). The matrix algebra of polarization behavior in 3D is discussed. It is useful to convert between the Mueller matrix and two different Hermitian matrices, representing an optical material or system, which are in the literature. Explicit transformation matrices for converting the column vector form of these different matrices are extended to the 3D case, where they are large (81×81) but can be generated using simple rules. It is found that there is some advantage in using a generalization of the Chandrasekhar phase matrix treatment, rather than that based on Gell-Mann matrices, as the resultant matrices are of simpler form and reduce to the two-dimensional case more easily. Explicit expressions are given for 3D complex field components in terms of Chandrasekhar-Stokes parameters.
Balance point characterization of interstitial fluid volume regulation.
Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M
2009-07-01
The individual processes involved in interstitial fluid volume and protein regulation (microvascular filtration, lymphatic return, and interstitial storage) are relatively simple, yet their interaction is exceedingly complex. There is a notable lack of a first-order, algebraic formula that relates interstitial fluid pressure and protein to critical parameters commonly used to characterize the movement of interstitial fluid and protein. Therefore, the purpose of the present study is to develop a simple, transparent, and general algebraic approach that predicts interstitial fluid pressure (P(i)) and protein concentrations (C(i)) that takes into consideration all three processes. Eight standard equations characterizing fluid and protein flux were solved simultaneously to yield algebraic equations for P(i) and C(i) as functions of parameters characterizing microvascular, interstitial, and lymphatic function. Equilibrium values of P(i) and C(i) arise as balance points from the graphical intersection of transmicrovascular and lymph flows (analogous to Guyton's classical cardiac output-venous return curves). This approach goes beyond describing interstitial fluid balance in terms of conservation of mass by introducing the concept of inflow and outflow resistances. Algebraic solutions demonstrate that P(i) and C(i) result from a ratio of the microvascular filtration coefficient (1/inflow resistance) and effective lymphatic resistance (outflow resistance), and P(i) is unaffected by interstitial compliance. These simple algebraic solutions predict P(i) and C(i) that are consistent with reported measurements. The present work therefore presents a simple, transparent, and general balance point characterization of interstitial fluid balance resulting from the interaction of microvascular, interstitial, and lymphatic function.
Graphical tensor product reduction scheme for the Lie algebras so(5) = sp(2) , su(3) , and g(2)
NASA Astrophysics Data System (ADS)
Vlasii, N. D.; von Rütte, F.; Wiese, U.-J.
2016-08-01
We develop in detail a graphical tensor product reduction scheme, first described by Antoine and Speiser, for the simple rank 2 Lie algebras so(5) = sp(2) , su(3) , and g(2) . This leads to an efficient practical method to reduce tensor products of irreducible representations into sums of such representations. For this purpose, the 2-dimensional weight diagram of a given representation is placed in a ;landscape; of irreducible representations. We provide both the landscapes and the weight diagrams for a large number of representations for the three simple rank 2 Lie algebras. We also apply the algebraic ;girdle; method, which is much less efficient for calculations by hand for moderately large representations. Computer code for reducing tensor products, based on the graphical method, has been developed as well and is available from the authors upon request.
Geary, David C.; Hoard, Mary K.; Nugent, Lara; Rouder, Jeffrey N.
2015-01-01
The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 (92 girls) 9th graders, controlling parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation, but not schema memory. Frequency of fact-retrieval errors was related to schema memory but not coordinate plane or expression evaluation accuracy. The results suggest the ANS may contribute to or is influenced by spatial-numerical and numerical only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest different brain and cognitive systems are engaged during the learning of different components of algebraic competence, controlling demographic and domain general abilities. PMID:26255604
On determinant representations of scalar products and form factors in the SoV approach: the XXX case
NASA Astrophysics Data System (ADS)
Kitanine, N.; Maillet, J. M.; Niccoli, G.; Terras, V.
2016-03-01
In the present article we study the form factors of quantum integrable lattice models solvable by the separation of variables (SoVs) method. It was recently shown that these models admit universal determinant representations for the scalar products of the so-called separate states (a class which includes in particular all the eigenstates of the transfer matrix). These results permit to obtain simple expressions for the matrix elements of local operators (form factors). However, these representations have been obtained up to now only for the completely inhomogeneous versions of the lattice models considered. In this article we give a simple algebraic procedure to rewrite the scalar products (and hence the form factors) for the SoV related models as Izergin or Slavnov type determinants. This new form leads to simple expressions for the form factors in the homogeneous and thermodynamic limits. To make the presentation of our method clear, we have chosen to explain it first for the simple case of the XXX Heisenberg chain with anti-periodic boundary conditions. We would nevertheless like to stress that the approach presented in this article applies as well to a wide range of models solved in the SoV framework.
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
NASA Astrophysics Data System (ADS)
Liu, Chiu-Chu Melissa; Sheshmani, Artan
2017-07-01
An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold.
Benhammouda, Brahim
2016-01-01
Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.
Effect of geometry and operating conditions on spur gear system power loss
NASA Technical Reports Server (NTRS)
Anderson, N. E.; Loewenthal, S. H.
1980-01-01
The results of an analysis of the effects of spur gear size, pitch, width, and ratio on total mesh power loss for a wide range of speeds, torques, and oil viscosities are presented. The analysis uses simple algebraic expressions to determine gear sliding, rolling, and windage losses and also incorporates an approximate ball bearing power loss expression. The analysis shows good agreement with published data. Large diameter and fine pitched gears had higher peak efficiencies but low part load efficiency. Gear efficiencies were generally greater than 98 percent except at very low torque levels. Tare (no-load) losses are generally a significant percentage of the full load loss except at low speeds.
Effect of geometry and operating conditions on spur gear system power loss
NASA Technical Reports Server (NTRS)
Anderson, N. E.; Loewenthal, S. H.
1980-01-01
The results of an analysis of the effects of spur gear size, pitch, width and ratio on total mesh power loss for a wide range of speeds, torques and oil viscosities are presented. The analysis uses simple algebraic expressions to determine gear sliding, rolling and windage losses and also incorporates an approximate ball bearing power loss expression. The analysis shows good agreement with published data. Large diameter and fine-pitched gears had higher peak efficiencies but lower part-load efficiency. Gear efficiencies were generally greater than 98 percent except at very low torque levels. Tare (no-load) losses are generally a significant percentage of the full-load loss except at low speeds.
Abstract Numeric Relations and the Visual Structure of Algebra
ERIC Educational Resources Information Center
Landy, David; Brookes, David; Smout, Ryan
2014-01-01
Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition,…
Differential calculus on quantized simple lie groups
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1991-07-01
Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU q (2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q ∈ ℝ are also discussed.
Geary, David C; Hoard, Mary K; Nugent, Lara; Rouder, Jeffrey N
2015-12-01
The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 ninth graders (92 girls) while controlling for parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation but not to schema memory. Frequency of fact retrieval errors was related to schema memory but not to coordinate plane or expression evaluation accuracy. The results suggest that the ANS may contribute to or be influenced by spatial-numerical and numerical-only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest that different brain and cognitive systems are engaged during the learning of different components of algebraic competence while controlling for demographic and domain general abilities. Copyright © 2015 Elsevier Inc. All rights reserved.
Computer algebra and operators
NASA Technical Reports Server (NTRS)
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Difficulties in initial algebra learning in Indonesia
NASA Astrophysics Data System (ADS)
Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja
2014-12-01
Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.
On Correspondence of BRST-BFV, Dirac, and Refined Algebraic Quantizations of Constrained Systems
NASA Astrophysics Data System (ADS)
Shvedov, O. Yu.
2002-11-01
The correspondence between BRST-BFV, Dirac, and refined algebraic (group averaging, projection operator) approaches to quantizing constrained systems is analyzed. For the closed-algebra case, it is shown that the component of the BFV wave function corresponding to maximal (minimal) value of number of ghosts and antighosts in the Schrodinger representation may be viewed as a wave function in the refined algebraic (Dirac) quantization approach. The Giulini-Marolf group averaging formula for the inner product in the refined algebraic quantization approach is obtained from the Batalin-Marnelius prescription for the BRST-BFV inner product, which should be generally modified due to topological problems. The considered prescription for the correspondence of states is observed to be applicable to the open-algebra case. The refined algebraic quantization approach is generalized then to the case of nontrivial structure functions. A simple example is discussed. The correspondence of observables for different quantization methods is also investigated.
Zhao, Shouwei
2011-06-01
A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.
Validation of DNA-based identification software by computation of pedigree likelihood ratios.
Slooten, K
2011-08-01
Disaster victim identification (DVI) can be aided by DNA-evidence, by comparing the DNA-profiles of unidentified individuals with those of surviving relatives. The DNA-evidence is used optimally when such a comparison is done by calculating the appropriate likelihood ratios. Though conceptually simple, the calculations can be quite involved, especially with large pedigrees, precise mutation models etc. In this article we describe a series of test cases designed to check if software designed to calculate such likelihood ratios computes them correctly. The cases include both simple and more complicated pedigrees, among which inbred ones. We show how to calculate the likelihood ratio numerically and algebraically, including a general mutation model and possibility of allelic dropout. In Appendix A we show how to derive such algebraic expressions mathematically. We have set up these cases to validate new software, called Bonaparte, which performs pedigree likelihood ratio calculations in a DVI context. Bonaparte has been developed by SNN Nijmegen (The Netherlands) for the Netherlands Forensic Institute (NFI). It is available free of charge for non-commercial purposes (see www.dnadvi.nl for details). Commercial licenses can also be obtained. The software uses Bayesian networks and the junction tree algorithm to perform its calculations. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Yantz, Jennifer
2013-01-01
The attainment and retention of later algebra skills in high school has been identified as a factor significantly impacting the postsecondary success of students majoring in STEM fields. Researchers maintain that learners develop meaning for algebraic procedures by forming connections to the basic number system properties. The present study…
Algebra Students' Difficulty with Fractions: An Error Analysis
ERIC Educational Resources Information Center
Brown, George; Quinn, Robert J.
2006-01-01
An analysis of the 1990 National Assessment of Educational Progress (NAEP) found that only 46 percent of all high school seniors demonstrated success with a grasp of decimals, percentages, fractions and simple algebra. This article investigates error patterns that emerge as students attempt to answer questions involving the ability to apply…
Math 3007--Developmental Mathematics I. Course Outline.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
This document contains the course syllabus and 12 independent practice modules for an introductory college algebra course designed to develop student proficiency in the basic algebraic skills. This course is designed as the first of a two-semester sequence. Topics include operations with signed numbers; simple operations on monomials and…
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
ERIC Educational Resources Information Center
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
BRST Exactness of Stress-Energy Tensors
NASA Astrophysics Data System (ADS)
Miyata, Hideo; Sugimoto, Hiroshi
BRST commutators in the topological conformal field theories obtained by twisting N=2 theories are evaluated explicitly. By our systematic calculations of the multiple integrals which contain screening operators, the BRST exactness of the twisted stress-energy tensors is deduced for classical simple Lie algebras and general level k. We can see that the paths of integrations do not affect the result, and further, the N=2 coset theories are obtained by deleting two simple roots with Kac-label 1 from the extended Dynkin diagram; in other words, by not performing the integrations over the variables corresponding to the two simple roots of Kac-Moody algebras. It is also shown that a series of N=1 theories are generated in the same way by deleting one simple root with Kac-label 2.
Learning Activity Package, Algebra.
ERIC Educational Resources Information Center
Evans, Diane
A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…
Algebra 1r, Mathematics (Experimental): 5215.13.
ERIC Educational Resources Information Center
Strachan, Florence
This third of six guidebooks on minimum course content for first-year algebra includes work with laws of exponents; multiplication, division, and factoring of polynomials; and fundamental operations with rational algebraic expressions. Course goals are stated, performance objectives listed, a course outline provided, testbook references specified…
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan
1989-01-01
A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.
Quantum groups, Yang-Baxter maps and quasi-determinants
NASA Astrophysics Data System (ADS)
Tsuboi, Zengo
2018-01-01
For any quasi-triangular Hopf algebra, there exists the universal R-matrix, which satisfies the Yang-Baxter equation. It is known that the adjoint action of the universal R-matrix on the elements of the tensor square of the algebra constitutes a quantum Yang-Baxter map, which satisfies the set-theoretic Yang-Baxter equation. The map has a zero curvature representation among L-operators defined as images of the universal R-matrix. We find that the zero curvature representation can be solved by the Gauss decomposition of a product of L-operators. Thereby obtained a quasi-determinant expression of the quantum Yang-Baxter map associated with the quantum algebra Uq (gl (n)). Moreover, the map is identified with products of quasi-Plücker coordinates over a matrix composed of the L-operators. We also consider the quasi-classical limit, where the underlying quantum algebra reduces to a Poisson algebra. The quasi-determinant expression of the quantum Yang-Baxter map reduces to ratios of determinants, which give a new expression of a classical Yang-Baxter map.
Non-AdS holography in 3-dimensional higher spin gravity — General recipe and example
NASA Astrophysics Data System (ADS)
Afshar, H.; Gary, M.; Grumiller, D.; Rashkov, R.; Riegler, M.
2012-11-01
We present the general algorithm to establish the classical and quantum asymptotic symmetry algebra for non-AdS higher spin gravity and implement it for the specific example of spin-3 gravity in the non-principal embedding with Lobachevsky ( {{{{H}}^2}× {R}} ) boundary conditions. The asymptotic symmetry algebra for this example consists of a quantum W_3^{(2) } (Polyakov-Bershadsky) and an affine û(1) algebra. We show that unitary representations of the quantum W_3^{(2) } algebra exist only for two values of its central charge, the trivial c = 0 "theory" and the simple c = 1 theory.
Simple derivation of the Lindblad equation
NASA Astrophysics Data System (ADS)
Pearle, Philip
2012-07-01
The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is ‘simple’ in that all it uses is the expression of a Hermitian matrix in terms of its orthonormal eigenvectors and real eigenvalues. Thus, it is appropriate for students who have learned the algebra of quantum theory. Where helpful, arguments are first given in a two-dimensional Hilbert space.
NASA Astrophysics Data System (ADS)
Shariati, A.; Aghamohammadi, A.
1995-12-01
We propose a simple and concise method to construct the inhomogeneous quantum group IGLq(n) and its universal enveloping algebra Uq(igl(n)). Our technique is based on embedding an n-dimensional quantum space in an n+1-dimensional one as the set xn+1=1. This is possible only if one considers the multiparametric quantum space whose parameters are fixed in a specific way. The quantum group IGLq(n) is then the subset of GLq(n+1), which leaves the xn+1=1 subset invariant. For the deformed universal enveloping algebra Uq(igl(n)), we will show that it can also be embedded in Uq(gl(n+1)), provided one uses the multiparametric deformation of U(gl(n+1)) with a specific choice of its parameters.
The Structural Algebra Option: A Discussion Paper.
ERIC Educational Resources Information Center
Kirshner, David
The goal of this paper is to renew interest in the structural option to algebra instruction. Concern for the usual secondary school algebra curriculum related to simplifying expressions, solving equations, and rationalizing numerators and denominators is viewed from three pedagogical approaches: (1) structural approach, (2) empirical approach, and…
On the quantum symmetry of the chiral Ising model
NASA Astrophysics Data System (ADS)
Vecsernyés, Peter
1994-03-01
We introduce the notion of rational Hopf algebras that we think are able to describe the superselection symmetries of rational quantum field theories. As an example we show that a six-dimensional rational Hopf algebra H can reproduce the fusion rules, the conformal weights, the quantum dimensions and the representation of the modular group of the chiral Ising model. H plays the role of the global symmetry algebra of the chiral Ising model in the following sense: (1) a simple field algebra F and a representation π on Hπ of it is given, which contains the c = {1}/{2} unitary representations of the Virasoro algebra as subrepresentations; (2) the embedding U: H → B( Hπ) is such that the observable algebra π( A) - is the invariant subalgebra of B( Hπ) with respect to the left adjoint action of H and U(H) is the commutant of π( A); (3) there exist H-covariant primary fields in B( Hπ), which obey generalized Cuntz algebra properties and intertwine between the inequivalent sectors of the observables.
Günaydin, Murat; Lüst, Dieter; Malek, Emanuel
2016-11-07
We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Günaydin, Murat; Lüst, Dieter; Malek, Emanuel
We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less
Modelling of nanoscale quantum tunnelling structures using algebraic topology method
NASA Astrophysics Data System (ADS)
Sankaran, Krishnaswamy; Sairam, B.
2018-05-01
We have modelled nanoscale quantum tunnelling structures using Algebraic Topology Method (ATM). The accuracy of ATM is compared to the analytical solution derived based on the wave nature of tunnelling electrons. ATM provides a versatile, fast, and simple model to simulate complex structures. We are currently expanding the method for modelling electrodynamic systems.
Classical Yang-Baxter equations and quantum integrable systems
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1989-06-01
Quantum integrable models associated with nondegenerate solutions of classical Yang-Baxter equations related to the simple Lie algebras are investigated. These models are diagonalized for rational and trigonometric solutions in the cases of sl(N)/gl(N)/, o(N) and sp(N) algebras. The analogy with the quantum inverse scattering method is demonstrated.
Sensitivity calculations for iteratively solved problems
NASA Technical Reports Server (NTRS)
Haftka, R. T.
1985-01-01
The calculation of sensitivity derivatives of solutions of iteratively solved systems of algebraic equations is investigated. A modified finite difference procedure is presented which improves the accuracy of the calculated derivatives. The procedure is demonstrated for a simple algebraic example as well as an element-by-element preconditioned conjugate gradient iterative solution technique applied to truss examples.
Bimodule structure of the mixed tensor product over Uq sℓ (2 | 1) and quantum walled Brauer algebra
NASA Astrophysics Data System (ADS)
Bulgakova, D. V.; Kiselev, A. M.; Tipunin, I. Yu.
2018-03-01
We study a mixed tensor product 3⊗m ⊗3 ‾ ⊗ n of the three-dimensional fundamental representations of the Hopf algebra Uq sℓ (2 | 1), whenever q is not a root of unity. Formulas for the decomposition of tensor products of any simple and projective Uq sℓ (2 | 1)-module with the generating modules 3 and 3 ‾ are obtained. The centralizer of Uq sℓ (2 | 1) on the mixed tensor product is calculated. It is shown to be the quotient Xm,n of the quantum walled Brauer algebra qw Bm,n. The structure of projective modules over Xm,n is written down explicitly. It is known that the walled Brauer algebras form an infinite tower. We have calculated the corresponding restriction functors on simple and projective modules over Xm,n. This result forms a crucial step in decomposition of the mixed tensor product as a bimodule over Xm,n ⊠Uq sℓ (2 | 1). We give an explicit bimodule structure for all m , n.
Math 3013--Developmental Mathematics I and II. Course Outline.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
This document contains the course syllabus and 12 independent practice modules for an introductory college algebra course that requires some previous knowledge of algebra and the ability to work at a rapid pace. Topics include the basic operations with signed integers; fractions; decimals; literal expressions; algebraic fractions; radicals;…
ERIC Educational Resources Information Center
Panasuk, Regina M.
2010-01-01
Algebra students may often demonstrate a certain degree of proficiency when manipulating algebraic expressions and verbalizing their behaviors. Do these abilities imply conceptual understanding? What is a reliable indicator that would provide educators with a relatively trustworthy and consistent measure to identify whether students learn…
Development of abstract mathematical reasoning: the case of algebra
Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja
2014-01-01
Algebra typically represents the students’ first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students’ ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16–17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15–16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students’ transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition. PMID:25228874
Development of abstract mathematical reasoning: the case of algebra.
Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja
2014-01-01
Algebra typically represents the students' first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students' ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16-17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15-16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students' transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition.
Soft hairy warped black hole entropy
NASA Astrophysics Data System (ADS)
Grumiller, Daniel; Hacker, Philip; Merbis, Wout
2018-02-01
We reconsider warped black hole solutions in topologically massive gravity and find novel boundary conditions that allow for soft hairy excitations on the horizon. To compute the associated symmetry algebra we develop a general framework to compute asymptotic symmetries in any Chern-Simons-like theory of gravity. We use this to show that the near horizon symmetry algebra consists of two u (1) current algebras and recover the surprisingly simple entropy formula S = 2 π( J 0 + + J 0 - ), where J 0 ± are zero mode charges of the current algebras. This provides the first example of a locally non-maximally symmetric configuration exhibiting this entropy law and thus non-trivial evidence for its universality.
Concurrent Image Processing Executive (CIPE). Volume 3: User's guide
NASA Technical Reports Server (NTRS)
Lee, Meemong; Cooper, Gregory T.; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.; Kong, Mih-Seh
1990-01-01
CIPE (the Concurrent Image Processing Executive) is both an executive which organizes the parameter inputs for hypercube applications and an environment which provides temporary data workspace and simple real-time function definition facilities for image analysis. CIPE provides two types of user interface. The Command Line Interface (CLI) provides a simple command-driven environment allowing interactive function definition and evaluation of algebraic expressions. The menu interface employs a hierarchical screen-oriented menu system where the user is led through a menu tree to any specific application and then given a formatted panel screen for parameter entry. How to initialize the system through the setup function, how to read data into CIPE symbols, how to manipulate and display data through the use of executive functions, and how to run an application in either user interface mode, are described.
More on quantum groups from the quantization point of view
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1994-12-01
Star products on the classical double group of a simple Lie group and on corresponding symplectic groupoids are given so that the quantum double and the “quantized tangent bundle” are obtained in the deformation description. “Complex” quantum groups and bicovariant quantum Lie algebras are discussed from this point of view. Further we discuss the quantization of the Poisson structure on the symmetric algebra S(g) leading to the quantized enveloping algebra U h (g) as an example of biquantization in the sense of Turaev. Description of U h (g) in terms of the generators of the bicovariant differential calculus on F(G q ) is very convenient for this purpose. Finaly we interpret in the deformation framework some well known properties of compact quantum groups as simple consequences of corresponding properties of classical compact Lie groups. An analogue of the classical Kirillov's universal character formula is given for the unitary irreducble representation in the compact case.
ERIC Educational Resources Information Center
Yantz. Jennifer
2013-01-01
The attainment and retention of later algebra skills in high school has been identified as a factor significantly impacting students' postsecondary success as STEM majors. Researchers maintain that learners develop meaning for algebraic procedures by forming connections to the basic number system properties. In the present study, the connections…
Exact Baker-Campbell-Hausdorff formula for the contact Heisenberg algebra
NASA Astrophysics Data System (ADS)
Bravetti, Alessandro; Garcia-Chung, Angel; Tapias, Diego
2017-03-01
In this work we introduce the contact Heisenberg algebra which is the restriction of the Jacobi algebra on contact manifolds to the linear and constant functions. We give the exact expression of its corresponding Baker-Campbell-Hausdorff formula. We argue that this result is relevant to the quantization of contact systems.
Capitalising on Inherent Ambiguities in Symbolic Expressions of Generality
ERIC Educational Resources Information Center
Samson, Duncan
2011-01-01
The exploration of number patterns as a pedagogical approach to introducing algebra has been advocated by many mathematics educators. French (2002) comments that the introduction of algebra through what is potentially a wide range of pattern generalisation activities may be effective in assisting pupils to see algebra as both meaningful and…
Counter Conjectures: Using Manipulatives to Scaffold the Development of Number Sense and Algebra
ERIC Educational Resources Information Center
West, John
2016-01-01
This article takes the position that teachers can use simple manipulative materials to model relatively complex situations and in doing so scaffold the development of students' number sense and early algebra skills. While students' early experiences are usually dominated by the cardinal aspect of number (i.e., counting the number of items in a…
Classical integrable many-body systems disconnected with semi-simple Lie algebras
NASA Astrophysics Data System (ADS)
Inozemtsev, V. I.
2017-05-01
The review of the results in the theory of integrable many-body systems disconnected with semisimple Lie algebras is done. The one-dimensional systems of light Calogero-Sutherland-Moser particles interacting with one particle of infinite mass located at the origin are described in detail. In some cases the exact solutions of the equations of motion are obtained. The general theory of integration of the equations of motion needs the methods of algebraic geometry. The Lax pairs with spectral parameter are constructed for this purpose. The theory still contains many unsolved problems.
"MONSTROUS MOONSHINE" and Physics
NASA Astrophysics Data System (ADS)
Pushkin, A. V.
The report presents some results obtained by the author on the quantum gravitation theory. Algebraic structure of this theory proves to be related to the commutative nonassociative Griess algebra. The theory symmetry is the automorphism group of Griess algebra: "Monster" simple group. Knowledge of the theory symmetry allows to compute observed physical values in the `zero' approximation. The report presents such computed results for values {m_{p}}/{m_{c}} and α, for the latter the `zero' approximation accuracy, controlled by the theory, being one order of magnitude higher than the accuracy of modern measurements.
Operator bases, S-matrices, and their partition functions
NASA Astrophysics Data System (ADS)
Henning, Brian; Lu, Xiaochuan; Melia, Tom; Murayama, Hitoshi
2017-10-01
Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. In this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce a partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most na¨ıve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.
Algebraic integrability: a survey.
Vanhaecke, Pol
2008-03-28
We give a concise introduction to the notion of algebraic integrability. Our exposition is based on examples and phenomena, rather than on detailed proofs of abstract theorems. We mainly focus on algebraic integrability in the sense of Adler-van Moerbeke, where the fibres of the momentum map are affine parts of Abelian varieties; as it turns out, most examples from classical mechanics are of this form. Two criteria are given for such systems (Kowalevski-Painlevé and Lyapunov) and each is illustrated in one example. We show in the case of a relatively simple example how one proves algebraic integrability, starting from the differential equations for the integrable vector field. For Hamiltonian systems that are algebraically integrable in the generalized sense, two examples are given, which illustrate the non-compact analogues of Abelian varieties which typically appear in such systems.
The algebra of complex 2 × 2 matrices and a general closed Baker-Campbell-Hausdorff formula
NASA Astrophysics Data System (ADS)
Foulis, D. L.
2017-07-01
We derive a closed formula for the Baker-Campbell-Hausdorff series expansion in the case of complex 2×2 matrices. For arbitrary matrices A and B, and a matrix Z such that \\exp Z = \\exp A \\exp B , our result expresses Z as a linear combination of A and B, their commutator [A, B] , and the identity matrix I. The coefficients in this linear combination are functions of the traces and determinants of A and B, and the trace of their product. The derivation proceeds purely via algebraic manipulations of the given matrices and their products, making use of relations developed here, based on the Cayley-Hamilton theorem, as well as a characterization of the consequences of [A, B] and/or its determinant being zero or otherwise. As a corollary of our main result we also derive a closed formula for the Zassenhaus expansion. We apply our results to several special cases, most notably the parametrization of the product of two SU(2) matrices and a verification of the recent result of Van-Brunt and Visser (2015 J. Phys. A: Math. Theor. 48 225207) for complex 2×2 matrices, in this latter case deriving also the related Zassenhaus formula which turns out to be quite simple. We then show that this simple formula should be valid for all matrices and operators.
Generic, Type-Safe and Object Oriented Computer Algebra Software
NASA Astrophysics Data System (ADS)
Kredel, Heinz; Jolly, Raphael
Advances in computer science, in particular object oriented programming, and software engineering have had little practical impact on computer algebra systems in the last 30 years. The software design of existing systems is still dominated by ad-hoc memory management, weakly typed algorithm libraries and proprietary domain specific interactive expression interpreters. We discuss a modular approach to computer algebra software: usage of state-of-the-art memory management and run-time systems (e.g. JVM) usage of strongly typed, generic, object oriented programming languages (e.g. Java) and usage of general purpose, dynamic interactive expression interpreters (e.g. Python) To illustrate the workability of this approach, we have implemented and studied computer algebra systems in Java and Scala. In this paper we report on the current state of this work by presenting new examples.
DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J
2015-05-01
To understand the development of mathematical cognition and to improve instructional practices, it is critical to identify early predictors of difficulty in learning complex mathematical topics such as algebra. Recent work has shown that performance with fractions on a number line estimation task predicts algebra performance, whereas performance with whole numbers on similar estimation tasks does not. We sought to distinguish more specific precursors to algebra by measuring multiple aspects of knowledge about rational numbers. Because fractions are the first numbers that are relational expressions to which students are exposed, we investigated how understanding the relational bipartite format (a/b) of fractions might connect to later algebra performance. We presented middle school students with a battery of tests designed to measure relational understanding of fractions, procedural knowledge of fractions, and placement of fractions, decimals, and whole numbers onto number lines as well as algebra performance. Multiple regression analyses revealed that the best predictors of algebra performance were measures of relational fraction knowledge and ability to place decimals (not fractions or whole numbers) onto number lines. These findings suggest that at least two specific components of knowledge about rational numbers--relational understanding (best captured by fractions) and grasp of unidimensional magnitude (best captured by decimals)--can be linked to early success with algebraic expressions. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra ismore » later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a rotating quadrupole field ion trap are presented. •Exact solutions for magneto-transport in variable electromagnetic fields are shown.« less
Andersen, Torben B
2016-05-01
In a recent paper, conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an interface between air and a dielectric were determined [J. Opt. Soc. Am. A32, 2436 (2015)JOAOD60740-323210.1364/JOSAA.32.002436]. The paper gives plots of angles of incidence and refraction as a function of the prism refractive index as well as plots of reflectances and incident linear-polarization azimuth angles as functions of the refractive index. We show here that it is possible to express these quantities as simple algebraic functions of the refractive index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, J.J.; Hewitt, T.
1985-08-01
This note describes some experiments on simple, dense linear algebra algorithms. These experiments show that the CRAY X-MP is capable of small-grain multitasking arising from standard implementations of LU and Cholesky decomposition. The implementation described here provides the ''fastest'' execution rate for LU decomposition, 718 MFLOPS for a matrix of order 1000.
Modern Geometric Algebra: A (Very Incomplete!) Survey
ERIC Educational Resources Information Center
Suzuki, Jeff
2009-01-01
Geometric algebra is based on two simple ideas. First, the area of a rectangle is equal to the product of the lengths of its sides. Second, if a figure is broken apart into several pieces, the sum of the areas of the pieces equals the area of the original figure. Remarkably, these two ideas provide an elegant way to introduce, connect, and…
A comparison of three algebraic stress closures for combustor flow calculations
NASA Technical Reports Server (NTRS)
Nikjooy, M.; So, R. M. C.; Hwang, B. C.
1985-01-01
A comparison is made of the performance of two locally nonequilibrium and one equilibrium algebraic stress closures in calculating combustor flows. Effects of four different pressure-strain models on these closure models are also analyzed. The results show that the pressure-strain models have a much greater influence on the calculated mean velocity and turbulence field than the algebraic stress closures, and that the best mean strain model for the pressure-strain terms is that proposed by Launder, Reece and Rodi (1975). However, the equilibrium algebraic stress closure with the Rotta return-to-isotropy model (1951) for the pressure-strain terms gives as good a correlation with measurements as when the Launder et al. mean strain model is included in the pressure-strain model. Finally, comparison of the calculations with the standard k-epsilon closure results show that the algebraic stress closures are better suited for simple turbulent flow calculations.
Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems
NASA Astrophysics Data System (ADS)
Hernández-Bermejo, Benito; Fairén, Víctor
1998-11-01
This work is devoted to the establishment of a Poisson structure for a format of equations known as generalized Lotka-Volterra systems. These equations, which include the classical Lotka-Volterra systems as a particular case, have been deeply studied in the literature. They have been shown to constitute a whole hierarchy of systems, the characterization of which is made in the context of simple algebra. Our main result is to show that this algebraic structure is completely translatable into the Poisson domain. Important Poisson structures features, such as the symplectic foliation and the Darboux canonical representation, rise as a result of rather simple matrix manipulations.
Labeled trees and the efficient computation of derivations
NASA Technical Reports Server (NTRS)
Grossman, Robert; Larson, Richard G.
1989-01-01
The effective parallel symbolic computation of operators under composition is discussed. Examples include differential operators under composition and vector fields under the Lie bracket. Data structures consisting of formal linear combinations of rooted labeled trees are discussed. A multiplication on rooted labeled trees is defined, thereby making the set of these data structures into an associative algebra. An algebra homomorphism is defined from the original algebra of operators into this algebra of trees. An algebra homomorphism from the algebra of trees into the algebra of differential operators is then described. The cancellation which occurs when noncommuting operators are expressed in terms of commuting ones occurs naturally when the operators are represented using this data structure. This leads to an algorithm which, for operators which are derivations, speeds up the computation exponentially in the degree of the operator. It is shown that the algebra of trees leads naturally to a parallel version of the algorithm.
Correlation functions from a unified variational principle: Trial Lie groups
NASA Astrophysics Data System (ADS)
Balian, R.; Vénéroni, M.
2015-11-01
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie-Poisson structure. At second order, the variational expression for two-time correlation functions separates-as does its exact counterpart-the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency properties and encompass several special cases: linear responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and dynamic stability of small deviations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balian, R., E-mail: roger.balian@cea.fr; Vénéroni, M.
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces themore » original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill consistency properties and encompass several special cases: linear responses, static and time-dependent fluctuations, zero- and high-temperature limits, static and dynamic stability of small deviations.« less
Intertextuality and Sense Production in the Learning of Algebraic Methods
ERIC Educational Resources Information Center
Rojano, Teresa; Filloy, Eugenio; Puig, Luis
2014-01-01
In studies carried out in the 1980s the algebraic symbols and expressions are revealed through prealgebraic readers as non-independent texts, as texts that relate to other texts that in some cases belong to the reader's native language or to the arithmetic sign system. Such outcomes suggest that the act of reading algebraic texts submerges…
Weak Lie symmetry and extended Lie algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goenner, Hubert
2013-04-15
The concept of weak Lie motion (weak Lie symmetry) is introduced. Applications given exhibit a reduction of the usual symmetry, e.g., in the case of the rotation group. In this context, a particular generalization of Lie algebras is found ('extended Lie algebras') which turns out to be an involutive distribution or a simple example for a tangent Lie algebroid. Riemannian and Lorentz metrics can be introduced on such an algebroid through an extended Cartan-Killing form. Transformation groups from non-relativistic mechanics and quantum mechanics lead to such tangent Lie algebroids and to Lorentz geometries constructed on them (1-dimensional gravitational fields).
Complementary Reliability-Based Decodings of Binary Linear Block Codes
NASA Technical Reports Server (NTRS)
Fossorier, Marc P. C.; Lin, Shu
1997-01-01
This correspondence presents a hybrid reliability-based decoding algorithm which combines the reprocessing method based on the most reliable basis and a generalized Chase-type algebraic decoder based on the least reliable positions. It is shown that reprocessing with a simple additional algebraic decoding effort achieves significant coding gain. For long codes, the order of reprocessing required to achieve asymptotic optimum error performance is reduced by approximately 1/3. This significantly reduces the computational complexity, especially for long codes. Also, a more efficient criterion for stopping the decoding process is derived based on the knowledge of the algebraic decoding solution.
Symmetry-preserving perturbations of the Bateman Lagrangian and dissipative systems
NASA Astrophysics Data System (ADS)
Campoamor-Stursberg, Rutwig
2017-03-01
Perturbations of the classical Bateman Lagrangian preserving a certain subalgebra of Noether symmetries are studied, and conservative perturbations are characterized by the Lie algebra sl(2, ℝ) ⊕ so(2). Non-conservative albeit integrable perturbations are determined by the simple Lie algebra sl(2,ℝ), showing further the relation of the corresponding non-linear systems with the notion of generalized Ermakov systems.
NASA Astrophysics Data System (ADS)
Wares, Arsalan; Elstak, Iwan
2017-02-01
The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra and geometry, like other branches of mathematics, are interrelated.
Symmetry-preserving perturbations of the Bateman Lagrangian and dissipative systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campoamor-Stursberg, Rutwig, E-mail: rutwig@ucm.es
Perturbations of the classical Bateman Lagrangian preserving a certain subalgebra of Noether symmetries are studied, and conservative perturbations are characterized by the Lie algebra sl(2, ℝ) ⊕ so(2). Non-conservative albeit integrable perturbations are determined by the simple Lie algebra sl(2,ℝ), showing further the relation of the corresponding non-linear systems with the notion of generalized Ermakov systems.
Numerical study of centrifugal compressor stage vaneless diffusers
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Soldatova, K.; Solovieva, O.
2015-08-01
The authors analyzed CFD calculations of flow in vaneless diffusers with relative width in range from 0.014 to 0.100 at inlet flow angles in range from 100 to 450 with different inlet velocity coefficients, Reynolds numbers and surface roughness. The aim is to simulate calculated performances by simple algebraic equations. The friction coefficient that represents head losses as friction losses is proposed for simulation. The friction coefficient and loss coefficient are directly connected by simple equation. The advantage is that friction coefficient changes comparatively little in range of studied parameters. Simple equations for this coefficient are proposed by the authors. The simulation accuracy is sufficient for practical calculations. To create the complete algebraic model of the vaneless diffuser the authors plan to widen this method of modeling to diffusers with different relative length and for wider range of Reynolds numbers.
NASA Astrophysics Data System (ADS)
Larese, D.; Iachello, F.
2011-06-01
A simple algebraic Hamiltonian has been used to explore the vibrational and rotational spectra of the skeletal bending modes of HCNO, BrCNO, NCNCS, and other ``floppy`` (quasi-linear or quasi-bent) molecules. These molecules have large-amplitude, low-energy bending modes and champagne-bottle potential surfaces, making them good candidates for observing quantum phase transitions (QPT). We describe the geometric phase transitions from bent to linear in these and other non-rigid molecules, quantitatively analysing the spectroscopy signatures of ground state QPT, excited state QPT, and quantum monodromy.The algebraic framework is ideal for this work because of its small calculational effort yet robust results. Although these methods have historically found success with tri- and four-atomic molecules, we now address five-atomic and simple branched molecules such as CH_3NCO and GeH_3NCO. Extraction of potential functions is completed for several molecules, resulting in predictions of barriers to linearity and equilibrium bond angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrypnyk, T.
2009-10-15
We analyze symmetries of the integrable generalizations of Jaynes-Cummings and Dicke models associated with simple Lie algebras g and their reductive subalgebras g{sub K}[T. Skrypnyk, 'Generalized n-level Jaynes-Cummings and Dicke models, classical rational r-matrices and nested Bethe ansatz', J. Phys. A: Math. Theor. 41, 475202 (2008)]. We show that their symmetry algebras contain commutative subalgebras isomorphic to the Cartan subalgebras of g, which can be added to the commutative algebras of quantum integrals generated with the help of the quantum Lax operators. We diagonalize additional commuting integrals and constructed with their help the most general integrable quantum Hamiltonian of themore » generalized n-level many-mode Jaynes-Cummings and Dicke-type models using nested algebraic Bethe ansatz.« less
Global exponential stability of octonion-valued neural networks with leakage delay and mixed delays.
Popa, Călin-Adrian
2018-06-08
This paper discusses octonion-valued neural networks (OVNNs) with leakage delay, time-varying delays, and distributed delays, for which the states, weights, and activation functions belong to the normed division algebra of octonions. The octonion algebra is a nonassociative and noncommutative generalization of the complex and quaternion algebras, but does not belong to the category of Clifford algebras, which are associative. In order to avoid the nonassociativity of the octonion algebra and also the noncommutativity of the quaternion algebra, the Cayley-Dickson construction is used to decompose the OVNNs into 4 complex-valued systems. By using appropriate Lyapunov-Krasovskii functionals, with double and triple integral terms, the free weighting matrix method, and simple and double integral Jensen inequalities, delay-dependent criteria are established for the exponential stability of the considered OVNNs. The criteria are given in terms of complex-valued linear matrix inequalities, for two types of Lipschitz conditions which are assumed to be satisfied by the octonion-valued activation functions. Finally, two numerical examples illustrate the feasibility, effectiveness, and correctness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
Anomaly cancellation for super- W -gravity
NASA Astrophysics Data System (ADS)
Mansfield, P.; Spence, B.
1991-08-01
We generalise the description of minimal superconformal models coupled to supergravity, due to Distler, Hlousek and Kawaii, to super- W -gravity. When the chiral algebra is the generalisation of the W-algebra associated to any contragredient Lie superalgebra the total central charge vanishes as a result of Lie superalgebra identities. When the algebra has only fermionic simple roots there is N = 1 superconformal invariance and for this case we describe the Lax operators and construct gravitationally dressed primary superfields of weight zero. We also prove the anomaly cancellation associated with the generalised non-abelian Toda theories. Address from 1 October 1991: Physics Department, Imperial College, London SW7 2BZ, UK.
Beauty and the beast: Superconformal symmetry in a monster module
NASA Astrophysics Data System (ADS)
Dixon, L.; Ginsparg, P.; Harvey, J.
1988-06-01
Frenkel, Lepowsky, and Meurman have constructed a representation of the largest sporadic simple finite group, the Fischer-Griess monster, as the automorphism group of the operator product algebra of a conformal field theory with central charge c=24. In string terminology, their construction corresponds to compactification on a Z 2 asymmetric orbifold constructed from the torus R 24/∧, where ∧ is the Leech lattice. In this note we point out that their construction naturally embodies as well a larger algebraic structure, namely a super-Virasoro algebra with central charge ĉ=16, with the supersymmetry generator constructed in terms of bosonic twist fields.
Exactly and quasi-exactly solvable 'discrete' quantum mechanics.
Sasaki, Ryu
2011-03-28
A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.
Cyclotomic Gaudin Models: Construction and Bethe Ansatz
NASA Astrophysics Data System (ADS)
Vicedo, Benoît; Young, Charles
2016-05-01
To any finite-dimensional simple Lie algebra g and automorphism {σ: gto g we associate a cyclotomic Gaudin algebra. This is a large commutative subalgebra of {U(g)^{⊗ N}} generated by a hierarchy of cyclotomic Gaudin Hamiltonians. It reduces to the Gaudin algebra in the special case {σ =id}. We go on to construct joint eigenvectors and their eigenvalues for this hierarchy of cyclotomic Gaudin Hamiltonians, in the case of a spin chain consisting of a tensor product of Verma modules. To do so we generalize an approach to the Bethe ansatz due to Feigin, Frenkel and Reshetikhin involving vertex algebras and the Wakimoto construction. As part of this construction, we make use of a theorem concerning cyclotomic coinvariants, which we prove in a companion paper. As a byproduct, we obtain a cyclotomic generalization of the Schechtman-Varchenko formula for the weight function.
Robust image retrieval from noisy inputs using lattice associative memories
NASA Astrophysics Data System (ADS)
Urcid, Gonzalo; Nieves-V., José Angel; García-A., Anmi; Valdiviezo-N., Juan Carlos
2009-02-01
Lattice associative memories also known as morphological associative memories are fully connected feedforward neural networks with no hidden layers, whose computation at each node is carried out with lattice algebra operations. These networks are a relatively recent development in the field of associative memories that has proven to be an alternative way to work with sets of pattern pairs for which the storage and retrieval stages use minimax algebra. Different associative memory models have been proposed to cope with the problem of pattern recall under input degradations, such as occlusions or random noise, where input patterns can be composed of binary or real valued entries. In comparison to these and other artificial neural network memories, lattice algebra based memories display better performance for storage and recall capability; however, the computational techniques devised to achieve that purpose require additional processing or provide partial success when inputs are presented with undetermined noise levels. Robust retrieval capability of an associative memory model is usually expressed by a high percentage of perfect recalls from non-perfect input. The procedure described here uses noise masking defined by simple lattice operations together with appropriate metrics, such as the normalized mean squared error or signal to noise ratio, to boost the recall performance of either the min or max lattice auto-associative memories. Using a single lattice associative memory, illustrative examples are given that demonstrate the enhanced retrieval of correct gray-scale image associations from inputs corrupted with random noise.
Cut and join operator ring in tensor models
NASA Astrophysics Data System (ADS)
Itoyama, H.; Mironov, A.; Morozov, A.
2018-07-01
Recent advancement of rainbow tensor models based on their superintegrability (manifesting itself as the existence of an explicit expression for a generic Gaussian correlator) has allowed us to bypass the long-standing problem seen as the lack of eigenvalue/determinant representation needed to establish the KP/Toda integrability. As the mandatory next step, we discuss in this paper how to provide an adequate designation to each of the connected gauge-invariant operators that form a double coset, which is required to cleverly formulate a tree-algebra generalization of the Virasoro constraints. This problem goes beyond the enumeration problem per se tied to the permutation group, forcing us to introduce a few gauge fixing procedures to the coset. We point out that the permutation-based labeling, which has proven to be relevant for the Gaussian averages is, via interesting complexity, related to the one based on the keystone trees, whose algebra will provide the tensor counterpart of the Virasoro algebra for matrix models. Moreover, our simple analysis reveals the existence of nontrivial kernels and co-kernels for the cut operation and for the join operation respectively that prevent a straightforward construction of the non-perturbative RG-complete partition function and the identification of truly independent time variables. We demonstrate these problems by the simplest non-trivial Aristotelian RGB model with one complex rank-3 tensor, studying its ring of gauge-invariant operators, generated by the keystone triple with the help of four operations: addition, multiplication, cut and join.
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.
Recognition Of Complex Three Dimensional Objects Using Three Dimensional Moment Invariants
NASA Astrophysics Data System (ADS)
Sadjadi, Firooz A.
1985-01-01
A technique for the recognition of complex three dimensional objects is presented. The complex 3-D objects are represented in terms of their 3-D moment invariants, algebraic expressions that remain invariant independent of the 3-D objects' orientations and locations in the field of view. The technique of 3-D moment invariants has been used successfully for simple 3-D object recognition in the past. In this work we have extended this method for the representation of more complex objects. Two complex objects are represented digitally; their 3-D moment invariants have been calculated, and then the invariancy of these 3-D invariant moment expressions is verified by changing the orientation and the location of the objects in the field of view. The results of this study have significant impact on 3-D robotic vision, 3-D target recognition, scene analysis and artificial intelligence.
A stochastic process approach of the drake equation parameters
NASA Astrophysics Data System (ADS)
Glade, Nicolas; Ballet, Pascal; Bastien, Olivier
2012-04-01
The number N of detectable (i.e. communicating) extraterrestrial civilizations in the Milky Way galaxy is usually calculated by using the Drake equation. This equation was established in 1961 by Frank Drake and was the first step to quantifying the Search for ExtraTerrestrial Intelligence (SETI) field. Practically, this equation is rather a simple algebraic expression and its simplistic nature leaves it open to frequent re-expression. An additional problem of the Drake equation is the time-independence of its terms, which for example excludes the effects of the physico-chemical history of the galaxy. Recently, it has been demonstrated that the main shortcoming of the Drake equation is its lack of temporal structure, i.e., it fails to take into account various evolutionary processes. In particular, the Drake equation does not provides any error estimation about the measured quantity. Here, we propose a first treatment of these evolutionary aspects by constructing a simple stochastic process that will be able to provide both a temporal structure to the Drake equation (i.e. introduce time in the Drake formula in order to obtain something like N(t)) and a first standard error measure.
Fundamental formulae for wave-energy conversion
Falnes, Johannes; Kurniawan, Adi
2015-01-01
The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units—i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)—may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the ‘added-mass’ matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called ‘fundamental theorem for wave power’. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies. PMID:26064612
Fundamental formulae for wave-energy conversion.
Falnes, Johannes; Kurniawan, Adi
2015-03-01
The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.
A Simple Interactive Software Package for Plotting, Animating, and Calculating
ERIC Educational Resources Information Center
Engelhardt, Larry
2012-01-01
We introduce a new open source (free) software package that provides a simple, highly interactive interface for carrying out certain mathematical tasks that are commonly encountered in physics. These tasks include plotting and animating functions, solving systems of coupled algebraic equations, and basic calculus (differentiating and integrating…
Eye Movements Reveal Students' Strategies in Simple Equation Solving
ERIC Educational Resources Information Center
Susac, Ana; Bubic, Andreja; Kaponja, Jurica; Planinic, Maja; Palmovic, Marijan
2014-01-01
Equation rearrangement is an important skill required for problem solving in mathematics and science. Eye movements of 40 university students were recorded while they were rearranging simple algebraic equations. The participants also reported on their strategies during equation solving in a separate questionnaire. The analysis of the behavioral…
Research issues of geometry-based visual languages and some solutions
NASA Astrophysics Data System (ADS)
Green, Thorn G.
This dissertation addresses the problem of how to design visual language systems that are based upon Geometric Algebra, and provide a visual coupling of algebraic expressions and geometric depictions. This coupling of algebraic expressions and geometric depictions provides a new means for expressing both mathematical and geometric relationships present in mathematics, physics, and Computer-Aided Geometric Design (CAGD). Another significant feature of such a system is that the result of changing a parameter (by dragging the mouse) can be seen immediately in the depiction(s) of all expressions that use that parameter. This greatly aides the cognition of the relationships between variables. Systems for representing such a coupling of algebra and geometry have characteristics of both visual language systems, and systems for scientific visualization. Instead of using a parsing or dataflow paradigm for the visual language representation, the systems instead represent equations as manipulatible constrained diagrams for their visualization. This requires that the design of such a system have (but is not limited to) a means for parsing equations entered by the user, a scheme for producing a visual representation of these equations; techniques for maintaining the coupling between the expressions entered and the diagrams displayed; algorithms for maintaining the consistency of the diagrams; and, indexing capabilities that are efficient enough to allow diagrams to be created, and manipulated in a short enough period of time. The author proposes solutions for how such a design can be realized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramanik, Souvik, E-mail: souvick.in@gmail.com; Moussa, Mohamed, E-mail: mohamed.ibrahim@fsc.bu.edu.eg; Faizal, Mir, E-mail: f2mir@uwaterloo.ca
In this paper, the deformation of the Heisenberg algebra, consistent with both the generalized uncertainty principle and doubly special relativity, has been analyzed. It has been observed that, though this algebra can give rise to fractional derivative terms in the corresponding quantum mechanical Hamiltonian, a formal meaning can be given to them by using the theory of harmonic extensions of function. Depending on this argument, the expression of the propagator of the path integral corresponding to the deformed Heisenberg algebra, has been obtained. In particular, the consistent expression of the one dimensional free particle propagator has been evaluated explicitly. Withmore » this propagator in hand, it has been shown that, even in free particle case, normal generalized uncertainty principle and doubly special relativity show very much different result.« less
Soliman, George; Yevick, David; Jessop, Paul
2014-09-01
This paper demonstrates that numerous calculations involving polarization transformations can be condensed by employing suitable geometric algebra formalism. For example, to describe polarization mode dispersion and polarization-dependent loss, both the material birefringence and differential loss enter as bivectors and can be combined into a single symmetric quantity. Their frequency and distance evolution, as well as that of the Stokes vector through an optical system, can then each be expressed as a single compact expression, in contrast to the corresponding Mueller matrix formulations. The intrinsic advantage of the geometric algebra framework is further demonstrated by presenting a simplified derivation of generalized Stokes parameters that include the electric field phase. This procedure simultaneously establishes the tensor transformation properties of these parameters.
Necessary and sufficient conditions for R₀ to be a sum of contributions of fertility loops.
Rueffler, Claus; Metz, Johan A J
2013-03-01
Recently, de-Camino-Beck and Lewis (Bull Math Biol 69:1341-1354, 2007) have presented a method that under certain restricted conditions allows computing the basic reproduction ratio R₀ in a simple manner from life cycle graphs, without, however, giving an explicit indication of these conditions. In this paper, we give various sets of sufficient and generically necessary conditions. To this end, we develop a fully algebraic counterpart of their graph-reduction method which we actually found more useful in concrete applications. Both methods, if they work, give a simple algebraic formula that can be interpreted as the sum of contributions of all fertility loops. This formula can be used in e.g. pest control and conservation biology, where it can complement sensitivity and elasticity analyses. The simplest of the necessary and sufficient conditions is that, for irreducible projection matrices, all paths from birth to reproduction have to pass through a common state. This state may be visible in the state representation for the chosen sampling time, but the passing may also occur in between sampling times, like a seed stage in the case of sampling just before flowering. Note that there may be more than one birth state, like when plants in their first year can already have different sizes at the sampling time. Also the common state may occur only later in life. However, in all cases R₀ allows a simple interpretation as the expected number of new individuals that in the next generation enter the common state deriving from a single individual in this state. We end with pointing to some alternative algebraically simple quantities with properties similar to those of R₀ that may sometimes be used to good effect in cases where no simple formula for R₀ exists.
Situating the Debate on "Geometrical Algebra" within the Framework of Premodern Algebra.
Sialaros, Michalis; Christianidis, Jean
2016-06-01
Argument The aim of this paper is to employ the newly contextualized historiographical category of "premodern algebra" in order to revisit the arguably most controversial topic of the last decades in the field of Greek mathematics, namely the debate on "geometrical algebra." Within this framework, we shift focus from the discrepancy among the views expressed in the debate to some of the historiographical assumptions and methodological approaches that the opposing sides shared. Moreover, by using a series of propositions related to Elem. II.5 as a case study, we discuss Euclid's geometrical proofs, the so-called "semi-algebraic" alternative demonstrations attributed to Heron of Alexandria, as well as the solutions given by Diophantus, al-Sulamī, and al-Khwārizmī to the corresponding numerical problem. This comparative analysis offers a new reading of Heron's practice, highlights the significance of contextualizing "premodern algebra," and indicates that the origins of algebraic reasoning should be sought in the problem-solving practice, rather than in the theorem-proving tradition.
Students’ Algebraic Reasonsing In Solving Mathematical Problems With Adversity Quotient
NASA Astrophysics Data System (ADS)
Aryani, F.; Amin, S. M.; Sulaiman, R.
2018-01-01
Algebraic reasoning is a process in which students generalize mathematical ideas from a set of particular instances and express them in increasingly formal and age-appropriate ways. Using problem solving approach to develop algebraic reasoning of mathematics may enhace the long-term learning trajectory of the majority students. The purpose of this research was to describe the algebraic reasoning of quitter, camper, and climber junior high school students in solving mathematical problems. This research used qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews.The results showed that the algebraic reasoning of three students in the process of pattern seeking by identifying the things that are known and asked in a similar way. But three students found the elements of pattern recognition in different ways or method. So, they are generalize the problem of pattern formation with different ways. The study of algebraic reasoning and problem solving can be a learning paradigm in the improve students’ knowledge and skills in algebra work. The goal is to help students’ improve academic competence, develop algebraic reasoning in problem solving.
Djurfeldt, Mikael
2012-07-01
The connection-set algebra (CSA) is a novel and general formalism for the description of connectivity in neuronal network models, from small-scale to large-scale structure. The algebra provides operators to form more complex sets of connections from simpler ones and also provides parameterization of such sets. CSA is expressive enough to describe a wide range of connection patterns, including multiple types of random and/or geometrically dependent connectivity, and can serve as a concise notation for network structure in scientific writing. CSA implementations allow for scalable and efficient representation of connectivity in parallel neuronal network simulators and could even allow for avoiding explicit representation of connections in computer memory. The expressiveness of CSA makes prototyping of network structure easy. A C+ + version of the algebra has been implemented and used in a large-scale neuronal network simulation (Djurfeldt et al., IBM J Res Dev 52(1/2):31-42, 2008b) and an implementation in Python has been publicly released.
Operator bases, S-matrices, and their partition functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henning, Brian; Lu, Xiaochuan; Melia, Tom
Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. Here in this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce amore » partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most naÏve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Finally, although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.« less
Operator bases, S-matrices, and their partition functions
Henning, Brian; Lu, Xiaochuan; Melia, Tom; ...
2017-10-27
Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. Here in this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce amore » partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most naÏve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Finally, although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.« less
Matrix De Rham Complex and Quantum A-infinity algebras
NASA Astrophysics Data System (ADS)
Barannikov, S.
2014-04-01
I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A ∞-algebras, introduced in Barannikov (Modular operads and non-commutative Batalin-Vilkovisky geometry. IMRN, vol. 2007, rnm075. Max Planck Institute for Mathematics 2006-48, 2007), is represented via de Rham differential acting on the supermatrix spaces related with Bernstein-Leites simple associative algebras with odd trace q( N), and gl( N| N). I also show that the matrix Lagrangians from Barannikov (Noncommutative Batalin-Vilkovisky geometry and matrix integrals. Isaac Newton Institute for Mathematical Sciences, Cambridge University, 2006) are represented by equivariantly closed differential forms.
Li, Jing; Hong, Wenxue
2014-12-01
The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.
Algebraic approach to small-world network models
NASA Astrophysics Data System (ADS)
Rudolph-Lilith, Michelle; Muller, Lyle E.
2014-01-01
We introduce an analytic model for directed Watts-Strogatz small-world graphs and deduce an algebraic expression of its defining adjacency matrix. The latter is then used to calculate the small-world digraph's asymmetry index and clustering coefficient in an analytically exact fashion, valid nonasymptotically for all graph sizes. The proposed approach is general and can be applied to all algebraically well-defined graph-theoretical measures, thus allowing for an analytical investigation of finite-size small-world graphs.
On alphabetic presentations of Clifford algebras and their possible applications
NASA Astrophysics Data System (ADS)
Toppan, Francesco; Verbeek, Piet W.
2009-12-01
In this paper, we address the problem of constructing a class of representations of Clifford algebras that can be named "alphabetic (re)presentations." The Clifford algebra generators are expressed as m-letter words written with a three-character or a four-character alphabet. We formulate the problem of the alphabetic presentations, deriving the main properties and some general results. At the end, we briefly discuss the motivations of this work and outline some possible applications.
Pole-placement Predictive Functional Control for under-damped systems with real numbers algebra.
Zabet, K; Rossiter, J A; Haber, R; Abdullah, M
2017-11-01
This paper presents the new algorithm of PP-PFC (Pole-placement Predictive Functional Control) for stable, linear under-damped higher-order processes. It is shown that while conventional PFC aims to get first-order exponential behavior, this is not always straightforward with significant under-damped modes and hence a pole-placement PFC algorithm is proposed which can be tuned more precisely to achieve the desired dynamics, but exploits complex number algebra and linear combinations in order to deliver guarantees of stability and performance. Nevertheless, practical implementation is easier by avoiding complex number algebra and hence a modified formulation of the PP-PFC algorithm is also presented which utilises just real numbers while retaining the key attributes of simple algebra, coding and tuning. The potential advantages are demonstrated with numerical examples and real-time control of a laboratory plant. Copyright © 2017 ISA. All rights reserved.
Shear, principal, and equivalent strains in equal-channel angular deformation
NASA Astrophysics Data System (ADS)
Xia, K.; Wang, J.
2001-10-01
The shear and principal strains involved in equal channel angular deformation (ECAD) were analyzed using a variety of methods. A general expression for the total shear strain calculated by integrating infinitesimal strain increments gave the same result as that from simple geometric considerations. The magnitude and direction of the accumulated principal strains were calculated based on a geometric and a matrix algebra method, respectively. For an intersecting angle of π/2, the maximum normal strain is 0.881 in the direction at π/8 (22.5 deg) from the longitudinal direction of the material in the exit channel. The direction of the maximum principal strain should be used as the direction of grain elongation. Since the principal direction of strain rotates during ECAD, the total shear strain and principal strains so calculated do not have the same meaning as those in a strain tensor. Consequently, the “equivalent” strain based on the second invariant of a strain tensor is no longer an invariant. Indeed, the equivalent strains calculated using the total shear strain and that using the total principal strains differed as the intensity of deformation increased. The method based on matrix algebra is potentially useful in mathematical analysis and computer calculation of ECAD.
ERIC Educational Resources Information Center
Kirshner, David
1989-01-01
A structured system of visual features is seen to parallel the propositional hierarchy of operations usually associated with the parsing of algebraic expressions. Women more than men were found to depend on these visual cues. Possible causes and consequences are discussed. Subjects were secondary and college students. (Author/DC)
NASA Astrophysics Data System (ADS)
Flores-Bustamante, Mario C.; Rosete-Aguilar, Martha; Calixto, Sergio
2016-03-01
A lens containing a liquid medium and having at least one elastic membrane as one of its components is known as an elastic membrane lens (EML). The elastic membrane may have a constant or variable thickness. The optical properties of the EML change by modifying the profile of its elastic membrane(s). The EML formed of elastic constant thickness membrane(s) have been studied extensively. However, EML information using elastic membrane of variable thickness is limited. In this work, we present simulation results of the mechanical and optical behavior of two EML with variable thickness membranes (convex-plane membranes). The profile of its surfaces were modified by liquid medium volume increases. The model of the convex-plane membranes, as well as the simulation of its mechanical behavior, were performed using Solidworks® software; and surface's points of the deformed elastic lens were obtained. Experimental stress-strain data, obtained from a silicone rubber simple tensile test, according to ASTM D638 norm, were used in the simulation. Algebraic expressions, (Schwarzschild formula, up to four deformation coefficients, in a cylindrical coordinate system (r, z)), of the meridional profiles of the first and second surfaces of the deformed convex-plane membranes, were obtained using the results from Solidworks® and a program in the software Mathematica®. The optical performance of the EML was obtained by simulation using the software OSLO® and the algebraic expressions obtained in Mathematica®.
A Discrete Global Grid System Programming Language Using MapReduce
NASA Astrophysics Data System (ADS)
Peterson, P.; Shatz, I.
2016-12-01
A discrete global grid system (DGGS) is a powerful mechanism for storing and integrating geospatial information. As a "pixelization" of the Earth, many image processing techniques lend themselves to the transformation of data values referenced to the DGGS cells. It has been shown that image algebra, as an example, and advanced algebra, like Fast Fourier Transformation, can be used on the DGGS tiling structure for geoprocessing and spatial analysis. MapReduce has been shown to provide advantages for processing and generating large data sets within distributed and parallel computing. The DGGS structure is ideally suited for big distributed Earth data. We proposed that basic expressions could be created to form the atoms of a generalized DGGS language using the MapReduce programming model. We created three very efficient expressions: Selectors (aka filter) - A selection function that generate a set of cells, cell collections, or geometries; Calculators (aka map) - A computational function (including quantization of raw measurements and data sources) that generate values in a DGGS cell; and Aggregators (aka reduce) - A function that generate spatial statistics from cell values within a cell. We found that these three basic MapReduce operations along with a forth function, the Iterator, for horizontal and vertical traversing of any DGGS structure, provided simple building block resulting in very efficient operations and processes that could be used with any DGGS. We provide examples and a demonstration of their effectiveness using the ISEA3H DGGS on the PYXIS Studio.
Constitutive relations in optics in terms of geometric algebra
NASA Astrophysics Data System (ADS)
Dargys, A.
2015-11-01
To analyze the electromagnetic wave propagation in a medium the Maxwell equations should be supplemented by constitutive relations. At present the classification of linear constitutive relations is well established in tensorial-matrix and exterior p-form calculus. Here the constitutive relations are found in the context of Clifford geometric algebra. For this purpose Cl1,3 algebra that conforms with relativistic 4D Minkowskian spacetime is used. It is shown that the classification of linear optical phenomena with the help of constitutive relations in this case comes from the structure of Cl1,3 algebra itself. Concrete expressions for constitutive relations which follow from this algebra are presented. They can be applied in calculating the propagation properties of electromagnetic waves in any anisotropic, linear and nondissipative medium.
Asymptotic identity in min-plus algebra: a report on CPNS.
Li, Ming; Zhao, Wei
2012-01-01
Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions.
Asymptotic Identity in Min-Plus Algebra: A Report on CPNS
Li, Ming; Zhao, Wei
2012-01-01
Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions. PMID:21822446
Cryptographic Properties of Monotone Boolean Functions
2016-01-01
Algebraic attacks on stream ciphers with linear feedback, in: Advances in Cryptology (Eurocrypt 2003), Lecture Notes in Comput. Sci. 2656, Springer, Berlin...spectrum, algebraic immu- nity MSC 2010: 06E30, 94C10, 94A60, 11T71, 05E99 || Communicated by: Carlo Blundo 1 Introduction Let F 2 be the prime eld of...7]. For the reader’s convenience, we recall some basic notions below. Any f ∈ Bn can be expressed in algebraic normal form (ANF) as f(x 1 , x 2
Exploring Algebraic Misconceptions with Technology
ERIC Educational Resources Information Center
Sakow, Matthew; Karaman, Ruveyda
2015-01-01
Many students struggle with algebra, from simplifying expressions to solving systems of equations. Students also have misconceptions about the meaning of variables. In response to the question "Can x + y + z ever equal x + p + z?" during a student interview, the student claimed, "Never . . . because p has to have a different value…
Factors Shaping Students' Opportunities to Engage in Argumentative Activity
ERIC Educational Resources Information Center
Ayalon, Michal; Even, Ruhama
2016-01-01
This study examines how students' opportunities to engage in argumentative activity are shaped by the teacher, the class, and the mathematical topic. It compares the argumentative activity between two classes taught by the same teacher using the same textbook and across two beginning algebra topics--investigating algebraic expressions and…
Learning Activity Package, Algebra 93-94, LAPs 12-22.
ERIC Educational Resources Information Center
Evans, Diane
A set of 11 teacher-prepared Learning Activity Packages (LAPs) in beginning algebra, these units cover sets, properties of operations, operations over real numbers, open expressions, solution sets of equations and inequalities, equations and inequalities with two variables, solution sets of equations with two variables, exponents, factoring and…
Solving Optimization Problems with Spreadsheets
ERIC Educational Resources Information Center
Beigie, Darin
2017-01-01
Spreadsheets provide a rich setting for first-year algebra students to solve problems. Individual spreadsheet cells play the role of variables, and creating algebraic expressions for a spreadsheet to perform a task allows students to achieve a glimpse of how mathematics is used to program a computer and solve problems. Classic optimization…
Algebraic Procedures and Creative Thinking
ERIC Educational Resources Information Center
Tabach, Michal; Friedlander, Alex
2017-01-01
Simplifying symbolic expressions is usually perceived in middle school algebra as an algorithmic activity, achieved by performing sequences of short drill-and-practice tasks, which have little to do with conceptual learning or with creative mathematical thinking. The aim of this study is to explore possible ways by which ninth-grade students can…
Dimension independence in exterior algebra.
Hawrylycz, M
1995-01-01
The identities between homogeneous expressions in rank 1 vectors and rank n - 1 covectors in a Grassmann-Cayley algebra of rank n, in which one set occurs multilinearly, are shown to represent a set of dimension-independent identities. The theorem yields an infinite set of nontrivial geometric identities from a given identity. PMID:11607520
Optical linear algebra processors: noise and error-source modeling.
Casasent, D; Ghosh, A
1985-06-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Optical linear algebra processors - Noise and error-source modeling
NASA Technical Reports Server (NTRS)
Casasent, D.; Ghosh, A.
1985-01-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
NASA Astrophysics Data System (ADS)
Coletta, Vincent P.; Evans, Jonathan
2008-10-01
We analyze the motion of a gravity powered model race car on a downhill track of variable slope. Using a simple algebraic function to approximate the height of the track as a function of the distance along the track, and taking account of the rotational energy of the wheels, rolling friction, and air resistance, we obtain analytic expressions for the velocity and time of the car as functions of the distance traveled along the track. Photogates are used to measure the time at selected points along the track, and the measured values are in excellent agreement with the values predicted from theory. The design and analysis of model race cars provides a good application of principles of mechanics and suggests interesting projects for classes in introductory and intermediate mechanics.
Rational solitons in deep nonlinear optical Bragg grating.
Alatas, H; Iskandar, A A; Tjia, M O; Valkering, T P
2006-06-01
We have examined the rational solitons in the Generalized Coupled Mode model for a deep nonlinear Bragg grating. These solitons are the degenerate forms of the ordinary solitons and appear at the transition lines in the parameter plane. A simple formulation is presented for the investigation of the bifurcations induced by detuning the carrier wave frequency. The analysis yields among others the appearance of in-gap dark and antidark rational solitons unknown in the nonlinear shallow grating. The exact expressions for the corresponding rational solitons are also derived in the process, which are characterized by rational algebraic functions. It is further demonstrated that certain effects in the soliton energy variations are to be expected when the frequency is varied across the values where the rational solitons appear.
On the ``Matrix Approach'' to Interacting Particle Systems
NASA Astrophysics Data System (ADS)
de Sanctis, L.; Isopi, M.
2004-04-01
Derrida et al. and Schütz and Stinchcombe gave algebraic formulas for the correlation functions of the partially asymmetric simple exclusion process. Here we give a fairly general recipe of how to get these formulas and extend them to the whole time evolution (starting from the generator of the process), for a certain class of interacting systems. We then analyze the algebraic relations obtained to show that the matrix approach does not work with some models such as the voter and the contact processes.
Bialgebra deformations and algebras of trees
NASA Technical Reports Server (NTRS)
Grossman, Robert; Radford, David
1991-01-01
Let A denote a bialgebra over a field k and let A sub t = A((t)) denote the ring of formal power series with coefficients in A. Assume that A is also isomorphic to a free, associative algebra over k. A simple construction is given which makes A sub t a bialgebra deformation of A. In typical applications, A sub t is neither commutative nor cocommutative. In the terminology of Drinfeld, (1987), A sub t is a quantum group. This construction yields quantum groups associated with families of trees.
Universal vertex-IRF transformation for quantum affine algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buffenoir, E.; Roche, Ph.; Terras, V.
2012-10-15
We construct a universal solution of the generalized coboundary equation in the case of quantum affine algebras, which is an extension of our previous work to U{sub q}(A{sub r}{sup (1)}). This universal solution has a simple Gauss decomposition which is constructed using Sevostyanov's characters of twisted quantum Borel algebras. We show that in the evaluation representations it gives a vertex-face transformation between a vertex type solution and a face type solution of the quantum dynamical Yang-Baxter equation. In particular, in the evaluation representation of U{sub q}(A{sub 1}{sup (1)}), it gives Baxter's well-known transformation between the 8-vertex model and the interaction-round-facesmore » (IRF) height model.« less
Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis
NASA Astrophysics Data System (ADS)
Martin, J.; Shore, B. W.; Bergmann, K.
1995-07-01
We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid.
Spontaneous PT-Symmetry Breaking for Systems of Noncommutative Euclidean Lie Algebraic Type
NASA Astrophysics Data System (ADS)
Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah
2015-11-01
We propose a noncommutative version of the Euclidean Lie algebra E 2. Several types of non-Hermitian Hamiltonian systems expressed in terms of generic combinations of the generators of this algebra are investigated. Using the breakdown of the explicitly constructed Dyson maps as a criterium, we identify the domains in the parameter space in which the Hamiltonians have real energy spectra and determine the exceptional points signifying the crossover into the different types of spontaneously broken PT-symmetric regions with pairs of complex conjugate eigenvalues. We find exceptional points which remain invariant under the deformation as well as exceptional points becoming dependent on the deformation parameter of the algebra.
NASA Astrophysics Data System (ADS)
Jurčo, B.; Schlieker, M.
1995-07-01
In this paper explicitly natural (from the geometrical point of view) Fock-space representations (contragradient Verma modules) of the quantized enveloping algebras are constructed. In order to do so, one starts from the Gauss decomposition of the quantum group and introduces the differential operators on the corresponding q-deformed flag manifold (assumed as a left comodule for the quantum group) by a projection to it of the right action of the quantized enveloping algebra on the quantum group. Finally, the representatives of the elements of the quantized enveloping algebra corresponding to the left-invariant vector fields on the quantum group are expressed as first-order differential operators on the q-deformed flag manifold.
Vector 33: A reduce program for vector algebra and calculus in orthogonal curvilinear coordinates
NASA Astrophysics Data System (ADS)
Harper, David
1989-06-01
This paper describes a package with enables REDUCE 3.3 to perform algebra and calculus operations upon vectors. Basic algebraic operations between vectors and between scalars and vectors are provided, including scalar (dot) product and vector (cross) product. The vector differential operators curl, divergence, gradient and Laplacian are also defined, and are valid in any orthogonal curvilinear coordinate system. The package is written in RLISP to allow algebra and calculus to be performed using notation identical to that for operations. Scalars and vectors can be mixed quite freely in the same expression. The package will be of interest to mathematicians, engineers and scientists who need to perform vector calculations in orthogonal curvilinear coordinates.
Algebra from Chips and Chopsticks
ERIC Educational Resources Information Center
Yun, Jeong Oak; Flores, Alfinio
2012-01-01
Students can use geometric representations of numbers as a way to explore algebraic ideas. With the help of these representations, students can think about the relations among the numbers, express them using their own words, and represent them with letters. The activities discussed here can stimulate students to try to find various ways of solving…
Bethe vectors for XXX-spin chain
NASA Astrophysics Data System (ADS)
Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei
2014-11-01
The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included.
Associations of Students' Beliefs with Self-Regulated Problem Solving in College Algebra
ERIC Educational Resources Information Center
Cifarelli, Victor; Goodson-Espy, Tracy; Chae, Jeong-Lim
2010-01-01
This paper reports results from a study of self-regulated problem solving actions of students enrolled in College Algebra (N = 139). The study examined the associations between the expressed mathematical beliefs of students and the students' self-regulated actions in solving mathematics problems. The research questions are: (a) What are some…
An Authentic Task That Models Quadratics
ERIC Educational Resources Information Center
Baron, Lorraine M.
2015-01-01
As students develop algebraic reasoning in grades 5 to 9, they learn to recognize patterns and understand expressions, equations, and variables. Linear functions are a focus in eighth-grade mathematics, and by algebra 1, students must make sense of functions that are not linear. This article describes how students worked through a classroom task…
Algebraic Activities Aid Discovery Lessons
ERIC Educational Resources Information Center
Wallace-Gomez, Patricia
2013-01-01
After a unit on the rules for positive and negative numbers and the order of operations for evaluating algebraic expressions, many students believe that they understand these principles well enough, but they really do not. They clearly need more practice, but not more of the same kind of drill. Wallace-Gomez provides three graphing activities that…
Focus in High School Mathematics: Reasoning and Sense Making in Algebra
ERIC Educational Resources Information Center
Graham, Karen; Cuoco, Albert; Zimmermann, Gwendolyn
2010-01-01
This book examines the five key elements (meaningful use of symbols, mindful manipulation, reasoned solving, connection algebra with geometry, and linking expressions and functions) identified in "Focus in High School Mathematics: Reasoning and Sense Making" in more detail and elaborates on the associated reasoning habits. This volume is one of a…
Mat-Rix-Toe: Improving Writing through a Game-Based Project in Linear Algebra
ERIC Educational Resources Information Center
Graham-Squire, Adam; Farnell, Elin; Stockton, Julianna Connelly
2014-01-01
The Mat-Rix-Toe project utilizes a matrix-based game to deepen students' understanding of linear algebra concepts and strengthen students' ability to express themselves mathematically. The project was administered in three classes using slightly different approaches, each of which included some editing component to encourage the…
Meesters, Johannes A J; Koelmans, Albert A; Quik, Joris T K; Hendriks, A Jan; van de Meent, Dik
2014-05-20
Screening level models for environmental assessment of engineered nanoparticles (ENP) are not generally available. Here, we present SimpleBox4Nano (SB4N) as the first model of this type, assess its validity, and evaluate it by comparisons with a known material flow model. SB4N expresses ENP transport and concentrations in and across air, rain, surface waters, soil, and sediment, accounting for nanospecific processes such as aggregation, attachment, and dissolution. The model solves simultaneous mass balance equations (MBE) using simple matrix algebra. The MBEs link all concentrations and transfer processes using first-order rate constants for all processes known to be relevant for ENPs. The first-order rate constants are obtained from the literature. The output of SB4N is mass concentrations of ENPs as free dispersive species, heteroaggregates with natural colloids, and larger natural particles in each compartment in time and at steady state. Known scenario studies for Switzerland were used to demonstrate the impact of the transport processes included in SB4N on the prediction of environmental concentrations. We argue that SB4N-predicted environmental concentrations are useful as background concentrations in environmental risk assessment.
Multidimensional Hermite-Gaussian quadrature formulae and their application to nonlinear estimation
NASA Technical Reports Server (NTRS)
Mcreynolds, S. R.
1975-01-01
A simplified technique is proposed for calculating multidimensional Hermite-Gaussian quadratures that involves taking the square root of a matrix by the Cholesky algorithm rather than computation of the eigenvectors of the matrix. Ways of reducing the dimension, number, and order of the quadratures are set forth. If the function f(x) under the integral sign is not well approximated by a low-order algebraic expression, the order of the quadrature may be reduced by factoring f(x) into an expression that is nearly algebraic and one that is Gaussian.
Computer Classification of Triangles and Quadrilaterals--A Challenging Application
ERIC Educational Resources Information Center
Dennis, J. Richard
1978-01-01
Two computer exercises involving the classification of geometric figures are given. The mathematics required is relatively simple but comes from several areas--synthetic geometry, analytic geometry, and linear algebra. (MN)
Argyres-Douglas theories, the Macdonald index, and an RG inequality
Buican, Matthew; Nishinaka, Takahiro
2016-02-24
Here we conjecture closed-form expressions for the Macdonald limits of the superconformal indices of the (A 1,A 2n₋3) and (A 1,D 2n) Argyres-Douglas (AD) theories in terms of certain simple deformations of Macdonald polynomials. As checks of our conjectures, we demonstrate compatibility with two S-dualities, we show symmetry enhancement for special values of n, and we argue that our expressions encode a non-trivial set of renormalization group flows. Moreover, we demonstrate that, for certain values of n, our conjectures imply simple operator relations involving composites built out of the SU(2) R currents and flavor symmetry moment maps, and we findmore » a consistent picture in which these relations give rise to certain null states in the corresponding chiral algebras. In addition, we show that the Hall-Littlewood limits of our indices are equivalent to the corresponding Higgs branch Hilbert series. We explain this fact by considering the S 1 reductions of our theories and showing that the equivalence follows from an inequality on monopole quantum numbers whose coefficients are fixed by data of the four-dimensional parent theories. Finally, we comment on the implications of our work for more general $N = 2$ superconformal field theories.« less
Argyres-Douglas theories, the Macdonald index, and an RG inequality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buican, Matthew; Nishinaka, Takahiro
Here we conjecture closed-form expressions for the Macdonald limits of the superconformal indices of the (A 1,A 2n₋3) and (A 1,D 2n) Argyres-Douglas (AD) theories in terms of certain simple deformations of Macdonald polynomials. As checks of our conjectures, we demonstrate compatibility with two S-dualities, we show symmetry enhancement for special values of n, and we argue that our expressions encode a non-trivial set of renormalization group flows. Moreover, we demonstrate that, for certain values of n, our conjectures imply simple operator relations involving composites built out of the SU(2) R currents and flavor symmetry moment maps, and we findmore » a consistent picture in which these relations give rise to certain null states in the corresponding chiral algebras. In addition, we show that the Hall-Littlewood limits of our indices are equivalent to the corresponding Higgs branch Hilbert series. We explain this fact by considering the S 1 reductions of our theories and showing that the equivalence follows from an inequality on monopole quantum numbers whose coefficients are fixed by data of the four-dimensional parent theories. Finally, we comment on the implications of our work for more general $N = 2$ superconformal field theories.« less
Recurrence approach and higher order polynomial algebras for superintegrable monopole systems
NASA Astrophysics Data System (ADS)
Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong
2018-05-01
We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.
Dini, Paolo; Nehaniv, Chrystopher L; Egri-Nagy, Attila; Schilstra, Maria J
2013-05-01
Interaction computing (IC) aims to map the properties of integrable low-dimensional non-linear dynamical systems to the discrete domain of finite-state automata in an attempt to reproduce in software the self-organizing and dynamically stable properties of sub-cellular biochemical systems. As the work reported in this paper is still at the early stages of theory development it focuses on the analysis of a particularly simple chemical oscillator, the Belousov-Zhabotinsky (BZ) reaction. After retracing the rationale for IC developed over the past several years from the physical, biological, mathematical, and computer science points of view, the paper presents an elementary discussion of the Krohn-Rhodes decomposition of finite-state automata, including the holonomy decomposition of a simple automaton, and of its interpretation as an abstract positional number system. The method is then applied to the analysis of the algebraic properties of discrete finite-state automata derived from a simplified Petri net model of the BZ reaction. In the simplest possible and symmetrical case the corresponding automaton is, not surprisingly, found to contain exclusively cyclic groups. In a second, asymmetrical case, the decomposition is much more complex and includes five different simple non-abelian groups whose potential relevance arises from their ability to encode functionally complete algebras. The possible computational relevance of these findings is discussed and possible conclusions are drawn. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hoque, Md. Fazlul; Marquette, Ian; Post, Sarah; Zhang, Yao-Zhong
2018-04-01
We introduce an extended Kepler-Coulomb quantum model in spherical coordinates. The Schrödinger equation of this Hamiltonian is solved in these coordinates and it is shown that the wave functions of the system can be expressed in terms of Laguerre, Legendre and exceptional Jacobi polynomials (of hypergeometric type). We construct ladder and shift operators based on the corresponding wave functions and obtain their recurrence formulas. These recurrence relations are used to construct higher-order, algebraically independent integrals of motion to prove superintegrability of the Hamiltonian. The integrals form a higher rank polynomial algebra. By constructing the structure functions of the associated deformed oscillator algebras we derive the degeneracy of energy spectrum of the superintegrable system.
Symbolic Algebra Development for Higher-Order Electron Propagator Formulation and Implementation.
Tamayo-Mendoza, Teresa; Flores-Moreno, Roberto
2014-06-10
Through the use of symbolic algebra, implemented in a program, the algebraic expression of the elements of the self-energy matrix for the electron propagator to different orders were obtained. In addition, a module for the software package Lowdin was automatically generated. Second- and third-order electron propagator results have been calculated to test the correct operation of the program. It was found that the Fortran 90 modules obtained automatically with our algorithm succeeded in calculating ionization energies with the second- and third-order electron propagator in the diagonal approximation. The strategy for the development of this symbolic algebra program is described in detail. This represents a solid starting point for the automatic derivation and implementation of higher-order electron propagator methods.
A Comparison of Equality in Computer Algebra and Correctness in Mathematical Pedagogy (II)
ERIC Educational Resources Information Center
Bradford, Russell; Davenport, James H.; Sangwin, Chris
2010-01-01
A perennial problem in computer-aided assessment is that "a right answer", pedagogically speaking, is not the same thing as "a mathematically correct expression", as verified by a computer algebra system, or indeed other techniques such as random evaluation. Paper I in this series considered the difference in cases where there was "the right…
ERIC Educational Resources Information Center
de Groot, Cornelis; Boyajian, Meredith
2015-01-01
In introductory algebra and later mathematics courses, students seem to struggle with the concepts of like terms and combining like terms with algebraic expressions. These ideas appear to be unfamiliar to students and do not seem to relate to any mathematics that they have done in the past. In an attempt to link with something that the students do…
NASA Technical Reports Server (NTRS)
Frenklach, Michael; Wang, Hai; Rabinowitz, Martin J.
1992-01-01
A method of systematic optimization, solution mapping, as applied to a large-scale dynamic model is presented. The basis of the technique is parameterization of model responses in terms of model parameters by simple algebraic expressions. These expressions are obtained by computer experiments arranged in a factorial design. The developed parameterized responses are then used in a joint multiparameter multidata-set optimization. A brief review of the mathematical background of the technique is given. The concept of active parameters is discussed. The technique is applied to determine an optimum set of parameters for a methane combustion mechanism. Five independent responses - comprising ignition delay times, pre-ignition methyl radical concentration profiles, and laminar premixed flame velocities - were optimized with respect to thirteen reaction rate parameters. The numerical predictions of the optimized model are compared to those computed with several recent literature mechanisms. The utility of the solution mapping technique in situations where the optimum is not unique is also demonstrated.
Abstract numeric relations and the visual structure of algebra.
Landy, David; Brookes, David; Smout, Ryan
2014-09-01
Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition, it has often been assumed that skilled users of these formalisms treat situations in terms of semantic properties encoded in an abstract syntax that governs the use of notation without particular regard to the details of the physical structure of the equation itself (Anderson, 2005; Hegarty, Mayer, & Monk, 1995). We explore how the notational structure of verbal descriptions or algebraic equations (e.g., the spatial proximity of certain words or the visual alignment of numbers and symbols in an equation) plays a role in the process of interpreting or constructing symbolic equations. We propose in particular that construction processes involve an alignment of notational structures across representation systems, biasing reasoners toward the selection of formal notations that maintain the visuospatial structure of source representations. For example, in the statement "There are 5 elephants for every 3 rhinoceroses," the spatial proximity of 5 and elephants and 3 and rhinoceroses will bias reasoners to write the incorrect expression 5E = 3R, because that expression maintains the spatial relationships encoded in the source representation. In 3 experiments, participants constructed equations with given structure, based on story problems with a variety of phrasings. We demonstrate how the notational alignment approach accounts naturally for a variety of previously reported phenomena in equation construction and successfully predicts error patterns that are not accounted for by prior explanations, such as the left to right transcription heuristic.
Higher spins and Yangian symmetries
Gaberdiel, Matthias R.; Gopakumar, Rajesh; Li, Wei; ...
2017-04-26
The relation between the bosonic higher spin W∞[λ]W∞[λ] algebra, the affine Yangian of gl 1, and the SH c algebra is established in detail. For generic λ we find explicit expressions for the low-lying W∞[λ] modes in terms of the affine Yangian generators, and deduce from this the precise identification between λ and the parameters of the affine Yangian. Furthermore, for the free field cases corresponding to λ = 0 and λ = 1 we give closed-form expressions for the affine Yangian generators in terms of the free fields. Interestingly, the relation between the W∞ modes and those of themore » affine Yangian is a non-local one, in general. We also establish the explicit dictionary between the affine Yangian and the SH c generators. Lastly, given that Yangian algebras are the hallmark of integrability, these identifications should pave the way towards uncovering the relation between the integrable and the higher spin symmetries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaberdiel, Matthias R.; Gopakumar, Rajesh; Li, Wei
The relation between the bosonic higher spin W∞[λ]W∞[λ] algebra, the affine Yangian of gl 1, and the SH c algebra is established in detail. For generic λ we find explicit expressions for the low-lying W∞[λ] modes in terms of the affine Yangian generators, and deduce from this the precise identification between λ and the parameters of the affine Yangian. Furthermore, for the free field cases corresponding to λ = 0 and λ = 1 we give closed-form expressions for the affine Yangian generators in terms of the free fields. Interestingly, the relation between the W∞ modes and those of themore » affine Yangian is a non-local one, in general. We also establish the explicit dictionary between the affine Yangian and the SH c generators. Lastly, given that Yangian algebras are the hallmark of integrability, these identifications should pave the way towards uncovering the relation between the integrable and the higher spin symmetries.« less
Kinematic matrix theory and universalities in self-propellers and active swimmers.
Nourhani, Amir; Lammert, Paul E; Borhan, Ali; Crespi, Vincent H
2014-06-01
We describe an efficient and parsimonious matrix-based theory for studying the ensemble behavior of self-propellers and active swimmers, such as nanomotors or motile bacteria, that are typically studied by differential-equation-based Langevin or Fokker-Planck formalisms. The kinematic effects for elementary processes of motion are incorporated into a matrix, called the "kinematrix," from which we immediately obtain correlators and the mean and variance of angular and position variables (and thus effective diffusivity) by simple matrix algebra. The kinematrix formalism enables us recast the behaviors of a diverse range of self-propellers into a unified form, revealing universalities in their ensemble behavior in terms of new emergent time scales. Active fluctuations and hydrodynamic interactions can be expressed as an additive composition of separate self-propellers.
Least reliable bits coding (LRBC) for high data rate satellite communications
NASA Technical Reports Server (NTRS)
Vanderaar, Mark; Budinger, James; Wagner, Paul
1992-01-01
LRBC, a bandwidth efficient multilevel/multistage block-coded modulation technique, is analyzed. LRBC uses simple multilevel component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Soft-decision multistage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Analytical expressions and tight performance bounds are used to show that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of BPSK. The relative simplicity of Galois field algebra vs the Viterbi algorithm and the availability of high-speed commercial VLSI for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.
Highly Accurate Analytical Approximate Solution to a Nonlinear Pseudo-Oscillator
NASA Astrophysics Data System (ADS)
Wu, Baisheng; Liu, Weijia; Lim, C. W.
2017-07-01
A second-order Newton method is presented to construct analytical approximate solutions to a nonlinear pseudo-oscillator in which the restoring force is inversely proportional to the dependent variable. The nonlinear equation is first expressed in a specific form, and it is then solved in two steps, a predictor and a corrector step. In each step, the harmonic balance method is used in an appropriate manner to obtain a set of linear algebraic equations. With only one simple second-order Newton iteration step, a short, explicit, and highly accurate analytical approximate solution can be derived. The approximate solutions are valid for all amplitudes of the pseudo-oscillator. Furthermore, the method incorporates second-order Taylor expansion in a natural way, and it is of significant faster convergence rate.
Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays
NASA Astrophysics Data System (ADS)
Nguimdo, Romain Modeste
2018-03-01
Although the plethora real-life systems modeled by nonlinear systems with two independent time delays, the algebraic expressions for determining the stability of their fixed points remain the Achilles' heel. Typically, the approach for studying the stability of delay systems consists in finding the bifurcation lines separating the stable and unstable parameter regions. This work deals with the parametric construction of algebraic expressions and their use for the determination of the stability boundaries of fixed points in nonlinear systems with two independent time delays. In particular, we concentrate on the cases for which the stability of the fixed points can be ascertained from a characteristic equation corresponding to that of scalar two-delay differential equations, one-component dual-delay feedback, or nonscalar differential equations with two delays for which the characteristic equation for the stability analysis can be reduced to that of a scalar case. Then, we apply our obtained algebraic expressions to identify either the parameter regions of stable microwaves generated by dual-delay optoelectronic oscillators or the regions of amplitude death in identical coupled oscillators.
ERIC Educational Resources Information Center
Wong, Siu-ling; Chun, Ka-wai Cecilia; Mak, Se-yuen
2007-01-01
We describe a physics investigation project inspired by one of the adventures of Odysseus in Homer's "Odyssey." The investigation uses the laws of mechanics, vector algebra and a simple way to construct a fan-and-sail-cart for experimental verification.
Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun
2016-01-01
We previously presented a group theoretical model that describes psychiatric patient states or clinical data in a graded vector-like format based on modulo groups. Meanwhile, the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5, the current version), is frequently used for diagnosis in daily psychiatric treatments and biological research. The diagnostic criteria of DSM-5 contain simple binominal items relating to the presence or absence of specific symptoms. In spite of its simple form, the practical structure of the DSM-5 system is not sufficiently systemized for data to be treated in a more rationally sophisticated way. To view the disease states in terms of symmetry in the manner of abstract algebra is considered important for the future systematization of clinical medicine. We provide a simple idea for the practical treatment of the psychiatric diagnosis/score of DSM-5 using depressive symptoms in line with our previously proposed method. An expression is given employing modulo-2 and -7 arithmetic (in particular, additive group theory) for Criterion A of a 'major depressive episode' that must be met for the diagnosis of 'major depressive disorder' in DSM-5. For this purpose, the novel concept of an imaginary value 0 that can be recognized as an explicit 0 or implicit 0 was introduced to compose the model. The zeros allow the incorporation or deletion of an item between any other symptoms if they are ordered appropriately. Optionally, a vector-like expression can be used to rate/select only specific items when modifying the criterion/scale. Simple examples are illustrated concretely. Further development of the proposed method for the criteria/scale of a disease is expected to raise the level of formalism of clinical medicine to that of other fields of natural science.
ERIC Educational Resources Information Center
Serfaty de Markus, Alicia
2018-01-01
This quasi-treatment study, using a non-equivalent group design, explored how a set of animations related to various concepts in algebra impacted students' ability to learn as measured by changes in quiz and test scores. The concepts that were investigated were addition and subtraction of rational expressions, solving equations involving rational…
ERIC Educational Resources Information Center
Pantzare, Anna Lind
2012-01-01
Calculators with computer algebra systems (CAS) are powerful tools when working with equations and algebraic expressions in mathematics. When calculators are allowed to be used during assessments but are not available or provided to every student, they may cause bias. The CAS calculators may also have an impact on the trustworthiness of results.…
Zombie states for description of structure and dynamics of multi-electron systems
NASA Astrophysics Data System (ADS)
Shalashilin, Dmitrii V.
2018-05-01
Canonical Coherent States (CSs) of Harmonic Oscillator have been extensively used as a basis in a number of computational methods of quantum dynamics. However, generalising such techniques for fermionic systems is difficult because Fermionic Coherent States (FCSs) require complicated algebra of Grassmann numbers not well suited for numerical calculations. This paper introduces a coherent antisymmetrised superposition of "dead" and "alive" electronic states called here Zombie State (ZS), which can be used in a manner of FCSs but without Grassmann algebra. Instead, for Zombie States, a very simple sign-changing rule is used in the definition of creation and annihilation operators. Then, calculation of electronic structure Hamiltonian matrix elements between two ZSs becomes very simple and a straightforward technique for time propagation of fermionic wave functions can be developed. By analogy with the existing methods based on Canonical Coherent States of Harmonic Oscillator, fermionic wave functions can be propagated using a set of randomly selected Zombie States as a basis. As a proof of principles, the proposed Coupled Zombie States approach is tested on a simple example showing that the technique is exact.
Simple and Accurate Method for Central Spin Problems
NASA Astrophysics Data System (ADS)
Lindoy, Lachlan P.; Manolopoulos, David E.
2018-06-01
We describe a simple quantum mechanical method that can be used to obtain accurate numerical results over long timescales for the spin correlation tensor of an electron spin that is hyperfine coupled to a large number of nuclear spins. This method does not suffer from the statistical errors that accompany a Monte Carlo sampling of the exact eigenstates of the central spin Hamiltonian obtained from the algebraic Bethe ansatz, or from the growth of the truncation error with time in the time-dependent density matrix renormalization group (TDMRG) approach. As a result, it can be applied to larger central spin problems than the algebraic Bethe ansatz, and for longer times than the TDMRG algorithm. It is therefore an ideal method to use to solve central spin problems, and we expect that it will also prove useful for a variety of related problems that arise in a number of different research fields.
SYVA: A program to analyze symmetry of molecules based on vector algebra
NASA Astrophysics Data System (ADS)
Gyevi-Nagy, László; Tasi, Gyula
2017-06-01
Symmetry is a useful concept in physics and chemistry. It can be used to find out some simple properties of a molecule or simplify complex calculations. In this paper a simple vector algebraic method is described to determine all symmetry elements of an arbitrary molecule. To carry out the symmetry analysis, a program has been written, which is also capable of generating the framework group of the molecule, revealing the symmetry properties of normal modes of vibration and symmetrizing the structure. To demonstrate the capabilities of the program, it is compared to other common widely used stand-alone symmetry analyzer (SYMMOL, Symmetrizer) and molecular modeling (NWChem, ORCA, MRCC) software. SYVA can generate input files for molecular modeling programs, e.g. Gaussian, using precisely symmetrized molecular structures. Possible applications are also demonstrated by integrating SYVA with the GAMESS and MRCC software.
On an example of a system of differential equations that are integrated in Abelian functions
NASA Astrophysics Data System (ADS)
Malykh, M. D.; Sevastianov, L. A.
2017-12-01
The short review of the theory of Abelian functions and its applications in mechanics and analytical theory of differential equations is given. We think that Abelian functions are the natural generalization of commonly used functions because if the general solution of the 2nd order differential equation depends algebraically on the constants of integration, then integrating this equation does not lead out of the realm of commonly used functions complemented by the Abelian functions (Painlevé theorem). We present a relatively simple example of a dynamical system that is integrated in Abelian integrals by “pairing” two copies of a hyperelliptic curve. Unfortunately, initially simple formulas unfold into very long ones. Apparently the theory of Abelian functions hasn’t been finished in the last century because without computer algebra systems it was impossible to complete the calculations to the end. All calculations presented in our report are performed in Sage.
Quantum monodromy and quantum phase transitions in floppy molecules
NASA Astrophysics Data System (ADS)
Larese, Danielle
2012-10-01
A simple algebraic Hamiltonian has been used to explore the vibrational and rotational spectra of the skeletal bending modes of HCNO, BrCNO, NCNCS, and other "floppy" (quasi-linear or quasi-bent) molecules. These molecules have large-amplitude, low-energy bending modes and champagne-bottle potential surfaces, making them good candidates for observing quantum phase transitions (QPT). We describe the geometric phase transitions from bent to linear in these and other non-rigid molecules, quantitatively analyzing the spectroscopic signatures of ground state QPT, excited state QPT, and quantum monodromy. The algebraic framework is ideal for this work because of its small calculational effort yet robust results. Although these methods have historically found success with tri-and four-atomic molecules, we now address five-atomic and simple branched molecules such as CH3NCO and GeH3NCO. Extraction of potential functions are completed for several molecules, resulting in predictions of barriers to linearity and equilibrium bond angles.
NASA Astrophysics Data System (ADS)
DeBuvitz, William
2014-03-01
I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a popular Algebra I textbook, and I was surprised and dismayed by how it treated simultaneous equations and quadratic equations. The coefficients are always simple integers in examples and exercises, even when they are related to physics. This is probably a good idea when these topics are first presented to the students. It makes it easy to solve simultaneous equations by the method of elimination of a variable. And it makes it easy to solve some quadratic equations by factoring. The textbook also discusses the method of substitution for linear equations and the use of the quadratic formula, but only with simple integers.
NASA Astrophysics Data System (ADS)
Nurhayati, D. M.; Herman, T.; Suhendra, S.
2017-09-01
This study aims to determine the difficulties of algebraic thinking ability of students in one of secondary school on quadrilateral subject and to describe Math-Talk Learning Community as the alternative way that can be done to overcome the difficulties of the students’ algebraic thinking ability. Research conducted by using quantitative approach with descriptive method. The population in this research was all students of that school and twenty three students as the sample that was chosen by purposive sampling technique. Data of algebraic thinking were collected through essay test. The results showed the percentage of achievement of students’ algebraic thinking’s indicators on three aspects: a) algebra as generalized arithmetic with the indicators (conceptually based computational strategies and estimation); b) algebra as the language of mathematics (meaning of variables, variable expressions and meaning of solution); c) algebra as a tool for functions and mathematical modelling (representing mathematical ideas using equations, tables, or words and generalizing patterns and rules in real-world contexts) is still low. It is predicted that because the secondary school students was not familiar with the abstract problem and they are still at a semi-concrete stage where the stage of cognitive development is between concrete and abstract. Based on the percentage achievement of each indicators, it can be concluded that the level of achievement of student’s mathematical communication using conventional learning is still low, so students’ algebraic thinking ability need to be improved.
Metric 3-Leibniz algebras and M2-branes
NASA Astrophysics Data System (ADS)
Méndez-Escobar, Elena
2010-08-01
This thesis is concerned with superconformal Chern-Simons theories with matter in 3 dimensions. The interest in these theories is two-fold. On the one hand, it is a new family of theories in which to test the AdS/CFT correspondence and on the other, they are important to study one of the main objects of M-theory (M2-branes). All these theories have something in common: they can be written in terms of 3-Leibniz algebras. Here we study the structure theory of such algebras, paying special attention to a subclass of them that gives rise to maximal supersymmetry and that was the first to appear in this context: 3-Lie algebras. In chapter 2, we review the structure theory of metric Lie algebras and their unitary representations. In chapter 3, we study metric 3-Leibniz algebras and show, by specialising a construction originally due to Faulkner, that they are in one to one correspondence with pairs of real metric Lie algebras and unitary representations of them. We also show a third characterisation for six extreme cases of 3-Leibniz algebras as graded Lie (super)algebras. In chapter 4, we study metric 3-Lie algebras in detail. We prove a structural result and also classify those with a maximally isotropic centre, which is the requirement that ensures unitarity of the corresponding conformal field theory. Finally, in chapter 5, we study the universal structure of superpotentials in this class of superconformal Chern-Simons theories with matter in three dimensions. We provide a uniform formulation for all these theories and establish the connection between the amount of supersymmetry preserved and the gauge Lie algebra and the appropriate unitary representation to be used to write down the Lagrangian. The conditions for supersymmetry enhancement are then expressed equivalently in the language of representation theory of Lie algebras or the language of 3-Leibniz algebras.
The role of difficulty and gender in numbers, algebra, geometry and mathematics achievement
NASA Astrophysics Data System (ADS)
Rabab'h, Belal Sadiq Hamed; Veloo, Arsaythamby; Perumal, Selvan
2015-05-01
This study aims to identify the role of difficulty and gender in numbers, algebra, geometry and mathematics achievement among secondary schools students in Jordan. The respondent of the study were 337 students from eight public secondary school in Alkoura district by using stratified random sampling. The study comprised of 179 (53%) males and 158 (47%) females students. The mathematics test comprises of 30 items which has eight items for numbers, 14 items for algebra and eight items for geometry. Based on difficulties among male and female students, the findings showed that item 4 (fractions - 0.34) was most difficult for male students and item 6 (square roots - 0.39) for females in numbers. For the algebra, item 11 (inequality - 0.23) was most difficult for male students and item 6 (algebraic expressions - 0.35) for female students. In geometry, item 3 (reflection - 0.34) was most difficult for male students and item 8 (volume - 0.33) for female students. Based on gender differences, female students showed higher achievement in numbers and algebra compare to male students. On the other hand, there was no differences between male and female students achievement in geometry test. This study suggest that teachers need to give more attention on numbers and algebra when teaching mathematics.
ERIC Educational Resources Information Center
Frankel, Lois; Brownstein, Beth; Soiffer, Neil; Hansen, Eric
2016-01-01
The work described in this report is the first phase of a project to provide easy-to-use tools for authoring and rendering secondary-school algebra-level math expressions in synthesized speech that is useful for students with blindness or low vision. This report describes the initial development, software implementation, and evaluation of the…
ERIC Educational Resources Information Center
Frankel, Lois; Brownstein, Beth; Soiffer, Neil; Hansen, Eric
2016-01-01
The work described in this report is the first phase of a project to provide easy-to-use tools for authoring and rendering secondary-school algebra-level math expressions in synthesized speech that is useful for students with blindness or low vision. This report describes the initial development, software implementation, and evaluation of the…
An algebraic program for the states associated with the U(5) ⊃ O(5) ⊃ O(3) chain of groups
NASA Astrophysics Data System (ADS)
Yannouleas, C.; Pacheco, J. M.
1988-12-01
A REDUCE program is presented that calculates algebraically the γ-dependent part of the states associated with the U(5) ⊃ O(5) ⊃ O(3) chain of groups, familiar from nuclear-structure problems. The method of solution is a direct implementation of the analytic expressions given by Chacón and Moshinsky.
Liu, Xiaoji; Qin, Xiaolan
2015-01-01
We investigate additive properties of the generalized Drazin inverse in a Banach algebra A. We find explicit expressions for the generalized Drazin inverse of the sum a + b, under new conditions on a, b ∈ A. As an application we give some new representations for the generalized Drazin inverse of an operator matrix. PMID:25729767
Liu, Xiaoji; Qin, Xiaolan
2015-01-01
We investigate additive properties of the generalized Drazin inverse in a Banach algebra A. We find explicit expressions for the generalized Drazin inverse of the sum a + b, under new conditions on a, b ∈ A. As an application we give some new representations for the generalized Drazin inverse of an operator matrix.
Perturbative computation in a generalized quantum field theory
NASA Astrophysics Data System (ADS)
Bezerra, V. B.; Curado, E. M.; Rego-Monteiro, M. A.
2002-10-01
We consider a quantum field theory that creates at any point of the space-time particles described by a q-deformed Heisenberg algebra which is interpreted as a phenomenological quantum theory describing the scattering of spin-0 composed particles. We discuss the generalization of Wick's expansion for this case and we compute perturbatively the scattering 1+2-->1'+2' to second order in the coupling constant. The result we find shows that the structure of a composed particle, described here phenomenologically by the deformed algebraic structure, can modify in a simple but nontrivial way the perturbation expansion for the process under consideration.
Novel symmetries in Christ-Lee model
NASA Astrophysics Data System (ADS)
Kumar, R.; Shukla, A.
2016-07-01
We demonstrate that the gauge-fixed Lagrangian of the Christ-Lee model respects four fermionic symmetries, namely; (anti-)BRST symmetries, (anti-)co-BRST symmetries within the framework of BRST formalism. The appropriate anticommutators amongst the fermionic symmetries lead to a unique bosonic symmetry. It turns out that the algebra obeyed by the symmetry transformations (and their corresponding conserved charges) is reminiscent of the algebra satisfied by the de Rham cohomological operators of differential geometry. We also provide the physical realizations of the cohomological operators in terms of the symmetry properties. Thus, the present model provides a simple model for the Hodge theory.
Exact joint density-current probability function for the asymmetric exclusion process.
Depken, Martin; Stinchcombe, Robin
2004-07-23
We study the asymmetric simple exclusion process with open boundaries and derive the exact form of the joint probability function for the occupation number and the current through the system. We further consider the thermodynamic limit, showing that the resulting distribution is non-Gaussian and that the density fluctuations have a discontinuity at the continuous phase transition, while the current fluctuations are continuous. The derivations are performed by using the standard operator algebraic approach and by the introduction of new operators satisfying a modified version of the original algebra. Copyright 2004 The American Physical Society
Characteristic time scales for diffusion processes through layers and across interfaces
NASA Astrophysics Data System (ADS)
Carr, Elliot J.
2018-04-01
This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.
Characteristic time scales for diffusion processes through layers and across interfaces.
Carr, Elliot J
2018-04-01
This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.
A survey of functional programming language principles
NASA Technical Reports Server (NTRS)
Holloway, C. M.
1986-01-01
Research in the area of functional programming languages has intensified in the 8 years since John Backus' Turing Award Lecture on the topic was published. The purpose of this paper is to present a survey of the ideas of functional programming languages. The paper assumes the reader is comfortable with mathematics and has knowledge of the basic principles of traditional programming languages, but does not assume any prior knowledge of the ideas of functional languages. A simple functional language is defined and used to illustrate the basic ideas. Topics discussed include the reasons for developing functional languages, methods of expressing concurrency, the algebra of functional programming languages, program transformation techniques, and implementations of functional languages. Existing functional languages are also mentioned. The paper concludes with the author's opinions as to the future of functional languages. An annotated bibliography on the subject is also included.
New graph polynomials in parametric QED Feynman integrals
NASA Astrophysics Data System (ADS)
Golz, Marcel
2017-10-01
In recent years enormous progress has been made in perturbative quantum field theory by applying methods of algebraic geometry to parametric Feynman integrals for scalar theories. The transition to gauge theories is complicated not only by the fact that their parametric integrand is much larger and more involved. It is, moreover, only implicitly given as the result of certain differential operators applied to the scalar integrand exp(-ΦΓ /ΨΓ) , where ΨΓ and ΦΓ are the Kirchhoff and Symanzik polynomials of the Feynman graph Γ. In the case of quantum electrodynamics we find that the full parametric integrand inherits a rich combinatorial structure from ΨΓ and ΦΓ. In the end, it can be expressed explicitly as a sum over products of new types of graph polynomials which have a combinatoric interpretation via simple cycle subgraphs of Γ.
Quadratic Expressions by Means of "Summing All the Matchsticks"
ERIC Educational Resources Information Center
Gierdien, M. Faaiz
2012-01-01
This note presents demonstrations of quadratic expressions that come about when particular problems are posed with respect to matchsticks that form regular triangles, squares, pentagons and so on. Usually when such "matchstick" problems are used as ways to foster algebraic thinking, the expressions for the number of matchstick quantities are…
Resolution Study of a Hyperspectral Sensor using Computed Tomography in the Presence of Noise
2012-06-14
diffraction efficiency is dependent on wavelength. Compared to techniques developed by later work, simple algebraic reconstruction techniques were used...spectral di- mension, using computed tomography (CT) techniques with only a finite number of diverse images. CTHIS require a reconstruction algorithm in...many frames are needed to reconstruct the spectral cube of a simple object using a theoretical lower bound. In this research a new algorithm is derived
NEW APPROACHES: A hot air balloon from dustbin liners
NASA Astrophysics Data System (ADS)
Weaver, Nicholas
1998-07-01
This article describes how a simple hot air balloon, inflated by a hair dryer, can be made out of household bin liners and Sellotape. It can be used at sixth-form level as an application of the ideal gas equation, = constant, and is rather more exciting than heated pistons. It gives a taste of a simple engineering design process, although the students do have to be reasonably adept at geometry and algebra.
ERIC Educational Resources Information Center
Hall, Matthew
2003-01-01
Uses cryptography to demonstrate the importance of algebra and the use of technology as an effective real application of mathematics. Explains simple encoding and decoding of messages for student learning of modular arithmetic. This elementary encounter with cryptography along with its historical and modern background serves to motivate student…
Calculation and Specification of the Multiple Chirality Displayed by Sugar Pyranoid Ring Structures.
ERIC Educational Resources Information Center
Shallenberger, Robert S.; And Others
1981-01-01
Describes a method, using simple algebraic notation, for calculating the nature of the salient features of a sugar pyranoid ring, the steric disposition of substituents about the reference, and the anomeric carbon atoms contained within the ring. (CS)
A Unified Approach to Teaching Quadratic and Cubic Equations.
ERIC Educational Resources Information Center
Ward, A. J. B.
2003-01-01
Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)
Image-algebraic design of multispectral target recognition algorithms
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.
1994-06-01
In this paper, we discuss methods for multispectral ATR (Automated Target Recognition) of small targets that are sensed under suboptimal conditions, such as haze, smoke, and low light levels. In particular, we discuss our ongoing development of algorithms and software that effect intelligent object recognition by selecting ATR filter parameters according to ambient conditions. Our algorithms are expressed in terms of IA (image algebra), a concise, rigorous notation that unifies linear and nonlinear mathematics in the image processing domain. IA has been implemented on a variety of parallel computers, with preprocessors available for the Ada and FORTRAN languages. An image algebra C++ class library has recently been made available. Thus, our algorithms are both feasible implementationally and portable to numerous machines. Analyses emphasize the aspects of image algebra that aid the design of multispectral vision algorithms, such as parameterized templates that facilitate the flexible specification of ATR filters.
Spherical Hecke algebra in the Nekrasov-Shatashvili limit
NASA Astrophysics Data System (ADS)
Bourgine, Jean-Emile
2015-01-01
The Spherical Hecke central (SHc) algebra has been shown to act on the Nekrasov instanton partition functions of gauge theories. Its presence accounts for both integrability and AGT correspondence. On the other hand, a specific limit of the Omega background, introduced by Nekrasov and Shatashvili (NS), leads to the appearance of TBA and Bethe like equations. To unify these two points of view, we study the NS limit of the SHc algebra. We provide an expression of the instanton partition function in terms of Bethe roots, and define a set of operators that generates infinitesimal variations of the roots. These operators obey the commutation relations defining the SHc algebra at first order in the equivariant parameter ɛ 2. Furthermore, their action on the bifundamental contributions reproduces the Kanno-Matsuo-Zhang transformation. We also discuss the connections with the Mayer cluster expansion approach that leads to TBA-like equations.
ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.
Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L
2012-06-07
Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.
Laplace-Runge-Lenz vector for arbitrary spin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitin, A. G.
2013-12-15
A countable set of superintegrable quantum mechanical systems is presented which admit the dynamical symmetry with respect to algebra so(4). This algebra is generated by the Laplace-Runge-Lenz vector generalized to the case of arbitrary spin. The presented systems describe neutral particles with non-trivial multipole momenta. Their spectra can be found algebraically like in the case of hydrogen atom. Solutions for the systems with spins 1/2 and 1 are presented explicitly, solutions for spin 3/2 can be expressed via solutions of an ordinary differential equation of first order. A more extended version of this paper including detailed calculations is published asmore » an e-print arXiv:1308.4279.« less
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook; Chen, Yen-Sen
1988-01-01
An algebraic stress turbulence model and a computational procedure for turbulent boundary layer flows which is based on the semidiscrete Galerkin FEM are discussed. In the algebraic stress turbulence model, the eddy viscosity expression is obtained from the Reynolds stress turbulence model, and the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale. Good agreement with experimental data is found for the examples of a fully developed channel flow, a fully developed pipe flow, a flat plate boundary layer flow, a plane jet exhausting into a moving stream, a circular jet exhausting into a moving stream, and a wall jet flow.
Evaluating the multimedia fate of organic chemicals: A level III fugacity model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackay, D.; Paterson, S.
A multimedia model is developed and applied to selected organic chemicals in evaluative and real regional environments. The model employs the fugacity concept and treats four bulk compartments: air, water, soil, and bottom sediment, which consist of subcompartments of varying proportions of air, water, and mineral and organic matter. Chemical equilibrium is assumed to apply within (but not between) each bulk compartment. Expressions are included for emissions, advective flows, degrading reactions, and interphase transport by diffusive and non-diffusive processes. Input to the model consists of a description of the environment, the physical-chemical and reaction properties of the chemical, and emissionmore » rates. For steady-state conditions the solution is a simple algebraic expression. The model is applied to six chemicals in the region of southern Ontario and the calculated fate and concentrations are compared with observations. The results suggest that the model may be used to determine the processes that control the environmental fate of chemicals in a region and provide approximate estimates of relative media concentrations.« less
Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun
2016-02-09
Previously, we applied basic group theory and related concepts to scales of measurement of clinical disease states and clinical findings (including laboratory data). To gain a more concrete comprehension, we here apply the concept of matrix representation, which was not explicitly exploited in our previous work. Starting with a set of orthonormal vectors, called the basis, an operator Rj (an N-tuple patient disease state at the j-th session) was expressed as a set of stratified vectors representing plural operations on individual components, so as to satisfy the group matrix representation. The stratified vectors containing individual unit operations were combined into one-dimensional square matrices [Rj]s. The [Rj]s meet the matrix representation of a group (ring) as a K-algebra. Using the same-sized matrix of stratified vectors, we can also express changes in the plural set of [Rj]s. The method is demonstrated on simple examples. Despite the incompleteness of our model, the group matrix representation of stratified vectors offers a formal mathematical approach to clinical medicine, aligning it with other branches of natural science.
C-semiring Frameworks for Minimum Spanning Tree Problems
NASA Astrophysics Data System (ADS)
Bistarelli, Stefano; Santini, Francesco
In this paper we define general algebraic frameworks for the Minimum Spanning Tree problem based on the structure of c-semirings. We propose general algorithms that can compute such trees by following different cost criteria, which must be all specific instantiation of c-semirings. Our algorithms are extensions of well-known procedures, as Prim or Kruskal, and show the expressivity of these algebraic structures. They can deal also with partially-ordered costs on the edges.
Algebraic Bethe ansatz for the sℓ (2) Gaudin model with boundary
NASA Astrophysics Data System (ADS)
Cirilo António, N.; Manojlović, N.; Ragoucy, E.; Salom, I.
2015-04-01
Following Sklyanin's proposal in the periodic case, we derive the generating function of the Gaudin Hamiltonians with boundary terms. Our derivation is based on the quasi-classical expansion of the linear combination of the transfer matrix of the XXX Heisenberg spin chain and the central element, the so-called Sklyanin determinant. The corresponding Gaudin Hamiltonians with boundary terms are obtained as the residues of the generating function. By defining the appropriate Bethe vectors which yield strikingly simple off shell action of the generating function, we fully implement the algebraic Bethe ansatz, obtaining the spectrum of the generating function and the corresponding Bethe equations.
Matrix preconditioning: a robust operation for optical linear algebra processors.
Ghosh, A; Paparao, P
1987-07-15
Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.
Lambda: A Mathematica package for operator product expansions in vertex algebras
NASA Astrophysics Data System (ADS)
Ekstrand, Joel
2011-02-01
We give an introduction to the Mathematica package Lambda, designed for calculating λ-brackets in both vertex algebras, and in SUSY vertex algebras. This is equivalent to calculating operator product expansions in two-dimensional conformal field theory. The syntax of λ-brackets is reviewed, and some simple examples are shown, both in component notation, and in N=1 superfield notation. Program summaryProgram title: Lambda Catalogue identifier: AEHF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 18 087 No. of bytes in distributed program, including test data, etc.: 131 812 Distribution format: tar.gz Programming language: Mathematica Computer: See specifications for running Mathematica V7 or above. Operating system: See specifications for running Mathematica V7 or above. RAM: Varies greatly depending on calculation to be performed. Classification: 4.2, 5, 11.1. Nature of problem: Calculate operator product expansions (OPEs) of composite fields in 2d conformal field theory. Solution method: Implementation of the algebraic formulation of OPEs given by vertex algebras, and especially by λ-brackets. Running time: Varies greatly depending on calculation requested. The example notebook provided takes about 3 s to run.
The elastic theory of shells using geometric algebra
Lasenby, J.; Agarwal, A.
2017-01-01
We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible. PMID:28405404
The elastic theory of shells using geometric algebra.
Gregory, A L; Lasenby, J; Agarwal, A
2017-03-01
We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible.
Empirical Studies of Patterning
ERIC Educational Resources Information Center
Pasnak, Robert
2017-01-01
Young children have been taught simple sequences of alternating shapes and colors, referred to as "patterning", for the past half century in the hope that their understanding of pre-algebra and their mathematics achievement would be improved. The evidence that such patterning instruction actually improves children's academic achievement…
2015-09-30
Institution Species Martin Haulena Vancouver Aquarium Beluga False killer whale Harbour porpoise White sided dolphin Harbour seals Cory Champagne ...Regulation in a Captive Dolphin Population” (PI: Cory Champagne , Old Dominion University). REFERENCES Barsano CP, Baumann G (1989) Simple algebraic and
ERIC Educational Resources Information Center
Simons, C. S.; Wright, M.
2007-01-01
With Simson's 1753 paper as a starting point, the current paper reports investigations of Simson's identity (also known as Cassini's) for the Fibonacci sequence as a means to explore some fundamental ideas about recursion. Simple algebraic operations allow one to reduce the standard linear Fibonacci recursion to the nonlinear Simon's recursion…
ERIC Educational Resources Information Center
Freudenrich, Craig
2005-01-01
Since 1995, astronomers have discovered over 100 known exoplanets--planets outside of the solar system--and determined their properties such as mass, orbital distance, size, and density. By using simple algebraic equations of physics, students can determine these properties as well. In this article, the author discusses an activity titled…
Gener: a minimal programming module for chemical controllers based on DNA strand displacement
Kahramanoğulları, Ozan; Cardelli, Luca
2015-01-01
Summary: Gener is a development module for programming chemical controllers based on DNA strand displacement. Gener is developed with the aim of providing a simple interface that minimizes the opportunities for programming errors: Gener allows the user to test the computations of the DNA programs based on a simple two-domain strand displacement algebra, the minimal available so far. The tool allows the user to perform stepwise computations with respect to the rules of the algebra as well as exhaustive search of the computation space with different options for exploration and visualization. Gener can be used in combination with existing tools, and in particular, its programs can be exported to Microsoft Research’s DSD tool as well as to LaTeX. Availability and implementation: Gener is available for download at the Cosbi website at http://www.cosbi.eu/research/prototypes/gener as a windows executable that can be run on Mac OS X and Linux by using Mono. Contact: ozan@cosbi.eu PMID:25957353
Gener: a minimal programming module for chemical controllers based on DNA strand displacement.
Kahramanoğulları, Ozan; Cardelli, Luca
2015-09-01
: Gener is a development module for programming chemical controllers based on DNA strand displacement. Gener is developed with the aim of providing a simple interface that minimizes the opportunities for programming errors: Gener allows the user to test the computations of the DNA programs based on a simple two-domain strand displacement algebra, the minimal available so far. The tool allows the user to perform stepwise computations with respect to the rules of the algebra as well as exhaustive search of the computation space with different options for exploration and visualization. Gener can be used in combination with existing tools, and in particular, its programs can be exported to Microsoft Research's DSD tool as well as to LaTeX. Gener is available for download at the Cosbi website at http://www.cosbi.eu/research/prototypes/gener as a windows executable that can be run on Mac OS X and Linux by using Mono. ozan@cosbi.eu. © The Author 2015. Published by Oxford University Press.
Moments from Cumulants and Vice Versa
ERIC Educational Resources Information Center
Withers, Christopher S.; Nadarajah, Saralees
2009-01-01
Moments and cumulants are expressed in terms of each other using Bell polynomials. Inbuilt routines for the latter make these expressions amenable to use by algebraic manipulation programs. One of the four formulas given is an explicit version of Kendall's use of Faa di Bruno's chain rule to express cumulants in terms of moments.
Demazure Modules, Fusion Products and Q-Systems
NASA Astrophysics Data System (ADS)
Chari, Vyjayanthi; Venkatesh, R.
2015-01-01
In this paper, we introduce a family of indecomposable finite-dimensional graded modules for the current algebra associated to a simple Lie algebra. These modules are indexed by an -tuple of partitions , where α varies over a set of positive roots of and we assume that they satisfy a natural compatibility condition. In the case when the are all rectangular, for instance, we prove that these modules are Demazure modules in various levels. As a consequence, we see that the defining relations of Demazure modules can be greatly simplified. We use this simplified presentation to relate our results to the fusion products, defined in (Feigin and Loktev in Am Math Soc Transl Ser (2) 194:61-79, 1999), of representations of the current algebra. We prove that the Q-system of (Hatayama et al. in Contemporary Mathematics, vol. 248, pp. 243-291. American Mathematical Society, Providence, 1998) extends to a canonical short exact sequence of fusion products of representations associated to certain special partitions .Finally, in the last section we deal with the case of and prove that the modules we define are just fusion products of irreducible representations of the associated current algebra and give monomial bases for these modules.
An analogue of the Berry phase for simple harmonic oscillators
NASA Astrophysics Data System (ADS)
Suslov, S. K.
2013-03-01
We evaluate a variant of Berry's phase for a ‘missing’ family of the square integrable wavefunctions for the linear harmonic oscillator, which cannot be derived by the separation of variables (in a natural way). Instead, it is obtained by the action of the maximal kinematical invariance group on the standard solutions. A simple closed formula for the phase (in terms of elementary functions) is found here by integration with the help of a computer algebra system.
NASA Astrophysics Data System (ADS)
Shevchenko, I. I.
2008-05-01
The problem of stability of the triangular libration points in the planar circular restricted three-body problem is considered. A software package, intended for normalization of autonomous Hamiltonian systems by means of computer algebra, is designed so that normalization problems of high analytical complexity could be solved. It is used to obtain the Birkhoff normal form of the Hamiltonian in the given problem. The normalization is carried out up to the 6th order of expansion of the Hamiltonian in the coordinates and momenta. Analytical expressions for the coefficients of the normal form of the 6th order are derived. Though intermediary expressions occupy gigabytes of the computer memory, the obtained coefficients of the normal form are compact enough for presentation in typographic format. The analogue of the Deprit formula for the stability criterion is derived in the 6th order of normalization. The obtained floating-point numerical values for the normal form coefficients and the stability criterion confirm the results by Markeev (1969) and Coppola and Rand (1989), while the obtained analytical and exact numeric expressions confirm the results by Meyer and Schmidt (1986) and Schmidt (1989). The given computational problem is solved without constructing a specialized algebraic processor, i.e., the designed computer algebra package has a broad field of applicability.
Strings on complex multiplication tori and rational conformal field theory with matrix level
NASA Astrophysics Data System (ADS)
Nassar, Ali
Conformal invariance in two dimensions is a powerful symmetry. Two-dimensional quantum field theories which enjoy conformal invariance, i.e., conformal field theories (CFTs) are of great interest in both physics and mathematics. CFTs describe the dynamics of the world sheet in string theory where conformal symmetry arises as a remnant of reparametrization invariance of the world-sheet coordinates. In statistical mechanics, CFTs describe the critical points of second order phase transitions. On the mathematics side, conformal symmetry gives rise to infinite dimensional chiral algebras like the Virasoro algebra or extensions thereof. This gave rise to the study of vertex operator algebras (VOAs) which is an interesting branch of mathematics. Rational conformal theories are a simple class of CFTs characterized by a finite number of representations of an underlying chiral algebra. The chiral algebra leads to a set of Ward identities which gives a complete non-perturbative solution of the RCFT. Identifying the chiral algebra of an RCFT is a very important step in solving it. Particularly interesting RCFTs are the ones which arise from the compactification of string theory as sigma-models on a target manifold M. At generic values of the geometric moduli of M, the corresponding CFT is not rational. Rationality can arise at particular values of the moduli of M. At these special values of the moduli, the chiral algebra is extended. This interplay between the geometric picture and the algebraic description encoded in the chiral algebra makes CFTs/RCFTs a perfect link between physics and mathematics. It is always useful to find a geometric interpretation of a chiral algebra in terms of a sigma-model on some target manifold M. Then the next step is to figure out the conditions on the geometric moduli of M which gives a RCFT. In this thesis, we limit ourselves to the simplest class of string compactifications, i.e., strings on tori. As Gukov and Vafa proved, rationality selects the complex-multiplication tori. On the other hand, the study of the matrix-level affine algebra Um,K is motivated by conformal field theory and the fractional quantum Hall effect. Gannon completed the classification of U m,K modular-invariant partition functions. Here we connect the algebra U2,K to strings on 2-tori describable by rational conformal field theories. We point out that the rational conformal field theories describing strings on complex-multiplication tori have characters and partition functions identical to those of the matrix-level algebra Um,K. This connection makes obvious that the rational theories are dense in the moduli space of strings on Tm, and may prove useful in other ways.
Partial Fractions via Calculus
ERIC Educational Resources Information Center
Bauldry, William C.
2018-01-01
The standard technique taught in calculus courses for partial fraction expansions uses undetermined coefficients to generate a system of linear equations; we present a derivative-based technique that calculus and differential equations instructors can use to reinforce connections to calculus. Simple algebra shows that we can use the derivative to…
Theoretical model of hardness anisotropy in brittle materials
NASA Astrophysics Data System (ADS)
Gao, Faming
2012-07-01
Anisotropy is prominent in the hardness test of single crystals. However, the anisotropic nature is not demonstrated quantitatively in previous hardness model. In this work, it is found that the electron transition energy per unit volume in the glide region and the orientation of glide region play critical roles in determining hardness value and hardness anisotropy for a single crystal material. We express the mathematical definition of hardness anisotropy through simple algebraic relations. The calculated Knoop hardnesses of the single crystals are in good agreement with observations. This theory, extended to polycrystalline materials by including hall-petch effect and quantum size effect, predicts that the polycrystalline diamond with low angle grain boundaries can be harder than single-crystal bulk diamond. Combining first-principles technique and the formula of hardness anisotropy the hardness of monoclinic M-carbon, orthorhombic W-carbon, Z-carbon, and T-carbon are predicted.
A Variational Statistical-Field Theory for Polar Liquid Mixtures
NASA Astrophysics Data System (ADS)
Zhuang, Bilin; Wang, Zhen-Gang
Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.
Deflection of a flexural cantilever beam
NASA Astrophysics Data System (ADS)
Sherbourne, A. N.; Lu, F.
The behavior of a flexural elastoplastic cantilever beam is investigated in which geometric nonlinearities are considered. The result of an elastica analysis by Frisch-Fay (1962) is extended to include postyield behavior. Although a closed-form solution is not possible, as in the elastic case, simple algebraic equations are derived involving only one unknown variable, which can also be expressed in the standard form of elliptic integrals if so desired. The results, in comparison with those of the small deflection analyses, indicate that large deflection analyses are necessary when the relative depth of the beam is very small over the length. The present exact solution can be used as a reference by those who resort to a finite element method for more complicated problems. It can also serve as a building block to other beam problems such as a simply supported beam or a beam with multiple loads.
NASA Astrophysics Data System (ADS)
Wang, Yuewu; Wu, Dafang
2016-10-01
Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.
Architecture studies and system demonstrations for optical parallel processor for AI and NI
NASA Astrophysics Data System (ADS)
Lee, Sing H.
1988-03-01
In solving deterministic AI problems the data search for matching the arguments of a PROLOG expression causes serious bottleneck when implemented sequentially by electronic systems. To overcome this bottleneck we have developed the concepts for an optical expert system based on matrix-algebraic formulation, which will be suitable for parallel optical implementation. The optical AI system based on matrix-algebraic formation will offer distinct advantages for parallel search, adult learning, etc.
A computer code for calculations in the algebraic collective model of the atomic nucleus
NASA Astrophysics Data System (ADS)
Welsh, T. A.; Rowe, D. J.
2016-03-01
A Maple code is presented for algebraic collective model (ACM) calculations. The ACM is an algebraic version of the Bohr model of the atomic nucleus, in which all required matrix elements are derived by exploiting the model's SU(1 , 1) × SO(5) dynamical group. This paper reviews the mathematical formulation of the ACM, and serves as a manual for the code. The code enables a wide range of model Hamiltonians to be analysed. This range includes essentially all Hamiltonians that are rational functions of the model's quadrupole moments qˆM and are at most quadratic in the corresponding conjugate momenta πˆN (- 2 ≤ M , N ≤ 2). The code makes use of expressions for matrix elements derived elsewhere and newly derived matrix elements of the operators [ π ˆ ⊗ q ˆ ⊗ π ˆ ] 0 and [ π ˆ ⊗ π ˆ ] LM. The code is made efficient by use of an analytical expression for the needed SO(5)-reduced matrix elements, and use of SO(5) ⊃ SO(3) Clebsch-Gordan coefficients obtained from precomputed data files provided with the code.
Pure Rotational Spectroscopy of Asymmetric Tops in the Undergraduate Classroom or Laboratory
NASA Astrophysics Data System (ADS)
Minei, A. J.; Cooke, S. A.
2013-06-01
Due to concerns of complexity, the asymmetric top, for which κ = {(2B - A - C) / (A - C)} ≠ ± 1, is feared, or at least avoided, by many instructors when explaining the rigid rotor. However, the spectral patterns formed by cold} asymmetric rigid rotors in the centimeter-wave} region of the electromagnetic spectrum can be easily identified. We will present some techniques for spectral analyses that we have successfully employed with undergraduate students who are either ``pre-quantum mechanics" or are currently enrolled in a chemical quantum mechanics class. The activities are simple, requiring the students to first locate repeating patterns and then apply simple algebraic expressions in order to determine all three rotational constants. The method will be illustrated using the spectra of 2,2,3,3-tetrafluoropropyl trifluoroacetate (CF_3C(=O)OCH_2CF_2CHF_2), (E)-1,3,3,3-tetrafluoropropene (CF_3CH=CHF), 1H,1H,2H-perfluorocyclobutane (CF_2CF_2CHFCH_2), and 2H-nonafluorobutane (CF_3CHFCF_2CF_3). The first two of these species have predominantly a-type spectra, the third has a predominantly b-type spectrum, the fourth has a predominantly c-type spectrum.
NASA Astrophysics Data System (ADS)
Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.
2016-05-01
Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.
A New Technique for Personality Scale Construction. Preliminary Findings.
ERIC Educational Resources Information Center
Schaffner, Paul E.; Darlington, Richard B.
Most methods of personality scale construction have clear statistical disadvantages. A hybrid method (Darlington and Bishop, 1966) was found to increase scale validity more than any other method, with large item pools. A simple modification of the Darlington-Bishop method (algebraically and conceptually similar to ridge regression, but…
A short note on calculating the adjusted SAR index
USDA-ARS?s Scientific Manuscript database
A simple algebraic technique is presented for computing the adjusted SAR Index proposed by Suarez (1981). The statistical formula presented in this note facilitates the computation of the adjusted SAR without the use of either a look-up table, custom computer software or the need to compute exact a...
Teaching Third-Degree Price Discrimination
ERIC Educational Resources Information Center
Round, David K.; McIver, Ron P.
2006-01-01
Third-degree price discrimination is taught in almost every intermediate microeconomics class. The theory, geometry, and the algebra behind the concept are simple, and the phenomenon is commonly associated with the sale of many of the goods and services used frequently by students. Classroom discussion is usually vibrant as students can relate…
Hom-associative Ore extensions
NASA Astrophysics Data System (ADS)
Bäck, P.; Richter, J.; Silvestrov, S.
2018-02-01
We introduce hom-associative Ore extensions as non-associative, non-unital Ore extensions with a hom-associative multiplication, as well as give some necessary and sufficient conditions when such exist. Within this framework, we also construct a family of hom-associative Weyl algebras as generalizations of the classical analogue, and prove that they are simple.
Quantum dressing orbits on compact groups
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Šťovíček, Pavel
1993-02-01
The quantum double is shown to imply the dressing transformation on quantum compact groups and the quantum Iwasawa decompositon in the general case. Quantum dressing orbits are described explicitly as *-algebras. The dual coalgebras consisting of differential operators are related to the quantum Weyl elements. Besides, the differential geometry on a quantum leaf allows a remarkably simple construction of irreducible *-representations of the algebras of quantum functions. Representation spaces then consist of analytic functions on classical phase spaces. These representations are also interpreted in the framework of quantization in the spirit of Berezin applied to symplectic leaves on classical compact groups. Convenient “coherent states” are introduced and a correspondence between classical and quantum observables is given.
Continuous-spin mixed-symmetry fields in AdS(5)
NASA Astrophysics Data System (ADS)
Metsaev, R. R.
2018-05-01
Free mixed-symmetry continuous-spin fields propagating in AdS(5) space and flat R(4,1) space are studied. In the framework of a light-cone gauge formulation of relativistic dynamics, we build simple actions for such fields. The realization of relativistic symmetries on the space of light-cone gauge mixed-symmetry continuous-spin fields is also found. Interrelations between constant parameters entering the light-cone gauge actions and eigenvalues of the Casimir operators of space-time symmetry algebras are obtained. Using these interrelations and requiring that the field dynamics in AdS(5) be irreducible and classically unitary, we derive restrictions on the constant parameters and eigenvalues of the second-order Casimir operator of the algebra.
NASA Astrophysics Data System (ADS)
Calderón Martín, Antonio Jesús; Martín González, Cándido; Ndoye, Daouda
2018-01-01
We introduce the notion of groupoid grading, give some nontrivial examples and prove that groupoid gradings on simple commutative or anti-commutative algebras are necessarily group gradings. We also take advantage of the structure of groupoids to prove some results about groupoid gradings and certain coarsenings of these which turn out to be group gradings. We also study set gradings on arbitrary algebras, by characterizing their homogeneous semisimplicity and their homogeneous simplicity in terms of a property satisfied by the supports of the gradings, and also relate set gradings with groupoid gradings via coarsenings. Finally we study a class of set gradings on Mn(C) , the orthogonal gradings, and show that all of them which are fine are necessarily groupoid gradings.
Bethe states of the trigonometric SU(3) spin chain with generic open boundaries
NASA Astrophysics Data System (ADS)
Sun, Pei; Xin, Zhirong; Qiao, Yi; Wen, Fakai; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Tao; Yang, Wen-Li; Shi, Kangjie
2018-06-01
By combining the algebraic Bethe ansatz and the off-diagonal Bethe ansatz, we investigate the trigonometric SU (3) model with generic open boundaries. The eigenvalues of the transfer matrix are given in terms of an inhomogeneous T - Q relation, and the corresponding eigenstates are expressed in terms of nested Bethe-type eigenstates which have well-defined homogeneous limit. This exact solution provides a basis for further analyzing the thermodynamic properties and correlation functions of the anisotropic models associated with higher rank algebras.
Symbolic integration of a class of algebraic functions. [by an algorithmic approach
NASA Technical Reports Server (NTRS)
Ng, E. W.
1974-01-01
An algorithm is presented for the symbolic integration of a class of algebraic functions. This class consists of functions made up of rational expressions of an integration variable x and square roots of polynomials, trigonometric and hyperbolic functions of x. The algorithm is shown to consist of the following components:(1) the reduction of input integrands to conical form; (2) intermediate internal representations of integrals; (3) classification of outputs; and (4) reduction and simplification of outputs to well-known functions.
Hedgehog bases for A n cluster polylogarithms and an application to six-point amplitudes
Parker, Daniel E.; Scherlis, Adam; Spradlin, Marcus; ...
2015-11-20
Multi-loop scattering amplitudes in N=4 Yang-Mills theory possess cluster algebra structure. In order to develop a computational framework which exploits this connection, we show how to construct bases of Goncharov polylogarithm functions, at any weight, whose symbol alphabet consists of cluster coordinates on the A n cluster algebra. As a result, using such a basis we present a new expression for the 2-loop 6-particle NMHV amplitude which makes some of its cluster structure manifest.
Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields
NASA Astrophysics Data System (ADS)
Fiorenza, Domenico; Sati, Hisham; Schreiber, Urs
2015-12-01
We formalize higher-dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type σ-model branes (open brane ending on background brane) are encoded precisely in (super-)L∞-extension theory and how the resulting "extended (super-)space-times" formalize spacetimes containing σ-model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super-p-brane spectrum of superstring/M-theory is realized this way, including the pure σ-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional (11D) spacetime with an M2-brane condensate turns out to be the "M-theory super-Lie algebra". We also observe that in this formulation there is a simple formal proof of the fact that type IIA spacetime with a D0-brane condensate is the 11D sugra/M-theory spacetime, and of (prequantum) S-duality for type IIB string theory. Finally we give the non-perturbative description of all this by higher WZW-type σ-models on higher super-orbispaces with higher WZW terms in stacky differential cohomology.
Lachin, John M
2011-11-10
The power of a chi-square test, and thus the required sample size, are a function of the noncentrality parameter that can be obtained as the limiting expectation of the test statistic under an alternative hypothesis specification. Herein, we apply this principle to derive simple expressions for two tests that are commonly applied to discrete ordinal data. The Wilcoxon rank sum test for the equality of distributions in two groups is algebraically equivalent to the Mann-Whitney test. The Kruskal-Wallis test applies to multiple groups. These tests are equivalent to a Cochran-Mantel-Haenszel mean score test using rank scores for a set of C-discrete categories. Although various authors have assessed the power function of the Wilcoxon and Mann-Whitney tests, herein it is shown that the power of these tests with discrete observations, that is, with tied ranks, is readily provided by the power function of the corresponding Cochran-Mantel-Haenszel mean scores test for two and R > 2 groups. These expressions yield results virtually identical to those derived previously for rank scores and also apply to other score functions. The Cochran-Armitage test for trend assesses whether there is an monotonically increasing or decreasing trend in the proportions with a positive outcome or response over the C-ordered categories of an ordinal independent variable, for example, dose. Herein, it is shown that the power of the test is a function of the slope of the response probabilities over the ordinal scores assigned to the groups that yields simple expressions for the power of the test. Copyright © 2011 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Cangelosi, Richard; Madrid, Silvia; Cooper, Sandra; Olson, Jo; Hartter, Beverly
2013-01-01
The purpose of this study was to determine whether or not certain errors made when simplifying exponential expressions persist as students progress through their mathematical studies. College students enrolled in college algebra, pre-calculus, and first- and second-semester calculus mathematics courses were asked to simplify exponential…
From Quantum Fields to Local Von Neumann Algebras
NASA Astrophysics Data System (ADS)
Borchers, H. J.; Yngvason, Jakob
The subject of the paper is an old problem of the general theory of quantized fields: When can the unbounded operators of a Wightman field theory be associated with local algebras of bounded operators in the sense of Haag? The paper reviews and extends previous work on this question, stressing its connections with a noncommutive generalization of the classical Hamburger moment problem. Necessary and sufficient conditions for the existence of a local net of von Neumann algebras corresponding to a given Wightman field are formulated in terms of strengthened versions of the usual positivity property of Wightman functionals. The possibility that the local net has to be defined in an enlarged Hilbert space cannot be ruled out in general. Under additional hypotheses, e.g., if the field operators obey certain energy bounds, such an extension of the Hilbert space is not necessary, however. In these cases a fairly simple condition for the existence of a local net can be given involving the concept of “central positivity” introduced by Powers. The analysis presented here applies to translationally covariant fields with an arbitrary number of components, whereas Lorentz covariance is not needed. The paper contains also a brief discussion of an approach to noncommutative moment problems due to Dubois-Violette, and concludes with some remarks on modular theory for algebras of unbounded operators.
Application of symbolic and algebraic manipulation software in solving applied mechanics problems
NASA Technical Reports Server (NTRS)
Tsai, Wen-Lang; Kikuchi, Noboru
1993-01-01
As its name implies, symbolic and algebraic manipulation is an operational tool which not only can retain symbols throughout computations but also can express results in terms of symbols. This report starts with a history of symbolic and algebraic manipulators and a review of the literatures. With the help of selected examples, the capabilities of symbolic and algebraic manipulators are demonstrated. These applications to problems of applied mechanics are then presented. They are the application of automatic formulation to applied mechanics problems, application to a materially nonlinear problem (rigid-plastic ring compression) by finite element method (FEM) and application to plate problems by FEM. The advantages and difficulties, contributions, education, and perspectives of symbolic and algebraic manipulation are discussed. It is well known that there exist some fundamental difficulties in symbolic and algebraic manipulation, such as internal swelling and mathematical limitation. A remedy for these difficulties is proposed, and the three applications mentioned are solved successfully. For example, the closed from solution of stiffness matrix of four-node isoparametrical quadrilateral element for 2-D elasticity problem was not available before. Due to the work presented, the automatic construction of it becomes feasible. In addition, a new advantage of the application of symbolic and algebraic manipulation found is believed to be crucial in improving the efficiency of program execution in the future. This will substantially shorten the response time of a system. It is very significant for certain systems, such as missile and high speed aircraft systems, in which time plays an important role.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, David M.; Wilkening, Jon
2008-12-11
We classify all bifurcations from traveling waves to non-trivial time-periodic solutions of the Benjamin-Ono equation that are predicted by linearization. We use a spectrally accurate numerical continuation method to study several paths of non-trivial solutions beyond the realm of linear theory. These paths are found to either re-connect with a different traveling wave or to blow up. In the latter case, as the bifurcation parameter approaches a critical value, the amplitude of the initial condition grows without bound and the period approaches zero. We propose a conjecture that gives the mapping from one bifurcation to its counterpart on the othermore » side of the path of non-trivial solutions. By experimentation with data fitting, we identify the form of the exact solutions on the path connecting two traveling waves, which represents the Fourier coefficients of the solution as power sums of a finite number of particle positions whose elementary symmetric functions execute simple orbits in the complex plane (circles or epicycles). We then solve a system of algebraic equations to express the unknown constants in the new representation in terms of the mean, a spatial phase, a temporal phase, four integers (enumerating the bifurcation at each end of the path) and one additional bifurcation parameter. We also find examples of interior bifurcations from these paths of already non-trivial solutions, but we do not attempt to analyze their algebraic structure.« less
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Jain, A.
1989-01-01
A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.
Maple procedures for the coupling of angular momenta. IX. Wigner D-functions and rotation matrices
NASA Astrophysics Data System (ADS)
Pagaran, J.; Fritzsche, S.; Gaigalas, G.
2006-04-01
The Wigner D-functions, Dpqj(α,β,γ), are known for their frequent use in quantum mechanics. Defined as the matrix elements of the rotation operator Rˆ(α,β,γ) in R and parametrized in terms of the three Euler angles α, β, and γ, these functions arise not only in the transformation of tensor components under the rotation of the coordinates, but also as the eigenfunctions of the spherical top. In practice, however, the use of the Wigner D-functions is not always that simple, in particular, if expressions in terms of these and other functions from the theory of angular momentum need to be simplified before some computations can be carried out in detail. To facilitate the manipulation of such Racah expressions, here we present an extension to the RACAH program [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51] in which the properties and the algebraic rules of the Wigner D-functions and reduced rotation matrices are implemented. Care has been taken to combine the standard knowledge about the rotation matrices with the previously implemented rules for the Clebsch-Gordan coefficients, Wigner n-j symbols, and the spherical harmonics. Moreover, the application of the program has been illustrated below by means of three examples. Program summaryTitle of program:RACAH Catalogue identifier:ADFv_9_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFv_9_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Catalogue identifier of previous version: ADFW, ADHW, title RACAH Journal reference of previous version(s): S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51; S. Fritzsche, S. Varga, D. Geschke, B. Fricke, Comput. Phys. Comm. 111 (1998) 167; S. Fritzsche, T. Inghoff, M. Tomaselli, Comput. Phys. Comm. 153 (2003) 424. Does the new version supersede the previous one: Yes, in addition to the spherical harmonics and recoupling coefficients, the program now supports also the occurrence of the Wigner rotation matrices in the algebraic expressions to be evaluated. Licensing provisions:None Computer for which the program is designed and others on which it is operable: All computers with a license for the computer algebra package Maple [Maple is a registered trademark of Waterloo Maple Inc.] Installations:University of Kassel (Germany) Operating systems under which the program has been tested: Linux 8.2+ Program language used:MAPLE, Release 8 and 9 Memory required to execute with typical data:10-50 MB No. of lines in distributed program, including test data, etc.:52 653 No. of bytes in distributed program, including test data, etc.:1 195 346 Distribution format:tar.gzip Nature of the physical problem: The Wigner D-functions and (reduced) rotation matrices occur very frequently in physical applications. They are known not only as the (infinite) representation of the rotation group but also to obey a number of integral and summation rules, including those for their orthogonality and completeness. Instead of the direct computation of these matrices, therefore, one first often wishes to find algebraic simplifications before the computations can be carried out in practice. Reasons for new version: The RACAH program has been found an efficient tool during recent years, in order to evaluate and simplify expressions from Racah's algebra. Apart from the Wigner n-j symbols ( j=3,6,9) and spherical harmonics, we now extended the code to allow for Wigner rotation matrices. This extension will support the study of those quantum processes especially where different axis of quantization occurs in course of the theoretical deviations. Summary of revisions: In a revised version of the RACAH program [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51; S. Fritzsche, T. Inghoff, M. Tomaselli, Comput. Phys. Comm. 153 (2003) 424], we now also support the occurrence of the Wigner D-functions and reduced rotation matrices. By following our previous design, the (algebraic) properties of these rotation matrices as well as a number of summation and integration rules are implemented to facilitate the algebraic simplification of expressions from the theories of angular momentum and the spherical tensor operators. Restrictions onto the complexity of the problem: The definition as well as the properties of the rotation matrices, as used in our implementation, are based mainly on the book of Varshalovich et al. [D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific, Singapore, 1988], Chapter 4. From this monograph, most of the relations involving the Wigner D-functions and rotation matrices are taken into account although, in practice, only a rather selected set was needed to be implemented explicitly owing to the symmetries of these functions. In the integration over the rotation matrices, products of up to three Wigner D-functions or reduced matrices (with the same angular arguments) are recognized and simplified properly; for the integration over a solid angle, however, the domain of integration must be specified for the Euler angles α and γ. This restriction arose because MAPLE does not generate a constant of integration when the limits in the integral are omitted. For any integration over the angle β the range of the integration, if omitted, is always taken from 0 to π. Unusual features of the program: The RACAH program is designed for interactive use that allows a quick and algebraic evaluation of (complex) expression from Racah's algebra. It is based on a number of well-defined data structures that are now extended to incorporate the Wigner rotation matrices. For these matrices, the transformation properties, sum rules, recursion relations, as well as a variety of special function expansions have been added to the previous functionality of the RACAH program. Moreover, the knowledge about the orthogonality as well as the completeness of the Wigner D-functions is also implemented. Typical running time:All the examples presented in Section 4 take only a few seconds on a 1.5 GHz Pentium Pro computer.
The Identities Hidden in the Matching Laws, and Their Uses
ERIC Educational Resources Information Center
Thorne, David R.
2010-01-01
Various theoretical equations have been proposed to predict response rate as a function of the rate of reinforcement. If both the rate and probability of reinforcement are considered, a simple identity, defining equation, or "law" holds. This identity places algebraic constraints on the allowable forms of our mathematical models and can help…
The Multifaceted Variable Approach: Selection of Method in Solving Simple Linear Equations
ERIC Educational Resources Information Center
Tahir, Salma; Cavanagh, Michael
2010-01-01
This paper presents a comparison of the solution strategies used by two groups of Year 8 students as they solved linear equations. The experimental group studied algebra following a multifaceted variable approach, while the comparison group used a traditional approach. Students in the experimental group employed different solution strategies,…
A Diagrammatic Exposition of Regression and Instrumental Variables for the Beginning Student
ERIC Educational Resources Information Center
Foster, Gigi
2009-01-01
Some beginning students of statistics and econometrics have difficulty with traditional algebraic approaches to explaining regression and related techniques. For these students, a simple and intuitive diagrammatic introduction as advocated by Kennedy (2008) may prove a useful framework to support further study. The author presents a series of…
Catmull-Rom Curve Fitting and Interpolation Equations
ERIC Educational Resources Information Center
Jerome, Lawrence
2010-01-01
Computer graphics and animation experts have been using the Catmull-Rom smooth curve interpolation equations since 1974, but the vector and matrix equations can be derived and simplified using basic algebra, resulting in a simple set of linear equations with constant coefficients. A variety of uses of Catmull-Rom interpolation are demonstrated,…
A Simple Mechanical Experiment on Exponential Growth
ERIC Educational Resources Information Center
McGrew, Ralph
2015-01-01
With a rod, cord, pulleys, and slotted masses, students can observe and graph exponential growth in the cord tension over a factor of increase as large as several hundred. This experiment is adaptable for use either in algebra-based or calculus-based physics courses, fitting naturally with the study of sliding friction. Significant parts of the…
Systems Engineering of Education V: Quantitative Concepts for Education Systems.
ERIC Educational Resources Information Center
Silvern, Leonard C.
The fifth (of 14) volume of the Education and Training Consultant's (ETC) series on systems engineering of education is designed for readers who have completed others in the series. It reviews arithmetic and algebraic procedures and applies these to simple education and training systems. Flowchart models of example problems are developed and…
ERIC Educational Resources Information Center
McCartney, Mark; Gibson, Sharon
2006-01-01
A model for car following on a closed loop is defined. The stability of the solutions of the model is investigated by considering the evolution of the roots of the corresponding characteristic equation in the complex plane. The solution provides a motivation for investigating the behaviour of the roots of a simple class of algebraic equation.…
ERIC Educational Resources Information Center
Wares, Arsalan; Elstak, Iwan
2017-01-01
The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…
ERIC Educational Resources Information Center
Boyles, William W.
1975-01-01
In 1973, Ronald G. Lykins presented a model for cash management and analysed its benefits for Ohio University. This paper attempts to expand on the previous method by providing answers to questions raised by the Lykins methods by a series of simple algebraic formulas. Both methods are based on two premises: (1) all cash over which the business…
Direct Sum Decomposition of Groups
ERIC Educational Resources Information Center
Thaheem, A. B.
2005-01-01
Direct sum decomposition of Abelian groups appears in almost all textbooks on algebra for undergraduate students. This concept plays an important role in group theory. One simple example of this decomposition is obtained by using the kernel and range of a projection map on an Abelian group. The aim in this pedagogical note is to establish a direct…
Industrial Prep, Volume Four, Junior Year--Contents: Mathematics and Guidance.
ERIC Educational Resources Information Center
Hackensack Public Schools, NJ.
As part of a 3-year comprehensive interdisciplinary program in industrial preparation for vocational students, this 11th Grade teaching guide consists of units on technical mathematics and guidance. Designed as supportive material for related physics and English curriculums, the first four sections of Volume 4 on algebra, vectors, simple machines,…
Modelling the Landing of a Plane in a Calculus Lab
ERIC Educational Resources Information Center
Morante, Antonio; Vallejo, Jose A.
2012-01-01
We exhibit a simple model of a plane landing that involves only basic concepts of differential calculus, so it is suitable for a first-year calculus lab. We use the computer algebra system Maxima and the interactive geometry software GeoGebra to do the computations and graphics. (Contains 5 figures and 1 note.)
Raney Distributions and Random Matrix Theory
NASA Astrophysics Data System (ADS)
Forrester, Peter J.; Liu, Dang-Zheng
2015-03-01
Recent works have shown that the family of probability distributions with moments given by the Fuss-Catalan numbers permit a simple parameterized form for their density. We extend this result to the Raney distribution which by definition has its moments given by a generalization of the Fuss-Catalan numbers. Such computations begin with an algebraic equation satisfied by the Stieltjes transform, which we show can be derived from the linear differential equation satisfied by the characteristic polynomial of random matrix realizations of the Raney distribution. For the Fuss-Catalan distribution, an equilibrium problem characterizing the density is identified. The Stieltjes transform for the limiting spectral density of the singular values squared of the matrix product formed from inverse standard Gaussian matrices, and standard Gaussian matrices, is shown to satisfy a variant of the algebraic equation relating to the Raney distribution. Supported on , we show that it too permits a simple functional form upon the introduction of an appropriate choice of parameterization. As an application, the leading asymptotic form of the density as the endpoints of the support are approached is computed, and is shown to have some universal features.
ERIC Educational Resources Information Center
Frankel, Lois; Brownstein, Beth; Soiffer, Neil
2017-01-01
This report describes the pilot conducted in the final phase of a project, Expanding Audio Access to Mathematics Expressions by Students With Visual Impairments via MathML, to provide easy-to-use tools for authoring and rendering secondary-school algebra-level math expressions in synthesized speech that is useful for students with blindness or low…
Bounding solutions of geometrically nonlinear viscoelastic problems
NASA Technical Reports Server (NTRS)
Stubstad, J. M.; Simitses, G. J.
1985-01-01
Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.
Bounding solutions of geometrically nonlinear viscoelastic problems
NASA Technical Reports Server (NTRS)
Stubstad, J. M.; Simitses, G. J.
1986-01-01
Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.
Algebraic grid generation with corner singularities
NASA Technical Reports Server (NTRS)
Vinokur, M.; Lombard, C. K.
1983-01-01
A simple noniterative algebraic procedure is presented for generating smooth computational meshes on a quadrilateral topology. Coordinate distribution and normal derivative are provided on all boundaries, one of which may include a slope discontinuity. The boundary conditions are sufficient to guarantee continuity of global meshes formed of joined patches generated by the procedure. The method extends to 3-D. The procedure involves a synthesis of prior techniques stretching functions, cubic blending functions, and transfinite interpolation - to which is added the functional form of the corner solution. The procedure introduces the concept of generalized blending, which is implemented as an automatic scaling of the boundary derivatives for effective interpolation. Some implications of the treatment at boundaries for techniques solving elliptic PDE's are discussed in an Appendix.
Selected computations of transonic cavity flows
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.
1993-01-01
An efficient diagonal scheme implemented in an overset mesh framework has permitted the analysis of geometrically complex cavity flows via the Reynolds averaged Navier-Stokes equations. Use of rapid hyperbolic and algebraic grid methods has allowed simple specification of critical turbulent regions with an algebraic turbulence model. Comparisons between numerical and experimental results are made in two dimensions for the following problems: a backward-facing step; a resonating cavity; and two quieted cavity configurations. In three-dimensions the flow about three early concepts of the stratospheric Observatory For Infrared Astronomy (SOFIA) are compared to wind-tunnel data. Shedding frequencies of resolved shear layer structures are compared against experiment for the quieted cavities. The results demonstrate the progress of computational assessment of configuration safety and performance.
Combining Automated Theorem Provers with Symbolic Algebraic Systems: Position Paper
NASA Technical Reports Server (NTRS)
Schumann, Johann; Koga, Dennis (Technical Monitor)
1999-01-01
In contrast to pure mathematical applications where automated theorem provers (ATPs) are quite capable, proof tasks arising form real-world applications from the area of Software Engineering show quite different characteristics: they usually do not only contain much arithmetic (albeit often quite simple one), but they also often contain reasoning about specific structures (e.g. graphics, sets). Thus, an ATP must be capable of performing reasoning together with a fair amount of simplification, calculation and solving. Therefore, powerful simplifiers and other (symbolic and semi-symbolic) algorithms seem to be ideally suited to augment ATPs. In the following we shortly describe two major points of interest in combining SASs (symbolic algebraic systems) with top-down automated theorem provers (here: SETHEO [Let92, GLMS94]).
Modularity of logarithmic parafermion vertex algebras
NASA Astrophysics Data System (ADS)
Auger, Jean; Creutzig, Thomas; Ridout, David
2018-05-01
The parafermionic cosets Ck = {Com} ( H , Lk(sl2) ) are studied for negative admissible levels k, as are certain infinite-order simple current extensions Bk of Ck . Under the assumption that the tensor theory considerations of Huang, Lepowsky and Zhang apply to Ck , irreducible Ck - and Bk -modules are obtained from those of Lk(sl2) . Assuming the validity of a certain Verlinde-type formula likewise gives the Grothendieck fusion rules of these irreducible modules. Notably, there are only finitely many irreducible Bk -modules. The irreducible Ck - and Bk -characters are computed and the latter are shown, when supplemented by pseudotraces, to carry a finite-dimensional representation of the modular group. The natural conjecture then is that the Bk are C_2 -cofinite vertex operator algebras.
Molecular symmetry with quaternions.
Fritzer, H P
2001-09-01
A new and relatively simple version of the quaternion calculus is offered which is especially suitable for applications in molecular symmetry and structure. After introducing the real quaternion algebra and its classical matrix representation in the group SO(4) the relations with vectors in 3-space and the connection with the rotation group SO(3) through automorphism properties of the algebra are discussed. The correlation of the unit quaternions with both the Cayley-Klein and the Euler parameters through the group SU(2) is presented. Besides rotations the extension of quaternions to other important symmetry operations, reflections and the spatial inversion, is given. Finally, the power of the quaternion calculus for molecular symmetry problems is revealed by treating some examples applied to icosahedral symmetry.
Equivalent Expressions Using CAS and Paper-and-Pencil Techniques
ERIC Educational Resources Information Center
Fonger, Nicole L.
2014-01-01
How can the key concept of equivalent expressions be addressed so that students strengthen their representational fluency with symbols, graphs, and numbers? How can research inform the synergistic use of both paper-and-pencil analysis and computer algebra systems (CAS) in a classroom learning environment? These and other related questions have…
ERIC Educational Resources Information Center
Schueler-Meyer, Alexander
2016-01-01
Flexibility in transforming algebraic expressions is recognized as fundamental for a rich procedural knowledge. Here, flexibility in-depth is proposed as the ability to apply one strategy to a wide range of unfamiliar expressions. In this study, design experiments with four groups of students were conducted to support students' flexibility…
Articulating Syntactic and Numeric Perspectives on Equivalence: The Case of Rational Expressions
ERIC Educational Resources Information Center
Solares, Armando; Kieran, Carolyn
2013-01-01
Our study concerns the conceptual mathematical knowledge that emerges during the resolution of tasks on the equivalence of polynomial and rational algebraic expressions, by using CAS and paper-and-pencil techniques. The theoretical framework we adopt is the Anthropological Theory of Didactics ("Chevallard" 19:221-266, 1999), in…
NASA Astrophysics Data System (ADS)
Pan, Feng; Ding, Xiaoxue; Launey, Kristina D.; Draayer, J. P.
2018-06-01
A simple and effective algebraic isospin projection procedure for constructing orthonormal basis vectors of irreducible representations of O (5) ⊃OT (3) ⊗ON (2) from those in the canonical O (5) ⊃ SUΛ (2) ⊗ SUI (2) basis is outlined. The expansion coefficients are components of null space vectors of the projection matrix with four nonzero elements in each row in general. Explicit formulae for evaluating OT (3)-reduced matrix elements of O (5) generators are derived.
A Simple Introduction to Gröbner Basis Methods in String Phenomenology
NASA Astrophysics Data System (ADS)
Gray, James
In this talk I give an elementary introduction to the key algorithm used in recent applications of computational algebraic geometry to the subject of string phenomenology. I begin with a simple description of the algorithm itself and then give 3 examples of its use in physics. I describe how it can be used to obtain constraints on flux parameters, how it can simplify the equations describing vacua in 4d string models and lastly how it can be used to compute the vacuum space of the electroweak sector of the MSSM.
On generalized Volterra systems
NASA Astrophysics Data System (ADS)
Charalambides, S. A.; Damianou, P. A.; Evripidou, C. A.
2015-01-01
We construct a large family of evidently integrable Hamiltonian systems which are generalizations of the KM system. The algorithm uses the root system of a complex simple Lie algebra. The Hamiltonian vector field is homogeneous cubic but in a number of cases a simple change of variables transforms such a system to a quadratic Lotka-Volterra system. We present in detail all such systems in the cases of A3, A4 and we also give some examples from higher dimensions. We classify all possible Lotka-Volterra systems that arise via this algorithm in the An case.
Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory
NASA Technical Reports Server (NTRS)
Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.
1990-01-01
New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.
Understanding measurement in light of its origins.
Humphry, Stephen
2013-01-01
During the course of history, the natural sciences have seen the development of increasingly convenient short-hand symbolic devices for denoting physical quantities. These devices ultimately took the form of physical algebra. However, the convenience of algebra arguably came at a cost - a loss of the clarity of direct insights by Euclid, Galileo, and Newton into natural quantitative relations. Physical algebra is frequently interpreted as ordinary algebra; i.e., it is interpreted as though symbols denote (a) numbers and operations on numbers, as opposed to (b) physical quantities and quantitative relations. The paper revisits the way in which Newton understood and expressed physical definitions and laws. Accordingly, it reviews a compact form of notation that has been used to denote both: (a) ratios of physical quantities; and (b) compound ratios, involving two or more kinds of quantity. The purpose is to show that it is consistent with historical developments to regard physical algebra as a device for denoting relations among ratios. Understood in the historical context, the objective of measurement is to establish that a physical quantity stands in a specific ratio to another quantity of the same kind. To clarify the meaning of measurement in terms of the historical origins of physics carries basic implications for the way in which measurement is understood and approached. Possible implications for the social sciences are considered.
NASA Technical Reports Server (NTRS)
Goguen, Joseph; Rosu, Grigore; Norvig, Peter (Technical Monitor)
2001-01-01
Institutions formalize the intuitive notion of logical system, including both syntax and semantics. A surprising number of different notions of morphisim have been suggested for forming categories with institutions as objects, and a surprising variety of names have been proposed for them. One goal of this paper is to suggest a terminology that is both uniform and informative to replace the current rather chaotic nomenclature. Another goal is to investigate the properties and interrelations of these notions. Following brief expositions of indexed categories, twisted relations, and Kan extensions, we demonstrate and then exploit the duality between institution morphisms in the original sense of Goguen and Burstall, and the 'plain maps' of Meseguer, obtaining simple uniform proofs of completeness and cocompleteness for both resulting categories; because of this duality, we prefer the name 'comorphism' over 'plain map.' We next consider 'theoroidal' morphisms and comorphisims, which generalize signatures to theories, finding that the 'maps' of Meseguer are theoroidal comorphisms, while theoroidal morphisms are a new concept. We then introduce 'forward' and 'semi-natural' morphisms, and appendices discuss institutions for hidden algebra, universal algebra, partial equational logic, and a variant of order sorted algebra supporting partiality.
Algebraic reasoning for the enhancement of data-driven building reconstructions
NASA Astrophysics Data System (ADS)
Meidow, Jochen; Hammer, Horst
2016-04-01
Data-driven approaches for the reconstruction of buildings feature the flexibility needed to capture objects of arbitrary shape. To recognize man-made structures, geometric relations such as orthogonality or parallelism have to be detected. These constraints are typically formulated as sets of multivariate polynomials. For the enforcement of the constraints within an adjustment process, a set of independent and consistent geometric constraints has to be determined. Gröbner bases are an ideal tool to identify such sets exactly. A complete workflow for geometric reasoning is presented to obtain boundary representations of solids based on given point clouds. The constraints are formulated in homogeneous coordinates, which results in simple polynomials suitable for the successful derivation of Gröbner bases for algebraic reasoning. Strategies for the reduction of the algebraical complexity are presented. To enforce the constraints, an adjustment model is introduced, which is able to cope with homogeneous coordinates along with their singular covariance matrices. The feasibility and the potential of the approach are demonstrated by the analysis of a real data set.
Dimensional Analysis in Mathematical Modeling Systems: A Simple Numerical Method
1991-02-01
US Army Ballistic Research Laboratories, Aberden Proving Ground , NID, August 1975. [18] Hi1irlimann, T., and .J. lKohlas "LPL: A Structured Language...such systems can prove that (a’ + ab + b2 + ba) = (a + b) 2 . With some effort, since the laws of physical algebra are a minor variant on those of
Deriving the Regression Equation without Using Calculus
ERIC Educational Resources Information Center
Gordon, Sheldon P.; Gordon, Florence S.
2004-01-01
Probably the one "new" mathematical topic that is most responsible for modernizing courses in college algebra and precalculus over the last few years is the idea of fitting a function to a set of data in the sense of a least squares fit. Whether it be simple linear regression or nonlinear regression, this topic opens the door to applying the…
ERIC Educational Resources Information Center
Wholeben, Brent E.
This volume is an exposition of a mathematical modeling technique for use in the evaluation and solution of complex educational problems at all levels. It explores in detail the application of simple algebraic techniques to such issues as program reduction, fiscal rollbacks, and computer curriculum planning. Part I ("Introduction to the…
USDA-ARS?s Scientific Manuscript database
A high ambient temperature poses a serious threat to cattle. Above a certain threshold, an animal’s body temperature (Tb) appears to be driven by the hot cyclic air temperature (Ta) and hysteresis occurs. Elliptical hysteresis describes the output of a process in response to a simple harmonic input,...
Ca2+ current vs. Ca2+ channel cooperativity of exocytosis
Matveev, Victor; Bertram, Richard; Sherman, Arthur
2009-01-01
Recently there has been significant interest and progress in the study of spatio-temporal dynamics of Ca2+ that triggers exocytosis at a fast chemical synapse, which requires understanding the contribution of individual calcium channels to the release of a single vesicle. Experimental protocols provide insight into this question by probing the sensitivity of exocytosis to Ca2+ influx. While varying extracellular or intracellular Ca2+ concentration assesses the intrinsic biochemical Ca2+ cooperativity of neurotransmitter release, varying the number of open Ca2+ channels using pharmacological channel block or the tail current titration probes the cooperativity between individual Ca2+ channels in triggering exocytosis. Despite the wide use of these Ca2+ sensitivity measurements, their interpretation often relies on heuristic arguments. Here we provide a detailed analysis of the Ca2+ sensitivity measures probed by these experimental protocols, present simple expressions for special cases, and demonstrate the distinction between the Ca2+ current cooperativity, defined by the relationship between exocytosis rate and the whole-terminal Ca2+ current magnitude, and the underlying Ca2+ channel cooperativity, defined as the average number of channels involved in the release of a single vesicle. We find simple algebraic expressions that show that the two are different but linearly related. Further, we use 3D computational modeling of buffered Ca2+ diffusion to analyze these distinct Ca2+ cooperativity measures, and demonstrate the role of endogenous Ca2+ buffers on such measures. We show that buffers can either increase or decrease the Ca2+ current cooperativity of exocytosis, depending on their concentration and the single-channel Ca2+ current. PMID:19793978
Inequalities, assessment and computer algebra
NASA Astrophysics Data System (ADS)
Sangwin, Christopher J.
2015-01-01
The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary curricula. We consider the formal mathematical processes by which such inequalities are solved, and we consider the notation and syntax through which solutions are expressed. We review the extent to which current CAS can accurately solve these inequalities, and the form given to the solutions by the designers of this software. Finally, we discuss the functionality needed to deal with students' answers, i.e. to establish equivalence (or otherwise) of expressions representing unions of intervals. We find that while contemporary CAS accurately solve inequalities there is a wide variety of notation used.
Towards Cohomology of Renormalization: Bigrading the Combinatorial Hopf Algebra of Rooted Trees
NASA Astrophysics Data System (ADS)
Broadhurst, D. J.; Kreimer, D.
The renormalization of quantum field theory twists the antipode of a noncocommutative Hopf algebra of rooted trees, decorated by an infinite set of primitive divergences. The Hopf algebra of undecorated rooted trees, ℌR, generated by a single primitive divergence, solves a universal problem in Hochschild cohomology. It has two nontrivial closed Hopf subalgebras: the cocommutative subalgebra ℌladder of pure ladder diagrams and the Connes-Moscovici noncocommutative subalgebra ℌCM of noncommutative geometry. These three Hopf algebras admit a bigrading by n, the number of nodes, and an index k that specifies the degree of primitivity. In each case, we use iterations of the relevant coproduct to compute the dimensions of subspaces with modest values of n and k and infer a simple generating procedure for the remainder. The results for ℌladder are familiar from the theory of partitions, while those for ℌCM involve novel transforms of partitions. Most beautiful is the bigrading of ℌR, the largest of the three. Thanks to Sloane's superseeker, we discovered that it saturates all possible inequalities. We prove this by using the universal Hochschild-closed one-cocycle B+, which plugs one set of divergences into another, and by generalizing the concept of natural growth beyond that entailed by the Connes-Moscovici case. We emphasize the yet greater challenge of handling the infinite set of decorations of realistic quantum field theory.
Modelling the Relationships between Quantities: Meaning in Literal Expressions
ERIC Educational Resources Information Center
Zeljic, Marijana
2015-01-01
Algebra is often considered as difficult and mysterious doctrine due to numerous symbols that represent mathematical notions. Results of the research on students' interpretation of literal expressions show that only a small number of students are ready to accept that a letter can represent a variable. The aim of this research with students of the…
On Vieta's Formulas and the Determination of a Set of Positive Integers by Their Sum and Product
ERIC Educational Resources Information Center
Valahas, Theodoros; Boukas, Andreas
2011-01-01
In Years 9 and 10 of secondary schooling students are typically introduced to quadratic expressions and functions and related modelling, algebra, and graphing. This includes work on the expansion and factorisation of quadratic expressions (typically with integer values of coefficients), graphing quadratic functions, finding the roots of quadratic…
Modular forms, Schwarzian conditions, and symmetries of differential equations in physics
NASA Astrophysics Data System (ADS)
Abdelaziz, Y.; Maillard, J.-M.
2017-05-01
We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same {}_2F1 hypergeometric function with different rational pullbacks. These rational transformations are solutions of a differentially algebraic equation that already emerged in a paper by Casale on the Galoisian envelopes. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus {}_2F1 hypergeometric function example. We then focus on identities relating the same {}_2F1 hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that also emerged in Casale’s paper. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to {}_3F2 , hypergeometric functions, and show that one just reduces to the previous {}_2F1 cases through a Clausen identity. The question of the reduction of these Schwarzian conditions to modular correspondences remains an open question. In a _2F1 hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or {}_2F1 hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.
NASA Astrophysics Data System (ADS)
Abd-Elhameed, W. M.
2017-07-01
In this paper, a new formula relating Jacobi polynomials of arbitrary parameters with the squares of certain fractional Jacobi functions is derived. The derived formula is expressed in terms of a certain terminating hypergeometric function of the type _4F3(1) . With the aid of some standard reduction formulae such as Pfaff-Saalschütz's and Watson's identities, the derived formula can be reduced in simple forms which are free of any hypergeometric functions for certain choices of the involved parameters of the Jacobi polynomials and the Jacobi functions. Some other simplified formulae are obtained via employing some computer algebra algorithms such as the algorithms of Zeilberger, Petkovsek and van Hoeij. Some connection formulae between some Jacobi polynomials are deduced. From these connection formulae, some other linearization formulae of Chebyshev polynomials are obtained. As an application to some of the introduced formulae, a numerical algorithm for solving nonlinear Riccati differential equation is presented and implemented by applying a suitable spectral method.
Time-optical spinup maneuvers of flexible spacecraft
NASA Technical Reports Server (NTRS)
Singh, G.; Kabamba, P. T.; Mcclamroch, N. H.
1990-01-01
Attitude controllers for spacecraft have been based on the assumption that the bodies being controlled are rigid. Future spacecraft, however, may be quite flexible. Many applications require spinning up/down these vehicles. In this work the minimum time control of these maneuvers is considered. The time-optimal control is shown to possess an important symmetry property. Taking advantage of this property, the necessary and sufficient conditions for optimality are transformed into a system of nonlinear algebraic equations in the control switching times during one half of the maneuver, the maneuver time, and the costates at the mid-maneuver time. These equations can be solved using a homotopy approach. Control spillover measures are introduced and upper bounds on these measures are obtained. For a special case these upper bounds can be expressed in closed form for an infinite dimensional evaluation model. Rotational stiffening effects are ignored in the optimal control analysis. Based on a heuristic argument a simple condition is given which justifies the omission of these nonlinear effects. This condition is validated by numerical simulation.
On split regular BiHom-Lie superalgebras
NASA Astrophysics Data System (ADS)
Zhang, Jian; Chen, Liangyun; Zhang, Chiping
2018-06-01
We introduce the class of split regular BiHom-Lie superalgebras as the natural extension of the one of split Hom-Lie superalgebras and the one of split Lie superalgebras. By developing techniques of connections of roots for this kind of algebras, we show that such a split regular BiHom-Lie superalgebra L is of the form L = U +∑ [ α ] ∈ Λ / ∼I[α] with U a subspace of the Abelian (graded) subalgebra H and any I[α], a well described (graded) ideal of L, satisfying [I[α] ,I[β] ] = 0 if [ α ] ≠ [ β ] . Under certain conditions, in the case of L being of maximal length, the simplicity of the algebra is characterized and it is shown that L is the direct sum of the family of its simple (graded) ideals.
Adinkra (in)equivalence from Coxeter group representations: A case study
NASA Astrophysics Data System (ADS)
Chappell, Isaac; Gates, S. James; Hübsch, T.
2014-02-01
Using a MathematicaTM code, we present a straightforward numerical analysis of the 384-dimensional solution space of signed permutation 4×4 matrices, which in sets of four, provide representations of the 𝒢ℛ(4, 4) algebra, closely related to the 𝒩 = 1 (simple) supersymmetry algebra in four-dimensional space-time. Following after ideas discussed in previous papers about automorphisms and classification of adinkras and corresponding supermultiplets, we make a new and alternative proposal to use equivalence classes of the (unsigned) permutation group S4 to define distinct representations of higher-dimensional spin bundles within the context of adinkras. For this purpose, the definition of a dual operator akin to the well-known Hodge star is found to partition the space of these 𝒢ℛ(4, 4) representations into three suggestive classes.
Attitude control with realization of linear error dynamics
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Bach, Ralph E.
1993-01-01
An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.
Knotted optical vortices in exact solutions to Maxwell's equations
NASA Astrophysics Data System (ADS)
de Klerk, Albertus J. J. M.; van der Veen, Roland I.; Dalhuisen, Jan Willem; Bouwmeester, Dirk
2017-05-01
We construct a family of exact solutions to Maxwell's equations in which the points of zero intensity form knotted lines topologically equivalent to a given but arbitrary algebraic link. These lines of zero intensity, more commonly referred to as optical vortices, and their topology are preserved as time evolves and the fields have finite energy. To derive explicit expressions for these new electromagnetic fields that satisfy the nullness property, we make use of the Bateman variables for the Hopf field as well as complex polynomials in two variables whose zero sets give rise to algebraic links. The class of algebraic links includes not only all torus knots and links thereof, but also more intricate cable knots. While the unknot has been considered before, the solutions presented here show that more general knotted structures can also arise as optical vortices in exact solutions to Maxwell's equations.
ERIC Educational Resources Information Center
Mohr, Doris J.
2008-01-01
In a geometry content course for pre-service elementary teachers, technology was utilized to assist students in making sense of shapes. They learned to write simple procedures in Logo that would program a turtle to draw various quadrilaterals. In the context of writing these procedures, the pre-service teachers used variables to represent the…
Creating Realistic 3D Graphics with Excel at High School--Vector Algebra in Practice
ERIC Educational Resources Information Center
Benacka, Jan
2015-01-01
The article presents the results of an experiment in which Excel applications that depict rotatable and sizable orthographic projection of simple 3D figures with face overlapping were developed with thirty gymnasium (high school) students of age 17-19 as an introduction to 3D computer graphics. A questionnaire survey was conducted to find out…
The Hurwitz Enumeration Problem of Branched Covers and Hodge Integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yun S.
We use algebraic methods to compute the simple Hurwitz numbers for arbitrary source and target Riemann surfaces. For an elliptic curve target, we reproduce the results previously obtained by string theorists. Motivated by the Gromov-Witten potentials, we find a general generating function for the simple Hurwitz numbers in terms of the representation theory of the symmetric group S{sub n}. We also find a generating function for Hodge integrals on the moduli space {bar M}{sub g,2} of Riemann surfaces with two marked points, similar to that found by Faber and Pandharipande for the case of one marked point.
Multivariate geometry as an approach to algal community analysis
Allen, T.F.H.; Skagen, S.
1973-01-01
Multivariate analyses are put in the context of more usual approaches to phycological investigations. The intuitive common-sense involved in methods of ordination, classification and discrimination are emphasised by simple geometric accounts which avoid jargon and matrix algebra. Warnings are given that artifacts result from technique abuses by the naive or over-enthusiastic. An analysis of a simple periphyton data set is presented as an example of the approach. Suggestions are made as to situations in phycological investigations, where the techniques could be appropriate. The discipline is reprimanded for its neglect of the multivariate approach.
NASA Astrophysics Data System (ADS)
Dragan, Laurentiu; Watt, Stephen M.
Computer algebra in scientific computation squarely faces the dilemma of natural mathematical expression versus efficiency. While higher-order programming constructs and parametric polymorphism provide a natural and expressive language for mathematical abstractions, they can come at a considerable cost. We investigate how deeply nested type constructions may be optimized to achieve performance similar to that of hand-tuned code written in lower-level languages.
ERIC Educational Resources Information Center
Strickland, Tricia K.; Maccini, Paula
2013-01-01
We examined the effects of the Concrete-Representational-Abstract Integration strategy on the ability of secondary students with learning disabilities to multiply linear algebraic expressions embedded within contextualized area problems. A multiple-probe design across three participants was used. Results indicated that the integration of the…
Mixed-state fidelity susceptibility through iterated commutator series expansion
NASA Astrophysics Data System (ADS)
Tonchev, N. S.
2014-11-01
We present a perturbative approach to the problem of computation of mixed-state fidelity susceptibility (MFS) for thermal states. The mathematical techniques used provide an analytical expression for the MFS as a formal expansion in terms of the thermodynamic mean values of successively higher commutators of the Hamiltonian with the operator involved through the control parameter. That expression is naturally divided into two parts: the usual isothermal susceptibility and a constituent in the form of an infinite series of thermodynamic mean values which encodes the noncommutativity in the problem. If the symmetry properties of the Hamiltonian are given in terms of the generators of some (finite-dimensional) algebra, the obtained expansion may be evaluated in a closed form. This issue is tested on several popular models, for which it is shown that the calculations are much simpler if they are based on the properties from the representation theory of the Heisenberg or SU(1, 1) Lie algebra.
Higher spin black holes with soft hair
NASA Astrophysics Data System (ADS)
Grumiller, Daniel; Pérez, Alfredo; Prohazka, Stefan; Tempo, David; Troncoso, Ricardo
2016-10-01
We construct a new set of boundary conditions for higher spin gravity, inspired by a recent "soft Heisenberg hair"-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin- N , many of which resemble the spin-2 results: the generators of the asymptotic W 3 algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call "higher spin black flowers", are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W -algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.
Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul; ...
2017-12-20
We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less
NASA Astrophysics Data System (ADS)
Wilkie, Karina J.
2016-06-01
A key aspect of learning algebra in the middle years of schooling is exploring the functional relationship between two variables: noticing and generalising the relationship, and expressing it mathematically. This article describes research on the professional learning of upper primary school teachers for developing their students' functional thinking through pattern generalisation. This aspect of algebra learning has been explicitly brought to the attention of upper primary teachers in the recently introduced Australian curriculum. Ten practising teachers participated over 1 year in a design-based research project involving a sequence of geometric pattern generalisation lessons with their classes. Initial and final survey responses and teachers' interactions in regular meetings and lessons were analysed from cognitive and situated perspectives on professional learning, using a theoretical model for the different types of knowledge needed for teaching mathematics. The teachers demonstrated an increase in certain aspects of their mathematical knowledge for teaching algebra as well as some residual issues. Implications for the professional learning of practising and pre-service teachers to develop their mathematics knowledge for teaching functional thinking, and challenges with operationalising knowledge categories for field-based research are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul
We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less
Jones, Edmund; Epstein, David; García-Mochón, Leticia
2017-10-01
For health-economic analyses that use multistate Markov models, it is often necessary to convert from transition rates to transition probabilities, and for probabilistic sensitivity analysis and other purposes it is useful to have explicit algebraic formulas for these conversions, to avoid having to resort to numerical methods. However, if there are four or more states then the formulas can be extremely complicated. These calculations can be made using packages such as R, but many analysts and other stakeholders still prefer to use spreadsheets for these decision models. We describe a procedure for deriving formulas that use intermediate variables so that each individual formula is reasonably simple. Once the formulas have been derived, the calculations can be performed in Excel or similar software. The procedure is illustrated by several examples and we discuss how to use a computer algebra system to assist with it. The procedure works in a wide variety of scenarios but cannot be employed when there are several backward transitions and the characteristic equation has no algebraic solution, or when the eigenvalues of the transition rate matrix are very close to each other.
Closed, analytic, boson realizations for Sp(4)
NASA Astrophysics Data System (ADS)
Klein, Abraham; Zhang, Qing-Ying
1986-08-01
The problem of determing a boson realization for an arbitrary irrep of the unitary simplectic algebra Sp(2d) [or of the corresponding discrete unitary irreps of the unbounded algebra Sp(2d,R)] has been solved completely in recent papers by Deenen and Quesne [J. Deenen and C. Quesne, J. Math. Phys. 23, 878, 2004 (1982); 25, 1638 (1984); 26, 2705 (1985)] and by Moshinsky and co-workers [O. Castaños, E. Chacón, M. Moshinsky, and C. Quesne, J. Math. Phys. 26, 2107 (1985); M. Moshinsky, ``Boson realization of symplectic algebras,'' to be published]. This solution is not known in closed analytic form except for d=1 and for special classes of irreps for d>1. A different method of obtaining a boson realization that solves the full problem for Sp(4) is described. The method utilizes the chain Sp(2d)⊇SU(2)×SU(2) ×ṡṡṡ×SU(2) (d times), which, for d≥4, does not provide a complete set of quantum numbers. Though a simple solution of the missing label problem can be given, this solution does not help in the construction of a mapping algorithm for general d.
Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.
Buican, Matthew; Laczko, Zoltan
2018-02-23
In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.
Modeling electron fractionalization with unconventional Fock spaces.
Cobanera, Emilio
2017-08-02
It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality [Formula: see text] of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.
Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories
NASA Astrophysics Data System (ADS)
Buican, Matthew; Laczko, Zoltan
2018-02-01
In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.; Lytle, John K.
1989-01-01
An algebraic adaptive grid scheme based on the concept of arc equidistribution is presented. The scheme locally adjusts the grid density based on gradients of selected flow variables from either finite difference or finite volume calculations. A user-prescribed grid stretching can be specified such that control of the grid spacing can be maintained in areas of known flowfield behavior. For example, the grid can be clustered near a wall for boundary layer resolution and made coarse near the outer boundary of an external flow. A grid smoothing technique is incorporated into the adaptive grid routine, which is found to be more robust and efficient than the weight function filtering technique employed by other researchers. Since the present algebraic scheme requires no iteration or solution of differential equations, the computer time needed for grid adaptation is trivial, making the scheme useful for three-dimensional flow problems. Applications to two- and three-dimensional flow problems show that a considerable improvement in flowfield resolution can be achieved by using the proposed adaptive grid scheme. Although the scheme was developed with steady flow in mind, it is a good candidate for unsteady flow computations because of its efficiency.
Understanding space weather with new physical, mathematical and philosophical approaches
NASA Astrophysics Data System (ADS)
Mateev, Lachezar; Velinov, Peter; Tassev, Yordan
2016-07-01
The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. The development of these investigations can be considered also from another side. This is the philosophical and mathematical approach towards this physical reality. What does it constitute? We have a set of physical processes which occur in the Sun and interplanetary space. All these processes interact with each other and simultaneously participate in the general process which forms the space weather. Let us now consider the Leibniz's monads (G.W. von Leibniz, 1714, Monadologie, Wien; Id., 1710, Théodicée, Amsterdam) and use some of their properties. There are total 90 theses for monads in the Leibniz's work (1714), f.e. "(1) The Monad, of which we shall here speak, is nothing but a simple substance, which enters into compounds. By 'simple' is meant 'without parts'. (Theod. 10.); … (56) Now this connexion or adaptation of all created things to each and of each to all, means that each simple substance has relations which express all the others, and, consequently, that it is a perpetual living mirror of the universe. (Theod. 130, 360.); (59) … this universal harmony, according to which every substance exactly expresses all others through the relations it has with them. (63) … every Monad is, in its own way, a mirror of the universe, and the universe is ruled according to a perfect order. (Theod. 403.)", etc. Let us introduce in the properties of monads instead of the word "monad" the word "process". We obtain the following statement: Each process reflects all other processes and all other processes reflect this process. This analogy is not formal at all, it reflects accurately the relation between the physical processes and their unity. The category monad which in the Leibniz's Monadology reflects generally the philosophical sense is fully identical with the physical one, in our case. The corresponding mathematical relations are needed for the application of this analogy in the solar-terrestrial physics and space weather. For this purpose in the contemporary categories theory in the algebra a whole field for it exists - the theory of monads (M. Barr, Ch. Wells, 1985, Toposes, Triples and Theories, Springer-Verlag, 278, p. 82). This theory is generated by analogous elements as in the Leibniz's Monadology. As it is known the categories theory and in particular the monad theory (also named triple or triad theory) tends to make axioms in mathematics. This approach would be very useful for such complex systems and processes as these in the solar-terrestrial physics and space weather. Here some methods for algebraic data structures could be introduced. Or some imperative programs can be embedded in a purely functional program for modeling, respectively. All these problems are principally considered in the proposed report.
An Informal Overview of the Unitary Group Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonnad, V.; Escher, J.; Kruse, M.
The Unitary Groups Approach (UGA) is an elegant and conceptually unified approach to quantum structure calculations. It has been widely used in molecular structure calculations, and holds the promise of a single computational approach to structure calculations in a variety of different fields. We explore the possibility of extending the UGA to computations in atomic and nuclear structure as a simpler alternative to traditional Racah algebra-based approaches. We provide a simple introduction to the basic UGA and consider some of the issues in using the UGA with spin-dependent, multi-body Hamiltonians requiring multi-shell bases adapted to additional symmetries. While the UGAmore » is perfectly capable of dealing with such problems, it is seen that the complexity rises dramatically, and the UGA is not at this time, a simpler alternative to Racah algebra-based approaches.« less
Adjoint affine fusion and tadpoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urichuk, Andrew, E-mail: andrew.urichuk@uleth.ca; Walton, Mark A., E-mail: walton@uleth.ca; International School for Advanced Studies
2016-06-15
We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are writtenmore » for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.« less
Global linear-irreversible principle for optimization in finite-time thermodynamics
NASA Astrophysics Data System (ADS)
Johal, Ramandeep S.
2018-03-01
There is intense effort into understanding the universal properties of finite-time models of thermal machines —at optimal performance— such as efficiency at maximum power, coefficient of performance at maximum cooling power, and other such criteria. In this letter, a global principle consistent with linear irreversible thermodynamics is proposed for the whole cycle —without considering details of irreversibilities in the individual steps of the cycle. This helps to express the total duration of the cycle as τ \\propto {\\bar{Q}^2}/{Δ_\\text{tot}S} , where \\bar{Q} models the effective heat transferred through the machine during the cycle, and Δ_ \\text{tot} S is the total entropy generated. By taking \\bar{Q} in the form of simple algebraic means (such as arithmetic and geometric means) over the heats exchanged by the reservoirs, the present approach is able to predict various standard expressions for figures of merit at optimal performance, as well as the bounds respected by them. It simplifies the optimization procedure to a one-parameter optimization, and provides a fresh perspective on the issue of universality at optimal performance, for small difference in reservoir temperatures. As an illustration, we compare the performance of a partially optimized four-step endoreversible cycle with the present approach.
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1991-01-01
A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.
THE FINAL SPIN FROM BINARY BLACK HOLES IN QUASI-CIRCULAR ORBITS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, Fabian; Rezzolla, Luciano; Barausse, Enrico
2016-07-10
We revisit the problem of predicting the spin magnitude and direction of the black hole (BH) resulting from the merger of two BHs with arbitrary masses and spins inspiraling in quasi-circular orbits. We do this by analyzing a catalog of 619 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit, and perturbative calculations, we improve our previously proposed phenomenological formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy with our previous expressions, the new formulamore » is a simple algebraic function of the initial system parameters and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum but can be employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially for almost extremal progenitor spins and for small mass ratios, yielding an rms error σ ≈ 0.002 for aligned/anti-aligned binaries and σ ≈ 0.006 for generic binaries. Our new formula is suitable for cosmological applications and can be employed robustly in the analysis of the gravitational waveforms from advanced interferometric detectors.« less
Approximate Bayesian evaluations of measurement uncertainty
NASA Astrophysics Data System (ADS)
Possolo, Antonio; Bodnar, Olha
2018-04-01
The Guide to the Expression of Uncertainty in Measurement (GUM) includes formulas that produce an estimate of a scalar output quantity that is a function of several input quantities, and an approximate evaluation of the associated standard uncertainty. This contribution presents approximate, Bayesian counterparts of those formulas for the case where the output quantity is a parameter of the joint probability distribution of the input quantities, also taking into account any information about the value of the output quantity available prior to measurement expressed in the form of a probability distribution on the set of possible values for the measurand. The approximate Bayesian estimates and uncertainty evaluations that we present have a long history and illustrious pedigree, and provide sufficiently accurate approximations in many applications, yet are very easy to implement in practice. Differently from exact Bayesian estimates, which involve either (analytical or numerical) integrations, or Markov Chain Monte Carlo sampling, the approximations that we describe involve only numerical optimization and simple algebra. Therefore, they make Bayesian methods widely accessible to metrologists. We illustrate the application of the proposed techniques in several instances of measurement: isotopic ratio of silver in a commercial silver nitrate; odds of cryptosporidiosis in AIDS patients; height of a manometer column; mass fraction of chromium in a reference material; and potential-difference in a Zener voltage standard.
The octapolic ellipsoidal term in magnetoencephalography
NASA Astrophysics Data System (ADS)
Dassios, George; Hadjiloizi, Demetra; Kariotou, Fotini
2009-01-01
The forward problem of magnetoencephalography (MEG) in ellipsoidal geometry has been studied by Dassios and Kariotou ["Magnetoencephalography in ellipsoidal geometry," J. Math. Phys. 44, 220 (2003)] using the theory of ellipsoidal harmonics. In fact, the analytic solution of the quadrupolic term for the magnetic induction field has been calculated in the case of a dipolar neuronal current. Nevertheless, since the quadrupolic term is only the leading nonvanishing term in the multipole expansion of the magnetic field, it contains not enough information for the construction of an effective algorithm to solve the inverse MEG problem, i.e., to recover the position and the orientation of a dipole from measurements of the magnetic field outside the head. For this task, the next multipole of the magnetic field is also needed. The present work provides exactly this octapolic contribution of the dipolar current to the expansion of the magnetic induction field. The octapolic term is expressed in terms of the ellipsoidal harmonics of the third degree, and therefore it provides the highest order terms that can be expressed in closed form using long but reasonable analytic and algebraic manipulations. In principle, the knowledge of the quadrupolic and the octapolic terms is enough to solve the inverse problem of identifying a dipole inside an ellipsoid. Nevertheless, a simple inversion algorithm for this problem is not yet known.
Continuum Model for River Networks
NASA Astrophysics Data System (ADS)
Giacometti, Achille; Maritan, Amos; Banavar, Jayanth R.
1995-07-01
The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic partial differential equation for modeling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.
ERIC Educational Resources Information Center
Overduin, James; Molloy, Dana; Selway, Jim
2014-01-01
Electromagnetic induction is probably one of the most challenging subjects for students in the introductory physics sequence, especially in algebra-based courses. Yet it is at the heart of many of the devices we rely on today. To help students grasp and retain the concept, we have put together a simple and dramatic classroom demonstration that…
Calculation of flexoelectric deformations of finite-size bodies
NASA Astrophysics Data System (ADS)
Yurkov, A. S.
2015-03-01
The previously developed approximate theory of flexoelectric deformations of finite-size bodies has been considered as applied to three special cases: a uniformly polarized ball, a uniformly polarized circular rod, and a uniformly polarized thin circular plate of an isotropic material. For these cases simple algebraic formulas have been derived. In the case of the ball, the solution is compared with the previously obtained exact solution.
Finite Element Based Structural Damage Detection Using Artificial Boundary Conditions
2007-09-01
C. (2005). Elementary Linear Algebra . New York: John Wiley and Sons. Avitable, Peter (2001, January) Experimental Modal Analysis, A Simple Non...variables under consideration. 3 Frequency sensitivities are the basis for a linear approximation to compute the change in the natural frequencies of a...THEORY The general problem statement for a non- linear constrained optimization problem is: To minimize ( )f x Objective Function Subject to
Nekrasov and Argyres-Douglas theories in spherical Hecke algebra representation
NASA Astrophysics Data System (ADS)
Rim, Chaiho; Zhang, Hong
2017-06-01
AGT conjecture connects Nekrasov instanton partition function of 4D quiver gauge theory with 2D Liouville conformal blocks. We re-investigate this connection using the central extension of spherical Hecke algebra in q-coordinate representation, q being the instanton expansion parameter. Based on AFLT basis together with intertwiners we construct gauge conformal state and demonstrate its equivalence to the Liouville conformal state, with careful attention to the proper scaling behavior of the state. Using the colliding limit of regular states, we obtain the formal expression of irregular conformal states corresponding to Argyres-Douglas theory, which involves summation of functions over Young diagrams.
Tropical geometry of statistical models.
Pachter, Lior; Sturmfels, Bernd
2004-11-16
This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.
NASA Astrophysics Data System (ADS)
Huf, P. A.; Carminati, J.
2018-01-01
In this paper we explore the use of a new algebraic software package in providing independent covariant proof of a conjecture in general relativity. We examine the proof of two sub-cases of the shear-free conjecture σ =0 => ω Θ =0 by Senovilla et al. (Gen. Relativ. Gravit 30:389-411, 1998): case 1: for dust; case 2: for acceleration parallel to vorticity. We use TensorPack, a software package recently released for the Maple environment. In this paper, we briefly summarise the key features of the software and then demonstrate its use by providing and discussing examples of independent proofs of the paper in question. A full set of our completed proofs is available online at http://www.bach2roq.com/science/maths/GR/ShearFreeProofs.html. We are in agreeance with the equations provided in the original paper, noting that the proofs often require many steps. Furthermore, in our proofs we provide fully worked algebraic steps in such a way that the proofs can be examined systematically, and avoiding hand calculation. It is hoped that the elucidated proofs may be of use to other researchers in verifying the algebraic consistency of the expressions in the paper in question, as well as related literature. Furthermore we suggest that the appropriate use of algebraic software in covariant formalism could be useful for developing research and teaching in GR theory.
Bilinear covariants and spinor fields duality in quantum Clifford algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abłamowicz, Rafał, E-mail: rablamowicz@tntech.edu; Gonçalves, Icaro, E-mail: icaro.goncalves@ufabc.edu.br; Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP
Classification of quantum spinor fields according to quantum bilinear covariants is introduced in a context of quantum Clifford algebras on Minkowski spacetime. Once the bilinear covariants are expressed in terms of algebraic spinor fields, the duality between spinor and quantum spinor fields can be discussed. Thus, by endowing the underlying spacetime with an arbitrary bilinear form with an antisymmetric part in addition to a symmetric spacetime metric, quantum algebraic spinor fields and deformed bilinear covariants can be constructed. They are thus compared to the classical (non quantum) ones. Classes of quantum spinor fields classes are introduced and compared with Lounesto'smore » spinor field classification. A physical interpretation of the deformed parts and the underlying Z-grading is proposed. The existence of an arbitrary bilinear form endowing the spacetime already has been explored in the literature in the context of quantum gravity [S. W. Hawking, “The unpredictability of quantum gravity,” Commun. Math. Phys. 87, 395 (1982)]. Here, it is shown further to play a prominent role in the structure of Dirac, Weyl, and Majorana spinor fields, besides the most general flagpoles and flag-dipoles. We introduce a new duality between the standard and the quantum spinor fields, by showing that when Clifford algebras over vector spaces endowed with an arbitrary bilinear form are taken into account, a mixture among the classes does occur. Consequently, novel features regarding the spinor fields can be derived.« less
An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation.
Ilias, Miroslav; Saue, Trond
2007-02-14
The authors report the implementation of a simple one-step method for obtaining an infinite-order two-component (IOTC) relativistic Hamiltonian using matrix algebra. They apply the IOTC Hamiltonian to calculations of excitation and ionization energies as well as electric and magnetic properties of the radon atom. The results are compared to corresponding calculations using identical basis sets and based on the four-component Dirac-Coulomb Hamiltonian as well as Douglas-Kroll-Hess and zeroth-order regular approximation Hamiltonians, all implemented in the DIRAC program package, thus allowing a comprehensive comparison of relativistic Hamiltonians within the finite basis approximation.
Filtrations on Springer fiber cohomology and Kostka polynomials
NASA Astrophysics Data System (ADS)
Bellamy, Gwyn; Schedler, Travis
2018-03-01
We prove a conjecture which expresses the bigraded Poisson-de Rham homology of the nilpotent cone of a semisimple Lie algebra in terms of the generalized (one-variable) Kostka polynomials, via a formula suggested by Lusztig. This allows us to construct a canonical family of filtrations on the flag variety cohomology, and hence on irreducible representations of the Weyl group, whose Hilbert series are given by the generalized Kostka polynomials. We deduce consequences for the cohomology of all Springer fibers. In particular, this computes the grading on the zeroth Poisson homology of all classical finite W-algebras, as well as the filtration on the zeroth Hochschild homology of all quantum finite W-algebras, and we generalize to all homology degrees. As a consequence, we deduce a conjecture of Proudfoot on symplectic duality, relating in type A the Poisson homology of Slodowy slices to the intersection cohomology of nilpotent orbit closures. In the last section, we give an analogue of our main theorem in the setting of mirabolic D-modules.
Joint probabilities and quantum cognition
NASA Astrophysics Data System (ADS)
de Barros, J. Acacio
2012-12-01
In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.
Large-scale computation of incompressible viscous flow by least-squares finite element method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to large-scale/three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations and results in symmetric, positive definite algebraic system which can be solved effectively by simple iterative methods. The first-order velocity-Bernoulli function-vorticity formulation for incompressible viscous flows is also tested. For three-dimensional cases, an additional compatibility equation, i.e., the divergence of the vorticity vector should be zero, is included to make the first-order system elliptic. The simple substitution of the Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. To show the validity of this scheme for large-scale computation, we give numerical results for 2D driven cavity problem at Re = 10000 with 408 x 400 bilinear elements. The flow in a 3D cavity is calculated at Re = 100, 400, and 1,000 with 50 x 50 x 50 trilinear elements. The Taylor-Goertler-like vortices are observed for Re = 1,000.
Linear-algebraic bath transformation for simulating complex open quantum systems
Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; ...
2014-12-02
In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallelmore » chains. Furthermore, the transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics.« less
The genetic code as a periodic table: algebraic aspects.
Bashford, J D; Jarvis, P D
2000-01-01
The systematics of indices of physico-chemical properties of codons and amino acids across the genetic code are examined. Using a simple numerical labelling scheme for nucleic acid bases, A=(-1,0), C=(0,-1), G=(0,1), U=(1,0), data can be fitted as low order polynomials of the six coordinates in the 64-dimensional codon weight space. The work confirms and extends the recent studies by Siemion et al. (1995. BioSystems 36, 231-238) of the conformational parameters. Fundamental patterns in the data such as codon periodicities, and related harmonics and reflection symmetries, are here associated with the structure of the set of basis monomials chosen for fitting. Results are plotted using the Siemion one-step mutation ring scheme, and variants thereof. The connections between the present work, and recent studies of the genetic code structure using dynamical symmetry algebras, are pointed out.
String Theory: exact solutions, marginal deformations and hyperbolic spaces
NASA Astrophysics Data System (ADS)
Orlando, Domenico
2006-10-01
This thesis is almost entirely devoted to studying string theory backgrounds characterized by simple geometrical and integrability properties. The archetype of this type of system is given by Wess-Zumino-Witten models, describing string propagation in a group manifold or, equivalently, a class of conformal field theories with current algebras. We study the moduli space of such models by using truly marginal deformations. Particular emphasis is placed on asymmetric deformations that, together with the CFT description, enjoy a very nice spacetime interpretation in terms of the underlying Lie algebra. Then we take a slight detour so to deal with off-shell systems. Using a renormalization-group approach we describe the relaxation towards the symmetrical equilibrium situation. In he final chapter we consider backgrounds with Ramond-Ramond field and in particular we analyze direct products of constant-curvature spaces and find solutions with hyperbolic spaces.
Infinity: The Twilight Zone of Mathematics.
ERIC Educational Resources Information Center
Love, William P.
1989-01-01
The theorems and proofs presented are designed to enhance student understanding of the theory of infinity as developed by Cantor and others. Three transfinite numbers are defined to express the cardinality of infinite algebraic sets, infinite sets of geometric points and infinite sets of functions. (DC)
NASA Technical Reports Server (NTRS)
Smialek, James L.
2002-01-01
A cyclic oxidation interfacial spalling model has been developed in Part 1. The governing equations have been simplified here by substituting a new algebraic expression for the series (Good-Smialek approximation). This produced a direct relationship between cyclic oxidation weight change and model input parameters. It also allowed for the mathematical derivation of various descriptive parameters as a function of the inputs. It is shown that the maximum in weight change varies directly with the parabolic rate constant and cycle duration and inversely with the spall fraction, all to the 1/2 power. The number of cycles to reach maximum and zero weight change vary inversely with the spall fraction, and the ratio of these cycles is exactly 1:3 for most oxides. By suitably normalizing the weight change and cycle number, it is shown that all cyclic oxidation weight change model curves can be represented by one universal expression for a given oxide scale.
Renormalization group flows and continual Lie algebras
NASA Astrophysics Data System (ADS)
Bakas, Ioannis
2003-08-01
We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by Script G(d/dt;1), with anti-symmetric Cartan kernel K(t,t') = delta'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N|N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Bäcklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Zn to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra Script G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.
Hypotrochoids in conformal restriction systems and Virasoro descendants
NASA Astrophysics Data System (ADS)
Doyon, Benjamin
2013-09-01
A conformal restriction system is a commutative, associative, unital algebra equipped with a representation of the groupoid of univalent conformal maps on connected open sets of the Riemann sphere, along with a family of linear functionals on subalgebras, satisfying a set of properties including conformal invariance and a type of restriction. This embodies some expected properties of expectation values in conformal loop ensembles CLEκ (at least for 8/3 < κ ≤ 4). In the context of conformal restriction systems, we study certain algebra elements associated with hypotrochoid simple curves (a family of curves including the ellipse). These have the CLE interpretation of being ‘renormalized random variables’ that are nonzero only if there is at least one loop of hypotrochoid shape. Each curve has a center w, a scale ɛ and a rotation angle θ, and we analyze the renormalized random variable as a function of u = ɛeiθ and w. We find that it has an expansion in positive powers of u and \\bar {u}, and that the coefficients of pure u (\\bar {u}) powers are holomorphic in w (\\bar {w}). We identify these coefficients (the ‘hypotrochoid fields’) with certain Virasoro descendants of the identity field in conformal field theory, thereby showing that they form part of a vertex operator algebraic structure. This largely generalizes works by the author (in CLE), and the author with his collaborators Riva and Cardy (in SLE8/3 and other restriction measures), where the case of the ellipse, at the order u2, led to the stress-energy tensor of CFT. The derivation uses in an essential way the Virasoro vertex operator algebra structure of conformal derivatives established recently by the author. The results suggest in particular the exact evaluation of CLE expectations of products of hypotrochoid fields as well as nontrivial relations amongst them through the vertex operator algebra, and further shed light onto the relationship between CLE and CFT.
Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation.
Helms, Gunther; Dathe, Henning; Dechent, Peter
2008-03-01
From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20 degrees . Three-dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual-angle measurements at 3T (nonselective 3D-FLASH, 7 degrees and 20 degrees flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill-conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms. (c) 2008 Wiley-Liss, Inc.
Probability distribution for the Gaussian curvature of the zero level surface of a random function
NASA Astrophysics Data System (ADS)
Hannay, J. H.
2018-04-01
A rather natural construction for a smooth random surface in space is the level surface of value zero, or ‘nodal’ surface f(x,y,z) = 0, of a (real) random function f; the interface between positive and negative regions of the function. A physically significant local attribute at a point of a curved surface is its Gaussian curvature (the product of its principal curvatures) because, when integrated over the surface it gives the Euler characteristic. Here the probability distribution for the Gaussian curvature at a random point on the nodal surface f = 0 is calculated for a statistically homogeneous (‘stationary’) and isotropic zero mean Gaussian random function f. Capitalizing on the isotropy, a ‘fixer’ device for axes supplies the probability distribution directly as a multiple integral. Its evaluation yields an explicit algebraic function with a simple average. Indeed, this average Gaussian curvature has long been known. For a non-zero level surface instead of the nodal one, the probability distribution is not fully tractable, but is supplied as an integral expression.
Yates, S R
2009-01-01
An analytical solution describing the fate and transport of pesticides applied to soils has been developed. Two pesticide application methods can be simulated: point-source applications, such as idealized shank or a hot-gas injection method, and a more realistic shank-source application method that includes a vertical pesticide distribution in the soil domain due to a soil fracture caused by a shank. The solutions allow determination of the volatilization rate and other information that could be important for understanding fumigant movement and in the development of regulatory permitting conditions. The solutions can be used to characterize differences in emissions relative to changes in the soil degradation rate, surface barrier conditions, application depth, and soil packing. In some cases, simple algebraic expressions are provided that can be used to obtain the total emissions and total soil degradation. The solutions provide a consistent methodology for determining the total emissions and can be used with other information, such as field and laboratory experimental data, to support the development of fumigant regulations. The uses of the models are illustrated by several examples.
Universal Racah matrices and adjoint knot polynomials: Arborescent knots
NASA Astrophysics Data System (ADS)
Mironov, A.; Morozov, A.
2016-04-01
By now it is well established that the quantum dimensions of descendants of the adjoint representation can be described in a universal form, independent of a particular family of simple Lie algebras. The Rosso-Jones formula then implies a universal description of the adjoint knot polynomials for torus knots, which in particular unifies the HOMFLY (SUN) and Kauffman (SON) polynomials. For E8 the adjoint representation is also fundamental. We suggest to extend the universality from the dimensions to the Racah matrices and this immediately produces a unified description of the adjoint knot polynomials for all arborescent (double-fat) knots, including twist, 2-bridge and pretzel. Technically we develop together the universality and the "eigenvalue conjecture", which expresses the Racah and mixing matrices through the eigenvalues of the quantum R-matrix, and for dealing with the adjoint polynomials one has to extend it to the previously unknown 6 × 6 case. The adjoint polynomials do not distinguish between mutants and therefore are not very efficient in knot theory, however, universal polynomials in higher representations can probably be better in this respect.
NASA Astrophysics Data System (ADS)
Belletête, J.; Gainutdinov, A. M.; Jacobsen, J. L.; Saleur, H.; Vasseur, R.
2017-12-01
The relationship between bulk and boundary properties is one of the founding features of (rational) conformal field theory (CFT). Our goal in this paper is to explore the possibility of having an equivalent relationship in the context of lattice models. We focus on models based on the Temperley-Lieb algebra, and use the concept of ‘braid translation’, which is a natural way, in physical terms, to ‘close’ an open spin chain by adding an interaction between the first and last spins using braiding to ‘bring’ them next to each other. The interaction thus obtained is in general non-local, but has the key feature that it is expressed solely in terms of the algebra for the open spin chain—the ‘ordinary’ Temperley-Lieb algebra and its blob algebra generalization. This is in contrast with the usual periodic spin chains which involve only local interactions, and are described by the periodic Temperley-Lieb algebra. We show that for the restricted solid-on-solid models, which are known to be described by minimal unitary CFTs (with central charge c<1 ) in the continuum limit, the braid translation in fact does provide the ordinary periodic model starting from the open model with fixed (identical) boundary conditions on the two sides of the strip. This statement has a precise mathematical formulation, which is a pull-back map between irreducible modules of, respectively, the blob algebra and the affine Temperley-Lieb algebra. We then turn to the same kind of analysis for two models whose continuum limits are logarithmic CFTs (LCFTs)—the alternating gl(1\\vert 1) and sl(2\\vert 1) spin chains. We find that the result for minimal models does not hold any longer: braid translation of the relevant (in that case, indecomposable but not irreducible) modules of the Temperley-Lieb algebra does not give rise to the modules known to be present in the periodic chains. In the gl(1\\vert 1) case, the content in terms of the irreducibles is the same, as well as the spectrum, but the detailed structure (like logarithmic coupling) is profoundly different. This carries over to the continuum limit. The situation is similar for the sl(2\\vert 1) case. The problem of relating bulk and boundary lattice models for LCFTs thus remains open.
NASA Astrophysics Data System (ADS)
Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua
2014-11-01
Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.
On generalized Melvin solution for the Lie algebra E_6
NASA Astrophysics Data System (ADS)
Bolokhov, S. V.; Ivashchuk, V. D.
2017-10-01
A multidimensional generalization of Melvin's solution for an arbitrary simple Lie algebra G is considered. The gravitational model in D dimensions, D ≥ 4, contains n 2-forms and l ≥ n scalar fields, where n is the rank of G. The solution is governed by a set of n functions H_s(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials (the so-called fluxbrane polynomials). The polynomials H_s(z), s = 1,\\ldots ,6, for the Lie algebra E_6 are obtained and a corresponding solution for l = n = 6 is presented. The polynomials depend upon integration constants Q_s, s = 1,\\ldots ,6. They obey symmetry and duality identities. The latter ones are used in deriving asymptotic relations for solutions at large distances. The power-law asymptotic relations for E_6-polynomials at large z are governed by the integer-valued matrix ν = A^{-1} (I + P), where A^{-1} is the inverse Cartan matrix, I is the identity matrix and P is a permutation matrix, corresponding to a generator of the Z_2-group of symmetry of the Dynkin diagram. The 2-form fluxes Φ ^s, s = 1,\\ldots ,6, are calculated.
Vertex operator algebras of Argyres-Douglas theories from M5-branes
NASA Astrophysics Data System (ADS)
Song, Jaewon; Xie, Dan; Yan, Wenbin
2017-12-01
We study aspects of the vertex operator algebra (VOA) corresponding to Argyres-Douglas (AD) theories engineered using the 6d N=(2, 0) theory of type J on a punctured sphere. We denote the AD theories as ( J b [ k], Y), where J b [ k] and Y represent an irregular and a regular singularity respectively. We restrict to the `minimal' case where J b [ k] has no associated mass parameters, and the theory does not admit any exactly marginal deformations. The VOA corresponding to the AD theory is conjectured to be the W-algebra W^{k_{2d}}(J, Y ) , where {k}_{2d}=-h+b/b+k with h being the dual Coxeter number of J. We verify this conjecture by showing that the Schur index of the AD theory is identical to the vacuum character of the corresponding VOA, and the Hall-Littlewood index computes the Hilbert series of the Higgs branch. We also find that the Schur and Hall-Littlewood index for the AD theory can be written in a simple closed form for b = h. We also test the conjecture that the associated variety of such VOA is identical to the Higgs branch. The M5-brane construction of these theories and the corresponding TQFT structure of the index play a crucial role in our computations.
Using process algebra to develop predator-prey models of within-host parasite dynamics.
McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel
2013-07-21
As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lectures on Kähler Geometry - Series: London Mathematical Society Student Texts (No. 69)
NASA Astrophysics Data System (ADS)
Moroianu, Andrei
2004-03-01
Kähler geometry is a beautiful and intriguing area of mathematics, of substantial research interest to both mathematicians and physicists. This self-contained graduate text provides a concise and accessible introduction to the topic. The book begins with a review of basic differential geometry, before moving on to a description of complex manifolds and holomorphic vector bundles. Kähler manifolds are discussed from the point of view of Riemannian geometry, and Hodge and Dolbeault theories are outlined, together with a simple proof of the famous Kähler identities. The final part of the text studies several aspects of compact Kähler manifolds: the Calabi conjecture, Weitzenböck techniques, Calabi Yau manifolds, and divisors. All sections of the book end with a series of exercises and students and researchers working in the fields of algebraic and differential geometry and theoretical physics will find that the book provides them with a sound understanding of this theory. The first graduate-level text on Kähler geometry, providing a concise introduction for both mathematicians and physicists with a basic knowledge of calculus in several variables and linear algebra Over 130 exercises and worked examples Self-contained and presents varying viewpoints including Riemannian, complex and algebraic
Comparison of Turbulent Thermal Diffusivity and Scalar Variance Models
NASA Technical Reports Server (NTRS)
Yoder, Dennis A.
2016-01-01
In this study, several variable turbulent Prandtl number formulations are examined for boundary layers, pipe flow, and axisymmetric jets. The model formulations include simple algebraic relations between the thermal diffusivity and turbulent viscosity as well as more complex models that solve transport equations for the thermal variance and its dissipation rate. Results are compared with available data for wall heat transfer and profile measurements of mean temperature, the root-mean-square (RMS) fluctuating temperature, turbulent heat flux and turbulent Prandtl number. For wall-bounded problems, the algebraic models are found to best predict the rise in turbulent Prandtl number near the wall as well as the log-layer temperature profile, while the thermal variance models provide a good representation of the RMS temperature fluctuations. In jet flows, the algebraic models provide no benefit over a constant turbulent Prandtl number approach. Application of the thermal variance models finds that some significantly overpredict the temperature variance in the plume and most underpredict the thermal growth rate of the jet. The models yield very similar fluctuating temperature intensities in jets from straight pipes and smooth contraction nozzles, in contrast to data that indicate the latter should have noticeably higher values. For the particular low subsonic heated jet cases examined, changes in the turbulent Prandtl number had no effect on the centerline velocity decay.
ONRASIA Scientific Information Bulletin, Volume 16, Number 1
1991-03-01
be expressed naturally in an and hence the programs produced by pline. They range from computing the algebraic language such as Fortran, these efforts...years devel- gram an iterative scheme to solve the function satisfies oping vectorizing compilers for Hitachi. problem. This is quite natural to do in...for it ential equations to be expressed in a on the plate, with 0,=1 at the outside to compile into efficient vectorizable natural mathematical syntax
Mathematical Modeling and Pure Mathematics
ERIC Educational Resources Information Center
Usiskin, Zalman
2015-01-01
Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…
Generalized EMV-Effect Algebras
NASA Astrophysics Data System (ADS)
Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.
2018-04-01
Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.
Observability of Automata Networks: Fixed and Switching Cases.
Li, Rui; Hong, Yiguang; Wang, Xingyuan
2018-04-01
Automata networks are a class of fully discrete dynamical systems, which have received considerable interest in various different areas. This brief addresses the observability of automata networks and switched automata networks in a unified framework, and proposes simple necessary and sufficient conditions for observability. The results are achieved by employing methods from symbolic computation, and are suited for implementation using computer algebra systems. Several examples are presented to demonstrate the application of the results.
Collector modulation in high-voltage bipolar transistor in the saturation mode: Analytical approach
NASA Astrophysics Data System (ADS)
Dmitriev, A. P.; Gert, A. V.; Levinshtein, M. E.; Yuferev, V. S.
2018-04-01
A simple analytical model is developed, capable of replacing the numerical solution of a system of nonlinear partial differential equations by solving a simple algebraic equation when analyzing the collector resistance modulation of a bipolar transistor in the saturation mode. In this approach, the leakage of the base current into the emitter and the recombination of non-equilibrium carriers in the base are taken into account. The data obtained are in good agreement with the results of numerical calculations and make it possible to describe both the motion of the front of the minority carriers and the steady state distribution of minority carriers across the collector in the saturation mode.
A simple white noise analysis of neuronal light responses.
Chichilnisky, E J
2001-05-01
A white noise technique is presented for estimating the response properties of spiking visual system neurons. The technique is simple, robust, efficient and well suited to simultaneous recordings from multiple neurons. It provides a complete and easily interpretable model of light responses even for neurons that display a common form of response nonlinearity that precludes classical linear systems analysis. A theoretical justification of the technique is presented that relies only on elementary linear algebra and statistics. Implementation is described with examples. The technique and the underlying model of neural responses are validated using recordings from retinal ganglion cells, and in principle are applicable to other neurons. Advantages and disadvantages of the technique relative to classical approaches are discussed.
Superbranes, D = 11 CJS Supergravity and Enlarged Superspace Coordinates/Fields Correspondence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azcarraga, J.A. de; IFIC - CSIC-UVEG, Facultad de Fisica, 46100-Burjassot, Valencia
2005-04-25
We discuss the role of enlarged superspaces in two seemingly different contexts, the structure of the p-brane actions and that of the Cremmer-Julia-Scherk eleven-dimensional supergravity. Both provide examples of a common principle: the existence of an enlarged superspaces coordinates/fields correspondence by which all the (worldvolume or spacetime) fields of the theory are associated to coordinates of enlarged superspaces. In the context of p-branes, enlarged superspaces may be used to construct manifestly supersymmetry-invariant Wess-Zumino terms and as a way of expressing the Born-Infeld worldvolume fields of D-branes and the worldvolume M5-brane two-form in terms of fields associated to the coordinates ofmore » these enlarged superspaces. This is tantamount to saying that the Born-Infeld fields have a superspace origin, as do the other worldvolume fields, and that they have a composite structure. In D=11 supergravity theory enlarged superspaces arise when its underlying gauge structure is investigated and, as a result, the composite nature of the A3 field is revealed: there is a full one-parametric family of enlarged superspace groups that solve the problem of expressing A3 in terms of spacetime fields associated to their coordinates. The corresponding enlarged supersymmetry algebras turn out to be deformations of an expansion of the osp(1 vertical bar 32) algebra. The unifying mathematical structure underlying all these facts is the cohomology of the supersymmetry algebras involved.« less
ERIC Educational Resources Information Center
Spevak, Arlene
2008-01-01
The algebraic concepts and major ideas that govern Newton's laws of motion can often be a challenge for the majority of ninth-grade students. Therefore, to make learning these concepts less task-oriented and more enjoyable, the author developed lessons that allow students to construct and express their understanding of these ideas through…
Energy is Not the Ability to do Work
ERIC Educational Resources Information Center
Lehrman, Robert L.
1973-01-01
The common definition is shown to be false. A modern definition must be based on the first and second laws of thermodynamics and in terms of a set of algebraic expressions written in such a way that their sum does not change when a system is isolated. (DF)
Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications
NASA Astrophysics Data System (ADS)
Martins, M. J.; Melo, C. S.
2009-10-01
We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U[SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.
Moyal deformations of Clifford gauge theories of gravity
NASA Astrophysics Data System (ADS)
Castro, Carlos
2016-12-01
A Moyal deformation of a Clifford Cl(3, 1) Gauge Theory of (Conformal) Gravity is performed for canonical noncommutativity (constant Θμν parameters). In the very special case when one imposes certain constraints on the fields, there are no first-order contributions in the Θμν parameters to the Moyal deformations of Clifford gauge theories of gravity. However, when one does not impose constraints on the fields, there are first-order contributions in Θμν to the Moyal deformations in variance with the previous results obtained by other authors and based on different gauge groups. Despite that the generators of U(2, 2),SO(4, 2),SO(2, 3) can be expressed in terms of the Clifford algebra generators this does not imply that these algebras are isomorphic to the Clifford algebra. Therefore one should not expect identical results to those obtained by other authors. In particular, there are Moyal deformations of the Einstein-Hilbert gravitational action with a cosmological constant to first-order in Θμν. Finally, we provide a mechanism which furnishes a plausible cancellation of the huge vacuum energy density.
Synchronization Analysis of Master-Slave Probabilistic Boolean Networks.
Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W C; Cao, Jinde
2015-08-28
In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results.
Uncertainty principle in loop quantum cosmology by Moyal formalism
NASA Astrophysics Data System (ADS)
Perlov, Leonid
2018-03-01
In this paper, we derive the uncertainty principle for the loop quantum cosmology homogeneous and isotropic Friedmann-Lemaiter-Robertson-Walker model with the holonomy-flux algebra. The uncertainty principle is between the variables c, with the meaning of connection and μ having the meaning of the physical cell volume to the power 2/3, i.e., v2 /3 or a plaquette area. Since both μ and c are not operators, but rather the random variables, the Robertson uncertainty principle derivation that works for hermitian operators cannot be used. Instead we use the Wigner-Moyal-Groenewold phase space formalism. The Wigner-Moyal-Groenewold formalism was originally applied to the Heisenberg algebra of the quantum mechanics. One can derive it from both the canonical and path integral quantum mechanics as well as the uncertainty principle. In this paper, we apply it to the holonomy-flux algebra in the case of the homogeneous and isotropic space. Another result is the expression for the Wigner function on the space of the cylindrical wave functions defined on Rb in c variables rather than in dual space μ variables.
Synchronization Analysis of Master-Slave Probabilistic Boolean Networks
Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W. C.; Cao, Jinde
2015-01-01
In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results. PMID:26315380
Algebraic expressions for the polarisation response of spin-VCSELs
NASA Astrophysics Data System (ADS)
Adams, Mike; Li, Nianqiang; Cemlyn, Ben; Susanto, Hadi; Henning, Ian
2018-06-01
Closed-form expressions are derived for the relationship between the polarisation of the output and that of the pump for spin-polarised vertical-cavity surface-emitting lasers. These expressions are based on the spin-flip model (SFM) combined with the condition that the carrier recombination time is much greater than both the spin relaxation time and the photon lifetime. Allowance is also included for misalignment between the principal axes of birefringence and dichroism. These expressions yield results that are in excellent agreement both with previously published numerical calculations and with further tests for a wide range of parameters. Trends with key parameters of the SFM are easily deduced from these expressions.
Origin of Money: Dynamic Duality Between Necessity and Unnecessity
NASA Astrophysics Data System (ADS)
Tauchi, Yuka; Kamiura, Moto; Haruna, Taichi; Gunji, Yukio-Pegio
2008-10-01
We propose a mathematical model of economic agents to study origin of money. This multi-agent model is based on commodity theory of money, which says that a commodity used as money emerges from barter transaction. Each agent has a different value system which is given by a Heyting algebra, and exchanges one's commodities based on the value system. In each value system, necessity and unnecessity of commodities are expressed by some elements and their compliments on a Heyting Algebra. Moreover, the concept of the compliment is extended. Consequently, the duality of the necessity-unnecessity is weakened, and the exchanges of the commodities are promoted. The commodities which keeps being exchanged for a long time can correspond to money.
Perturbed Coulomb Potentials in the Klein-Gordon Equation: Quasi-Exact Solution
NASA Astrophysics Data System (ADS)
Baradaran, M.; Panahi, H.
2018-05-01
Using the Lie algebraic approach, we present the quasi-exact solutions of the relativistic Klein-Gordon equation for perturbed Coulomb potentials namely the Cornell potential, the Kratzer potential and the Killingbeck potential. We calculate the general exact expressions for the energies, corresponding wave functions and the allowed values of the parameters of the potential within the representation space of sl(2) Lie algebra. In addition, we show that the considered equations can be transformed into the Heun's differential equations and then we reproduce the results using the associated special functions. Also, we study the special case of the Coulomb potential and show that in the non-relativistic limit, the solution of the Klein-Gordon equation converges to that of Schrödinger equation.
Full thermomechanical coupling in modelling of micropolar thermoelasticity
NASA Astrophysics Data System (ADS)
Murashkin, E. V.; Radayev, Y. N.
2018-04-01
The present paper is devoted to plane harmonic waves of displacements and microrotations propagating in fully coupled thermoelastic continua. The analysis is carried out in the framework of linear conventional thermoelastic micropolar continuum model. The reduced energy balance equation and the special form of the Helmholtz free energy are discussed. The constitutive constants providing fully coupling of equations of motion and heat conduction are considered. The dispersion equation is derived and analysed in the form bi-cubic and bi-quadratic polynoms product. The equation are analyzed by the computer algebra system Mathematica. Algebraic forms expressed by complex multivalued square and cubic radicals are obtained for wavenumbers of transverse and longitudinal waves. The exact forms of wavenumbers of a plane harmonic coupled thermoelastic waves are computed.
NASA Astrophysics Data System (ADS)
Meljanac, Daniel; Meljanac, Stjepan; Mignemi, Salvatore; Pikutić, Danijel; Štrajn, Rina
2018-03-01
We construct the twist operator for the Snyder space. Our starting point is a non-associative star product related to a Hermitian realisation of the noncommutative coordinates originally introduced by Snyder. The corresponding coproduct of momenta is non-coassociative. The twist is constructed using a general definition of the star product in terms of a bi-differential operator in the Hopf algebroid approach. The result is given by a closed analytical expression. We prove that this twist reproduces the correct coproducts of the momenta and the Lorentz generators. The twisted Poincaré symmetry is described by a non-associative Hopf algebra, while the twisted Lorentz symmetry is described by the undeformed Hopf algebra. This new twist might be important in the construction of different types of field theories on Snyder space.
Isospin degree of freedom in even-even 68-76Ge and 62-70Zn isotopes
NASA Astrophysics Data System (ADS)
Jalili Majarshin, A.
2018-01-01
The introduction of isotopic spin is significant in light nuclei as Ge and Zn isotopes in order to take into account isospin effects on energy spectra. Dynamical symmetries in spherical, γ-soft limits and transition in the interacting boson model IBM-3 are analyzed. Analytic expressions and exact eigenenergies, electromagnetic transitions probabilities are obtained for the transition between spherical and γ-soft shapes by using the Bethe ansatz within an infinite-dimensional Lie algebra in light mass nuclei. The corresponding algebraic structure and reduction chain are studied in IBM-3. For examples, the nuclear structure of the 68-76Ge and 62-70Zn isotopes is calculated in IBM-3 and compared with experimental results.
José, Marco V; Morgado, Eberto R; Govezensky, Tzipe
2011-07-01
Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.
A Representation for Fermionic Correlation Functions
NASA Astrophysics Data System (ADS)
Feldman, Joel; Knörrer, Horst; Trubowitz, Eugene
Let dμS(a) be a Gaussian measure on the finitely generated Grassmann algebra A. Given an even W(a)∈A, we construct an operator R on A such that
NASA Technical Reports Server (NTRS)
Lautenschlager, L.; Perry, C. R., Jr. (Principal Investigator)
1981-01-01
The development of formulae for the reduction of multispectral scanner measurements to a single value (vegetation index) for predicting and assessing vegetative characteristics is addressed. The origin, motivation, and derivation of some four dozen vegetation indices are summarized. Empirical, graphical, and analytical techniques are used to investigate the relationships among the various indices. It is concluded that many vegetative indices are very similar, some being simple algebraic transforms of others.
New formulations for tsunami runup estimation
NASA Astrophysics Data System (ADS)
Kanoglu, U.; Aydin, B.; Ceylan, N.
2017-12-01
We evaluate shoreline motion and maximum runup in two folds: One, we use linear shallow water-wave equations over a sloping beach and solve as initial-boundary value problem similar to the nonlinear solution of Aydın and Kanoglu (2017, Pure Appl. Geophys., https://doi.org/10.1007/s00024-017-1508-z). Methodology we present here is simple; it involves eigenfunction expansion and, hence, avoids integral transform techniques. We then use several different types of initial wave profiles with and without initial velocity, estimate shoreline properties and confirm classical runup invariance between linear and nonlinear theories. Two, we use the nonlinear shallow water-wave solution of Kanoglu (2004, J. Fluid Mech. 513, 363-372) to estimate maximum runup. Kanoglu (2004) presented a simple integral solution for the nonlinear shallow water-wave equations using the classical Carrier and Greenspan transformation, and further extended shoreline position and velocity to a simpler integral formulation. In addition, Tinti and Tonini (2005, J. Fluid Mech. 535, 33-64) defined initial condition in a very convenient form for near-shore events. We use Tinti and Tonini (2005) type initial condition in Kanoglu's (2004) shoreline integral solution, which leads further simplified estimates for shoreline position and velocity, i.e. algebraic relation. We then use this algebraic runup estimate to investigate effect of earthquake source parameters on maximum runup and present results similar to Sepulveda and Liu (2016, Coast. Eng. 112, 57-68).
Relativistic Causality and Quasi-Orthomodular Algebras
NASA Astrophysics Data System (ADS)
Nobili, Renato
2006-05-01
The concept of fractionability or decomposability in parts of a physical system has its mathematical counterpart in the lattice--theoretic concept of orthomodularity. Systems with a finite number of degrees of freedom can be decomposed in different ways, corresponding to different groupings of the degrees of freedom. The orthomodular structure of these simple systems is trivially manifest. The problem then arises as to whether the same property is shared by physical systems with an infinite number of degrees of freedom, in particular by the quantum relativistic ones. The latter case was approached several years ago by Haag and Schroer (1962; Haag, 1992) who started from noting that the causally complete sets of Minkowski spacetime form an orthomodular lattice and posed the question of whether the subalgebras of local observables, with topological supports on such subsets, form themselves a corresponding orthomodular lattice. Were it so, the way would be paved to interpreting spacetime as an intrinsic property of a local quantum field algebra. Surprisingly enough, however, the hoped property does not hold for local algebras of free fields with superselection rules. The possibility seems to be instead open if the local currents that govern the superselection rules are driven by gauge fields. Thus, in the framework of local quantum physics, the request for algebraic orthomodularity seems to imply physical interactions! Despite its charm, however, such a request appears plagued by ambiguities and criticities that make of it an ill--posed problem. The proposers themselves, indeed, concluded that the orthomodular correspondence hypothesis is too strong for having a chance of being practicable. Thus, neither the idea was taken seriously by the proposers nor further investigated by others up to a reasonable degree of clarification. This paper is an attempt to re--formulate and well--pose the problem. It will be shown that the idea is viable provided that the algebra of local observables: (1) is considered all over the whole range of its irreducible representations; (2) is widened with the addition of the elements of a suitable intertwining group of automorphisms; (3) the orthomodular correspondence requirement is modified to an extent sufficient to impart a natural topological structure to the intertwined algebra of observables so obtained. A novel scenario then emerges in which local quantum physics appears to provide a general framework for non--perturbative quantum field dynamics.
The same teacher, the same curriculum materials, different schools: What is the enacted curriculum?
NASA Astrophysics Data System (ADS)
Eisenmann, Tammy
This research examines how the same teacher implements the same curriculum material in two different schools. The aim of the study is to examine how the enacted algebra curriculum may change when the same teacher enacts the same written curriculum materials in different classes. This research comprises two case studies. Each case examines one teacher who taught the beginning of the mathematical topic "equivalent algebraic expressions", to two 7th grade classes from different schools. The same textbook was used in all four classes. The data collected includes: 1. Observations: 25930 lessons throughout the school year in each of the participating classes; Other mathematics classes in each of the schools; Other non9mathematics classes in the participating classes. A total of 130 lessons were observed. The observations included continuous observations of the teaching of "equivalent algebraic expressions" (15919 lessons) in each class. These observations are the main data source of this research; 2. Interviews with the teachers; 3. Informal conversations; and 4. Field notes. The data was analyzed both through quantitative and qualitative analysis. The research focuses on the following two aspects of the enacted curriculum: implementation of the recommendation that appeared in the curriculum materials and the types of algebraic activity that the students were exposed to during the teaching of the mathematical topic. Kieran's framework (Kieran, 1996, 2004), which distinguishes between three types of algebraic activities 9 generational, transformational and global/meta9level 9 was employed for the examination of the algebraic activities. Comparisons were made for two aspects of the research: between the enacted curriculum in each of the classes and the curriculum materials; and between each of the classes taught by same teacher. It was found that in case study 1, that examined teacher Sara and schools Carmel and Tavor -- most of the recommendations for instruction that appeared in the curriculum materials, were implemented: The students were exposed to the main mathematical subjects/ideas and the mathematical sequence that appeared in the curriculum materials; the lesson structure was similar to the recommended structure, and did not include work on assignments that were not recommended in the curriculum materials. In spite of the similarities in each of the classes, and the curriculum materials, and between the two classes -- a few differences were found, mainly while comparing the enactment in Tavor versus the recommendations in the curriculum materials and the enactment in Carmel. Examination of the algebraic types of activities that the students were exposed to in Carmel and Tavor schools throughout the school year shows that, although the students in the two schools were not required to deal with a similar number of assignments and tasks, in both schools they were exposed to the three types of algebraic activities in similar distribution as appear in the curriculum materials. The focus on the algebraic types of activities exposed to during the whole class work, shows that a significantly lesser percentage of global/meta9level activities was enacted in Tavor. In Tavor, teacher Sara omitted global/meta level activities that appear in the curriculum materials and in addition, there were several cases in which the same assignment/task was enacted in Carmel as a global/meta9level activity but was not enacted in Tavor. In case study 2, which included teacher Rebecca and schools Gamla and Arbel, not all the recommendations in the curriculum material were enacted. Indeed, in both classes the main mathematics subjects/ideas intended for this topic according to the curriculum materials were presented to the students, and the topic was taught according to the mathematical sequence that appeared in the curriculum materials, however in both classes the lesson structures were different from the intended structure -- unintended assignments were enacted, and some of the assignments were enacted not according to their purpose (for example, an assignment that was intended for group work was given as homework). These differences were found in comparison of each of the classes to the curriculum materials and in comparison between Gamla and Arbel. Examination of the algebraic types of activities that the students were exposed to in both classes throughout the school year as well as in the whole class -- shows differences originating from both transformational and global/meta9level algebraic activities. It was found that in Gamla more global/meta9level activities were enacted, as compared to the curriculum materials and the enactment in Arbel. In Arbel, however, emphasis was given to transformational activities as compared to the curriculum materials and enactment in Gamla. In addition it was found that there is also a difference in the way both teachers, Sara and Rebecca, perceived the curriculum materials, and that this perception is expressed in the different way each of them used the curriculum materials in their classes. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Ramadhan, Rifqi; Prabowo, Rian Gilang; Aprilliyani, Ria; Basari
2018-02-01
Victims of acute cancer and tumor are growing each year and cancer becomes one of the causes of human deaths in the world. Cancers or tumor tissue cells are cells that grow abnormally and turn to take over and damage the surrounding tissues. At the beginning, cancers or tumors do not have definite symptoms in its early stages, and can even attack the tissues inside of the body. This phenomena is not identifiable under visual human observation. Therefore, an early detection system which is cheap, quick, simple, and portable is essensially required to anticipate the further development of cancer or tumor. Among all of the modalities, microwave imaging is considered to be a cheaper, simple, and portable system method. There are at least two simple image reconstruction algorithms i.e. Filtered Back Projection (FBP) and Algebraic Reconstruction Technique (ART), which have been adopted in some common modalities. In this paper, both algorithms will be compared by reconstructing the image from an artificial tissue model (i.e. phantom), which has two different dielectric distributions. We addressed two performance comparisons, namely quantitative and qualitative analysis. Qualitative analysis includes the smoothness of the image and also the success in distinguishing dielectric differences by observing the image with human eyesight. In addition, quantitative analysis includes Histogram, Structural Similarity Index (SSIM), Mean Squared Error (MSE), and Peak Signal-to-Noise Ratio (PSNR) calculation were also performed. As a result, quantitative parameters of FBP might show better values than the ART. However, ART is likely more capable to distinguish two different dielectric value than FBP, due to higher contrast in ART and wide distribution grayscale level.
Problem Solving in Calculus with Symbolic Geometry and CAS
ERIC Educational Resources Information Center
Todd, Philip; Wiechmann, James
2008-01-01
Computer algebra systems (CAS) have been around for a number of years, as has dynamic geometry. Symbolic geometry software is new. It bears a superficial similarity to dynamic geometry software, but differs in that problems may be set up involving symbolic variables and constants, and measurements are given as symbolic expressions. Mathematical…
A Snowflake Project: Calculating, Analyzing, and Optimizing with the Koch Snowflake.
ERIC Educational Resources Information Center
Bolte, Linda A.
2002-01-01
Presents a project that addresses several components of the Algebra and Communication Standards for Grades 9-12 presented in Principles and Standards for School Mathematics (NCTM, 2000). Describes doing mathematical modeling and using the language of mathematics to express a recursive relationship in the perimeter and area of the Koch snowflake.…
Controllability in nonlinear systems
NASA Technical Reports Server (NTRS)
Hirschorn, R. M.
1975-01-01
An explicit expression for the reachable set is obtained for a class of nonlinear systems. This class is described by a chain condition on the Lie algebra of vector fields associated with each nonlinear system. These ideas are used to obtain a generalization of a controllability result for linear systems in the case where multiplicative controls are present.
Using Disks as Models for Proofs of Series
ERIC Educational Resources Information Center
Somchaipeng, Tongta; Kruatong, Tussatrin; Panijpan, Bhinyo
2012-01-01
Exploring and deriving proofs of closed-form expressions for series can be fun for students. However, for some students, a physical representation of such problems is more meaningful. Various approaches have been designed to help students visualize squares of sums and sums of squares; these approaches may be arithmetic-algebraic or combinatorial…
Early Algebra: Expressing Covariation and Correspondence
ERIC Educational Resources Information Center
Panorkou, Nicole; Maloney, Alan P.
2016-01-01
In a classroom teaching experiment, we explored fifth graders' ability to identify relationships in and between two patterns--what we may refer to as functional relationships. Conventional functions curricula are dominated by defining relationships between two patterns via a rule, describing how to find y or f(x) given a particular value for x…
A Comparative Study of Student Math Skills: Perceptions, Validation, and Recommendations
ERIC Educational Resources Information Center
Jones, Thomas W.; Price, Barbara A.; Randall, Cindy H.
2011-01-01
A study was conducted at a southern university in sophomore level production classes to assess skills such as the order of arithmetic operations, decimal and percent conversion, solving of algebraic expressions, and evaluation of formulas. The study was replicated using business statistics and quantitative analysis classes at a southeastern…
Computation of turbulent boundary layer flows with an algebraic stress turbulence model
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook; Chen, Yen-Sen
1986-01-01
An algebraic stress turbulence model is presented, characterized by the following: (1) the eddy viscosity expression is derived from the Reynolds stress turbulence model; (2) the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale; and (3) the diffusion coefficients for turbulence equations are adjusted so that the kinetic energy profile extends further into the free stream region found in most experimental data. The turbulent flow equations were solved using a finite element method. Examples include: fully developed channel flow, fully developed pipe flow, flat plate boundary layer flow, plane jet exhausting into a moving stream, circular jet exhausting into a moving stream, and wall jet flow. Computational results compare favorably with experimental data for most of the examples considered. Significantly improved results were obtained for the plane jet flow, the circular jet flow, and the wall jet flow; whereas the remainder are comparable to those obtained by finite difference methods using the standard kappa-epsilon turbulence model. The latter seems to be promising with further improvement of the expression for the eddy viscosity coefficient.
Implementing Computer Based Laboratories
NASA Astrophysics Data System (ADS)
Peterson, David
2001-11-01
Physics students at Francis Marion University will complete several required laboratory exercises utilizing computer-based Vernier probes. The simple pendulum, the acceleration due to gravity, simple harmonic motion, radioactive half lives, and radiation inverse square law experiments will be incorporated into calculus-based and algebra-based physics courses. Assessment of student learning and faculty satisfaction will be carried out by surveys and test results. Cost effectiveness and time effectiveness assessments will be presented. Majors in Computational Physics, Health Physics, Engineering, Chemistry, Mathematics and Biology take these courses, and assessments will be categorized by major. To enhance the computer skills of students enrolled in the courses, MAPLE will be used for further analysis of the data acquired during the experiments. Assessment of these enhancement exercises will also be presented.
The application of sensitivity analysis to models of large scale physiological systems
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1974-01-01
A survey of the literature of sensitivity analysis as it applies to biological systems is reported as well as a brief development of sensitivity theory. A simple population model and a more complex thermoregulatory model illustrate the investigatory techniques and interpretation of parameter sensitivity analysis. The role of sensitivity analysis in validating and verifying models, and in identifying relative parameter influence in estimating errors in model behavior due to uncertainty in input data is presented. This analysis is valuable to the simulationist and the experimentalist in allocating resources for data collection. A method for reducing highly complex, nonlinear models to simple linear algebraic models that could be useful for making rapid, first order calculations of system behavior is presented.
A Novel Image Encryption Based on Algebraic S-box and Arnold Transform
NASA Astrophysics Data System (ADS)
Farwa, Shabieh; Muhammad, Nazeer; Shah, Tariq; Ahmad, Sohail
2017-09-01
Recent study shows that substitution box (S-box) only cannot be reliably used in image encryption techniques. We, in this paper, propose a novel and secure image encryption scheme that utilizes the combined effect of an algebraic substitution box along with the scrambling effect of the Arnold transform. The underlying algorithm involves the application of S-box, which is the most imperative source to create confusion and diffusion in the data. The speciality of the proposed algorithm lies, firstly, in the high sensitivity of our S-box to the choice of the initial conditions which makes this S-box stronger than the chaos-based S-boxes as it saves computational labour by deploying a comparatively simple and direct approach based on the algebraic structure of the multiplicative cyclic group of the Galois field. Secondly the proposed method becomes more secure by considering a combination of S-box with certain number of iterations of the Arnold transform. The strength of the S-box is examined in terms of various performance indices such as nonlinearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. We prove through the most significant techniques used for the statistical analyses of the encrypted image that our image encryption algorithm satisfies all the necessary criteria to be usefully and reliably implemented in image encryption applications.
NASA Astrophysics Data System (ADS)
Houdayer, Cyril; Isono, Yusuke
2016-12-01
We investigate the asymptotic structure of (possibly type III) crossed product von Neumann algebras {M = B rtimes Γ} arising from arbitrary actions {Γ \\curvearrowright B} of bi-exact discrete groups (e.g. free groups) on amenable von Neumann algebras. We prove a spectral gap rigidity result for the central sequence algebra {N' \\cap M^ω} of any nonamenable von Neumann subalgebra with normal expectation {N subset M}. We use this result to show that for any strongly ergodic essentially free nonsingular action {Γ \\curvearrowright (X, μ)} of any bi-exact countable discrete group on a standard probability space, the corresponding group measure space factor {L^∞(X) rtimes Γ} has no nontrivial central sequence. Using recent results of Boutonnet et al. (Local spectral gap in simple Lie groups and applications, 2015), we construct, for every {0 < λ ≤ 1}, a type {III_λ} strongly ergodic essentially free nonsingular action {F_∞ \\curvearrowright (X_λ, μ_λ)} of the free group {{F}_∞} on a standard probability space so that the corresponding group measure space type {III_λ} factor {L^∞(X_λ, μ_λ) rtimes F_∞} has no nontrivial central sequence by our main result. In particular, we obtain the first examples of group measure space type {III} factors with no nontrivial central sequence.
Virasoro algebra in the KN algebra; Bosonic string with fermionic ghosts on Riemann surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koibuchi, H.
1991-10-10
In this paper the bosonic string model with fermionic ghosts is considered in the framework of the KN algebra. The authors' attentions are paid to representations of KN algebra and a Clifford algebra of the ghosts. The authors show that a Virasoro-like algebra is obtained from KN algebra when KN algebra has certain antilinear anti-involution, and that it is isomorphic to the usual Virasoro algebra. The authors show that there is an expected relation between a central charge of this Virasoro-like algebra and an anomaly of the combined system.
NASA Astrophysics Data System (ADS)
Po, Hoi Chun; Zhou, Qi
2015-08-01
Bosons have a natural instinct to condense at zero temperature. It is a long-standing challenge to create a high-dimensional quantum liquid that does not exhibit long-range order at the ground state, as either extreme experimental parameters or sophisticated designs of microscopic Hamiltonians are required for suppressing the condensation. Here we show that synthetic gauge fields for ultracold atoms, using either the Raman scheme or shaken lattices, provide physicists a simple and practical scheme to produce a two-dimensional algebraic quantum liquid at the ground state. This quantum liquid arises at a critical Lifshitz point, where a two-dimensional quartic dispersion emerges in the momentum space, and many fundamental properties of two-dimensional bosons are changed in its proximity. Such an ideal simulator of the quantum Lifshitz model allows experimentalists to directly visualize and explore the deconfinement transition of topological excitations, an intriguing phenomenon that is difficult to access in other systems.
An interactive grid generation procedure for axial and radial flow turbomachinery
NASA Technical Reports Server (NTRS)
Beach, Timothy A.
1989-01-01
A combination algebraic/elliptic technique is presented for the generation of three dimensional grids about turbo-machinery blade rows for both axial and radial flow machinery. The technique is built around use of an advanced engineering workstation to construct several two dimensional grids interactively on predetermined blade-to-blade surfaces. A three dimensional grid is generated by interpolating these surface grids onto an axisymmetric grid. On each blade-to-blade surface, a grid is created using algebraic techniques near the blade to control orthogonality within the boundary layer region and elliptic techniques in the mid-passage to achieve smoothness. The interactive definition of bezier curves as internal boundaries is the key to simple construction. This procedure lends itself well to zonal grid construction, an important example being the tip clearance region. Calculations done to date include a space shuttle main engine turbopump blade, a radial inflow turbine blade, and the first stator of the United Technologies Research Center large scale rotating rig. A finite Navier-Stokes solver was used in each case.
Computational efficiency for the surface renewal method
NASA Astrophysics Data System (ADS)
Kelley, Jason; Higgins, Chad
2018-04-01
Measuring surface fluxes using the surface renewal (SR) method requires programmatic algorithms for tabulation, algebraic calculation, and data quality control. A number of different methods have been published describing automated calibration of SR parameters. Because the SR method utilizes high-frequency (10 Hz+) measurements, some steps in the flux calculation are computationally expensive, especially when automating SR to perform many iterations of these calculations. Several new algorithms were written that perform the required calculations more efficiently and rapidly, and that tested for sensitivity to length of flux averaging period, ability to measure over a large range of lag timescales, and overall computational efficiency. These algorithms utilize signal processing techniques and algebraic simplifications that demonstrate simple modifications that dramatically improve computational efficiency. The results here complement efforts by other authors to standardize a robust and accurate computational SR method. Increased speed of computation time grants flexibility to implementing the SR method, opening new avenues for SR to be used in research, for applied monitoring, and in novel field deployments.
Roots and decompositions of three-dimensional topological objects
NASA Astrophysics Data System (ADS)
Matveev, Sergei V.
2012-06-01
In 1942 M.H.A. Newman formulated and proved a simple lemma of great importance for various fields of mathematics, including algebra and the theory of Gröbner-Shirshov bases. Later it was called the Diamond Lemma, since its key construction was illustrated by a diamond-shaped diagram. In 2005 the author suggested a new version of this lemma suitable for topological applications. This paper gives a survey of results on the existence and uniqueness of prime decompositions of various topological objects: three-dimensional manifolds, knots in thickened surfaces, knotted graphs, three-dimensional orbifolds, and knotted theta-curves in three-dimensional manifolds. As it turned out, all these topological objects admit a prime decomposition, although it is not unique in some cases (for example, in the case of orbifolds). For theta-curves and knots of geometric degree 1 in a thickened torus, the algebraic structure of the corresponding semigroups can be completely described. In both cases the semigroups are quotients of free groups by explicit commutation relations. Bibliography: 33 titles.
Derivation of rigorous conditions for high cell-type diversity by algebraic approach.
Yoshida, Hiroshi; Anai, Hirokazu; Horimoto, Katsuhisa
2007-01-01
The development of a multicellular organism is a dynamic process. Starting with one or a few cells, the organism develops into different types of cells with distinct functions. We have constructed a simple model by considering the cell number increase and the cell-type order conservation, and have assessed conditions for cell-type diversity. This model is based on a stochastic Lindenmayer system with cell-to-cell interactions for three types of cells. In the present model, we have successfully derived complex but rigorous algebraic relations between the proliferation and transition rates for cell-type diversity by using a symbolic method: quantifier elimination (QE). Surprisingly, three modes for the proliferation and transition rates have emerged for large ratios of the initial cells to the developed cells. The three modes have revealed that the equality between the development rates for the highest cell-type diversity is reduced during the development process of multicellular organisms. Furthermore, we have found that the highest cell-type diversity originates from order conservation.
The symmetries of the fine gradings of sl(n{sup k},C) associated with direct product of Pauli groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han Gang
2010-09-15
A grading of a Lie algebra is called fine if it could not be further refined. For a fine grading of a simple Lie algebra, we define its Weyl group to describe the symmetry of this grading. It is already known that the Weyl group of the fine grading of sl(n,C) induced by the action of the group {Pi}{sub n} of the generalized Pauli matrices of rank n is SL(2,Z{sub n}), where Z{sub n} is the cyclic group of order n. In this paper, we consider the fine grading of sl(n{sup k},C) induced by the action of the group ofmore » k-fold tensor product of the generalized Pauli matrices of rank n. We prove that its Weyl group is Sp(2k,Z{sub n}) and is generated by transvections; therefore, this generalizes the previous result.« less
"ON ALGEBRAIC DECODING OF Q-ARY REED-MULLER AND PRODUCT REED-SOLOMON CODES"
DOE Office of Scientific and Technical Information (OSTI.GOV)
SANTHI, NANDAKISHORE
We consider a list decoding algorithm recently proposed by Pellikaan-Wu for q-ary Reed-Muller codes RM{sub q}({ell}, m, n) of length n {le} q{sup m} when {ell} {le} q. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of {tau} {le} (1-{radical}{ell}q{sup m-1}/n). This is an improvement over the proof using one-point Algebraic-Geometric decoding method given in. The described algorithm can be adapted to decode product Reed-Solomon codes. We then propose a new low complexity recursive aJgebraic decoding algorithm for product Reed-Solomon codes and Reed-Muller codes. This algorithm achieves a relativemore » error correction radius of {tau} {le} {Pi}{sub i=1}{sup m} (1 - {radical}k{sub i}/q). This algorithm is then proved to outperform the Pellikaan-Wu algorithm in both complexity and error correction radius over a wide range of code rates.« less
Interpolation problem for the solutions of linear elasticity equations based on monogenic functions
NASA Astrophysics Data System (ADS)
Grigor'ev, Yuri; Gürlebeck, Klaus; Legatiuk, Dmitrii
2017-11-01
Interpolation is an important tool for many practical applications, and very often it is beneficial to interpolate not only with a simple basis system, but rather with solutions of a certain differential equation, e.g. elasticity equation. A typical example for such type of interpolation are collocation methods widely used in practice. It is known, that interpolation theory is fully developed in the framework of the classical complex analysis. However, in quaternionic analysis, which shows a lot of analogies to complex analysis, the situation is more complicated due to the non-commutative multiplication. Thus, a fundamental theorem of algebra is not available, and standard tools from linear algebra cannot be applied in the usual way. To overcome these problems, a special system of monogenic polynomials the so-called Pseudo Complex Polynomials, sharing some properties of complex powers, is used. In this paper, we present an approach to deal with the interpolation problem, where solutions of elasticity equations in three dimensions are used as an interpolation basis.
Flux-driven algebraic damping of diocotron modes
NASA Astrophysics Data System (ADS)
Chim, Chi Yung; O'Neil, Thomas M.
2015-06-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 and m = 2 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius Rm, where there is a matching of ωm = mωE (Rm) for the mode frequency ωm and E × B-drift rotation frequency ωE. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This new mechanism of damping is due to transfer of canonical angular momentum from the mode to halo particles, as they are swept around the "cat's eye" orbits of the resonant wave-particle interaction. This paper provides a simple derivation of the time dependence of the mode amplitudes.
NASA Astrophysics Data System (ADS)
Young, F.; Siegel, Edward Carl-Ludwig
2011-03-01
(so MIScalled) "complexity" with INHERENT BOTH SCALE-Invariance Symmetry-RESTORING, AND 1 / w (1.000..) "pink" Zipf-law Archimedes-HYPERBOLICITY INEVITABILITY power-spectrum power-law decay algebraicity. Their CONNECTION is via simple-calculus SCALE-Invariance Symmetry-RESTORING logarithm-function derivative: (d/ d ω) ln(ω) = 1 / ω , i.e. (d/ d ω) [SCALE-Invariance Symmetry-RESTORING](ω) = 1/ ω . Via Noether-theorem continuous-symmetries relation to conservation-laws: (d/ d ω) [inter-scale 4-current 4-div-ergence} = 0](ω) = 1 / ω . Hence (so MIScalled) "complexity" is information inter-scale conservation, in agreement with Anderson-Mandell [Fractals of Brain/Mind, G. Stamov ed.(1994)] experimental-psychology!!!], i.e. (so MIScalled) "complexity" is UTTER-SIMPLICITY!!! Versus COMPLICATEDNESS either PLUS (Additive) VS. TIMES (Multiplicative) COMPLICATIONS of various system-specifics. COMPLICATEDNESS-MEASURE DEVIATIONS FROM complexity's UTTER-SIMPLICITY!!!: EITHER [SCALE-Invariance Symmetry-BREAKING] MINUS [SCALE-Invariance Symmetry-RESTORING] via power-spectrum power-law algebraicity decays DIFFERENCES: ["red"-Pareto] MINUS ["pink"-Zipf Archimedes-HYPERBOLICITY INEVITABILITY]!!!
Mathematical Modeling for Inherited Diseases.
Anis, Saima; Khan, Madad; Khan, Saqib
2017-01-01
We introduced a new nonassociative algebra, namely, left almost algebra, and discussed some of its genetic properties. We discussed the relation of this algebra with flexible algebra, Jordan algebra, and generalized Jordan algebra.
Mathematical Modeling for Inherited Diseases
Khan, Saqib
2017-01-01
We introduced a new nonassociative algebra, namely, left almost algebra, and discussed some of its genetic properties. We discussed the relation of this algebra with flexible algebra, Jordan algebra, and generalized Jordan algebra. PMID:28781606
xPerm: fast index canonicalization for tensor computer algebra
NASA Astrophysics Data System (ADS)
Martín-García, José M.
2008-10-01
We present a very fast implementation of the Butler-Portugal algorithm for index canonicalization with respect to permutation symmetries. It is called xPerm, and has been written as a combination of a Mathematica package and a C subroutine. The latter performs the most demanding parts of the computations and can be linked from any other program or computer algebra system. We demonstrate with tests and timings the effectively polynomial performance of the Butler-Portugal algorithm with respect to the number of indices, though we also show a case in which it is exponential. Our implementation handles generic tensorial expressions with several dozen indices in hundredths of a second, or one hundred indices in a few seconds, clearly outperforming all other current canonicalizers. The code has been already under intensive testing for several years and has been essential in recent investigations in large-scale tensor computer algebra. Program summaryProgram title: xPerm Catalogue identifier: AEBH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 93 582 No. of bytes in distributed program, including test data, etc.: 1 537 832 Distribution format: tar.gz Programming language: C and Mathematica (version 5.0 or higher) Computer: Any computer running C and Mathematica (version 5.0 or higher) Operating system: Linux, Unix, Windows XP, MacOS RAM:: 20 Mbyte Word size: 64 or 32 bits Classification: 1.5, 5 Nature of problem: Canonicalization of indexed expressions with respect to permutation symmetries. Solution method: The Butler-Portugal algorithm. Restrictions: Multiterm symmetries are not considered. Running time: A few seconds with generic expressions of up to 100 indices. The xPermDoc.nb notebook supplied with the distribution takes approximately one and a half hours to execute in full.
1990-01-01
J. Laurie Snell S. A. Amitsur, D. J. Saltman, and 2 Proceedings of the conference on G. B. Seligman , Editors integration, topology, and geometry in...Rational constructions of modules 17 Nonlinear partial differential equations. for simple Lie algebras, George B. Joel A. Smoller, Editor Seligman 18...number theory, Michael R. Stein and Linda Keen, Editor R. Keith Dennis, Editors 65 Logic and combinatorics, Stephen G. 84 Partition problems in
Multiple-generator errors are unavoidable under model misspecification.
Jewett, D L; Zhang, Z
1995-08-01
Model misspecification poses a major problem for dipole source localization (DSL) because it causes insidious multiple-generator errors (MulGenErrs) to occur in the fitted dipole parameters. This paper describes how and why this occurs, based upon simple algebraic considerations. MulGenErrs must occur, to some degree, in any DSL analysis of real data because there is model misspecification and mathematically the equations used for the simultaneously active generators must be of a different form than the equations for each generator active alone.
Noise and Dissipation on Coadjoint Orbits
NASA Astrophysics Data System (ADS)
Arnaudon, Alexis; De Castro, Alex L.; Holm, Darryl D.
2018-02-01
We derive and study stochastic dissipative dynamics on coadjoint orbits by incorporating noise and dissipation into mechanical systems arising from the theory of reduction by symmetry, including a semidirect product extension. Random attractors are found for this general class of systems when the Lie algebra is semi-simple, provided the top Lyapunov exponent is positive. We study in details two canonical examples, the free rigid body and the heavy top, whose stochastic integrable reductions are found and numerical simulations of their random attractors are shown.
NASA Astrophysics Data System (ADS)
Semenova, I. V.; Belashov, A. V.; Garbuzov, F. E.; Samsonov, A. M.; Semenov, A. A.
2017-06-01
We demonstrate an alternative approach to determination of the third order elastic moduli of materials based on registration of nonlinear bulk strain waves in three basic structural waveguides (rod, plate and shell) and further calculation of the Murnaghan moduli from the recorded wave parameters via simple algebra. These elastic moduli are available in literature for a limited number of materials and are measured with considerable errors, that evidences a demand in novel approaches to their determination.
An appreciation of Richard Threlkeld Cox
NASA Astrophysics Data System (ADS)
Tribus, Myron
2002-05-01
Richard T. Cox's contributions to the foundations of probability theory and inductive logic are not generally appreciated or understood. This paper reviews his life and accomplishments, especially those in his book The Algebra of Probable Inference and his final publication Inference and Inquiry which, in this author's opinion, has the potential to influence in a significant way the design and analysis of self organizing systems which learn from experience. A simple application to the simulation of a neuron is presented as an example of the power of Cox's contribution.
Anytime query-tuned kernel machine classifiers via Cholesky factorization
NASA Technical Reports Server (NTRS)
DeCoste, D.
2002-01-01
We recently demonstrated 2 to 64-fold query-time speedups of Support Vector Machine and Kernel Fisher classifiers via a new computational geometry method for anytime output bounds (DeCoste,2002). This new paper refines our approach in two key ways. First, we introduce a simple linear algebra formulation based on Cholesky factorization, yielding simpler equations and lower computational overhead. Second, this new formulation suggests new methods for achieving additional speedups, including tuning on query samples. We demonstrate effectiveness on benchmark datasets.
Application of Artificial Boundary Conditions in Sensitivity-Based Updating of Finite Element Models
2007-06-01
is known as the impedance matrix[ ]( )Z Ω . [ ] [ ] 1( ) ( )Z H −Ω = Ω (12) where [ ] 2( )Z K M j C ⎡ ⎤Ω = −Ω + Ω⎣ ⎦ (13) A. REDUCED ORDER...D.L. A correlation coefficient for modal vector analysis. Proceedings of 1st International Modal Analysis Conference, 1982, 110-116. Anton , H ... Rorres , C ., (2005). Elementary Linear Algebra. New York: John Wiley and Sons. Avitable, Peter (2001, January) Experimental Modal Analysis, A Simple
An improved lambda-scheme for one-dimensional flows
NASA Technical Reports Server (NTRS)
Moretti, G.; Dipiano, M. T.
1983-01-01
A code for the calculation of one-dimensional flows is presented, which combines a simple and efficient version of the lambda-scheme with tracking of discontinuities. The latter is needed to identify points where minor departures from the basic integration scheme are applied to prevent infiltration of numerical errors. Such a tracking is obtained via a systematic application of Boolean algebra. It is, therefore, very efficient. Fifteen examples are presented and discussed in detail. The results are exceptionally good. All discontinuites are captured within one mesh interval.
NASA Astrophysics Data System (ADS)
Lima-Santos, Antonio; Nepomechie, Rafael I.; Pimenta, Rodrigo A.
2018-04-01
We revisit the construction of the eigenvectors of the single and double-row transfer matrices associated with the Zamolodchikov–Fateev model, within the algebraic Bethe ansatz method. The left and right eigenvectors are constructed using two different methods: the fusion technique and Tarasov’s construction. A simple explicit relation between the eigenvectors from the two Bethe ansätze is obtained. As a consequence, we obtain the Slavnov formula for the scalar product between on-shell and off-shell Tarasov–Bethe vectors.
General algebraic method applied to control analysis of complex engine types
NASA Technical Reports Server (NTRS)
Boksenbom, Aaron S; Hood, Richard
1950-01-01
A general algebraic method of attack on the problem of controlling gas-turbine engines having any number of independent variables was utilized employing operational functions to describe the assumed linear characteristics for the engine, the control, and the other units in the system. Matrices were used to describe the various units of the system, to form a combined system showing all effects, and to form a single condensed matrix showing the principal effects. This method directly led to the conditions on the control system for noninteraction so that any setting disturbance would affect only its corresponding controlled variable. The response-action characteristics were expressed in terms of the control system and the engine characteristics. The ideal control-system characteristics were explicitly determined in terms of any desired response action.
ERIC Educational Resources Information Center
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Analytical Energy Gradients for Excited-State Coupled-Cluster Methods
NASA Astrophysics Data System (ADS)
Wladyslawski, Mark; Nooijen, Marcel
The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit equations for the wavefunction amplitudes, the Lagrange multipliers, and the analytical gradient via the perturbation-independent generalized Hellmann-Feynman effective density matrix. This systematic automated derivation procedure is applied to obtain the detailed gradient equations for the excitation energy (EE-), double ionization potential (DIP-), and double electron affinity (DEA-) similarity transformed equation-of-motion coupled-cluster singles-and-doubles (STEOM-CCSD) methods. In addition, the derivatives of the closed-shell-reference excitation energy (EE-), ionization potential (IP-), and electron affinity (EA-) equation-of-motion coupled-cluster singles-and-doubles (EOM-CCSD) methods are derived. Furthermore, the perturbative EOM-PT and STEOM-PT gradients are obtained. The algebraic derivative expressions for these dozen methods are all derived here uniformly through the automated Lagrange multiplier process and are expressed compactly in a chain-rule/intermediate-density formulation, which facilitates a unified modular implementation of analytic energy gradients for CCSD/PT-based electronic methods. The working equations for these analytical gradients are presented in full detail, and their factorization and implementation into an efficient computer code are discussed.
A note on derivations of Murray-von Neumann algebras.
Kadison, Richard V; Liu, Zhe
2014-02-11
A Murray-von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray-von Neumann algebras. We show that the "extended derivations" of a Murray-von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray-von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer's seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements.
NASA Astrophysics Data System (ADS)
Foulis, David J.; Pulmannov, Sylvia
2018-04-01
Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.
Using a Framework for Three Levels of Sense Making in a Mathematics Classroom
ERIC Educational Resources Information Center
Moss, Diana L.; Lamberg, Teruni
2016-01-01
This discussion-based lesson is designed to support Year 6 students in their initial understanding of using letters to represent numbers, expressions, and equations in algebra. The three level framework is designed for: (1) making thinking explicit, (2) exploring each other's solutions, and (3) developing new mathematical insights. In each level…
Using the CRA-I Strategy to Develop Conceptual and Procedural Knowledge of Quadratic Expressions
ERIC Educational Resources Information Center
Strickland, Tricia K.
2016-01-01
Recent research has explored the efficacy of the CRA-I (concrete-representational-abstract) strategy with students with disabilities (Strickland & Maccini, 2012, 2013). The CRA-I strategy is a promising practice that special educators have used to teach algebra to students with high-incidence disabilities. The CRA-I strategy is a modification…
Influence of Additive and Multiplicative Structure and Direction of Comparison on the Reversal Error
ERIC Educational Resources Information Center
González-Calero, José Antonio; Arnau, David; Laserna-Belenguer, Belén
2015-01-01
An empirical study has been carried out to evaluate the potential of word order matching and static comparison as explanatory models of reversal error. Data was collected from 214 undergraduate students who translated a set of additive and multiplicative comparisons expressed in Spanish into algebraic language. In these multiplicative comparisons…
ERIC Educational Resources Information Center
Marcovitz, Alan B., Ed.
A computer program for numeric and symbolic manipulation and the methodology underlying its development are presented. Some features of the program are: an option for implied multiplication; computation of higher-order derivatives; differentiation of 26 different trigonometric, hyperbolic, inverse trigonometric, and inverse hyperbolic functions;…
Hopf algebras of rooted forests, cocyles, and free Rota-Baxter algebras
NASA Astrophysics Data System (ADS)
Zhang, Tianjie; Gao, Xing; Guo, Li
2016-10-01
The Hopf algebra and the Rota-Baxter algebra are the two algebraic structures underlying the algebraic approach of Connes and Kreimer to renormalization of perturbative quantum field theory. In particular, the Hopf algebra of rooted trees serves as the "baby model" of Feynman graphs in their approach and can be characterized by certain universal properties involving a Hochschild 1-cocycle. Decorated rooted trees have also been applied to study Feynman graphs. We will continue the study of universal properties of various spaces of decorated rooted trees with such a 1-cocycle, leading to the concept of a cocycle Hopf algebra. We further apply the universal properties to equip a free Rota-Baxter algebra with the structure of a cocycle Hopf algebra.
Static Analysis of Large-Scale Multibody System Using Joint Coordinates and Spatial Algebra Operator
Omar, Mohamed A.
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations. PMID:25045732
Algebraic solutions of shape-invariant position-dependent effective mass systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amir, Naila, E-mail: naila.amir@live.com, E-mail: naila.amir@seecs.edu.pk; Iqbal, Shahid, E-mail: sic80@hotmail.com, E-mail: siqbal@sns.nust.edu.pk
2016-06-15
Keeping in view the ordering ambiguity that arises due to the presence of position-dependent effective mass in the kinetic energy term of the Hamiltonian, a general scheme for obtaining algebraic solutions of quantum mechanical systems with position-dependent effective mass is discussed. We quantize the Hamiltonian of the pertaining system by using symmetric ordering of the operators concerning momentum and the spatially varying mass, initially proposed by von Roos and Lévy-Leblond. The algebraic method, used to obtain the solutions, is based on the concepts of supersymmetric quantum mechanics and shape invariance. In order to exemplify the general formalism a class ofmore » non-linear oscillators has been considered. This class includes the particular example of a one-dimensional oscillator with different position-dependent effective mass profiles. Explicit expressions for the eigenenergies and eigenfunctions in terms of generalized Hermite polynomials are presented. Moreover, properties of these modified Hermite polynomials, like existence of generating function and recurrence relations among the polynomials have also been studied. Furthermore, it has been shown that in the harmonic limit, all the results for the linear harmonic oscillator are recovered.« less
Phased-mission system analysis using Boolean algebraic methods
NASA Technical Reports Server (NTRS)
Somani, Arun K.; Trivedi, Kishor S.
1993-01-01
Most reliability analysis techniques and tools assume that a system is used for a mission consisting of a single phase. However, multiple phases are natural in many missions. The failure rates of components, system configuration, and success criteria may vary from phase to phase. In addition, the duration of a phase may be deterministic or random. Recently, several researchers have addressed the problem of reliability analysis of such systems using a variety of methods. A new technique for phased-mission system reliability analysis based on Boolean algebraic methods is described. Our technique is computationally efficient and is applicable to a large class of systems for which the failure criterion in each phase can be expressed as a fault tree (or an equivalent representation). Our technique avoids state space explosion that commonly plague Markov chain-based analysis. A phase algebra to account for the effects of variable configurations and success criteria from phase to phase was developed. Our technique yields exact (as opposed to approximate) results. The use of our technique was demonstrated by means of an example and present numerical results to show the effects of mission phases on the system reliability.
Elliptic surface grid generation on minimal and parmetrized surfaces
NASA Technical Reports Server (NTRS)
Spekreijse, S. P.; Nijhuis, G. H.; Boerstoel, J. W.
1995-01-01
An elliptic grid generation method is presented which generates excellent boundary conforming grids in domains in 2D physical space. The method is based on the composition of an algebraic and elliptic transformation. The composite mapping obeys the familiar Poisson grid generation system with control functions specified by the algebraic transformation. New expressions are given for the control functions. Grid orthogonality at the boundary is achieved by modification of the algebraic transformation. It is shown that grid generation on a minimal surface in 3D physical space is in fact equivalent to grid generation in a domain in 2D physical space. A second elliptic grid generation method is presented which generates excellent boundary conforming grids on smooth surfaces. It is assumed that the surfaces are parametrized and that the grid only depends on the shape of the surface and is independent of the parametrization. Concerning surface modeling, it is shown that bicubic Hermite interpolation is an excellent method to generate a smooth surface which is passing through a given discrete set of control points. In contrast to bicubic spline interpolation, there is extra freedom to model the tangent and twist vectors such that spurious oscillations are prevented.
Omar, Mohamed A
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations.
The Unitality of Quantum B-algebras
NASA Astrophysics Data System (ADS)
Han, Shengwei; Xu, Xiaoting; Qin, Feng
2018-02-01
Quantum B-algebras as a generalization of quantales were introduced by Rump and Yang, which cover the majority of implicational algebras and provide a unified semantic for a wide class of substructural logics. Unital quantum B-algebras play an important role in the classification of implicational algebras. The main purpose of this paper is to construct unital quantum B-algebras from non-unital quantum B-algebras.
Patterns of Stochastic Behavior in Dynamically Unstable High-Dimensional Biochemical Networks
Rosenfeld, Simon
2009-01-01
The question of dynamical stability and stochastic behavior of large biochemical networks is discussed. It is argued that stringent conditions of asymptotic stability have very little chance to materialize in a multidimensional system described by the differential equations of chemical kinetics. The reason is that the criteria of asymptotic stability (Routh-Hurwitz, Lyapunov criteria, Feinberg’s Deficiency Zero theorem) would impose the limitations of very high algebraic order on the kinetic rates and stoichiometric coefficients, and there are no natural laws that would guarantee their unconditional validity. Highly nonlinear, dynamically unstable systems, however, are not necessarily doomed to collapse, as a simple Jacobian analysis would suggest. It is possible that their dynamics may assume the form of pseudo-random fluctuations quite similar to a shot noise, and, therefore, their behavior may be described in terms of Langevin and Fokker-Plank equations. We have shown by simulation that the resulting pseudo-stochastic processes obey the heavy-tailed Generalized Pareto Distribution with temporal sequence of pulses forming the set of constituent-specific Poisson processes. Being applied to intracellular dynamics, these properties are naturally associated with burstiness, a well documented phenomenon in the biology of gene expression. PMID:19838330
NASA Astrophysics Data System (ADS)
Riva, Fabio; Milanese, Lucio; Ricci, Paolo
2017-10-01
To reduce the computational cost of the uncertainty propagation analysis, which is used to study the impact of input parameter variations on the results of a simulation, a general and simple to apply methodology based on decomposing the solution to the model equations in terms of Chebyshev polynomials is discussed. This methodology, based on the work by Scheffel [Am. J. Comput. Math. 2, 173-193 (2012)], approximates the model equation solution with a semi-analytic expression that depends explicitly on time, spatial coordinates, and input parameters. By employing a weighted residual method, a set of nonlinear algebraic equations for the coefficients appearing in the Chebyshev decomposition is then obtained. The methodology is applied to a two-dimensional Braginskii model used to simulate plasma turbulence in basic plasma physics experiments and in the scrape-off layer of tokamaks, in order to study the impact on the simulation results of the input parameter that describes the parallel losses. The uncertainty that characterizes the time-averaged density gradient lengths, time-averaged densities, and fluctuation density level are evaluated. A reasonable estimate of the uncertainty of these distributions can be obtained with a single reduced-cost simulation.
Modeling continuum of epithelial mesenchymal transition plasticity.
Mandal, Mousumi; Ghosh, Biswajoy; Anura, Anji; Mitra, Pabitra; Pathak, Tanmaya; Chatterjee, Jyotirmoy
2016-02-01
Living systems respond to ambient pathophysiological changes by altering their phenotype, a phenomenon called 'phenotypic plasticity'. This program contains information about adaptive biological dynamism. Epithelial-mesenchymal transition (EMT) is one such process found to be crucial in development, wound healing, and cancer wherein the epithelial cells with restricted migratory potential develop motile functions by acquiring mesenchymal characteristics. In the present study, phase contrast microscopy images of EMT induced HaCaT cells were acquired at 24 h intervals for 96 h. The expression study of relevant pivotal molecules viz. F-actin, vimentin, fibronectin and N-cadherin was carried out to confirm the EMT process. Cells were intuitively categorized into five distinct morphological phenotypes. A population of 500 cells for each temporal point was selected to quantify their frequency of occurrence. The plastic interplay of cell phenotypes from the observations was described as a Markovian process. A model was formulated empirically using simple linear algebra, to depict the possible mechanisms of cellular transformation among the five phenotypes. This work employed qualitative, semi-quantitative and quantitative tools towards illustration and establishment of the EMT continuum. Thus, it provides a newer perspective to understand the embedded plasticity across the EMT spectrum.
On the acoustic radiation modes of compact regular polyhedral arrays of independent loudspeakers.
Pasqual, Alexander Mattioli; Martin, Vincent
2011-09-01
Compact spherical loudspeaker arrays can be used to provide control over their directivity pattern. Usually, this is made by adjusting the gains of preprogrammed spatial filters corresponding to a finite set of spherical harmonics, or to the acoustic radiation modes of the loudspeaker array. Unlike the former, the latter are closely related to the radiation efficiency of the source and span the subspace of the directivities it can produce. However, the radiation modes depend on frequency for arbitrary distributions of transducers on the sphere, which yields complex directivity filters. This work focuses on the most common loudspeaker array configurations, those following the regular shape of the Platonic solids. It is shown that the radiation modes of these sources are frequency independent, and simple algebraic expressions are derived for their radiation efficiencies. In addition, since such modes are vibration patterns driven by electrical signals, the transduction mechanism of compact multichannel sources is also investigated, which is an important issue, especially if the transducers interact inside a shared cabinet. For Platonic solid loudspeakers, it is shown that the common enclosure does not lead to directivity filters that depend on frequency. © 2011 Acoustical Society of America
Generalizing the bms3 and 2D-conformal algebras by expanding the Virasoro algebra
NASA Astrophysics Data System (ADS)
Caroca, Ricardo; Concha, Patrick; Rodríguez, Evelyn; Salgado-Rebolledo, Patricio
2018-03-01
By means of the Lie algebra expansion method, the centrally extended conformal algebra in two dimensions and the bms3 algebra are obtained from the Virasoro algebra. We extend this result to construct new families of expanded Virasoro algebras that turn out to be infinite-dimensional lifts of the so-called Bk, Ck and Dk algebras recently introduced in the literature in the context of (super)gravity. We also show how some of these new infinite-dimensional symmetries can be obtained from expanded Kač-Moody algebras using modified Sugawara constructions. Applications in the context of three-dimensional gravity are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Uhi Rinn, E-mail: uhrisu1@math.snu.ac.kr
We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms ofmore » free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.« less
A note on derivations of Murray–von Neumann algebras
Kadison, Richard V.; Liu, Zhe
2014-01-01
A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements. PMID:24469831
A double commutant theorem for Murray–von Neumann algebras
Liu, Zhe
2012-01-01
Murray–von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra of the Murray–von Neumann algebra associated with a finite von Neumann algebra is the Murray–von Neumann algebra , where is a maximal abelian self-adjoint subalgebra of and, in addition, is . We also prove that the Murray–von Neumann algebra with the center of is the center of the Murray–von Neumann algebra . Von Neumann’s celebrated double commutant theorem characterizes von Neumann algebras as those for which , where , the commutant of , is the set of bounded operators on the Hilbert space that commute with all operators in . At the end of this article, we present a double commutant theorem for Murray–von Neumann algebras. PMID:22543165
Analytical expressions for the correlation function of a hard sphere dimer fluid
NASA Astrophysics Data System (ADS)
Kim, Soonho; Chang, Jaeeon; Kim, Hwayong
A closed form expression is given for the correlation function of a hard sphere dimer fluid. A set of integral equations is obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with Percus-Yevick approximation. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of the individual correlation functions are obtained. By the inverse Laplace transformation, the radial distribution function (RDF) is obtained in closed form out to 3D (D is the segment diameter). The analytical expression for the RDF of the hard dimer should be useful in developing the perturbation theory of dimer fluids.
Analytical expression for the correlation function of a hard sphere chain fluid
NASA Astrophysics Data System (ADS)
Chang, Jaeeon; Kim, Hwayong
A closed form expression is given for the correlation function of flexible hard sphere chain fluid. A set of integral equations obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with the polymer Percus-Yevick ideal chain approximation is considered. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of individual correlation functions are obtained. By inverse Laplace transformation the inter- and intramolecular radial distribution functions (RDFs) are obtained in closed forms up to 3D(D is segment diameter). These analytical expressions for the RDFs would be useful in developing the perturbation theory of chain fluids.
Assessing Algebraic Solving Ability: A Theoretical Framework
ERIC Educational Resources Information Center
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
On the intersection of irreducible components of the space of finite-dimensional Lie algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorbatsevich, Vladimir V
2012-07-31
The irreducible components of the space of n-dimensional Lie algebras are investigated. The properties of Lie algebras belonging to the intersection of all the irreducible components of this kind are studied (these Lie algebras are said to be basic or founding Lie algebras). It is proved that all Lie algebras of this kind are nilpotent and each of these Lie algebras has an Abelian ideal of codimension one. Specific examples of founding Lie algebras of arbitrary dimension are described and, to describe the Lie algebras in general, we state a conjecture. The concept of spectrum of a Lie algebra ismore » considered and some of the most elementary properties of the spectrum are studied. Bibliography: 6 titles.« less
First Born amplitude for transitions from a circular state to a state of large (l, m)
NASA Astrophysics Data System (ADS)
Dewangan, D. P.
2005-01-01
The use of cylindrical polar coordinates instead of the conventional spherical polar coordinates enables us to derive compact expressions of the first Born amplitude for some selected sets of transitions from an arbitrary initial circular \\big|\\psi_{n_i,n_i-1,n_i-1}\\big\\rangle state to a final \\big|\\psi_{n_f,l_f,m_f}\\big\\rangle state of large (lf, mf). The formulae for \\big|\\psi_{n_i,n_i-1,n_i-1}\\big\\rangle \\longrightarrow \\big|\\psi_{n_f,n_f-1,n_f-2}\\big\\rangle and \\big|\\psi_{n_i,n_i-1,n_i-1}\\big\\rangle \\longrightarrow \\big|\\psi_{n_f,n_f-1,n_f-3}\\big\\rangle transitions are expressed in terms of the Jacobi polynomials which serve as suitable starting points for constructing complete solutions over the bound energy levels of hydrogen-like atoms. The formulae for \\big|\\psi_{n_i,n_i-1,n_i-1}\\big\\rangle \\longrightarrow \\big|\\psi_{n_f,n_f-1,-(n_f-2)}\\big\\rangle and \\big|\\psi_{n_i,n_i-1,n_i-1}\\big\\rangle \\longrightarrow \\big|\\psi_{n_f,n_f-1,-(n_f-3)}\\big\\rangle transitions are in simple algebraic forms and are directly applicable to all possible values of ni and nf. It emerges that the method can be extended to evaluate the first Born amplitude for many other transitions involving states of large (l, m).
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.
Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution
NASA Astrophysics Data System (ADS)
Staples, G. Stacey
2017-12-01
Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph's adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph's vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an "indeterminate" fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph.
Toda Systems, Cluster Characters, and Spectral Networks
NASA Astrophysics Data System (ADS)
Williams, Harold
2016-11-01
We show that the Hamiltonians of the open relativistic Toda system are elements of the generic basis of a cluster algebra, and in particular are cluster characters of nonrigid representations of a quiver with potential. Using cluster coordinates defined via spectral networks, we identify the phase space of this system with the wild character variety related to the periodic nonrelativistic Toda system by the wild nonabelian Hodge correspondence. We show that this identification takes the relativistic Toda Hamiltonians to traces of holonomies around a simple closed curve. In particular, this provides nontrivial examples of cluster coordinates on SL n -character varieties for n > 2 where canonical functions associated to simple closed curves can be computed in terms of quivers with potential, extending known results in the SL 2 case.
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
2012-12-01
Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, such that each Gn is simply connected. We use the 1-jet of the classifying space W¯ G to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The result can be seen as a geometric interpretation of Quillen's (purely algebraic) construction of the adjunction between simplicial Lie algebras and dg-Lie algebras.
Satellite Orbit Under Influence of a Drag - Analytical Approach
NASA Astrophysics Data System (ADS)
Martinović, M. M.; Šegan, S. D.
2017-12-01
The report studies some changes in orbital elements of the artificial satellites of Earth under influence of atmospheric drag. In order to develop possibilities of applying the results in many future cases, an analytical interpretation of the orbital element perturbations is given via useful, but very long expressions. The development is based on the TD88 air density model, recently upgraded with some additional terms. Some expressions and formulae were developed by the computer algebra system Mathematica and tested in some hypothetical cases. The results have good agreement with iterative (numerical) approach.
Algebra: A Challenge at the Crossroads of Policy and Practice
ERIC Educational Resources Information Center
Stein, Mary Kay; Kaufman, Julia Heath; Sherman, Milan; Hillen, Amy F.
2011-01-01
The authors review what is known about early and universal algebra, including who is getting access to algebra and student outcomes associated with algebra course taking in general and specifically with universal algebra policies. The findings indicate that increasing numbers of students, some of whom are underprepared, are taking algebra earlier.…
ERIC Educational Resources Information Center
Star, Jon R.; Rittle-Johnson, Bethany
2009-01-01
Competence in algebra is increasingly recognized as a critical milestone in students' middle and high school years. The transition from arithmetic to algebra is a notoriously difficult one, and improvements in algebra instruction are greatly needed (National Research Council, 2001). Algebra historically has represented students' first sustained…
Algebraic K-theory, K-regularity, and -duality of -stable C ∗-algebras
NASA Astrophysics Data System (ADS)
Mahanta, Snigdhayan
2015-12-01
We develop an algebraic formalism for topological -duality. More precisely, we show that topological -duality actually induces an isomorphism between noncommutative motives that in turn implements the well-known isomorphism between twisted K-theories (up to a shift). In order to establish this result we model topological K-theory by algebraic K-theory. We also construct an E ∞ -operad starting from any strongly self-absorbing C ∗-algebra . Then we show that there is a functorial topological K-theory symmetric spectrum construction on the category of separable C ∗-algebras, such that is an algebra over this operad; moreover, is a module over this algebra. Along the way we obtain a new symmetric spectra valued functorial model for the (connective) topological K-theory of C ∗-algebras. We also show that -stable C ∗-algebras are K-regular providing evidence for a conjecture of Rosenberg. We conclude with an explicit description of the algebraic K-theory of a x+ b-semigroup C ∗-algebras coming from number theory and that of -stabilized noncommutative tori.
Quantum Hurwitz numbers and Macdonald polynomials
NASA Astrophysics Data System (ADS)
Harnad, J.
2016-11-01
Parametric families in the center Z(C[Sn]) of the group algebra of the symmetric group are obtained by identifying the indeterminates in the generating function for Macdonald polynomials as commuting Jucys-Murphy elements. Their eigenvalues provide coefficients in the double Schur function expansion of 2D Toda τ-functions of hypergeometric type. Expressing these in the basis of products of power sum symmetric functions, the coefficients may be interpreted geometrically as parametric families of quantum Hurwitz numbers, enumerating weighted branched coverings of the Riemann sphere. Combinatorially, they give quantum weighted sums over paths in the Cayley graph of Sn generated by transpositions. Dual pairs of bases for the algebra of symmetric functions with respect to the scalar product in which the Macdonald polynomials are orthogonal provide both the geometrical and combinatorial significance of these quantum weighted enumerative invariants.
A computational exploration of the McCoy-Tracy-Wu solutions of the third Painlevé equation
NASA Astrophysics Data System (ADS)
Fasondini, Marco; Fornberg, Bengt; Weideman, J. A. C.
2018-01-01
The method recently developed by the authors for the computation of the multivalued Painlevé transcendents on their Riemann surfaces (Fasondini et al., 2017) is used to explore families of solutions to the third Painlevé equation that were identified by McCoy et al. (1977) and which contain a pole-free sector. Limiting cases, in which the solutions are singular functions of the parameters, are also investigated and it is shown that a particular set of limiting solutions is expressible in terms of special functions. Solutions that are single-valued, logarithmically (infinitely) branched and algebraically branched, with any number of distinct sheets, are encountered. The algebraically branched solutions have multiple pole-free sectors on their Riemann surfaces that are accounted for by using asymptotic formulae and Bäcklund transformations.
Generalized Clifford Algebras as Algebras in Suitable Symmetric Linear Gr-Categories
NASA Astrophysics Data System (ADS)
Cheng, Tao; Huang, Hua-Lin; Yang, Yuping
2016-01-01
By viewing Clifford algebras as algebras in some suitable symmetric Gr-categories, Albuquerque and Majid were able to give a new derivation of some well known results about Clifford algebras and to generalize them. Along the same line, Bulacu observed that Clifford algebras are weak Hopf algebras in the aforementioned categories and obtained other interesting properties. The aim of this paper is to study generalized Clifford algebras in a similar manner and extend the results of Albuquerque, Majid and Bulacu to the generalized setting. In particular, by taking full advantage of the gauge transformations in symmetric linear Gr-categories, we derive the decomposition theorem and provide categorical weak Hopf structures for generalized Clifford algebras in a conceptual and simpler manner.
NASA Astrophysics Data System (ADS)
Schertzer, D. J. M.; Tchiguirinskaia, I.
2016-12-01
Multifractal fields, whose definition is rather independent of their domain dimension, have opened a new approach of geophysics enabling to explore its spatial extension that is of prime importance as underlined by the expression "spatial chaos". However multifractals have been until recently restricted to be scalar valued, i.e. to one-dimensional codomains. This has prevented to deal with the key question of complex component interactions and their non trivial symmetries. We first emphasize that the Lie algebra of stochastic generators of cascade processes enables us to generalize multifractals to arbitrarily large codomains, e.g. flows of vector fields on large dimensional manifolds. In particular, we have recently investigated the neat example of stable Levy generators on Clifford algebra that have a number of seductive properties, e.g. universal statistical and robust algebra properties, both defining the basic symmetries of the corresponding fields (Schertzer and Tchiguirinskaia, 2015). These properties provide a convenient multifractal framework to study both the symmetries of the fields and how they stochastically break the symmetries of the underlying equations due to boundary conditions, large scale rotations and forcings. These developments should help us to answer to challenging questions such as the climatology of (exo-) planets based on first principles (Pierrehumbert, 2013), to fully address the question of the limitations of quasi- geostrophic turbulence (Schertzer et al., 2012) and to explore the peculiar phenomenology of turbulent dynamics of the atmosphere or oceans that is neither two- or three-dimensional. Pierrehumbert, R.T., 2013. Strange news from other stars. Nature Geoscience, 6(2), pp.8183. Schertzer, D. et al., 2012. Quasi-geostrophic turbulence and generalized scale invariance, a theoretical reply. Atmos. Chem. Phys., 12, pp.327336. Schertzer, D. & Tchiguirinskaia, I., 2015. Multifractal vector fields and stochastic Clifford algebra. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), p.123127
Algebraic approach to solve ttbar dilepton equations
NASA Astrophysics Data System (ADS)
Sonnenschein, Lars
2006-01-01
The set of non-linear equations describing the Standard Model kinematics of the top quark an- tiqark production system in the dilepton decay channel has at most a four-fold ambiguity due to two not fully reconstructed neutrinos. Its most precise and robust solution is of major importance for measurements of top quark properties like the top quark mass and t t spin correlations. Simple algebraic operations allow to transform the non-linear equations into a system of two polynomial equations with two unknowns. These two polynomials of multidegree eight can in turn be an- alytically reduced to one polynomial with one unknown by means of resultants. The obtained univariate polynomial is of degree sixteen and the coefficients are free of any singularity. The number of its real solutions is determined analytically by means of Sturm’s theorem, which is as well used to isolate each real solution into a unique pairwise disjoint interval. The solutions are polished by seeking the sign change of the polynomial in a given interval through binary brack- eting. Further a new Ansatz - exploiting an accidental cancelation in the process of transforming the equations - is presented. It permits to transform the initial system of equations into two poly- nomial equations with two unknowns. These two polynomials of multidegree two can be reduced to one univariate polynomial of degree four by means of resultants. The obtained quartic equation can be solved analytically. The analytical solution has singularities which can be circumvented by the algebraic approach described above.
Littelmann path model for geometric crystals, Whittaker functions on Lie groups and Brownian motion
NASA Astrophysics Data System (ADS)
Chhaibi, Reda
2013-02-01
Generally speaking, this thesis focuses on the interplay between the representations of Lie groups and probability theory. It subdivides into essentially three parts. In a first rather algebraic part, we construct a path model for geometric crystals in the sense of Berenstein and Kazhdan, for complex semi-simple Lie groups. We will mainly describe the algebraic structure, its natural morphisms and parameterizations. The theory of total positivity will play a particularly important role. Then, we anticipate on the probabilistic part by exhibiting a canonical measure on geometric crystals. It uses as ingredients the superpotential for the flag manifold and a measure invariant under the crystal actions. The image measure under the weight map plays the role of Duistermaat-Heckman measure. Its Laplace transform defines Whittaker functions, providing an interesting formula for all Lie groups. Then it appears clearly that Whittaker functions are to geometric crystals, what characters are to combinatorial crystals. The Littlewood-Richardson rule is also exposed. Finally we present the probabilistic approach that allows to find the canonical measure. It is based on the fundamental idea that the Wiener measure will induce the adequate measure on the algebraic structures through the path model. In the last chapter, we show how our geometric model degenerates to the continuous classical Littelmann path model and thus recover known results. For example, the canonical measure on a geometric crystal of highest weight degenerates into a uniform measure on a polytope, and recovers the parameterizations of continuous crystals.
The classical dynamic symmetry for the U(1) -Kepler problems
NASA Astrophysics Data System (ADS)
Bouarroudj, Sofiane; Meng, Guowu
2018-01-01
For the Jordan algebra of hermitian matrices of order n ≥ 2, we let X be its submanifold consisting of rank-one semi-positive definite elements. The composition of the cotangent bundle map πX: T∗ X → X with the canonical map X → CP n - 1 (i.e., the map that sends a given hermitian matrix to its column space), pulls back the Kähler form of the Fubini-Study metric on CP n - 1 to a real closed differential two-form ωK on T∗ X. Let ωX be the canonical symplectic form on T∗ X and μ a real number. A standard fact says that ωμ ≔ωX + 2 μωK turns T∗ X into a symplectic manifold, hence a Poisson manifold with Poisson bracket {,}μ. In this article we exhibit a Poisson realization of the simple real Lie algebra su(n , n) on the Poisson manifold (T∗ X ,{,}μ) , i.e., a Lie algebra homomorphism from su(n , n) to (C∞(T∗ X , R) ,{,}μ). Consequently one obtains the Laplace-Runge-Lenz vector for the classical U(1) -Kepler problem of level n and magnetic charge μ. Since the McIntosh-Cisneros-Zwanziger-Kepler problems (MICZ-Kepler Problems) are the U(1) -Kepler problems of level 2, the work presented here is a direct generalization of the work by A. Barut and G. Bornzin (1971) on the classical dynamic symmetry for the MICZ-Kepler problems.
A wavelet-based ECG delineation algorithm for 32-bit integer online processing
2011-01-01
Background Since the first well-known electrocardiogram (ECG) delineator based on Wavelet Transform (WT) presented by Li et al. in 1995, a significant research effort has been devoted to the exploitation of this promising method. Its ability to reliably delineate the major waveform components (mono- or bi-phasic P wave, QRS, and mono- or bi-phasic T wave) would make it a suitable candidate for efficient online processing of ambulatory ECG signals. Unfortunately, previous implementations of this method adopt non-linear operators such as root mean square (RMS) or floating point algebra, which are computationally demanding. Methods This paper presents a 32-bit integer, linear algebra advanced approach to online QRS detection and P-QRS-T waves delineation of a single lead ECG signal, based on WT. Results The QRS detector performance was validated on the MIT-BIH Arrhythmia Database (sensitivity Se = 99.77%, positive predictive value P+ = 99.86%, on 109010 annotated beats) and on the European ST-T Database (Se = 99.81%, P+ = 99.56%, on 788050 annotated beats). The ECG delineator was validated on the QT Database, showing a mean error between manual and automatic annotation below 1.5 samples for all fiducial points: P-onset, P-peak, P-offset, QRS-onset, QRS-offset, T-peak, T-offset, and a mean standard deviation comparable to other established methods. Conclusions The proposed algorithm exhibits reliable QRS detection as well as accurate ECG delineation, in spite of a simple structure built on integer linear algebra. PMID:21457580
A wavelet-based ECG delineation algorithm for 32-bit integer online processing.
Di Marco, Luigi Y; Chiari, Lorenzo
2011-04-03
Since the first well-known electrocardiogram (ECG) delineator based on Wavelet Transform (WT) presented by Li et al. in 1995, a significant research effort has been devoted to the exploitation of this promising method. Its ability to reliably delineate the major waveform components (mono- or bi-phasic P wave, QRS, and mono- or bi-phasic T wave) would make it a suitable candidate for efficient online processing of ambulatory ECG signals. Unfortunately, previous implementations of this method adopt non-linear operators such as root mean square (RMS) or floating point algebra, which are computationally demanding. This paper presents a 32-bit integer, linear algebra advanced approach to online QRS detection and P-QRS-T waves delineation of a single lead ECG signal, based on WT. The QRS detector performance was validated on the MIT-BIH Arrhythmia Database (sensitivity Se = 99.77%, positive predictive value P+ = 99.86%, on 109010 annotated beats) and on the European ST-T Database (Se = 99.81%, P+ = 99.56%, on 788050 annotated beats). The ECG delineator was validated on the QT Database, showing a mean error between manual and automatic annotation below 1.5 samples for all fiducial points: P-onset, P-peak, P-offset, QRS-onset, QRS-offset, T-peak, T-offset, and a mean standard deviation comparable to other established methods. The proposed algorithm exhibits reliable QRS detection as well as accurate ECG delineation, in spite of a simple structure built on integer linear algebra.
Generalized parastatistical systems
NASA Astrophysics Data System (ADS)
Satriawan, Mirza
2002-01-01
In the first chapter we consider systems of n-identical particles whose Hilbert spaces are invariant under the "particle permutation group" Sn, and which obey cluster decomposition. The classification of such systems by Hartle, Stolt, and Taylor in terms of state symmetry types is used, together with an additional classification based on the allowed observables in the system. We have indistinguishable (p, q)- statistics, indistinguishable infinite statistics, distinguishable (p, q)-statistics, and distinguishable infinite statistics. We refer to all of these as generalized parastatistical systems. We obtain a closed form for the grand canonical partition function (GCPF) for a non-interacting gas of particles obeying indistinguishable ( p, q)-statistics (for any p and q). As a special case we have the GCPF for the usual parabose statistics of order p, solving a 50 year old problem. Except for indistinguishable (1,1)-statistics, our results are not suitable for calculating the GCPF in the continuum energy limit. However, for indistinguishable (1,1)-statistics we calculate the continuum limit and obtain some simple thermodynamic results. In particular, we show that a system of free particles in any spatial dimension d ≥ 2 that obeys indistinguishable (1,1)-statistics will exhibit Bose-like condensation. In the second chapter we consider systems similar to those in the first chapter, but now assuming that the GCPF factorizes so that we obtain an extensive system. It turns out that having such an extensive GCPF is equivalent to the factorization of the counting function, and also to the factorization of the cluster coefficients and to the strong cluster condition on the counting coefficients. We calculate several simple thermodynamic quantities for such systems, where the results are given in terms of the cluster coefficients. In the third chapter, we give a second quantized realization of generalized parastatistical systems in the form of scalar product requirements on the Fock space F . We also give realizations of these scalar product requirements in terms of creation and annihilation operator algebras, and find that the Govorkov algebra and Greenberg's q-mutator algebra for q = 0 are the only ones from the literature that correspond to special cases of our systems.
Approximated analytical solution to an Ebola optimal control problem
NASA Astrophysics Data System (ADS)
Hincapié-Palacio, Doracelly; Ospina, Juan; Torres, Delfim F. M.
2016-11-01
An analytical expression for the optimal control of an Ebola problem is obtained. The analytical solution is found as a first-order approximation to the Pontryagin Maximum Principle via the Euler-Lagrange equation. An implementation of the method is given using the computer algebra system Maple. Our analytical solutions confirm the results recently reported in the literature using numerical methods.