Validation of the replica trick for simple models
NASA Astrophysics Data System (ADS)
Shinzato, Takashi
2018-04-01
We discuss the replica analytic continuation using several simple models in order to prove mathematically the validity of the replica analysis, which is used in a wide range of fields related to large-scale complex systems. While replica analysis consists of two analytical techniques—the replica trick (or replica analytic continuation) and the thermodynamical limit (and/or order parameter expansion)—we focus our study on replica analytic continuation, which is the mathematical basis of the replica trick. We apply replica analysis to solve a variety of analytical models, and examine the properties of replica analytic continuation. Based on the positive results for these models we propose that replica analytic continuation is a robust procedure in replica analysis.
NASA Astrophysics Data System (ADS)
Donahue, William; Newhauser, Wayne D.; Ziegler, James F.
2016-09-01
Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u-1 to 450 MeV u-1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.
Donahue, William; Newhauser, Wayne D; Ziegler, James F
2016-09-07
Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.
A simple, analytical, axisymmetric microburst model for downdraft estimation
NASA Technical Reports Server (NTRS)
Vicroy, Dan D.
1991-01-01
A simple analytical microburst model was developed for use in estimating vertical winds from horizontal wind measurements. It is an axisymmetric, steady state model that uses shaping functions to satisfy the mass continuity equation and simulate boundary layer effects. The model is defined through four model variables: the radius and altitude of the maximum horizontal wind, a shaping function variable, and a scale factor. The model closely agrees with a high fidelity analytical model and measured data, particularily in the radial direction and at lower altitudes. At higher altitudes, the model tends to overestimate the wind magnitude relative to the measured data.
Erratum: A Simple, Analytical Model of Collisionless Magnetic Reconnection in a Pair Plasma
NASA Technical Reports Server (NTRS)
Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex
2011-01-01
The following describes a list of errata in our paper, "A simple, analytical model of collisionless magnetic reconnection in a pair plasma." It supersedes an earlier erratum. We recently discovered an error in the derivation of the outflow-to-inflow density ratio.
WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL
The Wellhead Analytic Element Model (WhAEM) demonstrates a new technique for the definition of time-of-travel capture zones in relatively simple geohydrologic settings. he WhAEM package includes an analytic element model that uses superposition of (many) analytic solutions to gen...
Simple analytical model of a thermal diode
NASA Astrophysics Data System (ADS)
Kaushik, Saurabh; Kaushik, Sachin; Marathe, Rahul
2018-05-01
Recently there is a lot of attention given to manipulation of heat by constructing thermal devices such as thermal diodes, transistors and logic gates. Many of the models proposed have an asymmetry which leads to the desired effect. Presence of non-linear interactions among the particles is also essential. But, such models lack analytical understanding. Here we propose a simple, analytically solvable model of a thermal diode. Our model consists of classical spins in contact with multiple heat baths and constant external magnetic fields. Interestingly the magnetic field is the only parameter required to get the effect of heat rectification.
A simple analytical aerodynamic model of Langley Winged-Cone Aerospace Plane concept
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.
1994-01-01
A simple three DOF analytical aerodynamic model of the Langley Winged-Coned Aerospace Plane concept is presented in a form suitable for simulation, trajectory optimization, and guidance and control studies. The analytical model is especially suitable for methods based on variational calculus. Analytical expressions are presented for lift, drag, and pitching moment coefficients from subsonic to hypersonic Mach numbers and angles of attack up to +/- 20 deg. This analytical model has break points at Mach numbers of 1.0, 1.4, 4.0, and 6.0. Across these Mach number break points, the lift, drag, and pitching moment coefficients are made continuous but their derivatives are not. There are no break points in angle of attack. The effect of control surface deflection is not considered. The present analytical model compares well with the APAS calculations and wind tunnel test data for most angles of attack and Mach numbers.
Forgetfulness can help you win games.
Burridge, James; Gao, Yu; Mao, Yong
2015-09-01
We present a simple game model where agents with different memory lengths compete for finite resources. We show by simulation and analytically that an instability exists at a critical memory length, and as a result, different memory lengths can compete and coexist in a dynamical equilibrium. Our analytical formulation makes a connection to statistical urn models, and we show that temperature is mirrored by the agent's memory. Our simple model of memory may be incorporated into other game models with implications that we briefly discuss.
WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL (EPA/600/SR-94/210)
A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a groundwater flo...
NASA Technical Reports Server (NTRS)
Liu, F. C.
1986-01-01
The objective of this investigation is to make analytical determination of the acceleration produced by crew motion in an orbiting space station and define design parameters for the suspension system of microgravity experiments. A simple structural model for simulation of the IOC space station is proposed. Mathematical formulation of this model provides the engineers a simple and direct tool for designing an effective suspension system.
A Simple Analytical Model for Magnetization and Coercivity of Hard/Soft Nanocomposite Magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jihoon; Hong, Yang-Ki; Lee, Woncheol
Here, we present a simple analytical model to estimate the magnetization (σ s) and intrinsic coercivity (Hci) of a hard/soft nanocomposite magnet using the mass fraction. Previously proposed models are based on the volume fraction of the hard phase of the composite. But, it is difficult to measure the volume of the hard or soft phase material of a composite. We synthesized Sm 2Co 7/Fe-Co, MnAl/Fe-Co, MnBi/Fe-Co, and BaFe 12O 19/Fe-Co composites for characterization of their σs and Hci. The experimental results are in good agreement with the present model. Therefore, this analytical model can be extended to predict themore » maximum energy product (BH) max of hard/soft composite.« less
A Simple Analytical Model for Magnetization and Coercivity of Hard/Soft Nanocomposite Magnets
Park, Jihoon; Hong, Yang-Ki; Lee, Woncheol; ...
2017-07-10
Here, we present a simple analytical model to estimate the magnetization (σ s) and intrinsic coercivity (Hci) of a hard/soft nanocomposite magnet using the mass fraction. Previously proposed models are based on the volume fraction of the hard phase of the composite. But, it is difficult to measure the volume of the hard or soft phase material of a composite. We synthesized Sm 2Co 7/Fe-Co, MnAl/Fe-Co, MnBi/Fe-Co, and BaFe 12O 19/Fe-Co composites for characterization of their σs and Hci. The experimental results are in good agreement with the present model. Therefore, this analytical model can be extended to predict themore » maximum energy product (BH) max of hard/soft composite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crull, E W; Brown Jr., C G; Perkins, M P
2008-07-30
For short monopoles in this low-power case, it has been shown that a simple circuit model is capable of accurate predictions for the shape and magnitude of the antenna response to lightning-generated electric field coupling effects, provided that the elements of the circuit model have accurate values. Numerical EM simulation can be used to provide more accurate values for the circuit elements than the simple analytical formulas, since the analytical formulas are used outside of their region of validity. However, even with the approximate analytical formulas the simple circuit model produces reasonable results, which would improve if more accurate analyticalmore » models were used. This report discusses the coupling analysis approaches taken to understand the interaction between a time-varying EM field and a short monopole antenna, within the context of lightning safety for nuclear weapons at DOE facilities. It describes the validation of a simple circuit model using laboratory study in order to understand the indirect coupling of energy into a part, and the resulting voltage. Results show that in this low-power case, the circuit model predicts peak voltages within approximately 32% using circuit component values obtained from analytical formulas and about 13% using circuit component values obtained from numerical EM simulation. We note that the analytical formulas are used outside of their region of validity. First, the antenna is insulated and not a bare wire and there are perhaps fringing field effects near the termination of the outer conductor that the formula does not take into account. Also, the effective height formula is for a monopole directly over a ground plane, while in the time-domain measurement setup the monopole is elevated above the ground plane by about 1.5-inch (refer to Figure 5).« less
A Simple Analytic Model for Estimating Mars Ascent Vehicle Mass and Performance
NASA Technical Reports Server (NTRS)
Woolley, Ryan C.
2014-01-01
The Mars Ascent Vehicle (MAV) is a crucial component in any sample return campaign. In this paper we present a universal model for a two-stage MAV along with the analytic equations and simple parametric relationships necessary to quickly estimate MAV mass and performance. Ascent trajectories can be modeled as two-burn transfers from the surface with appropriate loss estimations for finite burns, steering, and drag. Minimizing lift-off mass is achieved by balancing optimized staging and an optimized path-to-orbit. This model allows designers to quickly find optimized solutions and to see the effects of design choices.
From Complex to Simple: Interdisciplinary Stochastic Models
ERIC Educational Resources Information Center
Mazilu, D. A.; Zamora, G.; Mazilu, I.
2012-01-01
We present two simple, one-dimensional, stochastic models that lead to a qualitative understanding of very complex systems from biology, nanoscience and social sciences. The first model explains the complicated dynamics of microtubules, stochastic cellular highways. Using the theory of random walks in one dimension, we find analytical expressions…
DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROTECTION
A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...
NASA Astrophysics Data System (ADS)
Milani, G.; Bertolesi, E.
2017-07-01
A simple quasi analytical holonomic homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how homogenized stress-strain behavior can be evaluated semi-analytically.
DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROJECTION - PROJECT SUMMARY
A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...
Empirical testing of an analytical model predicting electrical isolation of photovoltaic models
NASA Astrophysics Data System (ADS)
Garcia, A., III; Minning, C. P.; Cuddihy, E. F.
A major design requirement for photovoltaic modules is that the encapsulation system be capable of withstanding large DC potentials without electrical breakdown. Presented is a simple analytical model which can be used to estimate material thickness to meet this requirement for a candidate encapsulation system or to predict the breakdown voltage of an existing module design. A series of electrical tests to verify the model are described in detail. The results of these verification tests confirmed the utility of the analytical model for preliminary design of photovoltaic modules.
Phonon scattering in nanoscale systems: lowest order expansion of the current and power expressions
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads
2006-04-01
We use the non-equilibrium Green's function method to describe the effects of phonon scattering on the conductance of nano-scale devices. Useful and accurate approximations are developed that both provide (i) computationally simple formulas for large systems and (ii) simple analytical models. In addition, the simple models can be used to fit experimental data and provide physical parameters.
Automation effects in a multiloop manual control system
NASA Technical Reports Server (NTRS)
Hess, R. A.; Mcnally, B. D.
1986-01-01
An experimental and analytical study was undertaken to investigate human interaction with a simple multiloop manual control system in which the human's activity was systematically varied by changing the level of automation. The system simulated was the longitudinal dynamics of a hovering helicopter. The automation-systems-stabilized vehicle responses from attitude to velocity to position and also provided for display automation in the form of a flight director. The control-loop structure resulting from the task definition can be considered a simple stereotype of a hierarchical control system. The experimental study was complemented by an analytical modeling effort which utilized simple crossover models of the human operator. It was shown that such models can be extended to the description of multiloop tasks involving preview and precognitive human operator behavior. The existence of time optimal manual control behavior was established for these tasks and the role which internal models may play in establishing human-machine performance was discussed.
Numerical Simulation of the Perrin-Like Experiments
ERIC Educational Resources Information Center
Mazur, Zygmunt; Grech, Dariusz
2008-01-01
A simple model of the random Brownian walk of a spherical mesoscopic particle in viscous liquids is proposed. The model can be solved analytically and simulated numerically. The analytic solution gives the known Einstein-Smoluchowski diffusion law r[superscript 2] = 2Dt, where the diffusion constant D is expressed by the mass and geometry of a…
NASA Astrophysics Data System (ADS)
Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.
2015-08-01
A simple analytical model of a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer) is proposed. This analytical model is derived from Navier-Stokes motion in the flow channel and Darcy-Brinkman model in the porous layer. The continuities of flow velocity and normal stress are applied at the interface between the flow channel and the porous layer. The effects of the inlet volumetric flow rate, thickness of the flow channel and thickness of a typical carbon fiber paper porous layer on the volumetric flow rate within this porous layer are studied. The maximum current density based on the electrolyte volumetric flow rate is predicted, and found to be consistent with reported numerical simulation. It is found that, for a mean inlet flow velocity of 33.3 cm s-1, the analytical maximum current density is estimated to be 377 mA cm-2, which compares favorably with experimental result reported by others of ∼400 mA cm-2.
Review of Thawing Time Prediction Models Depending on Process Conditions and Product Characteristics
Kluza, Franciszek; Spiess, Walter E. L.; Kozłowicz, Katarzyna
2016-01-01
Summary Determining thawing times of frozen foods is a challenging problem as the thermophysical properties of the product change during thawing. A number of calculation models and solutions have been developed. The proposed solutions range from relatively simple analytical equations based on a number of assumptions to a group of empirical approaches that sometimes require complex calculations. In this paper analytical, empirical and graphical models are presented and critically reviewed. The conditions of solution, limitations and possible applications of the models are discussed. The graphical and semi--graphical models are derived from numerical methods. Using the numerical methods is not always possible as running calculations takes time, whereas the specialized software and equipment are not always cheap. For these reasons, the application of analytical-empirical models is more useful for engineering. It is demonstrated that there is no simple, accurate and feasible analytical method for thawing time prediction. Consequently, simplified methods are needed for thawing time estimation of agricultural and food products. The review reveals the need for further improvement of the existing solutions or development of new ones that will enable accurate determination of thawing time within a wide range of practical conditions of heat transfer during processing. PMID:27904387
NASA Astrophysics Data System (ADS)
Fedyushin, B. T.
1992-01-01
The concepts developed earlier are used to propose a simple analytic model describing the spatial-temporal distribution of a mechanical load (pressure, impulse) resulting from interaction of laser radiation with a planar barrier surrounded by air. The correctness of the model is supported by a comparison with experimental results.
Parra-Robles, J; Ajraoui, S; Deppe, M H; Parnell, S R; Wild, J M
2010-06-01
Models of lung acinar geometry have been proposed to analytically describe the diffusion of (3)He in the lung (as measured with pulsed gradient spin echo (PGSE) methods) as a possible means of characterizing lung microstructure from measurement of the (3)He ADC. In this work, major limitations in these analytical models are highlighted in simple diffusion weighted experiments with (3)He in cylindrical models of known geometry. The findings are substantiated with numerical simulations based on the same geometry using finite difference representation of the Bloch-Torrey equation. The validity of the existing "cylinder model" is discussed in terms of the physical diffusion regimes experienced and the basic reliance of the cylinder model and other ADC-based approaches on a Gaussian diffusion behaviour is highlighted. The results presented here demonstrate that physical assumptions of the cylinder model are not valid for large diffusion gradient strengths (above approximately 15 mT/m), which are commonly used for (3)He ADC measurements in human lungs. (c) 2010 Elsevier Inc. All rights reserved.
An analytic performance model of disk arrays and its application
NASA Technical Reports Server (NTRS)
Lee, Edward K.; Katz, Randy H.
1991-01-01
As disk arrays become widely used, tools for understanding and analyzing their performance become increasingly important. In particular, performance models can be invaluable in both configuring and designing disk arrays. Accurate analytic performance models are desirable over other types of models because they can be quickly evaluated, are applicable under a wide range of system and workload parameters, and can be manipulated by a range of mathematical techniques. Unfortunately, analytical performance models of disk arrays are difficult to formulate due to the presence of queuing and fork-join synchronization; a disk array request is broken up into independent disk requests which must all complete to satisfy the original request. We develop, validate, and apply an analytic performance model for disk arrays. We derive simple equations for approximating their utilization, response time, and throughput. We then validate the analytic model via simulation and investigate the accuracy of each approximation used in deriving the analytical model. Finally, we apply the analytical model to derive an equation for the optimal unit of data striping in disk arrays.
NASA Astrophysics Data System (ADS)
Bisegna, Paolo; Caselli, Federica
2008-06-01
This paper presents a simple analytical expression for the effective complex conductivity of a periodic hexagonal arrangement of conductive circular cylinders embedded in a conductive matrix, with interfaces exhibiting a capacitive impedance. This composite material may be regarded as an idealized model of a biological tissue comprising tubular cells, such as skeletal muscle. The asymptotic homogenization method is adopted, and the corresponding local problem is solved by resorting to Weierstrass elliptic functions. The effectiveness of the present analytical result is proved by convergence analysis and comparison with finite-element solutions and existing models.
NASA Astrophysics Data System (ADS)
Kanoglu, U.; Wronna, M.; Baptista, M. A.; Miranda, J. M. A.
2017-12-01
The one-dimensional analytical runup theory in combination with near shore synthetic waveforms is a promising tool for tsunami rapid early warning systems. Its application in realistic cases with complex bathymetry and initial wave condition from inverse modelling have shown that maximum runup values can be estimated reasonably well. In this study we generate a simplistic bathymetry domains which resemble realistic near-shore features. We investigate the accuracy of the analytical runup formulae to the variation of fault source parameters and near-shore bathymetric features. To do this we systematically vary the fault plane parameters to compute the initial tsunami wave condition. Subsequently, we use the initial conditions to run the numerical tsunami model using coupled system of four nested grids and compare the results to the analytical estimates. Variation of the dip angle of the fault plane showed that analytical estimates have less than 10% difference for angles 5-45 degrees in a simple bathymetric domain. These results shows that the use of analytical formulae for fast run up estimates constitutes a very promising approach in a simple bathymetric domain and might be implemented in Hazard Mapping and Early Warning.
Estimation of surface temperature in remote pollution measurement experiments
NASA Technical Reports Server (NTRS)
Gupta, S. K.; Tiwari, S. N.
1978-01-01
A simple algorithm has been developed for estimating the actual surface temperature by applying corrections to the effective brightness temperature measured by radiometers mounted on remote sensing platforms. Corrections to effective brightness temperature are computed using an accurate radiative transfer model for the 'basic atmosphere' and several modifications of this caused by deviations of the various atmospheric and surface parameters from their base model values. Model calculations are employed to establish simple analytical relations between the deviations of these parameters and the additional temperature corrections required to compensate for them. Effects of simultaneous variation of two parameters are also examined. Use of these analytical relations instead of detailed radiative transfer calculations for routine data analysis results in a severalfold reduction in computation costs.
NASA Astrophysics Data System (ADS)
Pekşen, Ertan; Yas, Türker; Kıyak, Alper
2014-09-01
We examine the one-dimensional direct current method in anisotropic earth formation. We derive an analytic expression of a simple, two-layered anisotropic earth model. Further, we also consider a horizontally layered anisotropic earth response with respect to the digital filter method, which yields a quasi-analytic solution over anisotropic media. These analytic and quasi-analytic solutions are useful tests for numerical codes. A two-dimensional finite difference earth model in anisotropic media is presented in order to generate a synthetic data set for a simple one-dimensional earth. Further, we propose a particle swarm optimization method for estimating the model parameters of a layered anisotropic earth model such as horizontal and vertical resistivities, and thickness. The particle swarm optimization is a naturally inspired meta-heuristic algorithm. The proposed method finds model parameters quite successfully based on synthetic and field data. However, adding 5 % Gaussian noise to the synthetic data increases the ambiguity of the value of the model parameters. For this reason, the results should be controlled by a number of statistical tests. In this study, we use probability density function within 95 % confidence interval, parameter variation of each iteration and frequency distribution of the model parameters to reduce the ambiguity. The result is promising and the proposed method can be used for evaluating one-dimensional direct current data in anisotropic media.
A radio-frequency sheath model for complex waveforms
NASA Astrophysics Data System (ADS)
Turner, M. M.; Chabert, P.
2014-04-01
Plasma sheaths driven by radio-frequency voltages occur in contexts ranging from plasma processing to magnetically confined fusion experiments. An analytical understanding of such sheaths is therefore important, both intrinsically and as an element in more elaborate theoretical structures. Radio-frequency sheaths are commonly excited by highly anharmonic waveforms, but no analytical model exists for this general case. We present a mathematically simple sheath model that is in good agreement with earlier models for single frequency excitation, yet can be solved for arbitrary excitation waveforms. As examples, we discuss dual-frequency and pulse-like waveforms. The model employs the ansatz that the time-averaged electron density is a constant fraction of the ion density. In the cases we discuss, the error introduced by this approximation is small, and in general it can be quantified through an internal consistency condition of the model. This simple and accurate model is likely to have wide application.
Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing
NASA Astrophysics Data System (ADS)
Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will
2018-05-01
Changes to climate-carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate-carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate-carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate-carbon feedback; and concentration-carbon feedbacks may be more sensitive to future climate change than climate-carbon feedbacks. Simple models such as that developed here also provide workbenches
for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.
Let's Go Off the Grid: Subsurface Flow Modeling With Analytic Elements
NASA Astrophysics Data System (ADS)
Bakker, M.
2017-12-01
Subsurface flow modeling with analytic elements has the major advantage that no grid or time stepping are needed. Analytic element formulations exist for steady state and transient flow in layered aquifers and unsaturated flow in the vadose zone. Analytic element models are vector-based and consist of points, lines and curves that represent specific features in the subsurface. Recent advances allow for the simulation of partially penetrating wells and multi-aquifer wells, including skin effect and wellbore storage, horizontal wells of poly-line shape including skin effect, sharp changes in subsurface properties, and surface water features with leaky beds. Input files for analytic element models are simple, short and readable, and can easily be generated from, for example, GIS databases. Future plans include the incorporation of analytic element in parts of grid-based models where additional detail is needed. This presentation will give an overview of advanced flow features that can be modeled, many of which are implemented in free and open-source software.
Biktashev, Vadim N
2014-04-01
We consider a simple mathematical model of gradual Darwinian evolution in continuous time and continuous trait space, due to intraspecific competition for common resource in an asexually reproducing population in constant environment, while far from evolutionary stable equilibrium. The model admits exact analytical solution. In particular, Gaussian distribution of the trait emerges from generic initial conditions.
1989-06-23
Iterations .......................... 86 3.2 Comparison between MACH and POLAR ......................... 90 3.3 Flow Chart for VSTS Algorithm...The most recent changes are: a) development of the VSTS (velocity space topology search) algorithm for calculating particle densities b) extension...with simple analytic models. The largest modification of the MACH code was the implementation of the VSTS procedure, which constituted a complete
A simple geometrical model describing shapes of soap films suspended on two rings
NASA Astrophysics Data System (ADS)
Herrmann, Felix J.; Kilvington, Charles D.; Wildenberg, Rebekah L.; Camacho, Franco E.; Walecki, Wojciech J.; Walecki, Peter S.; Walecki, Eve S.
2016-09-01
We measured and analysed the stability of two types of soap films suspended on two rings using the simple conical frusta-based model, where we use common definition of conical frustum as a portion of a cone that lies between two parallel planes cutting it. Using frusta-based we reproduced very well-known results for catenoid surfaces with and without a central disk. We present for the first time a simple conical frusta based spreadsheet model of the soap surface. This very simple, elementary, geometrical model produces results surprisingly well matching the experimental data and known exact analytical solutions. The experiment and the spreadsheet model can be used as a powerful teaching tool for pre-calculus and geometry students.
Galy, Bertrand; Lan, André
2018-03-01
Among the many occupational risks construction workers encounter every day falling from a height is the most dangerous. The objective of this article is to propose a simple analytical design method for horizontal lifelines (HLLs) that considers anchorage flexibility. The article presents a short review of the standards and regulations/acts/codes concerning HLLs in Canada the USA and Europe. A static analytical approach is proposed considering anchorage flexibility. The analytical results are compared with a series of 42 dynamic fall tests and a SAP2000 numerical model. The experimental results show that the analytical method is a little conservative and overestimates the line tension in most cases with a maximum of 17%. The static SAP2000 results show a maximum 2.1% difference with the analytical method. The analytical method is accurate enough to safely design HLLs and quick design abaci are provided to allow the engineer to make quick on-site verification if needed.
A simple analytical thermo-mechanical model for liquid crystal elastomer bilayer structures
NASA Astrophysics Data System (ADS)
Cui, Yun; Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Li, Yuhang; Xing, Yufeng; Yu, Cunjiang; Song, Jizhou
2018-02-01
The bilayer structure consisting of thermal-responsive liquid crystal elastomers (LCEs) and other polymer materials with stretchable heaters has attracted much attention in applications of soft actuators and soft robots due to its ability to generate large deformations when subjected to heat stimuli. A simple analytical thermo-mechanical model, accounting for the non-uniform feature of the temperature/strain distribution along the thickness direction, is established for this type of bilayer structure. The analytical predictions of the temperature and bending curvature radius agree well with finite element analysis and experiments. The influences of the LCE thickness and the heat generation power on the bending deformation of the bilayer structure are fully investigated. It is shown that a thinner LCE layer and a higher heat generation power could yield more bending deformation. These results may help the design of soft actuators and soft robots involving thermal responsive LCEs.
A simple analytical model for signal amplification by reversible exchange (SABRE) process.
Barskiy, Danila A; Pravdivtsev, Andrey N; Ivanov, Konstantin L; Kovtunov, Kirill V; Koptyug, Igor V
2016-01-07
We demonstrate an analytical model for the description of the signal amplification by reversible exchange (SABRE) process. The model relies on a combined analysis of chemical kinetics and the evolution of the nuclear spin system during the hyperpolarization process. The presented model for the first time provides rationale for deciding which system parameters (i.e. J-couplings, relaxation rates, reaction rate constants) have to be optimized in order to achieve higher signal enhancement for a substrate of interest in SABRE experiments.
A SIMPLE, EFFICIENT SOLUTION OF FLUX-PROFILE RELATIONSHIPS IN THE ATMOSPHERIC SURFACE LAYER
This note describes a simple scheme for analytical estimation of the surface layer similarity functions from state variables. What distinguishes this note from the many previous papers on this topic is that this method is specifically targeted for numerical models where simplici...
A fast analytical undulator model for realistic high-energy FEL simulations
NASA Astrophysics Data System (ADS)
Tatchyn, R.; Cremer, T.
1997-02-01
A number of leading FEL simulation codes used for modeling gain in the ultralong undulators required for SASE saturation in the <100 Å range employ simplified analytical models both for field and error representations. Although it is recognized that both the practical and theoretical validity of such codes could be enhanced by incorporating realistic undulator field calculations, the computational cost of doing this can be prohibitive, especially for point-to-point integration of the equations of motion through each undulator period. In this paper we describe a simple analytical model suitable for modeling realistic permanent magnet (PM), hybrid/PM, and non-PM undulator structures, and discuss selected techniques for minimizing computation time.
Multi-Criteria Decision Making For Determining A Simple Model of Supplier Selection
NASA Astrophysics Data System (ADS)
Harwati
2017-06-01
Supplier selection is a decision with many criteria. Supplier selection model usually involves more than five main criteria and more than 10 sub-criteria. In fact many model includes more than 20 criteria. Too many criteria involved in supplier selection models sometimes make it difficult to apply in many companies. This research focuses on designing supplier selection that easy and simple to be applied in the company. Analytical Hierarchy Process (AHP) is used to weighting criteria. The analysis results there are four criteria that are easy and simple can be used to select suppliers: Price (weight 0.4) shipment (weight 0.3), quality (weight 0.2) and services (weight 0.1). A real case simulation shows that simple model provides the same decision with a more complex model.
Analytical and multibody modeling for the power analysis of standing jumps.
Palmieri, G; Callegari, M; Fioretti, S
2015-01-01
Two methods for the power analysis of standing jumps are proposed and compared in this article. The first method is based on a simple analytical formulation which requires as input the coordinates of the center of gravity in three specified instants of the jump. The second method is based on a multibody model that simulates the jumps processing the data obtained by a three-dimensional (3D) motion capture system and the dynamometric measurements obtained by the force platforms. The multibody model is developed with OpenSim, an open-source software which provides tools for the kinematic and dynamic analyses of 3D human body models. The study is focused on two of the typical tests used to evaluate the muscular activity of lower limbs, which are the counter movement jump and the standing long jump. The comparison between the results obtained by the two methods confirms that the proposed analytical formulation is correct and represents a simple tool suitable for a preliminary analysis of total mechanical work and the mean power exerted in standing jumps.
Experimental evaluation of expendable supersonic nozzle concepts
NASA Technical Reports Server (NTRS)
Baker, V.; Kwon, O.; Vittal, B.; Berrier, B.; Re, R.
1990-01-01
Exhaust nozzles for expendable supersonic turbojet engine missile propulsion systems are required to be simple, short and compact, in addition to having good broad-range thrust-minus-drag performance. A series of convergent-divergent nozzle scale model configurations were designed and wind tunnel tested for a wide range of free stream Mach numbers and nozzle pressure ratios. The models included fixed geometry and simple variable exit area concepts. The experimental and analytical results show that the fixed geometry configurations tested have inferior off-design thrust-minus-drag performance in the transonic Mach range. A simple variable exit area configuration called the Axi-Quad nozzle, combining features of both axisymmetric and two-dimensional convergent-divergent nozzles, performed well over a broad range of operating conditions. Analytical predictions of the flow pattern as well as overall performance of the nozzles, using a fully viscous, compressible CFD code, compared very well with the test data.
Phenomenology of wall-bounded Newtonian turbulence.
L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Zilitinkevich, Sergej S
2006-01-01
We construct a simple analytic model for wall-bounded turbulence, containing only four adjustable parameters. Two of these parameters are responsible for the viscous dissipation of the components of the Reynolds stress tensor. The other two parameters control the nonlinear relaxation of these objects. The model offers an analytic description of the profiles of the mean velocity and the correlation functions of velocity fluctuations in the entire boundary region, from the viscous sublayer, through the buffer layer, and further into the log-law turbulent region. In particular, the model predicts a very simple distribution of the turbulent kinetic energy in the log-law region between the velocity components: the streamwise component contains a half of the total energy whereas the wall-normal and cross-stream components contain a quarter each. In addition, the model predicts a very simple relation between the von Kármán slope k and the turbulent velocity in the log-law region v+ (in wall units): v+=6k. These predictions are in excellent agreement with direct numerical simulation data and with recent laboratory experiments.
Data Acquisition Programming (LabVIEW): An Aid to Teaching Instrumental Analytical Chemistry.
ERIC Educational Resources Information Center
Gostowski, Rudy
A course was developed at Austin Peay State University (Tennessee) which offered an opportunity for hands-on experience with the essential components of modern analytical instruments. The course aimed to provide college students with the skills necessary to construct a simple model instrument, including the design and fabrication of electronic…
Gravitational lensing by an ensemble of isothermal galaxies
NASA Technical Reports Server (NTRS)
Katz, Neal; Paczynski, Bohdan
1987-01-01
Calculation of 28,000 models of gravitational lensing of a distant quasar by an ensemble of randomly placed galaxies, each having a singular isothermal mass distribuiton, is reported. The average surface mass density was 0.2 of the critical value in all models. It is found that the surface mass density averaged over the area of the smallest circle that encompasses the multiple images is 0.82, only slightly smaller than expected from a simple analytical model of Turner et al. (1984). The probability of getting multiple images is also as large as expected analytically. Gravitational lensing is dominated by the matter in the beam; i.e., by the beam convergence. The cases where the multiple imaging is due to asymmetry in mass distribution (i.e., due to shear) are very rare. Therefore, the observed gravitational-lens candidates for which no lensing object has been detected between the images cannot be a result of asymmetric mass distribution outside the images, at least in a model with randomly distributed galaxies. A surprisingly large number of large separations between the multiple images is found: up to 25 percent of multiple images have their angular separation 2 to 4 times larger than expected in a simple analytical model.
Quantum decay model with exact explicit analytical solution
NASA Astrophysics Data System (ADS)
Marchewka, Avi; Granot, Er'El
2009-01-01
A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.
Singularities in x-ray spectra of metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahan, G.D.
1987-08-01
The x-ray spectroscopies discussed are absorption, emission, and photoemission. The singularities show up in each of them in a different manner. In absorption and emission they show up as power law singularities at the thresholds frequencies. This review will emphasize two themes. First a simple model is proposed to describe this phenomena, which is now called the MND model after MAHAN-NOZIERES-DeDOMINICIS. Exact analytical solutions are now available for this model for the three spectroscopies discussed above. These analytical models can be evaluated numerically in a simple way. The second theme of this review is that great care must be usedmore » when comparing the theory to experiment. A number of factors influence the edge shapes in x-ray spectroscopy. The edge singularities play an important role, and are observed in many matals. Quantitative fits of the theory to experiment require the consideration of other factors. 51 refs.« less
NASA Astrophysics Data System (ADS)
Vicsek, Tamas
1997-03-01
It is demonstrated that a wide range of experimental results on biological motion can be successfully interpreted in terms of statistical physics motivated models taking into account the relevant microscopic details of motor proteins and allowing analytic solutions. Two important examples are considered, i) the motion of a single kinesin molecule along microtubules inside individual cells and ii) muscle contraction which is a macroscopic phenomenon due to the collective action of a large number of myosin heads along actin filaments. i) Recently individual two-headed kinesin molecules have been studied in in vitro motility assays revealing a number of their peculiar transport properties. Here we propose a simple and robust model for the kinesin stepping process with elastically coupled Brownian heads showing all of these properties. The analytic treatment of our model results in a very good fit to the experimental data and practically has no free parameters. ii) Myosin is an ATPase enzyme that converts the chemical energy stored in ATP molecules into mechanical work. During muscle contraction, the myosin cross-bridges attach to the actin filaments and exert force on them yielding a relative sliding of the actin and myosin filaments. In this paper we present a simple mechanochemical model for the cross-bridge interaction involving the relevant kinetic data and providing simple analytic solutions for the mechanical properties of muscle contraction, such as the force-velocity relationship or the relative number of the attached cross-bridges. So far the only analytic formula which could be fitted to the measured force-velocity curves has been the well known Hill equation containing parameters lacking clear microscopic origin. The main advantages of our new approach are that it explicitly connects the mechanical data with the kinetic data and the concentration of the ATP and ATPase products and as such it leads to new analytic solutions which agree extremely well with a wide range of experimental curves, while the parameters of the corresponding expressions have well defined microscopic meaning.
A computational method for optimizing fuel treatment locations
Mark A. Finney
2006-01-01
Modeling and experiments have suggested that spatial fuel treatment patterns can influence the movement of large fires. On simple theoretical landscapes consisting of two fuel types (treated and untreated) optimal patterns can be analytically derived that disrupt fire growth efficiently (i.e. with less area treated than random patterns). Although conceptually simple,...
Numerical and analytical bounds on threshold error rates for hypergraph-product codes
NASA Astrophysics Data System (ADS)
Kovalev, Alexey A.; Prabhakar, Sanjay; Dumer, Ilya; Pryadko, Leonid P.
2018-06-01
We study analytically and numerically decoding properties of finite-rate hypergraph-product quantum low density parity-check codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several nontrivial lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models and a minimum-weight decoding threshold of approximately 7 % .
Aoi, Shinya; Nachstedt, Timo; Manoonpong, Poramate; Wörgötter, Florentin; Matsuno, Fumitoshi
2018-01-01
Insects have various gaits with specific characteristics and can change their gaits smoothly in accordance with their speed. These gaits emerge from the embodied sensorimotor interactions that occur between the insect’s neural control and body dynamic systems through sensory feedback. Sensory feedback plays a critical role in coordinated movements such as locomotion, particularly in stick insects. While many previously developed insect models can generate different insect gaits, the functional role of embodied sensorimotor interactions in the interlimb coordination of insects remains unclear because of their complexity. In this study, we propose a simple physical model that is amenable to mathematical analysis to explain the functional role of these interactions clearly. We focus on a foot contact sensory feedback called phase resetting, which regulates leg retraction timing based on touchdown information. First, we used a hexapod robot to determine whether the distributed decoupled oscillators used for legs with the sensory feedback generate insect-like gaits through embodied sensorimotor interactions. The robot generated two different gaits and one had similar characteristics to insect gaits. Next, we proposed the simple model as a minimal model that allowed us to analyze and explain the gait mechanism through the embodied sensorimotor interactions. The simple model consists of a rigid body with massless springs acting as legs, where the legs are controlled using oscillator phases with phase resetting, and the governed equations are reduced such that they can be explained using only the oscillator phases with some approximations. This simplicity leads to analytical solutions for the hexapod gaits via perturbation analysis, despite the complexity of the embodied sensorimotor interactions. This is the first study to provide an analytical model for insect gaits under these interaction conditions. Our results clarified how this specific foot contact sensory feedback contributes to generation of insect-like ipsilateral interlimb coordination during hexapod locomotion. PMID:29489831
Barlow, Paul M.
1997-01-01
Steady-state, two- and three-dimensional, ground-water-flow models coupled with particle tracking were evaluated to determine their effectiveness in delineating contributing areas of wells pumping from stratified-drift aquifers of Cape Cod, Massachusetts. Several contributing areas delineated by use of the three-dimensional models do not conform to simple ellipsoidal shapes that are typically delineated by use of two-dimensional analytical and numerical modeling techniques and included discontinuous areas of the water table.
A predictive analytic model for the solar modulation of cosmic rays
Cholis, Ilias; Hooper, Dan; Linden, Tim
2016-02-23
An important factor limiting our ability to understand the production and propagation of cosmic rays pertains to the effects of heliospheric forces, commonly known as solar modulation. The solar wind is capable of generating time- and charge-dependent effects on the spectrum and intensity of low-energy (≲10 GeV) cosmic rays reaching Earth. Previous analytic treatments of solar modulation have utilized the force-field approximation, in which a simple potential is adopted whose amplitude is selected to best fit the cosmic-ray data taken over a given period of time. Making use of recently available cosmic-ray data from the Voyager 1 spacecraft, along withmore » measurements of the heliospheric magnetic field and solar wind, we construct a time-, charge- and rigidity-dependent model of solar modulation that can be directly compared to data from a variety of cosmic-ray experiments. Here, we provide a simple analytic formula that can be easily utilized in a variety of applications, allowing us to better predict the effects of solar modulation and reduce the number of free parameters involved in cosmic-ray propagation models.« less
Tracy, J I; Pinsk, M; Helverson, J; Urban, G; Dietz, T; Smith, D J
2001-08-01
The link between automatic and effortful processing and nonanalytic and analytic category learning was evaluated in a sample of 29 college undergraduates using declarative memory, semantic category search, and pseudoword categorization tasks. Automatic and effortful processing measures were hypothesized to be associated with nonanalytic and analytic categorization, respectively. Results suggested that contrary to prediction strong criterion-attribute (analytic) responding on the pseudoword categorization task was associated with strong automatic, implicit memory encoding of frequency-of-occurrence information. Data are discussed in terms of the possibility that criterion-attribute category knowledge, once established, may be expressed with few attentional resources. The data indicate that attention resource requirements, even for the same stimuli and task, vary depending on the category rule system utilized. Also, the automaticity emerging from familiarity with analytic category exemplars is very different from the automaticity arising from extensive practice on a semantic category search task. The data do not support any simple mapping of analytic and nonanalytic forms of category learning onto the automatic and effortful processing dichotomy and challenge simple models of brain asymmetries for such procedures. Copyright 2001 Academic Press.
Firing patterns in the adaptive exponential integrate-and-fire model.
Naud, Richard; Marcille, Nicolas; Clopath, Claudia; Gerstner, Wulfram
2008-11-01
For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.
SIMPLE MODEL OF ICE SEGREGATION USING AN ANALYTIC FUNCTION TO MODEL HEAT AND SOIL-WATER FLOW.
Hromadka, T.V.; Guymon, G.L.
1984-01-01
This paper reports on the development of a simple two-dimensional model of coupled heat and soil-water flow in freezing or thawing soil. The model also estimates ice-segregation (frost-heave) evolution. Ice segregation in soil results from water drawn into a freezing zone by hydraulic gradients created by the freezing of soil-water. Thus, with a favorable balance between the rate of heat extraction and the rate of water transport to a freezing zone, segregated ice lenses may form.
A Review of Numerical Simulation and Analytical Modeling for Medical Devices Safety in MRI
Kabil, J.; Belguerras, L.; Trattnig, S.; Pasquier, C.; Missoffe, A.
2016-01-01
Summary Objectives To review past and present challenges and ongoing trends in numerical simulation for MRI (Magnetic Resonance Imaging) safety evaluation of medical devices. Methods A wide literature review on numerical and analytical simulation on simple or complex medical devices in MRI electromagnetic fields shows the evolutions through time and a growing concern for MRI safety over the years. Major issues and achievements are described, as well as current trends and perspectives in this research field. Results Numerical simulation of medical devices is constantly evolving, supported by calculation methods now well-established. Implants with simple geometry can often be simulated in a computational human model, but one issue remaining today is the experimental validation of these human models. A great concern is to assess RF heating on implants too complex to be traditionally simulated, like pacemaker leads. Thus, ongoing researches focus on alternative hybrids methods, both numerical and experimental, with for example a transfer function method. For the static field and gradient fields, analytical models can be used for dimensioning simple implants shapes, but limited for complex geometries that cannot be studied with simplifying assumptions. Conclusions Numerical simulation is an essential tool for MRI safety testing of medical devices. The main issues remain the accuracy of simulations compared to real life and the studies of complex devices; but as the research field is constantly evolving, some promising ideas are now under investigation to take up the challenges. PMID:27830244
Analytical model for minority games with evolutionary learning
NASA Astrophysics Data System (ADS)
Campos, Daniel; Méndez, Vicenç; Llebot, Josep E.; Hernández, Germán A.
2010-06-01
In a recent work [D. Campos, J.E. Llebot, V. Méndez, Theor. Popul. Biol. 74 (2009) 16] we have introduced a biological version of the Evolutionary Minority Game that tries to reproduce the intraspecific competition for limited resources in an ecosystem. In comparison with the complex decision-making mechanisms used in standard Minority Games, only two extremely simple strategies ( juveniles and adults) are accessible to the agents. Complexity is introduced instead through an evolutionary learning rule that allows younger agents to learn taking better decisions. We find that this game shows many of the typical properties found for Evolutionary Minority Games, like self-segregation behavior or the existence of an oscillation phase for a certain range of the parameter values. However, an analytical treatment becomes much easier in our case, taking advantage of the simple strategies considered. Using a model consisting of a simple dynamical system, the phase diagram of the game (which differentiates three phases: adults crowd, juveniles crowd and oscillations) is reproduced.
NASA Technical Reports Server (NTRS)
North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.
1980-01-01
An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.
NASA Technical Reports Server (NTRS)
North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.
1981-01-01
An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.
Qualitative methods in quantum theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Migdal, A.B.
The author feels that the solution of most problems in theoretical physics begins with the application of qualitative methods - dimensional estimates and estimates made from simple models, the investigation of limiting cases, the use of the analytic properties of physical quantities, etc. This book proceeds in this spirit, rather than in a formal, mathematical way with no traces of the sweat involved in the original work left to show. The chapters are entitled Dimensional and model approximations, Various types of perturbation theory, The quasi-classical approximation, Analytic properties of physical quantities, Methods in the many-body problem, and Qualitative methods inmore » quantum field theory. Each chapter begins with a detailed introduction, in which the physical meaning of the results obtained in that chapter is explained in a simple way. 61 figures. (RWR)« less
Simple analytical model for low-frequency frequency-modulation noise of monolithic tunable lasers.
Huynh, Tam N; Ó Dúill, Seán P; Nguyen, Lim; Rusch, Leslie A; Barry, Liam P
2014-02-10
We employ simple analytical models to construct the entire frequency-modulation (FM)-noise spectrum of tunable semiconductor lasers. Many contributions to the laser FM noise can be clearly identified from the FM-noise spectrum, such as standard Weiner FM noise incorporating laser relaxation oscillation, excess FM noise due to thermal fluctuations, and carrier-induced refractive index fluctuations from stochastic carrier generation in the passive tuning sections. The contribution of the latter effect is identified by noting a correlation between part of the FM-noise spectrum with the FM-modulation response of the passive sections. We pay particular attention to the case of widely tunable lasers with three independent tuning sections, mainly the sampled-grating distributed Bragg reflector laser, and compare with that of a distributed feedback laser. The theoretical model is confirmed with experimental measurements, with the calculations of the important phase-error variance demonstrating excellent agreement.
Modelling of nanoscale quantum tunnelling structures using algebraic topology method
NASA Astrophysics Data System (ADS)
Sankaran, Krishnaswamy; Sairam, B.
2018-05-01
We have modelled nanoscale quantum tunnelling structures using Algebraic Topology Method (ATM). The accuracy of ATM is compared to the analytical solution derived based on the wave nature of tunnelling electrons. ATM provides a versatile, fast, and simple model to simulate complex structures. We are currently expanding the method for modelling electrodynamic systems.
Analytic expressions for the black-sky and white-sky albedos of the cosine lobe model.
Goodin, Christopher
2013-05-01
The cosine lobe model is a bidirectional reflectance distribution function (BRDF) that is commonly used in computer graphics to model specular reflections. The model is both simple and physically plausible, but physical quantities such as albedo have not been related to the parameterization of the model. In this paper, analytic expressions for calculating the black-sky and white-sky albedos from the cosine lobe BRDF model with integer exponents will be derived, to the author's knowledge for the first time. These expressions for albedo can be used to place constraints on physics-based simulations of radiative transfer such as high-fidelity ray-tracing simulations.
The dynamics of coastal models
Hearn, Clifford J.
2008-01-01
Coastal basins are defined as estuaries, lagoons, and embayments. This book deals with the science of coastal basins using simple models, many of which are presented in either analytical form or Microsoft Excel or MATLAB. The book introduces simple hydrodynamics and its applications, from the use of simple box and one-dimensional models to flow over coral reefs. The book also emphasizes models as a scientific tool in our understanding of coasts, and introduces the value of the most modern flexible mesh combined wave-current models. Examples from shallow basins around the world illustrate the wonders of the scientific method and the power of simple dynamics. This book is ideal for use as an advanced textbook for graduate students and as an introduction to the topic for researchers, especially those from other fields of science needing a basic understanding of the basic ideas of the dynamics of coastal basins.
Vertical and pitching resonance of train cars moving over a series of simple beams
NASA Astrophysics Data System (ADS)
Yang, Y. B.; Yau, J. D.
2015-02-01
The resonant response, including both vertical and pitching motions, of an undamped sprung mass unit moving over a series of simple beams is studied by a semi-analytical approach. For a sprung mass that is very small compared with the beam, we first simplify the sprung mass as a constant moving force and obtain the response of the beam in closed form. With this, we then solve for the response of the sprung mass passing over a series of simple beams, and validate the solution by an independent finite element analysis. To evaluate the pitching resonance, we consider the cases of a two-axle model and a coach model traveling over rough rails supported by a series of simple beams. The resonance of a train car is characterized by the fact that its response continues to build up, as it travels over more and more beams. For train cars with long axle intervals, the vertical acceleration induced by pitching resonance dominates the peak response of the train traveling over a series of simple beams. The present semi-analytical study allows us to grasp the key parameters involved in the primary/sub-resonant responses. Other phenomena of resonance are also discussed in the exemplar study.
AN ANALYTIC MODEL OF DUSTY, STRATIFIED, SPHERICAL H ii REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez-Ramírez, J. C.; Raga, A. C.; Lora, V.
2016-12-20
We study analytically the effect of radiation pressure (associated with photoionization processes and with dust absorption) on spherical, hydrostatic H ii regions. We consider two basic equations, one for the hydrostatic balance between the radiation-pressure components and the gas pressure, and another for the balance among the recombination rate, the dust absorption, and the ionizing photon rate. Based on appropriate mathematical approximations, we find a simple analytic solution for the density stratification of the nebula, which is defined by specifying the radius of the external boundary, the cross section of dust absorption, and the luminosity of the central star. Wemore » compare the analytic solution with numerical integrations of the model equations of Draine, and find a wide range of the physical parameters for which the analytic solution is accurate.« less
The Freter model: a simple model of biofilm formation.
Jones, Don; Kojouharov, Hristo V; Le, Dung; Smith, Hal
2003-08-01
A simple, conceptual model of biofilm formation, due to R. Freter et al. (1983), is studied analytically and numerically in both CSTR and PFR. Two steady state regimes are identified, namely, the complete washout of the microbes from the reactor and the successful colonization of both the wall and bulk fluid. One of these is stable for any particular set of parameter values and sharp and explicit conditions are given for the stability of each. The effects of adding an anti-microbial agent to the CSTR are examined.
Analytical and finite element simulation of a three-bar torsion spring
NASA Astrophysics Data System (ADS)
Rădoi, M.; Cicone, T.
2016-08-01
The present study is dedicated to the innovative 3-bar torsion spring used as suspension solution for the first time at Lunokhod-1, the first autonomous vehicle sent for the exploration of the Moon in the early 70-ies by the former USSR. The paper describes a simple analytical model for calculation of spring static characteristics, taking into account both torsion and bending effects. Closed form solutions of this model allows quick and elegant parametric analysis. A comparison with a single torsion bar with the same stiffness reveal an increase of the maximum stress with more than 50%. A 3D finite element (FE) simulation is proposed to evaluate the accuracy of the analytical model. The model was meshed in an automated pattern (sweep for hubs and tetrahedrons for bars) with mesh morphing. Very close results between analytical and numerical solutions have been found, concluding that the analytical model is accurate. The 3-D finite element simulation was used to evaluate the effects of design details like fillet radius of the bars or contact stresses in the hex hub.
An Analytic Model for the Success Rate of a Robotic Actuator System in Hitting Random Targets.
Bradley, Stuart
2015-11-20
Autonomous robotic systems are increasingly being used in a wide range of applications such as precision agriculture, medicine, and the military. These systems have common features which often includes an action by an "actuator" interacting with a target. While simulations and measurements exist for the success rate of hitting targets by some systems, there is a dearth of analytic models which can give insight into, and guidance on optimization, of new robotic systems. The present paper develops a simple model for estimation of the success rate for hitting random targets from a moving platform. The model has two main dimensionless parameters: the ratio of actuator spacing to target diameter; and the ratio of platform distance moved (between actuator "firings") to the target diameter. It is found that regions of parameter space having specified high success are described by simple equations, providing guidance on design. The role of a "cost function" is introduced which, when minimized, provides optimization of design, operating, and risk mitigation costs.
A simple model for strong ground motions and response spectra
Safak, Erdal; Mueller, Charles; Boatwright, John
1988-01-01
A simple model for the description of strong ground motions is introduced. The model shows that response spectra can be estimated by using only four parameters of the ground motion, the RMS acceleration, effective duration and two corner frequencies that characterize the effective frequency band of the motion. The model is windowed band-limited white noise, and is developed by studying the properties of two functions, cumulative squared acceleration in the time domain, and cumulative squared amplitude spectrum in the frequency domain. Applying the methods of random vibration theory, the model leads to a simple analytical expression for the response spectra. The accuracy of the model is checked by using the ground motion recordings from the aftershock sequences of two different earthquakes and simulated accelerograms. The results show that the model gives a satisfactory estimate of the response spectra.
New analytic results for speciation times in neutral models.
Gernhard, Tanja
2008-05-01
In this paper, we investigate the standard Yule model, and a recently studied model of speciation and extinction, the "critical branching process." We develop an analytic way-as opposed to the common simulation approach-for calculating the speciation times in a reconstructed phylogenetic tree. Simple expressions for the density and the moments of the speciation times are obtained. Methods for dating a speciation event become valuable, if for the reconstructed phylogenetic trees, no time scale is available. A missing time scale could be due to supertree methods, morphological data, or molecular data which violates the molecular clock. Our analytic approach is, in particular, useful for the model with extinction, since simulations of birth-death processes which are conditioned on obtaining n extant species today are quite delicate. Further, simulations are very time consuming for big n under both models.
Approximate analytical solution for induction heating of solid cylinders
Jankowski, Todd Andrew; Pawley, Norma Helen; Gonzales, Lindsey Michal; ...
2015-10-20
An approximate solution to the mathematical model for induction heating of a solid cylinder in a cylindrical induction coil is presented here. The coupled multiphysics model includes equations describing the electromagnetic field in the heated object, a heat transfer simulation to determine temperature of the heated object, and an AC circuit simulation of the induction heating power supply. A multiple-scale perturbation method is used to solve the multiphysics model. The approximate analytical solution yields simple closed-form expressions for the electromagnetic field and heat generation rate in the solid cylinder, for the equivalent impedance of the associated tank circuit, and formore » the frequency response of a variable frequency power supply driving the tank circuit. The solution developed here is validated by comparing predicted power supply frequency to both experimental measurements and calculated values from finite element analysis for heating of graphite cylinders in an induction furnace. The simple expressions from the analytical solution clearly show the functional dependence of the power supply frequency on the material properties of the load and the geometrical characteristics of the furnace installation. In conclusion, the expressions developed here provide physical insight into observations made during load signature analysis of induction heating.« less
Deciphering mRNA Sequence Determinants of Protein Production Rate
NASA Astrophysics Data System (ADS)
Szavits-Nossan, Juraj; Ciandrini, Luca; Romano, M. Carmen
2018-03-01
One of the greatest challenges in biophysical models of translation is to identify coding sequence features that affect the rate of translation and therefore the overall protein production in the cell. We propose an analytic method to solve a translation model based on the inhomogeneous totally asymmetric simple exclusion process, which allows us to unveil simple design principles of nucleotide sequences determining protein production rates. Our solution shows an excellent agreement when compared to numerical genome-wide simulations of S. cerevisiae transcript sequences and predicts that the first 10 codons, which is the ribosome footprint length on the mRNA, together with the value of the initiation rate, are the main determinants of protein production rate under physiological conditions. Finally, we interpret the obtained analytic results based on the evolutionary role of the codons' choice for regulating translation rates and ribosome densities.
Makarov, Sergey N.; Yanamadala, Janakinadh; Piazza, Matthew W.; Helderman, Alex M.; Thang, Niang S.; Burnham, Edward H.; Pascual-Leone, Alvaro
2016-01-01
Goals Transcranial magnetic stimulation (TMS) is increasingly used as a diagnostic and therapeutic tool for numerous neuropsychiatric disorders. The use of TMS might cause whole-body exposure to undesired induced currents in patients and TMS operators. The aim of the present study is to test and justify a simple analytical model known previously, which may be helpful as an upper estimate of eddy current density at a particular distant observation point for any body composition and any coil setup. Methods We compare the analytical solution with comprehensive adaptive mesh refinement-based FEM simulations of a detailed full-body human model, two coil types, five coil positions, about 100,000 observation points, and two distinct pulse rise times, thus providing a representative number of different data sets for comparison, while also using other numerical data. Results Our simulations reveal that, after a certain modification, the analytical model provides an upper estimate for the eddy current density at any location within the body. In particular, it overestimates the peak eddy currents at distant locations from a TMS coil by a factor of 10 on average. Conclusion The simple analytical model tested in the present study may be valuable as a rapid method to safely estimate levels of TMS currents at different locations within a human body. Significance At present, safe limits of general exposure to TMS electric and magnetic fields are an open subject, including fetal exposure for pregnant women. PMID:26685221
Combustion of Nitramine Propellants
1983-03-01
through development of a comprehensive analytical model. The ultimate goals are to enable prediction of deflagration rate over a wide pressure range...superior in burn rate prediction , both simple models fail in correlating existing temperature- sensitivity data. (2) In the second part, a...auxiliary condition to enable independent burn rate prediction ; improved melt phase model including decomposition-gas bubbles; model for far-field
Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan
2016-03-01
Stir bar sorptive extraction is an environmentally friendly microextraction technique based on a stir bar with various sorbents. A commercial stirrer is a good support, but it has not been used in stir bar sorptive extraction due to difficult modification. A stirrer was modified with carbon nanoparticles by a simple carbon deposition process in flame and characterized by scanning electron microscopy and energy-dispersive X-ray spectrometry. A three-dimensional porous coating was formed with carbon nanoparticles. In combination with high-performance liquid chromatography, the stir bar was evaluated using five polycyclic aromatic hydrocarbons as model analytes. Conditions including extraction time and temperature, ionic strength, and desorption solvent were investigated by a factor-by-factor optimization method. The established method exhibited good linearity (0.01-10 μg/L) and low limits of quantification (0.01 μg/L). It was applied to detect model analytes in environmental water samples. No analyte was detected in river water, and five analytes were quantified in rain water. The recoveries of five analytes in two samples with spiked at 2 μg/L were in the range of 92.2-106% and 93.4-108%, respectively. The results indicated that the carbon nanoparticle-coated stirrer was an efficient stir bar for extraction analysis of some polycyclic aromatic hydrocarbons. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Multilevel Multiset Time-Series Model for Describing Complex Developmental Processes
Ma, Xin; Shen, Jianping
2017-01-01
The authors sought to develop an analytical platform where multiple sets of time series can be examined simultaneously. This multivariate platform capable of testing interaction effects among multiple sets of time series can be very useful in empirical research. The authors demonstrated that the multilevel framework can readily accommodate this analytical capacity. Given their intention to use the multilevel multiset time-series model to pursue complicated research purposes, their resulting model is relatively simple to specify, to run, and to interpret. These advantages make the adoption of their model relatively effortless as long as researchers have the basic knowledge and skills in working with multilevel growth modeling. With multiple potential extensions of their model, the establishment of this analytical platform for analysis of multiple sets of time series can inspire researchers to pursue far more advanced research designs to address complex developmental processes in reality. PMID:29881094
NASA Technical Reports Server (NTRS)
Bolding, R. M.; Stearman, R. O.
1976-01-01
A low budget flutter model incorporating active aerodynamic controls for flutter suppression studies was designed as both an educational and research tool to study the interfering lifting surface flutter phenomenon in the form of a swept wing-tail configuration. A flutter suppression mechanism was demonstrated on a simple semirigid three-degree-of-freedom flutter model of this configuration employing an active stabilator control, and was then verified analytically using a doublet lattice lifting surface code and the model's measured mass, mode shapes, and frequencies in a flutter analysis. Preliminary studies were significantly encouraging to extend the analysis to the larger degree of freedom AFFDL wing-tail flutter model where additional analytical flutter suppression studies indicated significant gains in flutter margins could be achieved. The analytical and experimental design of a flutter suppression system for the AFFDL model is presented along with the results of a preliminary passive flutter test.
New approach in the quantum statistical parton distribution
NASA Astrophysics Data System (ADS)
Sohaily, Sozha; Vaziri (Khamedi), Mohammad
2017-12-01
An attempt to find simple parton distribution functions (PDFs) based on quantum statistical approach is presented. The PDFs described by the statistical model have very interesting physical properties which help to understand the structure of partons. The longitudinal portion of distribution functions are given by applying the maximum entropy principle. An interesting and simple approach to determine the statistical variables exactly without fitting and fixing parameters is surveyed. Analytic expressions of the x-dependent PDFs are obtained in the whole x region [0, 1], and the computed distributions are consistent with the experimental observations. The agreement with experimental data, gives a robust confirm of our simple presented statistical model.
ESTIMATION OF GROUNDWATER POLLUTION POTENTIAL BY PESTICIDES IN MID-ATLANTIC COASTAL PLAIN WATERSHEDS
A simple GIS-based transport model to estimate the potential for groundwater pollution by pesticides has been developed within the ArcView GIS environment. The pesticide leaching analytical model, which is based on one-dimensional advective-dispersive-reactive (ADR) transport, ha...
Diffusion of Super-Gaussian Profiles
ERIC Educational Resources Information Center
Rosenberg, C.-J.; Anderson, D.; Desaix, M.; Johannisson, P.; Lisak, M.
2007-01-01
The present analysis describes an analytically simple and systematic approximation procedure for modelling the free diffusive spreading of initially super-Gaussian profiles. The approach is based on a self-similar ansatz for the evolution of the diffusion profile, and the parameter functions involved in the modelling are determined by suitable…
Oblique Impact Ejecta Flow Fields: An Application of Maxwells Z Model
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2001-01-01
Oblique impact flow fields show an evolution from asymmetric to symmetric ejecta flow. This evolution can be put into the simple analytical description of the evolving flow field origin using the Maxwell Z Model. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Voloshin, A. E.
2013-11-01
The well-known one-dimensional Burton-Prim-Slichter and Ostrogorsky-Müller analytical models obtained for the stationary mass transfer regime describe in a simple form the dependence of the effective impurity segregation coefficient on the ratio of the crystal growth and convective flow rates. Solutions for the initial transient regime are found in both models. It is shown that the formulas obtained make it possible to determine both the crystal growth rate and the convective mixing intensity on the basis of the analysis of impurity segregation in crystal.
Analytical Studies on the Synchronization of a Network of Linearly-Coupled Simple Chaotic Systems
NASA Astrophysics Data System (ADS)
Sivaganesh, G.; Arulgnanam, A.; Seethalakshmi, A. N.; Selvaraj, S.
2018-05-01
We present explicit generalized analytical solutions for a network of linearly-coupled simple chaotic systems. Analytical solutions are obtained for the normalized state equations of a network of linearly-coupled systems driven by a common chaotic drive system. Two parameter bifurcation diagrams revealing the various hidden synchronization regions, such as complete, phase and phase-lag synchronization are identified using the analytical results. The synchronization dynamics and their stability are studied using phase portraits and the master stability function, respectively. Further, experimental results for linearly-coupled simple chaotic systems are presented to confirm the analytical results. The synchronization dynamics of a network of chaotic systems studied analytically is reported for the first time.
Simple model of hydrophobic hydration.
Lukšič, Miha; Urbic, Tomaz; Hribar-Lee, Barbara; Dill, Ken A
2012-05-31
Water is an unusual liquid in its solvation properties. Here, we model the process of transferring a nonpolar solute into water. Our goal was to capture the physical balance between water's hydrogen bonding and van der Waals interactions in a model that is simple enough to be nearly analytical and not heavily computational. We develop a 2-dimensional Mercedes-Benz-like model of water with which we compute the free energy, enthalpy, entropy, and the heat capacity of transfer as a function of temperature, pressure, and solute size. As validation, we find that this model gives the same trends as Monte Carlo simulations of the underlying 2D model and gives qualitative agreement with experiments. The advantages of this model are that it gives simple insights and that computational time is negligible. It may provide a useful starting point for developing more efficient and more realistic 3D models of aqueous solvation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanguas-Gil, Angel; Elam, Jeffrey W.
2014-05-01
In this work, the authors present analytic models for atomic layer deposition (ALD) in three common experimental configurations: cross-flow, particle coating, and spatial ALD. These models, based on the plug-flow and well-mixed approximations, allow us to determine the minimum dose times and materials utilization for all three configurations. A comparison between the three models shows that throughput and precursor utilization can each be expressed by universal equations, in which the particularity of the experimental system is contained in a single parameter related to the residence time of the precursor in the reactor. For the case of cross-flow reactors, the authorsmore » show how simple analytic expressions for the reactor saturation profiles agree well with experimental results. Consequently, the analytic model can be used to extract information about the ALD surface chemistry (e. g., the reaction probability) by comparing the analytic and experimental saturation profiles, providing a useful tool for characterizing new and existing ALD processes. (C) 2014 American Vacuum Society« less
Ground temperature measurement by PRT-5 for maps experiment
NASA Technical Reports Server (NTRS)
Gupta, S. K.; Tiwari, S. N.
1978-01-01
A simple algorithm and computer program were developed for determining the actual surface temperature from the effective brightness temperature as measured remotely by a radiation thermometer called PRT-5. This procedure allows the computation of atmospheric correction to the effective brightness temperature without performing detailed radiative transfer calculations. Model radiative transfer calculations were performed to compute atmospheric corrections for several values of the surface and atmospheric parameters individually and in combination. Polynomial regressions were performed between the magnitudes or deviations of these parameters and the corresponding computed corrections to establish simple analytical relations between them. Analytical relations were also developed to represent combined correction for simultaneous variation of parameters in terms of their individual corrections.
Collector modulation in high-voltage bipolar transistor in the saturation mode: Analytical approach
NASA Astrophysics Data System (ADS)
Dmitriev, A. P.; Gert, A. V.; Levinshtein, M. E.; Yuferev, V. S.
2018-04-01
A simple analytical model is developed, capable of replacing the numerical solution of a system of nonlinear partial differential equations by solving a simple algebraic equation when analyzing the collector resistance modulation of a bipolar transistor in the saturation mode. In this approach, the leakage of the base current into the emitter and the recombination of non-equilibrium carriers in the base are taken into account. The data obtained are in good agreement with the results of numerical calculations and make it possible to describe both the motion of the front of the minority carriers and the steady state distribution of minority carriers across the collector in the saturation mode.
Loglinear Approximate Solutions to Real-Business-Cycle Models: Some Observations
ERIC Educational Resources Information Center
Lau, Sau-Him Paul; Ng, Philip Hoi-Tak
2007-01-01
Following the analytical approach suggested in Campbell, the authors consider a baseline real-business-cycle (RBC) model with endogenous labor supply. They observe that the coefficients in the loglinear approximation of the dynamic equations characterizing the equilibrium are related to the fundamental parameters in a relatively simple manner.…
Trajectory fitting in function space with application to analytic modeling of surfaces
NASA Technical Reports Server (NTRS)
Barger, Raymond L.
1992-01-01
A theory for representing a parameter-dependent function as a function trajectory is described. Additionally, a theory for determining a piecewise analytic fit to the trajectory is described. An example is given that illustrates the application of the theory to generating a smooth surface through a discrete set of input cross-section shapes. A simple procedure for smoothing in the parameter direction is discussed, and a computed example is given. Application of the theory to aerodynamic surface modeling is demonstrated by applying it to a blended wing-fuselage surface.
Manipulators with flexible links: A simple model and experiments
NASA Technical Reports Server (NTRS)
Shimoyama, Isao; Oppenheim, Irving J.
1989-01-01
A simple dynamic model proposed for flexible links is briefly reviewed and experimental control results are presented for different flexible systems. A simple dynamic model is useful for rapid prototyping of manipulators and their control systems, for possible application to manipulator design decisions, and for real time computation as might be applied in model based or feedforward control. Such a model is proposed, with the further advantage that clear physical arguments and explanations can be associated with its simplifying features and with its resulting analytical properties. The model is mathematically equivalent to Rayleigh's method. Taking the example of planar bending, the approach originates in its choice of two amplitude variables, typically chosen as the link end rotations referenced to the chord (or the tangent) motion of the link. This particular choice is key in establishing the advantageous features of the model, and it was used to support the series of experiments reported.
Analytical thermal model for end-pumped solid-state lasers
NASA Astrophysics Data System (ADS)
Cini, L.; Mackenzie, J. I.
2017-12-01
Fundamentally power-limited by thermal effects, the design challenge for end-pumped "bulk" solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints.
MODEL CORRELATION STUDY OF A RETRACTABLE BOOM FOR A SOLAR SAIL SPACECRAFT
NASA Technical Reports Server (NTRS)
Adetona, O.; Keel, L. H.; Oakley, J. D.; Kappus, K.; Whorton, M. S.; Kim, Y. K.; Rakpczy, J. M.
2005-01-01
To realize design concepts, predict dynamic behavior and develop appropriate control strategies for high performance operation of a solar-sail spacecraft, we developed a simple analytical model that represents dynamic behavior of spacecraft with various sizes. Since motion of the vehicle is dominated by retractable booms that support the structure, our study concentrates on developing and validating a dynamic model of a long retractable boom. Extensive tests with various configurations were conducted for the 30 Meter, light-weight, retractable, lattice boom at NASA MSFC that is structurally and dynamically similar to those of a solar-sail spacecraft currently under construction. Experimental data were then compared with the corresponding response of the analytical model. Though mixed results were obtained, the analytical model emulates several key characteristics of the boom. The paper concludes with a detailed discussion of issues observed during the study.
Writing analytic element programs in Python.
Bakker, Mark; Kelson, Victor A
2009-01-01
The analytic element method is a mesh-free approach for modeling ground water flow at both the local and the regional scale. With the advent of the Python object-oriented programming language, it has become relatively easy to write analytic element programs. In this article, an introduction is given of the basic principles of the analytic element method and of the Python programming language. A simple, yet flexible, object-oriented design is presented for analytic element codes using multiple inheritance. New types of analytic elements may be added without the need for any changes in the existing part of the code. The presented code may be used to model flow to wells (with either a specified discharge or drawdown) and streams (with a specified head). The code may be extended by any hydrogeologist with a healthy appetite for writing computer code to solve more complicated ground water flow problems. Copyright © 2009 The Author(s). Journal Compilation © 2009 National Ground Water Association.
A simple analytical infiltration model for short-duration rainfall
NASA Astrophysics Data System (ADS)
Wang, Kaiwen; Yang, Xiaohua; Liu, Xiaomang; Liu, Changming
2017-12-01
Many infiltration models have been proposed to simulate infiltration process. Different initial soil conditions and non-uniform initial water content can lead to infiltration simulation errors, especially for short-duration rainfall (SHR). Few infiltration models are specifically derived to eliminate the errors caused by the complex initial soil conditions. We present a simple analytical infiltration model for SHR infiltration simulation, i.e., Short-duration Infiltration Process model (SHIP model). The infiltration simulated by 5 models (i.e., SHIP (high) model, SHIP (middle) model, SHIP (low) model, Philip model and Parlange model) were compared based on numerical experiments and soil column experiments. In numerical experiments, SHIP (middle) and Parlange models had robust solutions for SHR infiltration simulation of 12 typical soils under different initial soil conditions. The absolute values of percent bias were less than 12% and the values of Nash and Sutcliffe efficiency were greater than 0.83. Additionally, in soil column experiments, infiltration rate fluctuated in a range because of non-uniform initial water content. SHIP (high) and SHIP (low) models can simulate an infiltration range, which successfully covered the fluctuation range of the observed infiltration rate. According to the robustness of solutions and the coverage of fluctuation range of infiltration rate, SHIP model can be integrated into hydrologic models to simulate SHR infiltration process and benefit the flood forecast.
Aerothermal modeling program, phase 1
NASA Technical Reports Server (NTRS)
Srinivasan, R.; Reynolds, R.; Ball, I.; Berry, R.; Johnson, K.; Mongia, H.
1983-01-01
Aerothermal submodels used in analytical combustor models are analyzed. The models described include turbulence and scalar transport, gaseous full combustion, spray evaporation/combustion, soot formation and oxidation, and radiation. The computational scheme is discussed in relation to boundary conditions and convergence criteria. Also presented is the data base for benchmark quality test cases and an analysis of simple flows.
Full quantum mechanical analysis of atomic three-grating Mach–Zehnder interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanz, A.S., E-mail: asanz@iff.csic.es; Davidović, M.; Božić, M.
2015-02-15
Atomic three-grating Mach–Zehnder interferometry constitutes an important tool to probe fundamental aspects of the quantum theory. There is, however, a remarkable gap in the literature between the oversimplified models and robust numerical simulations considered to describe the corresponding experiments. Consequently, the former usually lead to paradoxical scenarios, such as the wave–particle dual behavior of atoms, while the latter make difficult the data analysis in simple terms. Here these issues are tackled by means of a simple grating working model consisting of evenly-spaced Gaussian slits. As is shown, this model suffices to explore and explain such experiments both analytically and numerically,more » giving a good account of the full atomic journey inside the interferometer, and hence contributing to make less mystic the physics involved. More specifically, it provides a clear and unambiguous picture of the wavefront splitting that takes place inside the interferometer, illustrating how the momentum along each emerging diffraction order is well defined even though the wave function itself still displays a rather complex shape. To this end, the local transverse momentum is also introduced in this context as a reliable analytical tool. The splitting, apart from being a key issue to understand atomic Mach–Zehnder interferometry, also demonstrates at a fundamental level how wave and particle aspects are always present in the experiment, without incurring in any contradiction or interpretive paradox. On the other hand, at a practical level, the generality and versatility of the model and methodology presented, makes them suitable to attack analogous problems in a simple manner after a convenient tuning. - Highlights: • A simple model is proposed to analyze experiments based on atomic Mach–Zehnder interferometry. • The model can be easily handled both analytically and computationally. • A theoretical analysis based on the combination of the position and momentum representations is considered. • Wave and particle aspects are shown to coexist within the same experiment, thus removing the old wave-corpuscle dichotomy. • A good agreement between numerical simulations and experimental data is found without appealing to best-fit procedures.« less
Prediction of aircraft handling qualities using analytical models of the human pilot
NASA Technical Reports Server (NTRS)
Hess, R. A.
1982-01-01
The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot-induced oscillations (PIO) is formulated. Finally, a model-based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.
Prediction of aircraft handling qualities using analytical models of the human pilot
NASA Technical Reports Server (NTRS)
Hess, R. A.
1982-01-01
The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot induced oscillations is formulated. Finally, a model based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.
Secular Orbit Evolution in Systems with a Strong External Perturber—A Simple and Accurate Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade-Ines, Eduardo; Eggl, Siegfried, E-mail: eandrade.ines@gmail.com, E-mail: siegfried.eggl@jpl.nasa.gov
We present a semi-analytical correction to the seminal solution for the secular motion of a planet’s orbit under gravitational influence of an external perturber derived by Heppenheimer. A comparison between analytical predictions and numerical simulations allows us to determine corrective factors for the secular frequency and forced eccentricity in the coplanar restricted three-body problem. The correction is given in the form of a polynomial function of the system’s parameters that can be applied to first-order forced eccentricity and secular frequency estimates. The resulting secular equations are simple, straight forward to use, and improve the fidelity of Heppenheimers solution well beyond higher-ordermore » models. The quality and convergence of the corrected secular equations are tested for a wide range of parameters and limits of its applicability are given.« less
Analytical model for screening potential CO2 repositories
Okwen, R.T.; Stewart, M.T.; Cunningham, J.A.
2011-01-01
Assessing potential repositories for geologic sequestration of carbon dioxide using numerical models can be complicated, costly, and time-consuming, especially when faced with the challenge of selecting a repository from a multitude of potential repositories. This paper presents a set of simple analytical equations (model), based on the work of previous researchers, that could be used to evaluate the suitability of candidate repositories for subsurface sequestration of carbon dioxide. We considered the injection of carbon dioxide at a constant rate into a confined saline aquifer via a fully perforated vertical injection well. The validity of the analytical model was assessed via comparison with the TOUGH2 numerical model. The metrics used in comparing the two models include (1) spatial variations in formation pressure and (2) vertically integrated brine saturation profile. The analytical model and TOUGH2 show excellent agreement in their results when similar input conditions and assumptions are applied in both. The analytical model neglects capillary pressure and the pressure dependence of fluid properties. However, simulations in TOUGH2 indicate that little error is introduced by these simplifications. Sensitivity studies indicate that the agreement between the analytical model and TOUGH2 depends strongly on (1) the residual brine saturation, (2) the difference in density between carbon dioxide and resident brine (buoyancy), and (3) the relationship between relative permeability and brine saturation. The results achieved suggest that the analytical model is valid when the relationship between relative permeability and brine saturation is linear or quasi-linear and when the irreducible saturation of brine is zero or very small. ?? 2011 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Chandran, Benjamin D. G.; Hollweg, Joseph V.
2009-12-01
We study the propagation, reflection, and turbulent dissipation of Alfvén waves in coronal holes and the solar wind. We start with the Heinemann-Olbert equations, which describe non-compressive magnetohydrodynamic fluctuations in an inhomogeneous medium with a background flow parallel to the background magnetic field. Following the approach of Dmitruk et al., we model the nonlinear terms in these equations using a simple phenomenology for the cascade and dissipation of wave energy and assume that there is much more energy in waves propagating away from the Sun than waves propagating toward the Sun. We then solve the equations analytically for waves with periods of hours and longer to obtain expressions for the wave amplitudes and turbulent heating rate as a function of heliocentric distance. We also develop a second approximate model that includes waves with periods of roughly one minute to one hour, which undergo less reflection than the longer-period waves, and compare our models to observations. Our models generalize the phenomenological model of Dmitruk et al. by accounting for the solar wind velocity, so that the turbulent heating rate can be evaluated from the coronal base out past the Alfvén critical point—that is, throughout the region in which most of the heating and acceleration occurs. The simple analytical expressions that we obtain can be used to incorporate Alfvén-wave reflection and turbulent heating into fluid models of the solar wind.
Sinking bubbles in stout beers
NASA Astrophysics Data System (ADS)
Lee, W. T.; Kaar, S.; O'Brien, S. B. G.
2018-04-01
A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.
NASA Astrophysics Data System (ADS)
Chen, Zi-Yu; Chen, Shi; Dan, Jia-Kun; Li, Jian-Feng; Peng, Qi-Xian
2011-10-01
A simple one-dimensional analytical model for electromagnetic emission from an unmagnetized wakefield excited by an intense short-pulse laser in the nonlinear regime has been developed in this paper. The expressions for the spectral and angular distributions of the radiation have been derived. The model suggests that the origin of the radiation can be attributed to the violent sudden acceleration of plasma electrons experiencing the accelerating potential of the laser wakefield. The radiation process could help to provide a qualitative interpretation of existing experimental results, and offers useful information for future laser wakefield experiments.
An analytical approach for predicting pilot induced oscillations
NASA Technical Reports Server (NTRS)
Hess, R. A.
1981-01-01
The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion or determining the susceptability of an aircraft to pilot induced oscillations (PIO) is formulated. Finally, a model-based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.
A Simple Model for Nonlinear Confocal Ultrasonic Beams
NASA Astrophysics Data System (ADS)
Zhang, Dong; Zhou, Lin; Si, Li-Sheng; Gong, Xiu-Fen
2007-01-01
A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.
A Comparison of Analytical and Experimental Data for a Magnetic Actuator
NASA Technical Reports Server (NTRS)
Groom, Nelson J.; Bloodgood, V. Dale, Jr.
2000-01-01
Theoretical and experimental force-displacement and force-current data are compared for two configurations of a simple horseshoe, or bipolar, magnetic actuator. One configuration utilizes permanent magnet wafers to provide a bias flux and the other configuration has no source of bias flux. The theoretical data are obtained from two analytical models of each configuration. One is an ideal analytical model which is developed under the following assumptions: (1) zero fringing and leakage flux, (2) zero actuator coil mmf loss, and (3) infinite permeability of the actuator core and suspended element flux return path. The other analytical model, called the extended model, is developed by adding loss and leakage factors to the ideal model. The values of the loss and leakage factors are calculated from experimental data. The experimental data are obtained from a magnetic actuator test fixture, which is described in detail. Results indicate that the ideal models for both configurations do not match the experimental data very well. However, except for the range around zero force, the extended models produce a good match. The best match is produced by the extended model of the configuration with permanent magnet flux bias.
Fundamental studies of structure borne noise for advanced turboprop applications
NASA Technical Reports Server (NTRS)
Eversman, W.; Koval, L. R.
1985-01-01
The transmission of sound generated by wing-mounted, advanced turboprop engines into the cabin interior via structural paths is considered. The structural model employed is a beam representation of the wing box carried into the fuselage via a representative frame type of carry through structure. The structure for the cabin cavity is a stiffened shell of rectangular or cylindrical geometry. The structure is modelled using a finite element formulation and the acoustic cavity is modelled using an analytical representation appropriate for the geometry. The structural and acoustic models are coupled by the use of hard wall cavity modes for the interior and vacuum structural modes for the shell. The coupling is accomplished using a combination of analytical and finite element models. The advantage is the substantial reduction in dimensionality achieved by modelling the interior analytically. The mathematical model for the interior noise problem is demonstrated with a simple plate/cavity system which has all of the features of the fuselage interior noise problem.
NASA Astrophysics Data System (ADS)
Kumavat, Hemraj Ramdas
2016-09-01
The compressive stress-strain behavior and mechanical properties of clay brick masonry and its constituents clay bricks and mortar, have been studied by several laboratory tests. Using linear regression analysis, a analytical model has been proposed for obtaining the stress-strain curves for masonry that can be used in the analysis and design procedures. The model requires only the compressive strengths of bricks and mortar as input data, which can be easily obtained experimentally. Development of analytical model from the obtained experimental results of Young's modulus and compressive strength. Simple relationships have been identified for obtaining the modulus of elasticity of bricks, mortar, and masonry from their corresponding compressive strengths. It was observed that the proposed analytical model clearly demonstrates a reasonably good prediction of the stress-strain curves when compared with the experimental curves.
Analytical theory of the hydrophobic effect of solutes in water.
Urbic, Tomaz; Dill, Ken A
2017-09-01
We develop an analytical statistical-mechanical model for hydrophobic solvation in water. In this three-dimensional Mercedes-Benz-like model, two neighboring waters have three possible interaction states: a radial van der Waals interaction, a tetrahedral orientation-dependent hydrogen-bonding interaction, or no interaction. Nonpolar solutes are modeled as van der Waals particles of different radii. The model is sufficiently simple that we can calculate the partition function and thermal and volumetric properties of solvation versus temperature, pressure, and solute radius. Predictions are in good agreement with results of Monte Carlo simulations. And their trends agree with experiments on hydrophobic solute insertion. The theory shows that first-shell waters are more highly structured than bulk waters, because of hydrogen bonding, and that that structure melts out faster with temperature than it does in bulk waters. Because the theory is analytical, it can explore a broad range of solvation properties and anomalies of water, at minimal computational expense.
Analytical theory of the hydrophobic effect of solutes in water
NASA Astrophysics Data System (ADS)
Urbic, Tomaz; Dill, Ken A.
2017-09-01
We develop an analytical statistical-mechanical model for hydrophobic solvation in water. In this three-dimensional Mercedes-Benz-like model, two neighboring waters have three possible interaction states: a radial van der Waals interaction, a tetrahedral orientation-dependent hydrogen-bonding interaction, or no interaction. Nonpolar solutes are modeled as van der Waals particles of different radii. The model is sufficiently simple that we can calculate the partition function and thermal and volumetric properties of solvation versus temperature, pressure, and solute radius. Predictions are in good agreement with results of Monte Carlo simulations. And their trends agree with experiments on hydrophobic solute insertion. The theory shows that first-shell waters are more highly structured than bulk waters, because of hydrogen bonding, and that that structure melts out faster with temperature than it does in bulk waters. Because the theory is analytical, it can explore a broad range of solvation properties and anomalies of water, at minimal computational expense.
Analytical model of the optical vortex microscope.
Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz
2016-04-20
This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.
Effect of lethality on the extinction and on the error threshold of quasispecies.
Tejero, Hector; Marín, Arturo; Montero, Francisco
2010-02-21
In this paper the effect of lethality on error threshold and extinction has been studied in a population of error-prone self-replicating molecules. For given lethality and a simple fitness landscape, three dynamic regimes can be obtained: quasispecies, error catastrophe, and extinction. Using a simple model in which molecules are classified as master, lethal and non-lethal mutants, it is possible to obtain the mutation rates of the transitions between the three regimes analytically. The numerical resolution of the extended model, in which molecules are classified depending on their Hamming distance to the master sequence, confirms the results obtained in the simple model and shows how an error catastrophe regime changes when lethality is taken in account. (c) 2009 Elsevier Ltd. All rights reserved.
Oscillations and Multiple Equilibria in Microvascular Blood Flow.
Karst, Nathaniel J; Storey, Brian D; Geddes, John B
2015-07-01
We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.
An analytical model of memristors in plants
Markin, Vladislav S; Volkov, Alexander G; Chua, Leon
2014-01-01
The memristor, a resistor with memory, was postulated by Chua in 1971 and the first solid-state memristor was built in 2008. Recently, we found memristors in vivo in plants. Here we propose a simple analytical model of 2 types of memristors that can be found within plants. The electrostimulation of plants by bipolar periodic waves induces electrical responses in the Aloe vera and Mimosa pudica with fingerprints of memristors. Memristive properties of the Aloe vera and Mimosa pudica are linked to the properties of voltage gated K+ ion channels. The potassium channel blocker TEACl transform plant memristors to conventional resistors. The analytical model of a memristor with a capacitor connected in parallel exhibits different characteristic behavior at low and high frequency of applied voltage, which is the same as experimental data obtained by cyclic voltammetry in vivo. PMID:25482769
NASA Astrophysics Data System (ADS)
Guillemaut, C.; Metzger, C.; Moulton, D.; Heinola, K.; O’Mullane, M.; Balboa, I.; Boom, J.; Matthews, G. F.; Silburn, S.; Solano, E. R.; contributors, JET
2018-06-01
The design and operation of future fusion devices relying on H-mode plasmas requires reliable modelling of edge-localized modes (ELMs) for precise prediction of divertor target conditions. An extensive experimental validation of simple analytical predictions of the time evolution of target plasma loads during ELMs has been carried out here in more than 70 JET-ITER-like wall H-mode experiments with a wide range of conditions. Comparisons of these analytical predictions with diagnostic measurements of target ion flux density, power density, impact energy and electron temperature during ELMs are presented in this paper and show excellent agreement. The analytical predictions tested here are made with the ‘free-streaming’ kinetic model (FSM) which describes ELMs as a quasi-neutral plasma bunch expanding along the magnetic field lines into the Scrape-Off Layer without collisions. Consequences of the FSM on energy reflection and deposition on divertor targets during ELMs are also discussed.
Stability analysis of magnetized neutron stars - a semi-analytic approach
NASA Astrophysics Data System (ADS)
Herbrik, Marlene; Kokkotas, Kostas D.
2017-04-01
We implement a semi-analytic approach for stability analysis, addressing the ongoing uncertainty about stability and structure of neutron star magnetic fields. Applying the energy variational principle, a model system is displaced from its equilibrium state. The related energy density variation is set up analytically, whereas its volume integration is carried out numerically. This facilitates the consideration of more realistic neutron star characteristics within the model compared to analytical treatments. At the same time, our method retains the possibility to yield general information about neutron star magnetic field and composition structures that are likely to be stable. In contrast to numerical studies, classes of parametrized systems can be studied at once, finally constraining realistic configurations for interior neutron star magnetic fields. We apply the stability analysis scheme on polytropic and non-barotropic neutron stars with toroidal, poloidal and mixed fields testing their stability in a Newtonian framework. Furthermore, we provide the analytical scheme for dropping the Cowling approximation in an axisymmetric system and investigate its impact. Our results confirm the instability of simple magnetized neutron star models as well as a stabilization tendency in the case of mixed fields and stratification. These findings agree with analytical studies whose spectrum of model systems we extend by lifting former simplifications.
The influence of wind-tunnel walls on discrete frequency noise
NASA Technical Reports Server (NTRS)
Mosher, M.
1984-01-01
This paper describes an analytical model that can be used to examine the effects of wind-tunnel walls on discrete frequency noise. First, a complete physical model of an acoustic source in a wind tunnel is described, and a simplified version is then developed. This simplified model retains the important physical processes involved, yet it is more amenable to analysis. Second, the simplified physical model is formulated as a mathematical problem. An inhomogeneous partial differential equation with mixed boundary conditions is set up and then transformed into an integral equation. The integral equation has been solved with a panel program on a computer. Preliminary results from a simple model problem will be shown and compared with the approximate analytic solution.
NASA Technical Reports Server (NTRS)
Clayton, Joseph P.; Tinker, Michael L.
1991-01-01
This paper describes experimental and analytical characterization of a new flexible thermal protection material known as Tailorable Advanced Blanket Insulation (TABI). This material utilizes a three-dimensional ceramic fabric core structure and an insulation filler. TABI is the leading candidate for use in deployable aeroassisted vehicle designs. Such designs require extensive structural modeling, and the most significant in-plane material properties necessary for model development are measured and analytically verified in this study. Unique test methods are developed for damping measurements. Mathematical models are developed for verification of the experimental modulus and damping data, and finally, transverse properties are described in terms of the inplane properties through use of a 12-dof finite difference model of a simple TABI configuration.
Note on the coefficient of variations of neuronal spike trains.
Lengler, Johannes; Steger, Angelika
2017-08-01
It is known that many neurons in the brain show spike trains with a coefficient of variation (CV) of the interspike times of approximately 1, thus resembling the properties of Poisson spike trains. Computational studies have been able to reproduce this phenomenon. However, the underlying models were too complex to be examined analytically. In this paper, we offer a simple model that shows the same effect but is accessible to an analytic treatment. The model is a random walk model with a reflecting barrier; we give explicit formulas for the CV in the regime of excess inhibition. We also analyze the effect of probabilistic synapses in our model and show that it resembles previous findings that were obtained by simulation.
Multidisciplinary optimization in aircraft design using analytic technology models
NASA Technical Reports Server (NTRS)
Malone, Brett; Mason, W. H.
1991-01-01
An approach to multidisciplinary optimization is presented which combines the Global Sensitivity Equation method, parametric optimization, and analytic technology models. The result is a powerful yet simple procedure for identifying key design issues. It can be used both to investigate technology integration issues very early in the design cycle, and to establish the information flow framework between disciplines for use in multidisciplinary optimization projects using much more computational intense representations of each technology. To illustrate the approach, an examination of the optimization of a short takeoff heavy transport aircraft is presented for numerous combinations of performance and technology constraints.
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Grugel, Richard N.
2003-01-01
A magnetohydrodynamic model that examines the effect of rotating an electrically conducting cylinder with a uniform external magnetic field applied orthogonal to its axis is presented. Noting a simple geometry, it can be classified as a fundamental dynamo problem. For the case of an infinitely long cylinder, an analytical solution is obtained and analyzed in detail. A semi-analytical model was developed that considers a finite cylinder. Experimental data from a spinning brass wheel in the presence of Earth's magnetic field were compared to the proposed theory and found to fit well.
Simple Parametric Model for Airfoil Shape Description
NASA Astrophysics Data System (ADS)
Ziemkiewicz, David
2017-12-01
We show a simple, analytic equation describing a class of two-dimensional shapes well suited for representation of aircraft airfoil profiles. Our goal was to create a description characterized by a small number of parameters with easily understandable meaning, providing a tool to alter the shape with optimization procedures as well as manual tweaks by the designer. The generated shapes are well suited for numerical analysis with 2D flow solving software such as XFOIL.
Simple Analytic Expressions for the Magnetic Field of a Circular Current Loop
NASA Technical Reports Server (NTRS)
Simpson, James C.; Lane, John E.; Immer, Christopher D.; Youngquist, Robert C.
2001-01-01
Analytic expressions for the magnetic induction (magnetic flux density, B) of a simple planar circular current loop have been published in Cartesian and cylindrical coordinates [1,2], and are also known implicitly in spherical coordinates [3]. In this paper, we present explicit analytic expressions for B and its spatial derivatives in Cartesian, cylindrical, and spherical coordinates for a filamentary current loop. These results were obtained with extensive use of Mathematica "TM" and are exact throughout all space outside of the conductor. The field expressions reduce to the well-known limiting cases and satisfy V · B = 0 and V x B = 0 outside the conductor. These results are general and applicable to any model using filamentary circular current loops. Solenoids of arbitrary size may be easily modeled by approximating the total magnetic induction as the sum of those for the individual loops. The inclusion of the spatial derivatives expands their utility to magnetohydrodynamics where the derivatives are required. The equations can be coded into any high-level programming language. It is necessary to numerically evaluate complete elliptic integrals of the first and second kind, but this capability is now available with most programming packages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cottam, Joseph A.; Blaha, Leslie M.
Systems have biases. Their interfaces naturally guide a user toward specific patterns of action. For example, modern word-processors and spreadsheets are both capable of taking word wrapping, checking spelling, storing tables, and calculating formulas. You could write a paper in a spreadsheet or could do simple business modeling in a word-processor. However, their interfaces naturally communicate which function they are designed for. Visual analytic interfaces also have biases. In this paper, we outline why simple Markov models are a plausible tool for investigating that bias and how they might be applied. We also discuss some anticipated difficulties in such modelingmore » and touch briefly on what some Markov model extensions might provide.« less
NASA Astrophysics Data System (ADS)
Himemoto, Yoshiaki; Taruya, Atsushi
2017-07-01
After the first direct detection of gravitational waves (GW), detection of the stochastic background of GWs is an important next step, and the first GW event suggests that it is within the reach of the second-generation ground-based GW detectors. Such a GW signal is typically tiny and can be detected by cross-correlating the data from two spatially separated detectors if the detector noise is uncorrelated. It has been advocated, however, that the global magnetic fields in the Earth-ionosphere cavity produce the environmental disturbances at low-frequency bands, known as Schumann resonances, which potentially couple with GW detectors. In this paper, we present a simple analytical model to estimate its impact on the detection of stochastic GWs. The model crucially depends on the geometry of the detector pair through the directional coupling, and we investigate the basic properties of the correlated magnetic noise based on the analytic expressions. The model reproduces the major trend of the recently measured global correlation between the GW detectors via magnetometer. The estimated values of the impact of correlated noise also match those obtained from the measurement. Finally, we give an implication to the detection of stochastic GWs including upcoming detectors, KAGRA and LIGO India. The model suggests that LIGO Hanford-Virgo and Virgo-KAGRA pairs are possibly less sensitive to the correlated noise and can achieve a better sensitivity to the stochastic GW signal in the most pessimistic case.
Trajectory optimization and guidance law development for national aerospace plane applications
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1988-01-01
The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case.
NASA Technical Reports Server (NTRS)
Carlson, J. M.; Chayes, J. T.; Swindle, G. H.; Grannan, E. R.
1990-01-01
The scaling behavior of sandpile models is investigated analytically. First, it is shown that sandpile models contain a set of domain walls, referred to as troughs, which bound regions that can experience avalanches. It is further shown that the dynamics of the troughs is governed by a simple set of rules involving birth, death, and coalescence events. A simple trough model is then introduced, and it is proved that the model has a phase transition with the density of the troughs as an order parameter and that, in the thermodynamic limit, the trough density goes to zero at the transition point. Finally, it is shown that the observed scaling behavior is a consequence of finite-size effects.
Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania
2015-04-15
In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Elarusi, Abdulmunaem; Attar, Alaa; Lee, HoSung
2018-02-01
The optimum design of a thermoelectric system for application in car seat climate control has been modeled and its performance evaluated experimentally. The optimum design of the thermoelectric device combining two heat exchangers was obtained by using a newly developed optimization method based on the dimensional technique. Based on the analytical optimum design results, commercial thermoelectric cooler and heat sinks were selected to design and construct the climate control heat pump. This work focuses on testing the system performance in both cooling and heating modes to ensure accurate analytical modeling. Although the analytical performance was calculated using the simple ideal thermoelectric equations with effective thermoelectric material properties, it showed very good agreement with experiment for most operating conditions.
Untangling Slab Dynamics Using 3-D Numerical and Analytical Models
NASA Astrophysics Data System (ADS)
Holt, A. F.; Royden, L.; Becker, T. W.
2016-12-01
Increasingly sophisticated numerical models have enabled us to make significant strides in identifying the key controls on how subducting slabs deform. For example, 3-D models have demonstrated that subducting plate width, and the related strength of toroidal flow around the plate edge, exerts a strong control on both the curvature and the rate of migration of the trench. However, the results of numerical subduction models can be difficult to interpret, and many first order dynamics issues remain at least partially unresolved. Such issues include the dominant controls on trench migration, the interdependence of asthenospheric pressure and slab dynamics, and how nearby slabs influence each other's dynamics. We augment 3-D, dynamically evolving finite element models with simple, analytical force-balance models to distill the physics associated with subduction into more manageable parts. We demonstrate that for single, isolated subducting slabs much of the complexity of our fully numerical models can be encapsulated by simple analytical expressions. Rates of subduction and slab dip correlate strongly with the asthenospheric pressure difference across the subducting slab. For double subduction, an additional slab gives rise to more complex mantle pressure and flow fields, and significantly extends the range of plate kinematics (e.g., convergence rate, trench migration rate) beyond those present in single slab models. Despite these additional complexities, we show that much of the dynamics of such multi-slab systems can be understood using the physics illuminated by our single slab study, and that a force-balance method can be used to relate intra-plate stress to viscous pressure in the asthenosphere and coupling forces at plate boundaries. This method has promise for rapid modeling of large systems of subduction zones on a global scale.
Soft modes in the perceptron model for jamming.
NASA Astrophysics Data System (ADS)
Franz, Silvio
I will show how a well known neural network model \\x9Dthe perceptro provides a simple solvable model of glassy behavior and jamming. The glassy minima of the energy function of this model can be studied in full analytic detail. This allows the identification of two kind of soft modes the first ones associated to the existence a marginal glass phase and a hierarchical structure of the energy landscape, the second ones associated to isostaticity and marginality of jamming. These results highlight the universality of the spectrum of normal modes in disordered systems, and open the way toward a detailed analytical understanding of the vibrational spectrum of low-temperature glasses. This work was supported by a Grant from the Simons Foundation (454941 to Silvio Franz).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prentice, H. J.; Proud, W. G.
2006-07-28
A technique has been developed to determine experimentally the three-dimensional displacement field on the rear surface of a dynamically deforming plate. The technique combines speckle analysis with stereoscopy, using a modified angular-lens method: this incorporates split-frame photography and a simple method by which the effective lens separation can be adjusted and calibrated in situ. Whilst several analytical models exist to predict deformation in extended or semi-infinite targets, the non-trivial nature of the wave interactions complicates the generation and development of analytical models for targets of finite depth. By interrogating specimens experimentally to acquire three-dimensional strain data points, both analytical andmore » numerical model predictions can be verified more rigorously. The technique is applied to the quasi-static deformation of a rubber sheet and dynamically to Mild Steel sheets of various thicknesses.« less
Analysis of Mathematical Modelling on Potentiometric Biosensors
Mehala, N.; Rajendran, L.
2014-01-01
A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories. PMID:25969765
Analysis of mathematical modelling on potentiometric biosensors.
Mehala, N; Rajendran, L
2014-01-01
A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories.
Vukovic, N; Radovanovic, J; Milanovic, V; Boiko, D L
2016-11-14
We have obtained a closed-form expression for the threshold of Risken-Nummedal-Graham-Haken (RNGH) multimode instability in a Fabry-Pérot (FP) cavity quantum cascade laser (QCL). This simple analytical expression is a versatile tool that can easily be applied in practical situations which require analysis of QCL dynamic behavior and estimation of its RNGH multimode instability threshold. Our model for a FP cavity laser accounts for the carrier coherence grating and carrier population grating as well as their relaxation due to carrier diffusion. In the model, the RNGH instability threshold is analyzed using a second-order bi-orthogonal perturbation theory and we confirm our analytical solution by a comparison with the numerical simulations. In particular, the model predicts a low RNGH instability threshold in QCLs. This agrees very well with experimental data available in the literature.
Calculated and measured fields in superferric wiggler magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, E.B.; Solomon, L.
1995-02-01
Although Klaus Halbach is widely known and appreciated as the originator of the computer program POISSON for electromagnetic field calculation, Klaus has always believed that analytical methods can give much more insight into the performance of a magnet than numerical simulation. Analytical approximations readily show how the different aspects of a magnet`s design such as pole dimensions, current, and coil configuration contribute to the performance. These methods yield accuracies of better than 10%. Analytical methods should therefore be used when conceptualizing a magnet design. Computer analysis can then be used for refinement. A simple model is presented for the peakmore » on-axis field of an electro-magnetic wiggler with iron poles and superconducting coils. The model is applied to the radiator section of the superconducting wiggler for the BNL Harmonic Generation Free Electron Laser. The predictions of the model are compared to the measured field and the results from POISSON.« less
On the analytical modeling of the nonlinear vibrations of pretensioned space structures
NASA Technical Reports Server (NTRS)
Housner, J. M.; Belvin, W. K.
1983-01-01
Pretensioned structures are receiving considerable attention as candidate large space structures. A typical example is a hoop-column antenna. The large number of preloaded members requires efficient analytical methods for concept validation and design. Validation through analyses is especially important since ground testing may be limited due to gravity effects and structural size. The present investigation has the objective to present an examination of the analytical modeling of pretensioned members undergoing nonlinear vibrations. Two approximate nonlinear analysis are developed to model general structural arrangements which include beam-columns and pretensioned cables attached to a common nucleus, such as may occur at a joint of a pretensioned structure. Attention is given to structures undergoing nonlinear steady-state oscillations due to sinusoidal excitation forces. Three analyses, linear, quasi-linear, and nonlinear are conducted and applied to study the response of a relatively simple cable stiffened structure.
Flow over Canopies with Complex Morphologies
NASA Astrophysics Data System (ADS)
Rubol, S.; Ling, B.; Battiato, I.
2017-12-01
Quantifying and predicting how submerged vegetation affects the velocity profile of riverine systems is crucial in ecohydraulics to properly assess the water quality and ecological functions or rivers. The state of the art includes a plethora of models to study the flow and transport over submerged canopies. However, most of them are validated against data collected in flume experiments with rigid cylinders. With the objective of investigating the capability of a simple analytical solution for vegetated flow to reproduce and predict the velocity profile of complex shaped flexible canopies, we use the flow model proposed by Battiato and Rubol [WRR 2013] as the analytical approximation of the mean velocity profile above and within the canopy layer. This model has the advantages (i) to threat the canopy layer as a porous medium, whose geometrical properties are associated with macroscopic effective permeability and (ii) to use input parameters that can be estimated by remote sensing techniques, such us the heights of the water level and the canopy. The analytical expressions for the average velocity profile and the discharge are tested against data collected across a wide range of canopy morphologies commonly encountered in riverine systems, such as grasses, woody vegetation and bushes. Results indicate good agreement between the analytical expressions and the data for both simple and complex plant geometry shapes. The rescaled low submergence velocities in the canopy layer followed the same scaling found in arrays of rigid cylinders. In addition, for the dataset analyzed, the Darcy friction factor scaled with the inverse of the bulk Reynolds number multiplied by the ratio of the fluid to turbulent viscosity.
NASA Astrophysics Data System (ADS)
Yahaya, NZ; Ramli, MR; Razak, NNANA; Abbas, Z.
2018-04-01
The Finite Element Method, FEM has been successfully used to model a simple rectangular microstrip sensor to determine the moisture content of Hevea rubber latex. The FEM simulation of sensor and samples was implemented by using COMSOL Multiphysics software. The simulation includes the calculation of magnitude and phase of reflection coefficient and was compared to analytical method. The results show a good agreement in finding the magnitude and phase of reflection coefficient when compared with analytical results. Field distributions of both the unloaded sensor as well as the sensor loaded with different percentages of moisture content were visualized using FEM in conjunction with COMSOL software. The higher the amount of moisture content in the sample the more the electric loops were observed.
Johnson, Jay R.; Wing, Simon
2017-01-01
Sheared plasma flows at the low-latitude boundary layer (LLBL) correlate well with early afternoon auroral arcs and upward field-aligned currents. We present a simple analytic model that relates solar wind and ionospheric parameters to the strength and thickness of field-aligned currents (Λ) in a region of sheared velocity, such as the LLBL. We compare the predictions of the model with DMSP observations and find remarkably good scaling of the upward region 1 currents with solar wind and ionospheric parameters in region located at the boundary layer or open field lines at 1100–1700 magnetic local time. We demonstrate that Λ~nsw−0.5 and Λ ~ L when Λ/L < 5 where L is the auroral electrostatic scale length. The sheared boundary layer thickness (Δm) is inferred to be around 3000 km, which appears to have weak dependence on Vsw. J‖ has dependencies on Δm, Σp, nsw, and Vsw. The analytic model provides a simple way to organize data and to infer boundary layer structures from ionospheric data. PMID:29057194
NASA Astrophysics Data System (ADS)
Kirk, Ansgar Thomas; Kobelt, Tim; Spehlbrink, Hauke; Zimmermann, Stefan
2018-05-01
Corona discharge ionization sources are often used in ion mobility spectrometers (IMS) when a non-radioactive ion source with high ion currents is required. Typically, the corona discharge is followed by a reaction region where analyte ions are formed from the reactant ions. In this work, we present a simple yet sufficiently accurate model for predicting the ion current available at the end of this reaction region when operating at reduced pressure as in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) or most IMS-MS instruments. It yields excellent qualitative agreement with measurement results and is even able to calculate the ion current within an error of 15%. Additional interesting findings of this model are the ion current at the end of the reaction region being independent from the ion current generated by the corona discharge and the ion current in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) growing quadratically when scaling down the length of the reaction region. [Figure not available: see fulltext.
Kirk, Ansgar Thomas; Kobelt, Tim; Spehlbrink, Hauke; Zimmermann, Stefan
2018-05-08
Corona discharge ionization sources are often used in ion mobility spectrometers (IMS) when a non-radioactive ion source with high ion currents is required. Typically, the corona discharge is followed by a reaction region where analyte ions are formed from the reactant ions. In this work, we present a simple yet sufficiently accurate model for predicting the ion current available at the end of this reaction region when operating at reduced pressure as in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) or most IMS-MS instruments. It yields excellent qualitative agreement with measurement results and is even able to calculate the ion current within an error of 15%. Additional interesting findings of this model are the ion current at the end of the reaction region being independent from the ion current generated by the corona discharge and the ion current in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) growing quadratically when scaling down the length of the reaction region. Graphical Abstract ᅟ.
Predator prey oscillations in a simple cascade model of drift wave turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berionni, V.; Guercan, Oe. D.
2011-11-15
A reduced three shell limit of a simple cascade model of drift wave turbulence, which emphasizes nonlocal interactions with a large scale mode, is considered. It is shown to describe both the well known predator prey dynamics between the drift waves and zonal flows and to reduce to the standard three wave interaction equations. Here, this model is considered as a dynamical system whose characteristics are investigated. The analytical solutions for the purely nonlinear limit are given in terms of the Jacobi elliptic functions. An approximate analytical solution involving Jacobi elliptic functions and exponential growth is computed using scale separationmore » for the case of unstable solutions that are observed when the energy injection rate is high. The fixed points of the system are determined, and the behavior around these fixed points is studied. The system is shown to display periodic solutions corresponding to limit cycle oscillations, apparently chaotic phase space orbits, as well as unstable solutions that grow slowly while oscillating rapidly. The period doubling route to transition to chaos is examined.« less
Partially Coherent Scattering in Stellar Chromospheres. Part 4; Analytic Wing Approximations
NASA Technical Reports Server (NTRS)
Gayley, K. G.
1993-01-01
Simple analytic expressions are derived to understand resonance-line wings in stellar chromospheres and similar astrophysical plasmas. The results are approximate, but compare well with accurate numerical simulations. The redistribution is modeled using an extension of the partially coherent scattering approximation (PCS) which we term the comoving-frame partially coherent scattering approximation (CPCS). The distinction is made here because Doppler diffusion is included in the coherent/noncoherent decomposition, in a form slightly improved from the earlier papers in this series.
Determination of rheological parameters of pile foundations for bridges for earthquake analysis
DOT National Transportation Integrated Search
1997-07-01
In the seismic design criteria for highway bridges, there is a significant lack of guidance on ways to incorporate the effect of soil-structure interaction in determining seismic response. For this study, a simple analytical model for pile and pile g...
Entanglement transitions induced by large deviations
NASA Astrophysics Data System (ADS)
Bhosale, Udaysinh T.
2017-12-01
The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B , is computed analytically using a Coulomb gas method. It is shown that this probability, for large N , goes as exp[-β N2Φ (ζ ) ] , where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ (ζ ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A , using the properties of the density matrix's partial transpose ρ12Γ. The density of states of ρ12Γ is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ . Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.
Entanglement transitions induced by large deviations.
Bhosale, Udaysinh T
2017-12-01
The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B, is computed analytically using a Coulomb gas method. It is shown that this probability, for large N, goes as exp[-βN^{2}Φ(ζ)], where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ(ζ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A, using the properties of the density matrix's partial transpose ρ_{12}^{Γ}. The density of states of ρ_{12}^{Γ} is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ. Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.
Analytical model for the radio-frequency sheath
NASA Astrophysics Data System (ADS)
Czarnetzki, Uwe
2013-12-01
A simple analytical model for the planar radio-frequency (rf) sheath in capacitive discharges is developed that is based on the assumptions of a step profile for the electron front, charge exchange collisions with constant cross sections, negligible ionization within the sheath, and negligible ion dynamics. The continuity, momentum conservation, and Poisson equations are combined in a single integro-differential equation for the square of the ion drift velocity, the so called sheath equation. Starting from the kinetic Boltzmann equation, special attention is paid to the derivation and the validity of the approximate fluid equation for momentum balance. The integrals in the sheath equation appear in the screening function which considers the relative contribution of the temporal mean of the electron density to the space charge in the sheath. It is shown that the screening function is quite insensitive to variations of the effective sheath parameters. The two parameters defining the solution are the ratios of the maximum sheath extension to the ion mean free path and the Debye length, respectively. A simple general analytic expression for the screening function is introduced. By means of this expression approximate analytical solutions are obtained for the collisionless as well as the highly collisional case that compare well with the exact numerical solution. A simple transition formula allows application to all degrees of collisionality. In addition, the solutions are used to calculate all static and dynamic quantities of the sheath, e.g., the ion density, fields, and currents. Further, the rf Child-Langmuir laws for the collisionless as well as the collisional case are derived. An essential part of the model is the a priori knowledge of the wave form of the sheath voltage. This wave form is derived on the basis of a cubic charge-voltage relation for individual sheaths, considering both sheaths and the self-consistent self-bias in a discharge with arbitrary symmetry. The externally applied rf voltage is assumed to be sinusoidal, although the model can be extended to arbitrary wave forms, e.g., for dual-frequency discharges. The model calculates explicitly the cubic correction parameter in the charge-voltage relation for the case of highly asymmetric discharges. It is shown that the cubic correction is generally moderate but more pronounced in the collisionless case. The analytical results are compared to experimental data from the literature obtained by laser electric field measurements of the mean and dynamic fields in the capacitive sheath for various gases and pressures. Very good agreement is found throughout.
Analytical model for the radio-frequency sheath.
Czarnetzki, Uwe
2013-12-01
A simple analytical model for the planar radio-frequency (rf) sheath in capacitive discharges is developed that is based on the assumptions of a step profile for the electron front, charge exchange collisions with constant cross sections, negligible ionization within the sheath, and negligible ion dynamics. The continuity, momentum conservation, and Poisson equations are combined in a single integro-differential equation for the square of the ion drift velocity, the so called sheath equation. Starting from the kinetic Boltzmann equation, special attention is paid to the derivation and the validity of the approximate fluid equation for momentum balance. The integrals in the sheath equation appear in the screening function which considers the relative contribution of the temporal mean of the electron density to the space charge in the sheath. It is shown that the screening function is quite insensitive to variations of the effective sheath parameters. The two parameters defining the solution are the ratios of the maximum sheath extension to the ion mean free path and the Debye length, respectively. A simple general analytic expression for the screening function is introduced. By means of this expression approximate analytical solutions are obtained for the collisionless as well as the highly collisional case that compare well with the exact numerical solution. A simple transition formula allows application to all degrees of collisionality. In addition, the solutions are used to calculate all static and dynamic quantities of the sheath, e.g., the ion density, fields, and currents. Further, the rf Child-Langmuir laws for the collisionless as well as the collisional case are derived. An essential part of the model is the a priori knowledge of the wave form of the sheath voltage. This wave form is derived on the basis of a cubic charge-voltage relation for individual sheaths, considering both sheaths and the self-consistent self-bias in a discharge with arbitrary symmetry. The externally applied rf voltage is assumed to be sinusoidal, although the model can be extended to arbitrary wave forms, e.g., for dual-frequency discharges. The model calculates explicitly the cubic correction parameter in the charge-voltage relation for the case of highly asymmetric discharges. It is shown that the cubic correction is generally moderate but more pronounced in the collisionless case. The analytical results are compared to experimental data from the literature obtained by laser electric field measurements of the mean and dynamic fields in the capacitive sheath for various gases and pressures. Very good agreement is found throughout.
NASA Technical Reports Server (NTRS)
Weller, T.
1977-01-01
The applicability and adequacy of several computer techniques in predicting satisfactorily the nonlinear/inelastic response of angle ply laminates were evaluated. The analytical predictions were correlated with the results of a test program on the inelastic response under axial compression of a large variety of graphite-epoxy and boron-epoxy angle ply laminates. These comparison studies indicate that neither of the abovementioned analyses can satisfactorily predict either the mode of response or the ultimate stress value corresponding to a particular angle ply laminate configuration. Consequently, also the simple failure mechanisms assumed in the analytical models were not verified.
Thermoelastic damping in thin microrings with two-dimensional heat conduction
NASA Astrophysics Data System (ADS)
Fang, Yuming; Li, Pu
2015-05-01
Accurate determination of thermoelastic damping (TED) is very challenging in the design of micro-resonators. Microrings are widely used in many micro-resonators. In the past, to model the TED effect on the microrings, some analytical models have been developed. However, in the previous works, the heat conduction within the microring is modeled by using the one-dimensional approach. The governing equation for heat conduction is solved only for the one-dimensional heat conduction along the radial thickness of the microring. This paper presents a simple analytical model for TED in microrings. The two-dimensional heat conduction over the thermoelastic temperature gradients along the radial thickness and the circumferential direction are considered in the present model. A two-dimensional heat conduction equation is developed. The solution of the equation is represented by the product of an assumed sine series along the radial thickness and an assumed trigonometric series along the circumferential direction. The analytical results obtained by the present 2-D model show a good agreement with the numerical (FEM) results. The limitations of the previous 1-D model are assessed.
Structural analyses for the modification and verification of the Viking aeroshell
NASA Technical Reports Server (NTRS)
Stephens, W. B.; Anderson, M. S.
1976-01-01
The Viking aeroshell is an extremely lightweight flexible shell structure that has undergone thorough buckling analyses in the course of its development. The analytical tools and modeling technique required to reveal the structural behavior are presented. Significant results are given which illustrate the complex failure modes not usually observed in simple models and analyses. Both shell-of-revolution analysis for the pressure loads and thermal loads during entry and a general shell analysis for concentrated tank loads during launch were used. In many cases fixes or alterations to the structure were required, and the role of the analytical results in determining these modifications is indicated.
NASA Technical Reports Server (NTRS)
Phillips, D. T.; Manseur, B.; Foster, J. W.
1982-01-01
Alternate definitions of system failure create complex analysis for which analytic solutions are available only for simple, special cases. The GRASP methodology is a computer simulation approach for solving all classes of problems in which both failure and repair events are modeled according to the probability laws of the individual components of the system.
Spatial Evolution of Human Dialects
NASA Astrophysics Data System (ADS)
Burridge, James
2017-07-01
The geographical pattern of human dialects is a result of history. Here, we formulate a simple spatial model of language change which shows that the final result of this historical evolution may, to some extent, be predictable. The model shows that the boundaries of language dialect regions are controlled by a length minimizing effect analogous to surface tension, mediated by variations in population density which can induce curvature, and by the shape of coastline or similar borders. The predictability of dialect regions arises because these effects will drive many complex, randomized early states toward one of a smaller number of stable final configurations. The model is able to reproduce observations and predictions of dialectologists. These include dialect continua, isogloss bundling, fanning, the wavelike spread of dialect features from cities, and the impact of human movement on the number of dialects that an area can support. The model also provides an analytical form for Séguy's curve giving the relationship between geographical and linguistic distance, and a generalization of the curve to account for the presence of a population center. A simple modification allows us to analytically characterize the variation of language use by age in an area undergoing linguistic change.
A Fuzzy Cognitive Model of aeolian instability across the South Texas Sandsheet
NASA Astrophysics Data System (ADS)
Houser, C.; Bishop, M. P.; Barrineau, C. P.
2014-12-01
Characterization of aeolian systems is complicated by rapidly changing surface-process regimes, spatio-temporal scale dependencies, and subjective interpretation of imagery and spatial data. This paper describes the development and application of analytical reasoning to quantify instability of an aeolian environment using scale-dependent information coupled with conceptual knowledge of process and feedback mechanisms. Specifically, a simple Fuzzy Cognitive Model (FCM) for aeolian landscape instability was developed that represents conceptual knowledge of key biophysical processes and feedbacks. Model inputs include satellite-derived surface biophysical and geomorphometric parameters. FCMs are a knowledge-based Artificial Intelligence (AI) technique that merges fuzzy logic and neural computing in which knowledge or concepts are structured as a web of relationships that is similar to both human reasoning and the human decision-making process. Given simple process-form relationships, the analytical reasoning model is able to map the influence of land management practices and the geomorphology of the inherited surface on aeolian instability within the South Texas Sandsheet. Results suggest that FCMs can be used to formalize process-form relationships and information integration analogous to human cognition with future iterations accounting for the spatial interactions and temporal lags across the sand sheets.
In-to-Out Body Antenna-Independent Path Loss Model for Multilayered Tissues and Heterogeneous Medium
Kurup, Divya; Vermeeren, Günter; Tanghe, Emmeric; Joseph, Wout; Martens, Luc
2015-01-01
In this paper, we investigate multilayered lossy and heterogeneous media for wireless body area networks (WBAN) to develop a simple, fast and efficient analytical in-to-out body path loss (PL) model at 2.45 GHz and, thus, avoid time-consuming simulations. The PL model is an antenna-independent model and is validated with simulations in layered medium, as well as in a 3D human model using electromagnetic solvers. PMID:25551483
Did the ever dead outnumber the living and when? A birth-and-death approach
NASA Astrophysics Data System (ADS)
Avan, Jean; Grosjean, Nicolas; Huillet, Thierry
2015-02-01
This paper is an attempt to formalize analytically the question raised in 'World Population Explained: Do Dead People Outnumber Living, Or Vice Versa?' Huffington Post, Howard (2012). We start developing simple deterministic Malthusian growth models of the problem (with birth and death rates either constant or time-dependent) before running into both linear birth and death Markov chain models and age-structured models.
Acoustical and Other Physical Properties of Marine Sediments
1991-01-01
Granular Structure of Rocks 4. Anisotropic Poroelasticity and Biot’s Parameters PART 1 A simple analytical model has been developed to describe the...mentioned properties. PART 4 Prediction of wave propagation in a submarine environment re- quires modeling the acoustic response of ocean bottom...Biot’s theory is a promising approach for modelling acoustic wave propa- gation in ocean sediments which generally consist of elastic or viscoelastic
Quantitative characterization of edge enhancement in phase contrast x-ray imaging.
Monnin, P; Bulling, S; Hoszowska, J; Valley, J F; Meuli, R; Verdun, F R
2004-06-01
The aim of this study was to model the edge enhancement effect in in-line holography phase contrast imaging. A simple analytical approach was used to quantify refraction and interference contrasts in terms of beam energy and imaging geometry. The model was applied to predict the peak intensity and frequency of the edge enhancement for images of cylindrical fibers. The calculations were compared with measurements, and the relationship between the spatial resolution of the detector and the amplitude of the phase contrast signal was investigated. Calculations using the analytical model were in good agreement with experimental results for nylon, aluminum and copper wires of 50 to 240 microm diameter, and with numerical simulations based on Fresnel-Kirchhoff theory. A relationship between the defocusing distance and the pixel size of the image detector was established. This analytical model is a useful tool for optimizing imaging parameters in phase contrast in-line holography, including defocusing distance, detector resolution and beam energy.
ERIC Educational Resources Information Center
Jumper, William D.
2012-01-01
Many high school and introductory college physics courses make use of mousetrap car projects and competitions as a way of providing an engaging hands-on learning experience incorporating Newton's laws, conversion of potential to kinetic energy, dissipative forces, and rotational mechanics. Presented here is a simple analytical and finite element…
NASA Astrophysics Data System (ADS)
Sabirov, K.; Rakhmanov, S.; Matrasulov, D.; Susanto, H.
2018-04-01
We consider the stationary sine-Gordon equation on metric graphs with simple topologies. Exact analytical solutions are obtained for different vertex boundary conditions. It is shown that the method can be extended for tree and other simple graph topologies. Applications of the obtained results to branched planar Josephson junctions and Josephson junctions with tricrystal boundaries are discussed.
Petersen, Per H; Lund, Flemming; Fraser, Callum G; Sölétormos, György
2016-11-01
Background The distributions of within-subject biological variation are usually described as coefficients of variation, as are analytical performance specifications for bias, imprecision and other characteristics. Estimation of specifications required for reference change values is traditionally done using relationship between the batch-related changes during routine performance, described as Δbias, and the coefficients of variation for analytical imprecision (CV A ): the original theory is based on standard deviations or coefficients of variation calculated as if distributions were Gaussian. Methods The distribution of between-subject biological variation can generally be described as log-Gaussian. Moreover, recent analyses of within-subject biological variation suggest that many measurands have log-Gaussian distributions. In consequence, we generated a model for the estimation of analytical performance specifications for reference change value, with combination of Δbias and CV A based on log-Gaussian distributions of CV I as natural logarithms. The model was tested using plasma prolactin and glucose as examples. Results Analytical performance specifications for reference change value generated using the new model based on log-Gaussian distributions were practically identical with the traditional model based on Gaussian distributions. Conclusion The traditional and simple to apply model used to generate analytical performance specifications for reference change value, based on the use of coefficients of variation and assuming Gaussian distributions for both CV I and CV A , is generally useful.
Augmented kludge waveforms for detecting extreme-mass-ratio inspirals
NASA Astrophysics Data System (ADS)
Chua, Alvin J. K.; Moore, Christopher J.; Gair, Jonathan R.
2017-08-01
The extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes are an important class of source for the future space-based gravitational-wave detector LISA. Detecting signals from EMRIs will require waveform models that are both accurate and computationally efficient. In this paper, we present the latest implementation of an augmented analytic kludge (AAK) model, publicly available at https://github.com/alvincjk/EMRI_Kludge_Suite as part of an EMRI waveform software suite. This version of the AAK model has improved accuracy compared to its predecessors, with two-month waveform overlaps against a more accurate fiducial model exceeding 0.97 for a generic range of sources; it also generates waveforms 5-15 times faster than the fiducial model. The AAK model is well suited for scoping out data analysis issues in the upcoming round of mock LISA data challenges. A simple analytic argument shows that it might even be viable for detecting EMRIs with LISA through a semicoherent template bank method, while the use of the original analytic kludge in the same approach will result in around 90% fewer detections.
New Tools to Prepare ACE Cross-section Files for MCNP Analytic Test Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
Monte Carlo calculations using one-group cross sections, multigroup cross sections, or simple continuous energy cross sections are often used to: (1) verify production codes against known analytical solutions, (2) verify new methods and algorithms that do not involve detailed collision physics, (3) compare Monte Carlo calculation methods with deterministic methods, and (4) teach fundamentals to students. In this work we describe 2 new tools for preparing the ACE cross-section files to be used by MCNP ® for these analytic test problems, simple_ace.pl and simple_ace_mg.pl.
Fall Velocities of Hydrometeors in the Atmosphere: Refinements to a Continuous Analytical Power Law.
NASA Astrophysics Data System (ADS)
Khvorostyanov, Vitaly I.; Curry, Judith A.
2005-12-01
This paper extends the previous research of the authors on the unified representation of fall velocities for both liquid and crystalline particles as a power law over the entire size range of hydrometeors observed in the atmosphere. The power-law coefficients are determined as continuous analytical functions of the Best or Reynolds number or of the particle size. Here, analytical expressions are formulated for the turbulent corrections to the Reynolds number and to the power-law coefficients that describe the continuous transition from the laminar to the turbulent flow around a falling particle. A simple analytical expression is found for the correction of fall velocities for temperature and pressure. These expressions and the resulting fall velocities are compared with observations and other calculations for a range of ice crystal habits and sizes. This approach provides a continuous analytical power-law description of the terminal velocities of liquid and crystalline hydrometeors with sufficiently high accuracy and can be directly used in bin-resolving models or incorporated into parameterizations for cloud- and large-scale models and remote sensing techniques.
Value of the distant future: Model-independent results
NASA Astrophysics Data System (ADS)
Katz, Yuri A.
2017-01-01
This paper shows that the model-independent account of correlations in an interest rate process or a log-consumption growth process leads to declining long-term tails of discount curves. Under the assumption of an exponentially decaying memory in fluctuations of risk-free real interest rates, I derive the analytical expression for an apt value of the long run discount factor and provide a detailed comparison of the obtained result with the outcome of the benchmark risk-free interest rate models. Utilizing the standard consumption-based model with an isoelastic power utility of the representative economic agent, I derive the non-Markovian generalization of the Ramsey discounting formula. Obtained analytical results allowing simple calibration, may augment the rigorous cost-benefit and regulatory impact analysis of long-term environmental and infrastructure projects.
A two-dimensional model of water: Solvation of nonpolar solutes
NASA Astrophysics Data System (ADS)
Urbič, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Southall, N. T.; Dill, K. A.
2002-01-01
We recently applied a Wertheim integral equation theory (IET) and a thermodynamic perturbation theory (TPT) to the Mercedes-Benz (MB) model of pure water. These analytical theories offer the advantage of being computationally less intensive than the Monte Carlo simulations by orders of magnitudes. The long-term goal of this work is to develop analytical theories of water that can handle orientation-dependent interactions and the MB model serves as a simple workbench for this development. Here we apply the IET and TPT to the hydrophobic effect, the transfer of a nonpopular solute into MB water. As before, we find that the theories reproduce the Monte Carlo results quite accurately at higher temperatures, while they predict the qualitative trends in cold water.
Exploring the piezoelectric performance of PZT particulate-epoxy composites loaded in shear
NASA Astrophysics Data System (ADS)
Van Loock, F.; Deutz, D. B.; van der Zwaag, S.; Groen, W. A.
2016-08-01
The active and passive piezoelectric response of lead zirconium titanate (PZT)-epoxy particulate composites loaded in shear is studied using analytical models, a finite element model and by experiments. The response is compared to that of the same composites when loaded in simple tension. Analogously to bulk PZT, particulate PZT-polymer composites loaded in shear show higher piezoelectric charge coefficient (d 15) and energy density figure of merit (FOM15) values compared to simple tension (d 33) and (FOM33). This outcome demonstrates the as-yet barely explored potential of piezoelectric particulate composites for optimal strain energy harvesting when activated in shear.
Spatial structures in a simple model of population dynamics for parasite-host interactions
NASA Astrophysics Data System (ADS)
Dong, J. J.; Skinner, B.; Breecher, N.; Schmittmann, B.; Zia, R. K. P.
2015-08-01
Spatial patterning can be crucially important for understanding the behavior of interacting populations. Here we investigate a simple model of parasite and host populations in which parasites are random walkers that must come into contact with a host in order to reproduce. We focus on the spatial arrangement of parasites around a single host, and we derive using analytics and numerical simulations the necessary conditions placed on the parasite fecundity and lifetime for the population's long-term survival. We also show that the parasite population can be pushed to extinction by a large drift velocity, but, counterintuitively, a small drift velocity generally increases the parasite population.
fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization
NASA Astrophysics Data System (ADS)
Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda
2010-03-01
Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.
Tidally induced residual current over the Malin Sea continental slope
NASA Astrophysics Data System (ADS)
Stashchuk, Nataliya; Vlasenko, Vasiliy; Hosegood, Phil; Nimmo-Smith, W. Alex M.
2017-05-01
Tidally induced residual currents generated over shelf-slope topography are investigated analytically and numerically using the Massachusetts Institute of Technology general circulation model. Observational support for the presence of such a slope current was recorded over the Malin Sea continental slope during the 88-th cruise of the RRS ;James Cook; in July 2013. A simple analytical formula developed here in the framework of time-averaged shallow water equations has been validated against a fully nonlinear nonhydrostatic numerical solution. A good agreement between analytical and numerical solutions is found for a wide range of input parameters of the tidal flow and bottom topography. In application to the Malin Shelf area both the numerical model and analytical solution predicted a northward moving current confined to the slope with its core located above the 400 m isobath and with vertically averaged maximum velocities up to 8 cm s-1, which is consistent with the in-situ data recorded at three moorings and along cross-slope transects.
Sitt, Amit; Hess, Henry
2015-05-13
Nanoscale detectors hold great promise for single molecule detection and the analysis of small volumes of dilute samples. However, the probability of an analyte reaching the nanosensor in a dilute solution is extremely low due to the sensor's small size. Here, we examine the use of a chemical potential gradient along a surface to accelerate analyte capture by nanoscale sensors. Utilizing a simple model for transport induced by surface binding energy gradients, we study the effect of the gradient on the efficiency of collecting nanoparticles and single and double stranded DNA. The results indicate that chemical potential gradients along a surface can lead to an acceleration of analyte capture by several orders of magnitude compared to direct collection from the solution. The improvement in collection is limited to a relatively narrow window of gradient slopes, and its extent strongly depends on the size of the gradient patch. Our model allows the optimization of gradient layouts and sheds light on the fundamental characteristics of chemical potential gradient induced transport.
A Cluster Analytic Study of Clinical Orientations among Chemical Dependency Counselors.
ERIC Educational Resources Information Center
Thombs, Dennis L.; Osborn, Cynthia J.
2001-01-01
Three distinct clinical orientations were identified in a sample of chemical dependency counselors (N=406). Based on cluster analysis, the largest group, identified and labeled as "uniform counselors," endorsed a simple, moral-disease model with little interest in psychosocial interventions. (Contains 50 references and 4 tables.) (GCP)
ERIC Educational Resources Information Center
Johannessen, Kim
2010-01-01
An analytic approximation of the solution to the differential equation describing the oscillations of a simple pendulum at large angles and with initial velocity is discussed. In the derivation, a sinusoidal approximation has been applied, and an analytic formula for the large-angle period of the simple pendulum is obtained, which also includes…
A Simple Analytical Model for Asynchronous Dense WDM/OOK Systems
1994-06-01
asynchronous dense WDM systems employing an external OOK modulator. Our model is based upon a close approximation of the optical Fabry - Perot filter in the...receiver as a single-pole RC filter for signals that are bandlimitr i, & -equency band approximately equal to one sixtieth of the Fabry - Perot filter’s...4 A. INPUT SIGNAL ............................................................................................... 4 B. FABRY - PEROT FILTERED OUTPUT
A Simple Model of Global Aerosol Indirect Effects
NASA Technical Reports Server (NTRS)
Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter
2013-01-01
Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.
Theory and observations of upward field-aligned currents at the magnetopause boundary layer.
Wing, Simon; Johnson, Jay R
2015-11-16
The dependence of the upward field-aligned current density ( J ‖ ) at the dayside magnetopause boundary layer is well described by a simple analytic model based on a velocity shear generator. A previous observational survey confirmed that the scaling properties predicted by the analytical model are applicable between 11 and 17 MLT. We utilize the analytic model to predict field-aligned currents using solar wind and ionospheric parameters and compare with direct observations. The calculated and observed parallel currents are in excellent agreement, suggesting that the model may be useful to infer boundary layer structures. However, near noon, where velocity shear is small, the kinetic pressure gradients and thermal currents, which are not included in the model, could make a small but significant contribution to J ‖ . Excluding data from noon, our least squares fit returns log( J ‖,max_cal ) = (0.96 ± 0.04) log( J ‖_obs ) + (0.03 ± 0.01) where J ‖,max_cal = calculated J ‖,max and J ‖_obs = observed J ‖ .
Zor, Erhan; Morales-Narváez, Eden; Zamora-Gálvez, Alejandro; Bingol, Haluk; Ersoz, Mustafa; Merkoçi, Arben
2015-09-16
Due to their size and difficulty to obtain, cost/effective biological or synthetic receptors (e.g., antibodies or aptamers, respectively), organic toxic compounds (e.g., less than 1 kDa) are generally challenging to detect using simple platforms such as biosensors. This study reports on the synthesis and characterization of a novel multifunctional composite material, magnetic silica beads/graphene quantum dots/molecularly imprinted polypyrrole (mSGP). mSGP is engineered to specifically and effectively capture and signal small molecules due to the synergy among chemical, magnetic, and optical properties combined with molecular imprinting of tributyltin (291 Da), a hazardous compound, selected as a model analyte. Magnetic and selective properties of the mSGP composite can be exploited to capture and preconcentrate the analyte onto its surface, and its photoluminescent graphene quantum dots, which are quenched upon analyte recognition, are used to interrogate the presence of the contaminant. This multifunctional material enables a rapid, simple and sensitive platform for small molecule detection, even in complex mediums such as seawater, without any sample treatment.
Modeling the radiation pattern of LEDs.
Moreno, Ivan; Sun, Ching-Cherng
2008-02-04
Light-emitting diodes (LEDs) come in many varieties and with a wide range of radiation patterns. We propose a general, simple but accurate analytic representation for the radiation pattern of the light emitted from an LED. To accurately render both the angular intensity distribution and the irradiance spatial pattern, a simple phenomenological model takes into account the emitting surfaces (chip, chip array, or phosphor surface), and the light redirected by both the reflecting cup and the encapsulating lens. Mathematically, the pattern is described as the sum of a maximum of two or three Gaussian or cosine-power functions. The resulting equation is widely applicable for any kind of LED of practical interest. We accurately model a wide variety of radiation patterns from several world-class manufacturers.
ERIC Educational Resources Information Center
Namwong, Pithakpong; Jarujamrus, Purim; Amatatongchai, Maliwan; Chairam, Sanoe
2018-01-01
In this article, a low-cost, simple, and rapid fabrication of paper-based analytical devices (PADs) using a wax screen-printing method is reported here. The acid-base reaction is implemented in the simple PADs to demonstrate to students the chemistry concept of a limiting reagent. When a fixed concentration of base reacts with a gradually…
Modeling of hybrid vehicle fuel economy and fuel engine efficiency
NASA Astrophysics Data System (ADS)
Wu, Wei
"Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.
Estimation of the curvature of the solid liquid interface during Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Barat, Catherine; Duffar, Thierry; Garandet, Jean-Paul
1998-11-01
An approximate solution for the solid/liquid interface curvature due to the crucible effect in crystal growth is derived from simple heat flux considerations. The numerical modelling of the problem carried out with the help of the finite element code FIDAP supports the predictions of our analytical expression and allows to identify its range of validity. Experimental interface curvatures, measured in gallium antimonide samples grown by the vertical Bridgman method, are seen to compare satisfactorily to analytical and numerical results. Other literature data are also in fair agreement with the predictions of our models in the case where the amount of heat carried by the crucible is small compared to the overall heat flux.
Analytical solution for a class of network dynamics with mechanical and financial applications
NASA Astrophysics Data System (ADS)
Krejčí, P.; Lamba, H.; Melnik, S.; Rachinskii, D.
2014-09-01
We show that for a certain class of dynamics at the nodes the response of a network of any topology to arbitrary inputs is defined in a simple way by its response to a monotone input. The nodes may have either a discrete or continuous set of states and there is no limit on the complexity of the network. The results provide both an efficient numerical method and the potential for accurate analytic approximation of the dynamics on such networks. As illustrative applications, we introduce a quasistatic mechanical model with objects interacting via frictional forces and a financial market model with avalanches and critical behavior that are generated by momentum trading strategies.
Modeling of a rotary motor driven by an anisotropic piezoelectric composite laminate.
Zhu, M L; Lee, S R; Zhang, T Y; Tong, P
2000-01-01
This paper proposes an analytical model of a rotary motor driven by an anisotropic piezoelectric composite laminate. The driving element of the motor is a three-layer laminated plate. A piezoelectric layer is sandwiched between two anti-symmetric composite laminae. Because of the material anisotropy and the anti-symmetric configuration, torsional vibration can be induced through the inplane strain actuated by the piezoelectric layer. The advantages of the motor are its magnetic field immunity, simple structure, easy maintenance, low cost, and good low-speed performance. In this paper, the motor is considered to be a coupled dynamic system. The analytical model includes the longitudinal and torsional vibrations of the laminate and the rotating motion of the rotor under action of contact forces. The analytical model can predict the overall characteristics of the motor, including the modal frequency and the response of motion of the laminate, the rotating speed of the rotor, the input power, the output power, and the efficiency of the motor. The effects of the initial compressive force, the applied voltage, the moment of rotor inertia, and the frictional coefficient of the contact interface on the characteristics of the motor are simulated and discussed. A selection of the numerical results from the analytical model is confirmed by experimental data.
NASA Astrophysics Data System (ADS)
Park, DaeKil
2018-06-01
The dynamics of entanglement and uncertainty relation is explored by solving the time-dependent Schrödinger equation for coupled harmonic oscillator system analytically when the angular frequencies and coupling constant are arbitrarily time dependent. We derive the spectral and Schmidt decompositions for vacuum solution. Using the decompositions, we derive the analytical expressions for von Neumann and Rényi entropies. Making use of Wigner distribution function defined in phase space, we derive the time dependence of position-momentum uncertainty relations. To show the dynamics of entanglement and uncertainty relation graphically, we introduce two toy models and one realistic quenched model. While the dynamics can be conjectured by simple consideration in the toy models, the dynamics in the realistic quenched model is somewhat different from that in the toy models. In particular, the dynamics of entanglement exhibits similar pattern to dynamics of uncertainty parameter in the realistic quenched model.
Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A
2007-10-01
Effective electrophoretic mobility data of 20 amino acids reported in the literature are analyzed and interpreted through simple physicochemical models, which are able to provide estimates of coupled quantities like hydrodynamic shape factor, equivalent hydrodynamic radius (size), net charge, actual pK values of ionizing groups, partial charges of ionizing groups, hydration number, and pH near molecule (microenvironment-pH of the BGE). It is concluded that the modeling of the electrophoretic mobility of these analytes requires a careful consideration of hydrodynamic shape coupled to hydration. In the low range of pH studied here, distinctive hydrodynamic behaviors of amino acids are found. For instance, amino acids with basic polar and ionizing side chain remain with prolate shape for pH values varying from 1.99 to 3.2. It is evident that as the pH increases from low values, amino acids get higher hydrations as a consequence each analyte total charge also increases. This result is consistent with the monotonic increase of the hydrodynamic radius, which accounts for both the analyte and the quite immobilized water molecules defining the electrophoretic kinematical unit. It is also found that the actual or effective pK value of the alpha-carboxylic ionizing group of amino acids increases when the pH is changed from 1.99 to 3.2. Several limitations concerning the simple modeling of the electrophoretic mobility of amino acids are presented for further research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammon, M.; Shalchi, A., E-mail: andreasm4@yahoo.com
2017-10-01
In several astrophysical applications one needs analytical forms of cosmic-ray diffusion parameters. Some examples are studies of diffusive shock acceleration and solar modulation. In the current article we explore perpendicular diffusion based on the unified nonlinear transport theory. While we focused on magnetostatic turbulence in Paper I, we included the effect of dynamical turbulence in Paper II of the series. In the latter paper we assumed that the temporal correlation time does not depend on the wavenumber. More realistic models have been proposed in the past, such as the so-called damping model of dynamical turbulence. In the present paper wemore » derive analytical forms for the perpendicular diffusion coefficient of energetic particles in two-component turbulence for this type of time-dependent turbulence. We present new formulas for the perpendicular diffusion coefficient and we derive a condition for which the magnetostatic result is recovered.« less
SU-FF-T-668: A Simple Algorithm for Range Modulation Wheel Design in Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, X; Nazaryan, Vahagn; Gueye, Paul
2009-06-01
Purpose: To develop a simple algorithm in designing the range modulation wheel to generate a very smooth Spread-Out Bragg peak (SOBP) for proton therapy.Method and Materials: A simple algorithm has been developed to generate the weight factors in corresponding pristine Bragg peaks which composed a smooth SOBP in proton therapy. We used a modified analytical Bragg peak function based on Monte Carol simulation tool-kits of Geant4 as pristine Bragg peaks input in our algorithm. A simple METLAB(R) Quad Program was introduced to optimize the cost function in our algorithm. Results: We found out that the existed analytical function of Braggmore » peak can't directly use as pristine Bragg peak dose-depth profile input file in optimization of the weight factors since this model didn't take into account of the scattering factors introducing from the range shifts in modifying the proton beam energies. We have done Geant4 simulations for proton energy of 63.4 MeV with a 1.08 cm SOBP for variation of pristine Bragg peaks which composed this SOBP and modified the existed analytical Bragg peak functions for their peak heights, ranges of R{sub 0}, and Gaussian energies {sigma}{sub E}. We found out that 19 pristine Bragg peaks are enough to achieve a flatness of 1.5% of SOBP which is the best flatness in the publications. Conclusion: This work develops a simple algorithm to generate the weight factors which is used to design a range modulation wheel to generate a smooth SOBP in protonradiation therapy. We have found out that a medium number of pristine Bragg peaks are enough to generate a SOBP with flatness less than 2%. It is potential to generate data base to store in the treatment plan to produce a clinic acceptable SOBP by using our simple algorithm.« less
Liquid-liquid critical point in a simple analytical model of water.
Urbic, Tomaz
2016-10-01
A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.
Liquid-liquid critical point in a simple analytical model of water
NASA Astrophysics Data System (ADS)
Urbic, Tomaz
2016-10-01
A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.
Time dependence of breakdown in a global fiber-bundle model with continuous damage.
Moral, L; Moreno, Y; Gómez, J B; Pacheco, A F
2001-06-01
A time-dependent global fiber-bundle model of fracture with continuous damage is formulated in terms of a set of coupled nonlinear differential equations. A first integral of this set is analytically obtained. The time evolution of the system is studied by applying a discrete probabilistic method. Several results are discussed emphasizing their differences with the standard time-dependent model. The results obtained show that with this simple model a variety of experimental observations can be qualitatively reproduced.
Multiple-path model of spectral reflectance of a dyed fabric.
Rogers, Geoffrey; Dalloz, Nicolas; Fournel, Thierry; Hebert, Mathieu
2017-05-01
Experimental results are presented of the spectral reflectance of a dyed fabric as analyzed by a multiple-path model of reflection. The multiple-path model provides simple analytic expressions for reflection and transmission of turbid media by applying the Beer-Lambert law to each path through the medium and summing over all paths, each path weighted by its probability. The path-length probability is determined by a random-walk analysis. The experimental results presented here show excellent agreement with predictions made by the model.
A class of simple bouncing and late-time accelerating cosmologies in f(R) gravity
NASA Astrophysics Data System (ADS)
Kuiroukidis, A.
We consider the field equations for a flat FRW cosmological model, given by Eq. (??), in an a priori generic f(R) gravity model and cast them into a, completely normalized and dimensionless, system of ODEs for the scale factor and the function f(R), with respect to the scalar curvature R. It is shown that under reasonable assumptions, namely for power-law functional form for the f(R) gravity model, one can produce simple analytical and numerical solutions describing bouncing cosmological models where in addition there are late-time accelerating. The power-law form for the f(R) gravity model is typically considered in the literature as the most concrete, reasonable, practical and viable assumption [see S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 90 (2014) 124083, arXiv:1410.8183 [gr-qc
NASA Astrophysics Data System (ADS)
Jumper, William D.
2012-03-01
Many high school and introductory college physics courses make use of mousetrap car projects and competitions as a way of providing an engaging hands-on learning experience incorporating Newton's laws, conversion of potential to kinetic energy, dissipative forces, and rotational mechanics. Presented here is a simple analytical and finite element spreadsheet model for a typical mousetrap car, as shown in Fig. 1. It is hoped that the model will provide students with a tool for designing or modifying the designs of their cars, provide instructors with a means to insure students close the loop between physical principles and an understanding of their car's speed and distance performance, and, third, stimulate in students at an early stage an appreciation for the merits of computer modeling as an aid in understanding and tackling otherwise analytically intractable problems so common in today's professional world.
The Simple Analytics of Monetary Policy: A Post-Crisis Approach
ERIC Educational Resources Information Center
Friedman, Benjamin M.
2013-01-01
The standard workhorse models of monetary policy now commonly in use, both for teaching macro-economics to students and for supporting policymaking within many central banks, are incapable of incorporating the most widely accepted accounts of how the 2007-9 financial crisis occurred and are incapable too of analyzing the actions that monetary…
Remediation of fractured rock sites contaminated by non-aqueous phase liquids has long been recognized as the most difficult undertaking of any site clean-up. Recent pilot studies conducted at the Edwards Air Force Base in California and the former Loring Air Force Base in Maine ...
Remediation of fractured rock sites contaminated by non-aqueous phase liquids has long been recognized as the most difficult undertaking of any site clean-up. Recent pilot studies conducted at the Edwards Air Force Base in California and the former Loring Air Force Base in Maine ...
A simple phenomenological model for grain clustering in turbulence
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2016-01-01
We propose a simple model for density fluctuations of aerodynamic grains, embedded in a turbulent, gravitating gas disc. The model combines a calculation for the behaviour of a group of grains encountering a single turbulent eddy, with a hierarchical approximation of the eddy statistics. This makes analytic predictions for a range of quantities including: distributions of grain densities, power spectra and correlation functions of fluctuations, and maximum grain densities reached. We predict how these scale as a function of grain drag time ts, spatial scale, grain-to-gas mass ratio tilde{ρ }, strength of turbulence α, and detailed disc properties. We test these against numerical simulations with various turbulence-driving mechanisms. The simulations agree well with the predictions, spanning ts Ω ˜ 10-4-10, tilde{ρ }˜ 0{-}3, α ˜ 10-10-10-2. Results from `turbulent concentration' simulations and laboratory experiments are also predicted as a special case. Vortices on a wide range of scales disperse and concentrate grains hierarchically. For small grains this is most efficient in eddies with turnover time comparable to the stopping time, but fluctuations are also damped by local gas-grain drift. For large grains, shear and gravity lead to a much broader range of eddy scales driving fluctuations, with most power on the largest scales. The grain density distribution has a log-Poisson shape, with fluctuations for large grains up to factors ≳1000. We provide simple analytic expressions for the predictions, and discuss implications for planetesimal formation, grain growth, and the structure of turbulence.
A new fitting law of rovibrationally inelastic rate constants for rapidly rotating molecules
NASA Astrophysics Data System (ADS)
Strekalov, M. L.
2005-04-01
Semiclassical scattering of a particle from a three-dimensional ellipsoid with internal structure is used to model vibration-rotation-translation (VRT) collisional transfer between atoms and diatomic molecules. The result is a very simple analytical expression containing two variable parameters that have a clear physical meaning. Predictions of the model for the Li 2 + Ne system are in reasonably good agreement with experimental results.
Multiloop Manual Control of Dynamic Systems
NASA Technical Reports Server (NTRS)
Hess, R. A.; Mcnally, B. D.
1984-01-01
Human interaction with a simple, multiloop dynamic system in which the human's activity was systematically varied by changing the levels of automation was studied. The control loop structure resulting from the task definition parallels that for any multiloop manual control system, is considered a sterotype. Simple models of the human in the task, and upon extending a technique for describing the manner in which the human subjectively quantifies his opinion of task difficulty were developed. A man in the loop simulation which provides data to support and direct the analytical effort is presented.
Analytic derivation of bacterial growth laws from a simple model of intracellular chemical dynamics.
Pandey, Parth Pratim; Jain, Sanjay
2016-09-01
Experiments have found that the growth rate and certain other macroscopic properties of bacterial cells in steady-state cultures depend upon the medium in a surprisingly simple manner; these dependencies are referred to as 'growth laws'. Here we construct a dynamical model of interacting intracellular populations to understand some of the growth laws. The model has only three population variables: an amino acid pool, a pool of enzymes that transport an external nutrient and produce the amino acids, and ribosomes that catalyze their own and the enzymes' production from the amino acids. We assume that the cell allocates its resources between the enzyme sector and the ribosomal sector to maximize its growth rate. We show that the empirical growth laws follow from this assumption and derive analytic expressions for the phenomenological parameters in terms of the more basic model parameters. Interestingly, the maximization of the growth rate of the cell as a whole implies that the cell allocates resources to the enzyme and ribosomal sectors in inverse proportion to their respective 'efficiencies'. The work introduces a mathematical scheme in which the cellular growth rate can be explicitly determined and shows that two large parameters, the number of amino acid residues per enzyme and per ribosome, are useful for making approximations.
Torrents, Genís; Illa, Xavier; Vives, Eduard; Planes, Antoni
2017-01-01
A simple model for the growth of elongated domains (needle-like) during a martensitic phase transition is presented. The model is purely geometric and the only interactions are due to the sequentiality of the kinetic problem and to the excluded volume, since domains cannot retransform back to the original phase. Despite this very simple interaction, numerical simulations show that the final observed microstructure can be described as being a consequence of dipolar-like interactions. The model is analytically solved in 2D for the case in which two symmetry related domains can grow in the horizontal and vertical directions. It is remarkable that the solution is analytic both for a finite system of size L×L and in the thermodynamic limit L→∞, where the elongated domains become lines. Results prove the existence of criticality, i.e., that the domain sizes observed in the final microstructure show a power-law distribution characterized by a critical exponent. The exponent, nevertheless, depends on the relative probabilities of the different equivalent variants. The results provide a plausible explanation of the weak universality of the critical exponents measured during martensitic transformations in metallic alloys. Experimental exponents show a monotonous dependence with the number of equivalent variants that grow during the transition.
Rotational modes of a simple Earth model
NASA Astrophysics Data System (ADS)
Seyed-Mahmoud, B.; Rochester, M. G.; Rogister, Y. J. G.
2017-12-01
We study the tilt-over mode (TOM), the spin-over mode (SOM), the free core nutation (FCN), and their relationships to each other using a simple Earth model with a homogeneous and incompressible liquid core and a rigid mantle. Analytical solutions for the periods of these modes as well as that of the Chandler wobble is found for the Earth model. We show that the FCN is the same mode as the SOM of a wobbling Earth. The reduced pressure, in terms of which the vector momentum equation is known to reduce to a scalar second order differential equation (the so called Poincaŕe equation), is used as the independent variable. Analytical solutions are then found for the displacement eigenfucntions in a meridional plane of the liquid core for the aforementioned modes. We show that the magnitude of motion in the mantle during the FCN is comparable to that in the liquid core, hence very small. The displacement eigenfunctions for these aforementioned modes as well as those for the free inner core nutation (FICN), computed numerically, are also given for a three layer Earth model which also includes a rigid but capable of wobbling inner core. We will discuss the slow convergence of the period of the FICN in terms of the characteristic surfaces of the Poincare equation.
First-passage time of Brownian motion with dry friction.
Chen, Yaming; Just, Wolfram
2014-02-01
We provide an analytic solution to the first-passage time (FPT) problem of a piecewise-smooth stochastic model, namely Brownian motion with dry friction, using two different but closely related approaches which are based on eigenfunction decompositions on the one hand and on the backward Kolmogorov equation on the other. For the simple case containing only dry friction, a phase-transition phenomenon in the spectrum is found which relates to the position of the exit point, and which affects the tail of the FPT distribution. For the model containing as well a driving force and viscous friction the impact of the corresponding stick-slip transition and of the transition to ballistic exit is evaluated quantitatively. The proposed model is one of the very few cases where FPT properties are accessible by analytical means.
Plate and butt-weld stresses beyond elastic limit, material and structural modeling
NASA Technical Reports Server (NTRS)
Verderaime, V.
1991-01-01
Ultimate safety factors of high performance structures depend on stress behavior beyond the elastic limit, a region not too well understood. An analytical modeling approach was developed to gain fundamental insights into inelastic responses of simple structural elements. Nonlinear material properties were expressed in engineering stresses and strains variables and combined with strength of material stress and strain equations similar to numerical piece-wise linear method. Integrations are continuous which allows for more detailed solutions. Included with interesting results are the classical combined axial tension and bending load model and the strain gauge conversion to stress beyond the elastic limit. Material discontinuity stress factors in butt-welds were derived. This is a working-type document with analytical methods and results applicable to all industries of high reliability structures.
Analytical model for the threshold voltage of III-V nanowire transistors including quantum effects
NASA Astrophysics Data System (ADS)
Marin, E. G.; Ruiz, F. G.; Tienda-Luna, I. M.; Godoy, A.; Gámiz, F.
2014-02-01
In this work we propose an analytical model for the threshold voltage (VT) of III-V cylindrical nanowires, that takes into consideration the two dimensional quantum confinement of the carriers, the Fermi-Dirac statistics, the wave-function penetration into the gate insulator and the non-parabolicity of the conduction band structure. A simple expression for VT is obtained assuming some suitable approximations. The model results are compared to those of a 2D self consistent Schrödinger-Poisson solver, demonstrating a good fit for different III-V materials, insulator thicknesses and nanowire sizes with diameter down to 5 nm. The VT dependence on the confinement effective mass is discussed. The different contributions to VT are analyzed showing significant variations among different III-V materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vriens, L.; Smeets, A.H.M.
1980-09-01
For electron-induced ionization, excitation, and de-excitation, mainly from excited atomic states, a detailed analysis is presented of the dependence of the cross sections and rate coefficients on electron energy and temperature, and on atomic parameters. A wide energy range is covered, including sudden as well as adiabatic collisions. By combining the available experimental and theoretical information, a set of simple analytical formulas is constructed for the cross sections and rate coefficients of the processes mentioned, for the total depopulation, and for three-body recombination. The formulas account for large deviations from classical and semiclassical scaling, as found for excitation. They agreemore » with experimental data and with the theories in their respective ranges of validity, but have a wider range of validity than the separate theories. The simple analytical form further facilitates the application in plasma modeling.« less
NASA Astrophysics Data System (ADS)
Gagatsos, Christos N.; Karanikas, Alexandros I.; Kordas, Georgios; Cerf, Nicolas J.
2016-02-01
In spite of their simple description in terms of rotations or symplectic transformations in phase space, quadratic Hamiltonians such as those modelling the most common Gaussian operations on bosonic modes remain poorly understood in terms of entropy production. For instance, determining the quantum entropy generated by a Bogoliubov transformation is notably a hard problem, with generally no known analytical solution, while it is vital to the characterisation of quantum communication via bosonic channels. Here we overcome this difficulty by adapting the replica method, a tool borrowed from statistical physics and quantum field theory. We exhibit a first application of this method to continuous-variable quantum information theory, where it enables accessing entropies in an optical parametric amplifier. As an illustration, we determine the entropy generated by amplifying a binary superposition of the vacuum and a Fock state, which yields a surprisingly simple, yet unknown analytical expression.
Ultimate Longitudinal Strength of Composite Ship Hulls
NASA Astrophysics Data System (ADS)
Zhang, Xiangming; Huang, Lingkai; Zhu, Libao; Tang, Yuhang; Wang, Anwen
2017-01-01
A simple analytical model to estimate the longitudinal strength of ship hulls in composite materials under buckling, material failure and ultimate collapse is presented in this paper. Ship hulls are regarded as assemblies of stiffened panels which idealized as group of plate-stiffener combinations. Ultimate strain of the plate-stiffener combination is predicted under buckling or material failure with composite beam-column theory. The effects of initial imperfection of ship hull and eccentricity of load are included. Corresponding longitudinal strengths of ship hull are derived in a straightforward method. A longitudinally framed ship hull made of symmetrically stacked unidirectional plies under sagging is analyzed. The results indicate that present analytical results have a good agreement with FEM method. The initial deflection of ship hull and eccentricity of load can dramatically reduce the bending capacity of ship hull. The proposed formulations provide a simple but useful tool for the longitudinal strength estimation in practical design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warnecke, Sascha; Toennies, J. Peter, E-mail: jtoenni@gwdg.de; Tang, K. T.
The Tang-Toennies potential for the weakly interacting systems H{sub 2} b{sup 3}Σ{sub u}{sup +}, H–He {sup 2}Σ{sup +}, and He{sub 2} {sup 1}Σ{sub g}{sup +} is extended down to the united atom limit of vanishing internuclear distance. A simple analytic expression connects the united atom limiting potential with the Tang-Toennies potential in the well region. The new potential model is compared with the most recent ab initio calculations for all three systems. The agreement is better than 20% (H{sub 2} and He{sub 2}) or comparable with the differences in the available ab initio calculations (H–He) over six orders of magnitudemore » corresponding to the entire range of internuclear distances.« less
Critical power for self-focusing of optical beam in absorbing media
NASA Astrophysics Data System (ADS)
Qi, Pengfei; Zhang, Lin; Lin, Lie; Zhang, Nan; Wang, Yan; Liu, Weiwei
2018-04-01
Self-focusing effects are of central importance for most nonlinear optical effects. The critical power for self-focusing is commonly investigated theoretically without considering a material’s absorption. Although this is practicable for various materials, investigating the critical power for self-focusing in media with non-negligible absorption is also necessary, because this is the situation usually met in practice. In this paper, the simple analytical expressions describing the relationships among incident power, absorption coefficient and focal position are provided by a simple physical model based on the Fermat principle. Expressions for the absorption dependent critical power are also derived; these can play important roles in experimental and applied research on self-focusing-related nonlinear optical phenomena in absorbing media. Numerical results, based on the nonlinear wave equation—and which can predict experimental results perfectly—are also presented, and agree quantitatively with the analytical results proposed in this paper.
Generalized Born Models of Macromolecular Solvation Effects
NASA Astrophysics Data System (ADS)
Bashford, Donald; Case, David A.
2000-10-01
It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.
Water's hydrogen bonds in the hydrophobic effect: a simple model.
Xu, Huafeng; Dill, Ken A
2005-12-15
We propose a simple analytical model to account for water's hydrogen bonds in the hydrophobic effect. It is based on computing a mean-field partition function for a water molecule in the first solvation shell around a solute molecule. The model treats the orientational restrictions from hydrogen bonding, and utilizes quantities that can be obtained from bulk water simulations. We illustrate the principles in a 2-dimensional Mercedes-Benz-like model. Our model gives good predictions for the heat capacity of hydrophobic solvation, reproduces the solvation energies and entropies at different temperatures with only one fitting parameter, and accounts for the solute size dependence of the hydrophobic effect. Our model supports the view that water's hydrogen bonding propensity determines the temperature dependence of the hydrophobic effect. It explains the puzzling experimental observation that dissolving a nonpolar solute in hot water has positive entropy.
Extended Poisson process modelling and analysis of grouped binary data.
Faddy, Malcolm J; Smith, David M
2012-05-01
A simple extension of the Poisson process results in binomially distributed counts of events in a time interval. A further extension generalises this to probability distributions under- or over-dispersed relative to the binomial distribution. Substantial levels of under-dispersion are possible with this modelling, but only modest levels of over-dispersion - up to Poisson-like variation. Although simple analytical expressions for the moments of these probability distributions are not available, approximate expressions for the mean and variance are derived, and used to re-parameterise the models. The modelling is applied in the analysis of two published data sets, one showing under-dispersion and the other over-dispersion. More appropriate assessment of the precision of estimated parameters and reliable model checking diagnostics follow from this more general modelling of these data sets. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analytical and numerical analysis of frictional damage in quasi brittle materials
NASA Astrophysics Data System (ADS)
Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.
2016-07-01
Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.
Investigating Compaction by Intergranular Pressure Solution Using the Discrete Element Method
NASA Astrophysics Data System (ADS)
van den Ende, M. P. A.; Marketos, G.; Niemeijer, A. R.; Spiers, C. J.
2018-01-01
Intergranular pressure solution creep is an important deformation mechanism in the Earth's crust. The phenomenon has been frequently studied and several analytical models have been proposed that describe its constitutive behavior. These models require assumptions regarding the geometry of the aggregate and the grain size distribution in order to solve for the contact stresses and often neglect shear tractions. Furthermore, analytical models tend to overestimate experimental compaction rates at low porosities, an observation for which the underlying mechanisms remain to be elucidated. Here we present a conceptually simple, 3-D discrete element method (DEM) approach for simulating intergranular pressure solution creep that explicitly models individual grains, relaxing many of the assumptions that are required by analytical models. The DEM model is validated against experiments by direct comparison of macroscopic sample compaction rates. Furthermore, the sensitivity of the overall DEM compaction rate to the grain size and applied stress is tested. The effects of the interparticle friction and of a distributed grain size on macroscopic strain rates are subsequently investigated. Overall, we find that the DEM model is capable of reproducing realistic compaction behavior, and that the strain rates produced by the model are in good agreement with uniaxial compaction experiments. Characteristic features, such as the dependence of the strain rate on grain size and applied stress, as predicted by analytical models, are also observed in the simulations. DEM results show that interparticle friction and a distributed grain size affect the compaction rates by less than half an order of magnitude.
A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow
NASA Technical Reports Server (NTRS)
Oseguera, Rosa M.; Bowles, Roland L.
1988-01-01
A simple downburst model is developed for use in batch and real-time piloted simulation studies of guidance strategies for terminal area transport aircraft operations in wind shear conditions. The model represents an axisymmetric stagnation point flow, based on velocity profiles from the Terminal Area Simulation System (TASS) model developed by Proctor and satisfies the mass continuity equation in cylindrical coordinates. Altitude dependence, including boundary layer effects near the ground, closely matches real-world measurements, as do the increase, peak, and decay of outflow and downflow with increasing distance from the downburst center. Equations for horizontal and vertical winds were derived, and found to be infinitely differentiable, with no singular points existent in the flow field. In addition, a simple relationship exists among the ratio of maximum horizontal to vertical velocities, the downdraft radius, depth of outflow, and altitude of maximum outflow. In use, a microburst can be modeled by specifying four characteristic parameters, velocity components in the x, y and z directions, and the corresponding nine partial derivatives are obtained easily from the velocity equations.
Modeling and control of flexible space platforms with articulated payloads
NASA Technical Reports Server (NTRS)
Graves, Philip C.; Joshi, Suresh M.
1989-01-01
The first steps in developing a methodology for spacecraft control-structure interaction (CSI) optimization are identification and classification of anticipated missions, and the development of tractable mathematical models in each mission class. A mathematical model of a generic large flexible space platform (LFSP) with multiple independently pointed rigid payloads is considered. The objective is not to develop a general purpose numerical simulation, but rather to develop an analytically tractable mathematical model of such composite systems. The equations of motion for a single payload case are derived, and are linearized about zero steady-state. The resulting model is then extended to include multiple rigid payloads, yielding the desired analytical form. The mathematical models developed clearly show the internal inertial/elastic couplings, and are therefore suitable for analytical and numerical studies. A simple decentralized control law is proposed for fine pointing the payloads and LFSP attitude control, and simulation results are presented for an example problem. The decentralized controller is shown to be adequate for the example problem chosen, but does not, in general, guarantee stability. A centralized dissipative controller is then proposed, requiring a symmetric form of the composite system equations. Such a controller guarantees robust closed loop stability despite unmodeled elastic dynamics and parameter uncertainties.
Improving a regional model using reduced complexity and parameter estimation
Kelson, Victor A.; Hunt, Randall J.; Haitjema, Henk M.
2002-01-01
The availability of powerful desktop computers and graphical user interfaces for ground water flow models makes possible the construction of ever more complex models. A proposed copper-zinc sulfide mine in northern Wisconsin offers a unique case in which the same hydrologic system has been modeled using a variety of techniques covering a wide range of sophistication and complexity. Early in the permitting process, simple numerical models were used to evaluate the necessary amount of water to be pumped from the mine, reductions in streamflow, and the drawdowns in the regional aquifer. More complex models have subsequently been used in an attempt to refine the predictions. Even after so much modeling effort, questions regarding the accuracy and reliability of the predictions remain. We have performed a new analysis of the proposed mine using the two-dimensional analytic element code GFLOW coupled with the nonlinear parameter estimation code UCODE. The new model is parsimonious, containing fewer than 10 parameters, and covers a region several times larger in areal extent than any of the previous models. The model demonstrates the suitability of analytic element codes for use with parameter estimation codes. The simplified model results are similar to the more complex models; predicted mine inflows and UCODE-derived 95% confidence intervals are consistent with the previous predictions. More important, the large areal extent of the model allowed us to examine hydrological features not included in the previous models, resulting in new insights about the effects that far-field boundary conditions can have on near-field model calibration and parameterization. In this case, the addition of surface water runoff into a lake in the headwaters of a stream while holding recharge constant moved a regional ground watershed divide and resulted in some of the added water being captured by the adjoining basin. Finally, a simple analytical solution was used to clarify the GFLOW model's prediction that, for a model that is properly calibrated for heads, regional drawdowns are relatively unaffected by the choice of aquifer properties, but that mine inflows are strongly affected. Paradoxically, by reducing model complexity, we have increased the understanding gained from the modeling effort.
Improving a regional model using reduced complexity and parameter estimation.
Kelson, Victor A; Hunt, Randall J; Haitjema, Henk M
2002-01-01
The availability of powerful desktop computers and graphical user interfaces for ground water flow models makes possible the construction of ever more complex models. A proposed copper-zinc sulfide mine in northern Wisconsin offers a unique case in which the same hydrologic system has been modeled using a variety of techniques covering a wide range of sophistication and complexity. Early in the permitting process, simple numerical models were used to evaluate the necessary amount of water to be pumped from the mine, reductions in streamflow, and the drawdowns in the regional aquifer. More complex models have subsequently been used in an attempt to refine the predictions. Even after so much modeling effort, questions regarding the accuracy and reliability of the predictions remain. We have performed a new analysis of the proposed mine using the two-dimensional analytic element code GFLOW coupled with the nonlinear parameter estimation code UCODE. The new model is parsimonious, containing fewer than 10 parameters, and covers a region several times larger in areal extent than any of the previous models. The model demonstrates the suitability of analytic element codes for use with parameter estimation codes. The simplified model results are similar to the more complex models; predicted mine inflows and UCODE-derived 95% confidence intervals are consistent with the previous predictions. More important, the large areal extent of the model allowed us to examine hydrological features not included in the previous models, resulting in new insights about the effects that far-field boundary conditions can have on near-field model calibration and parameterization. In this case, the addition of surface water runoff into a lake in the headwaters of a stream while holding recharge constant moved a regional ground watershed divide and resulted in some of the added water being captured by the adjoining basin. Finally, a simple analytical solution was used to clarify the GFLOW model's prediction that, for a model that is properly calibrated for heads, regional drawdowns are relatively unaffected by the choice of aquifer properties, but that mine inflows are strongly affected. Paradoxically, by reducing model complexity, we have increased the understanding gained from the modeling effort.
Two dimensional model for coherent synchrotron radiation
NASA Astrophysics Data System (ADS)
Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.
2013-01-01
Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.
Polymers at interfaces and in colloidal dispersions.
Fleer, Gerard J
2010-09-15
This review is an extended version of the Overbeek lecture 2009, given at the occasion of the 23rd Conference of ECIS (European Colloid and Interface Society) in Antalya, where I received the fifth Overbeek Gold Medal awarded by ECIS. I first summarize the basics of numerical SF-SCF: the Scheutjens-Fleer version of Self-Consistent-Field theory for inhomogeneous systems, including polymer adsorption and depletion. The conformational statistics are taken from the (non-SCF) DiMarzio-Rubin lattice model for homopolymer adsorption, which enumerates the conformational details exactly by a discrete propagator for the endpoint distribution but does not account for polymer-solvent interaction and for the volume-filling constraint. SF-SCF corrects for this by adjusting the field such that it becomes self-consistent. The model can be generalized to more complex systems: polydispersity, brushes, random and block copolymers, polyelectrolytes, branching, surfactants, micelles, membranes, vesicles, wetting, etc. On a mean-field level the results are exact; the disadvantage is that only numerical data are obtained. Extensions to excluded-volume polymers are in progress. Analytical approximations for simple systems are based upon solving the Edwards diffusion equation. This equation is the continuum variant of the lattice propagator, but ignores the finite segment size (analogous to the Poisson-Boltzmann equation without a Stern layer). By using the discrete propagator for segments next to the surface as the boundary condition in the continuum model, the finite segment size can be introduced into the continuum description, like the ion size in the Stern-Poisson-Boltzmann model. In most cases a ground-state approximation is needed to find analytical solutions. In this way realistic analytical approximations for simple cases can be found, including depletion effects that occur in mixtures of colloids plus non-adsorbing polymers. In the final part of this review I discuss a generalization of the free-volume theory (FVT) for the phase behavior of colloids and non-adsorbing polymer. In FVT the polymer is considered to be ideal: the osmotic pressure Pi follows the Van 't Hoff law, the depletion thickness delta equals the radius of gyration. This restricts the validity of FVT to the so-called colloid limit (polymer much smaller than the colloids). We have been able to find simple analytical approximations for Pi and delta which account for non-ideality and include established results for the semidilute limit. So we could generalize FVT to GFVT, and can now also describe the so-called protein limit (polymer larger than the 'protein-like' colloids), where the binodal polymer concentrations scale in a simple way with the polymer/colloid size ratio. For an intermediate case (polymer size approximately colloid size) we could give a quantitative description of careful experimental data. Copyright 2010 Elsevier B.V. All rights reserved.
On Diffusive Climatological Models.
NASA Astrophysics Data System (ADS)
Griffel, D. H.; Drazin, P. G.
1981-11-01
A simple, zonally and annually averaged, energy-balance climatological model with diffusive heat transport and nonlinear albedo feedback is solved numerically. Some parameters of the model are varied, one by one, to find the resultant effects on the steady solution representing the climate. In particular, the outward radiation flux, the insulation distribution and the albedo parameterization are varied. We have found an accurate yet simple analytic expression for the mean annual insolation as a function of latitude and the obliquity of the Earth's rotation axis; this has enabled us to consider the effects of the oscillation of the obliquity. We have used a continuous albedo function which fits the observed values; it considerably reduces the sensitivity of the model. Climatic cycles, calculated by solving the time-dependent equation when parameters change slowly and periodically, are compared qualitatively with paleoclimatic records.
NASA Astrophysics Data System (ADS)
Bier, Martin; Brak, Bastiaan
2015-04-01
In the Netherlands there has been nationwide vaccination against the measles since 1976. However, in small clustered communities of orthodox Protestants there is widespread refusal of the vaccine. After 1976, three large outbreaks with about 3000 reported cases of the measles have occurred among these orthodox Protestants. The outbreaks appear to occur about every twelve years. We show how a simple Kermack-McKendrick-like model can quantitatively account for the periodic outbreaks. Approximate analytic formulae to connect the period, size, and outbreak duration are derived. With an enhanced model we take the latency period in account. We also expand the model to follow how different age groups are affected. Like other researchers using other methods, we conclude that large scale underreporting of the disease must occur.
Barker, John R; Martinez, Antonio
2018-04-04
Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.
NASA Astrophysics Data System (ADS)
Barker, John R.; Martinez, Antonio
2018-04-01
Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.
SU-G-TeP1-02: Analytical Stopping Power and Range Parameterization for Therapeutic Energy Intervals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donahue, W; Newhauser, W; Mary Bird Perkins Cancer Center, Baton Rouge, LA
Purpose: To develop a simple, analytic parameterization of stopping power and range, which covers a wide energy interval and is applicable to many species of projectile ions and target materials, with less than 15% disagreement in linear stopping power and 1 mm in range. Methods: The new parameterization was required to be analytically integrable from stopping power to range, and continuous across the range interval of 1 µm to 50 cm. The model parameters were determined from stopping power and range data for hydrogen, carbon, iron, and uranium ions incident on water, carbon, aluminum, lead and copper. Stopping power andmore » range data was taken from SRIM. A stochastic minimization algorithm was used to find model parameters, with 10 data points per energy decade. Additionally, fitting was performed with 2 and 26 data points per energy decade to test the model’s robustness to sparse Results: 6 free parameters were sufficient to cover the therapeutic energy range for each projectile ion species (e.g. 1 keV – 300 MeV for protons). The model agrees with stopping power and range data well, with less than 9% relative stopping power difference and 0.5 mm difference in range. As few as, 4 bins per decade were required to achieve comparable fitting results to the full data set. Conclusion: This study successfully demonstrated that a simple analytic function can be used to fit the entire energy interval of therapeutic ion beams of hydrogen and heavier elements. Advantages of this model were the small number (6) of free parameters, and that the model calculates both stopping power and range. Applications of this model include GPU-based dose calculation algorithms and Monte Carlo simulations, where available memory is limited. This work was supported in part by a research agreement between United States Naval Academy and Louisiana State University: Contract No N00189-13-P-0786. In addition, this work was accepted for presentation at the American Nuclear Society Annual Meeting 2016.« less
A simple method for estimating frequency response corrections for eddy covariance systems
W. J. Massman
2000-01-01
A simple analytical formula is developed for estimating the frequency attenuation of eddy covariance fluxes due to sensor response, path-length averaging, sensor separation, signal processing, and flux averaging periods. Although it is an approximation based on flat terrain cospectra, this analytical formula should have broader applicability than just flat-terrain...
B-dot algorithm steady-state motion performance
NASA Astrophysics Data System (ADS)
Ovchinnikov, M. Yu.; Roldugin, D. S.; Tkachev, S. S.; Penkov, V. I.
2018-05-01
Satellite attitude motion subject to the well-known B-dot magnetic control is considered. Unlike the majority of studies the present work focuses on the slowly rotating spacecraft. The attitude and the angular velocity acquired after detumbling the satellite is determined. This task is performed using two relatively simple geomagnetic field models. First the satellite is considered moving in the simplified dipole model. Asymptotically stable rotation around the axis of the maximum moment of inertia is found. This axis direction in the inertial space and the rotation rate are found. This result is then refined using the direct dipole geomagnetic field. Simple stable rotation transforms into the periodical motion, the rotation rate is also refined. Numerical analysis with the gravitational torque and the inclined dipole model verifies the analytical results.
Understanding Business Analytics
2015-01-05
analytics have been used in organizations for a variety of reasons for quite some time; ranging from the simple (generating and understanding business analytics...process. understanding business analytics 3 How well these two components are orchestrated will determine the level of success an organization has in
Comparison of Alcator C data with the Rebut-Lallia-Watkins critical gradient scaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, I.H.
The critical temperature gradient model of Rebut, Lallia and Watkins is compared with data from Alcator C. The predicted central electron temperature is derived from the model, and a simple analytic formula is given. It is found to be in quite good agreement with the observed temperatures on Alcator C under ohmic heating conditions. However, the thermal diffusivity postulated in the model for gradients that exceed the critical is not consistent with the observed electron heating by Lower Hybrid waves.
Gearbox Reliability Collaborative Investigation of High-Speed-Shaft Bearing Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Jonathan; Guo, Yi
2016-06-01
The loads and contact stresses in the bearings of the high speed shaft section of the Gearbox Reliability Collaborative gearbox are examined in this paper. The loads were measured though strain gauges installed on the bearing outer races during dynamometer testing of the gearbox. Loads and stresses were also predicted with a simple analytical model and higher-fidelity commercial models. The experimental data compared favorably to each model, and bearing stresses were below thresholds for contact fatigue and axial cracking.
Gauge-independent decoherence models for solids in external fields
NASA Astrophysics Data System (ADS)
Wismer, Michael S.; Yakovlev, Vladislav S.
2018-04-01
We demonstrate gauge-invariant modeling of an open system of electrons in a periodic potential interacting with an optical field. For this purpose, we adapt the covariant derivative to the case of mixed states and put forward a decoherence model that has simple analytical forms in the length and velocity gauges. We demonstrate our methods by calculating harmonic spectra in the strong-field regime and numerically verifying the equivalence of the deterministic master equation to the stochastic Monte Carlo wave-function method.
A Simple, Analytical Model of Collisionless Magnetic Reconnection in a Pair Plasma
NASA Technical Reports Server (NTRS)
Hesse, Michael; Zenitani, Seiji; Kuznetova, Masha; Klimas, Alex
2011-01-01
A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region, and to impart thermal energy to the plasma by means of quasi-viscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative, procedure. The solutions show expected features such as dominance of enthalpy flux in the reconnection outflow, as well as combination of adiabatic and quasi-viscous heating. Furthermore, the model predicts a maximum reconnection electric field of E(sup *)=0.4, normalized to the parameters at the inflow edge of the diffusion region.
NASA Technical Reports Server (NTRS)
Thanedar, B. D.
1972-01-01
A simple repetitive calculation was used to investigate what happens to the field in terms of the signal paths of disturbances originating from the energy source. The computation allowed the field to be reconstructed as a function of space and time on a statistical basis. The suggested Monte Carlo method is in response to the need for a numerical method to supplement analytical methods of solution which are only valid when the boundaries have simple shapes, rather than for a medium that is bounded. For the analysis, a suitable model was created from which was developed an algorithm for the estimation of acoustic pressure variations in the region under investigation. The validity of the technique was demonstrated by analysis of simple physical models with the aid of a digital computer. The Monte Carlo method is applicable to a medium which is homogeneous and is enclosed by either rectangular or curved boundaries.
A simple, analytical model of collisionless magnetic reconnection in a pair plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha
2009-10-15
A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region and to impart thermal energy to the plasma by means of quasiviscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative procedure. The solutions show expected features such as dominance of enthalpymore » flux in the reconnection outflow, as well as combination of adiabatic and quasiviscous heating. Furthermore, the model predicts a maximum reconnection electric field of E{sup *}=0.4, normalized to the parameters at the inflow edge of the diffusion region.« less
A methodology for the assessment of manned flight simulator fidelity
NASA Technical Reports Server (NTRS)
Hess, Ronald A.; Malsbury, Terry N.
1989-01-01
A relatively simple analytical methodology for assessing the fidelity of manned flight simulators for specific vehicles and tasks is offered. The methodology is based upon an application of a structural model of the human pilot, including motion cue effects. In particular, predicted pilot/vehicle dynamic characteristics are obtained with and without simulator limitations. A procedure for selecting model parameters can be implemented, given a probable pilot control strategy. In analyzing a pair of piloting tasks for which flight and simulation data are available, the methodology correctly predicted the existence of simulator fidelity problems. The methodology permitted the analytical evaluation of a change in simulator characteristics and indicated that a major source of the fidelity problems was a visual time delay in the simulation.
Distributed Parameter Analysis of Pressure and Flow Disturbances in Rocket Propellant Feed Systems
NASA Technical Reports Server (NTRS)
Dorsch, Robert G.; Wood, Don J.; Lightner, Charlene
1966-01-01
A digital distributed parameter model for computing the dynamic response of propellant feed systems is formulated. The analytical approach used is an application of the wave-plan method of analyzing unsteady flow. Nonlinear effects are included. The model takes into account locally high compliances at the pump inlet and at the injector dome region. Examples of the calculated transient and steady-state periodic responses of a simple hypothetical propellant feed system to several types of disturbances are presented. Included are flow disturbances originating from longitudinal structural motion, gimbaling, throttling, and combustion-chamber coupling. The analytical method can be employed for analyzing developmental hardware and offers a flexible tool for the calculation of unsteady flow in these systems.
Q-controlled amplitude modulation atomic force microscopy in liquids: An analysis
NASA Astrophysics Data System (ADS)
Hölscher, H.; Schwarz, U. D.
2006-08-01
An analysis of amplitude modulation atomic force microscopy in liquids is presented with respect to the application of the Q-Control technique. The equation of motion is solved by numerical and analytic methods with and without Q-Control in the presence of a simple model interaction force adequate for many liquid environments. In addition, the authors give an explicit analytical formula for the tip-sample indentation showing that higher Q factors reduce the tip-sample force. It is found that Q-Control suppresses unwanted deformations of the sample surface, leading to the enhanced image quality reported in several experimental studies.
Nonlinear field equations for aligning self-propelled rods.
Peshkov, Anton; Aranson, Igor S; Bertin, Eric; Chaté, Hugues; Ginelli, Francesco
2012-12-28
We derive a set of minimal and well-behaved nonlinear field equations describing the collective properties of self-propelled rods from a simple microscopic starting point, the Vicsek model with nematic alignment. Analysis of their linear and nonlinear dynamics shows good agreement with the original microscopic model. In particular, we derive an explicit expression for density-segregated, banded solutions, allowing us to develop a more complete analytic picture of the problem at the nonlinear level.
SEEPLUS: A SIMPLE ONLINE CLIMATE MODEL
NASA Astrophysics Data System (ADS)
Tsutsui, Junichi
A web application for a simple climate model - SEEPLUS (a Simple climate model to Examine Emission Pathways Leading to Updated Scenarios) - has been developed. SEEPLUS consists of carbon-cycle and climate-change modules, through which it provides the information infrastructure required to perform climate-change experiments, even on a millennial-timescale. The main objective of this application is to share the latest scientific knowledge acquired from climate modeling studies among the different stakeholders involved in climate-change issues. Both the carbon-cycle and climate-change modules employ impulse response functions (IRFs) for their key processes, thereby enabling the model to integrate the outcome from an ensemble of complex climate models. The current IRF parameters and forcing manipulation are basically consistent with, or within an uncertainty range of, the understanding of certain key aspects such as the equivalent climate sensitivity and ocean CO2 uptake data documented in representative literature. The carbon-cycle module enables inverse calculation to determine the emission pathway required in order to attain a given concentration pathway, thereby providing a flexible way to compare the module with more advanced modeling studies. The module also enables analytical evaluation of its equilibrium states, thereby facilitating the long-term planning of global warming mitigation.
Nondestructive assessment of timber bridges using a vibration-based method
Xiping Wang; James P. Wacker; Robert J. Ross; Brian K. Brashaw
2005-01-01
This paper describes an effort to develop a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the natural frequency of single-span timber bridges in the laboratory and field. An analytical model based on simple beam theory was proposed to represent the relationship...
Translucent Radiosity: Efficiently Combining Diffuse Inter-Reflection and Subsurface Scattering.
Sheng, Yu; Shi, Yulong; Wang, Lili; Narasimhan, Srinivasa G
2014-07-01
It is hard to efficiently model the light transport in scenes with translucent objects for interactive applications. The inter-reflection between objects and their environments and the subsurface scattering through the materials intertwine to produce visual effects like color bleeding, light glows, and soft shading. Monte-Carlo based approaches have demonstrated impressive results but are computationally expensive, and faster approaches model either only inter-reflection or only subsurface scattering. In this paper, we present a simple analytic model that combines diffuse inter-reflection and isotropic subsurface scattering. Our approach extends the classical work in radiosity by including a subsurface scattering matrix that operates in conjunction with the traditional form factor matrix. This subsurface scattering matrix can be constructed using analytic, measurement-based or simulation-based models and can capture both homogeneous and heterogeneous translucencies. Using a fast iterative solution to radiosity, we demonstrate scene relighting and dynamically varying object translucencies at near interactive rates.
Charge carrier coherence and Hall effect in organic semiconductors.
Yi, H T; Gartstein, Y N; Podzorov, V
2016-03-30
Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.
2014-01-01
Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated “effective” parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.
Using Extreme Tropical Precipitation Statistics to Constrain Future Climate States
NASA Astrophysics Data System (ADS)
Igel, M.; Biello, J. A.
2017-12-01
Tropical precipitation is characterized by a rapid growth in mean intensity as the column humidity increases. This behavior is examined in both a cloud resolving model and with high-resolution observations of precipitation and column humidity from CloudSat and AIRS, respectively. The model and the observations exhibit remarkable consistency and suggest a new paradigm for extreme precipitation. We show that the total precipitation can be decomposed into a product of contributions from a mean intensity, a probability of precipitation, and a global PDF of column humidity values. We use the modeling and observational results to suggest simple, analytic forms for each of these functions. The analytic representations are then used to construct a simple expression for the global accumulated precipitation as a function of the parameters of each of the component functions. As the climate warms, extreme precipitation intensity and global precipitation are expected to increase, though at different rates. When these predictions are incorporated into the new analytic expression for total precipitation, predictions for changes due to global warming to the probability of precipitation and the PDF of column humidity can be made. We show that strong constraints can be imposed on the future shape of the PDF of column humidity but that only weak constraints can be set on the probability of precipitation. These are largely imposed by the intensification of extreme precipitation. This result suggests that understanding precisely how extreme precipitation responds to climate warming is critical to predicting other impactful properties of global hydrology. The new framework can also be used to confirm and discount existing theories for shifting precipitation.
NASA Astrophysics Data System (ADS)
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.
2014-10-01
Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated "effective" parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.
NASA Astrophysics Data System (ADS)
Bassiouni, Maoya; Higgins, Chad W.; Still, Christopher J.; Good, Stephen P.
2018-06-01
Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash-Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from < 1 to 15 %. The parameter identifiability was not significantly improved in the more complex seasonal model; however, small differences in parameter values indicate that the annual model may have absorbed dry season dynamics. Parameter estimates were most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted ecohydrological parameters of interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in ecohydrology and provides a simple framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent with soil moisture observations.
NASA Astrophysics Data System (ADS)
Giuffre, Christopher James
In the natural world there is no such thing as a perfectly sharp edge, either thru wear or machining imprecation at the macroscopic scale all edges have curvature. This curvature can have significant impact when comparing results with theory. Both numerical and analytic models for the contact of an object with a sharp edge predict infinite stresses which are not present in the physical world. It is for this reason that the influence of rounded edges must be studied to better understand how they affect model response. Using a commercial available finite element package this influence will be studied in two different problems; how this edge geometry effects the shape of a contusion (bruise) and the accuracy of analytic models for the shaft loaded blister test (SLBT). The contusion study presents work that can be used to enable medical examiners to better determine if the object in question was capable of causing the contusions present. Using a simple layered tissue model which represents a generic location on the human body, a sweep of objects with different edges properties is studied using a simple strain based injury metric. This analysis aims to examine the role that contact area and energy have on the formation, location, and shape of the resulting contusion. In studying the SLBT with finite element analysis and cohesive zone modeling, the assessment of various analytic models will provide insight into how to accurately measure the fracture energy for both the simulation and experiment. This provides insight into the interactions between a film, the substrate it is bonded to and the loading plug. In addition, parametric studies are used to examine potential experimental designs and enable future work in this field. The final product of this project provides tools and insight into future study of the effect rounded edges have on contact and this work enables for more focused studies within desired regimes of interest.
Competing on talent analytics.
Davenport, Thomas H; Harris, Jeanne; Shapiro, Jeremy
2010-10-01
Do investments in your employees actually affect workforce performance? Who are your top performers? How can you empower and motivate other employees to excel? Leading-edge companies such as Google, Best Buy, Procter & Gamble, and Sysco use sophisticated data-collection technology and analysis to answer these questions, leveraging a range of analytics to improve the way they attract and retain talent, connect their employee data to business performance, differentiate themselves from competitors, and more. The authors present the six key ways in which companies track, analyze, and use data about their people-ranging from a simple baseline of metrics to monitor the organization's overall health to custom modeling for predicting future head count depending on various "what if" scenarios. They go on to show that companies competing on talent analytics manage data and technology at an enterprise level, support what analytical leaders do, choose realistic targets for analysis, and hire analysts with strong interpersonal skills as well as broad expertise.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1975-01-01
A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.
Information and complexity measures in the interface of a metal and a superconductor
NASA Astrophysics Data System (ADS)
Moustakidis, Ch. C.; Panos, C. P.
2018-06-01
Fisher information, Shannon information entropy and Statistical Complexity are calculated for the interface of a normal metal and a superconductor, as a function of the temperature for several materials. The order parameter Ψ (r) derived from the Ginzburg-Landau theory is used as an input together with experimental values of critical transition temperature Tc and the superconducting coherence length ξ0. Analytical expressions are obtained for information and complexity measures. Thus Tc is directly related in a simple way with disorder and complexity. An analytical relation is found of the Fisher Information with the energy profile of superconductivity i.e. the ratio of surface free energy and the bulk free energy. We verify that a simple relation holds between Shannon and Fisher information i.e. a decomposition of a global information quantity (Shannon) in terms of two local ones (Fisher information), previously derived and verified for atoms and molecules by Liu et al. Finally, we find analytical expressions for generalized information measures like the Tsallis entropy and Fisher information. We conclude that the proper value of the non-extensivity parameter q ≃ 1, in agreement with previous work using a different model, where q ≃ 1.005.
Human sleep and circadian rhythms: a simple model based on two coupled oscillators.
Strogatz, S H
1987-01-01
We propose a model of the human circadian system. The sleep-wake and body temperature rhythms are assumed to be driven by a pair of coupled nonlinear oscillators described by phase variables alone. The novel aspect of the model is that its equations may be solved analytically. Computer simulations are used to test the model against sleep-wake data pooled from 15 studies of subjects living for weeks in unscheduled, time-free environments. On these tests the model performs about as well as the existing models, although its mathematical structure is far simpler.
Analytical Model for Mars Crater-Size Frequency Distribution
NASA Astrophysics Data System (ADS)
Bruckman, W.; Ruiz, A.; Ramos, E.
2009-05-01
We present a theoretical and analytical curve that reproduces essential features of the frequency distributions vs. diameter of the 42,000 impact craters contained in Barlow's Mars Catalog. The model is derived using reasonable simple assumptions that allow us to relate the present craters population with the craters population at each particular epoch. The model takes into consideration the reduction of the number of craters as a function of time caused by their erosion and obliteration, and this provides a simple and natural explanation for the presence of different slopes in the empirical log-log plot of number of craters (N) vs. diameter (D). A mean life for martians craters as a function of diameter is deduced, and it is shown that this result is consistent with the corresponding determination of craters mean life based on Earth data. Arguments are given to suggest that this consistency follows from the fact that a crater mean life is proportional to its volumen. It also follows that in the absence of erosions and obliterations, when craters are preserved, we would have N ∝ 1/D^{4.3}, which is a striking conclusion, since the exponent 4.3 is larger than previously thought. Such an exponent implies a similar slope in the extrapolated impactors size-frequency distribution.
Controlling the light shift of the CPT resonance by modulation technique
NASA Astrophysics Data System (ADS)
Tsygankov, E. A.; Petropavlovsky, S. V.; Vaskovskaya, M. I.; Zibrov, S. A.; Velichansky, V. L.; Yakovlev, V. P.
2017-12-01
Motivated by recent developments in atomic frequency standards employing the effect of coherent population trapping (CPT), we propose a theoretical framework for the frequency modulation spectroscopy of the CPT resonances. Under realistic assumptions we provide simple yet non-trivial analytical formulae for the major spectroscopic signals such as the CPT resonance line and the in-phase/quadrature responses. We discuss the influence of the light shift and, in particular, derive a simple expression for the displacement of the resonance as a function of modulation index. The performance of the model is checked against numerical simulations, the agreement is good to perfect. The obtained results can be used in more general models accounting for light absorption in the thick optical medium.
NASA Astrophysics Data System (ADS)
Chatterjee, D.; Gulminelli, F.; Raduta, Ad. R.; Margueron, J.
2017-12-01
The question of correlations among empirical equation of state (EoS) parameters constrained by nuclear observables is addressed in a Thomas-Fermi meta-modeling approach. A recently proposed meta-modeling for the nuclear EoS in nuclear matter is augmented with a single finite size term to produce a minimal unified EoS functional able to describe the smooth part of the nuclear ground state properties. This meta-model can reproduce the predictions of a large variety of models, and interpolate continuously between them. An analytical approximation to the full Thomas-Fermi integrals is further proposed giving a fully analytical meta-model for nuclear masses. The parameter space is sampled and filtered through the constraint of nuclear mass reproduction with Bayesian statistical tools. We show that this simple analytical meta-modeling has a predictive power on masses, radii, and skins comparable to full Hartree-Fock or extended Thomas-Fermi calculations with realistic energy functionals. The covariance analysis on the posterior distribution shows that no physical correlation is present between the different EoS parameters. Concerning nuclear observables, a strong correlation between the slope of the symmetry energy and the neutron skin is observed, in agreement with previous studies.
NASA Astrophysics Data System (ADS)
Hirabayashi, M.; Howl, B. A.; Fassett, C. I.; Soderblom, J. M.; Minton, D. A.; Melosh, H. J.
2018-02-01
Impact cratering is likely a primary agent of regolith generation on airless bodies. Regolith production via impact cratering has long been a key topic of study since the Apollo era. The evolution of regolith due to impact cratering, however, is not well understood. A better formulation is needed to help quantify the formation mechanism and timescale of regolith evolution. Here we propose an analytically derived stochastic model that describes the evolution of regolith generated by small, simple craters. We account for ejecta blanketing as well as regolith infilling of the transient crater cavity. Our results show that the regolith infilling plays a key role in producing regolith. Our model demonstrates that because of the stochastic nature of impact cratering, the regolith thickness varies laterally, which is consistent with earlier work. We apply this analytical model to the regolith evolution at the Apollo 15 site. The regolith thickness is computed considering the observed crater size-frequency distribution of small, simple lunar craters (< 381 m in radius for ejecta blanketing and <100 m in radius for the regolith infilling). Allowing for some amount of regolith coming from the outside of the area, our result is consistent with an empirical result from the Apollo 15 seismic experiment. Finally, we find that the timescale of regolith growth is longer than that of crater equilibrium, implying that even if crater equilibrium is observed on a cratered surface, it is likely that the regolith thickness is still evolving due to additional impact craters.
a Proposed Benchmark Problem for Scatter Calculations in Radiographic Modelling
NASA Astrophysics Data System (ADS)
Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.
2009-03-01
Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Walker, Bruce E.
2014-01-01
An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.
Simple Analytic Model for Nanowire Array Polarizers
NASA Astrophysics Data System (ADS)
Pelletier, Vincent; Asakawa, Koji; Wu, Mingshaw; Register, Richard; Chaikin, Paul
2006-03-01
Cylinder-forming diblock copolymers can be used to pattern nanowire arrays on a transparent substrate to be used as a polarizer, as described by Koji Asakawa in a complementary talk at this meeting. With a 33nm period, these wire arrays can polarize UV radiation, which is of great interest in lithography, astronomy and other areas. One can gain an analytical understanding of such an array made of non-perfectly conducting material of finite thickness using a model with an appropriately averaged complex dielectric function in an infinite wavelength approximation. This analysis predicts that the grid can go from an E-polarizer to an H-polarizer as the wavelength decreases below a cross-over wavelength, and experimental data confirm this cross-over. The overall response of the polarizing grid depends primarily on the plasma frequency of the metal used and the volume fraction of the nanowires, as well as the grid thickness. A numerical approach is also used to confirm the analytical model and assess departure from infinite wavelength effects. For our array dimensions, the polarization is only slightly different from this approximation for wavelengths down to 150nm.
Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules
NASA Astrophysics Data System (ADS)
Zhang, Yue; Li, Yang; Zhang, Qingling; Li, Aihua
2018-07-01
In this paper, the threshold behavior of a susceptible-infected-recovered (SIR) epidemic model with stochastic perturbation is investigated. Firstly, it is obtained that the system has a unique global positive solution with any positive initial value. Random effect may lead to disease extinction under a simple condition. Subsequently, sufficient condition for persistence has been established in the mean of the disease. Finally, some numerical simulations are carried out to confirm the analytical results.
Sustained currents in coupled diffusive systems
NASA Astrophysics Data System (ADS)
Larralde, Hernán; Sanders, David P.
2014-08-01
Coupling two diffusive systems may give rise to a nonequilibrium stationary state (NESS) with a non-trivial persistent, circulating current. We study a simple example that is exactly soluble, consisting of random walkers with different biases towards a reflecting boundary, modelling, for example, Brownian particles with different charge states in an electric field. We obtain analytical expressions for the concentrations and currents in the NESS for this model, and exhibit the main features of the system by numerical simulation.
Modelling the complete operation of a free-piston shock tunnel for a low enthalpy condition
NASA Astrophysics Data System (ADS)
McGilvray, M.; Dann, A. G.; Jacobs, P. A.
2013-07-01
Only a limited number of free-stream flow properties can be measured in hypersonic impulse facilities at the nozzle exit. This poses challenges for experimenters when subsequently analysing experimental data obtained from these facilities. Typically in a reflected shock tunnel, a simple analysis that requires small amounts of computational resources is used to calculate quasi-steady gas properties. This simple analysis requires initial fill conditions and experimental measurements in analytical calculations of each major flow process, using forward coupling with minor corrections to include processes that are not directly modeled. However, this simplistic approach leads to an unknown level of discrepancy to the true flow properties. To explore the simple modelling techniques accuracy, this paper details the use of transient one and two-dimensional numerical simulations of a complete facility to obtain more refined free-stream flow properties from a free-piston reflected shock tunnel operating at low-enthalpy conditions. These calculations were verified by comparison to experimental data obtained from the facility. For the condition and facility investigated, the test conditions at nozzle exit produced with the simple modelling technique agree with the time and space averaged results from the complete facility calculations to within the accuracy of the experimental measurements.
Predictability in community dynamics.
Blonder, Benjamin; Moulton, Derek E; Blois, Jessica; Enquist, Brian J; Graae, Bente J; Macias-Fauria, Marc; McGill, Brian; Nogué, Sandra; Ordonez, Alejandro; Sandel, Brody; Svenning, Jens-Christian
2017-03-01
The coupling between community composition and climate change spans a gradient from no lags to strong lags. The no-lag hypothesis is the foundation of many ecophysiological models, correlative species distribution modelling and climate reconstruction approaches. Simple lag hypotheses have become prominent in disequilibrium ecology, proposing that communities track climate change following a fixed function or with a time delay. However, more complex dynamics are possible and may lead to memory effects and alternate unstable states. We develop graphical and analytic methods for assessing these scenarios and show that these dynamics can appear in even simple models. The overall implications are that (1) complex community dynamics may be common and (2) detailed knowledge of past climate change and community states will often be necessary yet sometimes insufficient to make predictions of a community's future state. © 2017 John Wiley & Sons Ltd/CNRS.
NASA Technical Reports Server (NTRS)
Migneault, G. E.
1979-01-01
Emulation techniques are proposed as a solution to a difficulty arising in the analysis of the reliability of highly reliable computer systems for future commercial aircraft. The difficulty, viz., the lack of credible precision in reliability estimates obtained by analytical modeling techniques are established. The difficulty is shown to be an unavoidable consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use testing infeasible, (2) a complex system design technique, fault tolerance, (3) system reliability dominated by errors due to flaws in the system definition, and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. The technique of emulation is described, indicating how its input is a simple description of the logical structure of a system and its output is the consequent behavior. The use of emulation techniques is discussed for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques.
Viscoplastic deformations and compressive damage in an A359/SiC{sub p} metal-matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Ramesh, K.T.; Chin, E.S.C.
2000-04-19
Recent work by the authors has examined the high-strain-rate compression of a metal-matrix composite consisting of an A359 Al alloy matrix reinforced by 20 vol.% of silicon carbide particulates (SiC{sub p}). The work-hardening that is observed in the experiments is much lower than that predicted by analytical and computational models which assume perfect particle-matrix interfaces and undamaged particles. In this work, the authors show that the discrepancy is a result of particle damage that develops within the A359/SiC{sub p} composite under compression. The evolution of particle damage has been characterized using quantitative microscopy, and is shown to be a functionmore » of the applied strain. A simple analytical model that incorporates evolving damage within the composite is proposed, and it is shown that the analytical predictions are consistent with the experimental observations over a wide range of strain rates.« less
Ramsey-type spectroscopy in the XUV spectral region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirri, A.; European Laboratory for Nonlinear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino; Sali, E.
2010-02-02
We report an experimental and theoretical investigation of Ramsey-type spectroscopy with high-order harmonic generation applied to autoionizing states of Krypton. The ionization yield, detected by an ion-mass spectrometer, shows the characteristic quantum interference pattern. The behaviour of the fringe contrast was interpreted on the basis of a simple analytic model, which reproduces the experimental data without any free parameter.
Electromagnetic properties of ice coated surfaces
NASA Technical Reports Server (NTRS)
Dominek, A.; Walton, E.; Wang, N.; Beard, L.
1989-01-01
The electromagnetic scattering from ice coated structures is examined. The influence of ice is shown from a measurement standpoint and related to a simple analytical model. A hardware system for the realistic measurement of ice coated structures is also being developed to use in an existing NASA Lewis icing tunnel. Presently, initial measurements have been performed with a simulated tunnel to aid in the development.
Nondestructive assessment of single-span timber bridges using a vibration- based method
Xiping Wang; James P. Wacker; Angus M. Morison; John W. Forsman; John R. Erickson; Robert J. Ross
2005-01-01
This paper describes an effort to develop a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the natural frequency of single-span timber bridges in the laboratory and field. An analytical model based on simple beam theory was proposed to represent the relationship...
ERIC Educational Resources Information Center
Iniguez, J.; Raposo, V.
2009-01-01
In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical…
The objective of this research is to test the utility of simple functions of spatially integrated and temporally averaged ground water residence times in shallow "groundwatersheds" with field observations and more detailed computer simulations. The residence time of water in the...
Galileon bounce after ekpyrotic contraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipov, M.; Rubakov, V., E-mail: osipov@ms2.inr.ac.ru, E-mail: rubakov@ms2.inr.ac.ru
We consider a simple cosmological model that includes a long ekpyrotic contraction stage and smooth bounce after it. Ekpyrotic behavior is due to a scalar field with a negative exponential potential, whereas the Galileon field produces bounce. We give an analytical picture of how the bounce occurs within the weak gravity regime, and then perform numerical analysis to extend our results to a non-perturbative regime.
Analytical study of index-coupled herd behavior in financial markets
NASA Astrophysics Data System (ADS)
Berman, Yonatan; Shapira, Yoash; Schwartz, Moshe
2016-12-01
Herd behavior in financial markets had been investigated extensively in the past few decades. Scholars have argued that the behavioral tendency of traders and investors to follow the market trend, notably reflected in indices both on short and long time scales, is substantially affecting the overall market behavior. Research has also been devoted to revealing these behaviors and characterizing the market herd behavior. In this paper we present a simple herd behavior model for the dynamics of financial variables by introducing a simple coupling mechanism of stock returns to the index return, deriving analytic expressions for statistical properties of the returns. We found that several important phenomena in the stock market, namely the correlations between stock market returns and the exponential decay of short-term autocorrelations, are derived from our model. These phenomena have been given various explanations and theories, with herd market behavior being one of the leading. We conclude that the coupling mechanism, which essentially encapsulates the herd behavior, indeed creates correlation and autocorrelation. We also show that this introduces a time scale to the system, which is the characteristic time lag between a change in the index and its effect on the return of a stock.
Theoretical models for supercritical fluid extraction.
Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan
2012-08-10
For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.
Semi-analytical model for a slab one-dimensional photonic crystal
NASA Astrophysics Data System (ADS)
Libman, M.; Kondratyev, N. M.; Gorodetsky, M. L.
2018-02-01
In our work we justify the applicability of a dielectric mirror model to the description of a real photonic crystal. We demonstrate that a simple one-dimensional model of a multilayer mirror can be employed for modeling of a slab waveguide with periodically changing width. It is shown that this width change can be recalculated to the effective refraction index modulation. The applicability of transfer matrix method of reflection properties calculation was demonstrated. Finally, our 1-D model was employed to analyze reflection properties of a 2-D structure - a slab photonic crystal with a number of elliptic holes.
NASA Astrophysics Data System (ADS)
Kozhevnikov, I. V.; Buzmakov, A. V.; Siewert, F.; Tiedtke, K.; Störmer, M.; Samoylova, L.; Sinn, H.
2017-05-01
Simple analytic equation is deduced to explain new physical phenomenon detected experimentally: growth of nano-dots (40-55 nm diameter, 8-13 nm height, 9.4 dots/μm2 surface density) on the grazing incidence mirror surface under the three years irradiation by the free electron laser FLASH (5-45 nm wavelength, 3 degrees grazing incidence angle). The growth model is based on the assumption that the growth of nano-dots is caused by polymerization of incoming hydrocarbon molecules under the action of incident photons directly or photoelectrons knocked out from a mirror surface. The key feature of our approach consists in that we take into account the radiation intensity variation nearby a mirror surface in an explicit form, because the polymerization probability is proportional to it. We demonstrate that the simple analytic approach allows to explain all phenomena observed in experiment and to predict new effects. In particular, we show that the nano-dots growth depends crucially on the grazing angle of incoming beam and its intensity: growth of nano-dots is observed in the limited from above and below intervals of the grazing angle and the radiation intensity. Decrease in the grazing angle by 1 degree only (from 3 to 2 degree) may result in a strong suppression of nanodots growth and their total disappearing. Similarly, decrease in the radiation intensity by several times (replacement of free electron laser by synchrotron) results also in disappearing of nano-dots growth.
Analytical assessment of some characteristic ratios for s-wave superconductors
NASA Astrophysics Data System (ADS)
Gonczarek, Ryszard; Krzyzosiak, Mateusz; Gonczarek, Adam; Jacak, Lucjan
2018-04-01
We evaluate some thermodynamic quantities and characteristic ratios that describe low- and high-temperature s-wave superconducting systems. Based on a set of fundamental equations derived within the conformal transformation method, a simple model is proposed and studied analytically. After including a one-parameter class of fluctuations in the density of states, the mathematical structure of the s-wave superconducting gap, the free energy difference, and the specific heat difference is found and discussed in an analytic manner. Both the zero-temperature limit T = 0 and the subcritical temperature range T ≲ T c are discussed using the method of successive approximations. The equation for the ratio R 1, relating the zero-temperature energy gap and the critical temperature, is formulated and solved numerically for various values of the model parameter. Other thermodynamic quantities are analyzed, including a characteristic ratio R 2, quantifying the dynamics of the specific heat jump at the critical temperature. It is shown that the obtained model results coincide with experimental data for low- T c superconductors. The prospect of application of the presented model in studies of high- T c superconductors and other superconducting systems of the new generation is also discussed.
Zhu, Zhenduo; Motta, Davide; Jackson, P. Ryan; Garcia, Marcelo H.
2017-01-01
In December 2009, during a piscicide treatment targeting the invasive Asian carp in the Chicago Sanitary and Ship Canal, Rhodamine WT dye was released to track and document the transport and dispersion of the piscicide. In this study, two modeling approaches are presented to reproduce the advection and dispersion of the dye tracer (and piscicide), a one-dimensional analytical solution and a three-dimensional numerical model. The two approaches were compared with field measurements of concentration and their applicability is discussed. Acoustic Doppler current profiler measurements were used to estimate the longitudinal dispersion coefficients at ten cross sections, which were taken as reference for calibrating the longitudinal dispersion coefficient in the one-dimensional analytical solution. While the analytical solution is fast, relatively simple, and can fairly accurately predict the core of the observed concentration time series at points downstream, it does not capture the tail of the breakthrough curves. These tails are well reproduced by the three-dimensional model, because it accounts for the effects of dead zones and a power plant which withdraws nearly 80 % of the water from the canal for cooling purposes before returning it back to the canal.
NASA Astrophysics Data System (ADS)
King, J. N.; Walsh, V.; Cunningham, K. J.; Evans, F. S.; Langevin, C. D.; Dausman, A.
2009-12-01
The Miami-Dade Water and Sewer Department (MDWASD) injects buoyant effluent from the North District Wastewater Treatment Plant (NDWWTP) through four Class I injection wells into the Boulder Zone---a saline (35 parts per thousand) and transmissive (105 to 106 square meters per day) hydrogeologic unit located approximately 1000 meters below land surface. Miami-Dade County is located in southeast Florida, U.S.A. Portions of the Floridan and Biscayne aquifers are located above the Boulder Zone. The Floridan and Biscayne aquifers---underground sources of drinking water---are protected by U.S. Federal Laws and Regulations, Florida Statutes, and Miami-Dade County ordinances. In 1998, MDWASD began to observe effluent constituents within the Floridan aquifer. Continuous-source and impulse-source analytical models for advective and diffusive transport of effluent are used in the present work to test contaminant flow-path hypotheses, suggest transport mechanisms, and estimate dispersivity. MDWASD collected data in the Floridan aquifer between 1996 and 2007. A parameter estimation code is used to optimize analytical model parameters by fitting model data to collected data. These simple models will be used to develop conceptual and numerical models of effluent transport at the NDWWTP, and in the vicinity of the NDWWTP.
NASA Astrophysics Data System (ADS)
Dhara, Chirag; Renner, Maik; Kleidon, Axel
2015-04-01
The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.
Analytic algorithms for determining radiative transfer optical properties of ocean waters.
Kaskas, Ayse; Güleçyüz, Mustafa C; Tezcan, Cevdet; McCormick, Norman J
2006-10-10
A synthetic model for the scattering phase function is used to develop simple algebraic equations, valid for any water type, for evaluating the ratio of the backscattering to absorption coefficients of spatially uniform, very deep waters with data from upward and downward planar irradiances and the remotely sensed reflectance. The phase function is a variable combination of a forward-directed Dirac delta function plus isotropic scattering, which is an elementary model for strongly forward scattering such as that encountered in oceanic optics applications. The incident illumination at the surface is taken to be diffuse plus a collimated beam. The algorithms are compared with other analytic correlations that were previously derived from extensive numerical simulations, and they are also numerically tested with forward problem results computed with a modified FN method.
NASA Technical Reports Server (NTRS)
Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.;
2007-01-01
The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.
Rotor/Wing Interactions in Hover
NASA Technical Reports Server (NTRS)
Young, Larry A.; Derby, Michael R.
2002-01-01
Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.
Bennett, Iain; Paracha, Noman; Abrams, Keith; Ray, Joshua
2018-01-01
Rank Preserving Structural Failure Time models are one of the most commonly used statistical methods to adjust for treatment switching in oncology clinical trials. The method is often applied in a decision analytic model without appropriately accounting for additional uncertainty when determining the allocation of health care resources. The aim of the study is to describe novel approaches to adequately account for uncertainty when using a Rank Preserving Structural Failure Time model in a decision analytic model. Using two examples, we tested and compared the performance of the novel Test-based method with the resampling bootstrap method and with the conventional approach of no adjustment. In the first example, we simulated life expectancy using a simple decision analytic model based on a hypothetical oncology trial with treatment switching. In the second example, we applied the adjustment method on published data when no individual patient data were available. Mean estimates of overall and incremental life expectancy were similar across methods. However, the bootstrapped and test-based estimates consistently produced greater estimates of uncertainty compared with the estimate without any adjustment applied. Similar results were observed when using the test based approach on a published data showing that failing to adjust for uncertainty led to smaller confidence intervals. Both the bootstrapping and test-based approaches provide a solution to appropriately incorporate uncertainty, with the benefit that the latter can implemented by researchers in the absence of individual patient data. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
COBRA ATD multispectral camera response model
NASA Astrophysics Data System (ADS)
Holmes, V. Todd; Kenton, Arthur C.; Hilton, Russell J.; Witherspoon, Ned H.; Holloway, John H., Jr.
2000-08-01
A new multispectral camera response model has been developed in support of the US Marine Corps (USMC) Coastal Battlefield Reconnaissance and Analysis (COBRA) Advanced Technology Demonstration (ATD) Program. This analytical model accurately estimates response form five Xybion intensified IMC 201 multispectral cameras used for COBRA ATD airborne minefield detection. The camera model design is based on a series of camera response curves which were generated through optical laboratory test performed by the Naval Surface Warfare Center, Dahlgren Division, Coastal Systems Station (CSS). Data fitting techniques were applied to these measured response curves to obtain nonlinear expressions which estimates digitized camera output as a function of irradiance, intensifier gain, and exposure. This COBRA Camera Response Model was proven to be very accurate, stable over a wide range of parameters, analytically invertible, and relatively simple. This practical camera model was subsequently incorporated into the COBRA sensor performance evaluation and computational tools for research analysis modeling toolbox in order to enhance COBRA modeling and simulation capabilities. Details of the camera model design and comparisons of modeled response to measured experimental data are presented.
3D inelastic analysis methods for hot section components
NASA Technical Reports Server (NTRS)
Dame, L. T.; Chen, P. C.; Hartle, M. S.; Huang, H. T.
1985-01-01
The objective is to develop analytical tools capable of economically evaluating the cyclic time dependent plasticity which occurs in hot section engine components in areas of strain concentration resulting from the combination of both mechanical and thermal stresses. Three models were developed. A simple model performs time dependent inelastic analysis using the power law creep equation. The second model is the classical model of Professors Walter Haisler and David Allen of Texas A and M University. The third model is the unified model of Bodner, Partom, et al. All models were customized for linear variation of loads and temperatures with all material properties and constitutive models being temperature dependent.
Meng, X Flora; Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M
2017-05-01
Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. © 2017 The Author(s).
Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M.
2017-01-01
Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. PMID:28566513
NASA Technical Reports Server (NTRS)
Chambers, Jeffrey A.
1994-01-01
Finite element analysis is regularly used during the engineering cycle of mechanical systems to predict the response to static, thermal, and dynamic loads. The finite element model (FEM) used to represent the system is often correlated with physical test results to determine the validity of analytical results provided. Results from dynamic testing provide one means for performing this correlation. One of the most common methods of measuring accuracy is by classical modal testing, whereby vibratory mode shapes are compared to mode shapes provided by finite element analysis. The degree of correlation between the test and analytical mode shapes can be shown mathematically using the cross orthogonality check. A great deal of time and effort can be exhausted in generating the set of test acquired mode shapes needed for the cross orthogonality check. In most situations response data from vibration tests are digitally processed to generate the mode shapes from a combination of modal parameters, forcing functions, and recorded response data. An alternate method is proposed in which the same correlation of analytical and test acquired mode shapes can be achieved without conducting the modal survey. Instead a procedure is detailed in which a minimum of test information, specifically the acceleration response data from a random vibration test, is used to generate a set of equivalent local accelerations to be applied to the reduced analytical model at discrete points corresponding to the test measurement locations. The static solution of the analytical model then produces a set of deformations that once normalized can be used to represent the test acquired mode shapes in the cross orthogonality relation. The method proposed has been shown to provide accurate results for both a simple analytical model as well as a complex space flight structure.
NASA Astrophysics Data System (ADS)
Barcos, L.; Díaz-Azpiroz, M.; Balanyá, J. C.; Expósito, I.; Jiménez-Bonilla, A.; Faccenna, C.
2016-07-01
The combination of analytical and analogue models gives new opportunities to better understand the kinematic parameters controlling the evolution of transpression zones. In this work, we carried out a set of analogue models using the kinematic parameters of transpressional deformation obtained by applying a general triclinic transpression analytical model to a tabular-shaped shear zone in the external Betic Chain (Torcal de Antequera massif). According to the results of the analytical model, we used two oblique convergence angles to reproduce the main structural and kinematic features of structural domains observed within the Torcal de Antequera massif (α = 15° for the outer domains and α = 30° for the inner domain). Two parallel inclined backstops (one fixed and the other mobile) reproduce the geometry of the shear zone walls of the natural case. Additionally, we applied digital particle image velocimetry (PIV) method to calculate the velocity field of the incremental deformation. Our results suggest that the spatial distribution of the main structures observed in the Torcal de Antequera massif reflects different modes of strain partitioning and strain localization between two domain types, which are related to the variation in the oblique convergence angle and the presence of steep planar velocity - and rheological - discontinuities (the shear zone walls in the natural case). In the 15° model, strain partitioning is simple and strain localization is high: a single narrow shear zone is developed close and parallel to the fixed backstop, bounded by strike-slip faults and internally deformed by R and P shears. In the 30° model, strain partitioning is strong, generating regularly spaced oblique-to-the backstops thrusts and strike-slip faults. At final stages of the 30° experiment, deformation affects the entire model box. Our results show that the application of analytical modelling to natural transpressive zones related to upper crustal deformation facilitates to constrain the geometrical parameters of analogue models.
The varieties of symmetric stellar rings and radial caustics in galaxy disks
NASA Technical Reports Server (NTRS)
Struck-Marcell, Curtis; Lotan, Pnina
1990-01-01
Numerical, restricted three-body and analytic calculations are used to study the formation and propagation of cylindrically symmetric stellar ring waves in galaxy disks. It is shown that such waves can evolve in a variety of ways, depending on the amplitude of the perturbation and the potential of the target galaxy. Rings can thicken as they propagate outward, remain at a nearly constant width, or be pinched off at large radii. Multiple, closely spaced rings can result from a low-amplitude collision, while an outer ring can appear well-separated from overlapping inner rings or an apparent lens structure in halo-dominated potentials. All the single-encounter rings consist of paired fold caustics. The simple, impulsive, kinematic oscillation equations appear to provide a remarkably accurate model of the numerical simulations. Simple analytic approximations to these equations permit very good estimates of oscillation periods and amplitudes, the evolution of ring widths, and ring birth and propagation characteristics.
Analytical observations on the aerodynamics of a delta wing with leading edge flaps
NASA Technical Reports Server (NTRS)
Oh, S.; Tavella, D.
1986-01-01
The effect of a leading edge flap on the aerodynamics of a low aspect ratio delta wing is studied analytically. The separated flow field about the wing is represented by a simple vortex model composed of a conical straight vortex sheet and a concentrated vortex. The analysis is carried out in the cross flow plane by mapping the wing trace, by means of the Schwarz-Christoffel transformation into the real axis of the transformed plane. Particular attention is given to the influence of the angle of attack and flap deflection angle on lift and drag forces. Both lift and drag decrease with flap deflection, while the lift-to-drag ratioe increases. A simple coordinate transformation is used to obtain a closed form expression for the lift-to-drag ratio as a function of flap deflection. The main effect of leading edge flap deflection is a partial suppression of the separated flow on the leeside of the wing. Qualitative comparison with experiments is presented, showing agreement in the general trends.
Cooperative effects in spherical spasers: Ab initio analytical model
NASA Astrophysics Data System (ADS)
Bordo, V. G.
2017-06-01
A fully analytical semiclassical theory of cooperative optical processes which occur in an ensemble of molecules embedded in a spherical core-shell nanoparticle is developed from first principles. Both the plasmonic Dicke effect and spaser generation are investigated for the designs in which a shell/core contains an arbitrarily large number of active molecules in the vicinity of a metallic core/shell. An essential aspect of the theory is an ab initio account of the feedback from the core/shell boundaries which significantly modifies the molecular dynamics. The theory provides rigorous, albeit simple and physically transparent, criteria for both plasmonic superradiance and surface plasmon generation.
Delay-tunable gap-soliton-based slow-light system
NASA Astrophysics Data System (ADS)
Mok, Joe T.; de Sterke, C. Martijn; Eggleton, Benjamin J.
2006-12-01
We numerically and analytically evaluate the delay of solitons propagating slowly, and without broadening, in an apodized Bragg grating. Simulations indicate that a 100 mm Bragg grating with Δn = 10-3 can delay sub-nanosecond pulses by nearly 20 pulse widths without any change in the output pulse width. Delay tunability is achieved by simultaneously adjusting the launch power and detuning. A simple analytic model is developed to describe the monotonic dependence of delay on Δn and compared with simulations. As the intensity may be greatly enhanced due to a reduced velocity, a procedure for improving the delay while avoiding material damage is outlined.
Blanton, Hart; Jaccard, James
2006-01-01
Theories that posit multiplicative relationships between variables are common in psychology. A. G. Greenwald et al. recently presented a theory that explicated relationships between group identification, group attitudes, and self-esteem. Their theory posits a multiplicative relationship between concepts when predicting a criterion variable. Greenwald et al. suggested analytic strategies to test their multiplicative model that researchers might assume are appropriate for testing multiplicative models more generally. The theory and analytic strategies of Greenwald et al. are used as a case study to show the strong measurement assumptions that underlie certain tests of multiplicative models. It is shown that the approach used by Greenwald et al. can lead to declarations of theoretical support when the theory is wrong as well as rejection of the theory when the theory is correct. A simple strategy for testing multiplicative models that makes weaker measurement assumptions than the strategy proposed by Greenwald et al. is suggested and discussed.
The effect of the behavior of an average consumer on the public debt dynamics
NASA Astrophysics Data System (ADS)
De Luca, Roberto; Di Mauro, Marco; Falzarano, Angelo; Naddeo, Adele
2017-09-01
An important issue within the present economic crisis is understanding the dynamics of the public debt of a given country, and how the behavior of average consumers and tax payers in that country affects it. Starting from a model of the average consumer behavior introduced earlier by the authors, we propose a simple model to quantitatively address this issue. The model is then studied and analytically solved under some reasonable simplifying assumptions. In this way we obtain a condition under which the public debt steadily decreases.
Continuum modeling of large lattice structures: Status and projections
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Mikulas, Martin M., Jr.
1988-01-01
The status and some recent developments of continuum modeling for large repetitive lattice structures are summarized. Discussion focuses on a number of aspects including definition of an effective substitute continuum; characterization of the continuum model; and the different approaches for generating the properties of the continuum, namely, the constitutive matrix, the matrix of mass densities, and the matrix of thermal coefficients. Also, a simple approach is presented for generating the continuum properties. The approach can be used to generate analytic and/or numerical values of the continuum properties.
Optical measurements and analytical modeling of magnetic field generated in a dieletric target
NASA Astrophysics Data System (ADS)
Yafeng, BAI; Shiyi, ZHOU; Yushan, ZENG; Yihan, LIANG; Rong, QI; Wentao, LI; Ye, TIAN; Xiaoya, LI; Jiansheng, LIU
2018-01-01
Polarization rotation of a probe pulse by the target is observed with the Faraday rotation method in the interaction of an intense laser pulse with a solid target. The rotation of the polarization plane of the probe pulse may result from a combined action of fused silica and diffused electrons. After the irradiation of the main pulse, the rotation angle changed significantly and lasted ∼2 ps. These phenomena may imply a persistent magnetic field inside the target. An analytical model is developed to explain the experimental observation. The model indicates that a strong toroidal magnetic field is induced by an energetic electron beam. Meanwhile, an ionization channel is observed in the shadowgraph and extends at the speed of light after the irradiation of the main beam. The formation of this ionization channel is complex, and a simple explanation is given.
NASA Astrophysics Data System (ADS)
Shinnaka, Shinji
This paper presents a new unified analysis of estimate errors by model-matching extended-back-EMF estimation methods for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using model-matching extended-back-EMF estimation methods.
Title: Experimental and analytical study of frictional anisotropy of nanotubes
NASA Astrophysics Data System (ADS)
Riedo, Elisa; Gao, Yang; Li, Tai-De; Chiu, Hsiang-Chih; Kim, Suenne; Klinke, Christian; Tosatti, Erio
The frictional properties of Carbon and Boron Nitride nanotubes (NTs) are very important in a variety of applications, including composite materials, carbon fibers, and micro/nano-electromechanical systems. Atomic force microscopy (AFM) is a powerful tool to investigate with nanoscale resolution the frictional properties of individual NTs. Here, we report on an experimental study of the frictional properties of different types of supported nanotubes by AFM. We also propose a quantitative model to describe and then predict the frictional properties of nanotubes sliding on a substrate along (longitudinal friction) or perpendicular (transverse friction) their axis. This model provides a simple but general analytical relationship that well describes the acquired experimental data. As an example of potential applications, this experimental method combined with the proposed model can guide to design better NTs-ceramic composites, or to self-assemble the nanotubes on a surface in a given direction. M. Lucas et al., Nature Materials 8, 876-881 (2009).
The Hubbard Dimer: A Complete DFT Solution to a Many-Body Problem
NASA Astrophysics Data System (ADS)
Smith, Justin; Carrascal, Diego; Ferrer, Jaime; Burke, Kieron
2015-03-01
In this work we explain the relationship between density functional theory and strongly correlated models using the simplest possible example, the two-site asymmetric Hubbard model. We discuss the connection between the lattice and real-space and how this is a simple model for stretched H2. We can solve this elementary example analytically, and with that we can illuminate the underlying logic and aims of DFT. While the many-body solution is analytic, the density functional is given only implicitly. We overcome this difficulty by creating a highly accurate parameterization of the exact function. We use this parameterization to perform benchmark calculations of correlation kinetic energy, the adiabatic connection, etc. We also test Hartree-Fock and the Bethe Ansatz Local Density Approximation. We also discuss and illustrate the derivative discontinuity in the exchange-correlation energy and the infamous gap problem in DFT. DGE-1321846, DE-FG02-08ER46496.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg; Zhou, Yu
2016-07-15
Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonantmore » frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.« less
Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam
2009-01-01
This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.
Median of patient results as a tool for assessment of analytical stability.
Jørgensen, Lars Mønster; Hansen, Steen Ingemann; Petersen, Per Hyltoft; Sölétormos, György
2015-06-15
In spite of the well-established external quality assessment and proficiency testing surveys of analytical quality performance in laboratory medicine, a simple tool to monitor the long-term analytical stability as a supplement to the internal control procedures is often needed. Patient data from daily internal control schemes was used for monthly appraisal of the analytical stability. This was accomplished by using the monthly medians of patient results to disclose deviations from analytical stability, and by comparing divergences with the quality specifications for allowable analytical bias based on biological variation. Seventy five percent of the twenty analytes achieved on two COBASs INTEGRA 800 instruments performed in accordance with the optimum and with the desirable specifications for bias. Patient results applied in analytical quality performance control procedures are the most reliable sources of material as they represent the genuine substance of the measurements and therefore circumvent the problems associated with non-commutable materials in external assessment. Patient medians in the monthly monitoring of analytical stability in laboratory medicine are an inexpensive, simple and reliable tool to monitor the steadiness of the analytical practice. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tejeda, E.
2018-04-01
We present a simple, analytic model of an incompressible fluid accreting onto a moving gravitating object. This solution allows us to probe the highly subsonic regime of wind accretion. Moreover, it corresponds to the Newtonian limit of a previously known relativistic model of a stiff fluid accreting onto a black hole. Besides filling this blank in the literature, the new solution should be useful as a benchmark test for numerical hydrodynamics codes. Given its simplicity, it can also be used as an illustrative example in a gas dynamics course.
Econometric model for age- and population-dependent radiation exposures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.
1991-01-01
The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation.
Benzi, Roberto; Ching, Emily S C; Horesh, Nizan; Procaccia, Itamar
2004-02-20
A simple model of the effect of polymer concentration on the amount of drag reduction in turbulence is presented, simulated, and analyzed. The qualitative phase diagram of drag coefficient versus Reynolds number (Re) is recaptured in this model, including the theoretically elusive onset of drag reduction and the maximum drag reduction (MDR) asymptote. The Re-dependent drag and the MDR are analytically explained, and the dependence of the amount of drag on material parameters is rationalized.
"Light sail" acceleration reexamined.
Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco
2009-08-21
The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.
Optical response of photopolymer materials for holographic data storage applications.
Sheridan, J T; Gleeson, M R; Close, C E; Kelly, J V
2007-01-01
We briefly review the application of photopolymer recording materials in the area of holographic data storage. In particular we discuss the recent development of the Non-local Polymerisation Driven Diffusion model. Applying this model we develop simple first-order analytic expressions describing the spatial frequency response of photopolymer materials. The assumptions made in the derivation of these formulae are described and their ranges of validity are examined. The effects of particular physical parameters of a photopolymer on the material response are discussed.
A Comparative Study of Multi-material Data Structures for Computational Physics Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garimella, Rao Veerabhadra; Robey, Robert W.
The data structures used to represent the multi-material state of a computational physics application can have a drastic impact on the performance of the application. We look at efficient data structures for sparse applications where there may be many materials, but only one or few in most computational cells. We develop simple performance models for use in selecting possible data structures and programming patterns. We verify the analytic models of performance through a small test program of the representative cases.
A simple analytical model for dynamics of time-varying target leverage ratios
NASA Astrophysics Data System (ADS)
Lo, C. F.; Hui, C. H.
2012-03-01
In this paper we have formulated a simple theoretical model for the dynamics of the time-varying target leverage ratio of a firm under some assumptions based upon empirical observations. In our theoretical model the time evolution of the target leverage ratio of a firm can be derived self-consistently from a set of coupled Ito's stochastic differential equations governing the leverage ratios of an ensemble of firms by the nonlinear Fokker-Planck equation approach. The theoretically derived time paths of the target leverage ratio bear great resemblance to those used in the time-dependent stationary-leverage (TDSL) model [Hui et al., Int. Rev. Financ. Analy. 15, 220 (2006)]. Thus, our simple model is able to provide a theoretical foundation for the selected time paths of the target leverage ratio in the TDSL model. We also examine how the pace of the adjustment of a firm's target ratio, the volatility of the leverage ratio and the current leverage ratio affect the dynamics of the time-varying target leverage ratio. Hence, with the proposed dynamics of the time-dependent target leverage ratio, the TDSL model can be readily applied to generate the default probabilities of individual firms and to assess the default risk of the firms.
AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Tyler D.; Catling, David C., E-mail: robinson@astro.washington.edu
2012-09-20
We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions formore » the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.« less
Is the Jeffreys' scale a reliable tool for Bayesian model comparison in cosmology?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesseris, Savvas; García-Bellido, Juan, E-mail: savvas.nesseris@uam.es, E-mail: juan.garciabellido@uam.es
2013-08-01
We are entering an era where progress in cosmology is driven by data, and alternative models will have to be compared and ruled out according to some consistent criterium. The most conservative and widely used approach is Bayesian model comparison. In this paper we explicitly calculate the Bayes factors for all models that are linear with respect to their parameters. We do this in order to test the so called Jeffreys' scale and determine analytically how accurate its predictions are in a simple case where we fully understand and can calculate everything analytically. We also discuss the case of nestedmore » models, e.g. one with M{sub 1} and another with M{sub 2} superset of M{sub 1} parameters and we derive analytic expressions for both the Bayes factor and the figure of Merit, defined as the inverse area of the model parameter's confidence contours. With all this machinery and the use of an explicit example we demonstrate that the threshold nature of Jeffreys' scale is not a ''one size fits all'' reliable tool for model comparison and that it may lead to biased conclusions. Furthermore, we discuss the importance of choosing the right basis in the context of models that are linear with respect to their parameters and how that basis affects the parameter estimation and the derived constraints.« less
Complex discrete dynamics from simple continuous population models.
Gamarra, Javier G P; Solé, Ricard V
2002-05-01
Nonoverlapping generations have been classically modelled as difference equations in order to account for the discrete nature of reproductive events. However, other events such as resource consumption or mortality are continuous and take place in the within-generation time. We have realistically assumed a hybrid ODE bidimensional model of resources and consumers with discrete events for reproduction. Numerical and analytical approaches showed that the resulting dynamics resembles a Ricker map, including the doubling route to chaos. Stochastic simulations with a handling-time parameter for indirect competition of juveniles may affect the qualitative behaviour of the model.
Second-harmonic diffraction from holographic volume grating.
Nee, Tsu-Wei
2006-10-01
The full polarization property of holographic volume-grating enhanced second-harmonic diffraction (SHD) is investigated theoretically. The nonlinear coefficient is derived from a simple atomic model of the material. By using a simple volume-grating model, the SHD fields and Mueller matrices are first derived. The SHD phase-mismatching effect for a thick sample is analytically investigated. This theory is justified by fitting with published experimental SHD data of thin-film samples. The SHD of an existing polymethyl methacrylate (PMMA) holographic 2-mm-thick volume-grating sample is investigated. This sample has two strong coupling linear diffraction peaks and five SHD peaks. The splitting of SHD peaks is due to the phase-mismatching effect. The detector sensitivity and laser power needed to measure these peak signals are quantitatively estimated.
Large deviation analysis of a simple information engine
NASA Astrophysics Data System (ADS)
Maitland, Michael; Grosskinsky, Stefan; Harris, Rosemary J.
2015-11-01
Information thermodynamics provides a framework for studying the effect of feedback loops on entropy production. It has enabled the understanding of novel thermodynamic systems such as the information engine, which can be seen as a modern version of "Maxwell's Dæmon," whereby a feedback controller processes information gained by measurements in order to extract work. Here, we analyze a simple model of such an engine that uses feedback control based on measurements to obtain negative entropy production. We focus on the distribution and fluctuations of the information obtained by the feedback controller. Significantly, our model allows an analytic treatment for a two-state system with exact calculation of the large deviation rate function. These results suggest an approximate technique for larger systems, which is corroborated by simulation data.
Glassy Behavior due to Kinetic Constraints: from Topological Foam to Backgammon
NASA Astrophysics Data System (ADS)
Sherrington, David
A study is reported of a series of simple model systems with only non-interacting Hamiltonians, and hence simple equilibrium thermodynamics, but with constrained kinetics of a type initially suggested by topological considerations of foams and two-dimensional covalent glasses. It is demonstrated that oscopic dynamical features characteristic of real glasses, such as two-time decays in energy and auto-correlation functions, arise and may be understood in terms of annihilation-diffusion concepts and theory. This recognition leads to a sequence of further models which (i) encapsulate the essense but are more readily simulated and open to easier analytic study, and (ii) allow generalization and extension to higher dimension. Fluctuation-dissipation relations are also considered and show novel aspects. The comparison is with strong glasses.
Effect of risk perception on epidemic spreading in temporal networks
NASA Astrophysics Data System (ADS)
Moinet, Antoine; Pastor-Satorras, Romualdo; Barrat, Alain
2018-01-01
Many progresses in the understanding of epidemic spreading models have been obtained thanks to numerous modeling efforts and analytical and numerical studies, considering host populations with very different structures and properties, including complex and temporal interaction networks. Moreover, a number of recent studies have started to go beyond the assumption of an absence of coupling between the spread of a disease and the structure of the contacts on which it unfolds. Models including awareness of the spread have been proposed, to mimic possible precautionary measures taken by individuals that decrease their risk of infection, but have mostly considered static networks. Here, we adapt such a framework to the more realistic case of temporal networks of interactions between individuals. We study the resulting model by analytical and numerical means on both simple models of temporal networks and empirical time-resolved contact data. Analytical results show that the epidemic threshold is not affected by the awareness but that the prevalence can be significantly decreased. Numerical studies on synthetic temporal networks highlight, however, the presence of very strong finite-size effects, resulting in a significant shift of the effective epidemic threshold in the presence of risk awareness. For empirical contact networks, the awareness mechanism leads as well to a shift in the effective threshold and to a strong reduction of the epidemic prevalence.
NASA Technical Reports Server (NTRS)
Green, A. E. S.; Singhal, R. P.
1979-01-01
An analytic representation for the spatial (radial and longitudinal) yield spectra is developed in terms of a model containing three simple 'microplumes'. The model is applied to electron energy degradation in molecular nitrogen gas for 0.1 to 5 keV incident electrons. From the nature of the cross section input to this model it is expected that the scaled spatial yield spectra for other gases will be quite similar. The model indicates that each excitation, ionization, etc. plume should have its individual spatial and energy dependence. Extensions and aeronomical and radiological applications of the model are discussed.
Xiping Wang; James P. Wacker; Robert J. Ross; Brian K. Brashaw; Robert Vatalaro
2005-01-01
This paper describes an effort to develop a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the natural frequency of single-span timber bridges in the laboratory and field. An analytical model based on simple beam theory was proposed to represent the relationship...
Thermodynamics of Thomas-Fermi screened Coulomb systems
NASA Technical Reports Server (NTRS)
Firey, B.; Ashcroft, N. W.
1977-01-01
We obtain in closed analytic form, estimates for the thermodynamic properties of classical fluids with pair potentials of Yukawa type, with special reference to dense fully ionized plasmas with Thomas-Fermi or Debye-Hueckel screening. We further generalize the hard-sphere perturbative approach used for similarly screened two-component mixtures, and demonstrate phase separation in this simple model of a liquid mixture of metallic helium and hydrogen.
ERIC Educational Resources Information Center
Miller, Jason W.; Stromeyer, William R.; Schwieterman, Matthew A.
2013-01-01
The past decade has witnessed renewed interest in the use of the Johnson-Neyman (J-N) technique for calculating the regions of significance for the simple slope of a focal predictor on an outcome variable across the range of a second, continuous independent variable. Although tools have been developed to apply this technique to probe 2- and 3-way…
Effect of Capillary Tube’s Shape on Capillary Rising Regime for Viscos Fluids
NASA Astrophysics Data System (ADS)
Soroush, F.; Moosavi, A.
2018-05-01
When properties of the displacing fluid are considered, the rising profile of the penetrating fluid in a capillary tube deviates from its classical Lucas-Washburn profile. Also, shape of capillary tube can affect the rising profile in different aspects. In this article, effect of capillary tube’s shape on the vertical capillary motion in presence of gravity is investigated by considering the properties of the displacing fluid. According to the fact that the differential equation of the capillary rising for a non-simple wall type is very difficult to solve analytically, a finite element simulation model is used for this study. After validation of the simulation model with an experiment that has been done with a simple capillary tube, shape of the capillary tube’s wall is changed in order to understand its effects on the capillary rising and different motion regimes that may appear according to different geometries. The main focus of this article is on the sinusoidal wall shapes and comparing them with a simple wall.
NASA Astrophysics Data System (ADS)
Tao, Wanghai; Wang, Quanjiu; Lin, Henry
2018-03-01
Soil and water loss from farmland causes land degradation and water pollution, thus continued efforts are needed to establish mathematical model for quantitative analysis of relevant processes and mechanisms. In this study, an approximate analytical solution has been developed for overland flow model and sediment transport model, offering a simple and effective means to predict overland flow and erosion under natural rainfall conditions. In the overland flow model, the flow regime was considered to be transitional with the value of parameter β (in the kinematic wave model) approximately two. The change rate of unit discharge with distance was assumed to be constant and equal to the runoff rate at the outlet of the plane. The excess rainfall was considered to be constant under uniform rainfall conditions. The overland flow model developed can be further applied to natural rainfall conditions by treating excess rainfall intensity as constant over a small time interval. For the sediment model, the recommended values of the runoff erosion calibration constant (cr) and the splash erosion calibration constant (cf) have been given in this study so that it is easier to use the model. These recommended values are 0.15 and 0.12, respectively. Comparisons with observed results were carried out to validate the proposed analytical solution. The results showed that the approximate analytical solution developed in this paper closely matches the observed data, thus providing an alternative method of predicting runoff generation and sediment yield, and offering a more convenient method of analyzing the quantitative relationships between variables. Furthermore, the model developed in this study can be used as a theoretical basis for developing runoff and erosion control methods.
Greedy algorithms and Zipf laws
NASA Astrophysics Data System (ADS)
Moran, José; Bouchaud, Jean-Philippe
2018-04-01
We consider a simple model of firm/city/etc growth based on a multi-item criterion: whenever entity B fares better than entity A on a subset of M items out of K, the agent originally in A moves to B. We solve the model analytically in the cases K = 1 and . The resulting stationary distribution of sizes is generically a Zipf-law provided M > K/2. When , no selection occurs and the size distribution remains thin-tailed. In the special case M = K, one needs to regularize the problem by introducing a small ‘default’ probability ϕ. We find that the stationary distribution has a power-law tail that becomes a Zipf-law when . The approach to the stationary state can also be characterized, with strong similarities with a simple ‘aging’ model considered by Barrat and Mézard.
Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grutzik, Scott Joseph; Reedy, Jr., E. D.
Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less
Kanematsu, Nobuyuki
2009-03-07
Dose calculation for radiotherapy with protons and heavier ions deals with a large volume of path integrals involving a scattering power of body tissue. This work provides a simple model for such demanding applications. There is an approximate linearity between RMS end-point displacement and range of incident particles in water, empirically found in measurements and detailed calculations. This fact was translated into a simple linear formula, from which the scattering power that is only inversely proportional to the residual range was derived. The simplicity enabled the analytical formulation for ions stopping in water, which was designed to be equivalent with the extended Highland model and agreed with measurements within 2% or 0.02 cm in RMS displacement. The simplicity will also improve the efficiency of numerical path integrals in the presence of heterogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik
2015-01-16
We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many ofmore » the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.« less
Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen
Grutzik, Scott Joseph; Reedy, Jr., E. D.
2017-08-04
Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less
Computing the optimal path in stochastic dynamical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauver, Martha; Forgoston, Eric, E-mail: eric.forgoston@montclair.edu; Billings, Lora
2016-08-15
In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensionalmore » system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.« less
A simple method for identifying parameter correlations in partially observed linear dynamic models.
Li, Pu; Vu, Quoc Dong
2015-12-14
Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a software packet.
Simple analytical model of evapotranspiration in the presence of roots.
Cejas, Cesare M; Hough, L A; Castaing, Jean-Christophe; Frétigny, Christian; Dreyfus, Rémi
2014-10-01
Evaporation of water out of a soil involves complicated and well-debated mechanisms. When plant roots are added into the soil, water transfer between the soil and the outside environment is even more complicated. Indeed, plants provide an additional process of water transfer. Water is pumped by the roots, channeled to the leaf surface, and released into the surrounding air by a process called transpiration. Prediction of the evapotranspiration of water over time in the presence of roots helps keep track of the amount of water that remains in the soil. Using a controlled visual setup of a two-dimensional model soil consisting of monodisperse glass beads, we perform experiments on actual roots grown under different relative humidity conditions. We record the total water mass loss in the medium and the position of the evaporating front that forms within the medium. We then develop a simple analytical model that predicts the position of the evaporating front as a function of time as well as the total amount of water that is lost from the medium due to the combined effects of evaporation and transpiration. The model is based on fundamental principles of evaporation fluxes and includes empirical assumptions on the quantity of open stomata in the leaves, where water transpiration occurs. Comparison between the model and experimental results shows excellent prediction of the position of the evaporating front as well as the total mass loss from evapotranspiration in the presence of roots. The model also provides a way to predict the lifetime of a plant.
Mattfeldt, Torsten
2011-04-01
Computer-intensive methods may be defined as data analytical procedures involving a huge number of highly repetitive computations. We mention resampling methods with replacement (bootstrap methods), resampling methods without replacement (randomization tests) and simulation methods. The resampling methods are based on simple and robust principles and are largely free from distributional assumptions. Bootstrap methods may be used to compute confidence intervals for a scalar model parameter and for summary statistics from replicated planar point patterns, and for significance tests. For some simple models of planar point processes, point patterns can be simulated by elementary Monte Carlo methods. The simulation of models with more complex interaction properties usually requires more advanced computing methods. In this context, we mention simulation of Gibbs processes with Markov chain Monte Carlo methods using the Metropolis-Hastings algorithm. An alternative to simulations on the basis of a parametric model consists of stochastic reconstruction methods. The basic ideas behind the methods are briefly reviewed and illustrated by simple worked examples in order to encourage novices in the field to use computer-intensive methods. © 2010 The Authors Journal of Microscopy © 2010 Royal Microscopical Society.
Engineering model for ultrafast laser microprocessing
NASA Astrophysics Data System (ADS)
Audouard, E.; Mottay, E.
2016-03-01
Ultrafast laser micro-machining relies on complex laser-matter interaction processes, leading to a virtually athermal laser ablation. The development of industrial ultrafast laser applications benefits from a better understanding of these processes. To this end, a number of sophisticated scientific models have been developed, providing valuable insights in the physics of the interaction. Yet, from an engineering point of view, they are often difficult to use, and require a number of adjustable parameters. We present a simple engineering model for ultrafast laser processing, applied in various real life applications: percussion drilling, line engraving, and non normal incidence trepanning. The model requires only two global parameters. Analytical results are derived for single pulse percussion drilling or simple pass engraving. Simple assumptions allow to predict the effect of non normal incident beams to obtain key parameters for trepanning drilling. The model is compared to experimental data on stainless steel with a wide range of laser characteristics (time duration, repetition rate, pulse energy) and machining conditions (sample or beam speed). Ablation depth and volume ablation rate are modeled for pulse durations from 100 fs to 1 ps. Trepanning time of 5.4 s with a conicity of 0.15° is obtained for a hole of 900 μm depth and 100 μm diameter.
NASA Astrophysics Data System (ADS)
Duan, S.; Wright, J. S.; Romps, D. M.
2016-12-01
Atmospheric water isotopes have been proposed as potentially powerful constraints on the physics of convective clouds and parameterizations of convective processes in models. We have previously derived an analytical model of water vapor (H2O) and one of its heavy isotopes (HDO) in convective environments based on a bulk-plume convective water budget in radiative convective equilibrium. This analytical model provides a useful starting point for examining the joint responses of water vapor and its isotopic composition to changes in convective parameters; however, certain idealistic assumptions are required to make the model analytically solvable. Here, we develop a more flexible numerical framework that enables a wider range of model configurations and includes additional isotopic tracers. This model provides a bridge between Rayleigh distillation, which is simple but inflexible, and more complicated convection schemes and cloud resolving models, which are more realistic but also more difficult to perturb and interpret. Application of realistic in-cloud water profiles in our model produces vertical distributions of δD that qualitatively match satellite observations from the Tropospheric Emission Spectrometer (TES). We test the sensitivity of water vapor and its isotopic composition to a wide range of perturbations in the model parameters and their vertical profiles. In this presentation, we focus especially on establishing constraints for convective entrainment and precipitation efficiency. We conclude by discussing the potential application of this model as part of a larger water isotope toolkit for use with offline diagnostics provided by reanalyses and GCMs.
Charge carrier coherence and Hall effect in organic semiconductors
Yi, H. T.; Gartstein, Y. N.; Podzorov, V.
2016-03-30
Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less
A Log Logistic Survival Model Applied to Hypobaric Decompression Sickness
NASA Technical Reports Server (NTRS)
Conkin, Johnny
2001-01-01
Decompression sickness (DCS) is a complex, multivariable problem. A mathematical description or model of the likelihood of DCS requires a large amount of quality research data, ideas on how to define a decompression dose using physical and physiological variables, and an appropriate analytical approach. It also requires a high-performance computer with specialized software. I have used published DCS data to develop my decompression doses, which are variants of equilibrium expressions for evolved gas plus other explanatory variables. My analytical approach is survival analysis, where the time of DCS occurrence is modeled. My conclusions can be applied to simple hypobaric decompressions - ascents lasting from 5 to 30 minutes - and, after minutes to hours, to denitrogenation (prebreathing). They are also applicable to long or short exposures, and can be used whether the sufferer of DCS is at rest or exercising at altitude. Ultimately I would like my models to be applied to astronauts to reduce the risk of DCS during spacewalks, as well as to future spaceflight crews on the Moon and Mars.
A Ricin Forensic Profiling Approach Based on a Complex Set of Biomarkers
Fredriksson, Sten-Ake; Wunschel, David S.; Lindstrom, Susanne Wiklund; ...
2018-03-28
A forensic method for the retrospective determination of preparation methods used for illicit ricin toxin production was developed. The method was based on a complex set of biomarkers, including carbohydrates, fatty acids, seed storage proteins, in combination with data on ricin and Ricinus communis agglutinin. The analyses were performed on samples prepared from four castor bean plant (R. communis) cultivars by four different sample preparation methods (PM1 – PM4) ranging from simple disintegration of the castor beans to multi-step preparation methods including different protein precipitation methods. Comprehensive analytical data was collected by use of a range of analytical methods andmore » robust orthogonal partial least squares-discriminant analysis- models (OPLS-DA) were constructed based on the calibration set. By the use of a decision tree and two OPLS-DA models, the sample preparation methods of test set samples were determined. The model statistics of the two models were good and a 100% rate of correct predictions of the test set was achieved.« less
Noise from Supersonic Coaxial Jets. Part 1; Mean Flow Predictions
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Morris, Philip J.
1997-01-01
Recent theories for supersonic jet noise have used an instability wave noise generation model to predict radiated noise. This model requires a known mean flow that has typically been described by simple analytic functions for single jet mean flows. The mean flow of supersonic coaxial jets is not described easily in terms of analytic functions. To provide these profiles at all axial locations, a numerical scheme is developed to calculate the mean flow properties of a coaxial jet. The Reynolds-averaged, compressible, parabolic boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed to account for the effects of velocity and temperature ratios and Mach number on the shear layer spreading. Both normal velocity profile and inverted velocity profile coaxial jets are considered. The mixing length model is modified in each case to obtain reasonable results when the two stream jet merges into a single fully developed jet. The mean flow calculations show both good qualitative and quantitative agreement with measurements in single and coaxial jet flows.
Charge carrier coherence and Hall effect in organic semiconductors
Yi, H. T.; Gartstein, Y. N.; Podzorov, V.
2016-01-01
Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354
Sensitivity studies with a coupled ice-ocean model of the marginal ice zone
NASA Technical Reports Server (NTRS)
Roed, L. P.
1983-01-01
An analytical coupled ice-ocean model is considered which is forced by a specified wind stress acting on the open ocean as well as the ice. The analysis supports the conjecture that the upwelling dynamics at ice edges can be understood by means of a simple analytical model. In similarity with coastal problems it is shown that the ice edge upwelling is determined by the net mass flux at the boundaries of the considered region. The model is used to study the sensitivity of the upwelling dynamics in the marginal ice zone to variation in the controlling parameters. These parameters consist of combinations of the drag coefficients used in the parameterization of the stresses on the three interfaces atmosphere-ice, atmosphere-ocean, and ice-ocean. The response is shown to be sensitive to variations in these parameters in that one set of parameters may give upwelling while a slightly different set of parameters may give downwelling.
A Ricin Forensic Profiling Approach Based on a Complex Set of Biomarkers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredriksson, Sten-Ake; Wunschel, David S.; Lindstrom, Susanne Wiklund
A forensic method for the retrospective determination of preparation methods used for illicit ricin toxin production was developed. The method was based on a complex set of biomarkers, including carbohydrates, fatty acids, seed storage proteins, in combination with data on ricin and Ricinus communis agglutinin. The analyses were performed on samples prepared from four castor bean plant (R. communis) cultivars by four different sample preparation methods (PM1 – PM4) ranging from simple disintegration of the castor beans to multi-step preparation methods including different protein precipitation methods. Comprehensive analytical data was collected by use of a range of analytical methods andmore » robust orthogonal partial least squares-discriminant analysis- models (OPLS-DA) were constructed based on the calibration set. By the use of a decision tree and two OPLS-DA models, the sample preparation methods of test set samples were determined. The model statistics of the two models were good and a 100% rate of correct predictions of the test set was achieved.« less
Analytical Tools in School Finance Reform.
ERIC Educational Resources Information Center
Johns, R. L.
This paper discusses the problem of analyzing variations in the educational opportunities provided by different school districts and describes how to assess the impact of school finance alternatives through use of various analytical tools. The author first examines relatively simple analytical methods, including calculation of per-pupil…
Sakaguchi, Yohei; Yoshida, Hideyuki; Todoroki, Kenichiro; Nohta, Hitoshi; Yamaguchi, Masatoshi
2009-06-15
We have developed a new and simple method based on "fluorous derivatization" for LC of native fluorescent compounds. This method involves the use of a column with a fluorous stationary phase. Native fluorescent analytes with target functional groups are precolumn derivatized with a nonfluorescent fluorous tag, and the fluorous-labeled analytes are retained in the column, whereas underivatized substances are not. Only the retained fluorescent analytes are detected fluorometrically at appropriate retention times, and retained substrates without fluorophores are not detected. In this study, biologically important carboxylic acids (homovanillic acid, vanillylmandelic acid, and 5-hydroxyindoleacetic acid) and drugs (naproxen, felbinac, flurbiprofen, and etodolac) were used as model native fluorescent compounds. Experimental results indicate that the fluorous-phase column can selectively retain fluorous compounds including fluorous-labeled analytes on the basis of fluorous separation. We believe that separation-oriented derivatization presented here is the first step toward the introduction of fluorous derivatization in quantitative LC analysis.
Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A
2017-09-15
In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.
Peters, J.G.
1987-01-01
The Indiana Department of Natural Resources (IDNR) is developing water-management policies designed to assess the effects of irrigation and other water uses on water supply in the basin. In support of this effort, the USGS, in cooperation with IDNR, began a study to evaluate appropriate methods for analyzing the effects of pumping on ground-water levels and streamflow in the basin 's glacial aquifer systems. Four analytical models describe drawdown for a nonleaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and partially penetrating well; and an unconfined aquifer and partially penetrating well. Analytical equations, simplifying assumptions, and methods of application are described for each model. In addition to these four models, several other analytical models were used to predict the effects of ground-water pumping on water levels in the aquifer and on streamflow in local areas with up to two pumping wells. Analytical models for a variety of other hydrogeologic conditions are cited. A digital ground-water flow model was used to describe how a numerical model can be applied to a glacial aquifer system. The numerical model was used to predict the effects of six pumping plans in 46.5 sq mi area with as many as 150 wells. Water budgets for the six pumping plans were used to estimate the effect of pumping on streamflow reduction. Results of the analytical and numerical models indicate that, in general, the glacial aquifers in the basin are highly permeable. Radial hydraulic conductivity calculated by the analytical models ranged from 280 to 600 ft/day, compared to 210 and 360 ft/day used in the numerical model. Maximum seasonal pumping for irrigation produced maximum calculated drawdown of only one-fourth of available drawdown and reduced streamflow by as much as 21%. Analytical models are useful in estimating aquifer properties and predicting local effects of pumping in areas with simple lithology and boundary conditions and with few pumping wells. Numerical models are useful in regional areas with complex hydrogeology with many pumping wells and provide detailed water budgets useful for estimating the sources of water in pumping simulations. Numerical models are useful in constructing flow nets. The choice of which type of model to use is also based on the nature and scope of questions to be answered and on the degree of accuracy required. (Author 's abstract)
Evaluation of generalized degrees of freedom for sparse estimation by replica method
NASA Astrophysics Data System (ADS)
Sakata, A.
2016-12-01
We develop a method to evaluate the generalized degrees of freedom (GDF) for linear regression with sparse regularization. The GDF is a key factor in model selection, and thus its evaluation is useful in many modelling applications. An analytical expression for the GDF is derived using the replica method in the large-system-size limit with random Gaussian predictors. The resulting formula has a universal form that is independent of the type of regularization, providing us with a simple interpretation. Within the framework of replica symmetric (RS) analysis, GDF has a physical meaning as the effective fraction of non-zero components. The validity of our method in the RS phase is supported by the consistency of our results with previous mathematical results. The analytical results in the RS phase are calculated numerically using the belief propagation algorithm.
Rotzoll, Kolja; Gingerich, Stephen B.; Jenson, John W.; El-Kadi, Aly I.
2013-01-01
Tidal-signal attenuations are analyzed to compute hydraulic diffusivities and estimate regional hydraulic conductivities of the Northern Guam Lens Aquifer, Territory of Guam (Pacific Ocean), USA. The results indicate a significant tidal-damping effect at the coastal boundary. Hydraulic diffusivities computed using a simple analytical solution for well responses to tidal forcings near the periphery of the island are two orders of magnitude lower than for wells in the island’s interior. Based on assigned specific yields of ~0.01–0.4, estimated hydraulic conductivities are ~20–800 m/day for peripheral wells, and ~2,000–90,000 m/day for interior wells. The lower conductivity of the peripheral rocks relative to the interior rocks may best be explained by the effects of karst evolution: (1) dissolutional enhancement of horizontal hydraulic conductivity in the interior; (2) case-hardening and concurrent reduction of local hydraulic conductivity in the cliffs and steeply inclined rocks of the periphery; and (3) the stronger influence of higher-conductivity regional-scale features in the interior relative to the periphery. A simple numerical model calibrated with measured water levels and tidal response estimates values for hydraulic conductivity and storage parameters consistent with the analytical solution. The study demonstrates how simple techniques can be useful for characterizing regional aquifer properties.
Monte Carlo simulation of a simple gene network yields new evolutionary insights.
Andrecut, M; Cloud, D; Kauffman, S A
2008-02-07
Monte Carlo simulations of a genetic toggle switch show that its behavior can be more complex than analytic models would suggest. We show here that as a result of the interplay between frequent and infrequent reaction events, such a switch can have more stable states than an analytic model would predict, and that the number and character of these states depend to a large extent on the propensity of transcription factors to bind to and dissociate from promoters. The effects of gene duplications differ even more; in analytic models, these seem to result in the disappearance of bi-stability and thus a loss of the switching function, but a Monte Carlo simulation shows that they can result in the appearance of new stable states without the loss of old ones, and thus in an increase of the complexity of the switch's behavior which may facilitate the evolution of new cellular functions. These differences are of interest with respect to the evolution of gene networks, particularly in clonal lines of cancer cells, where the duplication of active genes is an extremely common event, and often seems to result in the appearance of viable new cellular phenotypes.
Development of a new semi-analytical model for cross-borehole flow experiments in fractured media
Roubinet, Delphine; Irving, James; Day-Lewis, Frederick D.
2015-01-01
Analysis of borehole flow logs is a valuable technique for identifying the presence of fractures in the subsurface and estimating properties such as fracture connectivity, transmissivity and storativity. However, such estimation requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. In this paper, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. In comparison with existing models, our approach presents major improvements in terms of computational expense and potential adaptation to a variety of fracture and experimental configurations. After derivation of the formulation, we demonstrate its application in the context of sensitivity analysis for a relatively simple two-fracture synthetic problem, as well as for field-data analysis to investigate fracture connectivity and estimate fracture hydraulic properties. These applications provide important insights regarding (i) the strong sensitivity of fracture property estimates to the overall connectivity of the system; and (ii) the non-uniqueness of the corresponding inverse problem for realistic fracture configurations.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; DeLessio, Jennifer L.; Jacobs, Preston W.
2018-01-01
Many structures in the launch vehicle industry operate in liquid hydrogen (LH2), from the hydrogen fuel tanks through the ducts and valves and into the pump sides of the turbopumps. Calculating the structural dynamic response of these structures is critical for successful qualification of this hardware, but accurate knowledge of the natural frequencies is based entirely on numerical or analytical predictions of frequency reduction due to the added-fluid-mass effect because testing in LH2 has always been considered too difficult and dangerous. This fluid effect is predicted to be approximately 4-5% using analytical formulations for simple cantilever beams. As part of a comprehensive test/analysis program to more accurately assess pump inducers operating in LH2, a series of frequency tests in LH2 were performed at NASA/Marshall Space Flight Center's unique cryogenic test facility. These frequency tests are coupled with modal tests in air and water to provide critical information not only on the mass effect of LH2, but also the cryogenic temperature effect on Young's Modulus for which the data is not extensive. The authors are unaware of any other reported natural frequency testing in this media. In addition to the inducer, a simple cantilever beam was also tested in the tank to provide a more easily modeled geometry as well as one that has an analytical solution for the mass effect. This data will prove critical for accurate structural dynamic analysis of these structures, which operate in a highly-dynamic environment.
An Analytical State Transition Matrix for Orbits Perturbed by an Oblate Spheroid
NASA Technical Reports Server (NTRS)
Mueller, A. C.
1977-01-01
An analytical state transition matrix and its inverse, which include the short period and secular effects of the second zonal harmonic, were developed from the nonsingular PS satellite theory. The fact that the independent variable in the PS theory is not time is in no respect disadvantageous, since any explicit analytical solution must be expressed in the true or eccentric anomaly. This is shown to be the case for the simple conic matrix. The PS theory allows for a concise, accurate, and algorithmically simple state transition matrix. The improvement over the conic matrix ranges from 2 to 4 digits accuracy.
Basic physical processes and reduced models for plasma detachment
NASA Astrophysics Data System (ADS)
Stangeby, P. C.
2018-04-01
The divertor of a tokamak reactor will have to satisfy a number of critical constraints, the first of which is that the divertor targets not fail due to excessive heating or sputter-erosion. This paramount constraint of target survival defines the operating window for the principal plasma properties at the divertor target, the density n t and temperature, T t. In particular T et < 10 eV is shown to be required. Code and experimental studies show that the pressure–momentum loss by the plasma that occurs along flux tubes in the edge, between the divertor entrance and target, (i) correlates strongly with T et, and (ii) begins to increase as T et falls below 10 eV, becoming very strong by 1 eV. The transition between the high-recycling regime and the detached divertor regime has therefore been defined here to occur when T et < 10 eV. Simple analytic models are developed (i) to relate (T t, n t) to the controlling conditions ‘upstream’ e.g. at the divertor entrance, and (ii) in turn to relate (T t, n t) to other important divertor quantities including (a) the required level of radiative cooling in the divertor, and (b) the ion flux to the target in the presence of volumetric loss of particles, momentum and power in the divertor. The 2 Point Model, 2PM, is a widely used analytic model for relating (T t, n t) to the controlling upstream conditions. The 2PM is derived here for various levels of complexity regarding the effects included. Analytic models of divertor detachment provide valuable insight and useful approximations, but more complete modeling requires the use of edge codes such as EDGE2D, SOLPS, SONIC, UEDGE, etc. Edge codes have grown to become quite sophisticated and now constitute, in effect, ‘code-experiments’ that—just as for actual experiments—can benefit from interpretation in terms of simple conceptual frameworks. 2 Point Model Formatting, 2PMF, of edge code output can provide such a conceptual framework. Methods of applying 2PMF are illustrated here with some examples.
An Analysis Model for Water Cone Subsidence in Bottom Water Drive Reservoirs
NASA Astrophysics Data System (ADS)
Wang, Jianjun; Xu, Hui; Wu, Shucheng; Yang, Chao; Kong, lingxiao; Zeng, Baoquan; Xu, Haixia; Qu, Tailai
2017-12-01
Water coning in bottom water drive reservoirs, which will result in earlier water breakthrough, rapid increase in water cut and low recovery level, has drawn tremendous attention in petroleum engineering field. As one simple and effective method to inhibit bottom water coning, shut-in coning control is usually preferred in oilfield to control the water cone and furthermore to enhance economic performance. However, most of the water coning researchers just have been done on investigation of the coning behavior as it grows up, the reported studies for water cone subsidence are very scarce. The goal of this work is to present an analytical model for water cone subsidence to analyze the subsidence of water cone when the well shut in. Based on Dupuit critical oil production rate formula, an analytical model is developed to estimate the initial water cone shape at the point of critical drawdown. Then, with the initial water cone shape equation, we propose an analysis model for water cone subsidence in bottom water reservoir reservoirs. Model analysis and several sensitivity studies are conducted. This work presents accurate and fast analytical model to perform the water cone subsidence in bottom water drive reservoirs. To consider the recent interests in development of bottom drive reservoirs, our approach provides a promising technique for better understanding the subsidence of water cone.
NASA Technical Reports Server (NTRS)
Cowie, L. L.; Rybicki, G. B.
1982-01-01
Waves of star formation in a uniform, differentially rotating disk galaxy are treated analytically as a propagating detonation wave front. It is shown, that if single solitary waves could be excited, they would evolve asymptotically to one of two stable spiral forms, each of which rotates with a fixed pattern speed. Simple numerical solutions confirm these results. However, the pattern of waves that develop naturally from an initially localized disturbance is more complex and dies out within a few rotation periods. These results suggest a conclusive observational test for deciding whether sequential star formation is an important determinant of spiral structure in some class of galaxies.
Current to the ionosphere following a lightning stroke
NASA Technical Reports Server (NTRS)
Hale, L. C.; Baginski, M. E.
1987-01-01
A simple analytical expression for calculating the total current waveform to the ionosphere after a lightning stroke is derived. The validity of this expression is demonstrated by comparison with a more rigorous computer solution of Maxwell's equations. The analytic model demonstrates that the temporal variation of the current induced in the ionosphere and global circuit and the corresponding return current in the earth depends on the conductivity profile at intervening altitudes in the middle atmosphere. A conclusion is that capacitative coupling may provide tighter coupling between the lower atmosphere and the ionosphere than usually considered, in both directions, which may help to explain observations which seem to indicate that magnetospheric phenomena may in some instances trigger lightning.
Theoretical study of production of unique glasses in space
NASA Technical Reports Server (NTRS)
Larsen, D. C.
1974-01-01
Analytical functional relationships describing homogeneous nucleation and crystallization in various supercooled liquids were developed. The time and temperature dependent relationships of nucleation and crystallization (intrinsic properties) are being used to relate glass forming tendency to extrinsic parameters such as cooling rate through computer simulation. Single oxide systems are being studied initially to aid in developing workable kinetic models and to indicate the primary materials parameters affecting glass formation. The theory and analytical expressions developed for simple systems is then extended to complex oxide systems. A thorough understanding of nucleation and crystallization kinetics of glass forming systems provides a priori knowledge of the ability of a given system to form a glass.
Role of external torque in the formation of ion thermal internal transport barriers
NASA Astrophysics Data System (ADS)
Jhang, Hogun; Kim, S. S.; Diamond, P. H.
2012-04-01
We present an analytic study of the impact of external torque on the formation of ion internal transport barriers (ITBs). A simple analytic relation representing the effect of low external torque on transport bifurcations is derived based on a two field transport model of pressure and toroidal momentum density. It is found that the application of an external torque can either facilitate or hamper bifurcation in heat flux driven plasmas depending on its sign relative to the direction of intrinsic torque. The ratio between radially integrated momentum (i.e., external torque) density to power input is shown to be a key macroscopic control parameter governing the characteristics of bifurcation.
NASA Astrophysics Data System (ADS)
Yang, Jianwen
2012-04-01
A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.
Modeling the Soft Geometry of Biological Membranes
NASA Astrophysics Data System (ADS)
Daly, K.
This dissertation presents work done applying the techniques of physics to biological systems. The difference in length scales of the thickness of the phospolipid bilayer and overall size of a biological cell allows bilayer to be modeled elastically as a thin sheet. The Helfrich free energy is extended applied to models representing various biological systems, in order to find quasi-equilibrium states as well as transitions between states. Morphologies are approximated as axially sym-metric. Stable morphologies are de-termined analytically and through the use of computer simulation. The simple morphologies examined analytically give a model for the pearling transition seen in growing biological cells. An analytic model of celluar bulging in gram-negative bacteria predicts a critical pore radius for bulging of 20 nanometers. This model is extended to the membrane dynamics of human red blood cells, predicting three morphologic phases which are seen in vivo. A computer simulation was developed to study more complex morphologies with models representing different bilayer compositions. Single and multi-component bilayer models reproduce morphologies previously predicted by Seifert. A mean field model representing the intrinsic curvature of proteins coupling to membrane curvature is used to explore the stability of the particular morphology of rod outer segment cells. The process of pore formation and expansion in cell-cell fusion is not well understood. Simulation of the pore created in cell-cell fusion led to the finding of a minimal pore radius required for pore expansion, suggesting pores formed in nature are formed with a minimum size.
NASA Astrophysics Data System (ADS)
Polotto, Franciele; Drigo Filho, Elso; Chahine, Jorge; Oliveira, Ronaldo Junio de
2018-03-01
This work developed analytical methods to explore the kinetics of the time-dependent probability distributions over thermodynamic free energy profiles of protein folding and compared the results with simulation. The Fokker-Planck equation is mapped onto a Schrödinger-type equation due to the well-known solutions of the latter. Through a semi-analytical description, the supersymmetric quantum mechanics formalism is invoked and the time-dependent probability distributions are obtained with numerical calculations by using the variational method. A coarse-grained structure-based model of the two-state protein Tm CSP was simulated at a Cα level of resolution and the thermodynamics and kinetics were fully characterized. Analytical solutions from non-equilibrium conditions were obtained with the simulated double-well free energy potential and kinetic folding times were calculated. It was found that analytical folding time as a function of temperature agrees, quantitatively, with simulations and experiments from the literature of Tm CSP having the well-known 'U' shape of the Chevron Plots. The simple analytical model developed in this study has a potential to be used by theoreticians and experimentalists willing to explore, quantitatively, rates and the kinetic behavior of their system by informing the thermally activated barrier. The theory developed describes a stochastic process and, therefore, can be applied to a variety of biological as well as condensed-phase two-state systems.
On the nature of fast sausage waves in coronal loops
NASA Astrophysics Data System (ADS)
Bahari, Karam
2018-05-01
The effect of the parameters of coronal loops on the nature of fast sausage waves are investigated. To do this three models of the coronal loop considered, a simple loop model, a current-carrying loop model and a model with radially structured density called "Inner μ" profile. For all the models the Magnetohydrodynamic (MHD) equations solved analytically in the linear approximation and the restoring forces of oscillations obtained. The ratio of the magnetic tension force to the pressure gradient force obtained as a function of the distance from the axis of the loop. In the simple loop model for all values of the loop parameters the fast sausages wave have a mixed nature of Alfvénic and fast MHD waves, in the current-carrying loop model with thick annulus and low density contrast the fast sausage waves can be considered as purely Alfvénic wave in the core region of the loop, and in the "Inner μ" profile for each set of the parameters of the loop the wave can be considered as a purely Alfvénic wave in some regions of the loop.
NASA Technical Reports Server (NTRS)
Yoshikawa, K. K.
1978-01-01
The semiclassical transition probability was incorporated in the simulation for energy exchange between rotational and translational energy. The results provide details on the fundamental mechanisms of gas kinetics where analytical methods were impractical. The validity of the local Maxwellian assumption and relaxation time, rotational-translational energy transition, and a velocity analysis of the inelastic collision were discussed in detail.
A Holistic Management Architecture for Large-Scale Adaptive Networks
2007-09-01
transmission and processing overhead required for management. The challenges of building models to describe dynamic systems are well-known to the field of...increases the challenge of finding a simple approach to assessing the state of the network. Moreover, the performance state of one network link may be... challenging . These obstacles indicate the need for a less comprehensive-analytical, more systemic-holistic approach to managing networks. This approach might
Thermal bending of liquid sheets and jets
NASA Astrophysics Data System (ADS)
Brenner, Michael P.; Paruchuri, Srinivas
2003-11-01
We present an analytical model for the bending of liquid jets and sheets from temperature gradients, as recently observed by Chwalek et al. [Phys. Fluids 14, L37 (2002)]. The bending arises from a local couple caused by Marangoni forces. The dependence of the bending angle on experimental parameters is presented, in qualitative agreement with reported experiments. The methodology gives a simple framework for understanding the mechanisms for jet and sheet bending.
Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro
2017-04-01
We present an efficient implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier-Stokes, Poisson-Boltzmann, and advection-diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The I2SPH's accuracy and convergence are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. The new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.
Quantum Mechanics, Path Integrals and Option Pricing:. Reducing the Complexity of Finance
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.; Corianò, Claudio; Srikant, Marakani
2003-04-01
Quantum Finance represents the synthesis of the techniques of quantum theory (quantum mechanics and quantum field theory) to theoretical and applied finance. After a brief overview of the connection between these fields, we illustrate some of the methods of lattice simulations of path integrals for the pricing of options. The ideas are sketched out for simple models, such as the Black-Scholes model, where analytical and numerical results are compared. Application of the method to nonlinear systems is also briefly overviewed. More general models, for exotic or path-dependent options are discussed.
Implementing a GPU-based numerical algorithm for modelling dynamics of a high-speed train
NASA Astrophysics Data System (ADS)
Sytov, E. S.; Bratus, A. S.; Yurchenko, D.
2018-04-01
This paper discusses the initiative of implementing a GPU-based numerical algorithm for studying various phenomena associated with dynamics of a high-speed railway transport. The proposed numerical algorithm for calculating a critical speed of the bogie is based on the first Lyapunov number. Numerical algorithm is validated by analytical results, derived for a simple model. A dynamic model of a carriage connected to a new dual-wheelset flexible bogie is studied for linear and dry friction damping. Numerical results obtained by CPU, MPU and GPU approaches are compared and appropriateness of these methods is discussed.
Exploring the Dynamics of Cell Processes through Simulations of Fluorescence Microscopy Experiments
Angiolini, Juan; Plachta, Nicolas; Mocskos, Esteban; Levi, Valeria
2015-01-01
Fluorescence correlation spectroscopy (FCS) methods are powerful tools for unveiling the dynamical organization of cells. For simple cases, such as molecules passively moving in a homogeneous media, FCS analysis yields analytical functions that can be fitted to the experimental data to recover the phenomenological rate parameters. Unfortunately, many dynamical processes in cells do not follow these simple models, and in many instances it is not possible to obtain an analytical function through a theoretical analysis of a more complex model. In such cases, experimental analysis can be combined with Monte Carlo simulations to aid in interpretation of the data. In response to this need, we developed a method called FERNET (Fluorescence Emission Recipes and Numerical routines Toolkit) based on Monte Carlo simulations and the MCell-Blender platform, which was designed to treat the reaction-diffusion problem under realistic scenarios. This method enables us to set complex geometries of the simulation space, distribute molecules among different compartments, and define interspecies reactions with selected kinetic constants, diffusion coefficients, and species brightness. We apply this method to simulate single- and multiple-point FCS, photon-counting histogram analysis, raster image correlation spectroscopy, and two-color fluorescence cross-correlation spectroscopy. We believe that this new program could be very useful for predicting and understanding the output of fluorescence microscopy experiments. PMID:26039162
NASA Astrophysics Data System (ADS)
Aguirre, E. E.; Karchewski, B.
2017-12-01
DC resistivity surveying is a geophysical method that quantifies the electrical properties of the subsurface of the earth by applying a source current between two electrodes and measuring potential differences between electrodes at known distances from the source. Analytical solutions for a homogeneous half-space and simple subsurface models are well known, as the former is used to define the concept of apparent resistivity. However, in situ properties are heterogeneous meaning that simple analytical models are only an approximation, and ignoring such heterogeneity can lead to misinterpretation of survey results costing time and money. The present study examines the extent to which random variations in electrical properties (i.e. electrical conductivity) affect potential difference readings and therefore apparent resistivities, relative to an assumed homogeneous subsurface model. We simulate the DC resistivity survey using a Finite Difference (FD) approximation of an appropriate simplification of Maxwell's equations implemented in Matlab. Electrical resistivity values at each node in the simulation were defined as random variables with a given mean and variance, and are assumed to follow a log-normal distribution. The Monte Carlo analysis for a given variance of electrical resistivity was performed until the mean and variance in potential difference measured at the surface converged. Finally, we used the simulation results to examine the relationship between variance in resistivity and variation in surface potential difference (or apparent resistivity) relative to a homogeneous half-space model. For relatively low values of standard deviation in the material properties (<10% of mean), we observed a linear correlation between variance of resistivity and variance in apparent resistivity.
A comparison of the structureborne and airborne paths for propfan interior noise
NASA Technical Reports Server (NTRS)
Eversman, W.; Koval, L. R.; Ramakrishnan, J. V.
1986-01-01
A comparison is made between the relative levels of aircraft interior noise related to structureborne and airborne paths for the same propeller source. A simple, but physically meaningful, model of the structure treats the fuselage interior as a rectangular cavity with five rigid walls. The sixth wall, the fuselage sidewall, is a stiffened panel. The wing is modeled as a simple beam carried into the fuselage by a large discrete stiffener representing the carry-through structure. The fuselage interior is represented by analytically-derived acoustic cavity modes and the entire structure is represented by structural modes derived from a finite element model. The noise source for structureborne noise is the unsteady lift generation on the wing due to the rotating trailing vortex system of the propeller. The airborne noise source is the acoustic field created by a propeller model consistent with the vortex representation. Comparisons are made on the basis of interior noise over a range of propeller rotational frequencies at a fixed thrust.
Simple Model for Identifying Critical Regions in Atrial Fibrillation
NASA Astrophysics Data System (ADS)
Christensen, Kim; Manani, Kishan A.; Peters, Nicholas S.
2015-01-01
Atrial fibrillation (AF) is the most common abnormal heart rhythm and the single biggest cause of stroke. Ablation, destroying regions of the atria, is applied largely empirically and can be curative but with a disappointing clinical success rate. We design a simple model of activation wave front propagation on an anisotropic structure mimicking the branching network of heart muscle cells. This integration of phenomenological dynamics and pertinent structure shows how AF emerges spontaneously when the transverse cell-to-cell coupling decreases, as occurs with age, beyond a threshold value. We identify critical regions responsible for the initiation and maintenance of AF, the ablation of which terminates AF. The simplicity of the model allows us to calculate analytically the risk of arrhythmia and express the threshold value of transversal cell-to-cell coupling as a function of the model parameters. This threshold value decreases with increasing refractory period by reducing the number of critical regions which can initiate and sustain microreentrant circuits. These biologically testable predictions might inform ablation therapies and arrhythmic risk assessment.
New perspectives on the dynamics of AC and DC plasma arcs exposed to cross-fields
NASA Astrophysics Data System (ADS)
Abdo, Youssef; Rohani, Vandad; Cauneau, François; Fulcheri, Laurent
2017-02-01
Interactions between an arc and external fields are crucially important for the design and the optimization of modern plasma torches. Multiple studies have been conducted to help better understand the behavior of DC and AC current arcs exposed to external and ‘self-induced’ magnetic fields, but the theoretical foundations remain very poorly explored. An analytical investigation has therefore been carried out in order to study the general behavior of DC and AC arcs under the effect of random cross-fields. A simple differential equation describing the general behavior of a planar DC or AC arc has been obtained. Several dimensionless numbers that depend primarily on arc and field parameters and the main arc characteristics (temperature, electric field strength) have also been determined. Their magnitude indicates the general tendency pattern of the arc evolution. The analytical results for many case studies have been validated using an MHD numerical model. The main purpose of this investigation was deriving a practical analytical model for the electric arc, rendering possible its stabilization and control, and the enhancement of the plasma torch power.
NASA Technical Reports Server (NTRS)
Migneault, G. E.
1979-01-01
Emulation techniques applied to the analysis of the reliability of highly reliable computer systems for future commercial aircraft are described. The lack of credible precision in reliability estimates obtained by analytical modeling techniques is first established. The difficulty is shown to be an unavoidable consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use testing infeasible; (2) a complex system design technique, fault tolerance; (3) system reliability dominated by errors due to flaws in the system definition; and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. Next, the technique of emulation is described, indicating how its input is a simple description of the logical structure of a system and its output is the consequent behavior. Use of emulation techniques is discussed for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques. Finally an illustrative example is presented to demonstrate from actual use the promise of the proposed application of emulation.
Hovan, Andrej; Datta, Shubhashis; Kruglik, Sergei G; Jancura, Daniel; Miskovsky, Pavol; Bánó, Gregor
2018-05-24
The singlet oxygen produced by energy transfer between an excited photosensitizer (pts) and ground-state oxygen molecules plays a key role in photodynamic therapy. Different nanocarrier systems are extensively studied to promote targeted pts delivery in a host body. The phosphorescence kinetics of the singlet oxygen produced by the short laser pulse photosensitization of pts inside nanoparticles is influenced by singlet oxygen diffusion from the particles to the surrounding medium. Two theoretical models are presented in this work: a more complex numerical one and a simple analytical one. Both the models predict the time course of singlet oxygen concentration inside and outside of the spherical particles following short-pulse excitation of pts. On the basis of the comparison of the numerical and analytical results, a semiempirical analytical formula is derived to calculate the characteristic diffusion time of singlet oxygen from the nanoparticles to the surrounding solvent. The phosphorescence intensity of singlet oxygen produced in pts-loaded nanocarrier systems can be calculated as a linear combination of the two concentrations (inside and outside the particles), taking the different phosphorescence emission rate constants into account.
Analytical model of diffuse reflectance spectrum of skin tissue
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.; Firago, V. A.; Sobchuk, A. N.
2014-01-01
We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions.
Analysis of mode-locked and intracavity frequency-doubled Nd:YAG laser
NASA Technical Reports Server (NTRS)
Siegman, A. E.; Heritier, J.-M.
1980-01-01
The paper presents analytical and computer studies of the CW mode-locked and intracavity frequency-doubled Nd:YAG laser which provide new insight into the operation, including the detuning behavior, of this type of laser. Computer solutions show that the steady-state pulse shape for this laser is much closer to a truncated cosine than to a Gaussian; there is little spectral broadening for on-resonance operation; and the chirp is negligible. This leads to a simplified analytical model carried out entirely in the time domain, with atomic linewidth effects ignored. Simple analytical results for on-resonance pulse shape, pulse width, signal intensity, and harmonic conversion efficiency in terms of basic laser parameters are derived from this model. A simplified physical description of the detuning behavior is also developed. Agreement is found with experimental studies showing that the pulsewidth decreases as the modulation frequency is detuned off resonance; the harmonic power output initially increases and then decreases; and the pulse shape develops a sharp-edged asymmetry of opposite sense for opposite signs of detuning.
Computationally efficient thermal-mechanical modelling of selective laser melting
NASA Astrophysics Data System (ADS)
Yang, Yabin; Ayas, Can
2017-10-01
The Selective laser melting (SLM) is a powder based additive manufacturing (AM) method to produce high density metal parts with complex topology. However, part distortions and accompanying residual stresses deteriorates the mechanical reliability of SLM products. Modelling of the SLM process is anticipated to be instrumental for understanding and predicting the development of residual stress field during the build process. However, SLM process modelling requires determination of the heat transients within the part being built which is coupled to a mechanical boundary value problem to calculate displacement and residual stress fields. Thermal models associated with SLM are typically complex and computationally demanding. In this paper, we present a simple semi-analytical thermal-mechanical model, developed for SLM that represents the effect of laser scanning vectors with line heat sources. The temperature field within the part being build is attained by superposition of temperature field associated with line heat sources in a semi-infinite medium and a complimentary temperature field which accounts for the actual boundary conditions. An analytical solution of a line heat source in a semi-infinite medium is first described followed by the numerical procedure used for finding the complimentary temperature field. This analytical description of the line heat sources is able to capture the steep temperature gradients in the vicinity of the laser spot which is typically tens of micrometers. In turn, semi-analytical thermal model allows for having a relatively coarse discretisation of the complimentary temperature field. The temperature history determined is used to calculate the thermal strain induced on the SLM part. Finally, a mechanical model governed by elastic-plastic constitutive rule having isotropic hardening is used to predict the residual stresses.
Two-Pendulum Model of Propellant Slosh in Europa Clipper PMD Tank
NASA Technical Reports Server (NTRS)
Ng, Wanyi; Benson, David
2017-01-01
The objective of this fluids analysis is to model propellant slosh for the Europa Clipper mission using a two-pendulum model, such that controls engineers can predict slosh behavior during the mission. Propellant slosh causes shifts in center of mass and exerts forces and torques on the spacecraft which, if not adequately controlled, can lead to mission failure. The two-pendulum model provides a computationally simple model that can be used to predict slosh for the Europa Clipper tank geometry. The Europa Clipper tank is cylindrical with a domed top and bottom and includes a propellant management device (PMD). Due to the lack of experimental data in low gravity environments, computational fluid dynamics (CFD) simulation results were used as 'real' slosh behavior for two propellants at three fill fractions. Key pendulum parameters were derived that allow the pendulum model's center of mass, forces, and moments to closely match the CFD data. The parameter trends were examined as a function of tank fill fraction and compared with solutions to analytic equations that describe the frequency of slosh in tanks with simple geometries. The trends were monotonic as expected, and parameters resembled analytical predictions; any differences could be explained by the specific differences in the geometry of the tank. This paper summarizes the new method developed at Goddard Space Flight Center (GSFC) for deriving pendulum parameters for two-pendulum equivalent sloshing models. It presents the results of this method and discusses the validity of the results. This analysis is at a completed stage and will be applied in the immediate future to the evolving tank geometry as Europa Clipper moves past its preliminary design review (PDR) phase.
NASA Technical Reports Server (NTRS)
Pesnell, W. Dean
2016-01-01
Dropping objects into a tunnel bored through Earth has been used to visualize simple harmonic motion for many years, and even imagined for use as rapid transport systems. Unlike previous studies that assumed a constant density Earth, here we calculate the fall-through time of polytropes, models of Earth's interior where the pressure varies as a power of the density. This means the fall-through time can be calculated as the central condensation varies from one to large within the family of polytropes. Having a family of models, rather than a single model, helps to explore the properties of planets and stars. Comparing the family of phase space solutions shows that the fall-through time and velocity approach the limit of radial free-fall onto a point mass as the central condensation increases. More condensed models give higher maximum velocities but do not have the right global properties for Earth. The angular distance one can travel along the surface is calculated as a brachistochrone (path of least time) tunnel that is a function of the depth to which the tunnel is bored. We also show that completely degenerate objects, simple models of white dwarf stars supported by completely degenerate electrons, have sizes similar to Earth but their much higher masses mean a much larger gravitational strength and a shorter fall-through time. Numerical integrations of the equations describing polytropes and completely degenerate objects are used to generate the initial models. Analytic solutions and numerical integration of the equations of motion are used to calculate the fall-through time for each model, and numerical integrations with analytic approximations at the boundaries are used to calculate the brachistochrones in the polytropes. Scaling relationships are provided to help use these results in other planets and stars.
NASA Astrophysics Data System (ADS)
Falta, R. W.
2004-05-01
Analytical solutions are developed that relate changes in the contaminant mass in a source area to the behavior of biologically reactive dissolved contaminant groundwater plumes. Based on data from field experiments, laboratory experiments, numerical streamtube models, and numerical multiphase flow models, the chemical discharge from a source region is assumed to be a nonlinear power function of the fraction of contaminant mass removed from the source zone. This function can approximately represent source zone mass discharge behavior over a wide range of site conditions ranging from simple homogeneous systems, to complex heterogeneous systems. A mass balance on the source zone with advective transport and first order decay leads to a nonlinear differential equation that is solved analytically to provide a prediction of the time-dependent contaminant mass discharge leaving the source zone. The solution for source zone mass discharge is coupled semi-analytically with a modified version of the Domenico (1987) analytical solution for three-dimensional reactive advective and dispersive transport in groundwater. The semi-analytical model then employs the BIOCHLOR (Aziz et al., 2000; Sun et al., 1999) transformations to model sequential first order parent-daughter biological decay reactions of chlorinated ethenes and ethanes in the groundwater plume. The resulting semi-analytic model thus allows for transient simulation of complex source zone behavior that is fully coupled to a dissolved contaminant plume undergoing sequential biological reactions. Analyses of several realistic scenarios show that substantial changes in the ground water plume can result from the partial removal of contaminant mass from the source zone. These results, however, are sensitive to the nature of the source mass reduction-source discharge reduction curve, and to the rates of degradation of the primary contaminant and its daughter products in the ground water plume. Aziz, C.E., C.J. Newell, J.R. Gonzales, P. Haas, T.P. Clement, and Y. Sun, 2000, BIOCHLOR Natural Attenuation Decision Support System User's Manual Version 1.0, US EPA Report EPA/600/R-00/008 Domenico, P.A., 1987, An analytical model for multidimensional transport of a decaying contaminant species, J. Hydrol., 91: 49-58. Sun, Y., J.N. Petersen, T.P. Clement, and R.S. Skeen, 1999, A new analytical solution for multi-species transport equations with serial and parallel reactions, Water Resour. Res., 35(1): 185-190.
Niu, Ji-Cheng; Zhou, Ting; Niu, Li-Li; Xie, Zhen-Sheng; Fang, Fang; Yang, Fu-Quan; Wu, Zhi-Yong
2018-02-01
In this work, fast isoelectric focusing (IEF) was successfully implemented on an open paper fluidic channel for simultaneous concentration and separation of proteins from complex matrix. With this simple device, IEF can be finished in 10 min with a resolution of 0.03 pH units and concentration factor of 10, as estimated by color model proteins by smartphone-based colorimetric detection. Fast detection of albumin from human serum and glycated hemoglobin (HBA1c) from blood cell was demonstrated. In addition, off-line identification of the model proteins from the IEF fractions with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was also shown. This PAD IEF is potentially useful either for point of care test (POCT) or biomarker analysis as a cost-effective sample pretreatment method.
On a simple molecular–statistical model of a liquid-crystal suspension of anisometric particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakhlevnykh, A. N., E-mail: anz@psu.ru; Lubnin, M. S.; Petrov, D. A.
2016-11-15
A molecular–statistical mean-field theory is constructed for suspensions of anisometric particles in nematic liquid crystals (NLCs). The spherical approximation, well known in the physics of ferromagnetic materials, is considered that allows one to obtain an analytic expression for the free energy and simple equations for the orientational state of a suspension that describe the temperature dependence of the order parameters of the suspension components. The transition temperature from ordered to isotropic state and the jumps in the order parameters at the phase-transition point are studied as a function of the anchoring energy of dispersed particles to the matrix, the concentrationmore » of the impurity phase, and the size of particles. The proposed approach allows one to generalize the model to the case of biaxial ordering.« less
Analytical study of nano-scale logical operations
NASA Astrophysics Data System (ADS)
Patra, Moumita; Maiti, Santanu K.
2018-07-01
A complete analytical prescription is given to perform three basic (OR, AND, NOT) and two universal (NAND, NOR) logic gates at nano-scale level using simple tailor made geometries. Two different geometries, ring-like and chain-like, are taken into account where in each case the bridging conductor is coupled to a local atomic site through a dangling bond whose site energy can be controlled by means of external gate electrode. The main idea is that when injecting electron energy matches with site energy of local atomic site transmission probability drops exactly to zero, whereas the junction exhibits finite transmission for other energies. Utilizing this prescription we perform logical operations, and, we strongly believe that the proposed results can be verified in laboratory. Finally, we numerically compute two-terminal transmission probability considering general models and the numerical results match exactly well with our analytical findings.
NASA Astrophysics Data System (ADS)
Robotham, A. S. G.; Howlett, Cullan
2018-06-01
In this short note we publish the analytic quantile function for the Navarro, Frenk & White (NFW) profile. All known published and coded methods for sampling from the 3D NFW PDF use either accept-reject, or numeric interpolation (sometimes via a lookup table) for projecting random Uniform samples through the quantile distribution function to produce samples of the radius. This is a common requirement in N-body initial condition (IC), halo occupation distribution (HOD), and semi-analytic modelling (SAM) work for correctly assigning particles or galaxies to positions given an assumed concentration for the NFW profile. Using this analytic description allows for much faster and cleaner code to solve a common numeric problem in modern astronomy. We release R and Python versions of simple code that achieves this sampling, which we note is trivial to reproduce in any modern programming language.
Testing a 1-D Analytical Salt Intrusion Model and the Predictive Equation in Malaysian Estuaries
NASA Astrophysics Data System (ADS)
Gisen, Jacqueline Isabella; Savenije, Hubert H. G.
2013-04-01
Little is known about the salt intrusion behaviour in Malaysian estuaries. Study on this topic sometimes requires large amounts of data especially if a 2-D or 3-D numerical models are used for analysis. In poor data environments, 1-D analytical models are more appropriate. For this reason, a fully analytical 1-D salt intrusion model, based on the theory of Savenije in 2005, was tested in three Malaysian estuaries (Bernam, Selangor and Muar) because it is simple and requires minimal data. In order to achieve that, site surveys were conducted in these estuaries during the dry season (June-August) at spring tide by moving boat technique. Data of cross-sections, water levels and salinity were collected, and then analysed with the salt intrusion model. This paper demonstrates a good fit between the simulated and observed salinity distribution for all three estuaries. Additionally, the calibrated Van der Burgh's coefficient K, Dispersion coefficient D0, and salt intrusion length L, for the estuaries also displayed a reasonable correlations with those calculated from the predictive equations. This indicates that not only is the salt intrusion model valid for the case studies in Malaysia but also the predictive model. Furthermore, the results from this study describe the current state of the estuaries with which the Malaysian water authority in Malaysia can make decisions on limiting water abstraction or dredging. Keywords: salt intrusion, Malaysian estuaries, discharge, predictive model, dispersion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cimpoesu, Dorin, E-mail: cdorin@uaic.ro; Stoleriu, Laurentiu; Stancu, Alexandru
2013-12-14
We propose a generalized Stoner-Wohlfarth (SW) type model to describe various experimentally observed angular dependencies of the switching field in non-single-domain magnetic particles. Because the nonuniform magnetic states are generally characterized by complicated spin configurations with no simple analytical description, we maintain the macrospin hypothesis and we phenomenologically include the effects of nonuniformities only in the anisotropy energy, preserving as much as possible the elegance of SW model, the concept of critical curve and its geometric interpretation. We compare the results obtained with our model with full micromagnetic simulations in order to evaluate the performance and limits of our approach.
Effects of crowders on the equilibrium and kinetic properties of protein aggregation
NASA Astrophysics Data System (ADS)
Bridstrup, John; Yuan, Jian-Min
2016-08-01
The equilibrium and kinetic properties of protein aggregation systems in the presence of crowders are investigated using simple, illuminating models based on mass-action laws. Our model yields analytic results for equilibrium properties of protein aggregates, which fit experimental data of actin and ApoC-II with crowders reasonably well. When the effects of crowders on rate constants are considered, our kinetic model is in good agreement with experimental results for actin with dextran as the crowder. Furthermore, the model shows that as crowder volume fraction increases, the length distribution of fibrils becomes narrower and shifts to shorter values due to volume exclusion.
NASA Astrophysics Data System (ADS)
Pradeep, Krishna; Poiroux, Thierry; Scheer, Patrick; Juge, André; Gouget, Gilles; Ghibaudo, Gérard
2018-07-01
This work details the analysis of wafer level global process variability in 28 nm FD-SOI using split C-V measurements. The proposed approach initially evaluates the native on wafer process variability using efficient extraction methods on split C-V measurements. The on-wafer threshold voltage (VT) variability is first studied and modeled using a simple analytical model. Then, a statistical model based on the Leti-UTSOI compact model is proposed to describe the total C-V variability in different bias conditions. This statistical model is finally used to study the contribution of each process parameter to the total C-V variability.
Analytical solution for shear bands in cold-rolled 1018 steel
NASA Astrophysics Data System (ADS)
Voyiadjis, George Z.; Almasri, Amin H.; Faghihi, Danial; Palazotto, Anthony N.
2012-06-01
Cold-rolled 1018 (CR-1018) carbon steel has been well known for its susceptibility to adiabatic shear banding under dynamic loadings. Analysis of these localizations highly depends on the selection of the constitutive model. To deal with this issue, a constitutive model that takes temperature and strain rate effect into account is proposed. The model is motivated by two physical-based models: the Zerilli and Armstrong and the Voyiadjis and Abed models. This material model, however, incorporates a simple softening term that is capable of simulating the softening behavior of CR-1018 steel. Instability, localization, and evolution of adiabatic shear bands are discussed and presented graphically. In addition, the effect of hydrostatic pressure is illustrated.
Hypo-Elastic Model for Lung Parenchyma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freed, Alan D.; Einstein, Daniel R.
2012-03-01
A simple elastic isotropic constitutive model for the spongy tissue in lung is derived from the theory of hypoelasticity. The model is shown to exhibit a pressure dependent behavior that has been interpreted by some as indicating extensional anisotropy. In contrast, we show that this behavior arises natural from an analysis of isotropic hypoelastic invariants, and is a likely result of non-linearity, not anisotropy. The response of the model is determined analytically for several boundary value problems used for material characterization. These responses give insight into both the material behavior as well as admissible bounds on parameters. The model ismore » characterized against published experimental data for dog lung. Future work includes non-elastic model behavior.« less
Consistent Yokoya-Chen Approximation to Beamstrahlung(LCC-0010)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peskin, M
2004-04-22
I reconsider the Yokoya-Chen approximate evolution equation for beamstrahlung and modify it slightly to generate simple, consistent analytical approximations for the electron and photon energy spectra. I compare these approximations to previous ones, and to simulation data.I reconsider the Yokoya-Chen approximate evolution equation for beamstrahlung and modify it slightly to generate simple, consistent analytical approximations for the electron and photon energy spectra. I compare these approximations to previous ones, and to simulation data.
Climatic influence of background and volcanic stratosphere aerosol models
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Herman, M.; Lenoble, J.; Tanre, D.
1982-01-01
A simple modelization of the earth atmosphere system including tropospheric and stratospheric aerosols has been derived and tested. Analytical expressions are obtained for the albedo variation due to a thin stratospheric aerosol layer. Also outlined are the physical procedures and the respective influence of the main parameters: aerosol optical thickness, single scattering albedo and asymmetry factor, and sublayer albedo. The method is applied to compute the variation of the zonal and planetary albedos due to a stratospheric layer of background H2SO4 particles and of volcanic ash.
Software Models Impact Stresses
NASA Technical Reports Server (NTRS)
Hanshaw, Timothy C.; Roy, Dipankar; Toyooka, Mark
1991-01-01
Generalized Impact Stress Software designed to assist engineers in predicting stresses caused by variety of impacts. Program straightforward, simple to implement on personal computers, "user friendly", and handles variety of boundary conditions applied to struck body being analyzed. Applications include mathematical modeling of motions and transient stresses of spacecraft, analysis of slamming of piston, of fast valve shutoffs, and play of rotating bearing assembly. Provides fast and inexpensive analytical tool for analysis of stresses and reduces dependency on expensive impact tests. Written in FORTRAN 77. Requires use of commercial software package PLOT88.
Leading temperature dependence of the conductance in Kondo-correlated quantum dots.
Aligia, A A
2018-04-18
Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the renormalized parameters of the model. Taking these parameters from the literature, we compare the results with published ones calculated using the numerical renormalization group obtaining a very good agreement. The approach is superior to alternative perturbative treatments. We compare in particular to the results of a simple interpolative perturbation approach.
GFSSP Training Course Lectures
NASA Technical Reports Server (NTRS)
Majumdar, Alok K.
2008-01-01
GFSSP has been extended to model conjugate heat transfer Fluid Solid Network Elements include: a) Fluid nodes and Flow Branches; b) Solid Nodes and Ambient Nodes; c) Conductors connecting Fluid-Solid, Solid-Solid and Solid-Ambient Nodes. Heat Conduction Equations are solved simultaneously with Fluid Conservation Equations for Mass, Momentum, Energy and Equation of State. The extended code was verified by comparing with analytical solution for simple conduction-convection problem The code was applied to model: a) Pressurization of Cryogenic Tank; b) Freezing and Thawing of Metal; c) Chilldown of Cryogenic Transfer Line; d) Boil-off from Cryogenic Tank.
Multi-hole pressure probes to wind tunnel experiments and air data systems
NASA Astrophysics Data System (ADS)
Shevchenko, A. M.; Shmakov, A. S.
2017-10-01
The problems to develop a multihole pressure system to measure flow angularity, Mach number and dynamic head for wind tunnel experiments or air data systems are discussed. A simple analytical model with separation of variables is derived for the multihole spherical pressure probe. The proposed model is uniform for small subsonic and supersonic speeds. An error analysis was performed. The error functions are obtained, allowing to estimate the influence of the Mach number, the pitch angle, the location of the pressure ports on the uncertainty of determining the flow parameters.
Exploration–exploitation trade-off features a saltatory search behaviour
Volchenkov, Dimitri; Helbach, Jonathan; Tscherepanow, Marko; Kühnel, Sina
2013-01-01
Searching experiments conducted in different virtual environments over a gender-balanced group of people revealed a gender irrelevant scale-free spread of searching activity on large spatio-temporal scales. We have suggested and solved analytically a simple statistical model of the coherent-noise type describing the exploration–exploitation trade-off in humans (‘should I stay’ or ‘should I go’). The model exhibits a variety of saltatory behaviours, ranging from Lévy flights occurring under uncertainty to Brownian walks performed by a treasure hunter confident of the eventual success. PMID:23782535
Energy density and energy flow of surface waves in a strongly magnetized graphene
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2018-01-01
General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.
Analytics For Distracted Driver Behavior Modeling in Dilemma Zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jan-Mou; Malikopoulos, Andreas; Thakur, Gautam
2014-01-01
In this paper, we present the results obtained and insights gained through the analysis of TRB contest data. We used exploratory analysis, regression, and clustering models for gaining insights into the driver behavior in a dilemma zone while driving under distraction. While simple exploratory analysis showed the distinguishing driver behavior patterns among different popu- lation groups in the dilemma zone, regression analysis showed statically signification relationships between groups of variables. In addition to analyzing the contest data, we have also looked into the possible impact of distracted driving on the fuel economy.
Prevalidation in pharmaceutical analysis. Part I. Fundamentals and critical discussion.
Grdinić, Vladimir; Vuković, Jadranka
2004-05-28
A complete prevalidation, as a basic prevalidation strategy for quality control and standardization of analytical procedure was inaugurated. Fast and simple, the prevalidation methodology based on mathematical/statistical evaluation of a reduced number of experiments (N < or = 24) was elaborated and guidelines as well as algorithms were given in detail. This strategy has been produced for the pharmaceutical applications and dedicated to the preliminary evaluation of analytical methods where linear calibration model, which is very often occurred in practice, could be the most appropriate to fit experimental data. The requirements presented in this paper should therefore help the analyst to design and perform the minimum number of prevalidation experiments needed to obtain all the required information to evaluate and demonstrate the reliability of its analytical procedure. In complete prevalidation process, characterization of analytical groups, checking of two limiting groups, testing of data homogeneity, establishment of analytical functions, recognition of outliers, evaluation of limiting values and extraction of prevalidation parameters were included. Moreover, system of diagnosis for particular prevalidation step was suggested. As an illustrative example for demonstration of feasibility of prevalidation methodology, among great number of analytical procedures, Vis-spectrophotometric procedure for determination of tannins with Folin-Ciocalteu's phenol reagent was selected. Favourable metrological characteristics of this analytical procedure, as prevalidation figures of merit, recognized the metrological procedure as a valuable concept in preliminary evaluation of quality of analytical procedures.
Mathematical model to estimate risk of calcium-containing renal stones
NASA Technical Reports Server (NTRS)
Pietrzyk, R. A.; Feiveson, A. H.; Whitson, P. A.
1999-01-01
BACKGROUND/AIMS: Astronauts exposed to microgravity during the course of spaceflight undergo physiologic changes that alter the urinary environment so as to increase the risk of renal stone formation. This study was undertaken to identify a simple method with which to evaluate the potential risk of renal stone development during spaceflight. METHOD: We used a large database of urinary risk factors obtained from 323 astronauts before and after spaceflight to generate a mathematical model with which to predict the urinary supersaturation of calcium stone forming salts. RESULT: This model, which involves the fewest possible analytical variables (urinary calcium, citrate, oxalate, phosphorus, and total volume), reliably and accurately predicted the urinary supersaturation of the calcium stone forming salts when compared to results obtained from a group of 6 astronauts who collected urine during flight. CONCLUSIONS: The use of this model will simplify both routine medical monitoring during spaceflight as well as the evaluation of countermeasures designed to minimize renal stone development. This model also can be used for Earth-based applications in which access to analytical resources is limited.
NASA Astrophysics Data System (ADS)
de Saint Jean, C.; Habert, B.; Archier, P.; Noguere, G.; Bernard, D.; Tommasi, J.; Blaise, P.
2010-10-01
In the [eV;MeV] energy range, modelling of the neutron induced reactions are based on nuclear reaction models having parameters. Estimation of co-variances on cross sections or on nuclear reaction model parameters is a recurrent puzzle in nuclear data evaluation. Major breakthroughs were asked by nuclear reactor physicists to assess proper uncertainties to be used in applications. In this paper, mathematical methods developped in the CONRAD code[2] will be presented to explain the treatment of all type of uncertainties, including experimental ones (statistical and systematic) and propagate them to nuclear reaction model parameters or cross sections. Marginalization procedure will thus be exposed using analytical or Monte-Carlo solutions. Furthermore, one major drawback found by reactor physicist is the fact that integral or analytical experiments (reactor mock-up or simple integral experiment, e.g. ICSBEP, …) were not taken into account sufficiently soon in the evaluation process to remove discrepancies. In this paper, we will describe a mathematical framework to take into account properly this kind of information.
Al Roumy, Jalal; Perchoux, Julien; Lim, Yah Leng; Taimre, Thomas; Rakić, Aleksandar D; Bosch, Thierry
2015-01-10
We present a simple analytical model that describes the injection current and temperature dependence of optical feedback interferometry signal strength for a single-mode laser diode. The model is derived from the Lang and Kobayashi rate equations, and is developed both for signals acquired from the monitoring photodiode (proportional to the variations in optical power) and for those obtained by amplification of the corresponding variations in laser voltage. The model shows that both the photodiode and the voltage signal strengths are dependent on the laser slope efficiency, which itself is a function of the injection current and the temperature. Moreover, the model predicts that the photodiode and voltage signal strengths depend differently on injection current and temperature. This important model prediction was proven experimentally for a near-infrared distributed feedback laser by measuring both types of signals over a wide range of injection currents and temperatures. Therefore, this simple model provides important insight into the radically different biasing strategies required to achieve optimal sensor sensitivity for both interferometric signal acquisition schemes.
Locomotion of C. elegans: A Piecewise-Harmonic Curvature Representation of Nematode Behavior
Padmanabhan, Venkat; Khan, Zeina S.; Solomon, Deepak E.; Armstrong, Andrew; Rumbaugh, Kendra P.; Vanapalli, Siva A.; Blawzdziewicz, Jerzy
2012-01-01
Caenorhabditis elegans, a free-living soil nematode, displays a rich variety of body shapes and trajectories during its undulatory locomotion in complex environments. Here we show that the individual body postures and entire trails of C. elegans have a simple analytical description in curvature representation. Our model is based on the assumption that the curvature wave is generated in the head segment of the worm body and propagates backwards. We have found that a simple harmonic function for the curvature can capture multiple worm shapes during the undulatory movement. The worm body trajectories can be well represented in terms of piecewise sinusoidal curvature with abrupt changes in amplitude, wavevector, and phase. PMID:22792224
Context Switching with Multiple Register Windows: A RISC Performance Study
NASA Technical Reports Server (NTRS)
Konsek, Marion B.; Reed, Daniel A.; Watcharawittayakul, Wittaya
1987-01-01
Although previous studies have shown that a large file of overlapping register windows can greatly reduce procedure call/return overhead, the effects of register windows in a multiprogramming environment are poorly understood. This paper investigates the performance of multiprogrammed, reduced instruction set computers (RISCs) as a function of window management strategy. Using an analytic model that reflects context switch and procedure call overheads, we analyze the performance of simple, linearly self-recursive programs. For more complex programs, we present the results of a simulation study. These studies show that a simple strategy that saves all windows prior to a context switch, but restores only a single window following a context switch, performs near optimally.
Making advanced analytics work for you.
Barton, Dominic; Court, David
2012-10-01
Senior leaders who write off the move toward big data as a lot of big talk are making, well, a big mistake. So argue McKinsey's Barton and Court, who worked with dozens of companies to figure out how to translate advanced analytics into nuts-and-bolts practices that affect daily operations on the front lines. The authors offer a useful guide for leaders and managers who want to take a deliberative approach to big data-but who also want to get started now. First, companies must identify the right data for their business, seek to acquire the information creatively from diverse sources, and secure the necessary IT support. Second, they need to build analytics models that are tightly focused on improving performance, making the models only as complex as business goals demand. Third, and most important, companies must transform their capabilities and culture so that the analytical results can be implemented from the C-suite to the front lines. That means developing simple tools that everyone in the organization can understand and teaching people why the data really matter. Embracing big data is as much about changing mind-sets as it is about crunching numbers. Executed with the right care and flexibility, this cultural shift could have payoffs that are, well, bigger than you expect.
da Silva, Marcio L B; Gomez, Diego E; Alvarez, Pedro J J
2013-03-01
Flow-through column studies were conducted to mimic the natural attenuation of ethanol and BTEX mixtures, and to consider potential inhibitory effects of ethanol and its anaerobic metabolite acetate on BTEX biodegradation. Results were analyzed using a one-dimensional analytical model that was developed using consecutive reaction differential equations based on first-order kinetics. Decrease in pH due to acetogenesis was also modeled, using charge balance equations under CaCO(3) dissolution conditions. Delay in BTEX removal was observed and simulated in the presence of ethanol and acetate. Acetate was the major volatile fatty acid intermediate produced during anaerobic ethanol biodegradation (accounting for about 58% of the volatile fatty acid mass) as suggested by the model data fit. Acetate accumulation (up to 1.1 g/L) near the source zone contributed to a pH decrease by almost one unit. The anaerobic degradation of ethanol (2 g/L influent concentration) at the source zone produced methane at concentrations exceeding its solubility (~/=26mg/L). Overall, this simple analytical model adequately described ethanol degradation, acetate accumulation and methane production patterns, suggesting that it could be used as a screening tool to simulate lag times in BTEX biodegradation, changes in groundwater pH and methane generation following ethanol-blended fuel releases. Copyright © 2012 Elsevier B.V. All rights reserved.
Vernon, John A; Hughen, W Keener; Johnson, Scott J
2005-05-01
In the face of significant real healthcare cost inflation, pressured budgets, and ongoing launches of myriad technology of uncertain value, payers have formalized new valuation techniques that represent a barrier to entry for drugs. Cost-effectiveness analysis predominates among these methods, which involves differencing a new technological intervention's marginal costs and benefits with a comparator's, and comparing the resulting ratio to a payer's willingness-to-pay threshold. In this paper we describe how firms are able to model the feasible range of future product prices when making in-licensing and developmental Go/No-Go decisions by considering payers' use of the cost-effectiveness method. We illustrate this analytic method with a simple deterministic example and then incorporate stochastic assumptions using both analytic and simulation methods. Using this strategic approach, firms may reduce product development and in-licensing risk.
Tunneling of heat: Beyond linear response regime
NASA Astrophysics Data System (ADS)
Walczak, Kamil; Saroka, David
2018-02-01
We examine nanoscale processes of heat (energy) transfer as carried by electrons tunneling via potential barriers and molecular interconnects between two heat reservoirs (thermal baths). For that purpose, we use Landauer-type formulas to calculate thermal conductance and quadratic correction to heat flux flowing via quantum systems. As an input, we implement analytical expressions for transmission functions related to simple potential barriers and atomic bridges. Our results are discussed with respect to energy of tunneling electrons, temperature, the presence of resonant states, and specific parameters characterizing potential barriers as well as heat carriers. The simplicity of semi-analytical models developed by us allows to fit experimental data and extract crucial information about the values of model parameters. Further investigations are expected for more realistic transmission functions, while time-dependent aspects of nanoscale heat transfer may be addressed by using the concept of wave packets scattered on potential barriers and point-like defects within regular (periodic) nanostructures.
Optimized theory for simple and molecular fluids.
Marucho, M; Montgomery Pettitt, B
2007-03-28
An optimized closure approximation for both simple and molecular fluids is presented. A smooth interpolation between Perkus-Yevick and hypernetted chain closures is optimized by minimizing the free energy self-consistently with respect to the interpolation parameter(s). The molecular version is derived from a refinement of the method for simple fluids. In doing so, a method is proposed which appropriately couples an optimized closure with the variant of the diagrammatically proper integral equation recently introduced by this laboratory [K. M. Dyer et al., J. Chem. Phys. 123, 204512 (2005)]. The simplicity of the expressions involved in this proposed theory has allowed the authors to obtain an analytic expression for the approximate excess chemical potential. This is shown to be an efficient tool to estimate, from first principles, the numerical value of the interpolation parameters defining the aforementioned closure. As a preliminary test, representative models for simple fluids and homonuclear diatomic Lennard-Jones fluids were analyzed, obtaining site-site correlation functions in excellent agreement with simulation data.
Statistical distributions of avalanche size and waiting times in an inter-sandpile cascade model
NASA Astrophysics Data System (ADS)
Batac, Rene; Longjas, Anthony; Monterola, Christopher
2012-02-01
Sandpile-based models have successfully shed light on key features of nonlinear relaxational processes in nature, particularly the occurrence of fat-tailed magnitude distributions and exponential return times, from simple local stress redistributions. In this work, we extend the existing sandpile paradigm into an inter-sandpile cascade, wherein the avalanches emanating from a uniformly-driven sandpile (first layer) is used to trigger the next (second layer), and so on, in a successive fashion. Statistical characterizations reveal that avalanche size distributions evolve from a power-law p(S)≈S-1.3 for the first layer to gamma distributions p(S)≈Sαexp(-S/S0) for layers far away from the uniformly driven sandpile. The resulting avalanche size statistics is found to be associated with the corresponding waiting time distribution, as explained in an accompanying analytic formulation. Interestingly, both the numerical and analytic models show good agreement with actual inventories of non-uniformly driven events in nature.
Analytical response function for planar Ge detectors
NASA Astrophysics Data System (ADS)
García-Alvarez, Juan A.; Maidana, Nora L.; Vanin, Vito R.; Fernández-Varea, José M.
2016-04-01
We model the response function (RF) of planar HPGe x-ray spectrometers for photon energies between around 10 keV and 100 keV. The RF is based on the proposal of Seltzer [1981. Nucl. Instrum. Methods 188, 133-151] and takes into account the full-energy absorption in the Ge active volume, the escape of Ge Kα and Kβ x-rays and the escape of photons after one Compton interaction. The relativistic impulse approximation is employed instead of the Klein-Nishina formula to describe incoherent photon scattering in the Ge crystal. We also incorporate a simple model for the continuous component of the spectrum produced by the escape of photo-electrons from the active volume. In our calculations we include external interaction contributions to the RF: (i) the incoherent scattering effects caused by the detector's Be window and (ii) the spectrum produced by photo-electrons emitted in the Ge dead layer that reach the active volume. The analytical RF model is compared with pulse-height spectra simulated using the PENELOPE Monte Carlo code.
The study of the Boltzmann equation of solid-gas two-phase flow with three-dimensional BGK model
NASA Astrophysics Data System (ADS)
Liu, Chang-jiang; Pang, Song; Xu, Qiang; He, Ling; Yang, Shao-peng; Qing, Yun-jie
2018-06-01
The motion of many solid-gas two-phase flows can be described by the Boltzmann equation. In order to simplify the Boltzmann equation, the convective-diffusion term is reserved and the collision term is replaced by the three-dimensional Bharnagar-Gross-Krook (BGK) model. Then the simplified Boltzmann equation is solved by homotopy perturbation method (HPM), and its approximate analytical solution is obtained. Through the analyzing, it is proved that the analytical solution satisfies all the constraint conditions, and its formation is in accord with the formation of the solution that is obtained by traditional Chapman-Enskog method, and the solving process of HPM is much more simple and convenient. This preliminarily shows the effectiveness and rapidness of HPM to solve the Boltzmann equation. The results obtained herein provide some theoretical basis for the further study of dynamic model of solid-gas two-phase flows, such as the sturzstrom of high-speed distant landslide caused by microseism and the sand storm caused by strong breeze.
NASA Astrophysics Data System (ADS)
Shinnaka, Shinji; Sano, Kousuke
This paper presents a new unified analysis of estimate errors by model-matching phase-estimation methods such as rotor-flux state-observers, back EMF state-observers, and back EMF disturbance-observers, for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using one of the model-matching phase-estimation methods.
Theoretical and computational analyses of LNG evaporator
NASA Astrophysics Data System (ADS)
Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong
2017-04-01
Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.
Energy conversion in isothermal nonlinear irreversible processes - struggling for higher efficiency
NASA Astrophysics Data System (ADS)
Ebeling, W.; Feistel, R.
2017-06-01
First we discuss some early work of Ulrike Feudel on structure formation in nonlinear reactions including ions and the efficiency of the conversion of chemical into electrical energy. Then we give some survey about isothermal energy conversion from chemical to higher forms of energy like mechanical, electrical and ecological energy. Isothermal means here that there are no temperature gradients within the model systems. We consider examples of energy conversion in several natural processes and in some devices like fuel cells. Further, as an example, we study analytically the dynamics and efficiency of a simple "active circuit" converting chemical into electrical energy and driving currents which is roughly modeling fuel cells. Finally we investigate an analogous ecological system of Lotka-Volterra type consisting of an "active species" consuming some passive "chemical food". We show analytically for both these models that the efficiency increases with the load, reaches values higher then 50 percent in a narrow regime of optimal load and goes beyond some maximal load abruptly to zero.
The Role of Nanoparticle Design in Determining Analytical Performance of Lateral Flow Immunoassays.
Zhan, Li; Guo, Shuang-Zhuang; Song, Fayi; Gong, Yan; Xu, Feng; Boulware, David R; McAlpine, Michael C; Chan, Warren C W; Bischof, John C
2017-12-13
Rapid, simple, and cost-effective diagnostics are needed to improve healthcare at the point of care (POC). However, the most widely used POC diagnostic, the lateral flow immunoassay (LFA), is ∼1000-times less sensitive and has a smaller analytical range than laboratory tests, requiring a confirmatory test to establish truly negative results. Here, a rational and systematic strategy is used to design the LFA contrast label (i.e., gold nanoparticles) to improve the analytical sensitivity, analytical detection range, and antigen quantification of LFAs. Specifically, we discovered that the size (30, 60, or 100 nm) of the gold nanoparticles is a main contributor to the LFA analytical performance through both the degree of receptor interaction and the ultimate visual or thermal contrast signals. Using the optimal LFA design, we demonstrated the ability to improve the analytical sensitivity by 256-fold and expand the analytical detection range from 3 log 10 to 6 log 10 for diagnosing patients with inflammatory conditions by measuring C-reactive protein. This work demonstrates that, with appropriate design of the contrast label, a simple and commonly used diagnostic technology can compete with more expensive state-of-the-art laboratory tests.
Tungsten devices in analytical atomic spectrometry
NASA Astrophysics Data System (ADS)
Hou, Xiandeng; Jones, Bradley T.
2002-04-01
Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.
A computationally tractable version of the collective model
NASA Astrophysics Data System (ADS)
Rowe, D. J.
2004-05-01
A computationally tractable version of the Bohr-Mottelson collective model is presented which makes it possible to diagonalize realistic collective models and obtain convergent results in relatively small appropriately chosen subspaces of the collective model Hilbert space. Special features of the proposed model are that it makes use of the beta wave functions given analytically by the softened-beta version of the Wilets-Jean model, proposed by Elliott et al., and a simple algorithm for computing SO(5)⊃SO(3) spherical harmonics. The latter has much in common with the methods of Chacon, Moshinsky, and Sharp but is conceptually and computationally simpler. Results are presented for collective models ranging from the spherical vibrator to the Wilets-Jean and axially symmetric rotor-vibrator models.
Numerical Solution of the Extended Nernst-Planck Model.
Samson; Marchand
1999-07-01
The main features of a numerical model aiming at predicting the drift of ions in an electrolytic solution upon a chemical potential gradient are presented. The mechanisms of ionic diffusion are described by solving the extended Nernst-Planck system of equations. The electrical coupling between the various ionic fluxes is accounted for by the Poisson equation. Furthermore, chemical activity effects are considered in the model. The whole system of nonlinear equations is solved using the finite-element method. Results yielded by the model for simple test cases are compared to those obtained using an analytical solution. Applications of the model to more complex problems are also presented and discussed. Copyright 1999 Academic Press.
Dynamics of Social Group Competition: Modeling the Decline of Religious Affiliation
NASA Astrophysics Data System (ADS)
Abrams, Daniel M.; Yaple, Haley A.; Wiener, Richard J.
2011-08-01
When social groups compete for members, the resulting dynamics may be understandable with mathematical models. We demonstrate that a simple ordinary differential equation (ODE) model is a good fit for religious shift by comparing it to a new international data set tracking religious nonaffiliation. We then generalize the model to include the possibility of nontrivial social interaction networks and examine the limiting case of a continuous system. Analytical and numerical predictions of this generalized system, which is robust to polarizing perturbations, match those of the original ODE model and justify its agreement with real-world data. The resulting predictions highlight possible causes of social shift and suggest future lines of research in both physics and sociology.
Unsteady hovering wake parameters identified from dynamic model tests, part 1
NASA Technical Reports Server (NTRS)
Hohenemser, K. H.; Crews, S. T.
1977-01-01
The development of a 4-bladed model rotor is reported that can be excited with a simple eccentric mechanism in progressing and regressing modes with either harmonic or transient inputs. Parameter identification methods were applied to the problem of extracting parameters for linear perturbation models, including rotor dynamic inflow effects, from the measured blade flapping responses to transient pitch stirring excitations. These perturbation models were then used to predict blade flapping response to other pitch stirring transient inputs, and rotor wake and blade flapping responses to harmonic inputs. The viability and utility of using parameter identification methods for extracting the perturbation models from transients are demonstrated through these combined analytical and experimental studies.
The Composition of the Y2K Meteor
NASA Astrophysics Data System (ADS)
Coulson, S. G.
During the Leonid meteor shower of November 1999 a very bright meteor train, subsequently called the Y2K meteor, was observed. Analysis of the trajectory of the meteor suggests that it was composed of two distinct materials. The bulk of the meteor was composed of a comet-like material, while a much smaller fraction was of a denser carbonaceous material. A simple model is used to analytically determine the mass of the meteor fragments.
Autocatalytic polymerization generates persistent random walk of crawling cells.
Sambeth, R; Baumgaertner, A
2001-05-28
The autocatalytic polymerization kinetics of the cytoskeletal actin network provides the basic mechanism for a persistent random walk of a crawling cell. It is shown that network remodeling by branching processes near the cell membrane is essential for the bimodal spatial stability of the network which induces a spontaneous breaking of isotropic cell motion. Details of the phenomena are analyzed using a simple polymerization model studied by analytical and simulation methods.
A one-parametric formula relating the frequencies of twin-peak quasi-periodic oscillations
NASA Astrophysics Data System (ADS)
Török, Gabriel; Goluchová, Kateřina; Šrámková, Eva; Horák, Jiří; Bakala, Pavel; Urbanec, Martin
2017-12-01
Timing analysis of X-ray flux in more than a dozen low-mass X-ray binary systems containing a neutron star reveals remarkable correlations between frequencies of two characteristic peaks present in the power-density spectra. We find a simple analytic relation that well reproduces all these individual correlations. We link this relation to a physical model which involves accretion rate modulation caused by an oscillating torus.
Simple functionalization method for single conical pores with a polydopamine layer
NASA Astrophysics Data System (ADS)
Horiguchi, Yukichi; Goda, Tatsuro; Miyahara, Yuji
2018-04-01
Resistive pulse sensing (RPS) is an interesting analytical system in which micro- to nanosized pores are used to evaluate particles or small analytes. Recently, molecular immobilization techniques to improve the performance of RPS have been reported. The problem in functionalization for RPS is that molecular immobilization by chemical reaction is restricted by the pore material type. Herein, a simple functionalization is performed using mussel-inspired polydopamine as an intermediate layer to connect the pore material with functional molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safigholi, H; Soliman, A; Song, W
Purpose: Brachytherapy treatment planning systems based on TG-43 protocol calculate the dose in water and neglects the heterogeneity effect of seeds in multi-seed implant brachytherapy. In this research, the accuracy of a novel analytical model that we propose for the inter-seed attenuation effect (ISA) for 103-Pd seed model is evaluated. Methods: In the analytical model, dose perturbation due to the ISA effect for each seed in an LDR multi-seed implant for 103-Pd is calculated by assuming that the seed of interest is active and the other surrounding seeds are inactive. The cumulative dosimetric effect of all seeds is then summedmore » using the superposition principle. The model is based on pre Monte Carlo (MC) simulated 3D kernels of the dose perturbations caused by the ISA effect. The cumulative ISA effect due to multiple surrounding seeds is obtained by a simple multiplication of the individual ISA effect by each seed, the effect of which is determined by the distance from the seed of interest. This novel algorithm is then compared with full MC water-based simulations (FMCW). Results: The results show that the dose perturbation model we propose is in excellent agreement with the FMCW values for a case with three seeds separated by 1 cm. The average difference of the model and the FMCW simulations was less than 8%±2%. Conclusion: Using the proposed novel analytical ISA effect model, one could expedite the corrections due to the ISA dose perturbation effects during permanent seed 103-Pd brachytherapy planning with minimal increase in time since the model is based on multiplications and superposition. This model can be applied, in principle, to any other brachytherapy seeds. Further work is necessary to validate this model on a more complicated geometry as well.« less
Targeted Analyte Detection by Standard Addition Improves Detection Limits in MALDI Mass Spectrometry
Eshghi, Shadi Toghi; Li, Xingde; Zhang, Hui
2014-01-01
Matrix-assisted laser desorption/ionization has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications. PMID:22877355
Toghi Eshghi, Shadi; Li, Xingde; Zhang, Hui
2012-09-18
Matrix-assisted laser desorption/ionization (MALDI) has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications.
On one-parametric formula relating the frequencies of twin-peak quasi-periodic oscillations
NASA Astrophysics Data System (ADS)
Török, Gabriel; Goluchová, Kateřina; Šrámková, Eva; Horák, Jiří; Bakala, Pavel; Urbanec, Martin
2018-01-01
Twin-peak quasi-periodic oscillations (QPOs) are observed in several low-mass X-ray binary systems containing neutron stars. Timing the analysis of X-ray fluxes of more than dozen of such systems reveals remarkable correlations between the frequencies of two characteristic peaks present in the power density spectra. The individual correlations clearly differ, but they roughly follow a common individual pattern. High values of measured QPO frequencies and strong modulation of the X-ray flux both suggest that the observed correlations are connected to orbital motion in the innermost part of an accretion disc. Several attempts to model these correlations with simple geodesic orbital models or phenomenological relations have failed in the past. We find and explore a surprisingly simple analytic relation that reproduces individual correlations for a group of several sources through a single parameter. When an additional free parameter is considered within our relation, it well reproduces the data of a large group of 14 sources. The very existence and form of this simple relation support the hypothesis of the orbital origin of QPOs and provide the key for further development of QPO models. We discuss a possible physical interpretation of our relation's parameters and their links to concrete QPO models.
Streamflow variability and optimal capacity of run-of-river hydropower plants
NASA Astrophysics Data System (ADS)
Basso, S.; Botter, G.
2012-10-01
The identification of the capacity of a run-of-river plant which allows for the optimal utilization of the available water resources is a challenging task, mainly because of the inherent temporal variability of river flows. This paper proposes an analytical framework to describe the energy production and the economic profitability of small run-of-river power plants on the basis of the underlying streamflow regime. We provide analytical expressions for the capacity which maximize the produced energy as a function of the underlying flow duration curve and minimum environmental flow requirements downstream of the plant intake. Similar analytical expressions are derived for the capacity which maximize the economic return deriving from construction and operation of a new plant. The analytical approach is applied to a minihydro plant recently proposed in a small Alpine catchment in northeastern Italy, evidencing the potential of the method as a flexible and simple design tool for practical application. The analytical model provides useful insight on the major hydrologic and economic controls (e.g., streamflow variability, energy price, costs) on the optimal plant capacity and helps in identifying policy strategies to reduce the current gap between the economic and energy optimizations of run-of-river plants.
Bassuoni, M M
2014-03-01
The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and -5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio.
Predictive Analytics In Healthcare: Medications as a Predictor of Medical Complexity.
Higdon, Roger; Stewart, Elizabeth; Roach, Jared C; Dombrowski, Caroline; Stanberry, Larissa; Clifton, Holly; Kolker, Natali; van Belle, Gerald; Del Beccaro, Mark A; Kolker, Eugene
2013-12-01
Children with special healthcare needs (CSHCN) require health and related services that exceed those required by most hospitalized children. A small but growing and important subset of the CSHCN group includes medically complex children (MCCs). MCCs typically have comorbidities and disproportionately consume healthcare resources. To enable strategic planning for the needs of MCCs, simple screens to identify potential MCCs rapidly in a hospital setting are needed. We assessed whether the number of medications used and the class of those medications correlated with MCC status. Retrospective analysis of medication data from the inpatients at Seattle Children's Hospital found that the numbers of inpatient and outpatient medications significantly correlated with MCC status. Numerous variables based on counts of medications, use of individual medications, and use of combinations of medications were considered, resulting in a simple model based on three different counts of medications: outpatient and inpatient drug classes and individual inpatient drug names. The combined model was used to rank the patient population for medical complexity. As a result, simple, objective admission screens for predicting the complexity of patients based on the number and type of medications were implemented.
Steady flow model user's guide
NASA Astrophysics Data System (ADS)
Doughty, C.; Hellstrom, G.; Tsang, C. F.; Claesson, J.
1984-07-01
Sophisticated numerical models that solve the coupled mass and energy transport equations for nonisothermal fluid flow in a porous medium were used to match analytical results and field data for aquifer thermal energy storage (ATES) systems. As an alternative to the ATES problem the Steady Flow Model (SFM), a simplified but fast numerical model was developed. A steady purely radial flow field is prescribed in the aquifer, and incorporated into the heat transport equation which is then solved numerically. While the radial flow assumption limits the range of ATES systems that can be studied using the SFM, it greatly simplifies use of this code. The preparation of input is quite simple compared to that for a sophisticated coupled mass and energy model, and the cost of running the SFM is far cheaper. The simple flow field allows use of a special calculational mesh that eliminates the numerical dispersion usually associated with the numerical solution of convection problems. The problem is defined, the algorithm used to solve it are outllined, and the input and output for the SFM is described.
Kuan, Hui-Shun; Betterton, Meredith D.
2016-01-01
Motor protein motion on biopolymers can be described by models related to the totally asymmetric simple exclusion process (TASEP). Inspired by experiments on the motion of kinesin-4 motors on antiparallel microtubule overlaps, we analyze a model incorporating the TASEP on two antiparallel lanes with binding kinetics and lane switching. We determine the steady-state motor density profiles using phase-plane analysis of the steady-state mean field equations and kinetic Monte Carlo simulations. We focus on the density-density phase plane, where we find an analytic solution to the mean field model. By studying the phase-space flows, we determine the model’s fixed points and their changes with parameters. Phases previously identified for the single-lane model occur for low switching rate between lanes. We predict a multiple coexistence phase due to additional fixed points that appear as the switching rate increases: switching moves motors from the higher-density to the lower-density lane, causing local jamming and creating multiple domain walls. We determine the phase diagram of the model for both symmetric and general boundary conditions. PMID:27627345
Quantum State Tomography via Linear Regression Estimation
Qi, Bo; Hou, Zhibo; Li, Li; Dong, Daoyi; Xiang, Guoyong; Guo, Guangcan
2013-01-01
A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed to estimate the unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be estimated is given analytically, which depends explicitly upon the involved measurement bases. This analytical MSE upper bound can guide one to choose optimal measurement sets. The computational complexity of LRE is O(d4) where d is the dimension of the quantum state. Numerical examples show that LRE is much faster than maximum-likelihood estimation for quantum state tomography. PMID:24336519
An Economical Semi-Analytical Orbit Theory for Retarded Satellite Motion About an Oblate Planet
NASA Technical Reports Server (NTRS)
Gordon, R. A.
1980-01-01
Brouwer and Brouwer-Lyddanes' use of the Von Zeipel-Delaunay method is employed to develop an efficient analytical orbit theory suitable for microcomputers. A succinctly simple pseudo-phenomenologically conceptualized algorithm is introduced which accurately and economically synthesizes modeling of drag effects. The method epitomizes and manifests effortless efficient computer mechanization. Simulated trajectory data is employed to illustrate the theory's ability to accurately accommodate oblateness and drag effects for microcomputer ground based or onboard predicted orbital representation. Real tracking data is used to demonstrate that the theory's orbit determination and orbit prediction capabilities are favorably adaptable to and are comparable with results obtained utilizing complex definitive Cowell method solutions on satellites experiencing significant drag effects.
A study of coherence of soft gluons in hadron jets
NASA Astrophysics Data System (ADS)
Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Clarke, P. E. L.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Debu, P.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Dumas, D. J. P.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gaidot, A.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Harrus, I.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Humbert, R.; Igo-Kemenes, P.; Ihssen, H.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Köpke, L.; Kowalewski, R.; Kreutzmann, H.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lee, A. M.; Lehto, M. H.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McNutt, J. R.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Pansart, J. P.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Singh, P.; Siroli, G. P.; Skuia, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; Van den plas, D.; VanDalen, G. J.; Vasseur, G.; Virtue, C. J.; von der Schmitt, H.; von Krogh, J.; Wagner, A.; Wahl, C.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wells, P. S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Yoshida, T.; Zeuner, W.; Zorn, G. T.; OPAL Collaboration
1990-09-01
We study the inclusive momentum distribution of charged particles in multihadronic events produced in e +e - annihilations at ECM∼ M(Z 0). We find agreement with the analytical formulae for gluon production that include the phenomena of soft gluon interference. Using data from CM energies between 14 and 91 GeV, we study the dependence of the inclusive momentum distribution on the centre of momentum energy. We find that the analytical formulae describe the data over the entire energy range. Both the momentum distribution at a fixed energy and the change with energy are described by QCD shower Monte Carlo's which include either coherent gluon branchings or string fragmentation. Simple incoherent models with independent fragmentation fail to reproduce the energy dependence and momentum spectra.
Muthu, Pravin; Lutz, Stefan
2016-04-05
Fast, simple and cost-effective methods for detecting and quantifying pharmaceutical agents in patients are highly sought after to replace equipment and labor-intensive analytical procedures. The development of new diagnostic technology including portable detection devices also enables point-of-care by non-specialists in resource-limited environments. We have focused on the detection and dose monitoring of nucleoside analogues used in viral and cancer therapies. Using deoxyribonucleoside kinases (dNKs) as biosensors, our chemometric model compares observed time-resolved kinetics of unknown analytes to known substrate interactions across multiple enzymes. The resulting dataset can simultaneously identify and quantify multiple nucleosides and nucleoside analogues in complex sample mixtures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An analytical formula for the longitudinal resonance frequencies of a fluid-filled crack
NASA Astrophysics Data System (ADS)
Maeda, Y.; Kumagai, H.
2013-12-01
The fluid-filled crack model (Chouet, 1986, JGR) simulates the resonances of a rectangular crack filled with an inviscid fluid embedded in a homogeneous isotropic elastic medium. The model demonstrates the existence of a slow wave, known as the crack wave, that propagates along the solid-fluid interfaces. The wave velocity depends on the crack stiffness. The model has been used to interpret the peak frequencies of long-period (LP) and very long period (VLP) seismic events at various volcanoes (Chouet and Matoza, 2013, JVGR). Up to now, crack model simulations have been performed using the finite difference (Chouet, 1986) and boundary integral (Yamamoto and Kawakatsu, 2008, GJI) methods. These methods require computationally extensive procedures to estimate the complex frequencies of crack resonance modes. Establishing an easier way to calculate the frequencies of crack resonances would help understanding of the observed frequencies. In this presentation, we propose a simple analytical formula for the longitudinal resonance frequencies of a fluid-filled crack. We first evaluated the analytical expression proposed by Kumagai (2009, Encyc. Complex. Sys. Sci.) through a comparison of the expression with the peak frequencies computed by a 2D version of the FDM code of Chouet (1986). Our comparison revealed that the equation of Kumagai (2009) shows discrepancies with the resonant frequencies computed by the FDM. We then modified the formula as fmL = (m-1)a/[2L(1+2ɛmLC)1/2], (1) where L is the crack length, a is the velocity of sound in the fluid, C is the crack stiffness, m is a positive integer defined such that the wavelength of the normal displacement on the crack surface is 2L/m, and ɛmL is a constant that depends on the longitudinal resonance modes. Excellent fits were obtained between the peak frequencies calculated by the FDM and by Eq. (1), suggesting that this equation is suitable for the resonant frequencies. We also performed 3D FDM computations of the longitudinal mode resonances. The peak frequencies computed by the FDM are well fitted by Eq. (1). The best-fit ɛmL values are different from those for 2D and depend on W/L, where W is the crack width. Eq. (1) shows that fmL is a simple analytical function of a/L and C given m and W/L. This enables simple and rapid interpretations of the source processes of LP events, including estimation of the fluid properties and crack geometries as well as identification of the resonance modes of the individual peak frequencies. LP events at volcanoes often exhibit peak frequency variations. In such cases, the frequency variations can be easily converted to variations in the fluid properties and crack geometries. We showed that Eq. (1) is consistent with the analytical solution for an infinite crack given by Ferrazzini and Aki (1987, JGR). Although a theoretical derivation of Eq. (1) was not obtained yet, Eq. (1) is consistent with the frequencies expected from the wavelengths of the fluid pressure variation.
[Developments in preparation and experimental method of solid phase microextraction fibers].
Yi, Xu; Fu, Yujie
2004-09-01
Solid phase microextraction (SPME) is a simple and effective adsorption and desorption technique, which concentrates volatile or nonvolatile compounds from liquid samples or headspace of samples. SPME is compatible with analyte separation and detection by gas chromatography, high performance liquid chromatography, and other instrumental methods. It can provide many advantages, such as wide linear scale, low solvent and sample consumption, short analytical times, low detection limits, simple apparatus, and so on. The theory of SPME is introduced, which includes equilibrium theory and non-equilibrium theory. The novel development of fiber preparation methods and relative experimental techniques are discussed. In addition to commercial fiber preparation, different newly developed fabrication techniques, such as sol-gel, electronic deposition, carbon-base adsorption, high-temperature epoxy immobilization, are presented. Effects of extraction modes, selection of fiber coating, optimization of operating conditions, method sensitivity and precision, and systematical automation, are taken into considerations in the analytical process of SPME. A simple perspective of SPME is proposed at last.
NASA Astrophysics Data System (ADS)
Bieniek, Ronald
2008-05-01
Rates for collisionally induced transitions between molecular vibrational levels are important in modeling a variety of non-LTE processes in astrophysical environments. Two examples are SiO masering in circumstellar envelopes in certain late-type stars [1] and the vibrational populations of molecular hydrogen in shocked interstellar medium [cf 2]. A simple exponential-potential model of molecular collisions leads to a two-parameter analytic expression for state-to-state and thermally averaged rates for collisionally induced vibrational-translational (VT) transitions in diatomic molecules [3,4]. The thermally averaged rates predicted by this formula have been shown to be in excellent numerical agreement with absolute experimental and quantum mechanical rates over large temperature ranges and initial vibrational excitation levels in a variety of species, e.g., OH, O2, N2 [3] and even for the rate of H2(v=1)+H2, which changes by five orders of magnitude in the temperature range 50-2000 K [4]. Analogous analytic rates will be reported for vibrational transitions in SiO due to collisions with H2 and compared to the numerical fit of quantum-mechanical rates calculated by Bieniek and Green [5]. [1] Palov, A.P., Gray, M.D., Field, D., & Balint-Kurti, G.G. 2006, ApJ, 639, 204. [2] Flower, D. 2007, Molecular Collisions in the Interstellar Medium (Cambridge: Cambridge Univ. Press) [3] Bieniek, R.J. & Lipson, S.J. 1996, Chem. Phys. Lett. 263, 276. [4] Bieniek, R.J. 2006, Proc. NASA LAW (Lab. Astrophys. Workshop) 2006, 299; http://www.physics.unlv.edu/labastro/nasalaw2006proceedings.pdf. [5] Bieniek, R.J., & Green, S. 1983, ApJ, 265, L29 and 1983, ApJ, 270, L101.
Gebauer, Petr; Malá, Zdena; Boček, Petr
2014-03-01
This contribution is the third part of the project on strategies used in the selection and tuning of electrolyte systems for anionic ITP with ESI-MS detection. The strategy presented here is based on the creation of self-maintained ITP subsystems in moving-boundary systems and describes two new principal approaches offering physical separation of analyte zones from their common ITP stack and/or simultaneous selective stacking of two different analyte groups. Both strategic directions are based on extending the number of components forming the electrolyte system by adding a third suitable anion. The first method is the application of the spacer technique to moving-boundary anionic ITP systems, the second method is a technique utilizing a moving-boundary ITP system in which two ITP subsystems exist and move with mutually different velocities. It is essential for ESI detection that both methods can be based on electrolyte systems containing only several simple chemicals, such as simple volatile organic acids (formic and acetic) and their ammonium salts. The properties of both techniques are defined theoretically and discussed from the viewpoint of their applicability to trace analysis by ITP-ESI-MS. Examples of system design for selected model separations of preservatives and pharmaceuticals illustrate the validity of the theoretical model and application potential of the proposed techniques by both computer simulations and experiments. Both new methods enhance the application range of ITP-MS and may be beneficial particularly for complex multicomponent samples or for analytes with identical molecular mass. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fretter, Christoph; Lesne, Annick; Hilgetag, Claus C.; Hütt, Marc-Thorsten
2017-01-01
Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience. PMID:28186182
Reflection of a polarized light cone
NASA Astrophysics Data System (ADS)
Brody, Jed; Weiss, Daniel; Berland, Keith
2013-01-01
We introduce a visually appealing experimental demonstration of Fresnel reflection. In this simple optical experiment, a polarized light beam travels through a high numerical-aperture microscope objective, reflects off a glass slide, and travels back through the same objective lens. The return beam is sampled with a polarizing beam splitter and produces a surprising geometric pattern on an observation screen. Understanding the origin of this pattern requires careful attention to geometry and an understanding of the Fresnel coefficients for S and P polarized light. We demonstrate that in addition to a relatively simple experimental implementation, the shape of the observed pattern can be computed both analytically and by using optical modeling software. The experience of working through complex mathematical computations and demonstrating their agreement with a surprising experimental observation makes this a highly educational experiment for undergraduate optics or advanced-lab courses. It also provides a straightforward yet non-trivial system for teaching students how to use optical modeling software.
Fretter, Christoph; Lesne, Annick; Hilgetag, Claus C; Hütt, Marc-Thorsten
2017-02-10
Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience.
NASA Astrophysics Data System (ADS)
Fretter, Christoph; Lesne, Annick; Hilgetag, Claus C.; Hütt, Marc-Thorsten
2017-02-01
Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience.
Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafleur, T.; Charles, C.; Boswell, R. W.
2011-08-15
It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm andmore » a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.« less
Richardson, Magnus J E
2007-08-01
Integrate-and-fire models are mainstays of the study of single-neuron response properties and emergent states of recurrent networks of spiking neurons. They also provide an analytical base for perturbative approaches that treat important biological details, such as synaptic filtering, synaptic conductance increase, and voltage-activated currents. Steady-state firing rates of both linear and nonlinear integrate-and-fire models, receiving fluctuating synaptic drive, can be calculated from the time-independent Fokker-Planck equation. The dynamic firing-rate response is less easy to extract, even at the first-order level of a weak modulation of the model parameters, but is an important determinant of neuronal response and network stability. For the linear integrate-and-fire model the response to modulations of current-based synaptic drive can be written in terms of hypergeometric functions. For the nonlinear exponential and quadratic models no such analytical forms for the response are available. Here it is demonstrated that a rather simple numerical method can be used to obtain the steady-state and dynamic response for both linear and nonlinear models to parameter modulation in the presence of current-based or conductance-based synaptic fluctuations. To complement the full numerical solution, generalized analytical forms for the high-frequency response are provided. A special case is also identified--time-constant modulation--for which the response to an arbitrarily strong modulation can be calculated exactly.
Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction
NASA Technical Reports Server (NTRS)
Lee, Seongkyu; Brentner, Kenneth S.; Farassat, Fereidoun
2007-01-01
The scattering of rotor noise is an area that has received little attention over the years, yet the limited work that has been done has shown that both the directivity and intensity of the acoustic field may be significantly modified by the presence of scattering bodies. One of the inputs needed to compute the scattered acoustic field is the acoustic pressure gradient on a scattering surface. Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. These formulations are presented in this paper. The first formulation is derived by taking the gradient of Farassat's retarded-time Formulation 1A. Although this formulation is relatively simple, it requires numerical time differentiation of the acoustic integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. The acoustic pressure gradient predicted by these new formulations is validated through comparison with the acoustic pressure gradient determined by a purely numerical approach for two model rotors. The agreement between analytic formulations and numerical method is excellent for both stationary and moving observers case.
Point spread functions and deconvolution of ultrasonic images.
Dalitz, Christoph; Pohle-Fröhlich, Regina; Michalk, Thorsten
2015-03-01
This article investigates the restoration of ultrasonic pulse-echo C-scan images by means of deconvolution with a point spread function (PSF). The deconvolution concept from linear system theory (LST) is linked to the wave equation formulation of the imaging process, and an analytic formula for the PSF of planar transducers is derived. For this analytic expression, different numerical and analytic approximation schemes for evaluating the PSF are presented. By comparing simulated images with measured C-scan images, we demonstrate that the assumptions of LST in combination with our formula for the PSF are a good model for the pulse-echo imaging process. To reconstruct the object from a C-scan image, we compare different deconvolution schemes: the Wiener filter, the ForWaRD algorithm, and the Richardson-Lucy algorithm. The best results are obtained with the Richardson-Lucy algorithm with total variation regularization. For distances greater or equal twice the near field distance, our experiments show that the numerically computed PSF can be replaced with a simple closed analytic term based on a far field approximation.
NASA Astrophysics Data System (ADS)
Ranamukhaarachchi, Sahan A.; Padeste, Celestino; Häfeli, Urs O.; Stoeber, Boris; Cadarso, Victor J.
2018-02-01
A hollow metallic microneedle is integrated with microfluidics and photonic components to form a microneedle-optofluidic biosensor suitable for therapeutic drug monitoring (TDM) in biological fluids, like interstitial fluid, that can be collected in a painless and minimally-invasive manner. The microneedle inner lumen surface is bio-functionalized to trap and bind target analytes on-site in a sample volume as small as 0.6 nl, and houses an enzyme-linked assay on its 0.06 mm2 wall. The optofluidic components are designed to rapidly quantify target analytes present in the sample and collected in the microneedle using a simple and sensitive absorbance scheme. This contribution describes how the biosensor components were optimized to detect in vitro streptavidin-horseradish peroxidase (Sav-HRP) as a model analyte over a large detection range (0-7.21 µM) and a very low limit of detection (60.2 nM). This biosensor utilizes the lowest analyte volume reported for TDM with microneedle technology, and presents significant avenues to improve current TDM methods for patients, by potentially eliminating blood draws for several drug candidates.
Simple versus complex models of trait evolution and stasis as a response to environmental change
NASA Astrophysics Data System (ADS)
Hunt, Gene; Hopkins, Melanie J.; Lidgard, Scott
2015-04-01
Previous analyses of evolutionary patterns, or modes, in fossil lineages have focused overwhelmingly on three simple models: stasis, random walks, and directional evolution. Here we use likelihood methods to fit an expanded set of evolutionary models to a large compilation of ancestor-descendant series of populations from the fossil record. In addition to the standard three models, we assess more complex models with punctuations and shifts from one evolutionary mode to another. As in previous studies, we find that stasis is common in the fossil record, as is a strict version of stasis that entails no real evolutionary changes. Incidence of directional evolution is relatively low (13%), but higher than in previous studies because our analytical approach can more sensitively detect noisy trends. Complex evolutionary models are often favored, overwhelmingly so for sequences comprising many samples. This finding is consistent with evolutionary dynamics that are, in reality, more complex than any of the models we consider. Furthermore, the timing of shifts in evolutionary dynamics varies among traits measured from the same series. Finally, we use our empirical collection of evolutionary sequences and a long and highly resolved proxy for global climate to inform simulations in which traits adaptively track temperature changes over time. When realistically calibrated, we find that this simple model can reproduce important aspects of our paleontological results. We conclude that observed paleontological patterns, including the prevalence of stasis, need not be inconsistent with adaptive evolution, even in the face of unstable physical environments.
Equivalent circuit models for interpreting impedance perturbation spectroscopy data
NASA Astrophysics Data System (ADS)
Smith, R. Lowell
2004-07-01
As in-situ structural integrity monitoring disciplines mature, there is a growing need to process sensor/actuator data efficiently in real time. Although smaller, faster embedded processors will contribute to this, it is also important to develop straightforward, robust methods to reduce the overall computational burden for practical applications of interest. This paper addresses the use of equivalent circuit modeling techniques for inferring structure attributes monitored using impedance perturbation spectroscopy. In pioneering work about ten years ago significant progress was associated with the development of simple impedance models derived from the piezoelectric equations. Using mathematical modeling tools currently available from research in ultrasonics and impedance spectroscopy is expected to provide additional synergistic benefits. For purposes of structural health monitoring the objective is to use impedance spectroscopy data to infer the physical condition of structures to which small piezoelectric actuators are bonded. Features of interest include stiffness changes, mass loading, and damping or mechanical losses. Equivalent circuit models are typically simple enough to facilitate the development of practical analytical models of the actuator-structure interaction. This type of parametric structure model allows raw impedance/admittance data to be interpreted optimally using standard multiple, nonlinear regression analysis. One potential long-term outcome is the possibility of cataloging measured viscoelastic properties of the mechanical subsystems of interest as simple lists of attributes and their statistical uncertainties, whose evolution can be followed in time. Equivalent circuit models are well suited for addressing calibration and self-consistency issues such as temperature corrections, Poisson mode coupling, and distributed relaxation processes.
Heterogeneity-induced large deviations in activity and (in some cases) entropy production
NASA Astrophysics Data System (ADS)
Gingrich, Todd R.; Vaikuntanathan, Suriyanarayanan; Geissler, Phillip L.
2014-10-01
We solve a simple model that supports a dynamic phase transition and show conditions for the existence of the transition. Using methods of large deviation theory we analytically compute the probability distribution for activity and entropy production rates of the trajectories on a large ring with a single heterogeneous link. The corresponding joint rate function demonstrates two dynamical phases—one localized and the other delocalized, but the marginal rate functions do not always exhibit the underlying transition. Symmetries in dynamic order parameters influence the observation of a transition, such that distributions for certain dynamic order parameters need not reveal an underlying dynamical bistability. Solution of our model system furthermore yields the form of the effective Markov transition matrices that generate dynamics in which the two dynamical phases are at coexistence. We discuss the implications of the transition for the response of bacterial cells to antibiotic treatment, arguing that even simple models of a cell cycle lacking an explicit bistability in configuration space will exhibit a bistability of dynamical phases.
Surface roughness effects on the solar reflectance of cool asphalt shingles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, Hashem; Berdahl, Paul; Akbari, Hashem
2008-02-17
We analyze the solar reflectance of asphalt roofing shingles that are covered with pigmented mineral roofing granules. The reflecting surface is rough, with a total area approximately twice the nominal area. We introduce a simple analytical model that relates the 'micro-reflectance' of a small surface region to the 'macro-reflectance' of the shingle. This model uses a mean field approximation to account for multiple scattering effects. The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are known. Simple linear averaging works well, with smallmore » corrections to linear averaging derived for highly reflective materials. Reflective base granules and reflective surface coatings aid achievement of high solar reflectance. Other factors that influence the solar reflectance are the size distribution of the granules, coverage of the asphalt substrate, and orientation of the granules as affected by rollers during fabrication.« less
NASA Technical Reports Server (NTRS)
Lindholm, F. A.
1982-01-01
The derivation of a simple expression for the capacitance C(V) associated with the transition region of a p-n junction under a forward bias is derived by phenomenological reasoning. The treatment of C(V) is based on the conventional Shockley equations, and simpler expressions for C(V) result that are in general accord with the previous analytical and numerical results. C(V) consists of two components resulting from changes in majority carrier concentration and from free hole and electron accumulation in the space-charge region. The space-charge region is conceived as the intrinsic region of an n-i-p structure for a space-charge region markedly wider than the extrinsic Debye lengths at its edges. This region is excited in the sense that the forward bias creates hole and electron densities orders of magnitude larger than those in equilibrium. The recent Shirts-Gordon (1979) modeling of the space-charge region using a dielectric response function is contrasted with the more conventional Schottky-Shockley modeling.
Pulsed Rabi oscillations in quantum two-level systems: beyond the area theorem
NASA Astrophysics Data System (ADS)
Fischer, Kevin A.; Hanschke, Lukas; Kremser, Malte; Finley, Jonathan J.; Müller, Kai; Vučković, Jelena
2018-01-01
The area theorem states that when a short optical pulse drives a quantum two-level system, it undergoes Rabi oscillations in the probability of scattering a single photon. In this work, we investigate the breakdown of the area theorem as both the pulse length becomes non-negligible and for certain pulse areas. Using simple quantum trajectories, we provide an analytic approximation to the photon emission dynamics of a two-level system. Our model provides an intuitive way to understand re-excitation, which elucidates the mechanism behind the two-photon emission events that can spoil single-photon emission. We experimentally measure the emission statistics from a semiconductor quantum dot, acting as a two-level system, and show good agreement with our simple model for short pulses. Additionally, the model clearly explains our recent results (Fischer and Hanschke 2017 et al Nat. Phys.) showing dominant two-photon emission from a two-level system for pulses with interaction areas equal to an even multiple of π.
A ricin forensic profiling approach based on a complex set of biomarkers.
Fredriksson, Sten-Åke; Wunschel, David S; Lindström, Susanne Wiklund; Nilsson, Calle; Wahl, Karen; Åstot, Crister
2018-08-15
A forensic method for the retrospective determination of preparation methods used for illicit ricin toxin production was developed. The method was based on a complex set of biomarkers, including carbohydrates, fatty acids, seed storage proteins, in combination with data on ricin and Ricinus communis agglutinin. The analyses were performed on samples prepared from four castor bean plant (R. communis) cultivars by four different sample preparation methods (PM1-PM4) ranging from simple disintegration of the castor beans to multi-step preparation methods including different protein precipitation methods. Comprehensive analytical data was collected by use of a range of analytical methods and robust orthogonal partial least squares-discriminant analysis- models (OPLS-DA) were constructed based on the calibration set. By the use of a decision tree and two OPLS-DA models, the sample preparation methods of test set samples were determined. The model statistics of the two models were good and a 100% rate of correct predictions of the test set was achieved. Copyright © 2018 Elsevier B.V. All rights reserved.
A new method to optimize natural convection heat sinks
NASA Astrophysics Data System (ADS)
Lampio, K.; Karvinen, R.
2017-08-01
The performance of a heat sink cooled by natural convection is strongly affected by its geometry, because buoyancy creates flow. Our model utilizes analytical results of forced flow and convection, and only conduction in a solid, i.e., the base plate and fins, is solved numerically. Sufficient accuracy for calculating maximum temperatures in practical applications is proved by comparing the results of our model with some simple analytical and computational fluid dynamics (CFD) solutions. An essential advantage of our model is that it cuts down on calculation CPU time by many orders of magnitude compared with CFD. The shorter calculation time makes our model well suited for multi-objective optimization, which is the best choice for improving heat sink geometry, because many geometrical parameters with opposite effects influence the thermal behavior. In multi-objective optimization, optimal locations of components and optimal dimensions of the fin array can be found by simultaneously minimizing the heat sink maximum temperature, size, and mass. This paper presents the principles of the particle swarm optimization (PSO) algorithm and applies it as a basis for optimizing existing heat sinks.
NASA Astrophysics Data System (ADS)
Sanchez-Parcerisa, D.; Cortés-Giraldo, M. A.; Dolney, D.; Kondrla, M.; Fager, M.; Carabe, A.
2016-02-01
In order to integrate radiobiological modelling with clinical treatment planning for proton radiotherapy, we extended our in-house treatment planning system FoCa with a 3D analytical algorithm to calculate linear energy transfer (LET) in voxelized patient geometries. Both active scanning and passive scattering delivery modalities are supported. The analytical calculation is much faster than the Monte-Carlo (MC) method and it can be implemented in the inverse treatment planning optimization suite, allowing us to create LET-based objectives in inverse planning. The LET was calculated by combining a 1D analytical approach including a novel correction for secondary protons with pencil-beam type LET-kernels. Then, these LET kernels were inserted into the proton-convolution-superposition algorithm in FoCa. The analytical LET distributions were benchmarked against MC simulations carried out in Geant4. A cohort of simple phantom and patient plans representing a wide variety of sites (prostate, lung, brain, head and neck) was selected. The calculation algorithm was able to reproduce the MC LET to within 6% (1 standard deviation) for low-LET areas (under 1.7 keV μm-1) and within 22% for the high-LET areas above that threshold. The dose and LET distributions can be further extended, using radiobiological models, to include radiobiological effectiveness (RBE) calculations in the treatment planning system. This implementation also allows for radiobiological optimization of treatments by including RBE-weighted dose constraints in the inverse treatment planning process.
Sanchez-Parcerisa, D; Cortés-Giraldo, M A; Dolney, D; Kondrla, M; Fager, M; Carabe, A
2016-02-21
In order to integrate radiobiological modelling with clinical treatment planning for proton radiotherapy, we extended our in-house treatment planning system FoCa with a 3D analytical algorithm to calculate linear energy transfer (LET) in voxelized patient geometries. Both active scanning and passive scattering delivery modalities are supported. The analytical calculation is much faster than the Monte-Carlo (MC) method and it can be implemented in the inverse treatment planning optimization suite, allowing us to create LET-based objectives in inverse planning. The LET was calculated by combining a 1D analytical approach including a novel correction for secondary protons with pencil-beam type LET-kernels. Then, these LET kernels were inserted into the proton-convolution-superposition algorithm in FoCa. The analytical LET distributions were benchmarked against MC simulations carried out in Geant4. A cohort of simple phantom and patient plans representing a wide variety of sites (prostate, lung, brain, head and neck) was selected. The calculation algorithm was able to reproduce the MC LET to within 6% (1 standard deviation) for low-LET areas (under 1.7 keV μm(-1)) and within 22% for the high-LET areas above that threshold. The dose and LET distributions can be further extended, using radiobiological models, to include radiobiological effectiveness (RBE) calculations in the treatment planning system. This implementation also allows for radiobiological optimization of treatments by including RBE-weighted dose constraints in the inverse treatment planning process.
Light distribution in diffractive multifocal optics and its optimization.
Portney, Valdemar
2011-11-01
To expand a geometrical model of diffraction efficiency and its interpretation to the multifocal optic and to introduce formulas for analysis of far and near light distribution and their application to multifocal intraocular lenses (IOLs) and to diffraction efficiency optimization. Medical device consulting firm, Newport Coast, California, USA. Experimental study. Application of a geometrical model to the kinoform (single focus diffractive optical element) was expanded to a multifocal optic to produce analytical definitions of light split between far and near images and light loss to other diffraction orders. The geometrical model gave a simple interpretation of light split in a diffractive multifocal IOL. An analytical definition of light split between far, near, and light loss was introduced as curve fitting formulas. Several examples of application to common multifocal diffractive IOLs were developed; for example, to light-split change with wavelength. The analytical definition of diffraction efficiency may assist in optimization of multifocal diffractive optics that minimize light loss. Formulas for analysis of light split between different foci of multifocal diffractive IOLs are useful in interpreting diffraction efficiency dependence on physical characteristics, such as blaze heights of the diffractive grooves and wavelength of light, as well as for optimizing multifocal diffractive optics. Disclosure is found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
A mean spherical model for soft potentials: The hard core revealed as a perturbation
NASA Technical Reports Server (NTRS)
Rosenfeld, Y.; Ashcroft, N. W.
1978-01-01
The mean spherical approximation for fluids is extended to treat the case of dense systems interacting via soft-potentials. The extension takes the form of a generalized statement concerning the behavior of the direct correlation function c(r) and radial distribution g(r). From a detailed analysis that views the hard core portion of a potential as a perturbation on the whole, a specific model is proposed which possesses analytic solutions for both Coulomb and Yukawa potentials, in addition to certain other remarkable properties. A variational principle for the model leads to a relatively simple method for obtaining numerical solutions.
Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics
Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; ...
2017-01-03
In this paper, we present a consistent implicit incompressible smoothed particle hydrodynamics (I 2SPH) discretization of Navier–Stokes, Poisson–Boltzmann, and advection–diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The accuracy and convergence of the consistent I 2SPH are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. Lastly, the new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.
Towards a model of pion generalized parton distributions from Dyson-Schwinger equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moutarde, H.
2015-04-10
We compute the pion quark Generalized Parton Distribution H{sup q} and Double Distributions F{sup q} and G{sup q} in a coupled Bethe-Salpeter and Dyson-Schwinger approach. We use simple algebraic expressions inspired by the numerical resolution of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly check the support and polynomiality properties, and the behavior under charge conjugation or time invariance of our model. We derive analytic expressions for the pion Double Distributions and Generalized Parton Distribution at vanishing pion momentum transfer at a low scale. Our model compares very well to experimental pion form factor or parton distribution function data.
Explosion of comet Shoemaker-Levy 9 on entry into the Jovian atmosphere
NASA Technical Reports Server (NTRS)
Mac Low, Mordecai-Mark; Zahnle, Kevin
1994-01-01
We use the astrophysical hydrocode ZEUS to compute high-resolution models of the disruption and deceleration of cometary fragments striking Jupiter. We find that simple analytic and semianalytic models work well for kilometer-size impactors. We show that previous numerical models that placed the explosion much deeper in the atmosphere failed to fully resolve important gasdynamical instabilities. These instabilities tear the comet apart, greatly increase its effective cross section, and bring it to an abrupt halt. A 1 km diameter fragment loses over 90% of its kinetic energy within a single scale height at an atmospheric pressure of order 10 bars. For all practical purposes, it explodes.
Fatigue crack growth with single overload - Measurement and modeling
NASA Technical Reports Server (NTRS)
Davidson, D. L.; Hudak, S. J., Jr.; Dexter, R. J.
1987-01-01
This paper compares experiments with an analytical model of fatigue crack growth under variable amplitude. The stereoimaging technique was used to measure displacements near the tips of fatigue cracks undergoing simple variations in load amplitude-single overloads and overload/underload combinations. Measured displacements were used to compute strains, and stresses were determined from the strains. Local values of crack driving force (Delta-K effective) were determined using both locally measured opening loads and crack tip opening displacements. Experimental results were compared with simulations made for the same load variation conditions using Newman's FAST-2 model. Residual stresses caused by overloads, crack opening loads, and growth retardation periods were compared.
NASA Astrophysics Data System (ADS)
Massip, Florian; Arndt, Peter F.
2013-04-01
Recently, an enrichment of identical matching sequences has been found in many eukaryotic genomes. Their length distribution exhibits a power law tail raising the question of what evolutionary mechanism or functional constraints would be able to shape this distribution. Here we introduce a simple and evolutionarily neutral model, which involves only point mutations and segmental duplications, and produces the same statistical features as observed for genomic data. Further, we extend a mathematical model for random stick breaking to analytically show that the exponent of the power law tail is -3 and universal as it does not depend on the microscopic details of the model.
Sample distribution in peak mode isotachophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, Shimon; Schwartz, Ortal; Bercovici, Moran, E-mail: mberco@technion.ac.il
We present an analytical study of peak mode isotachophoresis (ITP), and provide closed form solutions for sample distribution and electric field, as well as for leading-, trailing-, and counter-ion concentration profiles. Importantly, the solution we present is valid not only for the case of fully ionized species, but also for systems of weak electrolytes which better represent real buffer systems and for multivalent analytes such as proteins and DNA. The model reveals two major scales which govern the electric field and buffer distributions, and an additional length scale governing analyte distribution. Using well-controlled experiments, and numerical simulations, we verify andmore » validate the model and highlight its key merits as well as its limitations. We demonstrate the use of the model for determining the peak concentration of focused sample based on known buffer and analyte properties, and show it differs significantly from commonly used approximations based on the interface width alone. We further apply our model for studying reactions between multiple species having different effective mobilities yet co-focused at a single ITP interface. We find a closed form expression for an effective-on rate which depends on reactants distributions, and derive the conditions for optimizing such reactions. Interestingly, the model reveals that maximum reaction rate is not necessarily obtained when the concentration profiles of the reacting species perfectly overlap. In addition to the exact solutions, we derive throughout several closed form engineering approximations which are based on elementary functions and are simple to implement, yet maintain the interplay between the important scales. Both the exact and approximate solutions provide insight into sample focusing and can be used to design and optimize ITP-based assays.« less
Practical limitations on the use of diurnal temperature signals to quantify groundwater upwelling
Briggs, Martin A.; Lautz, Laura K.; Buckley, Sean F.; Lane, John W.
2014-01-01
Groundwater upwelling to streams creates unique habitat by influencing stream water quality and temperature; upwelling zones also serve as vectors for contamination when groundwater is degraded. Temperature time series data acquired along vertical profiles in the streambed have been applied to simple analytical models to determine rates of vertical fluid flux. These models are based on the downward propagation characteristics (amplitude attenuation and phase-lag) of the surface diurnal signal. Despite the popularity of these models, there are few published characterizations of moderate-to-strong upwelling. We attribute this limitation to the thermodynamics of upwelling, under which the downward conductive signal transport from the streambed interface occurs opposite the upward advective fluid flux. Governing equations describing the advection–diffusion of heat within the streambed predict that under upwelling conditions, signal amplitude attenuation will increase, but, counterintuitively, phase-lag will decrease. Therefore the extinction (measurable) depth of the diurnal signal is very shallow, but phase lag is also short, yielding low signal to noise ratio and poor model sensitivity. Conversely, amplitude attenuation over similar sensor spacing is strong, yielding greater potential model sensitivity. Here we present streambed thermal time series over a range of moderate to strong upwelling sites in the Quashnet River, Cape Cod, Massachusetts. The predicted inverse relationship between phase-lag and rate of upwelling was observed in the field data over a range of conditions, but the observed phase-lags were consistently shorter than predicted. Analytical solutions for fluid flux based on signal amplitude attenuation return results consistent with numerical models and physical seepage meters, but the phase-lag analytical model results are generally unreasonable. Through numerical modeling we explore reasons why phase-lag may have been over-predicted by the analytical models, and develop guiding relations of diurnal temperature signal extinction depth based on stream diurnal signal amplitude, upwelling magnitude, and streambed thermal properties that will be useful in designing future experiments.
NASA Astrophysics Data System (ADS)
Hajigeorgiou, Photos G.
2016-12-01
An analytical model for the diatomic potential energy function that was recently tested as a universal function (Hajigeorgiou, 2010) has been further modified and tested as a suitable model for direct-potential-fit analysis. Applications are presented for the ground electronic states of three diatomic molecules: oxygen, carbon monoxide, and hydrogen fluoride. The adjustable parameters of the extended Lennard-Jones potential model are determined through nonlinear regression by fits to calculated rovibrational energy term values or experimental spectroscopic line positions. The model is shown to lead to reliable, compact and simple representations for the potential energy functions of these systems and could therefore be classified as a suitable and attractive model for direct-potential-fit analysis.
Egorov, Vladimir V
2017-05-01
Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E.
2017-01-01
Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E. PMID:28572984
NASA Astrophysics Data System (ADS)
Egorov, Vladimir V.
2017-05-01
Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E.
Baciocchi, Renato; Berardi, Simona; Verginelli, Iason
2010-09-15
Clean-up of contaminated sites is usually based on a risk-based approach for the definition of the remediation goals, which relies on the well known ASTM-RBCA standard procedure. In this procedure, migration of contaminants is described through simple analytical models and the source contaminants' concentration is supposed to be constant throughout the entire exposure period, i.e. 25-30 years. The latter assumption may often result over-protective of human health, leading to unrealistically low remediation goals. The aim of this work is to propose an alternative model taking in account the source depletion, while keeping the original simplicity and analytical form of the ASTM-RBCA approach. The results obtained by the application of this model are compared with those provided by the traditional ASTM-RBCA approach, by a model based on the source depletion algorithm of the RBCA ToolKit software and by a numerical model, allowing to assess its feasibility for inclusion in risk analysis procedures. The results discussed in this work are limited to on-site exposure to contaminated water by ingestion, but the approach proposed can be extended to other exposure pathways. Copyright 2010 Elsevier B.V. All rights reserved.
An analytical solubility model for nitrogen-methane-ethane ternary mixtures
NASA Astrophysics Data System (ADS)
Hartwig, Jason; Meyerhofer, Peter; Lorenz, Ralph; Lemmon, Eric
2018-01-01
Saturn's moon Titan has surface liquids of liquid hydrocarbons and a thick, cold, nitrogen atmosphere, and is a target for future exploration. Critical to the design and operation of vehicles for this environment is knowledge of the amount of dissolved nitrogen gas within the cryogenic liquid methane and ethane seas. This paper rigorously reviews experimental data on the vapor-liquid equilibrium of nitrogen/methane/ethane mixtures, noting the possibility for split liquid phases, and presents simple analytical models for conveniently predicting solubility of nitrogen in pure liquid ethane, pure liquid methane, and a mixture of liquid ethane and methane. Model coefficients are fit to three temperature ranges near the critical point, intermediate range, and near the freezing point to permit accurate predictions across the full range of thermodynamic conditions. The models are validated against the consolidated database of 2356 experimental data points, with mean absolute error between data and model less than 8% for both binary nitrogen/methane and nitrogen/ethane systems, and less than 17% for the ternary nitrogen/methane/ethane system. The model can be used to predict the mole fractions of ethane, methane, and nitrogen as a function of location within the Titan seas.
NASA Astrophysics Data System (ADS)
Holgate, J. T.; Coppins, M.
2018-04-01
Plasma-surface interactions are ubiquitous in the field of plasma science and technology. Much of the physics of these interactions can be captured with a simple model comprising a cold ion fluid and electrons which satisfy the Boltzmann relation. However, this model permits analytical solutions in a very limited number of cases. This paper presents a versatile and robust numerical implementation of the model for arbitrary surface geometries in cartesian and axisymmetric cylindrical coordinates. Specific examples of surfaces with sinusoidal corrugations, trenches, and hemi-ellipsoidal protrusions verify this numerical implementation. The application of the code to problems involving plasma-liquid interactions, plasma etching, and electron emission from the surface is discussed.
Exact solution of a model DNA-inversion genetic switch with orientational control.
Visco, Paolo; Allen, Rosalind J; Evans, Martin R
2008-09-12
DNA inversion is an important mechanism by which bacteria and bacteriophage switch reversibly between phenotypic states. In such switches, the orientation of a short DNA element is flipped by a site-specific recombinase enzyme. We propose a simple model for a DNA-inversion switch in which recombinase production is dependent on the switch state (orientational control). Our model is inspired by the fim switch in E. coli. We present an exact analytical solution of the chemical master equation for the model switch, as well as stochastic simulations. Orientational control causes the switch to deviate from Poissonian behavior: the distribution of times in the on state shows a peak and successive flip times are correlated.
Simulation of charge exchange plasma propagation near an ion thruster propelled spacecraft
NASA Technical Reports Server (NTRS)
Robinson, R. S.; Kaufman, H. R.; Winder, D. R.
1981-01-01
A model describing the charge exchange plasma and its propagation is discussed, along with a computer code based on the model. The geometry of an idealized spacecraft having an ion thruster is outlined, with attention given to the assumptions used in modeling the ion beam. Also presented is the distribution function describing charge exchange production. The barometric equation is used in relating the variation in plasma potential to the variation in plasma density. The numerical methods and approximations employed in the calculations are discussed, and comparisons are made between the computer simulation and experimental data. An analytical solution of a simple configuration is also used in verifying the model.
Deviation of Long-Period Tides from Equilibrium: Kinematics and Geostrophy
NASA Technical Reports Server (NTRS)
Egbert, Gary D.; Ray, Richard D.
2003-01-01
New empirical estimates of the long-period fortnightly (Mf) tide obtained from TOPEX/Poseidon (T/P) altimeter data confirm significant basin-scale deviations from equilibrium. Elevations in the low-latitude Pacific have reduced amplitude and lag those in the Atlantic by 30 deg or more. These interbasin amplitude and phase variations are robust features that are reproduced by numerical solutions of the shallow-water equations, even for a constant-depth ocean with schematic interconnected rectangular basins. A simplified analytical model for cooscillating connected basins also reproduces the principal features observed in the empirical solutions. This simple model is largely kinematic. Zonally averaged elevations within a simple closed basin would be nearly in equilibrium with the gravitational potential, except for a constant offset required to conserve mass. With connected basins these offsets are mostly eliminated by interbasin mass flux. Because of rotation, this flux occurs mostly in a narrow boundary layer across the mouth and at the western edge of each basin, and geostrophic balance in this zone supports small residual offsets (and phase shifts) between basins. The simple model predicts that this effect should decrease roughly linearly with frequency, a result that is confirmed by numerical modeling and empirical T/P estimates of the monthly (Mm) tidal constituent. This model also explains some aspects of the anomalous nonisostatic response of the ocean to atmospheric pressure forcing at periods of around 5 days.
An analytic solution of the stochastic storage problem applicable to soil water
Milly, P.C.D.
1993-01-01
The accumulation of soil water during rainfall events and the subsequent depletion of soil water by evaporation between storms can be described, to first order, by simple accounting models. When the alternating supplies (precipitation) and demands (potential evaporation) are viewed as random variables, it follows that soil-water storage, evaporation, and runoff are also random variables. If the forcing (supply and demand) processes are stationary for a sufficiently long period of time, an asymptotic regime should eventually be reached where the probability distribution functions of storage, evaporation, and runoff are stationary and uniquely determined by the distribution functions of the forcing. Under the assumptions that the potential evaporation rate is constant, storm arrivals are Poisson-distributed, rainfall is instantaneous, and storm depth follows an exponential distribution, it is possible to derive the asymptotic distributions of storage, evaporation, and runoff analytically for a simple balance model. A particular result is that the fraction of rainfall converted to runoff is given by (1 - R−1)/(eα(1−R−1) − R−1), in which R is the ratio of mean potential evaporation to mean rainfall and a is the ratio of soil water-holding capacity to mean storm depth. The problem considered here is analogous to the well-known problem of storage in a reservoir behind a dam, for which the present work offers a new solution for reservoirs of finite capacity. A simple application of the results of this analysis suggests that random, intraseasonal fluctuations of precipitation cannot by themselves explain the observed dependence of the annual water balance on annual totals of precipitation and potential evaporation.
Cosmological Perturbation Theory and the Spherical Collapse model - I. Gaussian initial conditions
NASA Astrophysics Data System (ADS)
Fosalba, Pablo; Gaztanaga, Enrique
1998-12-01
We present a simple and intuitive approximation for solving the perturbation theory (PT) of small cosmic fluctuations. We consider only the spherically symmetric or monopole contribution to the PT integrals, which yields the exact result for tree-graphs (i.e. at leading order). We find that the non-linear evolution in Lagrangian space is then given by a simple local transformation over the initial conditions, although it is not local in Euler space. This transformation is found to be described by the spherical collapse (SC) dynamics, as it is the exact solution in the shearless (and therefore local) approximation in Lagrangian space. Taking advantage of this property, it is straightforward to derive the one-point cumulants, xi_J, for both the unsmoothed and smoothed density fields to arbitrary order in the perturbative regime. To leading-order this reproduces, and provides us with a simple explanation for, the exact results obtained by Bernardeau. We then show that the SC model leads to accurate estimates for the next corrective terms when compared with the results derived in the exact perturbation theory making use of the loop calculations. The agreement is within a few per cent for the hierarchical ratios S_J=xi_J/xi^J-1_2. We compare our analytic results with N-body simulations, which turn out to be in very good agreement up to scales where sigma~1. A similar treatment is presented to estimate higher order corrections in the Zel'dovich approximation. These results represent a powerful and readily usable tool to produce analytical predictions that describe the gravitational clustering of large-scale structure in the weakly non-linear regime.
USDA-ARS?s Scientific Manuscript database
A wide range of analytical techniques are available for the detection, quantitation, and evaluation of vitamin K in foods. The methods vary from simple to complex depending on extraction, separation, identification and detection of the analyte. Among the extraction methods applied for vitamin K anal...
2011-09-01
Crawford, K., " Time - Resolved Infrared Spectrophotometric Observations of IRIDIUM satellites and related Resident Space Objects", IAC-09-A6.1.17...Figure 10 for a geosynchronous (GEO) satellite . The figure shows three sets of multi-spectral signatures were collected at different times of the...provides a simple method to determine suitable observation conditions for the cluster of satellites . For instance, on Day 0, the times of the
The effect of stimulus strength on the speed and accuracy of a perceptual decision.
Palmer, John; Huk, Alexander C; Shadlen, Michael N
2005-05-02
Both the speed and the accuracy of a perceptual judgment depend on the strength of the sensory stimulation. When stimulus strength is high, accuracy is high and response time is fast; when stimulus strength is low, accuracy is low and response time is slow. Although the psychometric function is well established as a tool for analyzing the relationship between accuracy and stimulus strength, the corresponding chronometric function for the relationship between response time and stimulus strength has not received as much consideration. In this article, we describe a theory of perceptual decision making based on a diffusion model. In it, a decision is based on the additive accumulation of sensory evidence over time to a bound. Combined with simple scaling assumptions, the proportional-rate and power-rate diffusion models predict simple analytic expressions for both the chronometric and psychometric functions. In a series of psychophysical experiments, we show that this theory accounts for response time and accuracy as a function of both stimulus strength and speed-accuracy instructions. In particular, the results demonstrate a close coupling between response time and accuracy. The theory is also shown to subsume the predictions of Piéron's Law, a power function dependence of response time on stimulus strength. The theory's analytic chronometric function allows one to extend theories of accuracy to response time.
Sriyudthsak, Kansuporn; Iwata, Michio; Hirai, Masami Yokota; Shiraishi, Fumihide
2014-06-01
The availability of large-scale datasets has led to more effort being made to understand characteristics of metabolic reaction networks. However, because the large-scale data are semi-quantitative, and may contain biological variations and/or analytical errors, it remains a challenge to construct a mathematical model with precise parameters using only these data. The present work proposes a simple method, referred to as PENDISC (Parameter Estimation in a N on- DImensionalized S-system with Constraints), to assist the complex process of parameter estimation in the construction of a mathematical model for a given metabolic reaction system. The PENDISC method was evaluated using two simple mathematical models: a linear metabolic pathway model with inhibition and a branched metabolic pathway model with inhibition and activation. The results indicate that a smaller number of data points and rate constant parameters enhances the agreement between calculated values and time-series data of metabolite concentrations, and leads to faster convergence when the same initial estimates are used for the fitting. This method is also shown to be applicable to noisy time-series data and to unmeasurable metabolite concentrations in a network, and to have a potential to handle metabolome data of a relatively large-scale metabolic reaction system. Furthermore, it was applied to aspartate-derived amino acid biosynthesis in Arabidopsis thaliana plant. The result provides confirmation that the mathematical model constructed satisfactorily agrees with the time-series datasets of seven metabolite concentrations.
Determination of the transmission coefficients for quantum structures using FDTD method.
Peng, Yangyang; Wang, Xiaoying; Sui, Wenquan
2011-12-01
The purpose of this work is to develop a simple method to incorporate quantum effect in traditional finite-difference time-domain (FDTD) simulators. Witch could make it possible to co-simulate systems include quantum structures and traditional components. In this paper, tunneling transmission coefficient is calculated by solving time-domain Schrödinger equation with a developed FDTD technique, called FDTD-S method. To validate the feasibility of the method, a simple resonant tunneling diode (RTD) structure model has been simulated using the proposed method. The good agreement between the numerical and analytical results proves its accuracy. The effectness and accuracy of this approach makes it a potential method for analysis and design of hybrid systems includes quantum structures and traditional components.
Capillarity Guided Patterning of Microliquids.
Kang, Myeongwoo; Park, Woohyun; Na, Sangcheol; Paik, Sang-Min; Lee, Hyunjae; Park, Jae Woo; Kim, Ho-Young; Jeon, Noo Li
2015-06-01
Soft lithography and other techniques have been developed to investigate biological and chemical phenomena as an alternative to photolithography-based patterning methods that have compatibility problems. Here, a simple approach for nonlithographic patterning of liquids and gels inside microchannels is described. Using a design that incorporates strategically placed microstructures inside the channel, microliquids or gels can be spontaneously trapped and patterned when the channel is drained. The ability to form microscale patterns inside microfluidic channels using simple fluid drain motion offers many advantages. This method is geometrically analyzed based on hydrodynamics and verified with simulation and experiments. Various materials (i.e., water, hydrogels, and other liquids) are successfully patterned with complex shapes that are isolated from each other. Multiple cell types are patterned within the gels. Capillarity guided patterning (CGP) is fast, simple, and robust. It is not limited by pattern shape, size, cell type, and material. In a simple three-step process, a 3D cancer model that mimics cell-cell and cell-extracellular matrix interactions is engineered. The simplicity and robustness of the CGP will be attractive for developing novel in vitro models of organ-on-a-chip and other biological experimental platforms amenable to long-term observation of dynamic events using advanced imaging and analytical techniques. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1990-05-01
forms included (1) analytic distribu- tions of initial velocities which initiate at the same instant across the crack ( t o is con - stant), (2) random...gAH(O,tl) + (19) [jLVgf (Vg)- gMo (vg ,V2 )]AH(t1l,t2) We note that for any distribution d)(v), the high frequency response will be dominated by the 8...body waves from the tension crack model is a narrowband signal. To see this, consider Equation (25). As w-O, P (co) approaches a constant pro
Mathematical, numerical and experimental analysis of the swirling flow at a Kaplan runner outlet
NASA Astrophysics Data System (ADS)
Muntean, S.; Ciocan, T.; Susan-Resiga, R. F.; Cervantes, M.; Nilsson, H.
2012-11-01
The paper presents a novel mathematical model for a-priori computation of the swirling flow at Kaplan runners outlet. The model is an extension of the initial version developed by Susan-Resiga et al [1], to include the contributions of non-negligible radial velocity and of the variable rothalpy. Simple analytical expressions are derived for these additional data from three-dimensional numerical simulations of the Kaplan turbine. The final results, i.e. velocity components profiles, are validated against experimental data at two operating points, with the same Kaplan runner blades opening, but variable discharge.
On a computational model of building thermal dynamic response
NASA Astrophysics Data System (ADS)
Jarošová, Petra; Vala, Jiří
2016-07-01
Development and exploitation of advanced materials, structures and technologies in civil engineering, both for buildings with carefully controlled interior temperature and for common residential houses, together with new European and national directives and technical standards, stimulate the development of rather complex and robust, but sufficiently simple and inexpensive computational tools, supporting their design and optimization of energy consumption. This paper demonstrates the possibility of consideration of such seemingly contradictory requirements, using the simplified non-stationary thermal model of a building, motivated by the analogy with the analysis of electric circuits; certain semi-analytical forms of solutions come from the method of lines.
NASA Technical Reports Server (NTRS)
Grugel, Richard N,; Tewari, Surendra; Rajamure, R. S.; Erdman, Robert; Poirier, David
2012-01-01
Primary dendrite arm spacings of Al-7 wt% Si alloy directionally solidified in low gravity environment of space (MICAST-6 and MICAST-7: Thermal gradient approx. 19 to 26 K/cm, Growth speeds varying from 5 to 50 microns/s show good agreement with the Hunt-Lu model. Primary dendrite trunk diameters of the ISS processed samples show a good fit with a simple analytical model based on Kirkwood s approach, proposed here. Natural convection, a) decreases primary dendrite arm spacing. b) appears to increase primary dendrite trunk diameter.