Sample records for simple analytic representation

  1. Unified analytic representation of physical sputtering yield

    NASA Astrophysics Data System (ADS)

    Janev, R. K.; Ralchenko, Yu. V.; Kenmotsu, T.; Hosaka, K.

    2001-03-01

    Generalized energy parameter η= η( ɛ, δ) and normalized sputtering yield Ỹ(η) , where ɛ= E/ ETF and δ= Eth/ ETF, are introduced to achieve a unified representation of all available experimental and sputtering data at normal ion incidence. The sputtering data in the new Ỹ(η) representation retain their original uncertainties. The Ỹ(η) data can be fitted to a simple three-parameter analytic expression with an rms deviation of 32%, well within the uncertainties of original data. Both η and Ỹ(η) have correct physical behavior in the threshold and high-energy regions. The available theoretical data produced by the TRIM.SP code can also be represented by the same single analytic function Ỹ(η) with a similar accuracy.

  2. Simple Map in Action-Angle Coordinates.

    NASA Astrophysics Data System (ADS)

    Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima

    2008-04-01

    The simple map is the simplest map that has the topology of a divertor tokamak. The simple map has three canonical representations: (i) the natural coordinates - toroidal magnetic flux and poloidal angle (ψ,θ), (ii) the physical coordinates - the physical variables (R,Z) or (X,Y), and (iii) the action-angle coordinates - (J,θ) or magnetic coordinates (ψ, θ). All three are canonical coordinates for field lines. The simple map in the (X,Y) representation has been studied extensively ^1, 2. Here we analytically calculate the action-angle coordinates and safety factor q for the simple map. We construct the equilibrium generating function for the simple map in action-angle coordinates. We derive the simple map in action-angle representation, and calculate the stochastic broadening of the ideal separatrix due to topological noise in action-angle representation. We also show how the geometric effects such as elongation, the height, and width of the ideal separatrix surface can be investigated using a slight modification of the simple map in action-angle representation. This work is supported by the following grants US Department of Energy - OFES DE-FG02-01ER54624 and DE-FG02-04ER54793 and National Science Foundation - HRD-0630372 and 0411394. [1] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A, 364 140-145 (2007). [2] A. Punjabi, A. Verma, and A. Boozer, Phys.Rev. Lett. 69, 3322 (1992).

  3. Locomotion of C. elegans: A Piecewise-Harmonic Curvature Representation of Nematode Behavior

    PubMed Central

    Padmanabhan, Venkat; Khan, Zeina S.; Solomon, Deepak E.; Armstrong, Andrew; Rumbaugh, Kendra P.; Vanapalli, Siva A.; Blawzdziewicz, Jerzy

    2012-01-01

    Caenorhabditis elegans, a free-living soil nematode, displays a rich variety of body shapes and trajectories during its undulatory locomotion in complex environments. Here we show that the individual body postures and entire trails of C. elegans have a simple analytical description in curvature representation. Our model is based on the assumption that the curvature wave is generated in the head segment of the worm body and propagates backwards. We have found that a simple harmonic function for the curvature can capture multiple worm shapes during the undulatory movement. The worm body trajectories can be well represented in terms of piecewise sinusoidal curvature with abrupt changes in amplitude, wavevector, and phase. PMID:22792224

  4. Demodulation of messages received with low signal to noise ratio

    NASA Astrophysics Data System (ADS)

    Marguinaud, A.; Quignon, T.; Romann, B.

    The implementation of this all-digital demodulator is derived from maximum likelihood considerations applied to an analytical representation of the received signal. Traditional adapted filters and phase lock loops are replaced by minimum variance estimators and hypothesis tests. These statistical tests become very simple when working on phase signal. These methods, combined with rigorous control data representation allow significant computation savings as compared to conventional realizations. Nominal operation has been verified down to energetic signal over noise of -3 dB upon a QPSK demodulator.

  5. Simple Parametric Model for Airfoil Shape Description

    NASA Astrophysics Data System (ADS)

    Ziemkiewicz, David

    2017-12-01

    We show a simple, analytic equation describing a class of two-dimensional shapes well suited for representation of aircraft airfoil profiles. Our goal was to create a description characterized by a small number of parameters with easily understandable meaning, providing a tool to alter the shape with optimization procedures as well as manual tweaks by the designer. The generated shapes are well suited for numerical analysis with 2D flow solving software such as XFOIL.

  6. Quantum dressing orbits on compact groups

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Šťovíček, Pavel

    1993-02-01

    The quantum double is shown to imply the dressing transformation on quantum compact groups and the quantum Iwasawa decompositon in the general case. Quantum dressing orbits are described explicitly as *-algebras. The dual coalgebras consisting of differential operators are related to the quantum Weyl elements. Besides, the differential geometry on a quantum leaf allows a remarkably simple construction of irreducible *-representations of the algebras of quantum functions. Representation spaces then consist of analytic functions on classical phase spaces. These representations are also interpreted in the framework of quantization in the spirit of Berezin applied to symplectic leaves on classical compact groups. Convenient “coherent states” are introduced and a correspondence between classical and quantum observables is given.

  7. Fundamental studies of structure borne noise for advanced turboprop applications

    NASA Technical Reports Server (NTRS)

    Eversman, W.; Koval, L. R.

    1985-01-01

    The transmission of sound generated by wing-mounted, advanced turboprop engines into the cabin interior via structural paths is considered. The structural model employed is a beam representation of the wing box carried into the fuselage via a representative frame type of carry through structure. The structure for the cabin cavity is a stiffened shell of rectangular or cylindrical geometry. The structure is modelled using a finite element formulation and the acoustic cavity is modelled using an analytical representation appropriate for the geometry. The structural and acoustic models are coupled by the use of hard wall cavity modes for the interior and vacuum structural modes for the shell. The coupling is accomplished using a combination of analytical and finite element models. The advantage is the substantial reduction in dimensionality achieved by modelling the interior analytically. The mathematical model for the interior noise problem is demonstrated with a simple plate/cavity system which has all of the features of the fuselage interior noise problem.

  8. Analytic Result for the Two-loop Six-point NMHV Amplitude in N = 4 Super Yang-Mills Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Lance J.; /SLAC; Drummond, James M.

    2012-02-15

    We provide a simple analytic formula for the two-loop six-point ratio function of planar N = 4 super Yang-Mills theory. This result extends the analytic knowledge of multi-loop six-point amplitudes beyond those with maximal helicity violation. We make a natural ansatz for the symbols of the relevant functions appearing in the two-loop amplitude, and impose various consistency conditions, including symmetry, the absence of spurious poles, the correct collinear behavior, and agreement with the operator product expansion for light-like (super) Wilson loops. This information reduces the ansatz to a small number of relatively simple functions. In order to fix these parametersmore » uniquely, we utilize an explicit representation of the amplitude in terms of loop integrals that can be evaluated analytically in various kinematic limits. The final compact analytic result is expressed in terms of classical polylogarithms, whose arguments are rational functions of the dual conformal cross-ratios, plus precisely two functions that are not of this type. One of the functions, the loop integral {Omega}{sup (2)}, also plays a key role in a new representation of the remainder function R{sub 6}{sup (2)} in the maximally helicity violating sector. Another interesting feature at two loops is the appearance of a new (parity odd) x (parity odd) sector of the amplitude, which is absent at one loop, and which is uniquely determined in a natural way in terms of the more familiar (parity even) x (parity even) part. The second non-polylogarithmic function, the loop integral {tilde {Omega}}{sup (2)}, characterizes this sector. Both {Omega}{sup (2)} and {tilde {Omega}}{sup (2)} can be expressed as one-dimensional integrals over classical polylogarithms with rational arguments.« less

  9. A fast analytical undulator model for realistic high-energy FEL simulations

    NASA Astrophysics Data System (ADS)

    Tatchyn, R.; Cremer, T.

    1997-02-01

    A number of leading FEL simulation codes used for modeling gain in the ultralong undulators required for SASE saturation in the <100 Å range employ simplified analytical models both for field and error representations. Although it is recognized that both the practical and theoretical validity of such codes could be enhanced by incorporating realistic undulator field calculations, the computational cost of doing this can be prohibitive, especially for point-to-point integration of the equations of motion through each undulator period. In this paper we describe a simple analytical model suitable for modeling realistic permanent magnet (PM), hybrid/PM, and non-PM undulator structures, and discuss selected techniques for minimizing computation time.

  10. Multidisciplinary optimization in aircraft design using analytic technology models

    NASA Technical Reports Server (NTRS)

    Malone, Brett; Mason, W. H.

    1991-01-01

    An approach to multidisciplinary optimization is presented which combines the Global Sensitivity Equation method, parametric optimization, and analytic technology models. The result is a powerful yet simple procedure for identifying key design issues. It can be used both to investigate technology integration issues very early in the design cycle, and to establish the information flow framework between disciplines for use in multidisciplinary optimization projects using much more computational intense representations of each technology. To illustrate the approach, an examination of the optimization of a short takeoff heavy transport aircraft is presented for numerous combinations of performance and technology constraints.

  11. Efficient generation of sum-of-products representations of high-dimensional potential energy surfaces based on multimode expansions

    NASA Astrophysics Data System (ADS)

    Ziegler, Benjamin; Rauhut, Guntram

    2016-03-01

    The transformation of multi-dimensional potential energy surfaces (PESs) from a grid-based multimode representation to an analytical one is a standard procedure in quantum chemical programs. Within the framework of linear least squares fitting, a simple and highly efficient algorithm is presented, which relies on a direct product representation of the PES and a repeated use of Kronecker products. It shows the same scalings in computational cost and memory requirements as the potfit approach. In comparison to customary linear least squares fitting algorithms, this corresponds to a speed-up and memory saving by several orders of magnitude. Different fitting bases are tested, namely, polynomials, B-splines, and distributed Gaussians. Benchmark calculations are provided for the PESs of a set of small molecules.

  12. Efficient generation of sum-of-products representations of high-dimensional potential energy surfaces based on multimode expansions.

    PubMed

    Ziegler, Benjamin; Rauhut, Guntram

    2016-03-21

    The transformation of multi-dimensional potential energy surfaces (PESs) from a grid-based multimode representation to an analytical one is a standard procedure in quantum chemical programs. Within the framework of linear least squares fitting, a simple and highly efficient algorithm is presented, which relies on a direct product representation of the PES and a repeated use of Kronecker products. It shows the same scalings in computational cost and memory requirements as the potfit approach. In comparison to customary linear least squares fitting algorithms, this corresponds to a speed-up and memory saving by several orders of magnitude. Different fitting bases are tested, namely, polynomials, B-splines, and distributed Gaussians. Benchmark calculations are provided for the PESs of a set of small molecules.

  13. 3-D discrete analytical ridgelet transform.

    PubMed

    Helbert, David; Carré, Philippe; Andres, Eric

    2006-12-01

    In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient.

  14. Experimental investigation and numerical simulation of 3He gas diffusion in simple geometries: implications for analytical models of 3He MR lung morphometry.

    PubMed

    Parra-Robles, J; Ajraoui, S; Deppe, M H; Parnell, S R; Wild, J M

    2010-06-01

    Models of lung acinar geometry have been proposed to analytically describe the diffusion of (3)He in the lung (as measured with pulsed gradient spin echo (PGSE) methods) as a possible means of characterizing lung microstructure from measurement of the (3)He ADC. In this work, major limitations in these analytical models are highlighted in simple diffusion weighted experiments with (3)He in cylindrical models of known geometry. The findings are substantiated with numerical simulations based on the same geometry using finite difference representation of the Bloch-Torrey equation. The validity of the existing "cylinder model" is discussed in terms of the physical diffusion regimes experienced and the basic reliance of the cylinder model and other ADC-based approaches on a Gaussian diffusion behaviour is highlighted. The results presented here demonstrate that physical assumptions of the cylinder model are not valid for large diffusion gradient strengths (above approximately 15 mT/m), which are commonly used for (3)He ADC measurements in human lungs. (c) 2010 Elsevier Inc. All rights reserved.

  15. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  16. Feynman formulas for semigroups generated by an iterated Laplace operator

    NASA Astrophysics Data System (ADS)

    Buzinov, M. S.

    2017-04-01

    In the present paper, we find representations of a one-parameter semigroup generated by a finite sum of iterated Laplace operators and an additive perturbation (the potential). Such semigroups and the evolution equations corresponding to them find applications in the field of physics, chemistry, biology, and pattern recognition. The representations mentioned above are obtained in the form of Feynman formulas, i.e., in the form of a limit of multiple integrals as the multiplicity tends to infinity. The term "Feynman formula" was proposed by Smolyanov. Smolyanov's approach uses Chernoff's theorems. A simple form of representations thus obtained enables one to use them for numerical modeling the dynamics of the evolution system as a method for the approximation of solutions of equations. The problems considered in this note can be treated using the approach suggested by Remizov (see also the monograph of Smolyanov and Shavgulidze on path integrals). The representations (of semigroups) obtained in this way are more complicated than those given by the Feynman formulas; however, it is possible to bypass some analytical difficulties.

  17. An Economical Semi-Analytical Orbit Theory for Retarded Satellite Motion About an Oblate Planet

    NASA Technical Reports Server (NTRS)

    Gordon, R. A.

    1980-01-01

    Brouwer and Brouwer-Lyddanes' use of the Von Zeipel-Delaunay method is employed to develop an efficient analytical orbit theory suitable for microcomputers. A succinctly simple pseudo-phenomenologically conceptualized algorithm is introduced which accurately and economically synthesizes modeling of drag effects. The method epitomizes and manifests effortless efficient computer mechanization. Simulated trajectory data is employed to illustrate the theory's ability to accurately accommodate oblateness and drag effects for microcomputer ground based or onboard predicted orbital representation. Real tracking data is used to demonstrate that the theory's orbit determination and orbit prediction capabilities are favorably adaptable to and are comparable with results obtained utilizing complex definitive Cowell method solutions on satellites experiencing significant drag effects.

  18. 4D Hyperspherical Harmonic (HyperSPHARM) Representation of Multiple Disconnected Brain Subcortical Structures

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matt; Alexander, Andrew L.; Davidson, Richard J.

    2014-01-01

    We present a novel surface parameterization technique using hyperspherical harmonics (HSH) in representing compact, multiple, disconnected brain subcortical structures as a single analytic function. The proposed hyperspherical harmonic representation (HyperSPHARM) has many advantages over the widely used spherical harmonic (SPHARM) parameterization technique. SPHARM requires flattening 3D surfaces to 3D sphere which can be time consuming for large surface meshes, and can’t represent multiple disconnected objects with single parameterization. On the other hand, HyperSPHARM treats 3D object, via simple stereographic projection, as a surface of 4D hypersphere with extremely large radius, hence avoiding the computationally demanding flattening process. HyperSPHARM is shown to achieve a better reconstruction with only 5 basis compared to SPHARM that requires more than 441. PMID:24505716

  19. A pseudo-sound constitutive relationship for the dilatational covariances in compressible turbulence: An analytical theory

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.

    1995-01-01

    The mathematical consequences of a few simple scaling assumptions about the effects of compressibility are explored using a simple singular perturbation idea and the methods of statistical fluid mechanics. Representations for the pressure-dilation and dilatational dissipation covariances appearing in single-point moment closures for compressible turbulence are obtained. While the results are expressed in the context of a second-order statistical closure they provide some interesting and very clear physical metaphors for the effects of compressibility that have not been seen using more traditional linear stability methods. In the limit of homogeneous turbulence with quasi-normal large-scales the expressions derived are - in the low turbulent Mach number limit - asymptotically exact. The expressions obtained are functions of the rate of change of the turbulence energy, its correlation length scale, and the relative time scale of the cascade rate. The expressions for the dilatational covariances contain constants which have a precise and definite physical significance; they are related to various integrals of the longitudinal velocity correlation. The pressure-dilation covariance is found to be a nonequilibrium phenomena related to the time rate of change of the internal energy and the kinetic energy of the turbulence. Also of interest is the fact that the representation for the dilatational dissipation in turbulence, with or without shear, features a dependence on the Reynolds number. This article is a documentation of an analytical investigation of the implications of a pseudo-sound theory for the effects of compressibility.

  20. Analytical representation for ephemeris with short time-span - Aplication to the longitude of Titan

    NASA Astrophysics Data System (ADS)

    XI, Xiaojin; Vienne, Alain

    2017-06-01

    Ephemerides of the natural satellites are generally presented in the form of tables, or computed on line, for example like some best ones from JPL or IMCCE. In the sense of fitted the more recent and best observations, analytical representation is not so sufficient, although these representations are valid over a very long time-span. But in some analytical studies, it could be benefitted to have the both advantages. We present here the case of the study of the rotation of Titan, in which we need a representation of the true longitude of Titan. Frequency analysis can be used partially on the numerical ephemerides because of limited time-span. To complete it, we use the form of the analytical representation to obtained their numerical parameters.The method is presented and some results are given.

  1. Analytic representation of FK/Fπ in two loop chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Ananthanarayan, B.; Bijnens, Johan; Friot, Samuel; Ghosh, Shayan

    2018-05-01

    We present an analytic representation of FK/Fπ as calculated in three-flavor two-loop chiral perturbation theory, which involves expressing three mass scale sunsets in terms of Kampé de Fériet series. We demonstrate how approximations may be made to obtain relatively compact analytic representations. An illustrative set of fits using lattice data is also presented, which shows good agreement with existing fits.

  2. Modeling the radiation pattern of LEDs.

    PubMed

    Moreno, Ivan; Sun, Ching-Cherng

    2008-02-04

    Light-emitting diodes (LEDs) come in many varieties and with a wide range of radiation patterns. We propose a general, simple but accurate analytic representation for the radiation pattern of the light emitted from an LED. To accurately render both the angular intensity distribution and the irradiance spatial pattern, a simple phenomenological model takes into account the emitting surfaces (chip, chip array, or phosphor surface), and the light redirected by both the reflecting cup and the encapsulating lens. Mathematically, the pattern is described as the sum of a maximum of two or three Gaussian or cosine-power functions. The resulting equation is widely applicable for any kind of LED of practical interest. We accurately model a wide variety of radiation patterns from several world-class manufacturers.

  3. Fall Velocities of Hydrometeors in the Atmosphere: Refinements to a Continuous Analytical Power Law.

    NASA Astrophysics Data System (ADS)

    Khvorostyanov, Vitaly I.; Curry, Judith A.

    2005-12-01

    This paper extends the previous research of the authors on the unified representation of fall velocities for both liquid and crystalline particles as a power law over the entire size range of hydrometeors observed in the atmosphere. The power-law coefficients are determined as continuous analytical functions of the Best or Reynolds number or of the particle size. Here, analytical expressions are formulated for the turbulent corrections to the Reynolds number and to the power-law coefficients that describe the continuous transition from the laminar to the turbulent flow around a falling particle. A simple analytical expression is found for the correction of fall velocities for temperature and pressure. These expressions and the resulting fall velocities are compared with observations and other calculations for a range of ice crystal habits and sizes. This approach provides a continuous analytical power-law description of the terminal velocities of liquid and crystalline hydrometeors with sufficiently high accuracy and can be directly used in bin-resolving models or incorporated into parameterizations for cloud- and large-scale models and remote sensing techniques.

  4. Canonical Representations of the Simple Map

    NASA Astrophysics Data System (ADS)

    Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima; Boozer, Allen

    2007-11-01

    The simple map is the simplest map that has the topology of a divertor tokamak. The simple map has three canonical representations: (i) toroidal flux and poloidal angle (ψ,θ) as canonical coordinates, (ii) the physical variables (R,Z) or (X,Y) as canonical coordinates, and (iii) the action-angle (J,ζ) or magnetic variables (ψ,θ) as canonical coordinates. We give the derivation of the simple map in the (X,Y) representation. The simple map in this representation has been studied extensively (Ref. 1 and references therein). We calculate the magnetic coordinates for the simple map, construct the simple map in magnetic coordinates, and calculate generic topological effects of magnetic perturbations in divertor tokamaks using the map. We also construct the simple map in (ψ,θ) representation. Preliminary results of these studies will be presented. This work is supported by US DOE OFES DE-FG02-01ER54624 and DE-FG02-04ER54793. [1] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A 364 140--145 (2007).

  5. Geometerial description for a proposed aeroassist flight experiment vehicle

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. M.; Dejarnette, F. J.; Hamilton, H. H., II

    1986-01-01

    One geometry currently under consideration for the Aeroassist Flight Experiment (AFE) vehicle is composed of several segments of simple general conics: an ellipsoidal nose tangent to an elliptical cone and a base skirt with the base plane raked relative to the body axis. An analytic representation for the body coordinates and first and second partial derivatives of this configuration has been developed. Equations are given which define the body radius and partial derivatives for a prescribed axial and circumferential position on the vehicle. The results for a sample case are tabulated and presented graphically.

  6. Coherent state constructions of bases for some physically relevant group chains

    NASA Technical Reports Server (NTRS)

    Hecht, Karl T.

    1995-01-01

    Rotor coherent state constructions are given for the Wigner supermultiplet SU(4) contains SU(2)xSU(2) and for the special irreducible representations (N0) of the SO(5) contains SO(3) contains SO(2) group chain in exact parallel with the rotor coherent state construction for the SU(3) contains SO(3) contains SO(2) case given by Rowe, LeBlanc,, and Repka. Matrix elements of the coherent state realizations of the group generators are given in all cases by very simple expressions in terms of angular momentum Wigner coefficients involving intrinsic projection labels K. The K-matrix technique of vector coherent state theory is used to effectively elevate these K labels to the status of good quantum numbers. Analytic expressions are given for the (K K*)-matrices for many of the more important irreducible representations.

  7. Theoretical models for supercritical fluid extraction.

    PubMed

    Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan

    2012-08-10

    For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Comparison of NMR simulations of porous media derived from analytical and voxelized representations.

    PubMed

    Jin, Guodong; Torres-Verdín, Carlos; Toumelin, Emmanuel

    2009-10-01

    We develop and compare two formulations of the random-walk method, grain-based and voxel-based, to simulate the nuclear-magnetic-resonance (NMR) response of fluids contained in various models of porous media. The grain-based approach uses a spherical grain pack as input, where the solid surface is analytically defined without an approximation. In the voxel-based approach, the input is a computer-tomography or computer-generated image of reconstructed porous media. Implementation of the two approaches is largely the same, except for the representation of porous media. For comparison, both approaches are applied to various analytical and digitized models of porous media: isolated spherical pore, simple cubic packing of spheres, and random packings of monodisperse and polydisperse spheres. We find that spin magnetization decays much faster in the digitized models than in their analytical counterparts. The difference in decay rate relates to the overestimation of surface area due to the discretization of the sample; it cannot be eliminated even if the voxel size decreases. However, once considering the effect of surface-area increase in the simulation of surface relaxation, good quantitative agreement is found between the two approaches. Different grain or pore shapes entail different rates of increase of surface area, whereupon we emphasize that the value of the "surface-area-corrected" coefficient may not be universal. Using an example of X-ray-CT image of Fontainebleau rock sample, we show that voxel size has a significant effect on the calculated surface area and, therefore, on the numerically simulated magnetization response.

  9. A potential energy surface for the process H2 + H2O yielding H + H + H2O - Ab initio calculations and analytical representation

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1991-01-01

    Extensive ab initio calculations on the ground state potential energy surface of H2 + H2O were performed using a large contracted Gaussian basis set and a high level of correlation treatment. An analytical representation of the potential energy surface was then obtained which reproduces the calculated energies with an overall root-mean-square error of only 0.64 mEh. The analytic representation explicitly includes all nine internal degrees of freedom and is also well behaved as the H2 dissociates; it thus can be used to study collision-induced dissociation or recombination of H2. The strategy used to minimize the number of energy calculations is discussed, as well as other advantages of the present method for determining the analytical representation.

  10. Defects in regular nanosystems and interference spectra at reemission of electromagnetic field attosecond pulses

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Makarov, D. N.

    2017-01-01

    The effect of defects in nanostructured targets on interference spectra at the reemission of attosecond electromagnetic pulses has been considered. General expressions have been obtained for calculations of spectral distributions for one-, two-, and three-dimensional multiatomic nanosystems consisting of identical complex atoms with defects such as bends, vacancies, and breaks. Changes in interference spectra by a linear chain with several removed atoms (chain with breaks) and by a linear chain with a bend have been calculated as examples allowing a simple analytical representation. Generalization to two- and three-dimensional nanosystems has been developed.

  11. Analytical approximations to seawater optical phase functions of scattering

    NASA Astrophysics Data System (ADS)

    Haltrin, Vladimir I.

    2004-11-01

    This paper proposes a number of analytical approximations to the classic and recently measured seawater light scattering phase functions. The three types of analytical phase functions are derived: individual representations for 15 Petzold, 41 Mankovsky, and 91 Gulf of Mexico phase functions; collective fits to Petzold phase functions; and analytical representations that take into account dependencies between inherent optical properties of seawater. The proposed phase functions may be used for problems of radiative transfer, remote sensing, visibility and image propagation in natural waters of various turbidity.

  12. A cognitive prosthesis for complex decision-making.

    PubMed

    Tremblay, Sébastien; Gagnon, Jean-François; Lafond, Daniel; Hodgetts, Helen M; Doiron, Maxime; Jeuniaux, Patrick P J M H

    2017-01-01

    While simple heuristics can be ecologically rational and effective in naturalistic decision making contexts, complex situations require analytical decision making strategies, hypothesis-testing and learning. Sub-optimal decision strategies - using simplified as opposed to analytic decision rules - have been reported in domains such as healthcare, military operational planning, and government policy making. We investigate the potential of a computational toolkit called "IMAGE" to improve decision-making by developing structural knowledge and increasing understanding of complex situations. IMAGE is tested within the context of a complex military convoy management task through (a) interactive simulations, and (b) visualization and knowledge representation capabilities. We assess the usefulness of two versions of IMAGE (desktop and immersive) compared to a baseline. Results suggest that the prosthesis helped analysts in making better decisions, but failed to increase their structural knowledge about the situation once the cognitive prosthesis is removed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. An Analytical Time–Domain Expression for the Net Ripple Produced by Parallel Interleaved Converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B.; Krein, Philip T.

    We apply modular arithmetic and Fourier series to analyze the superposition of N interleaved triangular waveforms with identical amplitudes and duty-ratios. Here, interleaving refers to the condition when a collection of periodic waveforms with identical periods are each uniformly phase-shifted across one period. The main result is a time-domain expression which provides an exact representation of the summed and interleaved triangular waveforms, where the peak amplitude and parameters of the time-periodic component are all specified in closed-form. Analysis is general and can be used to study various applications in multi-converter systems. This model is unique not only in that itmore » reveals a simple and intuitive expression for the net ripple, but its derivation via modular arithmetic and Fourier series is distinct from prior approaches. The analytical framework is experimentally validated with a system of three parallel converters under time-varying operating conditions.« less

  14. Almost analytical Karhunen-Loeve representation of irregular waves based on the prolate spheroidal wave functions

    NASA Astrophysics Data System (ADS)

    Lee, Gibbeum; Cho, Yeunwoo

    2017-11-01

    We present an almost analytical new approach to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of solving this matrix eigenvalue problem purely numerically, which may suffer from the computational inaccuracy for big data, first, we consider a pair of integral and differential equations, which are related to the so-called prolate spheroidal wave functions (PSWF). For the PSWF differential equation, the pair of the eigenvectors (PSWF) and eigenvalues can be obtained from a relatively small number of analytical Legendre functions. Then, the eigenvalues in the PSWF integral equation are expressed in terms of functional values of the PSWF and the eigenvalues of the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data; ordinary irregular waves and rogue waves. We found that the present almost analytical method is better than the conventional data-independent Fourier representation and, also, the conventional direct numerical K-L representation in terms of both accuracy and computational cost. This work was supported by the National Research Foundation of Korea (NRF). (NRF-2017R1D1A1B03028299).

  15. Microplume model of spatial-yield spectra. [applying to electron gas degradation in molecular nitrogen gas

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.; Singhal, R. P.

    1979-01-01

    An analytic representation for the spatial (radial and longitudinal) yield spectra is developed in terms of a model containing three simple 'microplumes'. The model is applied to electron energy degradation in molecular nitrogen gas for 0.1 to 5 keV incident electrons. From the nature of the cross section input to this model it is expected that the scaled spatial yield spectra for other gases will be quite similar. The model indicates that each excitation, ionization, etc. plume should have its individual spatial and energy dependence. Extensions and aeronomical and radiological applications of the model are discussed.

  16. Spline methods for approximating quantile functions and generating random samples

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Matthews, C. G.

    1985-01-01

    Two cubic spline formulations are presented for representing the quantile function (inverse cumulative distribution function) of a random sample of data. Both B-spline and rational spline approximations are compared with analytic representations of the quantile function. It is also shown how these representations can be used to generate random samples for use in simulation studies. Comparisons are made on samples generated from known distributions and a sample of experimental data. The spline representations are more accurate for multimodal and skewed samples and to require much less time to generate samples than the analytic representation.

  17. Analytical Expressions for the Mixed-Order Kinetics Parameters of TL Glow Peaks Based on the two Heating Rates Method.

    PubMed

    Maghrabi, Mufeed; Al-Abdullah, Tariq; Khattari, Ziad

    2018-03-24

    The two heating rates method (originally developed for first-order glow peaks) was used for the first time to evaluate the activation energy (E) from glow peaks obeying mixed-order (MO) kinetics. The derived expression for E has an insignificant additional term (on the scale of a few meV) when compared with the first-order case. Hence, the original expression for E using the two heating rates method can be used with excellent accuracy in the case of MO glow peaks. In addition, we derived a simple analytical expression for the MO parameter. The present procedure has the advantage that the MO parameter can now be evaluated using analytical expression instead of using the graphical representation between the geometrical factor and the MO parameter as given by the existing peak shape methods. The applicability of the derived expressions for real samples was demonstrated for the glow curve of Li 2 B 4 O 7 :Mn single crystal. The obtained parameters compare very well with those obtained by glow curve fitting and with the available published data.

  18. SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications

    PubMed Central

    Kalinin, Alexandr A.; Palanimalai, Selvam; Dinov, Ivo D.

    2018-01-01

    The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis. PMID:29630069

  19. SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications.

    PubMed

    Kalinin, Alexandr A; Palanimalai, Selvam; Dinov, Ivo D

    2017-04-01

    The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis.

  20. Evidence for Holistic Representations of Ignored Images and Analytic Representations of Attended Images

    ERIC Educational Resources Information Center

    Thoma, Volker; Hummel, John E.; Davidoff, Jules

    2004-01-01

    According to the hybrid theory of object recognition (J. E. Hummel, 2001), ignored object images are represented holistically, and attended images are represented both holistically and analytically. This account correctly predicts patterns of visual priming as a function of translation, scale (B. J. Stankiewicz & J. E. Hummel, 2002), and…

  1. Exploring the evolution of London's street network in the information space: A dual approach

    NASA Astrophysics Data System (ADS)

    Masucci, A. Paolo; Stanilov, Kiril; Batty, Michael

    2014-01-01

    We study the growth of London's street network in its dual representation, as the city has evolved over the past 224 years. The dual representation of a planar graph is a content-based network, where each node is a set of edges of the planar graph and represents a transportation unit in the so-called information space, i.e., the space where information is handled in order to navigate through the city. First, we discuss a novel hybrid technique to extract dual graphs from planar graphs, called the hierarchical intersection continuity negotiation principle. Then we show that the growth of the network can be analytically described by logistic laws and that the topological properties of the network are governed by robust log-normal distributions characterizing the network's connectivity and small-world properties that are consistent over time. Moreover, we find that the double-Pareto-like distributions for the connectivity emerge for major roads and can be modeled via a stochastic content-based network model using simple space-filling principles.

  2. Demonstration of Detection and Ranging Using Solvable Chaos

    NASA Technical Reports Server (NTRS)

    Corron, Ned J.; Stahl, Mark T.; Blakely, Jonathan N.

    2013-01-01

    Acoustic experiments demonstrate a novel approach to ranging and detection that exploits the properties of a solvable chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching condition. The chaotic waveform generated by this hybrid system is used as the transmitted waveform. The oscillator admits an exact analytic solution that can be written as the linear convolution of binary symbols and a single basis function. This linear representation enables coherent reception using a simple analog matched filter and without need for digital sampling or signal processing. An audio frequency implementation of the transmitter and receiver is described. Successful acoustic ranging measurements are presented to demonstrate the viability of the approach.

  3. Automated hexahedral mesh generation from biomedical image data: applications in limb prosthetics.

    PubMed

    Zachariah, S G; Sanders, J E; Turkiyyah, G M

    1996-06-01

    A general method to generate hexahedral meshes for finite element analysis of residual limbs and similar biomedical geometries is presented. The method utilizes skeleton-based subdivision of cross-sectional domains to produce simple subdomains in which structured meshes are easily generated. Application to a below-knee residual limb and external prosthetic socket is described. The residual limb was modeled as consisting of bones, soft tissue, and skin. The prosthetic socket model comprised a socket wall with an inner liner. The geometries of these structures were defined using axial cross-sectional contour data from X-ray computed tomography, optical scanning, and mechanical surface digitization. A tubular surface representation, using B-splines to define the directrix and generator, is shown to be convenient for definition of the structure geometries. Conversion of cross-sectional data to the compact tubular surface representation is direct, and the analytical representation simplifies geometric querying and numerical optimization within the mesh generation algorithms. The element meshes remain geometrically accurate since boundary nodes are constrained to lie on the tubular surfaces. Several element meshes of increasing mesh density were generated for two residual limbs and prosthetic sockets. Convergence testing demonstrated that approximately 19 elements are required along a circumference of the residual limb surface for a simple linear elastic model. A model with the fibula absent compared with the same geometry with the fibula present showed differences suggesting higher distal stresses in the absence of the fibula. Automated hexahedral mesh generation algorithms for sliced data represent an advancement in prosthetic stress analysis since they allow rapid modeling of any given residual limb and optimization of mesh parameters.

  4. Using Extreme Tropical Precipitation Statistics to Constrain Future Climate States

    NASA Astrophysics Data System (ADS)

    Igel, M.; Biello, J. A.

    2017-12-01

    Tropical precipitation is characterized by a rapid growth in mean intensity as the column humidity increases. This behavior is examined in both a cloud resolving model and with high-resolution observations of precipitation and column humidity from CloudSat and AIRS, respectively. The model and the observations exhibit remarkable consistency and suggest a new paradigm for extreme precipitation. We show that the total precipitation can be decomposed into a product of contributions from a mean intensity, a probability of precipitation, and a global PDF of column humidity values. We use the modeling and observational results to suggest simple, analytic forms for each of these functions. The analytic representations are then used to construct a simple expression for the global accumulated precipitation as a function of the parameters of each of the component functions. As the climate warms, extreme precipitation intensity and global precipitation are expected to increase, though at different rates. When these predictions are incorporated into the new analytic expression for total precipitation, predictions for changes due to global warming to the probability of precipitation and the PDF of column humidity can be made. We show that strong constraints can be imposed on the future shape of the PDF of column humidity but that only weak constraints can be set on the probability of precipitation. These are largely imposed by the intensification of extreme precipitation. This result suggests that understanding precisely how extreme precipitation responds to climate warming is critical to predicting other impactful properties of global hydrology. The new framework can also be used to confirm and discount existing theories for shifting precipitation.

  5. Mechanical properties of triaxially braided composites: Experimental and analytical results

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.

    1992-01-01

    This paper investigates the unnotched tensile properties of two-dimensional triaxial braid reinforced composites from both an experimental and analytical viewpoint. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer readings. Larger strain gages gave more consistent results and correlated better with the extensometer readings. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, zero degree, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistence of computer analysis of the microgeometry. Photomicrographs of the braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.

  6. Mechanical properties of triaxially braided composites: Experimental and analytical results

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.

    1992-01-01

    The unnotched tensile properties of 2-D triaxial braid reinforced composites from both an experimental and an analytical viewpoint are studied. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer reading. Larger strain gages gave more consistent results and correlated better with the extensometer reading. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, 0 degrees, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistance of computer analysis of the microgeometry. Photomicrographs of braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.

  7. Semi-analytical Karhunen-Loeve representation of irregular waves based on the prolate spheroidal wave functions

    NASA Astrophysics Data System (ADS)

    Lee, Gibbeum; Cho, Yeunwoo

    2018-01-01

    A new semi-analytical approach is presented to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of direct numerical approach to this matrix eigenvalue problem, which may suffer from the computational inaccuracy for big data, a pair of integral and differential equations are considered, which are related to the so-called prolate spheroidal wave functions (PSWF). First, the PSWF is expressed as a summation of a small number of the analytical Legendre functions. After substituting them into the PSWF differential equation, a much smaller size matrix eigenvalue problem is obtained than the direct numerical K-L matrix eigenvalue problem. By solving this with a minimal numerical effort, the PSWF and the associated eigenvalue of the PSWF differential equation are obtained. Then, the eigenvalue of the PSWF integral equation is analytically expressed by the functional values of the PSWF and the eigenvalues obtained in the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data such as ordinary irregular waves. It is found that, with the same accuracy, the required memory size of the present method is smaller than that of the direct numerical K-L representation and the computation time of the present method is shorter than that of the semi-analytical method based on the sinusoidal functions.

  8. PEDIATRICIANS’ REPRESENTATIONS ON DAIRY ALTERNATIVES WHEN WEANING IS UNAVOIDABLE

    PubMed Central

    Sarubbi, Vicente; Muylaert, Camila Junqueira; Bastos, Isabella Teixeira; Gallo, Paulo Rogério; Leone, Claudio

    2017-01-01

    ABSTRACT Objective: To analyze pediatricians’ representations on the nutritional alternatives that are adopted when weaning becomes inevitable. Methods: This is a mixed cross-sectional analytical study with probabilistic sampling. Fifty-seven randomly selected pediatricians were interviewed with the use of a semi-structured script for thematic analysis. The technique of free evocations was used, and the terms were processed using software EVOC 2005. The thematic categories were established on software NVivo10, and their co-occurrence matrix was exported and analyzed in terms of their simple similarity hierarchy on software CHIC. Results: In the pediatricians’ representations, whole milk was cited as a foodstuff with high allergenic risk (35.1%) and nutritionally inappropriate, and they did not recommend its use if weaning occurred before 1 year of age. The infant formula, referred by 98.3% of the pediatricians as the best alternative at the moment of weaning, was cited by 38.1% of them owing to its nutritional adequacy. The points quoted as unfavorable to the use of the formula were the price, the possibility of causing allergy and the risk of the inadequate use of such a highly industrialized product. Conclusions: The pediatricians’ representations show that they are sensitive to the importance of breast-feeding and at the same time, to the sociocultural difficulties inherent in the practice. Generally speaking, the interviewed pediatricians recommend the use of milk formulas, and not of whole cow’s milk, if weaning occurs before the end of the first year of life. PMID:28977316

  9. A comparison of the structureborne and airborne paths for propfan interior noise

    NASA Technical Reports Server (NTRS)

    Eversman, W.; Koval, L. R.; Ramakrishnan, J. V.

    1986-01-01

    A comparison is made between the relative levels of aircraft interior noise related to structureborne and airborne paths for the same propeller source. A simple, but physically meaningful, model of the structure treats the fuselage interior as a rectangular cavity with five rigid walls. The sixth wall, the fuselage sidewall, is a stiffened panel. The wing is modeled as a simple beam carried into the fuselage by a large discrete stiffener representing the carry-through structure. The fuselage interior is represented by analytically-derived acoustic cavity modes and the entire structure is represented by structural modes derived from a finite element model. The noise source for structureborne noise is the unsteady lift generation on the wing due to the rotating trailing vortex system of the propeller. The airborne noise source is the acoustic field created by a propeller model consistent with the vortex representation. Comparisons are made on the basis of interior noise over a range of propeller rotational frequencies at a fixed thrust.

  10. Children's Criteria for Representational Adequacy in the Perception of Simple Sonic Stimuli

    ERIC Educational Resources Information Center

    Verschaffel, Lieven; Reybrouck, Mark; Jans, Christine; Van Dooren, Wim

    2010-01-01

    This study investigates children's metarepresentational competence with regard to listening to and making sense of simple sonic stimuli. Using diSessa's (2003) work on metarepresentational competence in mathematics and sciences as theoretical and empirical background, it aims to assess children's criteria for representational adequacy of graphical…

  11. A Simple Method for Calculating Clebsch-Gordan Coefficients

    ERIC Educational Resources Information Center

    Klink, W. H.; Wickramasekara, S.

    2010-01-01

    This paper presents a simple method for calculating Clebsch-Gordan coefficients for the tensor product of two unitary irreducible representations (UIRs) of the rotation group. The method also works for multiplicity-free irreducible representations appearing in the tensor product of any number of UIRs of the rotation group. The generalization to…

  12. Full quantum mechanical analysis of atomic three-grating Mach–Zehnder interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanz, A.S., E-mail: asanz@iff.csic.es; Davidović, M.; Božić, M.

    2015-02-15

    Atomic three-grating Mach–Zehnder interferometry constitutes an important tool to probe fundamental aspects of the quantum theory. There is, however, a remarkable gap in the literature between the oversimplified models and robust numerical simulations considered to describe the corresponding experiments. Consequently, the former usually lead to paradoxical scenarios, such as the wave–particle dual behavior of atoms, while the latter make difficult the data analysis in simple terms. Here these issues are tackled by means of a simple grating working model consisting of evenly-spaced Gaussian slits. As is shown, this model suffices to explore and explain such experiments both analytically and numerically,more » giving a good account of the full atomic journey inside the interferometer, and hence contributing to make less mystic the physics involved. More specifically, it provides a clear and unambiguous picture of the wavefront splitting that takes place inside the interferometer, illustrating how the momentum along each emerging diffraction order is well defined even though the wave function itself still displays a rather complex shape. To this end, the local transverse momentum is also introduced in this context as a reliable analytical tool. The splitting, apart from being a key issue to understand atomic Mach–Zehnder interferometry, also demonstrates at a fundamental level how wave and particle aspects are always present in the experiment, without incurring in any contradiction or interpretive paradox. On the other hand, at a practical level, the generality and versatility of the model and methodology presented, makes them suitable to attack analogous problems in a simple manner after a convenient tuning. - Highlights: • A simple model is proposed to analyze experiments based on atomic Mach–Zehnder interferometry. • The model can be easily handled both analytically and computationally. • A theoretical analysis based on the combination of the position and momentum representations is considered. • Wave and particle aspects are shown to coexist within the same experiment, thus removing the old wave-corpuscle dichotomy. • A good agreement between numerical simulations and experimental data is found without appealing to best-fit procedures.« less

  13. Analytical learning and term-rewriting systems

    NASA Technical Reports Server (NTRS)

    Laird, Philip; Gamble, Evan

    1990-01-01

    Analytical learning is a set of machine learning techniques for revising the representation of a theory based on a small set of examples of that theory. When the representation of the theory is correct and complete but perhaps inefficient, an important objective of such analysis is to improve the computational efficiency of the representation. Several algorithms with this purpose have been suggested, most of which are closely tied to a first order logical language and are variants of goal regression, such as the familiar explanation based generalization (EBG) procedure. But because predicate calculus is a poor representation for some domains, these learning algorithms are extended to apply to other computational models. It is shown that the goal regression technique applies to a large family of programming languages, all based on a kind of term rewriting system. Included in this family are three language families of importance to artificial intelligence: logic programming, such as Prolog; lambda calculus, such as LISP; and combinatorial based languages, such as FP. A new analytical learning algorithm, AL-2, is exhibited that learns from success but is otherwise quite different from EBG. These results suggest that term rewriting systems are a good framework for analytical learning research in general, and that further research should be directed toward developing new techniques.

  14. Prosodic Phonological Representations Early in Visual Word Recognition

    ERIC Educational Resources Information Center

    Ashby, Jane; Martin, Andrea E.

    2008-01-01

    Two experiments examined the nature of the phonological representations used during visual word recognition. We tested whether a minimality constraint (R. Frost, 1998) limits the complexity of early representations to a simple string of phonemes. Alternatively, readers might activate elaborated representations that include prosodic syllable…

  15. Biomedical semantics in the Semantic Web

    PubMed Central

    2011-01-01

    The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences? We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th. PMID:21388570

  16. Biomedical semantics in the Semantic Web.

    PubMed

    Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott

    2011-03-07

    The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.

  17. Semantic representation of CDC-PHIN vocabulary using Simple Knowledge Organization System.

    PubMed

    Zhu, Min; Mirhaji, Parsa

    2008-11-06

    PHIN Vocabulary Access and Distribution System (VADS) promotes the use of standards based vocabulary within CDC information systems. However, the current PHIN vocabulary representation hinders its wide adoption. Simple Knowledge Organization System (SKOS) is a W3C draft specification to support the formal representation of Knowledge Organization Systems (KOS) within the framework of the Semantic Web. We present a method of adopting SKOS to represent PHIN vocabulary in order to enable automated information sharing and integration.

  18. The extended Lennard-Jones potential energy function: A simpler model for direct-potential-fit analysis

    NASA Astrophysics Data System (ADS)

    Hajigeorgiou, Photos G.

    2016-12-01

    An analytical model for the diatomic potential energy function that was recently tested as a universal function (Hajigeorgiou, 2010) has been further modified and tested as a suitable model for direct-potential-fit analysis. Applications are presented for the ground electronic states of three diatomic molecules: oxygen, carbon monoxide, and hydrogen fluoride. The adjustable parameters of the extended Lennard-Jones potential model are determined through nonlinear regression by fits to calculated rovibrational energy term values or experimental spectroscopic line positions. The model is shown to lead to reliable, compact and simple representations for the potential energy functions of these systems and could therefore be classified as a suitable and attractive model for direct-potential-fit analysis.

  19. Homogeneous partial differential equations for superpositions of indeterminate functions of several variables

    NASA Astrophysics Data System (ADS)

    Asai, Kazuto

    2009-02-01

    We determine essentially all partial differential equations satisfied by superpositions of tree type and of a further special type. These equations represent necessary and sufficient conditions for an analytic function to be locally expressible as an analytic superposition of the type indicated. The representability of a real analytic function by a superposition of this type is independent of whether that superposition involves real-analytic functions or C^{\\rho}-functions, where the constant \\rho is determined by the structure of the superposition. We also prove that the function u defined by u^n=xu^a+yu^b+zu^c+1 is generally non-representable in any real (resp. complex) domain as f\\bigl(g(x,y),h(y,z)\\bigr) with twice differentiable f and differentiable g, h (resp. analytic f, g, h).

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholtz, Jean

    A new field of research, visual analytics, has recently been introduced. This has been defined as “the science of analytical reasoning facilitated by visual interfaces." Visual analytic environments, therefore, support analytical reasoning using visual representations and interactions, with data representations and transformation capabilities, to support production, presentation and dissemination. As researchers begin to develop visual analytic environments, it will be advantageous to develop metrics and methodologies to help researchers measure the progress of their work and understand the impact their work will have on the users who will work in such environments. This paper presents five areas or aspects ofmore » visual analytic environments that should be considered as metrics and methodologies for evaluation are developed. Evaluation aspects need to include usability, but it is necessary to go beyond basic usability. The areas of situation awareness, collaboration, interaction, creativity, and utility are proposed as areas for initial consideration. The steps that need to be undertaken to develop systematic evaluation methodologies and metrics for visual analytic environments are outlined.« less

  1. Big data in medical informatics: improving education through visual analytics.

    PubMed

    Vaitsis, Christos; Nilsson, Gunnar; Zary, Nabil

    2014-01-01

    A continuous effort to improve healthcare education today is currently driven from the need to create competent health professionals able to meet healthcare demands. Limited research reporting how educational data manipulation can help in healthcare education improvement. The emerging research field of visual analytics has the advantage to combine big data analysis and manipulation techniques, information and knowledge representation, and human cognitive strength to perceive and recognise visual patterns. The aim of this study was therefore to explore novel ways of representing curriculum and educational data using visual analytics. Three approaches of visualization and representation of educational data were presented. Five competencies at undergraduate medical program level addressed in courses were identified to inaccurately correspond to higher education board competencies. Different visual representations seem to have a potential in impacting on the ability to perceive entities and connections in the curriculum data.

  2. Graphical tensor product reduction scheme for the Lie algebras so(5) = sp(2) , su(3) , and g(2)

    NASA Astrophysics Data System (ADS)

    Vlasii, N. D.; von Rütte, F.; Wiese, U.-J.

    2016-08-01

    We develop in detail a graphical tensor product reduction scheme, first described by Antoine and Speiser, for the simple rank 2 Lie algebras so(5) = sp(2) , su(3) , and g(2) . This leads to an efficient practical method to reduce tensor products of irreducible representations into sums of such representations. For this purpose, the 2-dimensional weight diagram of a given representation is placed in a ;landscape; of irreducible representations. We provide both the landscapes and the weight diagrams for a large number of representations for the three simple rank 2 Lie algebras. We also apply the algebraic ;girdle; method, which is much less efficient for calculations by hand for moderately large representations. Computer code for reducing tensor products, based on the graphical method, has been developed as well and is available from the authors upon request.

  3. Advantages of Thesaurus Representation Using the Simple Knowledge Organization System (SKOS) Compared with Proposed Alternatives

    ERIC Educational Resources Information Center

    Pastor-Sanchez, Juan-Antonio; Martinez Mendez, Francisco Javier; Rodriguez-Munoz, Jose Vicente

    2009-01-01

    Introduction: This paper presents an analysis of the Simple Knowledge Organization System (SKOS) compared with other alternatives for thesaurus representation in the Semantic Web. Method: Based on functional and structural changes of thesauri, provides an overview of the current context in which lexical paradigm is abandoned in favour of the…

  4. Design of the stabilizing control of the orbital motion in the vicinity of the collinear libration point L1 using the analytical representation of the invariant manifold

    NASA Astrophysics Data System (ADS)

    Maliavkin, G. P.; Shmyrov, A. S.; Shmyrov, V. A.

    2018-05-01

    Vicinities of collinear libration points of the Sun-Earth system are currently quite attractive for the space navigation. Today, various projects on placing of spacecrafts observing the Sun in the L1 libration point and telescopes in L2 have been implemented (e.g. spacecrafts "WIND", "SOHO", "Herschel", "Planck"). Collinear libration points being unstable leads to the problem of stabilization of a spacecraft's motion. Laws of stabilizing motion control in vicinity of L1 point can be constructed using the analytical representation of a stable invariant manifold. Efficiency of these control laws depends on the precision of the representation. Within the model of Hill's approximation of the circular restricted three-body problem in the rotating geocentric coordinate system one can obtain the analytical representation of an invariant manifold filled with bounded trajectories in a form of series in terms of powers of the phase variables. Approximate representations of the orders from the first to the fourth inclusive can be used to construct four laws of stabilizing feedback motion control under which trajectories approach the manifold. By virtue of numerical simulation the comparison can be made: how the precision of the representation of the invariant manifold influences the efficiency of the control, expressed by energy consumptions (characteristic velocity). It shows that using approximations of higher orders in constructing the control laws can significantly reduce the energy consumptions on implementing the control compared to the linear approximation.

  5. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications

    NASA Astrophysics Data System (ADS)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-05-01

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.

  6. On the representability problem and the physical meaning of coarse-grained models

    NASA Astrophysics Data System (ADS)

    Wagner, Jacob W.; Dama, James F.; Durumeric, Aleksander E. P.; Voth, Gregory A.

    2016-07-01

    In coarse-grained (CG) models where certain fine-grained (FG, i.e., atomistic resolution) observables are not directly represented, one can nonetheless identify indirect the CG observables that capture the FG observable's dependence on CG coordinates. Often, in these cases it appears that a CG observable can be defined by analogy to an all-atom or FG observable, but the similarity is misleading and significantly undermines the interpretation of both bottom-up and top-down CG models. Such problems emerge especially clearly in the framework of the systematic bottom-up CG modeling, where a direct and transparent correspondence between FG and CG variables establishes precise conditions for consistency between CG observables and underlying FG models. Here we present and investigate these representability challenges and illustrate them via the bottom-up conceptual framework for several simple analytically tractable polymer models. The examples provide special focus on the observables of configurational internal energy, entropy, and pressure, which have been at the root of controversy in the CG literature, as well as discuss observables that would seem to be entirely missing in the CG representation but can nonetheless be correlated with CG behavior. Though we investigate these problems in the framework of systematic coarse-graining, the lessons apply to top-down CG modeling also, with crucial implications for simulation at constant pressure and surface tension and for the interpretations of structural and thermodynamic correlations for comparison to experiment.

  7. 3D shape extraction segmentation and representation of soil microstructures using generalized cylinders

    NASA Astrophysics Data System (ADS)

    Ngom, Ndèye Fatou; Monga, Olivier; Ould Mohamed, Mohamed Mahmoud; Garnier, Patricia

    2012-02-01

    This paper focuses on the modeling of soil microstructures using generalized cylinders, with a specific application to pore space. The geometric modeling of these microstructures is a recent area of study, made possible by the improved performance of computed tomography techniques. X-scanners provide very-high-resolution 3D volume images ( 3-5μm) of soil samples in which pore spaces can be extracted by thresholding. However, in most cases, the pore space defines a complex volume shape that cannot be approximated using simple analytical functions. We propose representing this shape using a compact, stable, and robust piecewise approximation by means of generalized cylinders. This intrinsic shape representation conserves its topological and geometric properties. Our algorithm includes three main processing stages. The first stage consists in describing the volume shape using a minimum number of balls included within the shape, such that their union recovers the shape skeleton. The second stage involves the optimum extraction of simply connected chains of balls. The final stage copes with the approximation of each simply optimal chain using generalized cylinders: circular generalized cylinders, tori, cylinders, and truncated cones. This technique was applied to several data sets formed by real volume computed tomography soil samples. It was possible to demonstrate that our geometric representation supplied a good approximation of the pore space. We also stress the compactness and robustness of this method with respect to any changes affecting the initial data, as well as its coherence with the intuitive notion of pores. During future studies, this geometric pore space representation will be used to simulate biological dynamics.

  8. The Relative Importance of Children's Criteria for Representational Adequacy in the Perception of Simple Sonic Stimuli

    ERIC Educational Resources Information Center

    Verschaffel, Lieven; Reybrouck, Mark; Degraeuwe, Goedele; Van Dooren, Wim

    2013-01-01

    This study investigates children's metarepresentational competence (MRC) with regard to listening to and making sense of simple sonic stimuli. Using diSessa's (2002) seminal work on MRC in mathematics and sciences as background, it aims to assess the relative importance children attribute to several criteria for representational adequacy…

  9. Calculus Students' Representation Use in Group-Work and Individual Settings

    ERIC Educational Resources Information Center

    Zazkis, Dov

    2013-01-01

    The study of student representation use and specifically the distinction between analytic and visual representations has fueled a long line of mathematics education literature that began more than 35 years ago. This literature can be partitioned into two bodies of work, one that is primarily cognitive and one that is primarily social. In spite of…

  10. A Critical Review of the Development of Several Viscoplastic Constitutive Theories.

    DTIC Science & Technology

    1987-09-15

    20, 1241 -1251 (1949). [14] E. Krempl and P. Hewelt, "The Constant Volume Hypothesis for the Inelastic Deformation of Metals in the Small Strain Range...Analytical Representation of the Creep Strain-Time Behavior of Commercially Heat Treated Alloy 718," ORNL /TM-6232, 1978. 71 .r w *~ *U* ~ ~ V.WJW -9...Analytical Representation of the Creep Strain-Time Behavior of Commercially Heat Treated Alloy 718," ORNL /TM 6232, 1978. (67 M.A. Eisenberg and C.F

  11. Geometric Representations for Discrete Fourier Transforms

    NASA Technical Reports Server (NTRS)

    Cambell, C. W.

    1986-01-01

    Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.

  12. Benchmark solutions for the galactic ion transport equations: Energy and spatially dependent problems

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Wilson, John W.

    1989-01-01

    Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations.

  13. Vectorlike fermions and Higgs effective field theory revisited

    DOE PAGES

    Chen, Chien-Yi; Dawson, S.; Furlan, Elisabetta

    2017-07-10

    Heavy vectorlike quarks (VLQs) appear in many models of beyond the Standard Model physics. Direct experimental searches require these new quarks to be heavy, ≳ 800 – 1000 GeV . Here, we perform a global fit of the parameters of simple VLQ models in minimal representations of S U ( 2 ) L to precision data and Higgs rates. One interesting connection between anomalous Z bmore » $$\\bar{b}$$ interactions and Higgs physics in VLQ models is discussed. Finally, we present our analysis in an effective field theory (EFT) framework and show that the parameters of VLQ models are already highly constrained. Exact and approximate analytical formulas for the S and T parameters in the VLQ models we consider are available in the Supplemental Material as Mathematica files.« less

  14. Properties of pendular liquid bridges determined on Delaunay's roulettes

    NASA Astrophysics Data System (ADS)

    Mielniczuk, Boleslaw; Millet, Olivier; Gagneux, Gérard; El Youssoufi, Moulay Said

    2017-06-01

    This work addresses the study of capillary bridge properties between two grains, with use of recent analytical model, based on solutions of Young-Laplace equation from an inverse problem. A simple explicit criterion allows to classify the profile of capillary bridge as a surface of revolution with constant mean curvature (Delaunay roulette) using its measured geometrical parameters (gorge radius, contact angle, half-filling angle). Necessary data are obtained from experimental tests, realized on liquid bridges between two equal spherical grains. Sequences of images are recorded at several (fixed) volumes of liquid and different separations distances between the spheres (from contact to rupture), in laboratory and in micro-gravity conditions. For each configuration, an exact parametric representation of the meridian is revealed. Mean bridge curvature, internal pressure and intergranular capillary force are also determined.

  15. A Simple Model of Global Aerosol Indirect Effects

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter

    2013-01-01

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.

  16. System identification of analytical models of damped structures

    NASA Technical Reports Server (NTRS)

    Fuh, J.-S.; Chen, S.-Y.; Berman, A.

    1984-01-01

    A procedure is presented for identifying linear nonproportionally damped system. The system damping is assumed to be representable by a real symmetric matrix. Analytical mass, stiffness and damping matrices which constitute an approximate representation of the system are assumed to be available. Given also are an incomplete set of measured natural frequencies, damping ratios and complex mode shapes of the structure, normally obtained from test data. A method is developed to find the smallest changes in the analytical model so that the improved model can exactly predict the measured modal parameters. The present method uses the orthogonality relationship to improve mass and damping matrices and the dynamic equation to find the improved stiffness matrix.

  17. Proceedings of the Workshop on Change of Representation and Problem Reformulation

    NASA Technical Reports Server (NTRS)

    Lowry, Michael R.

    1992-01-01

    The proceedings of the third Workshop on Change of representation and Problem Reformulation is presented. In contrast to the first two workshops, this workshop was focused on analytic or knowledge-based approaches, as opposed to statistical or empirical approaches called 'constructive induction'. The organizing committee believes that there is a potential for combining analytic and inductive approaches at a future date. However, it became apparent at the previous two workshops that the communities pursuing these different approaches are currently interested in largely non-overlapping issues. The constructive induction community has been holding its own workshops, principally in conjunction with the machine learning conference. While this workshop is more focused on analytic approaches, the organizing committee has made an effort to include more application domains. We have greatly expanded from the origins in the machine learning community. Participants in this workshop come from the full spectrum of AI application domains including planning, qualitative physics, software engineering, knowledge representation, and machine learning.

  18. Analytical Studies on the Synchronization of a Network of Linearly-Coupled Simple Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Sivaganesh, G.; Arulgnanam, A.; Seethalakshmi, A. N.; Selvaraj, S.

    2018-05-01

    We present explicit generalized analytical solutions for a network of linearly-coupled simple chaotic systems. Analytical solutions are obtained for the normalized state equations of a network of linearly-coupled systems driven by a common chaotic drive system. Two parameter bifurcation diagrams revealing the various hidden synchronization regions, such as complete, phase and phase-lag synchronization are identified using the analytical results. The synchronization dynamics and their stability are studied using phase portraits and the master stability function, respectively. Further, experimental results for linearly-coupled simple chaotic systems are presented to confirm the analytical results. The synchronization dynamics of a network of chaotic systems studied analytically is reported for the first time.

  19. Representations in Calculus: Two Contrasting Cases.

    ERIC Educational Resources Information Center

    Aspinwall, Leslie; Shaw, Kenneth L.

    2002-01-01

    Illustrates the contrasting thinking processes of two beginning calculus students' geometric and analytic schemes for the derivative function. Suggests that teachers can enhance students' understanding by continuing to demonstrate how different representations of the same mathematical concept provide additional information. (KHR)

  20. Characterization of echoes: A Dyson-series representation of individual pulses

    NASA Astrophysics Data System (ADS)

    Correia, Miguel R.; Cardoso, Vitor

    2018-04-01

    The ability to detect and scrutinize gravitational waves from the merger and coalescence of compact binaries opens up the possibility to perform tests of fundamental physics. One such test concerns the dark nature of compact objects: are they really black holes? It was recently pointed out that the absence of horizons—while keeping the external geometry very close to that of General Relativity—would manifest itself in a series of echoes in gravitational wave signals. The observation of echoes by LIGO/Virgo or upcoming facilities would likely inform us on quantum gravity effects or unseen types of matter. Detection of such signals is in principle feasible with relatively simple tools but would benefit enormously from accurate templates. Here we analytically individualize each echo waveform and show that it can be written as a Dyson series, for arbitrary effective potential and boundary conditions. We further apply the formalism to explicitly determine the echoes of a simple toy model: the Dirac delta potential. Our results allow to read off a few known features of echoes and may find application in the modeling for data analysis.

  1. The Flushtration Count Illusion: Attribute substitution tricks our interpretation of a simple visual event sequence.

    PubMed

    Thomas, Cyril; Didierjean, André; Kuhn, Gustav

    2018-04-17

    When faced with a difficult question, people sometimes work out an answer to a related, easier question without realizing that a substitution has taken place (e.g., Kahneman, 2011, Thinking, fast and slow. New York, Farrar, Strauss, Giroux). In two experiments, we investigated whether this attribute substitution effect can also affect the interpretation of a simple visual event sequence. We used a magic trick called the 'Flushtration Count Illusion', which involves a technique used by magicians to give the illusion of having seen multiple cards with identical backs, when in fact only the back of one card (the bottom card) is repeatedly shown. In Experiment 1, we demonstrated that most participants are susceptible to the illusion, even if they have the visual and analytical reasoning capacity to correctly process the sequence. In Experiment 2, we demonstrated that participants construct a biased and simplified representation of the Flushtration Count by substituting some attributes of the event sequence. We discussed of the psychological processes underlying this attribute substitution effect. © 2018 The British Psychological Society.

  2. a Proposed Benchmark Problem for Scatter Calculations in Radiographic Modelling

    NASA Astrophysics Data System (ADS)

    Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.

    2009-03-01

    Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.

  3. A case history: from traumatic repetition towards psychic representability.

    PubMed

    Bichi, Estela L

    2008-06-01

    This paper is devoted principally to a case history concerning an analytic process extending over a period of almost ten years. The patient is B, who consulted the author after a traumatic episode. Although that was her reason for commencing treatment, a history of previous traumatogenic situations, including a rape during her adolescence, subsequently came to light. The author describes three stages of the treatment, reflected in three different settings in accordance with the work done by both patient and analyst in enabling B to own and work through her infantile and adult traumatic experiences. The process of transformation of traumatic traces lacking psychic representation, which was undertaken by both members of the analytic couple from the beginning of the treatment, was eventually approached in a particular way on the basis of their respective creative capacities, which facilitated the patient's psychic progress towards representability and the possibility of working through the experiences of the past. Much of the challenge of this case involved the analyst's capacity to maintain and at the same time consolidate her analytic posture within her internal setting, while doing her best to overcome any possible misfit (Balint, 1968) between her own technique and the specific complexities of the individual patient. The account illustrates the alternation of phases, at the beginning of the analysis, of remembering and interpretation on the one hand and of the representational void and construction on the other. In the case history proper and in her detailed summing up, the author refers to the place of the analyst during the analytic process, the involvement of her psychic functioning, and the importance of her capacity to work on and make use of her countertransference and self-analytic introspection, with a view to neutralizing any influence that aspects of her 'real person' might have had on the analytic field and on the complex processes taking place within it.

  4. SIRE: A Simple Interactive Rule Editor for NICBES

    NASA Technical Reports Server (NTRS)

    Bykat, Alex

    1988-01-01

    To support evolution of domain expertise, and its representation in an expert system knowledge base, a user-friendly rule base editor is mandatory. The Nickel Cadmium Battery Expert System (NICBES), a prototype of an expert system for the Hubble Space Telescope power storage management system, does not provide such an editor. In the following, a description of a Simple Interactive Rule Base Editor (SIRE) for NICBES is described. The SIRE provides a consistent internal representation of the NICBES knowledge base. It supports knowledge presentation and provides a user-friendly and code language independent medium for rule addition and modification. The SIRE is integrated with NICBES via an interface module. This module provides translation of the internal representation to Prolog-type rules (Horn clauses), latter rule assertion, and a simple mechanism for rule selection for its Prolog inference engine.

  5. BiNA: A Visual Analytics Tool for Biological Network Data

    PubMed Central

    Gerasch, Andreas; Faber, Daniel; Küntzer, Jan; Niermann, Peter; Kohlbacher, Oliver; Lenhof, Hans-Peter; Kaufmann, Michael

    2014-01-01

    Interactive visual analysis of biological high-throughput data in the context of the underlying networks is an essential task in modern biomedicine with applications ranging from metabolic engineering to personalized medicine. The complexity and heterogeneity of data sets require flexible software architectures for data analysis. Concise and easily readable graphical representation of data and interactive navigation of large data sets are essential in this context. We present BiNA - the Biological Network Analyzer - a flexible open-source software for analyzing and visualizing biological networks. Highly configurable visualization styles for regulatory and metabolic network data offer sophisticated drawings and intuitive navigation and exploration techniques using hierarchical graph concepts. The generic projection and analysis framework provides powerful functionalities for visual analyses of high-throughput omics data in the context of networks, in particular for the differential analysis and the analysis of time series data. A direct interface to an underlying data warehouse provides fast access to a wide range of semantically integrated biological network databases. A plugin system allows simple customization and integration of new analysis algorithms or visual representations. BiNA is available under the 3-clause BSD license at http://bina.unipax.info/. PMID:24551056

  6. Advanced propeller aerodynamic analysis

    NASA Technical Reports Server (NTRS)

    Bober, L. J.

    1980-01-01

    The analytical approaches as well as the capabilities of three advanced analyses for predicting propeller aerodynamic performance are presented. It is shown that two of these analyses use a lifting line representation for the propeller blades, and the third uses a lifting surface representation.

  7. Reevaluating the two-representation model of numerical magnitude processing.

    PubMed

    Jiang, Ting; Zhang, Wenfeng; Wen, Wen; Zhu, Haiting; Du, Han; Zhu, Xiangru; Gao, Xuefei; Zhang, Hongchuan; Dong, Qi; Chen, Chuansheng

    2016-01-01

    One debate in mathematical cognition centers on the single-representation model versus the two-representation model. Using an improved number Stroop paradigm (i.e., systematically manipulating physical size distance), in the present study we tested the predictions of the two models for number magnitude processing. The results supported the single-representation model and, more importantly, explained how a design problem (failure to manipulate physical size distance) and an analytical problem (failure to consider the interaction between congruity and task-irrelevant numerical distance) might have contributed to the evidence used to support the two-representation model. This study, therefore, can help settle the debate between the single-representation and two-representation models.

  8. Simple determinant representation for rogue waves of the nonlinear Schrödinger equation.

    PubMed

    Ling, Liming; Zhao, Li-Chen

    2013-10-01

    We present a simple representation for arbitrary-order rogue wave solution and a study on the trajectories of them explicitly. We find that the trajectories of two valleys on whole temporal-spatial distribution all look "X" -shaped for rogue waves. Additionally, we present different types of high-order rogue wave structures, which could be helpful towards realizing the complex dynamics of rogue waves.

  9. Towards automated human gait disease classification using phase space representation of intrinsic mode functions

    NASA Astrophysics Data System (ADS)

    Pratiher, Sawon; Patra, Sayantani; Pratiher, Souvik

    2017-06-01

    A novel analytical methodology for segregating healthy and neurological disorders from gait patterns is proposed by employing a set of oscillating components called intrinsic mode functions (IMF's). These IMF's are generated by the Empirical Mode Decomposition of the gait time series and the Hilbert transformed analytic signal representation forms the complex plane trace of the elliptical shaped analytic IMFs. The area measure and the relative change in the centroid position of the polygon formed by the Convex Hull of these analytic IMF's are taken as the discriminative features. Classification accuracy of 79.31% with Ensemble learning based Adaboost classifier validates the adequacy of the proposed methodology for a computer aided diagnostic (CAD) system for gait pattern identification. Also, the efficacy of several potential biomarkers like Bandwidth of Amplitude Modulation and Frequency Modulation IMF's and it's Mean Frequency from the Fourier-Bessel expansion from each of these analytic IMF's has been discussed for its potency in diagnosis of gait pattern identification and classification.

  10. Coupling between shear and bending in the analysis of beam problems: Planar case

    NASA Astrophysics Data System (ADS)

    Shabana, Ahmed A.; Patel, Mohil

    2018-04-01

    The interpretation of invariants, such as curvatures which uniquely define the bending and twist of space curves and surfaces, is fundamental in the formulation of the beam and plate elastic forces. Accurate representations of curve and surface invariants, which enter into the definition of the strain energy equations, is particularly important in the case of large displacement analysis. This paper discusses this important subject in view of the fact that shear and bending are independent modes of deformation and do not have kinematic coupling; this is despite the fact that kinetic coupling may exist. The paper shows, using simple examples, that shear without bending and bending without shear at an arbitrary point and along a certain direction are scenarios that higher-order finite elements (FE) can represent with a degree of accuracy that depends on the order of interpolation and/or mesh size. The FE representation of these two kinematically uncoupled modes of deformation is evaluated in order to examine the effect of the order of the polynomial interpolation on the accuracy of representing these two independent modes. It is also shown in this paper that not all the curvature vectors contribute to bending deformation. In view of the conclusions drawn from the analysis of simple beam problems, the material curvature used in several previous investigations is evaluated both analytically and numerically. The problems associated with the material curvature matrix, obtained using the rotation of the beam cross-section, and the fundamental differences between this material curvature matrix and the Serret-Frenet curvature matrix are discussed.

  11. Benchmark solutions for the galactic heavy-ion transport equations with energy and spatial coupling

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Lamkin, Stanley L.; Wilson, John W.

    1991-01-01

    Nontrivial benchmark solutions are developed for the galactic heavy ion transport equations in the straightahead approximation with energy and spatial coupling. Analytical representations of the ion fluxes are obtained for a variety of sources with the assumption that the nuclear interaction parameters are energy independent. The method utilizes an analytical LaPlace transform inversion to yield a closed form representation that is computationally efficient. The flux profiles are then used to predict ion dose profiles, which are important for shield design studies.

  12. The Problem of Representation and Experience in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Ronde, Christian De

    2014-03-01

    In this paper we discuss the problem of representation and experience in quantum mechanics. We analyze the importance of metaphysics in physical thought and its relation to empiricism and analytic philosophy. We argue against both instrumentalism and scientific realism and claim that both perspectives tend to bypass the problem of representation and justify a "common sense" type experience. Finally, we present our expressionist conception of physics.

  13. Student's Conceptions in Statistical Graph's Interpretation

    ERIC Educational Resources Information Center

    Kukliansky, Ida

    2016-01-01

    Histograms, box plots and cumulative distribution graphs are popular graphic representations for statistical distributions. The main research question that this study focuses on is how college students deal with interpretation of these statistical graphs when translating graphical representations into analytical concepts in descriptive statistics.…

  14. On the representability problem and the physical meaning of coarse-grained models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Jacob W.; Dama, James F.; Durumeric, Aleksander E. P.

    2016-07-28

    In coarse-grained (CG) models where certain fine-grained (FG, i.e., atomistic resolution) observables are not directly represented, one can nonetheless identify indirect the CG observables that capture the FG observable’s dependence on CG coordinates. Often, in these cases it appears that a CG observable can be defined by analogy to an all-atom or FG observable, but the similarity is misleading and significantly undermines the interpretation of both bottom-up and top-down CG models. Such problems emerge especially clearly in the framework of the systematic bottom-up CG modeling, where a direct and transparent correspondence between FG and CG variables establishes precise conditions formore » consistency between CG observables and underlying FG models. Here we present and investigate these representability challenges and illustrate them via the bottom-up conceptual framework for several simple analytically tractable polymer models. The examples provide special focus on the observables of configurational internal energy, entropy, and pressure, which have been at the root of controversy in the CG literature, as well as discuss observables that would seem to be entirely missing in the CG representation but can nonetheless be correlated with CG behavior. Though we investigate these problems in the framework of systematic coarse-graining, the lessons apply to top-down CG modeling also, with crucial implications for simulation at constant pressure and surface tension and for the interpretations of structural and thermodynamic correlations for comparison to experiment.« less

  15. Application of the Laplace-Borel transformation to the representation of analytical solutions of Duffing's equation

    NASA Technical Reports Server (NTRS)

    Truong, K. V.; Unal, Aynur; Tobak, M.

    1989-01-01

    Various features of the solutions of Duffing's equation are described using a representation of the solutions in the Laplace-Borel transform domain. An application of this technique is illustrated for the symmetry-breaking bifurcation of a hard spring.

  16. Development and Assessment of a Molecular Structure and Properties Learning Progression

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Underwood, Sonia M.; Hilley, Caleb Z.; Klymkowsky, Michael W.

    2012-01-01

    Previously, we found that: (i) many students were unable to construct representations of simple molecular structures; (ii) a majority of students fail to make the important connection between these representations and macroscopic properties of the material; and (iii) they were unable to decode the information contained in such representations.…

  17. Improving Foundational Number Representations through Simple Arithmetical Training

    ERIC Educational Resources Information Center

    Kallai, Arava Y.; Schunn, Christian D.; Ponting, Andrea L.; Fiez, Julie A.

    2011-01-01

    The aim of this study was to test a training program intended to fine-tune the mental representations of double-digit numbers, thus increasing the discriminability of such numbers. The authors' assumption was that increased fluency in math could be achieved by improving the analogic representations of numbers. The study was completed in the…

  18. The Role of Training, Individual Differences and Knowledge Representation in Cognitive-Oriented Task Performance.

    ERIC Educational Resources Information Center

    Koubek, Richard J.

    The roles of training, problem representation, and individual differences on performance of both automated (simple) and controlled (complex) process tasks were studied. The following hypotheses were tested: (1) training and cognitive style affect the representation developed; (2) training and cognitive style affect the development and performance…

  19. The Role of Metarepresentation in the Production and Resolution of Referring Expressions.

    PubMed

    Horton, William S; Brennan, Susan E

    2016-01-01

    In this paper we consider the potential role of metarepresentation-the representation of another representation, or as commonly considered within cognitive science, the mental representation of another individual's knowledge and beliefs-in mediating definite reference and common ground in conversation. Using dialogues from a referential communication study in which speakers conversed in succession with two different addressees, we highlight ways in which interlocutors work together to successfully refer to objects, and achieve shared conceptualizations. We briefly review accounts of how such shared conceptualizations could be represented in memory, from simple associations between label and referent, to "triple co-presence" representations that track interlocutors in an episode of referring, to more elaborate metarepresentations that invoke theory of mind, mutual knowledge, or a model of a conversational partner. We consider how some forms of metarepresentation, once created and activated, could account for definite reference in conversation by appealing to ordinary processes in memory. We conclude that any representations that capture information about others' perspectives are likely to be relatively simple and subject to the same kinds of constraints on attention and memory that influence other kinds of cognitive representations.

  20. Knowledge-based vision and simple visual machines.

    PubMed Central

    Cliff, D; Noble, J

    1997-01-01

    The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong. PMID:9304684

  1. Relaxation in a two-body Fermi-Pasta-Ulam system in the canonical ensemble

    NASA Astrophysics Data System (ADS)

    Sen, Surajit; Barrett, Tyler

    The study of the dynamics of the Fermi-Pasta-Ulam (FPU) chain remains a challenging problem. Inspired by the recent work of Onorato et al. on thermalization in the FPU system, we report a study of relaxation processes in a two-body FPU system in the canonical ensemble. The studies have been carried out using the Recurrence Relations Method introduced by Zwanzig, Mori, Lee and others. We have obtained exact analytical expressions for the first thirteen levels of the continued fraction representation of the Laplace transformed velocity autocorrelation function of the system. Using simple and reasonable extrapolation schemes and known limits we are able to estimate the relaxation behavior of the oscillators in the two-body FPU system and recover the expected behavior in the harmonic limit. Generalizations of the calculations to larger systems will be discussed.

  2. Relational, Structural, and Semantic Analysis of Graphical Representations and Concept Maps

    ERIC Educational Resources Information Center

    Ifenthaler, Dirk

    2010-01-01

    The demand for good instructional environments presupposes valid and reliable analytical instruments for educational research. This paper introduces the "SMD Technology" (Surface, Matching, Deep Structure), which measures relational, structural, and semantic levels of graphical representations and concept maps. The reliability and validity of the…

  3. Controlled English to facilitate human/machine analytical processing

    NASA Astrophysics Data System (ADS)

    Braines, Dave; Mott, David; Laws, Simon; de Mel, Geeth; Pham, Tien

    2013-06-01

    Controlled English is a human-readable information representation format that is implemented using a restricted subset of the English language, but which is unambiguous and directly accessible by simple machine processes. We have been researching the capabilities of CE in a number of contexts, and exploring the degree to which a flexible and more human-friendly information representation format could aid the intelligence analyst in a multi-agent collaborative operational environment; especially in cases where the agents are a mixture of other human users and machine processes aimed at assisting the human users. CE itself is built upon a formal logic basis, but allows users to easily specify models for a domain of interest in a human-friendly language. In our research we have been developing an experimental component known as the "CE Store" in which CE information can be quickly and flexibly processed and shared between human and machine agents. The CE Store environment contains a number of specialized machine agents for common processing tasks and also supports execution of logical inference rules that can be defined in the same CE language. This paper outlines the basic architecture of this approach, discusses some of the example machine agents that have been developed, and provides some typical examples of the CE language and the way in which it has been used to support complex analytical tasks on synthetic data sources. We highlight the fusion of human and machine processing supported through the use of the CE language and CE Store environment, and show this environment with examples of highly dynamic extensions to the model(s) and integration between different user-defined models in a collaborative setting.

  4. Microwave Workshop for Windows.

    ERIC Educational Resources Information Center

    White, Colin

    1998-01-01

    "Microwave Workshop for Windows" consists of three programs that act as teaching aid and provide a circuit design utility within the field of microwave engineering. The first program is a computer representation of a graphical design tool; the second is an accurate visual and analytical representation of a microwave test bench; the third…

  5. Discriminant analysis of fused positive and negative ion mobility spectra using multivariate self-modeling mixture analysis and neural networks.

    PubMed

    Chen, Ping; Harrington, Peter B

    2008-02-01

    A new method coupling multivariate self-modeling mixture analysis and pattern recognition has been developed to identify toxic industrial chemicals using fused positive and negative ion mobility spectra (dual scan spectra). A Smiths lightweight chemical detector (LCD), which can measure positive and negative ion mobility spectra simultaneously, was used to acquire the data. Simple-to-use interactive self-modeling mixture analysis (SIMPLISMA) was used to separate the analytical peaks in the ion mobility spectra from the background reactant ion peaks (RIP). The SIMPLSIMA analytical components of the positive and negative ion peaks were combined together in a butterfly representation (i.e., negative spectra are reported with negative drift times and reflected with respect to the ordinate and juxtaposed with the positive ion mobility spectra). Temperature constrained cascade-correlation neural network (TCCCN) models were built to classify the toxic industrial chemicals. Seven common toxic industrial chemicals were used in this project to evaluate the performance of the algorithm. Ten bootstrapped Latin partitions demonstrated that the classification of neural networks using the SIMPLISMA components was statistically better than neural network models trained with fused ion mobility spectra (IMS).

  6. Hantush Well Function revisited

    NASA Astrophysics Data System (ADS)

    Veling, E. J. M.; Maas, C.

    2010-11-01

    SummaryIn this paper, we comment on some recent numerical and analytical work to evaluate the Hantush Well Function. We correct an expression found in a Comment by Nadarajah [Nadarajah, S., 2007. A comment on numerical evaluation of Theis and Hantush-Jacob well functions. Journal of Hydrology 338, 152-153] to a paper by Prodanoff et al. [Prodanoff, J.A., Mansur, W.J., Mascarenhas, F.C.B., 2006. Numerical evaluation of Theis and Hantush-Jacob well functions. Journal of Hydrology 318, 173-183]. We subsequently derived another analytic representation based on a generalized hypergeometric function in two variables and from the hydrological literature we cite an analytic representation by Hunt [Hunt, B., 1977. Calculation of the leaky aquifer function. Journal of Hydrology 33, 179-183]. We have implemented both representations and compared the results. Using a convergence accelerator Hunt's representation of Hantush Well Function is efficient and accurate. While checking our implementations we found that Bear's table of the Hantush Well Function [Bear, J., 1979. Hydraulics of Groundwater. McGraw-Hill, New York, Tables 8-6] contains a number of typographical errors that are not present in the original table published by Hantush [Hantush, M.S., 1956. Analysis of data from pumping tests in leaky aquifers. Transactions, American Geophysical Union 37, 702-714]. Finally, we offer a very fast approximation with a maximum relative error of 0.0033 for the parameter range in the table given by Bear.

  7. Manufacturing data analytics using a virtual factory representation.

    PubMed

    Jain, Sanjay; Shao, Guodong; Shin, Seung-Jun

    2017-01-01

    Large manufacturers have been using simulation to support decision-making for design and production. However, with the advancement of technologies and the emergence of big data, simulation can be utilised to perform and support data analytics for associated performance gains. This requires not only significant model development expertise, but also huge data collection and analysis efforts. This paper presents an approach within the frameworks of Design Science Research Methodology and prototyping to address the challenge of increasing the use of modelling, simulation and data analytics in manufacturing via reduction of the development effort. The use of manufacturing simulation models is presented as data analytics applications themselves and for supporting other data analytics applications by serving as data generators and as a tool for validation. The virtual factory concept is presented as the vehicle for manufacturing modelling and simulation. Virtual factory goes beyond traditional simulation models of factories to include multi-resolution modelling capabilities and thus allowing analysis at varying levels of detail. A path is proposed for implementation of the virtual factory concept that builds on developments in technologies and standards. A virtual machine prototype is provided as a demonstration of the use of a virtual representation for manufacturing data analytics.

  8. Use of the Wigner representation in scattering problems

    NASA Technical Reports Server (NTRS)

    Bemler, E. A.

    1975-01-01

    The basic equations of quantum scattering were translated into the Wigner representation, putting quantum mechanics in the form of a stochastic process in phase space, with real valued probability distributions and source functions. The interpretative picture associated with this representation is developed and stressed and results used in applications published elsewhere are derived. The form of the integral equation for scattering as well as its multiple scattering expansion in this representation are derived. Quantum corrections to classical propagators are briefly discussed. The basic approximation used in the Monte-Carlo method is derived in a fashion which allows for future refinement and which includes bound state production. Finally, as a simple illustration of some of the formalism, scattering is treated by a bound two body problem. Simple expressions for single and double scattering contributions to total and differential cross-sections as well as for all necessary shadow corrections are obtained.

  9. Redundant binary number representation for an inherently parallel arithmetic on optical computers.

    PubMed

    De Biase, G A; Massini, A

    1993-02-10

    A simple redundant binary number representation suitable for digital-optical computers is presented. By means of this representation it is possible to build an arithmetic with carry-free parallel algebraic sums carried out in constant time and parallel multiplication in log N time. This redundant number representation naturally fits the 2's complement binary number system and permits the construction of inherently parallel arithmetic units that are used in various optical technologies. Some properties of this number representation and several examples of computation are presented.

  10. High-energy pp and pp-bar forward elastic scattering and total cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, M.M.; Cahn, R.N.

    1985-04-01

    The present status of elastic pp and pp-bar scattering in the high-energy domain is reviewed, with emphasis on the forward and near-forward regions. The experimental techniques for measuring sigma/sub tot/, rho, and B are discussed, emphasizing the importance of the region in which the nuclear and Coulomb scattering interfere. The impact-parameter representation is exploited to give simple didactic demonstrations of important rigorous theorems based on analyticity, and to illuminate the significance of the slope parameter B and the curvature parameter C. Models of elastic scattering are discussed, and a criterion for the onset of ''asymptopia'' is given. A critique ofmore » dispersion relations is presented. Simple analytic functions are used to fit simultaneously the real and imaginary parts of forward scattering amplitudes for both pp and pp-bar, obtained from experimental data for sigma/sub tot/ and rho. It is found that a good fit can be obtained using only five parameters (with a cross section rising as ln/sup 2/s), over the energy range 5 < ..sqrt..s < 62 GeV. The possibilities that (a) the cross section rises only as lns, (b) the cross section rises only locally as ln/sup 2/s, and eventually goes to a constant value, and (c) the cross-section difference between pp and pp-bar does not vanish as s..-->..infinity are examined critically. The nuclear slope parameters B are also fitted in a model-independent fashion. Examination of the fits reveals a new regularity of the pp-bar and the pp systems.« less

  11. Review of analytical models to stream depletion induced by pumping: Guide to model selection

    NASA Astrophysics Data System (ADS)

    Huang, Ching-Sheng; Yang, Tao; Yeh, Hund-Der

    2018-06-01

    Stream depletion due to groundwater extraction by wells may cause impact on aquatic ecosystem in streams, conflict over water rights, and contamination of water from irrigation wells near polluted streams. A variety of studies have been devoted to addressing the issue of stream depletion, but a fundamental framework for analytical modeling developed from aquifer viewpoint has not yet been found. This review shows key differences in existing models regarding the stream depletion problem and provides some guidelines for choosing a proper analytical model in solving the problem of concern. We introduce commonly used models composed of flow equations, boundary conditions, well representations and stream treatments for confined, unconfined, and leaky aquifers. They are briefly evaluated and classified according to six categories of aquifer type, flow dimension, aquifer domain, stream representation, stream channel geometry, and well type. Finally, we recommend promising analytical approaches that can solve stream depletion problem in reality with aquifer heterogeneity and irregular geometry of stream channel. Several unsolved stream depletion problems are also recommended.

  12. Proactive human-computer collaboration for information discovery

    NASA Astrophysics Data System (ADS)

    DiBona, Phil; Shilliday, Andrew; Barry, Kevin

    2016-05-01

    Lockheed Martin Advanced Technology Laboratories (LM ATL) is researching methods, representations, and processes for human/autonomy collaboration to scale analysis and hypotheses substantiation for intelligence analysts. This research establishes a machinereadable hypothesis representation that is commonsensical to the human analyst. The representation unifies context between the human and computer, enabling autonomy in the form of analytic software, to support the analyst through proactively acquiring, assessing, and organizing high-value information that is needed to inform and substantiate hypotheses.

  13. A simple method for finding explicit analytic transition densities of diffusion processes with general diploid selection.

    PubMed

    Song, Yun S; Steinrücken, Matthias

    2012-03-01

    The transition density function of the Wright-Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright-Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation-selection balance.

  14. A Simple Method for Finding Explicit Analytic Transition Densities of Diffusion Processes with General Diploid Selection

    PubMed Central

    Song, Yun S.; Steinrücken, Matthias

    2012-01-01

    The transition density function of the Wright–Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright–Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation–selection balance. PMID:22209899

  15. On coherent states for the simplest quantum groups

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1991-01-01

    The coherent states for the simplest quantum groups ( q-Heisenberg-Weyl, SU q (2) and the discrete series of representations of SU q (1, 1)) are introduced and their properties investigated. The corresponding analytic representations, path integrals, and q-deformation of Berezin's quantization on ℂ, a sphere, and the Lobatchevsky plane are discussed.

  16. Uncertainty Representation in Visualizations of Learning Analytics for Learners: Current Approaches and Opportunities

    ERIC Educational Resources Information Center

    Demmans Epp, Carrie; Bull, Susan

    2015-01-01

    Adding uncertainty information to visualizations is becoming increasingly common across domains since its addition helps ensure that informed decisions are made. This work has shown the difficulty that is inherent to representing uncertainty. Moreover, the representation of uncertainty has yet to be thoroughly explored in educational domains even…

  17. Density-Dependent Quantized Least Squares Support Vector Machine for Large Data Sets.

    PubMed

    Nan, Shengyu; Sun, Lei; Chen, Badong; Lin, Zhiping; Toh, Kar-Ann

    2017-01-01

    Based on the knowledge that input data distribution is important for learning, a data density-dependent quantization scheme (DQS) is proposed for sparse input data representation. The usefulness of the representation scheme is demonstrated by using it as a data preprocessing unit attached to the well-known least squares support vector machine (LS-SVM) for application on big data sets. Essentially, the proposed DQS adopts a single shrinkage threshold to obtain a simple quantization scheme, which adapts its outputs to input data density. With this quantization scheme, a large data set is quantized to a small subset where considerable sample size reduction is generally obtained. In particular, the sample size reduction can save significant computational cost when using the quantized subset for feature approximation via the Nyström method. Based on the quantized subset, the approximated features are incorporated into LS-SVM to develop a data density-dependent quantized LS-SVM (DQLS-SVM), where an analytic solution is obtained in the primal solution space. The developed DQLS-SVM is evaluated on synthetic and benchmark data with particular emphasis on large data sets. Extensive experimental results show that the learning machine incorporating DQS attains not only high computational efficiency but also good generalization performance.

  18. Frequency spirals.

    PubMed

    Ottino-Löffler, Bertrand; Strogatz, Steven H

    2016-09-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call "frequency spirals." These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  19. An Analytical Finite-Strain Parameterization for Texture Evolution in Deformed Olivine Polycrystals

    NASA Astrophysics Data System (ADS)

    Ribe, N. M.; Castelnau, O.

    2017-12-01

    Current methods for calculating the evolution of flow-induced seismic anisotropy in the upper mantle describe crystal preferred orientation (CPO) using ensembles of 103-104 individual grains, and are too computationally expensive to be used in three-dimensional time-dependent convection models. We propose a much faster method based on the hypothesis that CPO of olivine polycrystals is a unique function of the finite strain. Our goal is then to determine how the CPO depends on the ratios r12 and r23 of the axes of the finite strain ellipsoid and on the two independent ratios p12 and p23 of the strengths (critical resolved shear stresses) of the three independent slip systems of olivine. To do this, we introduce a new analytical representation of olivine CPO in terms of three `structured basis functions' (SBFs) Fs(g, r12, r23) (s = 1, 2, 3), where g is the set of three Eulerian angles that describe the orientation of a crystal lattice relative to an external reference frame. Each SBF represents the virtual CPO that would be produced by the action of only one of the slip systems of olivine, and can be determined analytically to within an unknown time-dependent amplitude. The amplitudes are then determined by fitting the SBFs to the predictions of the second-order self-consistent (SOSC) model of Ponte-Castaneda (2002). To implement the SBF representation, we express the orientation distribution function (ODF) f(g) of the polycrystal approximately as a linear superposition of SBFs with weighting coefficients Cs. Substituting the superposition into the general evolution equation for the ODF and minimizing the residual error, we find that the weighting coefficients Cs(t) satisfy coupled evolution equations of the form αisCs + βisCs + γs = 0 where the coefficients αis, βis and γs can be calculated in advance from the expressions for the SBFs. These equations are solved numerically for different values of p12 and p23, yielding numerical values of Cs(r12, r23, p12, p23) that can be fit using simple analytical functions. Our new parameterization allows CPO to be calculated some 107 times faster than full self-consistent methods such as SOSC.

  20. On determinant representations of scalar products and form factors in the SoV approach: the XXX case

    NASA Astrophysics Data System (ADS)

    Kitanine, N.; Maillet, J. M.; Niccoli, G.; Terras, V.

    2016-03-01

    In the present article we study the form factors of quantum integrable lattice models solvable by the separation of variables (SoVs) method. It was recently shown that these models admit universal determinant representations for the scalar products of the so-called separate states (a class which includes in particular all the eigenstates of the transfer matrix). These results permit to obtain simple expressions for the matrix elements of local operators (form factors). However, these representations have been obtained up to now only for the completely inhomogeneous versions of the lattice models considered. In this article we give a simple algebraic procedure to rewrite the scalar products (and hence the form factors) for the SoV related models as Izergin or Slavnov type determinants. This new form leads to simple expressions for the form factors in the homogeneous and thermodynamic limits. To make the presentation of our method clear, we have chosen to explain it first for the simple case of the XXX Heisenberg chain with anti-periodic boundary conditions. We would nevertheless like to stress that the approach presented in this article applies as well to a wide range of models solved in the SoV framework.

  1. CEDS Addresses: Rubric Elements

    ERIC Educational Resources Information Center

    US Department of Education, 2015

    2015-01-01

    Common Education Data Standards (CEDS) Version 4 introduced a common data vocabulary for defining rubrics in a data system. The CEDS elements support digital representations of both holistic and analytic rubrics. This document shares examples of holistic and analytic project rubrics, available CEDS Connections, and a logical model showing the…

  2. Traveling-Wave Solutions of the Kolmogorov-Petrovskii-Piskunov Equation

    NASA Astrophysics Data System (ADS)

    Pikulin, S. V.

    2018-02-01

    We consider quasi-stationary solutions of a problem without initial conditions for the Kolmogorov-Petrovskii-Piskunov (KPP) equation, which is a quasilinear parabolic one arising in the modeling of certain reaction-diffusion processes in the theory of combustion, mathematical biology, and other areas of natural sciences. A new efficiently numerically implementable analytical representation is constructed for self-similar plane traveling-wave solutions of the KPP equation with a special right-hand side. Sufficient conditions for an auxiliary function involved in this representation to be analytical for all values of its argument, including the endpoints, are obtained. Numerical results are obtained for model examples.

  3. Hawking effects as a noisy quantum channel

    NASA Astrophysics Data System (ADS)

    Ahn, Doyeol

    2018-01-01

    In this work, we have shown that the evolution of the bipartite entangled state near the black hole with the Hawking radiation can be described by a noisy quantum channel, having a complete positive map with an "operator sum representation." The entanglement fidelity is obtained in analytic form from the "operator sum representation." The bipartite entangled state becomes bipartite mixed Gaussian state as the black hole evaporates. By comparing negativity and entanglement monotone with the analytical form of the entanglement fidelity, we found that the negativity and the entanglement monotone for s = 1/2 provide the upper and the lower bounds of the entanglement fidelity, respectively.

  4. Validation of the replica trick for simple models

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2018-04-01

    We discuss the replica analytic continuation using several simple models in order to prove mathematically the validity of the replica analysis, which is used in a wide range of fields related to large-scale complex systems. While replica analysis consists of two analytical techniques—the replica trick (or replica analytic continuation) and the thermodynamical limit (and/or order parameter expansion)—we focus our study on replica analytic continuation, which is the mathematical basis of the replica trick. We apply replica analysis to solve a variety of analytical models, and examine the properties of replica analytic continuation. Based on the positive results for these models we propose that replica analytic continuation is a robust procedure in replica analysis.

  5. Image Formation in Lenses and Mirrors, a Complete Representation

    ERIC Educational Resources Information Center

    Bartlett, Albert A.

    1976-01-01

    Provides tables and graphs that give a complete and simple picture of the relationships of image distance, object distance, and magnification in all formations of images by simple lenses and mirrors. (CP)

  6. Structural priming is a useful but imperfect technique for studying all linguistic representations, including those of pragmatics.

    PubMed

    Rees, Alice; Bott, Lewis

    2017-01-01

    Structural priming is a useful tool for investigating linguistics representations. We argue that structural priming can be extended to the investigation of pragmatic representations such as Gricean enrichments. That is not to say priming is without its limitations, however. Interpreting a failure to observe priming may not be as simple as Branigan & Pickering (B&P) imply.

  7. Intumescent Reaction Mechanisms: An Analytic Model.

    DTIC Science & Technology

    1983-05-01

    or amide (such as urea , melamine , dicyan- diamide, urea formaldehyde , etc.) is the release of nonflammable gases (CO2, E . etc.) that physically...mo)/dT Versus I/T (Polysulfide) 34 5-3 Fourier Series Representation of TGA Data for Polysulfide, DIP-30, EPON Resin , and Borax 40 5-4 Fourier Series...Representation of TGA Data for Part A, Part B, and Part A+B 41 5-S Fourier Series Representation of d(m/m )/dT for Polysul- fide, DIP-30, EPOI Resin

  8. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    NASA Astrophysics Data System (ADS)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  9. An Overview of Learning Analytics

    ERIC Educational Resources Information Center

    Clow, Doug

    2013-01-01

    Learning analytics, the analysis and representation of data about learners in order to improve learning, is a new lens through which teachers can understand education. It is rooted in the dramatic increase in the quantity of data about learners and linked to management approaches that focus on quantitative metrics, which are sometimes antithetical…

  10. The stationary sine-Gordon equation on metric graphs: Exact analytical solutions for simple topologies

    NASA Astrophysics Data System (ADS)

    Sabirov, K.; Rakhmanov, S.; Matrasulov, D.; Susanto, H.

    2018-04-01

    We consider the stationary sine-Gordon equation on metric graphs with simple topologies. Exact analytical solutions are obtained for different vertex boundary conditions. It is shown that the method can be extended for tree and other simple graph topologies. Applications of the obtained results to branched planar Josephson junctions and Josephson junctions with tricrystal boundaries are discussed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mozrzymas, Marek; Horodecki, Michał; Studziński, Michał

    We consider the structure of algebra of operators, acting in n-fold tensor product space, which are partially transposed on the last term. Using purely algebraical methods we show that this algebra is semi-simple and then, considering its regular representation, we derive basic properties of the algebra. In particular, we describe all irreducible representations of the algebra of partially transposed operators and derive expressions for matrix elements of the representations. It appears that there are two kinds of irreducible representations of the algebra. The first one is strictly connected with the representations of the group S(n − 1) induced by irreduciblemore » representations of the group S(n − 2). The second kind is structurally connected with irreducible representations of the group S(n − 1)« less

  12. Datacube Interoperability, Encoding Independence, and Analytics

    NASA Astrophysics Data System (ADS)

    Baumann, Peter; Hirschorn, Eric; Maso, Joan

    2017-04-01

    Datacubes are commonly accepted as an enabling paradigm which provides a handy abstraction for accessing and analyzing the zillions of image files delivered by the manifold satellite instruments and climate simulations, among others. Additionally, datacubes are the classic model for statistical and OLAP datacubes, so a further information category can be integrated. From a standards perspective, spatio-temporal datacubes naturally are included in the concept of coverages which encompass regular and irregular grids, point clouds, and general meshes - or, more abstractly, digital representations of spatio-temporally varying phenomena. ISO 19123, which is identical to OGC Abstract Topic 6, gives a high-level abstract definition which is complemented by the OGC Coverage Implementation Schema (CIS) which is an interoperable, yet format independent concretization of the abstract model. Currently, ISO is working on adopting OGC CIS as ISO 19123-2; the existing ISO 19123 standard is under revision by one of the abstract authors and will become ISO 19123-1. The roadmap agreed by ISO further foresees adoption of the OGC Web Coverage Service (WCS) as an ISO standard so that a complete data and service model will exist. In 2016, INSPIRE has adopted WCS as Coverage Download Service, including the datacube analytics language Web Coverage Processing Service (WCPS). The rasdaman technology (www.rasdaman.org) is both OGC and INSPIRE Reference Implementation. In the global EarthServer initiative rasdaman database sizes are exceeding 250 TB today, heading for the Petabyte frontier well in 2017. Technically, CIS defines a compact, efficient model for representing multi-dimensional datacubes in several ways. The classical coverage cube defines a domain set (where are values?), a range set (what are these values?), and range type (what do the values mean?), as well as a "bag" for arbitrary metadata. With CIS 1.1, coordinate/value pair sequences have been added, as well as tiled representations. Further, CIS 1.1 offers a unified model for any kind of regular and irregular grids, also allowing sensor models as per SensorML. Encodings include ASCII formats like GML, JSON, RDF as well as binary formats like GeoTIFF, NetCDF, JPEG2000, and GRIB2; further, a container concept allows mixed representations within one coverage file utilizing zip or other convenient package formats. Through the tight integration with the Sensor Web Enablement (SWE), a lossless "transport" from sensor into coverage world is ensured. The corresponding service model of WCS supports datacube operations ranging from simple data extraction to complex ad-hoc analytics with WPCS. Notably, W3C is working has set out on a coverage model as well; it has been designed relatively independently from the abovementioned standards, but there is informal agreement to link it into the CIS universe (which allows for different, yet interchangeable representations). Particularly interesting in the W3C proposal is the detailed semantic modeling of metadata; as CIS 1.1 supports RDF, a tight coupling seems feasible.

  13. A simple procedure for construction of the orthonormal basis vectors of irreducible representations of O(5) in the OT (3) ⊗ON (2) basis

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Ding, Xiaoxue; Launey, Kristina D.; Draayer, J. P.

    2018-06-01

    A simple and effective algebraic isospin projection procedure for constructing orthonormal basis vectors of irreducible representations of O (5) ⊃OT (3) ⊗ON (2) from those in the canonical O (5) ⊃ SUΛ (2) ⊗ SUI (2) basis is outlined. The expansion coefficients are components of null space vectors of the projection matrix with four nonzero elements in each row in general. Explicit formulae for evaluating OT (3)-reduced matrix elements of O (5) generators are derived.

  14. Mathematical developments regarding the general theory of the Earth magnetism

    NASA Technical Reports Server (NTRS)

    Schmidt, A.

    1983-01-01

    A literature survey on the Earth's magnetic field, citing the works of Gauss, Erman-Petersen, Quintus Icilius and Neumayer is presented. The general formulas for the representation of the potential and components of the Earth's magnetic force are presented. An analytical representation of magnetic condition of the Earth based on observations is also made.

  15. Correcting for diffusion in carbon-14 dating of ground water

    USGS Publications Warehouse

    Sanford, W.E.

    1997-01-01

    It has generally been recognized that molecular diffusion can be a significant process affecting the transport of carbon-14 in the subsurface when occurring either from a permeable aquifer into a confining layer or from a fracture into a rock matrix. An analytical solution that is valid for steady-state radionuclide transport through fractured rock is shown to be applicable to many multilayered aquifer systems. By plotting the ratio of the rate of diffusion to the rate of decay of carbon-14 over the length scales representative of several common hydrogeologic settings, it is demonstrated that diffusion of carbon-14 should often be not only a significant process, but a dominant one relative to decay. An age-correction formula is developed and applied to the Bangkok Basin of Thailand, where a mean carbon-14-based age of 21,000 years was adjusted to 11,000 years to account for diffusion. This formula and its graphical representation should prove useful for many studies, for they can be used first to estimate the potential role of diffusion and then to make a simple first-order age correction if necessary.It has generally been recognized that molecular diffusion can be a significant process affecting the transport of carbon-14 in the subsurface when occurring either from a permeable aquifer into a confining layer or from a fracture into a rock matrix. An analytical solution that is valid for steady-state radionuclide transport through fractured rock is shown to be applicable to many multilayered aquifer systems. By plotting the ratio of the rate of diffusion to the rate of decay of carbon-14 over the length scales representative of several common hydrogeologic settings, it is demonstrated that diffusion of carbon-14 should often be not only a significant process, but a dominant one relative to decay. An age-correction formula is developed and applied to the Bangkok Basin of Thailand, where a mean carbon-14-based age of 21,000 years was adjusted to 11,000 years to account for diffusion. This formula and its graphical representation should prove useful for many studies, for they can be used first to estimate the potential role of diffusion and then to make a simple first-order age correction if necessary.

  16. New Tools to Prepare ACE Cross-section Files for MCNP Analytic Test Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    Monte Carlo calculations using one-group cross sections, multigroup cross sections, or simple continuous energy cross sections are often used to: (1) verify production codes against known analytical solutions, (2) verify new methods and algorithms that do not involve detailed collision physics, (3) compare Monte Carlo calculation methods with deterministic methods, and (4) teach fundamentals to students. In this work we describe 2 new tools for preparing the ACE cross-section files to be used by MCNP ® for these analytic test problems, simple_ace.pl and simple_ace_mg.pl.

  17. An Approximate Solution to the Equation of Motion for Large-Angle Oscillations of the Simple Pendulum with Initial Velocity

    ERIC Educational Resources Information Center

    Johannessen, Kim

    2010-01-01

    An analytic approximation of the solution to the differential equation describing the oscillations of a simple pendulum at large angles and with initial velocity is discussed. In the derivation, a sinusoidal approximation has been applied, and an analytic formula for the large-angle period of the simple pendulum is obtained, which also includes…

  18. Tidal analysis of Met rocket wind data

    NASA Technical Reports Server (NTRS)

    Bedinger, J. F.; Constantinides, E.

    1976-01-01

    A method of analyzing Met Rocket wind data is described. Modern tidal theory and specialized analytical techniques were used to resolve specific tidal modes and prevailing components in observed wind data. A representation of the wind which is continuous in both space and time was formulated. Such a representation allows direct comparison with theory, allows the derivation of other quantities such as temperature and pressure which in turn may be compared with observed values, and allows the formation of a wind model which extends over a broader range of space and time. Significant diurnal tidal modes with wavelengths of 10 and 7 km were present in the data and were resolved by the analytical technique.

  19. Assessment of Matrix Multiplication Learning with a Rule-Based Analytical Model--"A Bayesian Network Representation"

    ERIC Educational Resources Information Center

    Zhang, Zhidong

    2016-01-01

    This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…

  20. Analytic modeling of aerosol size distributions

    NASA Technical Reports Server (NTRS)

    Deepack, A.; Box, G. P.

    1979-01-01

    Mathematical functions commonly used for representing aerosol size distributions are studied parametrically. Methods for obtaining best fit estimates of the parameters are described. A catalog of graphical plots depicting the parametric behavior of the functions is presented along with procedures for obtaining analytical representations of size distribution data by visual matching of the data with one of the plots. Examples of fitting the same data with equal accuracy by more than one analytic model are also given.

  1. Simplified Analytical Model of a Six-Degree-of-Freedom Large-Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1997-01-01

    A simplified analytical model of a six-degree-of-freedom large-gap magnetic suspension system is presented. The suspended element is a cylindrical permanent magnet that is magnetized in a direction which is perpendicular to its axis of symmetry. The actuators are air core electromagnets mounted in a planar array. The analytical model consists of an open-loop representation of the magnetic suspension system with electromagnet currents as inputs.

  2. Analytical models for coupling reliability in identical two-magnet systems during slow reversals

    NASA Astrophysics Data System (ADS)

    Kani, Nickvash; Naeemi, Azad

    2017-12-01

    This paper follows previous works which investigated the strength of dipolar coupling in two-magnet systems. While those works focused on qualitative analyses, this manuscript elucidates reversal through dipolar coupling culminating in analytical expressions for reversal reliability in identical two-magnet systems. The dipolar field generated by a mono-domain magnetic body can be represented by a tensor containing both longitudinal and perpendicular field components; this field changes orientation and magnitude based on the magnetization of neighboring nanomagnets. While the dipolar field does reduce to its longitudinal component at short time-scales, for slow magnetization reversals, the simple longitudinal field representation greatly underestimates the scope of parameters that ensure reliable coupling. For the first time, analytical models that map the geometric and material parameters required for reliable coupling in two-magnet systems are developed. It is shown that in biaxial nanomagnets, the x ̂ and y ̂ components of the dipolar field contribute to the coupling, while all three dimensions contribute to the coupling between a pair of uniaxial magnets. Additionally, the ratio of the longitudinal and perpendicular components of the dipolar field is also very important. If the perpendicular components in the dipolar tensor are too large, the nanomagnet pair may come to rest in an undesirable meta-stable state away from the free axis. The analytical models formulated in this manuscript map the minimum and maximum parameters for reliable coupling. Using these models, it is shown that there is a very small range of material parameters which can facilitate reliable coupling between perpendicular-magnetic-anisotropy nanomagnets; hence, in-plane nanomagnets are more suitable for coupled systems.

  3. "It's Me. I'm Fixin' to Know the Hard Words": Children's Perceptions of "Good Readers" as Portrayed in Their Representational Drawings

    ERIC Educational Resources Information Center

    Cobb, Jeanne B.

    2012-01-01

    This study utilized a qualitative, interpretative, analytic technique based on image-based research. This descriptive study was designed to investigate children's perceptions of "good readers" as portrayed in their representational drawings. Children in grades kindergarten through 6, 156 total, in 14 schools in a small, rural school…

  4. Fabricating Simple Wax Screen-Printing Paper-Based Analytical Devices to Demonstrate the Concept of Limiting Reagent in Acid- Base Reactions

    ERIC Educational Resources Information Center

    Namwong, Pithakpong; Jarujamrus, Purim; Amatatongchai, Maliwan; Chairam, Sanoe

    2018-01-01

    In this article, a low-cost, simple, and rapid fabrication of paper-based analytical devices (PADs) using a wax screen-printing method is reported here. The acid-base reaction is implemented in the simple PADs to demonstrate to students the chemistry concept of a limiting reagent. When a fixed concentration of base reacts with a gradually…

  5. Development of Multi-slice Analytical Tool to Support BIM-based Design Process

    NASA Astrophysics Data System (ADS)

    Atmodiwirjo, P.; Johanes, M.; Yatmo, Y. A.

    2017-03-01

    This paper describes the on-going development of computational tool to analyse architecture and interior space based on multi-slice representation approach that is integrated with Building Information Modelling (BIM). Architecture and interior space is experienced as a dynamic entity, which have the spatial properties that might be variable from one part of space to another, therefore the representation of space through standard architectural drawings is sometimes not sufficient. The representation of space as a series of slices with certain properties in each slice becomes important, so that the different characteristics in each part of space could inform the design process. The analytical tool is developed for use as a stand-alone application that utilises the data exported from generic BIM modelling tool. The tool would be useful to assist design development process that applies BIM, particularly for the design of architecture and interior spaces that are experienced as continuous spaces. The tool allows the identification of how the spatial properties change dynamically throughout the space and allows the prediction of the potential design problems. Integrating the multi-slice analytical tool in BIM-based design process thereby could assist the architects to generate better design and to avoid unnecessary costs that are often caused by failure to identify problems during design development stages.

  6. Graph Databases for Large-Scale Healthcare Systems: A Framework for Efficient Data Management and Data Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Yubin; Shankar, Mallikarjun; Park, Byung H.

    Designing a database system for both efficient data management and data services has been one of the enduring challenges in the healthcare domain. In many healthcare systems, data services and data management are often viewed as two orthogonal tasks; data services refer to retrieval and analytic queries such as search, joins, statistical data extraction, and simple data mining algorithms, while data management refers to building error-tolerant and non-redundant database systems. The gap between service and management has resulted in rigid database systems and schemas that do not support effective analytics. We compose a rich graph structure from an abstracted healthcaremore » RDBMS to illustrate how we can fill this gap in practice. We show how a healthcare graph can be automatically constructed from a normalized relational database using the proposed 3NF Equivalent Graph (3EG) transformation.We discuss a set of real world graph queries such as finding self-referrals, shared providers, and collaborative filtering, and evaluate their performance over a relational database and its 3EG-transformed graph. Experimental results show that the graph representation serves as multiple de-normalized tables, thus reducing complexity in a database and enhancing data accessibility of users. Based on this finding, we propose an ensemble framework of databases for healthcare applications.« less

  7. Dynamics of atoms in strong laser fields I: A quasi analytical model in momentum space based on a Sturmian expansion of the interacting nonlocal Coulomb potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ongonwou, F., E-mail: fred.ongonwou@gmail.com; Tetchou Nganso, H.M., E-mail: htetchou@yahoo.com; Ekogo, T.B., E-mail: tekogo@yahoo.fr

    In this study we present a model that we have formulated in the momentum space to describe atoms interacting with intense laser fields. As a further step, it follows our recent theoretical approach in which the kernel of the reciprocal-space time-dependent Schrödinger equation (TDSE) is replaced by a finite sum of separable potentials, each of them supporting one bound state of atomic hydrogen (Tetchou Nganso et al. 2013). The key point of the model is that the nonlocal interacting Coulomb potential is expanded in a Coulomb Sturmian basis set derived itself from a Sturmian representation of Bessel functions of the firstmore » kind in the position space. As a result, this decomposition allows a simple spectral treatment of the TDSE in the momentum space. In order to illustrate the credibility of the model, we have considered the test case of atomic hydrogen driven by a linearly polarized laser pulse, and have evaluated analytically matrix elements of the atomic Hamiltonian and dipole coupling interaction. For various regimes of the laser parameters used in computations our results are in very good agreement with data obtained from other time-dependent calculations.« less

  8. Automation Activities that Support C2 Agility to Mitigate Type 7 Risks

    DTIC Science & Technology

    2014-06-01

    on business trip • Space ship runs into space junk What are the probabilities for these events in a 45-year career time frame? Event that...representation that information system understands State- Space Diagram Common Agility Space (CAS) A simple C2 organization representation

  9. Erratum: A Simple, Analytical Model of Collisionless Magnetic Reconnection in a Pair Plasma

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex

    2011-01-01

    The following describes a list of errata in our paper, "A simple, analytical model of collisionless magnetic reconnection in a pair plasma." It supersedes an earlier erratum. We recently discovered an error in the derivation of the outflow-to-inflow density ratio.

  10. Two Geo-Arithmetic Representations of n[superscript 3]: Sum of Hex Numbers

    ERIC Educational Resources Information Center

    Unal, Husan

    2009-01-01

    Studies have shown that students' understanding is typically analytic and not visual. Two possible reasons for this are when the analytic mode, instead of the graphic mode, is most frequently used in instruction or, when students or teachers hold the belief that mathematics consists simply of skillful manipulation of symbols and numbers. The…

  11. Modified Stereographic Projections of Point Groups and Diagrams of Their Irreducible Representations

    NASA Astrophysics Data System (ADS)

    Kettle, Sidney F. A.

    1999-05-01

    Modified versions of the stereographic projections of the point groups of classical crystallography are presented. They show the consequences of symmetry operations rather than emphasizing the existence of symmetry elements. These projections may be used to give pictures of the irreducible representations of point groups and several examples are given. Such pictures add physical reality to the irreducible representations and facilitate simple lecture demonstration of many important aspects and applications of group theory in chemistry.

  12. "Are You Gonna Show This to White People?": Chicana/o and Latina/o Students' Counter-Narratives on Race, Place, and Representation

    ERIC Educational Resources Information Center

    Martínez, Ramón Antonio

    2017-01-01

    This article explores the recurring narratives on race, place and representation that emerged in the talk of Chicana/o and Latina/o sixth-graders at a middle school in East Los Angeles, California. Discourse analytic methods are used to closely examine how these narratives were constructed within the contexts of everyday classroom interactions.…

  13. The Soil Foam Drainage Equation - an alternative model for unsaturated flow in porous media

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Lehmann, Peter; Hoogland, Frouke; Or, Dani

    2017-04-01

    The analogy between the geometry and dynamics of wet foam drainage and gravity drainage of unsaturated porous media expands modeling capabilities for capillary flows and supplements the standard Richards equation representation. The governing equation for draining foam (or a soil variant termed the soil foam drainage equation - SFDE) obviates the need for macroscopic unsaturated hydraulic conductivity function by an explicit account of diminishing flow pathway sizes as the medium gradually drains. Potential advantages of the proposed drainage foam formalism include direct description of transient flow without requiring constitutive functions; evolution of capillary cross sections that provides consistent description of self-regulating internal fluxes (e.g., towards field capacity); and a more intuitive geometrical picture of capillary flow across textural boundaries. We will present new and simple analytical expressions for drainage rates and volumes from unsaturated porous media subjected to different boundary conditions that are in good agreement with the numerical solution of the SFDE and experimental results. The foam drainage methodology expands the range of tools available for describing and quantifying unsaturated flows and provides geometrically tractable links between evolution of liquid configuration and flow dynamics in unsaturated porous media. The resulting geometrical representation of capillary drainage could improve understanding of colloid and pathogen transport. The explicit geometrical interpretation of flow pathways underlying the hydraulic functions used by the Richards equation offers new insights that benefit both approaches.

  14. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions

    NASA Astrophysics Data System (ADS)

    Donahue, William; Newhauser, Wayne D.; Ziegler, James F.

    2016-09-01

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u-1 to 450 MeV u-1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  15. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions.

    PubMed

    Donahue, William; Newhauser, Wayne D; Ziegler, James F

    2016-09-07

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  16. Hydroelastic vibration analysis of partially liquid-filled shells using a series representation of the liquid

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Herr, R. W.; Sewall, J. L.

    1980-01-01

    A series representation of the oscillatory behavior of incompressible nonviscous liquids contained in partially filled elastic tanks is presented. Each term is selected on the basis of hydroelastic vibrations in circular cylindrical tanks. Using a complementary energy principle, the superposition of terms is made to approximately satisfy the liquid-tank interface compatibility. This analysis is applied to the gravity sloshing and hydroelastic vibrations of liquids in hemispherical tanks and in a typical elastic aerospace propellant tank. With only a few series terms retained, the results correlate very well with existing analytical results, NASTRAN-generated analytical results, and experimental test results. Hence, although each term is based on a cylindrical tank geometry, the superposition can be successfully applied to noncylindrical tanks.

  17. Navigating a Mobile Robot Across Terrain Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Howard, Ayanna; Bon, Bruce

    2003-01-01

    A strategy for autonomous navigation of a robotic vehicle across hazardous terrain involves the use of a measure of traversability of terrain within a fuzzy-logic conceptual framework. This navigation strategy requires no a priori information about the environment. Fuzzy logic was selected as a basic element of this strategy because it provides a formal methodology for representing and implementing a human driver s heuristic knowledge and operational experience. Within a fuzzy-logic framework, the attributes of human reasoning and decision- making can be formulated by simple IF (antecedent), THEN (consequent) rules coupled with easily understandable and natural linguistic representations. The linguistic values in the rule antecedents convey the imprecision associated with measurements taken by sensors onboard a mobile robot, while the linguistic values in the rule consequents represent the vagueness inherent in the reasoning processes to generate the control actions. The operational strategies of the human expert driver can be transferred, via fuzzy logic, to a robot-navigation strategy in the form of a set of simple conditional statements composed of linguistic variables. These linguistic variables are defined by fuzzy sets in accordance with user-defined membership functions. The main advantages of a fuzzy navigation strategy lie in the ability to extract heuristic rules from human experience and to obviate the need for an analytical model of the robot navigation process.

  18. Developmental changes in analytic and holistic processes in face perception.

    PubMed

    Joseph, Jane E; DiBartolo, Michelle D; Bhatt, Ramesh S

    2015-01-01

    Although infants demonstrate sensitivity to some kinds of perceptual information in faces, many face capacities continue to develop throughout childhood. One debate is the degree to which children perceive faces analytically versus holistically and how these processes undergo developmental change. In the present study, school-aged children and adults performed a perceptual matching task with upright and inverted face and house pairs that varied in similarity of featural or 2(nd) order configural information. Holistic processing was operationalized as the degree of serial processing when discriminating faces and houses [i.e., increased reaction time (RT), as more features or spacing relations were shared between stimuli]. Analytical processing was operationalized as the degree of parallel processing (or no change in RT as a function of greater similarity of features or spatial relations). Adults showed the most evidence for holistic processing (most strongly for 2(nd) order faces) and holistic processing was weaker for inverted faces and houses. Younger children (6-8 years), in contrast, showed analytical processing across all experimental manipulations. Older children (9-11 years) showed an intermediate pattern with a trend toward holistic processing of 2(nd) order faces like adults, but parallel processing in other experimental conditions like younger children. These findings indicate that holistic face representations emerge around 10 years of age. In adults both 2(nd) order and featural information are incorporated into holistic representations, whereas older children only incorporate 2(nd) order information. Holistic processing was not evident in younger children. Hence, the development of holistic face representations relies on 2(nd) order processing initially then incorporates featural information by adulthood.

  19. Complex Phenomena Understanding in Electricity through Dynamically Linked Concrete and Abstract Representations

    ERIC Educational Resources Information Center

    Taramopoulos, A.; Psillos, D.

    2017-01-01

    The present study investigates the impact of utilizing virtual laboratory environments combining dynamically linked concrete and abstract representations in investigative activities on the ability of students to comprehend simple and complex phenomena in the field of electric circuits. Forty-two 16- to 17-year-old high school students participated…

  20. A Ramanujan-type measure for the Askey-Wilson polynomials

    NASA Technical Reports Server (NTRS)

    Atakishiyev, Natig M.

    1995-01-01

    A Ramanujan-type representation for the Askey-Wilson q-beta integral, admitting the transformation q to q(exp -1), is obtained. Orthogonality of the Askey-Wilson polynomials with respect to a measure, entering into this representation, is proved. A simple way of evaluating the Askey-Wilson q-beta integral is also given.

  1. A Treatment of Computational Precision, Number Representation, and Large Integers in an Introductory Fortran Course

    ERIC Educational Resources Information Center

    Richardson, William H., Jr.

    2006-01-01

    Computational precision is sometimes given short shrift in a first programming course. Treating this topic requires discussing integer and floating-point number representations and inaccuracies that may result from their use. An example of a moderately simple programming problem from elementary statistics was examined. It forced students to…

  2. Facilitating High School Students' Use of Multiple Representations to Describe and Explain Simple Chemical Reactions

    ERIC Educational Resources Information Center

    Chandrasegaran, A. L.; Treagust, David F.; Mocerino, Mauro

    2011-01-01

    This study involved the evaluation of the efficacy of a planned instructional program to facilitate understanding of the macroscopic, submicroscopic and symbolic representational systems when describing and explaining chemical reactions by sixty-five Grade 9 students in a Singapore secondary school. A two-tier multiple-choice diagnostic instrument…

  3. Novel numerical and graphical representation of DNA sequences and proteins.

    PubMed

    Randić, M; Novic, M; Vikić-Topić, D; Plavsić, D

    2006-12-01

    We have introduced novel numerical and graphical representations of DNA, which offer a simple and unique characterization of DNA sequences. The numerical representation of a DNA sequence is given as a sequence of real numbers derived from a unique graphical representation of the standard genetic code. There is no loss of information on the primary structure of a DNA sequence associated with this numerical representation. The novel representations are illustrated with the coding sequences of the first exon of beta-globin gene of half a dozen species in addition to human. The method can be extended to proteins as is exemplified by humanin, a 24-aa peptide that has recently been identified as a specific inhibitor of neuronal cell death induced by familial Alzheimer's disease mutant genes.

  4. Analytic and heuristic processing influences on adolescent reasoning and decision-making.

    PubMed

    Klaczynski, P A

    2001-01-01

    The normative/descriptive gap is the discrepancy between actual reasoning and traditional standards for reasoning. The relationship between age and the normative/descriptive gap was examined by presenting adolescents with a battery of reasoning and decision-making tasks. Middle adolescents (N = 76) performed closer to normative ideals than early adolescents (N = 66), although the normative/descriptive gap was large for both groups. Correlational analyses revealed that (1) normative responses correlated positively with each other, (2) nonnormative responses were positively interrelated, and (3) normative and nonnormative responses were largely independent. Factor analyses suggested that performance was based on two processing systems. The "analytic" system operates on "decontextualized" task representations and underlies conscious, computational reasoning. The "heuristic" system operates on "contextualized," content-laden representations and produces "cognitively cheap" responses that sometimes conflict with traditional norms. Analytic processing was more clearly linked to age and to intelligence than heuristic processing. Implications for cognitive development, the competence/performance issue, and rationality are discussed.

  5. Analytical derivation: An epistemic game for solving mathematically based physics problems

    NASA Astrophysics Data System (ADS)

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-06-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.

  6. When Simple Harmonic Motion Is Not that Simple: Managing Epistemological Complexity by Using Computer-Based Representations

    ERIC Educational Resources Information Center

    Parnafes, Orit

    2010-01-01

    Many real-world phenomena, even "simple" physical phenomena such as natural harmonic motion, are complex in the sense that they require coordinating multiple subtle foci of attention to get the required information when experiencing them. Moreover, for students to develop sound understanding of a concept or a phenomenon, they need to learn to get…

  7. Microstructure representations for sound absorbing fibrous media: 3D and 2D multiscale modelling and experiments

    NASA Astrophysics Data System (ADS)

    Zieliński, Tomasz G.

    2017-11-01

    The paper proposes and investigates computationally-efficient microstructure representations for sound absorbing fibrous media. Three-dimensional volume elements involving non-trivial periodic arrangements of straight fibres are examined as well as simple two-dimensional cells. It has been found that a simple 2D quasi-representative cell can provide similar predictions as a volume element which is in general much more geometrically accurate for typical fibrous materials. The multiscale modelling allowed to determine the effective speeds and damping of acoustic waves propagating in such media, which brings up a discussion on the correlation between the speed, penetration range and attenuation of sound waves. Original experiments on manufactured copper-wire samples are presented and the microstructure-based calculations of acoustic absorption are compared with the corresponding experimental results. In fact, the comparison suggested the microstructure modifications leading to representations with non-uniformly distributed fibres.

  8. A simple method for estimating frequency response corrections for eddy covariance systems

    Treesearch

    W. J. Massman

    2000-01-01

    A simple analytical formula is developed for estimating the frequency attenuation of eddy covariance fluxes due to sensor response, path-length averaging, sensor separation, signal processing, and flux averaging periods. Although it is an approximation based on flat terrain cospectra, this analytical formula should have broader applicability than just flat-terrain...

  9. Understanding Business Analytics

    DTIC Science & Technology

    2015-01-05

    analytics have been used in organizations for a variety of reasons for quite some time; ranging from the simple (generating and understanding business analytics...process. understanding business analytics 3 How well these two components are orchestrated will determine the level of success an organization has in

  10. SIMPLE METHOD FOR THE REPRESENTATION, QUANTIFICATION, AND COMPARISON OF THE VOLUMES AND SHAPES OF CHEMICAL COMPOUNDS

    EPA Science Inventory

    A conceptually and computationally simple method for the definition, display, quantification, and comparison of the shapes of three-dimensional mathematical molecular models is presented. Molecular or solvent-accessible volume and surface area can also be calculated. Algorithms, ...

  11. Geometric Representations of Condition Queries on Three-Dimensional Vector Fields

    NASA Technical Reports Server (NTRS)

    Henze, Chris

    1999-01-01

    Condition queries on distributed data ask where particular conditions are satisfied. It is possible to represent condition queries as geometric objects by plotting field data in various spaces derived from the data, and by selecting loci within these derived spaces which signify the desired conditions. Rather simple geometric partitions of derived spaces can represent complex condition queries because much complexity can be encapsulated in the derived space mapping itself A geometric view of condition queries provides a useful conceptual unification, allowing one to intuitively understand many existing vector field feature detection algorithms -- and to design new ones -- as variations on a common theme. A geometric representation of condition queries also provides a simple and coherent basis for computer implementation, reducing a wide variety of existing and potential vector field feature detection techniques to a few simple geometric operations.

  12. Customization of UWB 3D-RTLS Based on the New Uncertainty Model of the AoA Ranging Technique

    PubMed Central

    Jachimczyk, Bartosz; Dziak, Damian; Kulesza, Wlodek J.

    2017-01-01

    The increased potential and effectiveness of Real-time Locating Systems (RTLSs) substantially influence their application spectrum. They are widely used, inter alia, in the industrial sector, healthcare, home care, and in logistic and security applications. The research aims to develop an analytical method to customize UWB-based RTLS, in order to improve their localization performance in terms of accuracy and precision. The analytical uncertainty model of Angle of Arrival (AoA) localization in a 3D indoor space, which is the foundation of the customization concept, is established in a working environment. Additionally, a suitable angular-based 3D localization algorithm is introduced. The paper investigates the following issues: the influence of the proposed correction vector on the localization accuracy; the impact of the system’s configuration and LS’s relative deployment on the localization precision distribution map. The advantages of the method are verified by comparing them with a reference commercial RTLS localization engine. The results of simulations and physical experiments prove the value of the proposed customization method. The research confirms that the analytical uncertainty model is the valid representation of RTLS’ localization uncertainty in terms of accuracy and precision and can be useful for its performance improvement. The research shows, that the Angle of Arrival localization in a 3D indoor space applying the simple angular-based localization algorithm and correction vector improves of localization accuracy and precision in a way that the system challenges the reference hardware advanced localization engine. Moreover, the research guides the deployment of location sensors to enhance the localization precision. PMID:28125056

  13. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  14. The Quantum Approximation Optimization Algorithm for MaxCut: A Fermionic View

    NASA Technical Reports Server (NTRS)

    Wang, Zhihui; Hadfield, Stuart; Jiang, Zhang; Rieffel, Eleanor G.

    2017-01-01

    Farhi et al. recently proposed a class of quantum algorithms, the Quantum Approximate Optimization Algorithm (QAOA), for approximately solving combinatorial optimization problems. A level-p QAOA circuit consists of steps in which a classical Hamiltonian, derived from the cost function, is applied followed by a mixing Hamiltonian. The 2p times for which these two Hamiltonians are applied are the parameters of the algorithm. As p increases, however, the parameter search space grows quickly. The success of the QAOA approach will depend, in part, on finding effective parameter-setting strategies. Here, we analytically and numerically study parameter setting for QAOA applied to MAXCUT. For level-1 QAOA, we derive an analytical expression for a general graph. In principle, expressions for higher p could be derived, but the number of terms quickly becomes prohibitive. For a special case of MAXCUT, the Ring of Disagrees, or the 1D antiferromagnetic ring, we provide an analysis for arbitrarily high level. Using a Fermionic representation, the evolution of the system under QAOA translates into quantum optimal control of an ensemble of independent spins. This treatment enables us to obtain analytical expressions for the performance of QAOA for any p. It also greatly simplifies numerical search for the optimal values of the parameters. By exploring symmetries, we identify a lower-dimensional sub-manifold of interest; the search effort can be accordingly reduced. This analysis also explains an observed symmetry in the optimal parameter values. Further, we numerically investigate the parameter landscape and show that it is a simple one in the sense of having no local optima.

  15. Robust electroencephalogram phase estimation with applications in brain-computer interface systems.

    PubMed

    Seraj, Esmaeil; Sameni, Reza

    2017-03-01

    In this study, a robust method is developed for frequency-specific electroencephalogram (EEG) phase extraction using the analytic representation of the EEG. Based on recent theoretical findings in this area, it is shown that some of the phase variations-previously associated to the brain response-are systematic side-effects of the methods used for EEG phase calculation, especially during low analytical amplitude segments of the EEG. With this insight, the proposed method generates randomized ensembles of the EEG phase using minor perturbations in the zero-pole loci of narrow-band filters, followed by phase estimation using the signal's analytical form and ensemble averaging over the randomized ensembles to obtain a robust EEG phase and frequency. This Monte Carlo estimation method is shown to be very robust to noise and minor changes of the filter parameters and reduces the effect of fake EEG phase jumps, which do not have a cerebral origin. As proof of concept, the proposed method is used for extracting EEG phase features for a brain computer interface (BCI) application. The results show significant improvement in classification rates using rather simple phase-related features and a standard K-nearest neighbors and random forest classifiers, over a standard BCI dataset. The average performance was improved between 4-7% (in absence of additive noise) and 8-12% (in presence of additive noise). The significance of these improvements was statistically confirmed by a paired sample t-test, with 0.01 and 0.03 p-values, respectively. The proposed method for EEG phase calculation is very generic and may be applied to other EEG phase-based studies.

  16. Customization of UWB 3D-RTLS Based on the New Uncertainty Model of the AoA Ranging Technique.

    PubMed

    Jachimczyk, Bartosz; Dziak, Damian; Kulesza, Wlodek J

    2017-01-25

    The increased potential and effectiveness of Real-time Locating Systems (RTLSs) substantially influence their application spectrum. They are widely used, inter alia, in the industrial sector, healthcare, home care, and in logistic and security applications. The research aims to develop an analytical method to customize UWB-based RTLS, in order to improve their localization performance in terms of accuracy and precision. The analytical uncertainty model of Angle of Arrival (AoA) localization in a 3D indoor space, which is the foundation of the customization concept, is established in a working environment. Additionally, a suitable angular-based 3D localization algorithm is introduced. The paper investigates the following issues: the influence of the proposed correction vector on the localization accuracy; the impact of the system's configuration and LS's relative deployment on the localization precision distribution map. The advantages of the method are verified by comparing them with a reference commercial RTLS localization engine. The results of simulations and physical experiments prove the value of the proposed customization method. The research confirms that the analytical uncertainty model is the valid representation of RTLS' localization uncertainty in terms of accuracy and precision and can be useful for its performance improvement. The research shows, that the Angle of Arrival localization in a 3D indoor space applying the simple angular-based localization algorithm and correction vector improves of localization accuracy and precision in a way that the system challenges the reference hardware advanced localization engine. Moreover, the research guides the deployment of location sensors to enhance the localization precision.

  17. An Analysis of South African Grade 9 Natural Sciences Textbooks for Their Representation of Nature of Science

    ERIC Educational Resources Information Center

    Ramnarain, Umesh Dewnarain; Chanetsa, Tarisai

    2016-01-01

    This article reports on an analysis and comparison of three South African Grade 9 (13-14 years) Natural Sciences textbooks for the representation of nature of science (NOS). The analysis was framed by an analytical tool developed and validated by Abd-El-Khalick and a team of researchers in a large-scale study on the high school textbooks in the…

  18. Representation of the Coulomb Matrix Elements by Means of Appell Hypergeometric Function F 2

    NASA Astrophysics Data System (ADS)

    Bentalha, Zine el abidine

    2018-06-01

    Exact analytical representation for the Coulomb matrix elements by means of Appell's double series F 2 is derived. The finite sum obtained for the Appell function F 2 allows us to evaluate explicitly the matrix elements of the two-body Coulomb interaction in the lowest Landau level. An application requiring the matrix elements of Coulomb potential in quantum Hall effect regime is presented.

  19. Continuous family of finite-dimensional representations of a solvable Lie algebra arising from singularities

    PubMed Central

    Yau, Stephen S.-T.

    1983-01-01

    A natural mapping from the set of complex analytic isolated hypersurface singularities to the set of finite dimensional Lie algebras is first defined. It is proven that the image under this natural mapping is contained in the set of solvable Lie algebras. This approach gives rise to a continuous inequivalent family of finite dimensional representations of a solvable Lie algebra. PMID:16593401

  20. The sense of the body in the dream: Diagnostic capacity in the meanings of dreams.

    PubMed

    Giordo, Gianfranco

    2016-04-01

    The author investigates the oneiric representation of somatic states and the diagnostic capacity of dreams. He draws on Freud's hypotheses on the procedures by which somatic stimuli insert themselves in oneiric elaboration and restructures them according to the recent neurobiological discoveries and to analytical experiences. In the representations of certain dreams, with a psychic interpretation agreed upon by the patients, somatic alterations unknown to the analytical couple were discriminated and confirmed by radiological investigations. These representations were linked to the manifestation of one aspect of the bodily Self, neglected in the precocious maternal relation, that entered the organization of the Self consolidated in the relation with the paternal figure. This conjunction gave origin to the double meaning (somatic and psychic) of the dream. The entering of the somatic representation in the oneiric one did not appear to be the figurative effect, but of a condensation of diagnostic capacity into the meaning of the dream. This characteristic manifested itself in the particular styles of the dreamers, interpretable by an analyst countertransferentially oriented. The perception or scotomization of the condensation in the interpretation of the dream and of the moment had an effect on the evolution of the analysis. Copyright © 2015 Institute of Psychoanalysis.

  1. Three-Dimensional Piecewise-Continuous Class-Shape Transformation of Wings

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2015-01-01

    Class-Shape Transformation (CST) is a popular method for creating analytical representations of the surface coordinates of various components of aerospace vehicles. A wide variety of two- and three-dimensional shapes can be represented analytically using only a modest number of parameters, and the surface representation is smooth and continuous to as fine a degree as desired. This paper expands upon the original two-dimensional representation of airfoils to develop a generalized three-dimensional CST parametrization scheme that is suitable for a wider range of aircraft wings than previous formulations, including wings with significant non-planar shapes such as blended winglets and box wings. The method uses individual functions for the spanwise variation of airfoil shape, chord, thickness, twist, and reference axis coordinates to build up the complete wing shape. An alternative formulation parameterizes the slopes of the reference axis coordinates in order to relate the spanwise variation to the tangents of the sweep and dihedral angles. Also discussed are methods for fitting existing wing surface coordinates, including the use of piecewise equations to handle discontinuities, and mathematical formulations of geometric continuity constraints. A subsonic transport wing model is used as an example problem to illustrate the application of the methodology and to quantify the effects of piecewise representation and curvature constraints.

  2. Analytical solutions for coupling fractional partial differential equations with Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Ding, Xiao-Li; Nieto, Juan J.

    2017-11-01

    In this paper, we consider the analytical solutions of coupling fractional partial differential equations (FPDEs) with Dirichlet boundary conditions on a finite domain. Firstly, the method of successive approximations is used to obtain the analytical solutions of coupling multi-term time fractional ordinary differential equations. Then, the technique of spectral representation of the fractional Laplacian operator is used to convert the coupling FPDEs to the coupling multi-term time fractional ordinary differential equations. By applying the obtained analytical solutions to the resulting multi-term time fractional ordinary differential equations, the desired analytical solutions of the coupling FPDEs are given. Our results are applied to derive the analytical solutions of some special cases to demonstrate their applicability.

  3. Time Domain Version of the Uniform Geometrical Theory of Diffraction

    NASA Astrophysics Data System (ADS)

    Rousseau, Paul R.

    1995-01-01

    A time domain (TD) version of the uniform geometrical theory of diffraction which is referred to as the TD-UTD is developed to analyze the transient electromagnetic scattering from perfectly conducting objects that are large in terms of pulse width. In particular, the scattering from a perfectly conducting arbitrary curved wedge and an arbitrary smooth convex surface are treated in detail. Note that the canonical geometries of a circular cylinder and a sphere are special cases of the arbitrary smooth convex surface. These TD -UTD solutions are obtained in the form of relatively simple analytical expressions valid for early to intermediate times. The geometries treated here can be used to build up a transient solution to more complex radiating objects via space-time localization, in exactly the same way as is done by invoking spatial localization properties in the frequency domain UTD. The TD-UTD provides the response due to an excitation of a general astigmatic impulsive wavefront with any polarization. This generalized impulse response may then be convolved with other excitation time pulses, to find even more general solutions due to other excitation pulses. Since the TD-UTD uses the same rays as the frequency domain UTD, it provides a simple picture for transient radiation or scattering and is therefore just as physically appealing as the frequency domain UTD. The formulation of an analytic time transform (ATT), which produces an analytic time signal given a frequency response function, is given here. This ATT is used because it provides a very efficient method of inverting the asymptotic high frequency UTD representations to obtain the corresponding TD-UTD expressions even when there are special UTD transition functions which may not be well behaved at the low frequencies; also, using the ATT avoids the difficulties associated with the inversion of UTD ray fields that traverse line or smooth caustics. Another useful aspect of the ATT is the ability to perform an efficient convolution with a broad class of excitation pulse functions, where the frequency response of the excitation function must be expressed as a summation of complex exponential functions.

  4. Using graph-based assessments within socratic tutorials to reveal and refine students' analytical thinking about molecular networks.

    PubMed

    Trujillo, Caleb; Cooper, Melanie M; Klymkowsky, Michael W

    2012-01-01

    Biological systems, from the molecular to the ecological, involve dynamic interaction networks. To examine student thinking about networks we used graphical responses, since they are easier to evaluate for implied, but unarticulated assumptions. Senior college level molecular biology students were presented with simple molecular level scenarios; surprisingly, most students failed to articulate the basic assumptions needed to generate reasonable graphical representations; their graphs often contradicted their explicit assumptions. We then developed a tiered Socratic tutorial based on leading questions designed to provoke metacognitive reflection. The activity is characterized by leading questions (prompts) designed to provoke meta-cognitive reflection. When applied in a group or individual setting, there was clear improvement in targeted areas. Our results highlight the promise of using graphical responses and Socratic prompts in a tutorial context as both a formative assessment for students and an informative feedback system for instructors, in part because graphical responses are relatively easy to evaluate for implied, but unarticulated assumptions. Copyright © 2011 Wiley Periodicals, Inc.

  5. Analytical and numerical construction of equivalent cables.

    PubMed

    Lindsay, K A; Rosenberg, J R; Tucker, G

    2003-08-01

    The mathematical complexity experienced when applying cable theory to arbitrarily branched dendrites has lead to the development of a simple representation of any branched dendrite called the equivalent cable. The equivalent cable is an unbranched model of a dendrite and a one-to-one mapping of potentials and currents on the branched model to those on the unbranched model, and vice versa. The piecewise uniform cable, with a symmetrised tri-diagonal system matrix, is shown to represent the canonical form for an equivalent cable. Through a novel application of the Laplace transform it is demonstrated that an arbitrary branched model of a dendrite can be transformed to the canonical form of an equivalent cable. The characteristic properties of the equivalent cable are extracted from the matrix for the transformed branched model. The one-to-one mapping follows automatically from the construction of the equivalent cable. The equivalent cable is used to provide a new procedure for characterising the location of synaptic contacts on spinal interneurons.

  6. Dynamic model of open shell structures buried in poroelastic soils

    NASA Astrophysics Data System (ADS)

    Bordón, J. D. R.; Aznárez, J. J.; Maeso, O.

    2017-08-01

    This paper is concerned with a three-dimensional time harmonic model of open shell structures buried in poroelastic soils. It combines the dual boundary element method (DBEM) for treating the soil and shell finite elements for modelling the structure, leading to a simple and efficient representation of buried open shell structures. A new fully regularised hypersingular boundary integral equation (HBIE) has been developed to this aim, which is then used to build the pair of dual BIEs necessary to formulate the DBEM for Biot poroelasticity. The new regularised HBIE is validated against a problem with analytical solution. The model is used in a wave diffraction problem in order to show its effectiveness. It offers excellent agreement for length to thickness ratios greater than 10, and relatively coarse meshes. The model is also applied to the calculation of impedances of bucket foundations. It is found that all impedances except the torsional one depend considerably on hydraulic conductivity within the typical frequency range of interest of offshore wind turbines.

  7. Frequency spirals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottino-Löffler, Bertrand; Strogatz, Steven H., E-mail: strogatz@cornell.edu

    2016-09-15

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seenmore » in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.« less

  8. Uncertainty in temperature-based determination of time of death

    NASA Astrophysics Data System (ADS)

    Weiser, Martin; Erdmann, Bodo; Schenkl, Sebastian; Muggenthaler, Holger; Hubig, Michael; Mall, Gita; Zachow, Stefan

    2018-03-01

    Temperature-based estimation of time of death (ToD) can be performed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer models. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We investigate the impact of parameter variations and geometry representation on the estimated ToD. For this, numerical simulation of analytic heat transport models is performed on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed tomography (CT) data set, differentiating various organs and tissue types. From that and prior information available on thermal parameters and their variability, we identify the most crucial parameters to measure or estimate, and obtain an a priori uncertainty quantification for the ToD.

  9. The neural basis of precise visual short-term memory for complex recognisable objects.

    PubMed

    Veldsman, Michele; Mitchell, Daniel J; Cusack, Rhodri

    2017-10-01

    Recent evidence suggests that visual short-term memory (VSTM) capacity estimated using simple objects, such as colours and oriented bars, may not generalise well to more naturalistic stimuli. More visual detail can be stored in VSTM when complex, recognisable objects are maintained compared to simple objects. It is not yet known if it is recognisability that enhances memory precision, nor whether maintenance of recognisable objects is achieved with the same network of brain regions supporting maintenance of simple objects. We used a novel stimulus generation method to parametrically warp photographic images along a continuum, allowing separate estimation of the precision of memory representations and the number of items retained. The stimulus generation method was also designed to create unrecognisable, though perceptually matched, stimuli, to investigate the impact of recognisability on VSTM. We adapted the widely-used change detection and continuous report paradigms for use with complex, photographic images. Across three functional magnetic resonance imaging (fMRI) experiments, we demonstrated greater precision for recognisable objects in VSTM compared to unrecognisable objects. This clear behavioural advantage was not the result of recruitment of additional brain regions, or of stronger mean activity within the core network. Representational similarity analysis revealed greater variability across item repetitions in the representations of recognisable, compared to unrecognisable complex objects. We therefore propose that a richer range of neural representations support VSTM for complex recognisable objects. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Students' Understanding of Primary and Secondary Protein Structure: Drawing Secondary Protein Structure Reveals Student Understanding Better than Simple Recognition of Structures

    ERIC Educational Resources Information Center

    Harle, Marissa; Towns, Marcy H.

    2013-01-01

    The interdisciplinary nature of biochemistry courses requires students to use both chemistry and biology knowledge to understand biochemical concepts. Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations in addition to a fragmented…

  11. Does Sleep Facilitate the Consolidation of Allocentric or Egocentric Representations of Implicitly Learned Visual-Motor Sequence Learning?

    ERIC Educational Resources Information Center

    Viczko, Jeremy; Sergeeva, Valya; Ray, Laura B.; Owen, Adrian M.; Fogel, Stuart M.

    2018-01-01

    Sleep facilitates the consolidation (i.e., enhancement) of simple, explicit (i.e., conscious) motor sequence learning (MSL). MSL can be dissociated into egocentric (i.e., motor) or allocentric (i.e., spatial) frames of reference. The consolidation of the allocentric memory representation is sleep-dependent, whereas the egocentric consolidation…

  12. Expression-invariant representations of faces.

    PubMed

    Bronstein, Alexander M; Bronstein, Michael M; Kimmel, Ron

    2007-01-01

    Addressed here is the problem of constructing and analyzing expression-invariant representations of human faces. We demonstrate and justify experimentally a simple geometric model that allows to describe facial expressions as isometric deformations of the facial surface. The main step in the construction of expression-invariant representation of a face involves embedding of the facial intrinsic geometric structure into some low-dimensional space. We study the influence of the embedding space geometry and dimensionality choice on the representation accuracy and argue that compared to its Euclidean counterpart, spherical embedding leads to notably smaller metric distortions. We experimentally support our claim showing that a smaller embedding error leads to better recognition.

  13. A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities

    NASA Astrophysics Data System (ADS)

    Chouika, N.; Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.

    2018-05-01

    A systematic approach for the model building of Generalized Parton Distributions (GPDs), based on their overlap representation within the DGLAP kinematic region and a further covariant extension to the ERBL one, is applied to the valence-quark pion's case, using light-front wave functions inspired by the Nakanishi representation of the pion Bethe-Salpeter amplitudes (BSA). This simple but fruitful pion GPD model illustrates the general model building technique and, in addition, allows for the ambiguities related to the covariant extension, grounded on the Double Distribution (DD) representation, to be constrained by requiring a soft-pion theorem to be properly observed.

  14. WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL

    EPA Science Inventory

    The Wellhead Analytic Element Model (WhAEM) demonstrates a new technique for the definition of time-of-travel capture zones in relatively simple geohydrologic settings. he WhAEM package includes an analytic element model that uses superposition of (many) analytic solutions to gen...

  15. Designing instruction to support mechanical reasoning: Three alternatives in the simple machines learning environment

    NASA Astrophysics Data System (ADS)

    McKenna, Ann Frances

    2001-07-01

    Creating a classroom environment that fosters a productive learning experience and engages students in the learning process is a complex endeavor. A classroom environment is dynamic and requires a unique synergy among students, teacher, classroom artifacts and events to achieve robust understanding and knowledge integration. This dissertation addresses this complex issue by developing, implementing, and investigating the simple machines learning environment (SIMALE) to support students' mechanical reasoning and understanding. SIMALE was designed to support reflection, collaborative learning, and to engage students in generative learning through multiple representations of concepts and successive experimentation and design activities. Two key components of SIMALE are an original web-based software tool and hands-on Lego activities. A research study consisting of three treatment groups was created to investigate the benefits of hands-on and web-based computer activities on students' analytic problem solving ability, drawing/modeling ability, and conceptual understanding. The study was conducted with two populations of students that represent a diverse group with respect to gender, ethnicity, academic achievement and social/economic status. One population of students in this dissertation study participated from the Mathematics, Engineering, and Science Achievement (MESA) program that serves minorities and under-represented groups in science and mathematics. The second group was recruited from the Academic Talent Development Program (ATDP) that is an academically competitive outreach program offered through the University of California at Berkeley. Results from this dissertation show success of the SIMALE along several dimensions. First, students in both populations achieved significant gains in analytic problem solving ability, drawing/modeling ability, and conceptual understanding. Second, significant differences that were found on pre-test measures were eliminated on post-test measures. Specifically, female students scored significantly lower than males on the overall pre-tests but scored as well as males on the same post-test measures. MESA students also scored significantly lower than ATDP students on pre-test measures but both populations scored equally well on the post-tests. This dissertation has therefore shown the SIMALE to support a collaborative, reflective, and generative learning environment. Furthermore, the SIMALE clearly contributes to students' mechanical reasoning and understanding of simple machines concepts for a diverse population of students.

  16. Developmental changes in analytic and holistic processes in face perception

    PubMed Central

    Joseph, Jane E.; DiBartolo, Michelle D.; Bhatt, Ramesh S.

    2015-01-01

    Although infants demonstrate sensitivity to some kinds of perceptual information in faces, many face capacities continue to develop throughout childhood. One debate is the degree to which children perceive faces analytically versus holistically and how these processes undergo developmental change. In the present study, school-aged children and adults performed a perceptual matching task with upright and inverted face and house pairs that varied in similarity of featural or 2nd order configural information. Holistic processing was operationalized as the degree of serial processing when discriminating faces and houses [i.e., increased reaction time (RT), as more features or spacing relations were shared between stimuli]. Analytical processing was operationalized as the degree of parallel processing (or no change in RT as a function of greater similarity of features or spatial relations). Adults showed the most evidence for holistic processing (most strongly for 2nd order faces) and holistic processing was weaker for inverted faces and houses. Younger children (6–8 years), in contrast, showed analytical processing across all experimental manipulations. Older children (9–11 years) showed an intermediate pattern with a trend toward holistic processing of 2nd order faces like adults, but parallel processing in other experimental conditions like younger children. These findings indicate that holistic face representations emerge around 10 years of age. In adults both 2nd order and featural information are incorporated into holistic representations, whereas older children only incorporate 2nd order information. Holistic processing was not evident in younger children. Hence, the development of holistic face representations relies on 2nd order processing initially then incorporates featural information by adulthood. PMID:26300838

  17. 14 CFR 25.723 - Shock absorption tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... absorption tests. (a) The analytical representation of the landing gear dynamic characteristics that is used... previous tests conducted on the same basic landing gear system that has similar energy absorption...

  18. Beyond Control Panels: Direct Manipulation for Visual Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endert, Alexander; Bradel, Lauren; North, Chris

    2013-07-19

    Information Visualization strives to provide visual representations through which users can think about and gain insight into information. By leveraging the visual and cognitive systems of humans, complex relationships and phenomena occurring within datasets can be uncovered by exploring information visually. Interaction metaphors for such visualizations are designed to enable users direct control over the filters, queries, and other parameters controlling how the data is visually represented. Through the evolution of information visualization, more complex mathematical and data analytic models are being used to visualize relationships and patterns in data – creating the field of Visual Analytics. However, the expectationsmore » for how users interact with these visualizations has remained largely unchanged – focused primarily on the direct manipulation of parameters of the underlying mathematical models. In this article we present an opportunity to evolve the methodology for user interaction from the direct manipulation of parameters through visual control panels, to interactions designed specifically for visual analytic systems. Instead of focusing on traditional direct manipulation of mathematical parameters, the evolution of the field can be realized through direct manipulation within the visual representation – where users can not only gain insight, but also interact. This article describes future directions and research challenges that fundamentally change the meaning of direct manipulation with regards to visual analytics, advancing the Science of Interaction.« less

  19. CytometryML: a markup language for analytical cytology

    NASA Astrophysics Data System (ADS)

    Leif, Robert C.; Leif, Stephanie H.; Leif, Suzanne B.

    2003-06-01

    Cytometry Markup Language, CytometryML, is a proposed new analytical cytology data standard. CytometryML is a set of XML schemas for encoding both flow cytometry and digital microscopy text based data types. CytometryML schemas reference both DICOM (Digital Imaging and Communications in Medicine) codes and FCS keywords. These schemas provide representations for the keywords in FCS 3.0 and will soon include DICOM microscopic image data. Flow Cytometry Standard (FCS) list-mode has been mapped to the DICOM Waveform Information Object. A preliminary version of a list mode binary data type, which does not presently exist in DICOM, has been designed. This binary type is required to enhance the storage and transmission of flow cytometry and digital microscopy data. Index files based on Waveform indices will be used to rapidly locate the cells present in individual subsets. DICOM has the advantage of employing standard file types, TIF and JPEG, for Digital Microscopy. Using an XML schema based representation means that standard commercial software packages such as Excel and MathCad can be used to analyze, display, and store analytical cytometry data. Furthermore, by providing one standard for both DICOM data and analytical cytology data, it eliminates the need to create and maintain special purpose interfaces for analytical cytology data thereby integrating the data into the larger DICOM and other clinical communities. A draft version of CytometryML is available at www.newportinstruments.com.

  20. The Schema Axiom as Foundation of a Theory for Measurement and Representation of Consciousness. No. 38.

    ERIC Educational Resources Information Center

    Bierschenk, Bernhard

    In this study, the Kantian schema has been applied to natural language expression. The novelty of the approach concerns the way in which the Kantian schema interrelates the analytic with the synthetic mode in the construction of the presented formalism. The main thesis is based on the premise that the synthetic, in contrast to the analytic,…

  1. Wavelets and the Poincaré half-plane

    NASA Astrophysics Data System (ADS)

    Klauder, J. R.; Streater, R. F.

    1994-01-01

    A square-integrable signal of positive energy is transformed into an analytic function in the upper half-plane, on which SL(2,R) acts. It is shown that this analytic function is determined by its scalar products with the discrete family of functions obtained by acting with SL(2,Z) on a cyclic vector, provided that the spin of the representation is less than 3.

  2. Commentary on "Theory-Led Design of Instruments and Representations in Learning Analytics: Developing a Novel Tool for Orchestration of Online Collaborative Learning"

    ERIC Educational Resources Information Center

    Teplovs, Chris

    2015-01-01

    This commentary reflects on the contributions to learning analytics and theory by a paper that describes how multiple theoretical frameworks were woven together to inform the creation of a new, automated discourse analysis tool. The commentary highlights the contributions of the original paper, provides some alternative approaches, and touches on…

  3. Simple quasi-analytical holonomic homogenization model for the non-linear analysis of in-plane loaded masonry panels: Part 1, meso-scale

    NASA Astrophysics Data System (ADS)

    Milani, G.; Bertolesi, E.

    2017-07-01

    A simple quasi analytical holonomic homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how homogenized stress-strain behavior can be evaluated semi-analytically.

  4. On the representation of many-body interactions in water

    DOE PAGES

    Medders, Gregory R.; Gotz, Andreas W.; Morales, Miguel A.; ...

    2015-09-09

    Our recent work has shown that the many-body expansion of the interactionenergy can be used to develop analytical representations of global potential energy surfaces (PESs) for water. In this study, the role of short- and long-range interactions at different orders is investigated by analyzing water potentials that treat the leading terms of the many-body expansion through implicit (i.e., TTM3-F and TTM4-F PESs) and explicit (i.e., WHBB and MB-pol PESs) representations. Moreover, it is found that explicit short-range representations of 2-body and 3-body interactions along with a physically correct incorporation of short- and long-range contributions are necessary for an accurate representationmore » of the waterinteractions from the gas to the condensed phase. Likewise, a complete many-body representation of the dipole moment surface is found to be crucial to reproducing the correct intensities of the infrared spectrum of liquid water.« less

  5. [The legitimacy of representation in forums with social participation: the case of the Bahia State Health Council, Brazil].

    PubMed

    Bispo Júnior, José Patrício; Gerschman, Sílvia

    2015-01-01

    The electoral representation model is insufficient and inadequate for new participatory roles such as those played by members of health councils. This article analyzes representation and representativeness in the Bahia State Health Council, Brazil. The study included interviews with 20 current or former members of the State Health Council, analysis of the council minutes and bylaws, and observation of plenary meetings. Discourse analysis technique was used to analyze interventions by members. The article discusses the results in four analytical lines: the process by which various organizations name representatives to the Council; the relationship between Council members and their constituencies; interest representation in the Council; and criteria used by the plenary to take positions. The study reveals various problems with the representativeness of the Bahia State Health Council and discusses the peculiarities of representation in social participation forums and the characteristics that give legitimacy to representatives.

  6. Molecular implementation of simple logic programs.

    PubMed

    Ran, Tom; Kaplan, Shai; Shapiro, Ehud

    2009-10-01

    Autonomous programmable computing devices made of biomolecules could interact with a biological environment and be used in future biological and medical applications. Biomolecular implementations of finite automata and logic gates have already been developed. Here, we report an autonomous programmable molecular system based on the manipulation of DNA strands that is capable of performing simple logical deductions. Using molecular representations of facts such as Man(Socrates) and rules such as Mortal(X) <-- Man(X) (Every Man is Mortal), the system can answer molecular queries such as Mortal(Socrates)? (Is Socrates Mortal?) and Mortal(X)? (Who is Mortal?). This biomolecular computing system compares favourably with previous approaches in terms of expressive power, performance and precision. A compiler translates facts, rules and queries into their molecular representations and subsequently operates a robotic system that assembles the logical deductions and delivers the result. This prototype is the first simple programming language with a molecular-scale implementation.

  7. Helicopter vibration suppression using simple pendulum absorbers on the rotor blade

    NASA Technical Reports Server (NTRS)

    Hamouda, M.-N. H.; Pierce, G. A.

    1981-01-01

    A design procedure is presented for the installation of simple pendulums on the blades of a helicopter rotor to suppress the root reactions. The procedure consists of a frequency response analysis for a hingeless rotor blade excited by a harmonic variation of spanwise airload distributions during forward flight, as well as a concentrated load at the tip. The structural modeling of the blade provides for elastic degrees of freedom in flap and lead-lag bending plus torsion. Simple flap and lead-lag pendulums are considered individually. Using a rational order scheme, the general nonlinear equations of motion are linearized. A quasi-steady aerodynamic representation is used in the formation of the airloads. The solution of the system equations derives from their representation as a transfer matrix. The results include the effect of pendulum tuning on the minimization of the hub reactions.

  8. A simple analytical aerodynamic model of Langley Winged-Cone Aerospace Plane concept

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.

    1994-01-01

    A simple three DOF analytical aerodynamic model of the Langley Winged-Coned Aerospace Plane concept is presented in a form suitable for simulation, trajectory optimization, and guidance and control studies. The analytical model is especially suitable for methods based on variational calculus. Analytical expressions are presented for lift, drag, and pitching moment coefficients from subsonic to hypersonic Mach numbers and angles of attack up to +/- 20 deg. This analytical model has break points at Mach numbers of 1.0, 1.4, 4.0, and 6.0. Across these Mach number break points, the lift, drag, and pitching moment coefficients are made continuous but their derivatives are not. There are no break points in angle of attack. The effect of control surface deflection is not considered. The present analytical model compares well with the APAS calculations and wind tunnel test data for most angles of attack and Mach numbers.

  9. A Probabilistic Clustering Theory of the Organization of Visual Short-Term Memory

    ERIC Educational Resources Information Center

    Orhan, A. Emin; Jacobs, Robert A.

    2013-01-01

    Experimental evidence suggests that the content of a memory for even a simple display encoded in visual short-term memory (VSTM) can be very complex. VSTM uses organizational processes that make the representation of an item dependent on the feature values of all displayed items as well as on these items' representations. Here, we develop a…

  10. Pictorial Representations of Simple Arithmetic Problems Are Not Always Helpful: A Cognitive Load Perspective

    ERIC Educational Resources Information Center

    van Lieshout, Ernest C. D. M.; Xenidou-Dervou, Iro

    2018-01-01

    At the start of mathematics education children are often presented with addition and subtraction problems in the form of pictures. They are asked to solve the problems by filling in corresponding number sentences. One type of problem concerns the representation of an increase or a decrease in a depicted amount. A decrease is, however, more…

  11. Do Adaptive Representations of the Item-Position Effect in APM Improve Model Fit? A Simulation Study

    ERIC Educational Resources Information Center

    Zeller, Florian; Krampen, Dorothea; Reiß, Siegbert; Schweizer, Karl

    2017-01-01

    The item-position effect describes how an item's position within a test, that is, the number of previous completed items, affects the response to this item. Previously, this effect was represented by constraints reflecting simple courses, for example, a linear increase. Due to the inflexibility of these representations our aim was to examine…

  12. The Mental Representation of Verb-Noun Compounds in Italian: Evidence from a Multiple Single-Case Study in Aphasia

    ERIC Educational Resources Information Center

    Mondini, Sara; Luzzatti, Claudio; Zonca, Giusy; Pistarini, Caterina; Semenza, Carlo

    2004-01-01

    This study seeks information on the mental representation of Verb-Noun (VN) nominal compounds through neuropsychological methods. The lexical retrieval of compound nouns is tested in 30 aphasic patients using a visual confrontation naming task. The target names are VN compounds, Noun-Noun (NN) compounds, and long morphologically simple nouns…

  13. Analyzing C2 Structures and Self-Synchronization with Simple Computational Models

    DTIC Science & Technology

    2011-06-01

    16th ICCRTS “Collective C2 in Multinational Civil-Military Operations” Analyzing C2 Structures and Self- Synchronization with Simple...Self- Synchronization with Simple Computational Models 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...models. The Kuramoto Model, though with some serious limitations, provides a representation of information flow and self- synchronization in an

  14. HIPAA Compliant Wireless Sensing Smartwatch Application for the Self-Management of Pediatric Asthma

    PubMed Central

    Hosseini, Anahita; Buonocore, Chris M.; Hashemzadeh, Sepideh; Hojaiji, Hannaneh; Kalantarian, Haik; Sideris, Costas; Bui, Alex A.T.; King, Christine E.; Sarrafzadeh, Majid

    2018-01-01

    Asthma is the most prevalent chronic disease among pediatrics, as it is the leading cause of student absenteeism and hospitalization for those under the age of 15. To address the significant need to manage this disease in children, the authors present a mobile health (mHealth) system that determines the risk of an asthma attack through physiological and environmental wireless sensors and representational state transfer application program interfaces (RESTful APIs). The data is sent from wireless sensors to a smartwatch application (app) via a Health Insurance Portability and Accountability Act (HIPAA) compliant cryptography framework, which then sends data to a cloud for real-time analytics. The asthma risk is then sent to the smartwatch and provided to the user via simple graphics for easy interpretation by children. After testing the safety and feasibility of the system in an adult with moderate asthma prior to testing in children, it was found that the analytics model is able to determine the overall asthma risk (high, medium, or low risk) with an accuracy of 80.10±14.13%. Furthermore, the features most important for assessing the risk of an asthma attack were multifaceted, highlighting the importance of continuously monitoring different wireless sensors and RESTful APIs. Future testing this asthma attack risk prediction system in pediatric asthma individuals may lead to an effective self-management asthma program. PMID:29354688

  15. Space-Time Error Representation and Estimation in Navier-Stokes Calculations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2006-01-01

    The mathematical framework for a-posteriori error estimation of functionals elucidated by Eriksson et al. [7] and Becker and Rannacher [3] is revisited in a space-time context. Using these theories, a hierarchy of exact and approximate error representation formulas are presented for use in error estimation and mesh adaptivity. Numerical space-time results for simple model problems as well as compressible Navier-Stokes flow at Re = 300 over a 2D circular cylinder are then presented to demonstrate elements of the error representation theory for time-dependent problems.

  16. Representation of complex probabilities and complex Gibbs sampling

    NASA Astrophysics Data System (ADS)

    Salcedo, Lorenzo Luis

    2018-03-01

    Complex weights appear in Physics which are beyond a straightforward importance sampling treatment, as required in Monte Carlo calculations. This is the wellknown sign problem. The complex Langevin approach amounts to effectively construct a positive distribution on the complexified manifold reproducing the expectation values of the observables through their analytical extension. Here we discuss the direct construction of such positive distributions paying attention to their localization on the complexified manifold. Explicit localized representations are obtained for complex probabilities defined on Abelian and non Abelian groups. The viability and performance of a complex version of the heat bath method, based on such representations, is analyzed.

  17. Analysis of Five Junior High School Physics Textbooks Used in China for Representations of Nature of Science

    NASA Astrophysics Data System (ADS)

    Li, Xiying; Tan, Zuyu; Shen, Jiliang; Hu, Weiping; Chen, Yinghe; Wang, Jingying

    2018-04-01

    Based on the analytical framework of nature of science (NOS) in junior school science textbooks, a content analysis method was adopted to analyze the NOS in junior middle school physical textbooks (grade 8) of five editions authorized by the Ministry of Education of China, and the features of NOS were analyzed and compared. It was found that all five textbooks presented poor representations of NOS. None of these five editions were scientifically objective, nor did they include discussions of scientific laws and theories. Furthermore, they rarely presented empirical evidence to support their arguments. The explicit representations of NOS were particularly inadequate.

  18. Squeezing and its graphical representations in the anharmonic oscillator model

    NASA Astrophysics Data System (ADS)

    Tanaś, R.; Miranowicz, A.; Kielich, S.

    1991-04-01

    The problem of squeezing and its graphical representations in the anharmonic oscillator model is considered. Explicit formulas for squeezing, principal squeezing, and the quasiprobability distribution (QPD) function are given and illustrated graphically. Approximate analytical formulas for the variances, extremal variances, and QPD are obtained for the case of small nonlinearities and large numbers of photons. The possibility of almost perfect squeezing in the model is demonstrated and its graphical representations in the form of variance lemniscates and QPD contours are plotted. For large numbers of photons the crescent shape of the QPD contours is hardly visible and quite regular ellipses are obtained.

  19. Fock expansion of multimode pure Gaussian states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cariolaro, Gianfranco; Pierobon, Gianfranco, E-mail: gianfranco.pierobon@unipd.it

    2015-12-15

    The Fock expansion of multimode pure Gaussian states is derived starting from their representation as displaced and squeezed multimode vacuum states. The approach is new and appears to be simpler and more general than previous ones starting from the phase-space representation given by the characteristic or Wigner function. Fock expansion is performed in terms of easily evaluable two-variable Hermite–Kampé de Fériet polynomials. A relatively simple and compact expression for the joint statistical distribution of the photon numbers in the different modes is obtained. In particular, this result enables one to give a simple characterization of separable and entangled states, asmore » shown for two-mode and three-mode Gaussian states.« less

  20. A path-oriented matrix-based knowledge representation system

    NASA Technical Reports Server (NTRS)

    Feyock, Stefan; Karamouzis, Stamos T.

    1993-01-01

    Experience has shown that designing a good representation is often the key to turning hard problems into simple ones. Most AI (Artificial Intelligence) search/representation techniques are oriented toward an infinite domain of objects and arbitrary relations among them. In reality much of what needs to be represented in AI can be expressed using a finite domain and unary or binary predicates. Well-known vector- and matrix-based representations can efficiently represent finite domains and unary/binary predicates, and allow effective extraction of path information by generalized transitive closure/path matrix computations. In order to avoid space limitations a set of abstract sparse matrix data types was developed along with a set of operations on them. This representation forms the basis of an intelligent information system for representing and manipulating relational data.

  1. A description of discrete internal representation schemes for visual pattern discrimination.

    PubMed

    Foster, D H

    1980-01-01

    A general description of a class of schemes for pattern vision is outlined in which the visual system is assumed to form a discrete internal representation of the stimulus. These representations are discrete in that they are considered to comprise finite combinations of "components" which are selected from a fixed and finite repertoire, and which designate certain simple pattern properties or features. In the proposed description it is supposed that the construction of an internal representation is a probabilistic process. A relationship is then formulated associating the probability density functions governing this construction and performance in visually discriminating patterns when differences in pattern shape are small. Some questions related to the application of this relationship to the experimental investigation of discrete internal representations are briefly discussed.

  2. Mathematical representations in science: a cognitive-historical case history.

    PubMed

    Tweney, Ryan D

    2009-10-01

    The important role of mathematical representations in scientific thinking has received little attention from cognitive scientists. This study argues that neglect of this issue is unwarranted, given existing cognitive theories and laws, together with promising results from the cognitive historical analysis of several important scientists. In particular, while the mathematical wizardry of James Clerk Maxwell differed dramatically from the experimental approaches favored by Michael Faraday, Maxwell himself recognized Faraday as "in reality a mathematician of a very high order," and his own work as in some respects a re-representation of Faraday's field theory in analytic terms. The implications of the similarities and differences between the two figures open new perspectives on the cognitive role of mathematics as a learned mode of representation in science. Copyright © 2009 Cognitive Science Society, Inc.

  3. The analytical design of spectral measurements for multispectral remote sensor systems

    NASA Technical Reports Server (NTRS)

    Wiersma, D. J.; Landgrebe, D. A. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. In order to choose a design which will be optimal for the largest class of remote sensing problems, a method was developed which attempted to represent the spectral response function from a scene as accurately as possible. The performance of the overall recognition system was studied relative to the accuracy of the spectral representation. The spectral representation was only one of a set of five interrelated parameter categories which also included the spatial representation parameter, the signal to noise ratio, ancillary data, and information classes. The spectral response functions observed from a stratum were modeled as a stochastic process with a Gaussian probability measure. The criterion for spectral representation was defined by the minimum expected mean-square error.

  4. Intersubjectivity and the creation of meaning in the analytic process.

    PubMed

    Maier, Christian

    2014-11-01

    By means of a clinical illustration, the author describes how the intersubjective exchanges involved in an analytic process facilitate the representation of affects and memories which have been buried in the unconscious or indeed have never been available to consciousness. As a result of projective identificatory processes in the analytic relationship, in this example the analyst falls into a situation of helplessness which connects with his own traumatic experiences. Then he gets into a formal regression of the ego and responds with a so-to-speak hallucinatory reaction-an internal image which enables him to keep the analytic process on track and, later on, to construct an early traumatic experience of the analysand. © 2014, The Society of Analytical Psychology.

  5. Learning viewpoint invariant perceptual representations from cluttered images.

    PubMed

    Spratling, Michael W

    2005-05-01

    In order to perform object recognition, it is necessary to form perceptual representations that are sufficiently specific to distinguish between objects, but that are also sufficiently flexible to generalize across changes in location, rotation, and scale. A standard method for learning perceptual representations that are invariant to viewpoint is to form temporal associations across image sequences showing object transformations. However, this method requires that individual stimuli be presented in isolation and is therefore unlikely to succeed in real-world applications where multiple objects can co-occur in the visual input. This paper proposes a simple modification to the learning method that can overcome this limitation and results in more robust learning of invariant representations.

  6. Rational Solutions of the Painlevé-II Equation Revisited

    NASA Astrophysics Data System (ADS)

    Miller, Peter D.; Sheng, Yue

    2017-08-01

    The rational solutions of the Painlevé-II equation appear in several applications and are known to have many remarkable algebraic and analytic properties. They also have several different representations, useful in different ways for establishing these properties. In particular, Riemann-Hilbert representations have proven to be useful for extracting the asymptotic behavior of the rational solutions in the limit of large degree (equivalently the large-parameter limit). We review the elementary properties of the rational Painlevé-II functions, and then we describe three different Riemann-Hilbert representations of them that have appeared in the literature: a representation by means of the isomonodromy theory of the Flaschka-Newell Lax pair, a second representation by means of the isomonodromy theory of the Jimbo-Miwa Lax pair, and a third representation found by Bertola and Bothner related to pseudo-orthogonal polynomials. We prove that the Flaschka-Newell and Bertola-Bothner Riemann-Hilbert representations of the rational Painlevé-II functions are explicitly connected to each other. Finally, we review recent results describing the asymptotic behavior of the rational Painlevé-II functions obtained from these Riemann-Hilbert representations by means of the steepest descent method.

  7. The Behavioral Economics of Choice and Interval Timing

    PubMed Central

    Jozefowiez, J.; Staddon, J. E. R.; Cerutti, D. T.

    2009-01-01

    We propose a simple behavioral economic model (BEM) describing how reinforcement and interval timing interact. The model assumes a Weber-law-compliant logarithmic representation of time. Associated with each represented time value are the payoffs that have been obtained for each possible response. At a given real time, the response with the highest payoff is emitted. The model accounts for a wide range of data from procedures such as simple bisection, metacognition in animals, economic effects in free-operant psychophysical procedures and paradoxical choice in double-bisection procedures. Although it assumes logarithmic time representation, it can also account for data from the time-left procedure usually cited in support of linear time representation. It encounters some difficulties in complex free-operant choice procedures, such as concurrent mixed fixed-interval schedules as well as some of the data on double bisection, that may involve additional processes. Overall, BEM provides a theoretical framework for understanding how reinforcement and interval timing work together to determine choice between temporally differentiated reinforcers. PMID:19618985

  8. The Logic of Reachability

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Jonsson, Ari K.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    In recent years, Graphplan style reachability analysis and mutual exclusion reasoning have been used in many high performance planning systems. While numerous refinements and extensions have been developed, the basic plan graph structure and reasoning mechanisms used in these systems are tied to the very simple STRIPS model of action. In 1999, Smith and Weld generalized the Graphplan methods for reachability and mutex reasoning to allow actions to have differing durations. However, the representation of actions still has some severe limitations that prevent the use of these techniques for many real-world planning systems. In this paper, we 1) separate the logic of reachability from the particular representation and inference methods used in Graphplan, and 2) extend the notions of reachability and mutual exclusion to more general notions of time and action. As it turns out, the general rules for mutual exclusion reasoning take on a remarkably clean and simple form. However, practical instantiations of them turn out to be messy, and require that we make representation and reasoning choices.

  9. Image Quality Assessment Using the Joint Spatial/Spatial-Frequency Representation

    NASA Astrophysics Data System (ADS)

    Beghdadi, Azeddine; Iordache, Răzvan

    2006-12-01

    This paper demonstrates the usefulness of spatial/spatial-frequency representations in image quality assessment by introducing a new image dissimilarity measure based on 2D Wigner-Ville distribution (WVD). The properties of 2D WVD are shortly reviewed, and the important issue of choosing the analytic image is emphasized. The WVD-based measure is shown to be correlated with subjective human evaluation, which is the premise towards an image quality assessor developed on this principle.

  10. Model validation of simple-graph representations of metabolism

    PubMed Central

    Holme, Petter

    2009-01-01

    The large-scale properties of chemical reaction systems, such as metabolism, can be studied with graph-based methods. To do this, one needs to reduce the information, lists of chemical reactions, available in databases. Even for the simplest type of graph representation, this reduction can be done in several ways. We investigate different simple network representations by testing how well they encode information about one biologically important network structure—network modularity (the propensity for edges to be clustered into dense groups that are sparsely connected between each other). To achieve this goal, we design a model of reaction systems where network modularity can be controlled and measure how well the reduction to simple graphs captures the modular structure of the model reaction system. We find that the network types that best capture the modular structure of the reaction system are substrate–product networks (where substrates are linked to products of a reaction) and substance networks (with edges between all substances participating in a reaction). Furthermore, we argue that the proposed model for reaction systems with tunable clustering is a general framework for studies of how reaction systems are affected by modularity. To this end, we investigate statistical properties of the model and find, among other things, that it recreates correlations between degree and mass of the molecules. PMID:19158012

  11. Median of patient results as a tool for assessment of analytical stability.

    PubMed

    Jørgensen, Lars Mønster; Hansen, Steen Ingemann; Petersen, Per Hyltoft; Sölétormos, György

    2015-06-15

    In spite of the well-established external quality assessment and proficiency testing surveys of analytical quality performance in laboratory medicine, a simple tool to monitor the long-term analytical stability as a supplement to the internal control procedures is often needed. Patient data from daily internal control schemes was used for monthly appraisal of the analytical stability. This was accomplished by using the monthly medians of patient results to disclose deviations from analytical stability, and by comparing divergences with the quality specifications for allowable analytical bias based on biological variation. Seventy five percent of the twenty analytes achieved on two COBASs INTEGRA 800 instruments performed in accordance with the optimum and with the desirable specifications for bias. Patient results applied in analytical quality performance control procedures are the most reliable sources of material as they represent the genuine substance of the measurements and therefore circumvent the problems associated with non-commutable materials in external assessment. Patient medians in the monthly monitoring of analytical stability in laboratory medicine are an inexpensive, simple and reliable tool to monitor the steadiness of the analytical practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Energy distributions and radiation transport in uranium plasmas

    NASA Technical Reports Server (NTRS)

    Miley, G. H.; Bathke, C.; Maceda, E.; Choi, C.

    1976-01-01

    An approximate analytic model, based on continuous electron slowing, has been used for survey calculations. Where more accuracy is required, a Monte Carlo technique is used which combines an analytic representation of Coulombic collisions with a random walk treatment of inelastic collisions. The calculated electron distributions have been incorporated into another code that evaluates both the excited atomic state densities within the plasma and the radiative flux emitted from the plasma.

  13. Theory-Led Design of Instruments and Representations in Learning Analytics: Developing a Novel Tool for Orchestration of Online Collaborative Learning

    ERIC Educational Resources Information Center

    Kelly, Nick; Thompson, Kate; Yeoman, Pippa

    2015-01-01

    This paper describes theory-led design as a way of developing novel tools for learning analytics (LA). It focuses upon the domain of automated discourse analysis (ADA) of group learning activities to help an instructor to orchestrate online groups in real-time. The paper outlines the literature on the development of LA tools within the domain of…

  14. Chemical thermodynamic representation of (U, Pu, Am)O 2- x

    NASA Astrophysics Data System (ADS)

    Osaka, Masahiko; Namekawa, Takashi; Kurosaki, Ken; Yamanaka, Shinsuke

    2005-09-01

    The oxygen potential isotherms of (U, Pu, Am)O 2- x were represented by a chemical thermodynamic model proposed by Lindemer et al. It was assumed in the present model that (U, Pu, Am)O 2- x consisted of the chemical species [UO 2], [PuO 2], [Pu 4/3O 2], [AmO 2] and [Am 5/4O 2] in a pseudo-quaternary system by treating the reduction rates of Pu and Am as identical; furthermore an interaction between [Am 5/4O 2] and [UO 2] was introduced. The agreement between analytical and experimental isotherms was good, but the analytical values slightly overestimated the experimental values especially in the case of lower Am content. Adding an interaction between [Am 5/4O 2] and [PuO 2] to the model resulted in a better representation.

  15. Horizon-absorbed energy flux in circularized, nonspinning black-hole binaries, and its effective-one-body representation

    NASA Astrophysics Data System (ADS)

    Nagar, Alessandro; Akcay, Sarp

    2012-02-01

    We propose, within the effective-one-body approach, a new, resummed analytical representation of the gravitational-wave energy flux absorbed by a system of two circularized (nonspinning) black holes. This expression is such that it is well-behaved in the strong-field, fast-motion regime, notably up to the effective-one-body-defined last unstable orbit. Building conceptually upon the procedure adopted to resum the multipolar asymptotic energy flux, we introduce a multiplicative decomposition of the multipolar absorbed flux made by three factors: (i) the leading-order contribution, (ii) an “effective source” and (iii) a new residual amplitude correction (ρ˜ℓmH)2ℓ. In the test-mass limit, we use a frequency-domain perturbative approach to accurately compute numerically the horizon-absorbed fluxes along a sequence of stable and unstable circular orbits, and we extract from them the functions ρ˜ℓmH. These quantities are then fitted via rational functions. The resulting analytically represented test-mass knowledge is then suitably hybridized with lower-order analytical information that is valid for any mass ratio. This yields a resummed representation of the absorbed flux for a generic, circularized, nonspinning black-hole binary. Our result adds new information to the state-of-the-art calculation of the absorbed flux at fractional 5 post-Newtonian order [S. Taylor and E. Poisson, Phys. Rev. D 78, 084016 (2008)], which is recovered in the weak-field limit approximation by construction.

  16. Selective and Efficient Neural Coding of Communication Signals Depends on Early Acoustic and Social Environment

    PubMed Central

    Amin, Noopur; Gastpar, Michael; Theunissen, Frédéric E.

    2013-01-01

    Previous research has shown that postnatal exposure to simple, synthetic sounds can affect the sound representation in the auditory cortex as reflected by changes in the tonotopic map or other relatively simple tuning properties, such as AM tuning. However, their functional implications for neural processing in the generation of ethologically-based perception remain unexplored. Here we examined the effects of noise-rearing and social isolation on the neural processing of communication sounds such as species-specific song, in the primary auditory cortex analog of adult zebra finches. Our electrophysiological recordings reveal that neural tuning to simple frequency-based synthetic sounds is initially established in all the laminae independent of patterned acoustic experience; however, we provide the first evidence that early exposure to patterned sound statistics, such as those found in native sounds, is required for the subsequent emergence of neural selectivity for complex vocalizations and for shaping neural spiking precision in superficial and deep cortical laminae, and for creating efficient neural representations of song and a less redundant ensemble code in all the laminae. Our study also provides the first causal evidence for ‘sparse coding’, such that when the statistics of the stimuli were changed during rearing, as in noise-rearing, that the sparse or optimal representation for species-specific vocalizations disappeared. Taken together, these results imply that a layer-specific differential development of the auditory cortex requires patterned acoustic input, and a specialized and robust sensory representation of complex communication sounds in the auditory cortex requires a rich acoustic and social environment. PMID:23630587

  17. Using Graphical Notations to Assess Children's Experiencing of Simple and Complex Musical Fragments

    ERIC Educational Resources Information Center

    Verschaffel, Lieven; Reybrouck, Mark; Janssens, Marjan; Van Dooren, Wim

    2010-01-01

    The aim of this study was to analyze children's graphical notations as external representations of their experiencing when listening to simple sonic stimuli and complex musical fragments. More specifically, we assessed the impact of four factors on children's notations: age, musical background, complexity of the fragment, and most salient…

  18. WEB-DHM: A distributed biosphere hydrological model developed by coupling a simple biosphere scheme with a hillslope hydrological model

    USDA-ARS?s Scientific Manuscript database

    The coupling of land surface models and hydrological models potentially improves the land surface representation, benefiting both the streamflow prediction capabilities as well as providing improved estimates of water and energy fluxes into the atmosphere. In this study, the simple biosphere model 2...

  19. Representation of grasp postures and anticipatory motor planning in children.

    PubMed

    Stöckel, Tino; Hughes, Charmayne M L; Schack, Thomas

    2012-11-01

    In this study, we investigated anticipatory motor planning and the development of cognitive representation of grasp postures in children aged 7, 8, and 9 years. Overall, 9-year-old children were more likely to plan their movements to end in comfortable postures, and have distinct representational structures of certain grasp postures, compared to the 7- and 8-year old children. Additionally, the sensitivity toward comfortable end-states (end-state comfort) was related to the mental representation of certain grasp postures. Children with grasp comfort related and functionally well-structured representations were more likely to have satisfied end-state comfort in both the simple and the advanced planning condition. In contrast, end-state comfort satisfaction for the advanced planning condition was much lower for children whose cognitive representations were not structured by grasp comfort. The results of the present study support the notion that cognitive action representation plays an important role in the planning and control of grasp postures.

  20. Coagulation kinetics beyond mean field theory using an optimised Poisson representation.

    PubMed

    Burnett, James; Ford, Ian J

    2015-05-21

    Binary particle coagulation can be modelled as the repeated random process of the combination of two particles to form a third. The kinetics may be represented by population rate equations based on a mean field assumption, according to which the rate of aggregation is taken to be proportional to the product of the mean populations of the two participants, but this can be a poor approximation when the mean populations are small. However, using the Poisson representation, it is possible to derive a set of rate equations that go beyond mean field theory, describing pseudo-populations that are continuous, noisy, and complex, but where averaging over the noise and initial conditions gives the mean of the physical population. Such an approach is explored for the simple case of a size-independent rate of coagulation between particles. Analytical results are compared with numerical computations and with results derived by other means. In the numerical work, we encounter instabilities that can be eliminated using a suitable "gauge" transformation of the problem [P. D. Drummond, Eur. Phys. J. B 38, 617 (2004)] which we show to be equivalent to the application of the Cameron-Martin-Girsanov formula describing a shift in a probability measure. The cost of such a procedure is to introduce additional statistical noise into the numerical results, but we identify an optimised gauge transformation where this difficulty is minimal for the main properties of interest. For more complicated systems, such an approach is likely to be computationally cheaper than Monte Carlo simulation.

  1. Analytic representations of mK , FK, mη, and Fη in two loop S U (3 ) chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Ananthanarayan, B.; Bijnens, Johan; Friot, Samuel; Ghosh, Shayan

    2018-06-01

    In this work, we consider expressions for the masses and decay constants of the pseudoscalar mesons in S U (3 ) chiral perturbation theory. These involve sunset diagrams and their derivatives evaluated at p2=mP2 (P =π , K , η ). Recalling that there are three mass scales in this theory, mπ, mK and mη, there are instances when the finite part of the sunset diagrams do not admit an expression in terms of elementary functions, and have therefore been evaluated numerically in the past. In a recent publication, an expansion in the external momentum was performed to obtain approximate analytic expressions for mπ and Fπ, the pion mass and decay constant. We provide fully analytic exact expressions for mK and mη, the kaon and eta masses, and FK and Fη, the kaon and eta decay constants. These expressions, calculated using Mellin-Barnes methods, are in the form of double series in terms of two mass ratios. A numerical analysis of the results to evaluate the relative size of contributions coming from loops, chiral logarithms as well as phenomenological low-energy constants is presented. We also present a set of approximate analytic expressions for mK, FK, mη and Fη that facilitate comparisons with lattice results. Finally, we show how exact analytic expressions for mπ and Fπ may be obtained, the latter having been used in conjunction with the results for FK to produce a recently published analytic representation of FK/Fπ.

  2. Near-field tsunami edge waves and complex earthquake rupture

    USGS Publications Warehouse

    Geist, Eric L.

    2013-01-01

    The effect of distributed coseismic slip on progressive, near-field edge waves is examined for continental shelf tsunamis. Detailed observations of edge waves are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge waves distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-waves. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a fault with geometry similar to that of the M w = 8.8 2010 Chile earthquake. Crack-like ruptures that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-wave amplitude. Ruptures located farther offshore result in reduced edge-wave excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-wave patterns compared to crack-like ruptures for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-trapped and trapped waves can yield significantly larger tsunamis than those that produced by simple earthquake characterizations.

  3. Similarity networks as a knowledge representation for space applications

    NASA Technical Reports Server (NTRS)

    Bailey, David; Thompson, Donna; Feinstein, Jerald

    1987-01-01

    Similarity networks are a powerful form of knowledge representation that are useful for many artificial intelligence applications. Similarity networks are used in applications ranging from information analysis and case based reasoning to machine learning and linking symbolic to neural processing. Strengths of similarity networks include simple construction, intuitive object storage, and flexible retrieval techniques that facilitate inferencing. Therefore, similarity networks provide great potential for space applications.

  4. A simple, analytical, axisymmetric microburst model for downdraft estimation

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.

    1991-01-01

    A simple analytical microburst model was developed for use in estimating vertical winds from horizontal wind measurements. It is an axisymmetric, steady state model that uses shaping functions to satisfy the mass continuity equation and simulate boundary layer effects. The model is defined through four model variables: the radius and altitude of the maximum horizontal wind, a shaping function variable, and a scale factor. The model closely agrees with a high fidelity analytical model and measured data, particularily in the radial direction and at lower altitudes. At higher altitudes, the model tends to overestimate the wind magnitude relative to the measured data.

  5. Simple analytical model of a thermal diode

    NASA Astrophysics Data System (ADS)

    Kaushik, Saurabh; Kaushik, Sachin; Marathe, Rahul

    2018-05-01

    Recently there is a lot of attention given to manipulation of heat by constructing thermal devices such as thermal diodes, transistors and logic gates. Many of the models proposed have an asymmetry which leads to the desired effect. Presence of non-linear interactions among the particles is also essential. But, such models lack analytical understanding. Here we propose a simple, analytically solvable model of a thermal diode. Our model consists of classical spins in contact with multiple heat baths and constant external magnetic fields. Interestingly the magnetic field is the only parameter required to get the effect of heat rectification.

  6. Changes in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation.

    PubMed

    Hewitt, Angela L; Popa, Laurentiu S; Ebner, Timothy J

    2015-01-21

    The cerebellum is essential in motor learning. At the cellular level, changes occur in both the simple spike and complex spike firing of Purkinje cells. Because simple spike discharge reflects the main output of the cerebellar cortex, changes in simple spike firing likely reflect the contribution of the cerebellum to the adapted behavior. Therefore, we investigated in Rhesus monkeys how the representation of arm kinematics in Purkinje cell simple spike discharge changed during adaptation to mechanical perturbations of reach movements. Monkeys rapidly adapted to a novel assistive or resistive perturbation along the direction of the reach. Adaptation consisted of matching the amplitude and timing of the perturbation to minimize its effect on the reach. In a majority of Purkinje cells, simple spike firing recorded before and during adaptation demonstrated significant changes in position, velocity, and acceleration sensitivity. The timing of the simple spike representations change within individual cells, including shifts in predictive versus feedback signals. At the population level, feedback-based encoding of position increases early in learning and velocity decreases. Both timing changes reverse later in learning. The complex spike discharge was only weakly modulated by the perturbations, demonstrating that the changes in simple spike firing can be independent of climbing fiber input. In summary, we observed extensive alterations in individual Purkinje cell encoding of reach kinematics, although the movements were nearly identical in the baseline and adapted states. Therefore, adaption to mechanical perturbation of a reaching movement is accompanied by widespread modifications in the simple spike encoding. Copyright © 2015 the authors 0270-6474/15/351106-19$15.00/0.

  7. Changes in Purkinje Cell Simple Spike Encoding of Reach Kinematics during Adaption to a Mechanical Perturbation

    PubMed Central

    Hewitt, Angela L.; Popa, Laurentiu S.

    2015-01-01

    The cerebellum is essential in motor learning. At the cellular level, changes occur in both the simple spike and complex spike firing of Purkinje cells. Because simple spike discharge reflects the main output of the cerebellar cortex, changes in simple spike firing likely reflect the contribution of the cerebellum to the adapted behavior. Therefore, we investigated in Rhesus monkeys how the representation of arm kinematics in Purkinje cell simple spike discharge changed during adaptation to mechanical perturbations of reach movements. Monkeys rapidly adapted to a novel assistive or resistive perturbation along the direction of the reach. Adaptation consisted of matching the amplitude and timing of the perturbation to minimize its effect on the reach. In a majority of Purkinje cells, simple spike firing recorded before and during adaptation demonstrated significant changes in position, velocity, and acceleration sensitivity. The timing of the simple spike representations change within individual cells, including shifts in predictive versus feedback signals. At the population level, feedback-based encoding of position increases early in learning and velocity decreases. Both timing changes reverse later in learning. The complex spike discharge was only weakly modulated by the perturbations, demonstrating that the changes in simple spike firing can be independent of climbing fiber input. In summary, we observed extensive alterations in individual Purkinje cell encoding of reach kinematics, although the movements were nearly identical in the baseline and adapted states. Therefore, adaption to mechanical perturbation of a reaching movement is accompanied by widespread modifications in the simple spike encoding. PMID:25609626

  8. Localization of Unitary Braid Group Representations

    NASA Astrophysics Data System (ADS)

    Rowell, Eric C.; Wang, Zhenghan

    2012-05-01

    Governed by locality, we explore a connection between unitary braid group representations associated to a unitary R-matrix and to a simple object in a unitary braided fusion category. Unitary R-matrices, namely unitary solutions to the Yang-Baxter equation, afford explicitly local unitary representations of braid groups. Inspired by topological quantum computation, we study whether or not it is possible to reassemble the irreducible summands appearing in the unitary braid group representations from a unitary braided fusion category with possibly different positive multiplicities to get representations that are uniformly equivalent to the ones from a unitary R-matrix. Such an equivalence will be called a localization of the unitary braid group representations. We show that the q = e π i/6 specialization of the unitary Jones representation of the braid groups can be localized by a unitary 9 × 9 R-matrix. Actually this Jones representation is the first one in a family of theories ( SO( N), 2) for an odd prime N > 1, which are conjectured to be localizable. We formulate several general conjectures and discuss possible connections to physics and computer science.

  9. A new approach to analytic, non-perturbative and gauge-invariant QCD

    NASA Astrophysics Data System (ADS)

    Fried, H. M.; Grandou, T.; Sheu, Y.-M.

    2012-11-01

    Following a previous calculation of quark scattering in eikonal approximation, this paper presents a new, analytic and rigorous approach to the calculation of QCD phenomena. In this formulation a basic distinction between the conventional "idealistic" description of QCD and a more "realistic" description is brought into focus by a non-perturbative, gauge-invariant evaluation of the Schwinger solution for the QCD generating functional in terms of the exact Fradkin representations of Green's functional G(x,y|A) and the vacuum functional L[A]. Because quarks exist asymptotically only in bound states, their transverse coordinates can never be measured with arbitrary precision; the non-perturbative neglect of this statement leads to obstructions that are easily corrected by invoking in the basic Lagrangian a probability amplitude which describes such transverse imprecision. The second result of this non-perturbative analysis is the appearance of a new and simplifying output called "Effective Locality", in which the interactions between quarks by the exchange of a "gluon bundle"-which "bundle" contains an infinite number of gluons, including cubic and quartic gluon interactions-display an exact locality property that reduces the several functional integrals of the formulation down to a set of ordinary integrals. It should be emphasized that "non-perturbative" here refers to the effective summation of all gluons between a pair of quark lines-which may be the same quark line, as in a self-energy graph-but does not (yet) include a summation over all closed-quark loops which are tied by gluon-bundle exchange to the rest of the "Bundle Diagram". As an example of the power of these methods we offer as a first analytic calculation the quark-antiquark binding potential of a pion, and the corresponding three-quark binding potential of a nucleon, obtained in a simple way from relevant eikonal scattering approximations. A second calculation, analytic, non-perturbative and gauge-invariant, of a nucleon-nucleon binding potential to form a model deuteron, will appear separately.

  10. An Analytical Framework for Studying Small-Number Effects in Catalytic Reaction Networks: A Probability Generating Function Approach to Chemical Master Equations

    PubMed Central

    Nakagawa, Masaki; Togashi, Yuichi

    2016-01-01

    Cell activities primarily depend on chemical reactions, especially those mediated by enzymes, and this has led to these activities being modeled as catalytic reaction networks. Although deterministic ordinary differential equations of concentrations (rate equations) have been widely used for modeling purposes in the field of systems biology, it has been pointed out that these catalytic reaction networks may behave in a way that is qualitatively different from such deterministic representation when the number of molecules for certain chemical species in the system is small. Apart from this, representing these phenomena by simple binary (on/off) systems that omit the quantities would also not be feasible. As recent experiments have revealed the existence of rare chemical species in cells, the importance of being able to model potential small-number phenomena is being recognized. However, most preceding studies were based on numerical simulations, and theoretical frameworks to analyze these phenomena have not been sufficiently developed. Motivated by the small-number issue, this work aimed to develop an analytical framework for the chemical master equation describing the distributional behavior of catalytic reaction networks. For simplicity, we considered networks consisting of two-body catalytic reactions. We used the probability generating function method to obtain the steady-state solutions of the chemical master equation without specifying the parameters. We obtained the time evolution equations of the first- and second-order moments of concentrations, and the steady-state analytical solution of the chemical master equation under certain conditions. These results led to the rank conservation law, the connecting state to the winner-takes-all state, and analysis of 2-molecules M-species systems. A possible interpretation of the theoretical conclusion for actual biochemical pathways is also discussed. PMID:27047384

  11. Improved multidimensional semiclassical tunneling theory.

    PubMed

    Wagner, Albert F

    2013-12-12

    We show that the analytic multidimensional semiclassical tunneling formula of Miller et al. [Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem. Phys. Lett. 1990, 172, 62] is qualitatively incorrect for deep tunneling at energies well below the top of the barrier. The origin of this deficiency is that the formula uses an effective barrier weakly related to the true energetics but correctly adjusted to reproduce the harmonic description and anharmonic corrections of the reaction path at the saddle point as determined by second order vibrational perturbation theory. We present an analytic improved semiclassical formula that correctly includes energetic information and allows a qualitatively correct representation of deep tunneling. This is done by constructing a three segment composite Eckart potential that is continuous everywhere in both value and derivative. This composite potential has an analytic barrier penetration integral from which the semiclassical action can be derived and then used to define the semiclassical tunneling probability. The middle segment of the composite potential by itself is superior to the original formula of Miller et al. because it incorporates the asymmetry of the reaction barrier produced by the known reaction exoergicity. Comparison of the semiclassical and exact quantum tunneling probability for the pure Eckart potential suggests a simple threshold multiplicative factor to the improved formula to account for quantum effects very near threshold not represented by semiclassical theory. The deep tunneling limitations of the original formula are echoed in semiclassical high-energy descriptions of bound vibrational states perpendicular to the reaction path at the saddle point. However, typically ab initio energetic information is not available to correct it. The Supporting Information contains a Fortran code, test input, and test output that implements the improved semiclassical tunneling formula.

  12. Organization of Heterogeneous Scientific Data Using the EAV/CR Representation

    PubMed Central

    Nadkarni, Prakash M.; Marenco, Luis; Chen, Roland; Skoufos, Emmanouil; Shepherd, Gordon; Miller, Perry

    1999-01-01

    Entity-attribute-value (EAV) representation is a means of organizing highly heterogeneous data using a relatively simple physical database schema. EAV representation is widely used in the medical domain, most notably in the storage of data related to clinical patient records. Its potential strengths suggest its use in other biomedical areas, in particular research databases whose schemas are complex as well as constantly changing to reflect evolving knowledge in rapidly advancing scientific domains. When deployed for such purposes, the basic EAV representation needs to be augmented significantly to handle the modeling of complex objects (classes) as well as to manage interobject relationships. The authors refer to their modification of the basic EAV paradigm as EAV/CR (EAV with classes and relationships). They describe EAV/CR representation with examples from two biomedical databases that use it. PMID:10579606

  13. Uncertainty representation of grey numbers and grey sets.

    PubMed

    Yang, Yingjie; Liu, Sifeng; John, Robert

    2014-09-01

    In the literature, there is a presumption that a grey set and an interval-valued fuzzy set are equivalent. This presumption ignores the existence of discrete components in a grey number. In this paper, new measurements of uncertainties of grey numbers and grey sets, consisting of both absolute and relative uncertainties, are defined to give a comprehensive representation of uncertainties in a grey number and a grey set. Some simple examples are provided to illustrate that the proposed uncertainty measurement can give an effective representation of both absolute and relative uncertainties in a grey number and a grey set. The relationships between grey sets and interval-valued fuzzy sets are also analyzed from the point of view of the proposed uncertainty representation. The analysis demonstrates that grey sets and interval-valued fuzzy sets provide different but overlapping models for uncertainty representation in sets.

  14. Scalar and tensor spherical harmonics expansion of the velocity correlation in homogeneous anisotropic turbulence

    DOE PAGES

    Rubinstein, Robert; Kurien, Susan; Cambon, Claude

    2015-06-22

    The representation theory of the rotation group is applied to construct a series expansion of the correlation tensor in homogeneous anisotropic turbulence. The resolution of angular dependence is the main analytical difficulty posed by anisotropic turbulence; representation theory parametrises this dependence by a tensor analogue of the standard spherical harmonics expansion of a scalar. As a result, the series expansion is formulated in terms of explicitly constructed tensor bases with scalar coefficients determined by angular moments of the correlation tensor.

  15. Proceedings of the Space Surveillance Workshop (11th) Held at Lexington, Massachusetts on 30 March-1 April 1993. Volume 2

    DTIC Science & Technology

    1993-04-01

    modulation mentioned above is hardly noticeable in the magnitude plots, suggesting it is much weaker than the typical phase function behavior for the...measurements with the overall behavior virtually the same for both. Thus a single representation is sought. Searches for the best analytical representation...nightly phase function behavior , the specular function is found by fitting only the nightly peak count in each case. The specular function is thus

  16. A simple and fast representation space for classifying complex time series

    NASA Astrophysics Data System (ADS)

    Zunino, Luciano; Olivares, Felipe; Bariviera, Aurelio F.; Rosso, Osvaldo A.

    2017-03-01

    In the context of time series analysis considerable effort has been directed towards the implementation of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space has been introduced, namely the number of turning points versus the Abbe value. It is able to separate time series from stationary and non-stationary processes with long-range dependences. In this work we show that this bidimensional approach is useful for distinguishing complex time series: different sets of financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that takes into account the multiple time scales often involved in complex systems has been also proposed. This multiscale analysis is essential to reach a higher discriminative power between physiological time series in health and disease.

  17. Set processing in a network environment. [data bases and magnetic disks and tapes

    NASA Technical Reports Server (NTRS)

    Hardgrave, W. T.

    1975-01-01

    A combination of a local network, a mass storage system, and an autonomous set processor serving as a data/storage management machine is described. Its characteristics include: content-accessible data bases usable from all connected devices; efficient storage/access of large data bases; simple and direct programming with data manipulation and storage management handled by the set processor; simple data base design and entry from source representation to set processor representation with no predefinition necessary; capability available for user sort/order specification; significant reduction in tape/disk pack storage and mounts; flexible environment that allows upgrading hardware/software configuration without causing major interruptions in service; minimal traffic on data communications network; and improved central memory usage on large processors.

  18. Wentzel-Kramers-Brillouin method in the Bargmann representation. [of quantum mechanics

    NASA Technical Reports Server (NTRS)

    Voros, A.

    1989-01-01

    It is demonstrated that the Bargmann representation of quantum mechanics is ideally suited for semiclassical analysis, using as an example the WKB method applied to the bound-state problem in a single well of one degree of freedom. For the harmonic oscillator, this WKB method trivially gives the exact eigenfunctions in addition to the exact eigenvalues. For an anharmonic well, a self-consistent variational choice of the representation greatly improves the accuracy of the semiclassical ground state. Also, a simple change of scale illuminates the relationship of semiclassical versus linear perturbative expansions, allowing a variety of multidimensional extensions.

  19. An efficient and numerically stable procedure for generating sextic force fields in normal mode coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibaev, M.; Crittenden, D. L., E-mail: deborah.crittenden@canterbury.ac.nz

    In this paper, we outline a general, scalable, and black-box approach for calculating high-order strongly coupled force fields in rectilinear normal mode coordinates, based upon constructing low order expansions in curvilinear coordinates with naturally limited mode-mode coupling, and then transforming between coordinate sets analytically. The optimal balance between accuracy and efficiency is achieved by transforming from 3 mode representation quartic force fields in curvilinear normal mode coordinates to 4 mode representation sextic force fields in rectilinear normal modes. Using this reduced mode-representation strategy introduces an error of only 1 cm{sup −1} in fundamental frequencies, on average, across a sizable testmore » set of molecules. We demonstrate that if it is feasible to generate an initial semi-quartic force field in curvilinear normal mode coordinates from ab initio data, then the subsequent coordinate transformation procedure will be relatively fast with modest memory demands. This procedure facilitates solving the nuclear vibrational problem, as all required integrals can be evaluated analytically. Our coordinate transformation code is implemented within the extensible PyPES library program package, at http://sourceforge.net/projects/pypes-lib-ext/.« less

  20. Simple map in action-angle coordinates

    NASA Astrophysics Data System (ADS)

    Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima

    2008-07-01

    A simple map [A. Punjabi, A. Verma, and A. Boozer, Phys. Rev. Lett. 69, 3322 (1992)] is the simplest map that has the topology of divertor tokamaks [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. Here, action-angle coordinates, the safety factor, and the equilibrium generating function for the simple map are calculated analytically. The simple map in action-angle coordinates is derived from canonical transformations. This map cannot be integrated across the separatrix surface because of the singularity in the safety factor there. The stochastic broadening of the ideal separatrix surface in action-angle representation is calculated by adding a perturbation to the simple map equilibrium generating function. This perturbation represents the spatial noise and field errors typical of the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)] tokamak. The stationary Fourier modes of the perturbation have poloidal and toroidal mode numbers (m,n,)={(3,1),(4,1),(6,2),(7,2),(8,2),(9,3),(10,3),(11,3)} with amplitude δ =0.8×10-5. Near the X-point, about 0.12% of toroidal magnetic flux inside the separatrix, and about 0.06% of the poloidal flux inside the separatrix is lost. When the distance from the O-point to the X-point is 1m, the width of stochastic layer near the X-point is about 1.4cm. The average value of the action on the last good surface is 0.19072 compared to the action value of 3/5π on the separatrix. The average width of stochastic layer in action coordinate is 2.7×10-4, while the average area of the stochastic layer in action-angle phase space is 1.69017×10-3. On average, about 0.14% of action or toroidal flux inside the ideal separatrix is lost due to broadening. Roughly five times more toroidal flux is lost in the simple map than in DIII-D for the same perturbation [A. Punjabi, H. Ali, A. Boozer, and T. Evans, Bull. Amer. Phys. Soc. 52, 124 (2007)].

  1. Analytic integration of real-virtual counterterms in NNLO jet cross sections II

    NASA Astrophysics Data System (ADS)

    Bolzoni, Paolo; Moch, Sven-Olaf; Somogyi, Gábor; Trócsányi, Zoltán

    2009-08-01

    We present analytic expressions of all integrals required to complete the explicit evaluation of the real-virtual integrated counterterms needed to define a recently proposed subtraction scheme for jet cross sections at next-to-next-to-leading order in QCD. We use the Mellin-Barnes representation of these integrals in 4 - 2epsilon dimensions to obtain the coefficients of their Laurent expansions around epsilon = 0. These coefficients are given by linear combinations of multidimensional Mellin-Barnes integrals. We compute the coefficients of such expansions in epsilon both numerically and analytically by complex integration over the Mellin-Barnes contours.

  2. A Galerkin Approach to Define Measured Terrain Surfaces with Analytic Basis Vectors to Produce a Compact Representation

    DTIC Science & Technology

    2010-11-01

    defined herein as terrain whose surface deformation due to a single vehicle traversing the surface is negligible, such as paved roads (both asphalt ...ground vehicle reliability predictions. Current application of this work is limited to the analysis of U.S. Highways, comprised of both asphalt and...Highways that are consistent between asphalt and concrete roads b. The principle terrain characteristics are defined with analytic basis vectors

  3. Global Study of the Simple Pendulum by the Homotopy Analysis Method

    ERIC Educational Resources Information Center

    Bel, A.; Reartes, W.; Torresi, A.

    2012-01-01

    Techniques are developed to find all periodic solutions in the simple pendulum by means of the homotopy analysis method (HAM). This involves the solution of the equations of motion in two different coordinate representations. Expressions are obtained for the cycles and periods of oscillations with a high degree of accuracy in the whole range of…

  4. TAKING THE LONG VIEW TOWARDS THE LONG WAR. Equipping General Purpose Force Leaders with Soft Power Tools for Irregular Warfare

    DTIC Science & Technology

    2009-02-12

    equivalent to usual printing or typescript . Can read either representations of familiar formulaic verbal exchanges or simple language containing only...read simple, authentic written material in a form equivalent to usual printing or typescript on subjects within a familiar context. Able to read with

  5. An evaluation of space time cube representation of spatiotemporal patterns.

    PubMed

    Kristensson, Per Ola; Dahlbäck, Nils; Anundi, Daniel; Björnstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Mårtensson, Ingrid; Nordvall, Mathias; Ståhl, Josefine

    2009-01-01

    Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.

  6. DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROTECTION

    EPA Science Inventory

    A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...

  7. Analytical Tools in School Finance Reform.

    ERIC Educational Resources Information Center

    Johns, R. L.

    This paper discusses the problem of analyzing variations in the educational opportunities provided by different school districts and describes how to assess the impact of school finance alternatives through use of various analytical tools. The author first examines relatively simple analytical methods, including calculation of per-pupil…

  8. Horizontal lifelines - review of regulations and simple design method considering anchorage rigidity.

    PubMed

    Galy, Bertrand; Lan, André

    2018-03-01

    Among the many occupational risks construction workers encounter every day falling from a height is the most dangerous. The objective of this article is to propose a simple analytical design method for horizontal lifelines (HLLs) that considers anchorage flexibility. The article presents a short review of the standards and regulations/acts/codes concerning HLLs in Canada the USA and Europe. A static analytical approach is proposed considering anchorage flexibility. The analytical results are compared with a series of 42 dynamic fall tests and a SAP2000 numerical model. The experimental results show that the analytical method is a little conservative and overestimates the line tension in most cases with a maximum of 17%. The static SAP2000 results show a maximum 2.1% difference with the analytical method. The analytical method is accurate enough to safely design HLLs and quick design abaci are provided to allow the engineer to make quick on-site verification if needed.

  9. Internal representations for face detection: an application of noise-based image classification to BOLD responses.

    PubMed

    Nestor, Adrian; Vettel, Jean M; Tarr, Michael J

    2013-11-01

    What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise-based image classification to BOLD responses recorded in high-level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face-selective areas in the human ventral cortex. Using behaviorally and neurally-derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally-coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise-based image classification in conjunction with fMRI to help uncover the structure of high-level perceptual representations. Copyright © 2012 Wiley Periodicals, Inc.

  10. Comment on atomic independent-particle models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doda, D.D.; Gravey, R.H.; Green, A.E.S.

    1975-08-01

    The Hartree-Fock-Slater (HFS) independent-particle model in the form developed by Hermann and Skillman (HS) and the Green, Sellin, and Zachor (GSZ) analytic independent-particle model are being used for many types of applications of atomic theory to avoid cumbersome, albeit more rigorous, many-body calculations. The single-electron eigenvalues obtained with these models are examined and it is found that the GSZ model is capable of yielding energy eigenvalues for valence electrons which are substantially closer to experimental values than are the results of HS-HFS calculations. With the aid of an analytic representation of the equivalent HS-HFS screening function, the difficulty with thismore » model is identified as a weakness of the potential in the neighborhood of the valence shell. Accurate representations of valence states are important in most atomic applications of the independent-particle model. (auth)« less

  11. Metric of two balancing Kerr particles in physical parametrization

    NASA Astrophysics Data System (ADS)

    Manko, V. S.; Ruiz, E.

    2015-11-01

    The present paper aims at elaborating a completely physical representation for the general 4-parameter family of the extended double-Kerr spacetimes describing two spinning sources in gravitational equilibrium. This involved problem is solved in a concise analytical form by using the individual Komar masses and angular momenta as arbitrary parameters, and the simplest equatorially symmetric specialization of the general expressions obtained by us yields the physical representation for the well-known Dietz-Hoenselaers superextreme case of two balancing identical Kerr constituents. The existence of the physically meaningful "black-hole-superextreme-object" equilibrium configurations permitted by the general solution may be considered as a clear indication that the spin-spin repulsion force might actually be by far stronger than expected earlier, when only the balance between two superextreme Kerr sources was thought possible. We also present the explicit analytical formulas relating the equilibrium states in the double-Kerr and double-Reissner-Nordström configurations.

  12. Feature-Selective Attentional Modulations in Human Frontoparietal Cortex.

    PubMed

    Ester, Edward F; Sutterer, David W; Serences, John T; Awh, Edward

    2016-08-03

    Control over visual selection has long been framed in terms of a dichotomy between "source" and "site," where top-down feedback signals originating in frontoparietal cortical areas modulate or bias sensory processing in posterior visual areas. This distinction is motivated in part by observations that frontoparietal cortical areas encode task-level variables (e.g., what stimulus is currently relevant or what motor outputs are appropriate), while posterior sensory areas encode continuous or analog feature representations. Here, we present evidence that challenges this distinction. We used fMRI, a roving searchlight analysis, and an inverted encoding model to examine representations of an elementary feature property (orientation) across the entire human cortical sheet while participants attended either the orientation or luminance of a peripheral grating. Orientation-selective representations were present in a multitude of visual, parietal, and prefrontal cortical areas, including portions of the medial occipital cortex, the lateral parietal cortex, and the superior precentral sulcus (thought to contain the human homolog of the macaque frontal eye fields). Additionally, representations in many-but not all-of these regions were stronger when participants were instructed to attend orientation relative to luminance. Collectively, these findings challenge models that posit a strict segregation between sources and sites of attentional control on the basis of representational properties by demonstrating that simple feature values are encoded by cortical regions throughout the visual processing hierarchy, and that representations in many of these areas are modulated by attention. Influential models of visual attention posit a distinction between top-down control and bottom-up sensory processing networks. These models are motivated in part by demonstrations showing that frontoparietal cortical areas associated with top-down control represent abstract or categorical stimulus information, while visual areas encode parametric feature information. Here, we show that multivariate activity in human visual, parietal, and frontal cortical areas encode representations of a simple feature property (orientation). Moreover, representations in several (though not all) of these areas were modulated by feature-based attention in a similar fashion. These results provide an important challenge to models that posit dissociable top-down control and sensory processing networks on the basis of representational properties. Copyright © 2016 the authors 0270-6474/16/368188-12$15.00/0.

  13. The Hebb repetition effect in simple and complex memory span.

    PubMed

    Oberauer, Klaus; Jones, Timothy; Lewandowsky, Stephan

    2015-08-01

    The Hebb repetition effect refers to the finding that immediate serial recall is improved over trials for memory lists that are surreptitiously repeated across trials, relative to new lists. We show in four experiments that the Hebb repetition effect is also observed with a complex-span task, in which encoding or retrieval of list items alternates with an unrelated processing task. The interruption of encoding or retrieval by the processing task did not reduce the size of the Hebb effect, demonstrating that incidental long-term learning forms integrated representations of lists, excluding the interleaved processing events. Contrary to the assumption that complex-span performance relies more on long-term memory than standard immediate serial recall (simple span), the Hebb effect was not larger in complex-span than in simple-span performance. The Hebb effect in complex span was also not modulated by the opportunity for refreshing list items, questioning a role of refreshing for the acquisition of the long-term memory representations underlying the effect.

  14. DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROJECTION - PROJECT SUMMARY

    EPA Science Inventory

    A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...

  15. Analytical determination of space station response to crew motion and design of suspension system for microgravity experiments

    NASA Technical Reports Server (NTRS)

    Liu, F. C.

    1986-01-01

    The objective of this investigation is to make analytical determination of the acceleration produced by crew motion in an orbiting space station and define design parameters for the suspension system of microgravity experiments. A simple structural model for simulation of the IOC space station is proposed. Mathematical formulation of this model provides the engineers a simple and direct tool for designing an effective suspension system.

  16. An Analytical State Transition Matrix for Orbits Perturbed by an Oblate Spheroid

    NASA Technical Reports Server (NTRS)

    Mueller, A. C.

    1977-01-01

    An analytical state transition matrix and its inverse, which include the short period and secular effects of the second zonal harmonic, were developed from the nonsingular PS satellite theory. The fact that the independent variable in the PS theory is not time is in no respect disadvantageous, since any explicit analytical solution must be expressed in the true or eccentric anomaly. This is shown to be the case for the simple conic matrix. The PS theory allows for a concise, accurate, and algorithmically simple state transition matrix. The improvement over the conic matrix ranges from 2 to 4 digits accuracy.

  17. WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL (EPA/600/SR-94/210)

    EPA Science Inventory

    A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a groundwater flo...

  18. Operator assistant systems - An experimental approach using a telerobotics application

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.; Mathe, Nathalie

    1993-01-01

    This article presents a knowledge-based system methodology for developing operator assistant (OA) systems in dynamic and interactive environments. This is a problem both of training and design, which is the subject of this article. Design includes both design of the system to be controlled and design of procedures for operating this system. A specific knowledge representation is proposed for representing the corresponding system and operational knowledge. This representation is based on the situation recognition and analytical reasoning paradigm. It tries to make explicit common factors involved in both human and machine intelligence, including perception and reasoning. An OA system based on this representation has been developed for space telerobotics. Simulations have been carried out with astronauts and the resulting protocols have been analyzed. Results show the relevance of the approach and have been used for improving the knowledge representation and the OA architecture.

  19. The changing demographic, legal, and technological contexts of political representation.

    PubMed

    Forest, Benjamin

    2005-10-25

    Three developments have created challenges for political representation in the U.S. and particularly for the use of territorially based representation (election by district). First, the demographic complexity of the U.S. population has grown both in absolute terms and in terms of residential patterns. Second, legal developments since the 1960s have recognized an increasing number of groups as eligible for voting rights protection. Third, the growing technical capacities of computer technology, particularly Geographic Information Systems, have allowed political parties and other organizations to create election districts with increasingly precise political and demographic characteristics. Scholars have made considerable progress in measuring and evaluating the racial and partisan biases of districting plans, and some states have tried to use Geographic Information Systems technology to produce more representative districts. However, case studies of Texas and Arizona illustrate that such analytic and technical advances have not overcome the basic contradictions that underlie the American system of territorial political representation.

  20. Birefringence of Cellotape: Jones Representation and Experimental Analysis

    ERIC Educational Resources Information Center

    Belendez, Augusto; Fernandez, Elena; Frances, Jorge; Neipp, Cristian

    2010-01-01

    In this paper, we analyse a simple experiment to study the effects of polarized light. A simple optical system composed of a polarizer, a retarder (cellotape) and an analyser is used to study the effect on the polarization state of the light which impinges on the setup. The optical system is characterized by means of a Jones matrix, and a simple…

  1. Transient excitation and mechanical admittance test techniques for prediction of payload vibration environments

    NASA Technical Reports Server (NTRS)

    Kana, D. D.; Vargas, L. M.

    1977-01-01

    Transient excitation forces were applied separately to simple beam-and-mass launch vehicle and payload models to develop complex admittance functions for the interface and other appropriate points on the structures. These measured admittances were then analytically combined by a matrix representation to obtain a description of the coupled system dynamic characteristics. Response of the payload model to excitation of the launch vehicle model was predicted and compared with results measured on the combined models. These results are also compared with results of earlier work in which a similar procedure was employed except that steady-state sinusoidal excitation techniques were included. It is found that the method employing transient tests produces results that are better overall than the steady state methods. Furthermore, the transient method requires far less time to implement, and provides far better resolution in the data. However, the data acquisition and handling problem is more complex for this method. It is concluded that the transient test and admittance matrix prediction method can be a valuable tool for development of payload vibration tests.

  2. Bio-inspired adaptive feedback error learning architecture for motor control.

    PubMed

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

  3. A Backward-Lagrangian-Stochastic Footprint Model for the Urban Environment

    NASA Astrophysics Data System (ADS)

    Wang, Chenghao; Wang, Zhi-Hua; Yang, Jiachuan; Li, Qi

    2018-02-01

    Built terrains, with their complexity in morphology, high heterogeneity, and anthropogenic impact, impose substantial challenges in Earth-system modelling. In particular, estimation of the source areas and footprints of atmospheric measurements in cities requires realistic representation of the landscape characteristics and flow physics in urban areas, but has hitherto been heavily reliant on large-eddy simulations. In this study, we developed physical parametrization schemes for estimating urban footprints based on the backward-Lagrangian-stochastic algorithm, with the built environment represented by street canyons. The vertical profile of mean streamwise velocity is parametrized for the urban canopy and boundary layer. Flux footprints estimated by the proposed model show reasonable agreement with analytical predictions over flat surfaces without roughness elements, and with experimental observations over sparse plant canopies. Furthermore, comparisons of canyon flow and turbulence profiles and the subsequent footprints were made between the proposed model and large-eddy simulation data. The results suggest that the parametrized canyon wind and turbulence statistics, based on the simple similarity theory used, need to be further improved to yield more realistic urban footprint modelling.

  4. Following a trend with an exponential moving average: Analytical results for a Gaussian model

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.; Serror, Jeremy

    2014-01-01

    We investigate how price variations of a stock are transformed into profits and losses (P&Ls) of a trend following strategy. In the frame of a Gaussian model, we derive the probability distribution of P&Ls and analyze its moments (mean, variance, skewness and kurtosis) and asymptotic behavior (quantiles). We show that the asymmetry of the distribution (with often small losses and less frequent but significant profits) is reminiscent to trend following strategies and less dependent on peculiarities of price variations. At short times, trend following strategies admit larger losses than one may anticipate from standard Gaussian estimates, while smaller losses are ensured at longer times. Simple explicit formulas characterizing the distribution of P&Ls illustrate the basic mechanisms of momentum trading, while general matrix representations can be applied to arbitrary Gaussian models. We also compute explicitly annualized risk adjusted P&L and strategy turnover to account for transaction costs. We deduce the trend following optimal timescale and its dependence on both auto-correlation level and transaction costs. Theoretical results are illustrated on the Dow Jones index.

  5. Functional Genomics Assistant (FUGA): a toolbox for the analysis of complex biological networks

    PubMed Central

    2011-01-01

    Background Cellular constituents such as proteins, DNA, and RNA form a complex web of interactions that regulate biochemical homeostasis and determine the dynamic cellular response to external stimuli. It follows that detailed understanding of these patterns is critical for the assessment of fundamental processes in cell biology and pathology. Representation and analysis of cellular constituents through network principles is a promising and popular analytical avenue towards a deeper understanding of molecular mechanisms in a system-wide context. Findings We present Functional Genomics Assistant (FUGA) - an extensible and portable MATLAB toolbox for the inference of biological relationships, graph topology analysis, random network simulation, network clustering, and functional enrichment statistics. In contrast to conventional differential expression analysis of individual genes, FUGA offers a framework for the study of system-wide properties of biological networks and highlights putative molecular targets using concepts of systems biology. Conclusion FUGA offers a simple and customizable framework for network analysis in a variety of systems biology applications. It is freely available for individual or academic use at http://code.google.com/p/fuga. PMID:22035155

  6. Detection of epistatic effects with logic regression and a classical linear regression model.

    PubMed

    Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata

    2014-02-01

    To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.

  7. Word maturity indices with latent semantic analysis: why, when, and where is Procrustes rotation applied?

    PubMed

    Jorge-Botana, Guillermo; Olmos, Ricardo; Luzón, José M

    2018-01-01

    The aim of this paper is to describe and explain one useful computational methodology to model the semantic development of word representation: Word maturity. In particular, the methodology is based on the longitudinal word monitoring created by Kirylev and Landauer using latent semantic analysis for the representation of lexical units. The paper is divided into two parts. First, the steps required to model the development of the meaning of words are explained in detail. We describe the technical and theoretical aspects of each step. Second, we provide a simple example of application of this methodology with some simple tools that can be used by applied researchers. This paper can serve as a user-friendly guide for researchers interested in modeling changes in the semantic representations of words. Some current aspects of the technique and future directions are also discussed. WIREs Cogn Sci 2018, 9:e1457. doi: 10.1002/wcs.1457 This article is categorized under: Computer Science > Natural Language Processing Linguistics > Language Acquisition Psychology > Development and Aging. © 2017 Wiley Periodicals, Inc.

  8. Two-dimensional shape recognition using oriented-polar representation

    NASA Astrophysics Data System (ADS)

    Hu, Neng-Chung; Yu, Kuo-Kan; Hsu, Yung-Li

    1997-10-01

    To deal with such a problem as object recognition of position, scale, and rotation invariance (PSRI), we utilize some PSRI properties of images obtained from objects, for example, the centroid of the image. The corresponding position of the centroid to the boundary of the image is invariant in spite of rotation, scale, and translation of the image. To obtain the information of the image, we use the technique similar to Radon transform, called the oriented-polar representation of a 2D image. In this representation, two specific points, the centroid and the weighted mean point, are selected to form an initial ray, then the image is sampled with N angularly equispaced rays departing from the initial rays. Each ray contains a number of intersections and the distance information obtained from the centroid to the intersections. The shape recognition algorithm is based on the least total error of these two items of information. Together with a simple noise removal and a typical backpropagation neural network, this algorithm is simple, but the PSRI is achieved with a high recognition rate.

  9. Acoustic and Lexical Representations for Affect Prediction in Spontaneous Conversations.

    PubMed

    Cao, Houwei; Savran, Arman; Verma, Ragini; Nenkova, Ani

    2015-01-01

    In this article we investigate what representations of acoustics and word usage are most suitable for predicting dimensions of affect|AROUSAL, VALANCE, POWER and EXPECTANCY|in spontaneous interactions. Our experiments are based on the AVEC 2012 challenge dataset. For lexical representations, we compare corpus-independent features based on psychological word norms of emotional dimensions, as well as corpus-dependent representations. We find that corpus-dependent bag of words approach with mutual information between word and emotion dimensions is by far the best representation. For the analysis of acoustics, we zero in on the question of granularity. We confirm on our corpus that utterance-level features are more predictive than word-level features. Further, we study more detailed representations in which the utterance is divided into regions of interest (ROI), each with separate representation. We introduce two ROI representations, which significantly outperform less informed approaches. In addition we show that acoustic models of emotion can be improved considerably by taking into account annotator agreement and training the model on smaller but reliable dataset. Finally we discuss the potential for improving prediction by combining the lexical and acoustic modalities. Simple fusion methods do not lead to consistent improvements over lexical classifiers alone but improve over acoustic models.

  10. VLSI architectures for computing multiplications and inverses in GF(2m)

    NASA Technical Reports Server (NTRS)

    Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.

    1985-01-01

    Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  11. VLSI architectures for computing multiplications and inverses in GF(2-m)

    NASA Technical Reports Server (NTRS)

    Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.; Reed, I. S.

    1983-01-01

    Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  12. VLSI architectures for computing multiplications and inverses in GF(2m).

    PubMed

    Wang, C C; Truong, T K; Shao, H M; Deutsch, L J; Omura, J K; Reed, I S

    1985-08-01

    Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that can be easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. In this paper, a pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal basis representation used together with this multiplier, a pipeline architecture is developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable, and therefore, naturally suitable for VLSI implementation.

  13. Consistent Yokoya-Chen Approximation to Beamstrahlung(LCC-0010)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peskin, M

    2004-04-22

    I reconsider the Yokoya-Chen approximate evolution equation for beamstrahlung and modify it slightly to generate simple, consistent analytical approximations for the electron and photon energy spectra. I compare these approximations to previous ones, and to simulation data.I reconsider the Yokoya-Chen approximate evolution equation for beamstrahlung and modify it slightly to generate simple, consistent analytical approximations for the electron and photon energy spectra. I compare these approximations to previous ones, and to simulation data.

  14. Adinkra (in)equivalence from Coxeter group representations: A case study

    NASA Astrophysics Data System (ADS)

    Chappell, Isaac; Gates, S. James; Hübsch, T.

    2014-02-01

    Using a MathematicaTM code, we present a straightforward numerical analysis of the 384-dimensional solution space of signed permutation 4×4 matrices, which in sets of four, provide representations of the 𝒢ℛ(4, 4) algebra, closely related to the 𝒩 = 1 (simple) supersymmetry algebra in four-dimensional space-time. Following after ideas discussed in previous papers about automorphisms and classification of adinkras and corresponding supermultiplets, we make a new and alternative proposal to use equivalence classes of the (unsigned) permutation group S4 to define distinct representations of higher-dimensional spin bundles within the context of adinkras. For this purpose, the definition of a dual operator akin to the well-known Hodge star is found to partition the space of these 𝒢ℛ(4, 4) representations into three suggestive classes.

  15. A logical foundation for representation of clinical data.

    PubMed Central

    Campbell, K E; Das, A K; Musen, M A

    1994-01-01

    OBJECTIVE: A general framework for representation of clinical data that provides a declarative semantics of terms and that allows developers to define explicitly the relationships among both terms and combinations of terms. DESIGN: Use of conceptual graphs as a standard representation of logic and of an existing standardized vocabulary, the Systematized Nomenclature of Medicine (SNOMED International), for lexical elements. Concepts such as time, anatomy, and uncertainty must be modeled explicitly in a way that allows relation of these foundational concepts to surface-level clinical descriptions in a uniform manner. RESULTS: The proposed framework was used to model a simple radiology report, which included temporal references. CONCLUSION: Formal logic provides a framework for formalizing the representation of medical concepts. Actual implementations will be required to evaluate the practicality of this approach. PMID:7719805

  16. The indexed time table approach for planning and acting

    NASA Technical Reports Server (NTRS)

    Ghallab, Malik; Alaoui, Amine Mounir

    1989-01-01

    A representation is discussed of symbolic temporal relations, called IxTeT, that is both powerful enough at the reasoning level for tasks such as plan generation, refinement and modification, and efficient enough for dealing with real time constraints in action monitoring and reactive planning. Such representation for dealing with time is needed in a teleoperated space robot. After a brief survey of known approaches, the proposed representation shows its computational efficiency for managing a large data base of temporal relations. Reactive planning with IxTeT is described and exemplified through the problem of mission planning and modification for a simple surveying satellite.

  17. Wigner functions for nonparaxial, arbitrarily polarized electromagnetic wave fields in free space.

    PubMed

    Alonso, Miguel A

    2004-11-01

    New representations are defined for describing electromagnetic wave fields in free space exactly in terms of rays for any wavelength, level of coherence or polarization, and numerical aperture, as long as there are no evanescent components. These representations correspond to tensors assigned to each ray such that the electric and magnetic energy densities, the Poynting vector, and the polarization properties of the field correspond to simple integrals involving these tensors for the rays that go through the specified point. For partially coherent fields, the ray-based approach provided by the new representations can reduce dramatically the computation times for the physical properties mentioned earlier.

  18. pyomocontrib_simplemodel v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, William

    2017-03-02

    Pyomo supports the formulation and analysis of mathematical models for complex optimization applications. This library extends the API of Pyomo to include a simple modeling representation: a list of objectives and constraints.

  19. Daytime Sleep Enhances Consolidation of the Spatial but Not Motoric Representation of Motor Sequence Memory

    PubMed Central

    Albouy, Geneviève; Fogel, Stuart; Pottiez, Hugo; Nguyen, Vo An; Ray, Laura; Lungu, Ovidiu; Carrier, Julie; Robertson, Edwin; Doyon, Julien

    2013-01-01

    Motor sequence learning is known to rely on more than a single process. As the skill develops with practice, two different representations of the sequence are formed: a goal representation built under spatial allocentric coordinates and a movement representation mediated through egocentric motor coordinates. This study aimed to explore the influence of daytime sleep (nap) on consolidation of these two representations. Through the manipulation of an explicit finger sequence learning task and a transfer protocol, we show that both allocentric (spatial) and egocentric (motor) representations of the sequence can be isolated after initial training. Our results also demonstrate that nap favors the emergence of offline gains in performance for the allocentric, but not the egocentric representation, even after accounting for fatigue effects. Furthermore, sleep-dependent gains in performance observed for the allocentric representation are correlated with spindle density during non-rapid eye movement (NREM) sleep of the post-training nap. In contrast, performance on the egocentric representation is only maintained, but not improved, regardless of the sleep/wake condition. These results suggest that motor sequence memory acquisition and consolidation involve distinct mechanisms that rely on sleep (and specifically, spindle) or simple passage of time, depending respectively on whether the sequence is performed under allocentric or egocentric coordinates. PMID:23300993

  20. Statistical representation of multiphase flow

    NASA Astrophysics Data System (ADS)

    Subramaniam

    2000-11-01

    The relationship between two common statistical representations of multiphase flow, namely, the single--point Eulerian statistical representation of two--phase flow (D. A. Drew, Ann. Rev. Fluid Mech. (15), 1983), and the Lagrangian statistical representation of a spray using the dropet distribution function (F. A. Williams, Phys. Fluids 1 (6), 1958) is established for spherical dispersed--phase elements. This relationship is based on recent work which relates the droplet distribution function to single--droplet pdfs starting from a Liouville description of a spray (Subramaniam, Phys. Fluids 10 (12), 2000). The Eulerian representation, which is based on a random--field model of the flow, is shown to contain different statistical information from the Lagrangian representation, which is based on a point--process model. The two descriptions are shown to be simply related for spherical, monodisperse elements in statistically homogeneous two--phase flow, whereas such a simple relationship is precluded by the inclusion of polydispersity and statistical inhomogeneity. The common origin of these two representations is traced to a more fundamental statistical representation of a multiphase flow, whose concepts derive from a theory for dense sprays recently proposed by Edwards (Atomization and Sprays 10 (3--5), 2000). The issue of what constitutes a minimally complete statistical representation of a multiphase flow is resolved.

  1. Decomposition of the optical transfer function: wavefront coding imaging systems

    NASA Astrophysics Data System (ADS)

    Muyo, Gonzalo; Harvey, Andy R.

    2005-10-01

    We describe the mapping of the optical transfer function (OTF) of an incoherent imaging system into a geometrical representation. We show that for defocused traditional and wavefront-coded systems the OTF can be represented as a generalized Cornu spiral. This representation provides a physical insight into the way in which wavefront coding can increase the depth of field of an imaging system and permits analytical quantification of salient OTF parameters, such as the depth of focus, the location of nulls, and amplitude and phase modulation of the wavefront-coding OTF.

  2. Test of a potential link between analytic and nonanalytic category learning and automatic, effortful processing.

    PubMed

    Tracy, J I; Pinsk, M; Helverson, J; Urban, G; Dietz, T; Smith, D J

    2001-08-01

    The link between automatic and effortful processing and nonanalytic and analytic category learning was evaluated in a sample of 29 college undergraduates using declarative memory, semantic category search, and pseudoword categorization tasks. Automatic and effortful processing measures were hypothesized to be associated with nonanalytic and analytic categorization, respectively. Results suggested that contrary to prediction strong criterion-attribute (analytic) responding on the pseudoword categorization task was associated with strong automatic, implicit memory encoding of frequency-of-occurrence information. Data are discussed in terms of the possibility that criterion-attribute category knowledge, once established, may be expressed with few attentional resources. The data indicate that attention resource requirements, even for the same stimuli and task, vary depending on the category rule system utilized. Also, the automaticity emerging from familiarity with analytic category exemplars is very different from the automaticity arising from extensive practice on a semantic category search task. The data do not support any simple mapping of analytic and nonanalytic forms of category learning onto the automatic and effortful processing dichotomy and challenge simple models of brain asymmetries for such procedures. Copyright 2001 Academic Press.

  3. On the three-dimensional instability of strained vortices

    NASA Technical Reports Server (NTRS)

    Waleffe, Fabian

    1990-01-01

    The three-dimensional (3-D) instability of a two-dimensional (2-D) flow with elliptical streamlines has been proposed as a generic mechanism for the breakdown of many 2-D flows. A physical interpretation for the mechanism is presented together with an analytical treatment of the problem. It is shown that the stability of an elliptical flow is governed by an Ince equation. An analytical representation for a localized solution is given and establishes a direct link with previous computations and experiments.

  4. Coagulation kinetics beyond mean field theory using an optimised Poisson representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, James; Ford, Ian J.

    Binary particle coagulation can be modelled as the repeated random process of the combination of two particles to form a third. The kinetics may be represented by population rate equations based on a mean field assumption, according to which the rate of aggregation is taken to be proportional to the product of the mean populations of the two participants, but this can be a poor approximation when the mean populations are small. However, using the Poisson representation, it is possible to derive a set of rate equations that go beyond mean field theory, describing pseudo-populations that are continuous, noisy, andmore » complex, but where averaging over the noise and initial conditions gives the mean of the physical population. Such an approach is explored for the simple case of a size-independent rate of coagulation between particles. Analytical results are compared with numerical computations and with results derived by other means. In the numerical work, we encounter instabilities that can be eliminated using a suitable “gauge” transformation of the problem [P. D. Drummond, Eur. Phys. J. B 38, 617 (2004)] which we show to be equivalent to the application of the Cameron-Martin-Girsanov formula describing a shift in a probability measure. The cost of such a procedure is to introduce additional statistical noise into the numerical results, but we identify an optimised gauge transformation where this difficulty is minimal for the main properties of interest. For more complicated systems, such an approach is likely to be computationally cheaper than Monte Carlo simulation.« less

  5. Emerging category representation in the visual forebrain hierarchy of pigeons (Columba livia).

    PubMed

    Azizi, Amir Hossein; Pusch, Roland; Koenen, Charlotte; Klatt, Sebastian; Bröcker, Franziska; Thiele, Samuel; Kellermann, Janosch; Güntürkün, Onur; Cheng, Sen

    2018-06-06

    Recognizing and categorizing visual stimuli are cognitive functions vital for survival, and an important feature of visual systems in primates as well as in birds. Visual stimuli are processed along the ventral visual pathway. At every stage in the hierarchy, neurons respond selectively to more complex features, transforming the population representation of the stimuli. It is therefore easier to read-out category information in higher visual areas. While explicit category representations have been observed in the primate brain, less is known on equivalent processes in the avian brain. Even though their brain anatomies are radically different, it has been hypothesized that visual object representations are comparable across mammals and birds. In the present study, we investigated category representations in the pigeon visual forebrain using recordings from single cells responding to photographs of real-world objects. Using a linear classifier, we found that the population activity in the visual associative area mesopallium ventrolaterale (MVL) distinguishes between animate and inanimate objects, although this distinction is not required by the task. By contrast, a population of cells in the entopallium, a region that is lower in the hierarchy of visual areas and that is related to the primate extrastriate cortex, lacked this information. A model that pools responses of simple cells, which function as edge detectors, can account for the animate vs. inanimate categorization in the MVL, but performance in the model is based on different features than in MVL. Therefore, processing in MVL cells is very likely more abstract than simple computations on the output of edge detectors. Copyright © 2018. Published by Elsevier B.V.

  6. The Role of Nanoparticle Design in Determining Analytical Performance of Lateral Flow Immunoassays.

    PubMed

    Zhan, Li; Guo, Shuang-Zhuang; Song, Fayi; Gong, Yan; Xu, Feng; Boulware, David R; McAlpine, Michael C; Chan, Warren C W; Bischof, John C

    2017-12-13

    Rapid, simple, and cost-effective diagnostics are needed to improve healthcare at the point of care (POC). However, the most widely used POC diagnostic, the lateral flow immunoassay (LFA), is ∼1000-times less sensitive and has a smaller analytical range than laboratory tests, requiring a confirmatory test to establish truly negative results. Here, a rational and systematic strategy is used to design the LFA contrast label (i.e., gold nanoparticles) to improve the analytical sensitivity, analytical detection range, and antigen quantification of LFAs. Specifically, we discovered that the size (30, 60, or 100 nm) of the gold nanoparticles is a main contributor to the LFA analytical performance through both the degree of receptor interaction and the ultimate visual or thermal contrast signals. Using the optimal LFA design, we demonstrated the ability to improve the analytical sensitivity by 256-fold and expand the analytical detection range from 3 log 10 to 6 log 10 for diagnosing patients with inflammatory conditions by measuring C-reactive protein. This work demonstrates that, with appropriate design of the contrast label, a simple and commonly used diagnostic technology can compete with more expensive state-of-the-art laboratory tests.

  7. Tungsten devices in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Hou, Xiandeng; Jones, Bradley T.

    2002-04-01

    Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.

  8. Spectral methods in edge-diffraction theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, J.M.

    Spectral methods for the construction of uniform asymptotic representations of the field diffracted by an aperture in a plane screen are reviewed. These are separated into contrasting approaches, roughly described as physical and geometrical. It is concluded that the geometrical methods provide a direct route to the construction of uniform representations that are formally identical to the equivalent-edge-current concept. Some interpretive and analytical difficulties that complicate the physical methods of obtaining uniform representations are analyzed. Spectral synthesis proceeds directly from the ray geometry and diffraction coefficients, without any intervening current representation, and the representation is uniform at shadow boundaries andmore » caustics of the diffracted field. The physical theory of diffraction postulates currents on the diffracting screen that give rise to the diffracted field. The difficulties encountered in evaluating the current integrals are throughly examined, and it is concluded that the additional data provided by the physical theory of diffraction (diffraction coefficients off the Keller diffraction cone) are not actually required for obtaining uniform asymptotics at the leading order. A new diffraction representation that generalizes to arbitrary plane-convex apertures a formula given by Knott and Senior [Proc. IEEE 62, 1468 (1974)] for circular apertures is deduced. 34 refs., 1 fig.« less

  9. Analytical representation of dynamical quantities in G W from a matrix resolvent

    NASA Astrophysics Data System (ADS)

    Gesenhues, J.; Nabok, D.; Rohlfing, M.; Draxl, C.

    2017-12-01

    The power of the G W formalism is, to a large extent, based on the explicit treatment of dynamical correlations in the self-energy. This dynamics is taken into account by calculating the energy dependence of the screened Coulomb interaction W , followed by a convolution with the Green's function G . In order to obtain the energy dependence of W the prevalent methods are plasmon-pole models and numerical integration techniques. In this paper, we discuss an alternative approach, in which the energy-dependent screening is calculated by determining the resolvent, which is set up from a matrix representation of the dielectric function. On the one hand, this refrains from a numerical energy convolution and allows one to actually write down the energy dependence of W explicitly (like in the plasmon-pole models). On the other hand, the method is at least as accurate as the numerical approaches due to its multipole nature. We discuss the theoretical setup in some detail, give insight into the computational aspects, and present results for Si, C, GaAs, and LiF. Finally, we argue that the analytic representability is not only useful for educational purposes but may also be of avail for the development of theory that goes beyond G W .

  10. Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl-von Kármán equation: energy decomposition analysis and energy budget.

    PubMed

    Yokoyama, Naoto; Takaoka, Masanori

    2014-12-01

    A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

  11. Cognitive strategies in the mental rotation task revealed by EEG spectral power.

    PubMed

    Gardony, Aaron L; Eddy, Marianna D; Brunyé, Tad T; Taylor, Holly A

    2017-11-01

    The classic mental rotation task (MRT; Shepard & Metzler, 1971) is commonly thought to measure mental rotation, a cognitive process involving covert simulation of motor rotation. Yet much research suggests that the MRT recruits both motor simulation and other analytic cognitive strategies that depend on visuospatial representation and visual working memory (WM). In the present study, we investigated cognitive strategies in the MRT using time-frequency analysis of EEG and independent component analysis. We scrutinized sensorimotor mu (µ) power reduction, associated with motor simulation, parietal alpha (pα) power reduction, associated with visuospatial representation, and frontal midline theta (fmθ) power enhancement, associated with WM maintenance and manipulation. µ power increased concomitant with increasing task difficulty, suggesting reduced use of motor simulation, while pα decreased and fmθ power increased, suggesting heightened use of visuospatial representation processing and WM, respectively. These findings suggest that MRT performance involves flexibly trading off between cognitive strategies, namely a motor simulation-based mental rotation strategy and WM-intensive analytic strategies based on task difficulty. Flexible cognitive strategy use may be a domain-general cognitive principle that underlies aptitude and spatial intelligence in a variety of cognitive domains. We close with discussion of the present study's implications as well as future directions. Published by Elsevier Inc.

  12. Forgetfulness can help you win games.

    PubMed

    Burridge, James; Gao, Yu; Mao, Yong

    2015-09-01

    We present a simple game model where agents with different memory lengths compete for finite resources. We show by simulation and analytically that an instability exists at a critical memory length, and as a result, different memory lengths can compete and coexist in a dynamical equilibrium. Our analytical formulation makes a connection to statistical urn models, and we show that temperature is mirrored by the agent's memory. Our simple model of memory may be incorporated into other game models with implications that we briefly discuss.

  13. Simple functionalization method for single conical pores with a polydopamine layer

    NASA Astrophysics Data System (ADS)

    Horiguchi, Yukichi; Goda, Tatsuro; Miyahara, Yuji

    2018-04-01

    Resistive pulse sensing (RPS) is an interesting analytical system in which micro- to nanosized pores are used to evaluate particles or small analytes. Recently, molecular immobilization techniques to improve the performance of RPS have been reported. The problem in functionalization for RPS is that molecular immobilization by chemical reaction is restricted by the pore material type. Herein, a simple functionalization is performed using mussel-inspired polydopamine as an intermediate layer to connect the pore material with functional molecules.

  14. A Representation for Fermionic Correlation Functions

    NASA Astrophysics Data System (ADS)

    Feldman, Joel; Knörrer, Horst; Trubowitz, Eugene

    Let dμS(a) be a Gaussian measure on the finitely generated Grassmann algebra A. Given an even W(a)∈A, we construct an operator R on A such that for all f(a)∈A. This representation of the Schwinger functional iteratively builds up Feynman graphs by successively appending lines farther and farther from f. It allows the Pauli exclusion principle to be implemented quantitatively by a simple application of Gram's inequality.

  15. Generative models for discovering sparse distributed representations.

    PubMed Central

    Hinton, G E; Ghahramani, Z

    1997-01-01

    We describe a hierarchical, generative model that can be viewed as a nonlinear generalization of factor analysis and can be implemented in a neural network. The model uses bottom-up, top-down and lateral connections to perform Bayesian perceptual inference correctly. Once perceptual inference has been performed the connection strengths can be updated using a very simple learning rule that only requires locally available information. We demonstrate that the network learns to extract sparse, distributed, hierarchical representations. PMID:9304685

  16. Targeted Analyte Detection by Standard Addition Improves Detection Limits in MALDI Mass Spectrometry

    PubMed Central

    Eshghi, Shadi Toghi; Li, Xingde; Zhang, Hui

    2014-01-01

    Matrix-assisted laser desorption/ionization has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications. PMID:22877355

  17. Targeted analyte detection by standard addition improves detection limits in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Toghi Eshghi, Shadi; Li, Xingde; Zhang, Hui

    2012-09-18

    Matrix-assisted laser desorption/ionization (MALDI) has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications.

  18. Experimental Validation of Lightning-Induced Electromagnetic (Indirect) Coupling to Short Monopole Antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crull, E W; Brown Jr., C G; Perkins, M P

    2008-07-30

    For short monopoles in this low-power case, it has been shown that a simple circuit model is capable of accurate predictions for the shape and magnitude of the antenna response to lightning-generated electric field coupling effects, provided that the elements of the circuit model have accurate values. Numerical EM simulation can be used to provide more accurate values for the circuit elements than the simple analytical formulas, since the analytical formulas are used outside of their region of validity. However, even with the approximate analytical formulas the simple circuit model produces reasonable results, which would improve if more accurate analyticalmore » models were used. This report discusses the coupling analysis approaches taken to understand the interaction between a time-varying EM field and a short monopole antenna, within the context of lightning safety for nuclear weapons at DOE facilities. It describes the validation of a simple circuit model using laboratory study in order to understand the indirect coupling of energy into a part, and the resulting voltage. Results show that in this low-power case, the circuit model predicts peak voltages within approximately 32% using circuit component values obtained from analytical formulas and about 13% using circuit component values obtained from numerical EM simulation. We note that the analytical formulas are used outside of their region of validity. First, the antenna is insulated and not a bare wire and there are perhaps fringing field effects near the termination of the outer conductor that the formula does not take into account. Also, the effective height formula is for a monopole directly over a ground plane, while in the time-domain measurement setup the monopole is elevated above the ground plane by about 1.5-inch (refer to Figure 5).« less

  19. User-based representation of time-resolved multimodal public transportation networks.

    PubMed

    Alessandretti, Laura; Karsai, Márton; Gauvin, Laetitia

    2016-07-01

    Multimodal transportation systems, with several coexisting services like bus, tram and metro, can be represented as time-resolved multilayer networks where the different transportation modes connecting the same set of nodes are associated with distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geo-localized transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, we provide a novel user-based representation of public transportation systems, which combines representations, accounting for the presence of multiple lines and reducing the effect of spatial embeddedness, while considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. After the adjustment of earlier techniques to the novel representation framework, we analyse the public transportation systems of several French municipal areas and identify hidden patterns of privileged connections. Furthermore, we study their efficiency as compared to the commuting flow. The proposed representation could help to enhance resilience of local transportation systems to provide better design policies for future developments.

  20. User-based representation of time-resolved multimodal public transportation networks

    PubMed Central

    Alessandretti, Laura; Gauvin, Laetitia

    2016-01-01

    Multimodal transportation systems, with several coexisting services like bus, tram and metro, can be represented as time-resolved multilayer networks where the different transportation modes connecting the same set of nodes are associated with distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geo-localized transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, we provide a novel user-based representation of public transportation systems, which combines representations, accounting for the presence of multiple lines and reducing the effect of spatial embeddedness, while considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. After the adjustment of earlier techniques to the novel representation framework, we analyse the public transportation systems of several French municipal areas and identify hidden patterns of privileged connections. Furthermore, we study their efficiency as compared to the commuting flow. The proposed representation could help to enhance resilience of local transportation systems to provide better design policies for future developments. PMID:27493773

  1. Master equations and the theory of stochastic path integrals

    NASA Astrophysics Data System (ADS)

    Weber, Markus F.; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon expanding the forward and the backward path integrals around stationary paths, we then discuss and extend a recent method for the computation of rare event probabilities. Besides, we also derive path integral representations for processes with continuous state spaces whose forward and backward master equations admit Kramers-Moyal expansions. A truncation of the backward expansion at the level of a diffusion approximation recovers a classic path integral representation of the (backward) Fokker-Planck equation. One can rewrite this path integral in terms of an Onsager-Machlup function and, for purely diffusive Brownian motion, it simplifies to the path integral of Wiener. To make this review accessible to a broad community, we have used the language of probability theory rather than quantum (field) theory and do not assume any knowledge of the latter. The probabilistic structures underpinning various technical concepts, such as coherent states, the Doi-shift, and normal-ordered observables, are thereby made explicit.

  2. Master equations and the theory of stochastic path integrals.

    PubMed

    Weber, Markus F; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon expanding the forward and the backward path integrals around stationary paths, we then discuss and extend a recent method for the computation of rare event probabilities. Besides, we also derive path integral representations for processes with continuous state spaces whose forward and backward master equations admit Kramers-Moyal expansions. A truncation of the backward expansion at the level of a diffusion approximation recovers a classic path integral representation of the (backward) Fokker-Planck equation. One can rewrite this path integral in terms of an Onsager-Machlup function and, for purely diffusive Brownian motion, it simplifies to the path integral of Wiener. To make this review accessible to a broad community, we have used the language of probability theory rather than quantum (field) theory and do not assume any knowledge of the latter. The probabilistic structures underpinning various technical concepts, such as coherent states, the Doi-shift, and normal-ordered observables, are thereby made explicit.

  3. Text categorization of biomedical data sets using graph kernels and a controlled vocabulary.

    PubMed

    Bleik, Said; Mishra, Meenakshi; Huan, Jun; Song, Min

    2013-01-01

    Recently, graph representations of text have been showing improved performance over conventional bag-of-words representations in text categorization applications. In this paper, we present a graph-based representation for biomedical articles and use graph kernels to classify those articles into high-level categories. In our representation, common biomedical concepts and semantic relationships are identified with the help of an existing ontology and are used to build a rich graph structure that provides a consistent feature set and preserves additional semantic information that could improve a classifier's performance. We attempt to classify the graphs using both a set-based graph kernel that is capable of dealing with the disconnected nature of the graphs and a simple linear kernel. Finally, we report the results comparing the classification performance of the kernel classifiers to common text-based classifiers.

  4. Adjoint affine fusion and tadpoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urichuk, Andrew, E-mail: andrew.urichuk@uleth.ca; Walton, Mark A., E-mail: walton@uleth.ca; International School for Advanced Studies

    2016-06-15

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are writtenmore » for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.« less

  5. [Developments in preparation and experimental method of solid phase microextraction fibers].

    PubMed

    Yi, Xu; Fu, Yujie

    2004-09-01

    Solid phase microextraction (SPME) is a simple and effective adsorption and desorption technique, which concentrates volatile or nonvolatile compounds from liquid samples or headspace of samples. SPME is compatible with analyte separation and detection by gas chromatography, high performance liquid chromatography, and other instrumental methods. It can provide many advantages, such as wide linear scale, low solvent and sample consumption, short analytical times, low detection limits, simple apparatus, and so on. The theory of SPME is introduced, which includes equilibrium theory and non-equilibrium theory. The novel development of fiber preparation methods and relative experimental techniques are discussed. In addition to commercial fiber preparation, different newly developed fabrication techniques, such as sol-gel, electronic deposition, carbon-base adsorption, high-temperature epoxy immobilization, are presented. Effects of extraction modes, selection of fiber coating, optimization of operating conditions, method sensitivity and precision, and systematical automation, are taken into considerations in the analytical process of SPME. A simple perspective of SPME is proposed at last.

  6. PatterNet: a system to learn compact physical design pattern representations for pattern-based analytics

    NASA Astrophysics Data System (ADS)

    Lutich, Andrey

    2017-07-01

    This research considers the problem of generating compact vector representations of physical design patterns for analytics purposes in semiconductor patterning domain. PatterNet uses a deep artificial neural network to learn mapping of physical design patterns to a compact Euclidean hyperspace. Distances among mapped patterns in this space correspond to dissimilarities among patterns defined at the time of the network training. Once the mapping network has been trained, PatterNet embeddings can be used as feature vectors with standard machine learning algorithms, and pattern search, comparison, and clustering become trivial problems. PatterNet is inspired by the concepts developed within the framework of generative adversarial networks as well as the FaceNet. Our method facilitates a deep neural network (DNN) to learn directly the compact representation by supplying it with pairs of design patterns and dissimilarity among these patterns defined by a user. In the simplest case, the dissimilarity is represented by an area of the XOR of two patterns. Important to realize that our PatterNet approach is very different to the methods developed for deep learning on image data. In contrast to "conventional" pictures, the patterns in the CAD world are the lists of polygon vertex coordinates. The method solely relies on the promise of deep learning to discover internal structure of the incoming data and learn its hierarchical representations. Artificial intelligence arising from the combination of PatterNet and clustering analysis very precisely follows intuition of patterning/optical proximity correction experts paving the way toward human-like and human-friendly engineering tools.

  7. Building Mathematical Models of Simple Harmonic and Damped Motion.

    ERIC Educational Resources Information Center

    Edwards, Thomas

    1995-01-01

    By developing a sequence of mathematical models of harmonic motion, shows that mathematical models are not right or wrong, but instead are better or poorer representations of the problem situation. (MKR)

  8. Intrinsic dimensionality predicts the saliency of natural dynamic scenes.

    PubMed

    Vig, Eleonora; Dorr, Michael; Martinetz, Thomas; Barth, Erhardt

    2012-06-01

    Since visual attention-based computer vision applications have gained popularity, ever more complex, biologically inspired models seem to be needed to predict salient locations (or interest points) in naturalistic scenes. In this paper, we explore how far one can go in predicting eye movements by using only basic signal processing, such as image representations derived from efficient coding principles, and machine learning. To this end, we gradually increase the complexity of a model from simple single-scale saliency maps computed on grayscale videos to spatiotemporal multiscale and multispectral representations. Using a large collection of eye movements on high-resolution videos, supervised learning techniques fine-tune the free parameters whose addition is inevitable with increasing complexity. The proposed model, although very simple, demonstrates significant improvement in predicting salient locations in naturalistic videos over four selected baseline models and two distinct data labeling scenarios.

  9. A signal-flow-graph approach to on-line gradient calculation.

    PubMed

    Campolucci, P; Uncini, A; Piazza, F

    2000-08-01

    A large class of nonlinear dynamic adaptive systems such as dynamic recurrent neural networks can be effectively represented by signal flow graphs (SFGs). By this method, complex systems are described as a general connection of many simple components, each of them implementing a simple one-input, one-output transformation, as in an electrical circuit. Even if graph representations are popular in the neural network community, they are often used for qualitative description rather than for rigorous representation and computational purposes. In this article, a method for both on-line and batch-backward gradient computation of a system output or cost function with respect to system parameters is derived by the SFG representation theory and its known properties. The system can be any causal, in general nonlinear and time-variant, dynamic system represented by an SFG, in particular any feedforward, time-delay, or recurrent neural network. In this work, we use discrete-time notation, but the same theory holds for the continuous-time case. The gradient is obtained in a straightforward way by the analysis of two SFGs, the original one and its adjoint (obtained from the first by simple transformations), without the complex chain rule expansions of derivatives usually employed. This method can be used for sensitivity analysis and for learning both off-line and on-line. On-line learning is particularly important since it is required by many real applications, such as digital signal processing, system identification and control, channel equalization, and predistortion.

  10. A scale-invariant internal representation of time.

    PubMed

    Shankar, Karthik H; Howard, Marc W

    2012-01-01

    We propose a principled way to construct an internal representation of the temporal stimulus history leading up to the present moment. A set of leaky integrators performs a Laplace transform on the stimulus function, and a linear operator approximates the inversion of the Laplace transform. The result is a representation of stimulus history that retains information about the temporal sequence of stimuli. This procedure naturally represents more recent stimuli more accurately than less recent stimuli; the decrement in accuracy is precisely scale invariant. This procedure also yields time cells that fire at specific latencies following the stimulus with a scale-invariant temporal spread. Combined with a simple associative memory, this representation gives rise to a moment-to-moment prediction that is also scale invariant in time. We propose that this scale-invariant representation of temporal stimulus history could serve as an underlying representation accessible to higher-level behavioral and cognitive mechanisms. In order to illustrate the potential utility of this scale-invariant representation in a variety of fields, we sketch applications using minimal performance functions to problems in classical conditioning, interval timing, scale-invariant learning in autoshaping, and the persistence of the recency effect in episodic memory across timescales.

  11. Visual Representations of DNA Replication: Middle Grades Students' Perceptions and Interpretations

    NASA Astrophysics Data System (ADS)

    Patrick, Michelle D.; Carter, Glenda; Wiebe, Eric N.

    2005-09-01

    Visual representations play a critical role in the communication of science concepts for scientists and students alike. However, recent research suggests that novice students experience difficulty extracting relevant information from representations. This study examined students' interpretations of visual representations of DNA replication. Each of the four steps of DNA replication included in the instructional presentation was represented as a text slide, a simple 2D graphic, and a rich 3D graphic. Participants were middle grade girls ( n = 21) attending a summer math and science program. Students' eye movements were measured as they viewed the representations. Participants were interviewed following instruction to assess their perceived salient features. Eye tracking fixation counts indicated that the same features (look zones) in the corresponding 2D and 3D graphics had different salience. The interviews revealed that students used different characteristics such as color, shape, and complexity to make sense of the graphics. The results of this study have implications for the design of instructional representations. Since many students have difficulty distinguishing between relevant and irrelevant information, cueing and directing student attention through the instructional representation could allow cognitive resources to be directed to the most relevant material.

  12. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.

    PubMed

    Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No

    2015-11-01

    One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Coherent States for Kronecker Products of Non Compact Groups: Formulation and Applications

    NASA Technical Reports Server (NTRS)

    Bambah, Bindu A.; Agarwal, Girish S.

    1996-01-01

    We introduce and study the properties of a class of coherent states for the group SU(1,1) X SU(1,1) and derive explicit expressions for these using the Clebsch-Gordan algebra for the SU(1,1) group. We restrict ourselves to the discrete series representations of SU(1,1). These are the generalization of the 'Barut Girardello' coherent states to the Kronecker Product of two non-compact groups. The resolution of the identity and the analytic phase space representation of these states is presented. This phase space representation is based on the basis of products of 'pair coherent states' rather than the standard number state canonical basis. We discuss the utility of the resulting 'bi-pair coherent states' in the context of four-mode interactions in quantum optics.

  14. Good-enough linguistic representations and online cognitive equilibrium in language processing.

    PubMed

    Karimi, Hossein; Ferreira, Fernanda

    2016-01-01

    We review previous research showing that representations formed during language processing are sometimes just "good enough" for the task at hand and propose the "online cognitive equilibrium" hypothesis as the driving force behind the formation of good-enough representations in language processing. Based on this view, we assume that the language comprehension system by default prefers to achieve as early as possible and remain as long as possible in a state of cognitive equilibrium where linguistic representations are successfully incorporated with existing knowledge structures (i.e., schemata) so that a meaningful and coherent overall representation is formed, and uncertainty is resolved or at least minimized. We also argue that the online equilibrium hypothesis is consistent with current theories of language processing, which maintain that linguistic representations are formed through a complex interplay between simple heuristics and deep syntactic algorithms and also theories that hold that linguistic representations are often incomplete and lacking in detail. We also propose a model of language processing that makes use of both heuristic and algorithmic processing, is sensitive to online cognitive equilibrium, and, we argue, is capable of explaining the formation of underspecified representations. We review previous findings providing evidence for underspecification in relation to this hypothesis and the associated language processing model and argue that most of these findings are compatible with them.

  15. A Subdivision-Based Representation for Vector Image Editing.

    PubMed

    Liao, Zicheng; Hoppe, Hugues; Forsyth, David; Yu, Yizhou

    2012-11-01

    Vector graphics has been employed in a wide variety of applications due to its scalability and editability. Editability is a high priority for artists and designers who wish to produce vector-based graphical content with user interaction. In this paper, we introduce a new vector image representation based on piecewise smooth subdivision surfaces, which is a simple, unified and flexible framework that supports a variety of operations, including shape editing, color editing, image stylization, and vector image processing. These operations effectively create novel vector graphics by reusing and altering existing image vectorization results. Because image vectorization yields an abstraction of the original raster image, controlling the level of detail of this abstraction is highly desirable. To this end, we design a feature-oriented vector image pyramid that offers multiple levels of abstraction simultaneously. Our new vector image representation can be rasterized efficiently using GPU-accelerated subdivision. Experiments indicate that our vector image representation achieves high visual quality and better supports editing operations than existing representations.

  16. Leading non-Gaussian corrections for diffusion orientation distribution function.

    PubMed

    Jensen, Jens H; Helpern, Joseph A; Tabesh, Ali

    2014-02-01

    An analytical representation of the leading non-Gaussian corrections for a class of diffusion orientation distribution functions (dODFs) is presented. This formula is constructed from the diffusion and diffusional kurtosis tensors, both of which may be estimated with diffusional kurtosis imaging (DKI). By incorporating model-independent non-Gaussian diffusion effects, it improves on the Gaussian approximation used in diffusion tensor imaging (DTI). This analytical representation therefore provides a natural foundation for DKI-based white matter fiber tractography, which has potential advantages over conventional DTI-based fiber tractography in generating more accurate predictions for the orientations of fiber bundles and in being able to directly resolve intra-voxel fiber crossings. The formula is illustrated with numerical simulations for a two-compartment model of fiber crossings and for human brain data. These results indicate that the inclusion of the leading non-Gaussian corrections can significantly affect fiber tractography in white matter regions, such as the centrum semiovale, where fiber crossings are common. 2013 John Wiley & Sons, Ltd.

  17. Leading Non-Gaussian Corrections for Diffusion Orientation Distribution Function

    PubMed Central

    Jensen, Jens H.; Helpern, Joseph A.; Tabesh, Ali

    2014-01-01

    An analytical representation of the leading non-Gaussian corrections for a class of diffusion orientation distribution functions (dODFs) is presented. This formula is constructed out of the diffusion and diffusional kurtosis tensors, both of which may be estimated with diffusional kurtosis imaging (DKI). By incorporating model-independent non-Gaussian diffusion effects, it improves upon the Gaussian approximation used in diffusion tensor imaging (DTI). This analytical representation therefore provides a natural foundation for DKI-based white matter fiber tractography, which has potential advantages over conventional DTI-based fiber tractography in generating more accurate predictions for the orientations of fiber bundles and in being able to directly resolve intra-voxel fiber crossings. The formula is illustrated with numerical simulations for a two-compartment model of fiber crossings and for human brain data. These results indicate that the inclusion of the leading non-Gaussian corrections can significantly affect fiber tractography in white matter regions, such as the centrum semiovale, where fiber crossings are common. PMID:24738143

  18. Continuous versus discontinuous albedo representations in a simple diffusive climate model

    NASA Astrophysics Data System (ADS)

    Simmons, P. A.; Griffel, D. H.

    1988-07-01

    A one-dimensional annually and zonally averaged energy-balance model, with diffusive meridional heat transport and including icealbedo feedback, is considered. This type of model is found to be very sensitive to the form of albedo used. The solutions for a discontinuous step-function albedo are compared to those for a more realistic smoothly varying albedo. The smooth albedo gives a closer fit to present conditions, but the discontinuous form gives a better representation of climates in earlier epochs.

  19. A topological hierarchy for functions on triangulated surfaces.

    PubMed

    Bremer, Peer-Timo; Edelsbrunner, Herbert; Hamann, Bernd; Pascucci, Valerio

    2004-01-01

    We combine topological and geometric methods to construct a multiresolution representation for a function over a two-dimensional domain. In a preprocessing stage, we create the Morse-Smale complex of the function and progressively simplify its topology by cancelling pairs of critical points. Based on a simple notion of dependency among these cancellations, we construct a hierarchical data structure supporting traversal and reconstruction operations similarly to traditional geometry-based representations. We use this data structure to extract topologically valid approximations that satisfy error bounds provided at runtime.

  20. Graphic representation of skeletal maturity determinations.

    PubMed

    Boechat, M Ines; Lee, David Choen

    2007-10-01

    Skeletal maturation determinations are usually reported as numeric data indicating accordance with chronologic age. However, significant changes in skeletal maturation can occur without falling outside two SDs. The purpose of our study was to design simple computer-generated sex-based charts to enhance the evaluation of skeletal maturation, especially when frequent assessments are made. The graphic representation of successive reports clearly depicts whether values retain their position in relation to the mean. In addition, the report includes computation of the exact SD score.

  1. Characterizing optical chirality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliokh, Konstantin Y.; Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198; Nori, Franco

    We examine the recently introduced measure of chirality of a monochromatic optical field [Y. Tang and A. E. Cohen, Phys. Rev. Lett. 104, 163901 (2010)] using the momentum (plane-wave) representation and helicity basis. Our analysis clarifies the physical meaning of the measure of chirality and unveils its close relation to the polarization helicity, spin angular momentum, energy density, and Poynting energy flow. We derive the operators of the optical chirality and of the corresponding chiral momentum, which acquire remarkably simple forms in the helicity representation.

  2. Two Activities with a Simple Model of the Solar System: Discovering Kepler's 3rd Law and Investigating Apparent Motion of Venus

    ERIC Educational Resources Information Center

    Rovšek, Barbara; Guštin, Andrej

    2018-01-01

    An astronomy "experiment" composed of three parts is described in the article. Being given necessary data a simple model of inner planets of the solar system is made in the first part with planets' circular orbits using appropriate scale. In the second part revolution of the figurines used as model representations of the planets along…

  3. Series expansions of rotating two and three dimensional sound fields.

    PubMed

    Poletti, M A

    2010-12-01

    The cylindrical and spherical harmonic expansions of oscillating sound fields rotating at a constant rate are derived. These expansions are a generalized form of the stationary sound field expansions. The derivations are based on the representation of interior and exterior sound fields using the simple source approach and determination of the simple source solutions with uniform rotation. Numerical simulations of rotating sound fields are presented to verify the theory.

  4. Andrei Andreevich Bolibrukh's works on the analytic theory of differential equations

    NASA Astrophysics Data System (ADS)

    Anosov, Dmitry V.; Leksin, Vladimir P.

    2011-02-01

    This paper contains an account of A.A. Bolibrukh's results obtained in the new directions of research that arose in the analytic theory of differential equations as a consequence of his sensational counterexample to the Riemann-Hilbert problem. A survey of results of his students in developing topics first considered by Bolibrukh is also presented. The main focus is on the role of the reducibility/irreducibility of systems of linear differential equations and their monodromy representations. A brief synopsis of results on the multidimensional Riemann-Hilbert problem and on isomonodromic deformations of Fuchsian systems is presented, and the main methods in the modern analytic theory of differential equations are sketched. Bibliography: 69 titles.

  5. Vitamin K

    USDA-ARS?s Scientific Manuscript database

    A wide range of analytical techniques are available for the detection, quantitation, and evaluation of vitamin K in foods. The methods vary from simple to complex depending on extraction, separation, identification and detection of the analyte. Among the extraction methods applied for vitamin K anal...

  6. Illness representations as mediators of the relationship between dispositional optimism and depression in patients with chronic tinnitus: a cross-sectional study.

    PubMed

    Vollmann, Manja; Scharloo, Margreet; Langguth, Berthold; Kalkouskaya, Natallia; Salewski, Christel

    2013-01-01

    Both dispositional optimism and illness representations are related to psychological health in chronic patients. In a group of chronic tinnitus sufferers, the interplay between these two variables was examined. Specifically, it was tested to what extent the relationship between dispositional optimism and depression is mediated by more positive illness representations. The study had a cross-sectional design. One hundred and eighteen patients diagnosed with chronic tinnitus completed questionnaires assessing optimism (Life Orientation Test-Revised [LOT-R]), illness representations (Illness Perceptions Questionnaire-Revised [IPQ-R]) and depression (Hospital Anxiety and Depression Scale [HADS]). Correlation analysis showed that optimism was associated with more positive illness representations and lower levels of depression. Simple mediation analyses revealed that the relationship between optimism and depression was partially mediated by the illness representation dimensions consequences, treatment control, coherence, emotional representations and internal causes. A multiple mediation analysis indicated that the total mediation effect of illness representations is particularly due to the dimension consequences. Optimism influences depression in tinnitus patients both directly and indirectly. The indirect effect indicates that optimism is associated with more positive tinnitus-specific illness representations which, in turn, are related to less depression. These findings contribute to a better understanding of the interplay between generalised expectancies, illness-specific perceptions and psychological adjustment to medical conditions.

  7. Transforming Undergraduate Education Through the use of Analytical Reasoning (TUETAR)

    NASA Astrophysics Data System (ADS)

    Bishop, M. P.; Houser, C.; Lemmons, K.

    2015-12-01

    Traditional learning limits the potential for self-discovery, and the use of data and knowledge to understand Earth system relationships, processes, feedback mechanisms and system coupling. It is extremely difficult for undergraduate students to analyze, synthesize, and integrate quantitative information related to complex systems, as many concepts may not be mathematically tractable or yet to be formalized. Conceptual models have long served as a means for Earth scientists to organize their understanding of Earth's dynamics, and have served as a basis for human analytical reasoning and landscape interpretation. Consequently, we evaluated the use of conceptual modeling, knowledge representation and analytical reasoning to provide undergraduate students with an opportunity to develop and test geocomputational conceptual models based upon their understanding of Earth science concepts. This study describes the use of geospatial technologies and fuzzy cognitive maps to predict desertification across the South-Texas Sandsheet in an upper-level geomorphology course. Students developed conceptual models based on their understanding of aeolian processes from lectures, and then compared and evaluated their modeling results against an expert conceptual model and spatial predictions, and the observed distribution of dune activity in 2010. Students perceived that the analytical reasoning approach was significantly better for understanding desertification compared to traditional lecture, and promoted reflective learning, working with data, teamwork, student interaction, innovation, and creative thinking. Student evaluations support the notion that the adoption of knowledge representation and analytical reasoning in the classroom has the potential to transform undergraduate education by enabling students to formalize and test their conceptual understanding of Earth science. A model for developing and utilizing this geospatial technology approach in Earth science is presented.

  8. Representing Simple Geometry Types in NetCDF-CF

    NASA Astrophysics Data System (ADS)

    Blodgett, D. L.; Koziol, B. W.; Whiteaker, T. L.; Simons, R.

    2016-12-01

    The Climate and Forecast (CF) metadata convention is well-suited for representing gridded and point-based observational datasets. However, CF currently has no accepted mechanism for representing simple geometry types such as lines and polygons. Lack of support for simple geometries within CF has unintentionally excluded a broad set of geoscientific data types from NetCDF-CF data encodings. For example, hydrologic datasets often contain polygon watershed catchments and polyline stream reaches in addition to point sampling stations and water management infrastructure. The latter has an associated CF specification. In the interest of supporting all simple geometry types within CF, a working group was formed following an EarthCube workshop on Advancing NetCDF-CF [1] to draft a CF specification for simple geometries: points, lines, polygons, and their associated multi-geometry representations [2]. The draft also includes parametric geometry types such as circles and ellipses. This presentation will provide an overview of the scope and content of the proposed specification focusing on mechanisms for representing coordinate arrays using variable length or continuous ragged arrays, capturing multi-geometries, and accounting for type-specific geometry artifacts such as polygon holes/interiors, node ordering, etc. The concepts contained in the specification proposal will be described with a use case representing streamflow in rivers and evapotranspiration from HUC12 watersheds. We will also introduce Python and R reference implementations developed alongside the technical specification. These in-development, open source Python and R libraries convert between commonly used GIS software objects (i.e. GEOS-based primitives) and their associated simple geometry CF representation. [1] http://www.unidata.ucar.edu/events/2016CFWorkshop/[2] https://github.com/bekozi/netCDF-CF-simple-geometry

  9. The clash of Gods: changes in a patient's use of God representations.

    PubMed

    Lamothe, Ryan

    2009-01-01

    In this article, I argue that manifest and latent intrapsychic and interpersonal clashes of god representations, which are inextricably yoked to transference and countertransference communications, signify the patient's and therapist's personal realities and histories. More specifically, the therapist's conscious (relatively speaking) commitment to a god representation will not only shape his/her analytic attitude-as well as interpretations and noninterpretive interventions-it may also be implicated in a patient altering his/her use of god representations. I suggest further that one way to understand the process of psychoanalytic therapy is how both analyst and analysand tacitly face and answer the following questions: What God(s) orients my life and relationships? What God(s) represents subjugation, fear, and the loss of freedom? What God(s) have I repressed? What God(s) represents the possibility and experience of being alive and real with others? In the end, what God(s) will I choose to serve, to surrender to?

  10. The changing demographic, legal, and technological contexts of political representation

    PubMed Central

    Forest, Benjamin

    2005-01-01

    Three developments have created challenges for political representation in the U.S. and particularly for the use of territorially based representation (election by district). First, the demographic complexity of the U.S. population has grown both in absolute terms and in terms of residential patterns. Second, legal developments since the 1960s have recognized an increasing number of groups as eligible for voting rights protection. Third, the growing technical capacities of computer technology, particularly Geographic Information Systems, have allowed political parties and other organizations to create election districts with increasingly precise political and demographic characteristics. Scholars have made considerable progress in measuring and evaluating the racial and partisan biases of districting plans, and some states have tried to use Geographic Information Systems technology to produce more representative districts. However, case studies of Texas and Arizona illustrate that such analytic and technical advances have not overcome the basic contradictions that underlie the American system of territorial political representation. PMID:16230615

  11. Comparison of maximum runup through analytical and numerical approaches for different fault parameters estimates

    NASA Astrophysics Data System (ADS)

    Kanoglu, U.; Wronna, M.; Baptista, M. A.; Miranda, J. M. A.

    2017-12-01

    The one-dimensional analytical runup theory in combination with near shore synthetic waveforms is a promising tool for tsunami rapid early warning systems. Its application in realistic cases with complex bathymetry and initial wave condition from inverse modelling have shown that maximum runup values can be estimated reasonably well. In this study we generate a simplistic bathymetry domains which resemble realistic near-shore features. We investigate the accuracy of the analytical runup formulae to the variation of fault source parameters and near-shore bathymetric features. To do this we systematically vary the fault plane parameters to compute the initial tsunami wave condition. Subsequently, we use the initial conditions to run the numerical tsunami model using coupled system of four nested grids and compare the results to the analytical estimates. Variation of the dip angle of the fault plane showed that analytical estimates have less than 10% difference for angles 5-45 degrees in a simple bathymetric domain. These results shows that the use of analytical formulae for fast run up estimates constitutes a very promising approach in a simple bathymetric domain and might be implemented in Hazard Mapping and Early Warning.

  12. Stress Analysis of Beams with Shear Deformation of the Flanges

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul

    1937-01-01

    This report discusses the fundamental action of shear deformation of the flanges on the basis of simplifying assumptions. The theory is developed to the point of giving analytical solutions for simple cases of beams and of skin-stringer panels under axial load. Strain-gage tests on a tension panel and on a beam corresponding to these simple cases are described and the results are compared with analytical results. For wing beams, an approximate method of applying the theory is given. As an alternative, the construction of a mechanical analyzer is advocated.

  13. Semiotic Criteria for Evaluating Instructional HyperMedia.

    ERIC Educational Resources Information Center

    Tucker, Susan A.; Dempsey, John V.

    This report describes hypermedia as a non-linear interlinked representation of textual, graphic, visual and audio material, that enables students to connect large bodies of information while developing analytical skills necessary to think critically about this information. It is noted that the use of microcomputers for hypermedia instruction…

  14. Responses to atmospheric CO2 concentrations in crop simulation models: a review of current simple and semicomplex representations and options for model development.

    PubMed

    Vanuytrecht, Eline; Thorburn, Peter J

    2017-05-01

    Elevated atmospheric CO 2 concentrations ([CO 2 ]) cause direct changes in crop physiological processes (e.g. photosynthesis and stomatal conductance). To represent these CO 2 responses, commonly used crop simulation models have been amended, using simple and semicomplex representations of the processes involved. Yet, there is no standard approach to and often poor documentation of these developments. This study used a bottom-up approach (starting with the APSIM framework as case study) to evaluate modelled responses in a consortium of commonly used crop models and illuminate whether variation in responses reflects true uncertainty in our understanding compared to arbitrary choices of model developers. Diversity in simulated CO 2 responses and limited validation were common among models, both within the APSIM framework and more generally. Whereas production responses show some consistency up to moderately high [CO 2 ] (around 700 ppm), transpiration and stomatal responses vary more widely in nature and magnitude (e.g. a decrease in stomatal conductance varying between 35% and 90% among models was found for [CO 2 ] doubling to 700 ppm). Most notably, nitrogen responses were found to be included in few crop models despite being commonly observed and critical for the simulation of photosynthetic acclimation, crop nutritional quality and carbon allocation. We suggest harmonization and consideration of more mechanistic concepts in particular subroutines, for example, for the simulation of N dynamics, as a way to improve our predictive understanding of CO 2 responses and capture secondary processes. Intercomparison studies could assist in this aim, provided that they go beyond simple output comparison and explicitly identify the representations and assumptions that are causal for intermodel differences. Additionally, validation and proper documentation of the representation of CO 2 responses within models should be prioritized. © 2017 John Wiley & Sons Ltd.

  15. A network of spiking neurons for computing sparse representations in an energy efficient way

    PubMed Central

    Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B.

    2013-01-01

    Computing sparse redundant representations is an important problem both in applied mathematics and neuroscience. In many applications, this problem must be solved in an energy efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating via low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, such operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We compare the numerical performance of HDA with existing algorithms and show that in the asymptotic regime the representation error of HDA decays with time, t, as 1/t. We show that HDA is stable against time-varying noise, specifically, the representation error decays as 1/t for Gaussian white noise. PMID:22920853

  16. A network of spiking neurons for computing sparse representations in an energy-efficient way.

    PubMed

    Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B

    2012-11-01

    Computing sparse redundant representations is an important problem in both applied mathematics and neuroscience. In many applications, this problem must be solved in an energy-efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating by low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, the operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We show that the numerical performance of HDA is on par with existing algorithms. In the asymptotic regime, the representation error of HDA decays with time, t, as 1/t. HDA is stable against time-varying noise; specifically, the representation error decays as 1/√t for gaussian white noise.

  17. Archetypal dynamics, emergent situations, and the reality game.

    PubMed

    Sulis, William

    2010-07-01

    The classical approach to the modeling of reality is founded upon its objectification. Although successful dealing with inanimate matter, objectification has proven to be much less successful elsewhere, sometimes to the point of paradox. This paper discusses an approach to the modeling of reality based upon the concept of process as formulated within the framework of archetypal dynamics. Reality is conceptualized as an intermingling of information-transducing systems, together with the semantic frames that effectively describe and ascribe meaning to each system, along with particular formal representations of same which constitute the archetypes. Archetypal dynamics is the study of the relationships between systems, frames and their representations and the flow of information among these different entities. In this paper a specific formal representation of archetypal dynamics using tapestries is given, and a dynamics is founded upon this representation in the form of a combinatorial game called a reality game. Some simple examples are presented.

  18. Using topographic networks to build a representation of consciousness.

    PubMed

    Tinsley, Chris J

    2008-04-01

    The subject of consciousness has intrigued both psychologists and neuroscientists for many years. Recently, following many recent advances in the emerging field of cognitive neuroscience, there is the possibility that this fundamental process may soon be explained. In particular, there have been dramatic insights gained into the mechanisms of attention, cognition and perception in recent decades. Here, simple network models are proposed which are used to create a representation of consciousness. The models are inspired by the structure of the thalamus and all incorporate topographic layers in their structure. Operation of the models allows filtering of the information reaching the representation according to (1) modality and/or (2) sub-modality, in addition several of the models allowing filtering at the topographic level. The models presented have different structures and employ different integrative mechanisms to produce gating or amplification at different levels; the resultant representations of consciousness are discussed.

  19. Prediction task guided representation learning of medical codes in EHR.

    PubMed

    Cui, Liwen; Xie, Xiaolei; Shen, Zuojun

    2018-06-18

    There have been rapidly growing applications using machine learning models for predictive analytics in Electronic Health Records (EHR) to improve the quality of hospital services and the efficiency of healthcare resource utilization. A fundamental and crucial step in developing such models is to convert medical codes in EHR to feature vectors. These medical codes are used to represent diagnoses or procedures. Their vector representations have a tremendous impact on the performance of machine learning models. Recently, some researchers have utilized representation learning methods from Natural Language Processing (NLP) to learn vector representations of medical codes. However, most previous approaches are unsupervised, i.e. the generation of medical code vectors is independent from prediction tasks. Thus, the obtained feature vectors may be inappropriate for a specific prediction task. Moreover, unsupervised methods often require a lot of samples to obtain reliable results, but most practical problems have very limited patient samples. In this paper, we develop a new method called Prediction Task Guided Health Record Aggregation (PTGHRA), which aggregates health records guided by prediction tasks, to construct training corpus for various representation learning models. Compared with unsupervised approaches, representation learning models integrated with PTGHRA yield a significant improvement in predictive capability of generated medical code vectors, especially for limited training samples. Copyright © 2018. Published by Elsevier Inc.

  20. Manga Vectorization and Manipulation with Procedural Simple Screentone.

    PubMed

    Yao, Chih-Yuan; Hung, Shih-Hsuan; Li, Guo-Wei; Chen, I-Yu; Adhitya, Reza; Lai, Yu-Chi

    2017-02-01

    Manga are a popular artistic form around the world, and artists use simple line drawing and screentone to create all kinds of interesting productions. Vectorization is helpful to digitally reproduce these elements for proper content and intention delivery on electronic devices. Therefore, this study aims at transforming scanned Manga to a vector representation for interactive manipulation and real-time rendering with arbitrary resolution. Our system first decomposes the patch into rough Manga elements including possible borders and shading regions using adaptive binarization and screentone detector. We classify detected screentone into simple and complex patterns: our system extracts simple screentone properties for refining screentone borders, estimating lighting, compensating missing strokes inside screentone regions, and later resolution independently rendering with our procedural shaders. Our system treats the others as complex screentone areas and vectorizes them with our proposed line tracer which aims at locating boundaries of all shading regions and polishing all shading borders with the curve-based Gaussian refiner. A user can lay down simple scribbles to cluster Manga elements intuitively for the formation of semantic components, and our system vectorizes these components into shading meshes along with embedded Bézier curves as a unified foundation for consistent manipulation including pattern manipulation, deformation, and lighting addition. Our system can real-time and resolution independently render the shading regions with our procedural shaders and drawing borders with the curve-based shader. For Manga manipulation, the proposed vector representation can be not only magnified without artifacts but also deformed easily to generate interesting results.

  1. Profinite Completions of Burnside-Type Quotients of Surface Groups

    NASA Astrophysics Data System (ADS)

    Funar, Louis; Lochak, Pierre

    2018-06-01

    Using quantum representations of mapping class groups, we prove that profinite completions of Burnside-type surface group quotients are not virtually prosolvable, in general. Further, we construct infinitely many finite simple characteristic quotients of surface groups.

  2. Representing Mutually Exclusive Knowledge in a Property Hierarchy for a Reasoning System in Clinical Gynecology

    PubMed Central

    Small, Steven L.; Muechler, Eberhard K.

    1985-01-01

    The education and practice of clinical medicine can benefit significantly from the use of computational assistants. This article describes the development of a prototype system called SURGES (Strong/University of Rochester Gynecological Expert System) for representing medical knowledge and then applying this knowledge to suggest diagnostic procedures in medical gynecology. The paper focuses on the representation technique of property inheritance, which facilitates the simple common sense reasoning required to enable execution of the more complex medical inferences. Such common sense can be viewed as a collection mundane inferences, which are the simple conclusions drawn from knowledge that an exclusive or (XOR) relation (i.e., mutual exclusion) holds among a number of facts. The paper discusses the use of a property hierarchy for this purpose and shows how it simplifies knowledge representation in medical artificial intelligence (AIM) computer systems.

  3. Efficient alignment-free DNA barcode analytics.

    PubMed

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-11-10

    In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding.

  4. A Simple Analytical Model for Magnetization and Coercivity of Hard/Soft Nanocomposite Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jihoon; Hong, Yang-Ki; Lee, Woncheol

    Here, we present a simple analytical model to estimate the magnetization (σ s) and intrinsic coercivity (Hci) of a hard/soft nanocomposite magnet using the mass fraction. Previously proposed models are based on the volume fraction of the hard phase of the composite. But, it is difficult to measure the volume of the hard or soft phase material of a composite. We synthesized Sm 2Co 7/Fe-Co, MnAl/Fe-Co, MnBi/Fe-Co, and BaFe 12O 19/Fe-Co composites for characterization of their σs and Hci. The experimental results are in good agreement with the present model. Therefore, this analytical model can be extended to predict themore » maximum energy product (BH) max of hard/soft composite.« less

  5. A Simple Analytical Model for Magnetization and Coercivity of Hard/Soft Nanocomposite Magnets

    DOE PAGES

    Park, Jihoon; Hong, Yang-Ki; Lee, Woncheol; ...

    2017-07-10

    Here, we present a simple analytical model to estimate the magnetization (σ s) and intrinsic coercivity (Hci) of a hard/soft nanocomposite magnet using the mass fraction. Previously proposed models are based on the volume fraction of the hard phase of the composite. But, it is difficult to measure the volume of the hard or soft phase material of a composite. We synthesized Sm 2Co 7/Fe-Co, MnAl/Fe-Co, MnBi/Fe-Co, and BaFe 12O 19/Fe-Co composites for characterization of their σs and Hci. The experimental results are in good agreement with the present model. Therefore, this analytical model can be extended to predict themore » maximum energy product (BH) max of hard/soft composite.« less

  6. Teaching Algebraic Equations to Middle School Students with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Baker, Joshua N.; Rivera, Christopher J.; Morgan, Joseph John; Reese, Noelle

    2015-01-01

    The purpose of this study was to replicate similar instructional techniques of Jimenez, Browder, and Courtade (2008) using a single-subject multiple-probe across participants design to investigate the effects of task analytic instruction coupled with semi-concrete representations to teach linear algebraic equations to middle school students with…

  7. Teaching about Queer Families: Surveillance, Censorship, and the Schooling of Sexualities

    ERIC Educational Resources Information Center

    Cumming-Potvin, Wendy; Martino, Wayne

    2014-01-01

    In this paper, we investigate primary school teachers' reflections on addressing the topic of same-sex families and relationships in their classrooms. Informed by queer theoretical and Foucauldian analytic approaches, we examine teachers' potential use of texts, such as picture storybooks, which introduce representations of same-sex relationships…

  8. The Circumplex Pattern of the Life Styles Inventory: A Reanalysis.

    ERIC Educational Resources Information Center

    Levin, Joseph

    1991-01-01

    A reanalysis of the intercorrelation matrix from a principal components analysis of the Life Styles Inventory was conducted using a Canadian sample. Using nonmetric multidimensional scaling, analyses show an almost perfect circumplex pattern. Results illustrate the inadequacy of factor analytic procedures for the analysis and representation of a…

  9. Non-symbolic arithmetic in adults and young children.

    PubMed

    Barth, Hilary; La Mont, Kristen; Lipton, Jennifer; Dehaene, Stanislas; Kanwisher, Nancy; Spelke, Elizabeth

    2006-01-01

    Five experiments investigated whether adults and preschool children can perform simple arithmetic calculations on non-symbolic numerosities. Previous research has demonstrated that human adults, human infants, and non-human animals can process numerical quantities through approximate representations of their magnitudes. Here we consider whether these non-symbolic numerical representations might serve as a building block of uniquely human, learned mathematics. Both adults and children with no training in arithmetic successfully performed approximate arithmetic on large sets of elements. Success at these tasks did not depend on non-numerical continuous quantities, modality-specific quantity information, the adoption of alternative non-arithmetic strategies, or learned symbolic arithmetic knowledge. Abstract numerical quantity representations therefore are computationally functional and may provide a foundation for formal mathematics.

  10. Quantum approximate optimization algorithm for MaxCut: A fermionic view

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Hadfield, Stuart; Jiang, Zhang; Rieffel, Eleanor G.

    2018-02-01

    Farhi et al. recently proposed a class of quantum algorithms, the quantum approximate optimization algorithm (QAOA), for approximately solving combinatorial optimization problems (E. Farhi et al., arXiv:1411.4028; arXiv:1412.6062; arXiv:1602.07674). A level-p QAOA circuit consists of p steps; in each step a classical Hamiltonian, derived from the cost function, is applied followed by a mixing Hamiltonian. The 2 p times for which these two Hamiltonians are applied are the parameters of the algorithm, which are to be optimized classically for the best performance. As p increases, parameter optimization becomes inefficient due to the curse of dimensionality. The success of the QAOA approach will depend, in part, on finding effective parameter-setting strategies. Here we analytically and numerically study parameter setting for the QAOA applied to MaxCut. For the level-1 QAOA, we derive an analytical expression for a general graph. In principle, expressions for higher p could be derived, but the number of terms quickly becomes prohibitive. For a special case of MaxCut, the "ring of disagrees," or the one-dimensional antiferromagnetic ring, we provide an analysis for an arbitrarily high level. Using a fermionic representation, the evolution of the system under the QAOA translates into quantum control of an ensemble of independent spins. This treatment enables us to obtain analytical expressions for the performance of the QAOA for any p . It also greatly simplifies the numerical search for the optimal values of the parameters. By exploring symmetries, we identify a lower-dimensional submanifold of interest; the search effort can be accordingly reduced. This analysis also explains an observed symmetry in the optimal parameter values. Further, we numerically investigate the parameter landscape and show that it is a simple one in the sense of having no local optima.

  11. Effect of heterogeneity on the characterization of cell membrane compartments: I. Uniform size and permeability.

    PubMed

    Hall, Damien

    2010-03-15

    Observations of the motion of individual molecules in the membrane of a number of different cell types have led to the suggestion that the outer membrane of many eukaryotic cells may be effectively partitioned into microdomains. A major cause of this suggested partitioning is believed to be due to the direct/indirect association of the cytosolic face of the cell membrane with the cortical cytoskeleton. Such intimate association is thought to introduce effective hydrodynamic barriers into the membrane that are capable of frustrating molecular Brownian motion over distance scales greater than the average size of the compartment. To date, the standard analytical method for deducing compartment characteristics has relied on observing the random walk behavior of a labeled lipid or protein at various temporal frequencies and different total lengths of time. Simple theoretical arguments suggest that the presence of restrictive barriers imparts a characteristic turnover to a plot of mean squared displacement versus sampling period that can be interpreted to yield the average dimensions of the compartment expressed as the respective side lengths of a rectangle. In the following series of articles, we used computer simulation methods to investigate how well the conventional analytical strategy coped with heterogeneity in size, shape, and barrier permeability of the cell membrane compartments. We also explored questions relating to the necessary extent of sampling required (with regard to both the recorded time of a single trajectory and the number of trajectories included in the measurement bin) for faithful representation of the actual distribution of compartment sizes found using the SPT technique. In the current investigation, we turned our attention to the analytical characterization of diffusion through cell membrane compartments having both a uniform size and permeability. For this ideal case, we found that (i) an optimum sampling time interval existed for the analysis and (ii) the total length of time for which a trajectory was recorded was a key factor. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  12. Category representations in the brain are both discretely localized and widely distributed.

    PubMed

    Shehzad, Zarrar; McCarthy, Gregory

    2018-06-01

    Whether category information is discretely localized or represented widely in the brain remains a contentious issue. Initial functional MRI studies supported the localizationist perspective that category information is represented in discrete brain regions. More recent fMRI studies using machine learning pattern classification techniques provide evidence for widespread distributed representations. However, these latter studies have not typically accounted for shared information. Here, we find strong support for distributed representations when brain regions are considered separately. However, localized representations are revealed by using analytical methods that separate unique from shared information among brain regions. The distributed nature of shared information and the localized nature of unique information suggest that brain connectivity may encourage spreading of information but category-specific computations are carried out in distinct domain-specific regions. NEW & NOTEWORTHY Whether visual category information is localized in unique domain-specific brain regions or distributed in many domain-general brain regions is hotly contested. We resolve this debate by using multivariate analyses to parse functional MRI signals from different brain regions into unique and shared variance. Our findings support elements of both models and show information is initially localized and then shared among other regions leading to distributed representations being observed.

  13. In (or outside of) your neck of the woods: laterality in spatial body representation

    PubMed Central

    Hach, Sylvia; Schütz-Bosbach, Simone

    2014-01-01

    Beside language, space is to date the most widely recognized lateralized systems. For example, it has been shown that even mental representations of space and the spatial representation of abstract concepts display lateralized characteristics. For the most part, this body of literature describes space as distal or something outside of the observer or actor. What has been strangely absent in the literature on the whole and specifically in the spatial literature until recently is the most proximal space imaginable – the body. In this review, we will summarize three strands of literature showing laterality in body representations. First, evidence of hemispheric asymmetries in body space in health and, second in body space in disease will be examined. Third, studies pointing to differential contributions of the right and left hemisphere to illusory body (space) will be summarized. Together these studies show hemispheric asymmetries to be evident in body representations at the level of simple somatosensory and proprioceptive representations. We propose a novel working hypothesis, whereby neural systems dedicated to processing action-oriented information about one’s own body space may ontogenetically serve as a template for the perception of the external world. PMID:24600421

  14. A brief history of partitions of numbers, partition functions and their modern applications

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2016-04-01

    'Number rules the universe.' The Pythagoras 'If you wish to forsee the future of mathematics our course is to study the history and present conditions of the science.' Henri Poincaré 'The primary source (Urqell) of all mathematics are integers.' Hermann Minkowski This paper is written to commemorate the centennial anniversary of the Mathematical Association of America. It deals with a short history of different kinds of natural numbers including triangular, square, pentagonal, hexagonal and k-gonal numbers, and their simple properties and their geometrical representations. Included are Euclid's and Pythagorean's main contributions to elementary number theory with the main contents of the Euclid Elements of the 13-volume masterpiece of mathematical work. This is followed by Euler's new discovery of the additive number theory based on partitions of numbers. Special attention is given to many examples, Euler's theorems on partitions of numbers with geometrical representations of Ferrers' graphs, Young's diagrams, Lagrange's four-square theorem and the celebrated Waring problem. Included are Euler's generating functions for the partitions of numbers, Euler's pentagonal number theorem, Gauss' triangular and square number theorems and the Jacobi triple product identity. Applications of the theory of partitions of numbers to different statistics such as the Bose- Einstein, Fermi- Dirac, Gentile, and Maxwell- Boltzmann statistics are briefly discussed. Special attention is given to pedagogical information through historical approach to number theory so that students and teachers at the school, college and university levels can become familiar with the basic concepts of partitions of numbers, partition functions and their modern applications, and can pursue advanced study and research in analytical and computational number theory.

  15. ODF Maxima Extraction in Spherical Harmonic Representation via Analytical Search Space Reduction

    PubMed Central

    Aganj, Iman; Lenglet, Christophe; Sapiro, Guillermo

    2015-01-01

    By revealing complex fiber structure through the orientation distribution function (ODF), q-ball imaging has recently become a popular reconstruction technique in diffusion-weighted MRI. In this paper, we propose an analytical dimension reduction approach to ODF maxima extraction. We show that by expressing the ODF, or any antipodally symmetric spherical function, in the common fourth order real and symmetric spherical harmonic basis, the maxima of the two-dimensional ODF lie on an analytically derived one-dimensional space, from which we can detect the ODF maxima. This method reduces the computational complexity of the maxima detection, without compromising the accuracy. We demonstrate the performance of our technique on both artificial and human brain data. PMID:20879302

  16. Inductive Reasoning about Causally Transmitted Properties

    ERIC Educational Resources Information Center

    Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D.; Tenenbaum, Joshua B.

    2008-01-01

    Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates'…

  17. Failure of Breit-Wigner and success of dispersive descriptions of the τ- → K-ηντ decays

    NASA Astrophysics Data System (ADS)

    Roig, Pablo

    2015-11-01

    The τ- → K-ηντ decays have been studied using Chiral Perturbation Theory extended by including resonances as active fields. We have found that the treatment of final state interactions is crucial to provide a good description of the data. The Breit-Wigner approximation does not resum them and neglects the real part of the corresponding chiral loop functions, which violates analyticity and leads to a failure in the confrontation with the data. On the contrary, its resummation by means of an Omnes-like exponentiation of through a dispersive representation provides a successful explanation of the measurements. These results illustrate the fact that Breit-Wigner parametrizations of hadronic data, although simple and easy to handle, lack a link with the underlying strong interaction theory and should be avoided. As a result of our analysis we determine the properties of the K* (1410) resonance with a precision competitive to its traditional extraction using τ- → (Kπ)-ντ decays, albeit the much limited statistics accumulated for the τ- → K-ηντ channel. We also predict the soon discovery of the τ- → K-η'ντ decays.

  18. Separation of musical instruments based on amplitude and frequency comodulation

    NASA Astrophysics Data System (ADS)

    Jacobson, Barry D.; Cauwenberghs, Gert; Quatieri, Thomas F.

    2002-05-01

    In previous work, amplitude comodulation was investigated as a basis for monaural source separation. Amplitude comodulation refers to similarities in amplitude envelopes of individual spectral components emitted by particular types of sources. In many types of musical instruments, amplitudes of all resonant modes rise/fall, and start/stop together during the course of normal playing. We found that under certain well-defined conditions, a mixture of constant frequency, amplitude comodulated sources can unambiguously be decomposed into its constituents on the basis of these similarities. In this work, system performance was improved by relaxing the constant frequency requirement. String instruments, for example, which are normally played with vibrato, are both amplitude and frequency comodulated sources, and could not be properly tracked under the constant frequency assumption upon which our original algorithm was based. Frequency comodulation refers to similarities in frequency variations of individual harmonics emitted by these types of sources. The analytical difficulty is in defining a representation of the source which properly tracks frequency varying components. A simple, fixed filter bank can only track an individual spectral component for the duration in which it is within the passband of one of the filters. Alternatives are therefore explored which are amenable to real-time implementation.

  19. Langevin Dynamics, Large Deviations and Instantons for the Quasi-Geostrophic Model and Two-Dimensional Euler Equations

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Laurie, Jason; Zaboronski, Oleg

    2014-09-01

    We investigate a class of simple models for Langevin dynamics of turbulent flows, including the one-layer quasi-geostrophic equation and the two-dimensional Euler equations. Starting from a path integral representation of the transition probability, we compute the most probable fluctuation paths from one attractor to any state within its basin of attraction. We prove that such fluctuation paths are the time reversed trajectories of the relaxation paths for a corresponding dual dynamics, which are also within the framework of quasi-geostrophic Langevin dynamics. Cases with or without detailed balance are studied. We discuss a specific example for which the stationary measure displays either a second order (continuous) or a first order (discontinuous) phase transition and a tricritical point. In situations where a first order phase transition is observed, the dynamics are bistable. Then, the transition paths between two coexisting attractors are instantons (fluctuation paths from an attractor to a saddle), which are related to the relaxation paths of the corresponding dual dynamics. For this example, we show how one can analytically determine the instantons and compute the transition probabilities for rare transitions between two attractors.

  20. Vector fields in a tight laser focus: comparison of models.

    PubMed

    Peatross, Justin; Berrondo, Manuel; Smith, Dallas; Ware, Michael

    2017-06-26

    We assess several widely used vector models of a Gaussian laser beam in the context of more accurate vector diffraction integration. For the analysis, we present a streamlined derivation of the vector fields of a uniformly polarized beam reflected from an ideal parabolic mirror, both inside and outside of the resulting focus. This exact solution to Maxwell's equations, first developed in 1920 by V. S. Ignatovsky, is highly relevant to high-intensity laser experiments since the boundary conditions at a focusing optic dictate the form of the focus in a manner analogous to a physical experiment. In contrast, many models simply assume a field profile near the focus and develop the surrounding vector fields consistent with Maxwell's equations. In comparing the Ignatovsky result with popular closed-form analytic vector models of a Gaussian beam, we find that the relatively simple model developed by Erikson and Singh in 1994 provides good agreement in the paraxial limit. Models involving a Lax expansion introduce a divergences outside of the focus while providing little if any improvement in the focal region. Extremely tight focusing produces a somewhat complicated structure in the focus, and requires the Ignatovsky model for accurate representation.

  1. Semiclassical approximations in the coherent-state representation

    NASA Technical Reports Server (NTRS)

    Kurchan, J.; Leboeuf, P.; Saraceno, M.

    1989-01-01

    The semiclassical limit of the stationary Schroedinger equation in the coherent-state representation is analyzed simultaneously for the groups W1, SU(2), and SU(1,1). A simple expression for the first two orders for the wave function and the associated semiclassical quantization rule is obtained if a definite choice for the classical Hamiltonian and expansion parameter is made. The behavior of the modulus of the wave function, which is a distribution function in a curved phase space, is studied for the three groups. The results are applied to the quantum triaxial rotor.

  2. Analytical approximation for the Einstein-dilaton-Gauss-Bonnet black hole metric

    NASA Astrophysics Data System (ADS)

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2017-09-01

    We construct an analytical approximation for the numerical black hole metric of P. Kanti et al. [Phys. Rev. D 54, 5049 (1996), 10.1103/PhysRevD.54.5049] in the four-dimensional Einstein-dilaton-Gauss-Bonnet (EdGB) theory. The continued fraction expansion in terms of a compactified radial coordinate, used here, converges slowly when the dilaton coupling approaches its extremal values, but for a black hole far from the extremal state, the analytical formula has a maximal relative error of a fraction of one percent already within the third order of the continued fraction expansion. The suggested analytical representation of the numerical black hole metric is relatively compact and a good approximation in the whole space outside the black hole event horizon. Therefore, it can serve in the same way as an exact solution when analyzing particles' motion, perturbations, quasinormal modes, Hawking radiation, accreting disks, and many other problems in the vicinity of a black hole. In addition, we construct the approximate analytical expression for the dilaton field.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaurov, Alexander A., E-mail: kaurov@uchicago.edu

    The methods for studying the epoch of cosmic reionization vary from full radiative transfer simulations to purely analytical models. While numerical approaches are computationally expensive and are not suitable for generating many mock catalogs, analytical methods are based on assumptions and approximations. We explore the interconnection between both methods. First, we ask how the analytical framework of excursion set formalism can be used for statistical analysis of numerical simulations and visual representation of the morphology of ionization fronts. Second, we explore the methods of training the analytical model on a given numerical simulation. We present a new code which emergedmore » from this study. Its main application is to match the analytical model with a numerical simulation. Then, it allows one to generate mock reionization catalogs with volumes exceeding the original simulation quickly and computationally inexpensively, meanwhile reproducing large-scale statistical properties. These mock catalogs are particularly useful for cosmic microwave background polarization and 21 cm experiments, where large volumes are required to simulate the observed signal.« less

  4. A Simple Analytic Model for Estimating Mars Ascent Vehicle Mass and Performance

    NASA Technical Reports Server (NTRS)

    Woolley, Ryan C.

    2014-01-01

    The Mars Ascent Vehicle (MAV) is a crucial component in any sample return campaign. In this paper we present a universal model for a two-stage MAV along with the analytic equations and simple parametric relationships necessary to quickly estimate MAV mass and performance. Ascent trajectories can be modeled as two-burn transfers from the surface with appropriate loss estimations for finite burns, steering, and drag. Minimizing lift-off mass is achieved by balancing optimized staging and an optimized path-to-orbit. This model allows designers to quickly find optimized solutions and to see the effects of design choices.

  5. Nonlinear Computerized Methodology. A. Angle of Arrival Estimation. B. Data Modeling and Identification

    DTIC Science & Technology

    1991-06-10

    essentially In the Wianer- Ville distribution ( WVD ). A preliminary analysis indicates that the simple operation of autoconvolution can enhance spectral...many troublesome cases as a supplement to MUSIC (and its adaptations) and as a simple alternative (or representation of) the Wigner - Ville ... WVD is a time-frequency distribution which provides an unbiased spectrum estimate by W(t,W) = f H,(u) X (t - u/2) X (t + u/2) e -iwu du , where the

  6. Cross-scale morphology

    USGS Publications Warehouse

    Allen, Craig R.; Holling, Crawford S.; Garmestani, Ahjond S.; El-Shaarawi, Abdel H.; Piegorsch, Walter W.

    2013-01-01

    The scaling of physical, biological, ecological and social phenomena is a major focus of efforts to develop simple representations of complex systems. Much of the attention has been on discovering universal scaling laws that emerge from simple physical and geometric processes. However, there are regular patterns of departures both from those scaling laws and from continuous distributions of attributes of systems. Those departures often demonstrate the development of self-organized interactions between living systems and physical processes over narrower ranges of scale.

  7. Rolling element bearings diagnostics using the Symbolic Aggregate approXimation

    NASA Astrophysics Data System (ADS)

    Georgoulas, George; Karvelis, Petros; Loutas, Theodoros; Stylios, Chrysostomos D.

    2015-08-01

    Rolling element bearings are a very critical component in various engineering assets. Therefore it is of paramount importance the detection of possible faults, especially at an early stage, that may lead to unexpected interruptions of the production or worse, to severe accidents. This research work introduces a novel, in the field of bearing fault detection, method for the extraction of diagnostic representations of vibration recordings using the Symbolic Aggregate approXimation (SAX) framework and the related intelligent icons representation. SAX essentially transforms the original real valued time-series into a discrete one, which is then represented by a simple histogram form summarizing the occurrence of the chosen symbols/words. Vibration signals from healthy bearings and bearings with three different fault locations and with three different severity levels, as well as loading conditions, are analyzed. Considering the diagnostic problem as a classification one, the analyzed vibration signals and the resulting feature vectors feed simple classifiers achieving remarkably high classification accuracies. Moreover a sliding window scheme combined with a simple majority voting filter further increases the reliability and robustness of the diagnostic method. The results encourage the potential use of the proposed methodology for the diagnosis of bearing faults.

  8. bioWeb3D: an online webGL 3D data visualisation tool.

    PubMed

    Pettit, Jean-Baptiste; Marioni, John C

    2013-06-07

    Data visualization is critical for interpreting biological data. However, in practice it can prove to be a bottleneck for non trained researchers; this is especially true for three dimensional (3D) data representation. Whilst existing software can provide all necessary functionalities to represent and manipulate biological 3D datasets, very few are easily accessible (browser based), cross platform and accessible to non-expert users. An online HTML5/WebGL based 3D visualisation tool has been developed to allow biologists to quickly and easily view interactive and customizable three dimensional representations of their data along with multiple layers of information. Using the WebGL library Three.js written in Javascript, bioWeb3D allows the simultaneous visualisation of multiple large datasets inputted via a simple JSON, XML or CSV file, which can be read and analysed locally thanks to HTML5 capabilities. Using basic 3D representation techniques in a technologically innovative context, we provide a program that is not intended to compete with professional 3D representation software, but that instead enables a quick and intuitive representation of reasonably large 3D datasets.

  9. Cognitive, perceptual and action-oriented representations of falling objects.

    PubMed

    Zago, Myrka; Lacquaniti, Francesco

    2005-01-01

    We interact daily with moving objects. How accurate are our predictions about objects' motions? What sources of information do we use? These questions have received wide attention from a variety of different viewpoints. On one end of the spectrum are the ecological approaches assuming that all the information about the visual environment is present in the optic array, with no need to postulate conscious or unconscious representations. On the other end of the spectrum are the constructivist approaches assuming that a more or less accurate representation of the external world is built in the brain using explicit or implicit knowledge or memory besides sensory inputs. Representations can be related to naive physics or to context cue-heuristics or to the construction of internal copies of environmental invariants. We address the issue of prediction of objects' fall at different levels. Cognitive understanding and perceptual judgment of simple Newtonian dynamics can be surprisingly inaccurate. By contrast, motor interactions with falling objects are often very accurate. We argue that the pragmatic action-oriented behaviour and the perception-oriented behaviour may use different modes of operation and different levels of representation.

  10. Where do we store the memory representations that guide attention?

    PubMed Central

    Woodman, Geoffrey F.; Carlisle, Nancy B.; Reinhart, Robert M. G.

    2013-01-01

    During the last decade one of the most contentious and heavily studied topics in the attention literature has been the role that working memory representations play in controlling perceptual selection. The hypothesis has been advanced that to have attention select a certain perceptual input from the environment, we only need to represent that item in working memory. Here we summarize the work indicating that the relationship between what representations are maintained in working memory and what perceptual inputs are selected is not so simple. First, it appears that attentional selection is also determined by high-level task goals that mediate the relationship between working memory storage and attentional selection. Second, much of the recent work from our laboratory has focused on the role of long-term memory in controlling attentional selection. We review recent evidence supporting the proposal that working memory representations are critical during the initial configuration of attentional control settings, but that after those settings are established long-term memory representations play an important role in controlling which perceptual inputs are selected by mechanisms of attention. PMID:23444390

  11. A group matrix representation relevant to scales of measurement of clinical disease states via stratified vectors.

    PubMed

    Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun

    2016-02-09

    Previously, we applied basic group theory and related concepts to scales of measurement of clinical disease states and clinical findings (including laboratory data). To gain a more concrete comprehension, we here apply the concept of matrix representation, which was not explicitly exploited in our previous work. Starting with a set of orthonormal vectors, called the basis, an operator Rj (an N-tuple patient disease state at the j-th session) was expressed as a set of stratified vectors representing plural operations on individual components, so as to satisfy the group matrix representation. The stratified vectors containing individual unit operations were combined into one-dimensional square matrices [Rj]s. The [Rj]s meet the matrix representation of a group (ring) as a K-algebra. Using the same-sized matrix of stratified vectors, we can also express changes in the plural set of [Rj]s. The method is demonstrated on simple examples. Despite the incompleteness of our model, the group matrix representation of stratified vectors offers a formal mathematical approach to clinical medicine, aligning it with other branches of natural science.

  12. Web-based Visual Analytics for Extreme Scale Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A; Evans, Katherine J; Harney, John F

    In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less

  13. Representation of limb kinematics in Purkinje cell simple spike discharge is conserved across multiple tasks

    PubMed Central

    Hewitt, Angela L.; Popa, Laurentiu S.; Pasalar, Siavash; Hendrix, Claudia M.

    2011-01-01

    Encoding of movement kinematics in Purkinje cell simple spike discharge has important implications for hypotheses of cerebellar cortical function. Several outstanding questions remain regarding representation of these kinematic signals. It is uncertain whether kinematic encoding occurs in unpredictable, feedback-dependent tasks or kinematic signals are conserved across tasks. Additionally, there is a need to understand the signals encoded in the instantaneous discharge of single cells without averaging across trials or time. To address these questions, this study recorded Purkinje cell firing in monkeys trained to perform a manual random tracking task in addition to circular tracking and center-out reach. Random tracking provides for extensive coverage of kinematic workspaces. Direction and speed errors are significantly greater during random than circular tracking. Cross-correlation analyses comparing hand and target velocity profiles show that hand velocity lags target velocity during random tracking. Correlations between simple spike firing from 120 Purkinje cells and hand position, velocity, and speed were evaluated with linear regression models including a time constant, τ, as a measure of the firing lead/lag relative to the kinematic parameters. Across the population, velocity accounts for the majority of simple spike firing variability (63 ± 30% of Radj2), followed by position (28 ± 24% of Radj2) and speed (11 ± 19% of Radj2). Simple spike firing often leads hand kinematics. Comparison of regression models based on averaged vs. nonaveraged firing and kinematics reveals lower Radj2 values for nonaveraged data; however, regression coefficients and τ values are highly similar. Finally, for most cells, model coefficients generated from random tracking accurately estimate simple spike firing in either circular tracking or center-out reach. These findings imply that the cerebellum controls movement kinematics, consistent with a forward internal model that predicts upcoming limb kinematics. PMID:21795616

  14. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes

    USGS Publications Warehouse

    Winslow, Luke A.; Read, Jordan S.; Hanson, Paul C.; Stanley, Emily H.

    2014-01-01

    With lake abundances in the thousands to millions, creating an intuitive understanding of the distribution of morphology and processes in lakes is challenging. To improve researchers’ understanding of large-scale lake processes, we developed a parsimonious mathematical model based on the Pareto distribution to describe the distribution of lake morphology (area, perimeter and volume). While debate continues over which mathematical representation best fits any one distribution of lake morphometric characteristics, we recognize the need for a simple, flexible model to advance understanding of how the interaction between morphometry and function dictates scaling across large populations of lakes. These models make clear the relative contribution of lakes to the total amount of lake surface area, volume, and perimeter. They also highlight the critical thresholds at which total perimeter, area and volume would be evenly distributed across lake size-classes have Pareto slopes of 0.63, 1 and 1.12, respectively. These models of morphology can be used in combination with models of process to create overarching “lake population” level models of process. To illustrate this potential, we combine the model of surface area distribution with a model of carbon mass accumulation rate. We found that even if smaller lakes contribute relatively less to total surface area than larger lakes, the increasing carbon accumulation rate with decreasing lake size is strong enough to bias the distribution of carbon mass accumulation towards smaller lakes. This analytical framework provides a relatively simple approach to upscaling morphology and process that is easily generalizable to other ecosystem processes.

  15. Full-Field Stress Determination Around Circular Discontinuity in a Tensile-Loaded Plate using x-displacements Only

    NASA Astrophysics Data System (ADS)

    Baek, Tae Hyun; Chung, Tae Jin; Panganiban, Henry

    The significant effects of stress raisers demand well-defined evaluation techniques to accurately determine the stress along the geometric boundary. A simple and accurate method for the determination of stress concentration around circular geometric discontinuity in a tensile-loaded plate is illustrated. The method is based on the least-squares technique, mapping functions, and a complex power series representation (Laurent series) of the stress functions for the calculation of tangential stress around the hole. Traction-free conditions were satisfied at the geometric discontinuity using conformal mapping and analytic continuation. In this study, we use only a relatively small amount of x-component displacement data of points away from the discontinuity of concern with their respective coordinates. Having this information we can easily obtain full-field stresses at the edge of the geometric discontinuity. Excellent results were obtained when the number of terms of the power series expansions, m=1. The maximum stress concentration calculation results using the present method and FEM using ANSYS agree well by less than one per cent difference. Experimental advantage of the method underscores the use of relatively small amount of data which are conveniently determined being away from the edge. Moreover, the small amount of measured input data needed affords the approach suitable for applications such as the multi-parameter concept used to obtain stress intensity factors from measured data. The use of laser speckle interferometry and moiré interferometry are also potential future related fields since the optical system for one-directional measurement is much simple.

  16. On the analytical form of the Earth's magnetic attraction expressed as a function of time

    NASA Technical Reports Server (NTRS)

    Carlheim-Gyllenskold, V.

    1983-01-01

    An attempt is made to express the Earth's magnetic attraction in simple analytical form using observations during the 16th to 19th centuries. Observations of the magnetic inclination in the 16th and 17th centuries are discussed.

  17. Formal Provenance Representation of the Data and Information Supporting the National Climate Assessment

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2014-01-01

    The Global Change Information System (GCIS) provides a framework for the formal representation of structured metadata about data and information about global change. The pilot deployment of the system supports the National Climate Assessment (NCA), a major report of the U.S. Global Change Research Program (USGCRP). A consumer of that report can use the system to browse and explore that supporting information. Additionally, capturing that information into a structured data model and presenting it in standard formats through well defined open inter- faces, including query interfaces suitable for data mining and linking with other databases, the information becomes valuable for other analytic uses as well.

  18. Spherical and hyperspherical harmonics representation of van der Waals aggregates

    NASA Astrophysics Data System (ADS)

    Lombardi, Andrea; Palazzetti, Federico; Aquilanti, Vincenzo; Grossi, Gaia; Albernaz, Alessandra F.; Barreto, Patricia R. P.; Cruz, Ana Claudia P. S.

    2016-12-01

    The representation of the potential energy surfaces of atom-molecule or molecular dimers interactions should account faithfully for the symmetry properties of the systems, preserving at the same time a compact analytical form. To this aim, the choice of a proper set of coordinates is a necessary precondition. Here we illustrate a description in terms of hyperspherical coordinates and the expansion of the intermolecular interaction energy in terms of hypersherical harmonics, as a general method for building potential energy surfaces suitable for molecular dynamics simulations of van der Waals aggregates. Examples for the prototypical case diatomic-molecule-diatomic-molecule interactions are shown.

  19. The quark condensate in multi-flavour QCD – planar equivalence confronting lattice simulations

    DOE PAGES

    Armoni, Adi; Shifman, Mikhail; Shore, Graham; ...

    2015-02-01

    Planar equivalence between the large N limits of N=1 Super Yang–Mills (SYM) theory and a variant of QCD with fermions in the antisymmetric representation is a powerful tool to obtain analytic non-perturbative results in QCD itself. In particular, it allows the quark condensate for N=3 QCD with quarks in the fundamental representation to be inferred from exact calculations of the gluino condensate in N=1 SYM. In this paper, we review and refine our earlier predictions for the quark condensate in QCD with a general number nf of flavours and confront these with lattice results.

  20. Visual representation of scientific information.

    PubMed

    Wong, Bang

    2011-02-15

    Great technological advances have enabled researchers to generate an enormous amount of data. Data analysis is replacing data generation as the rate-limiting step in scientific research. With this wealth of information, we have an opportunity to understand the molecular causes of human diseases. However, the unprecedented scale, resolution, and variety of data pose new analytical challenges. Visual representation of data offers insights that can lead to new understanding, whether the purpose is analysis or communication. This presentation shows how art, design, and traditional illustration can enable scientific discovery. Examples will be drawn from the Broad Institute's Data Visualization Initiative, aimed at establishing processes for creating informative visualization models.

  1. Unitary cocycle representations of the Galilean line group: Quantum mechanical principle of equivalence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGregor, B.R.; McCoy, A.E.; Wickramasekara, S., E-mail: wickrama@grinnell.edu

    2012-09-15

    We present a formalism of Galilean quantum mechanics in non-inertial reference frames and discuss its implications for the equivalence principle. This extension of quantum mechanics rests on the Galilean line group, the semidirect product of the real line and the group of analytic functions from the real line to the Euclidean group in three dimensions. This group provides transformations between all inertial and non-inertial reference frames and contains the Galilei group as a subgroup. We construct a certain class of unitary representations of the Galilean line group and show that these representations determine the structure of quantum mechanics in non-inertialmore » reference frames. Our representations of the Galilean line group contain the usual unitary projective representations of the Galilei group, but have a more intricate cocycle structure. The transformation formula for the Hamiltonian under the Galilean line group shows that in a non-inertial reference frame it acquires a fictitious potential energy term that is proportional to the inertial mass, suggesting the equivalence of inertial mass and gravitational mass in quantum mechanics. - Highlights: Black-Right-Pointing-Pointer A formulation of Galilean quantum mechanics in non-inertial reference frames is given. Black-Right-Pointing-Pointer The key concept is the Galilean line group, an infinite dimensional group. Black-Right-Pointing-Pointer Unitary, cocycle representations of the Galilean line group are constructed. Black-Right-Pointing-Pointer A non-central extension of the group underlies these representations. Black-Right-Pointing-Pointer Quantum equivalence principle and gravity emerge from these representations.« less

  2. Single Particle-Inductively Coupled Plasma Mass Spectroscopy Analysis of Metallic Nanoparticles in Environmental Samples with Large Dissolved Analyte Fractions.

    PubMed

    Schwertfeger, D M; Velicogna, Jessica R; Jesmer, Alexander H; Scroggins, Richard P; Princz, Juliska I

    2016-10-18

    There is an increasing interest to use single particle-inductively coupled plasma mass spectroscopy (SP-ICPMS) to help quantify exposure to engineered nanoparticles, and their transformation products, released into the environment. Hindering the use of this analytical technique for environmental samples is the presence of high levels of dissolved analyte which impedes resolution of the particle signal from the dissolved. While sample dilution is often necessary to achieve the low analyte concentrations necessary for SP-ICPMS analysis, and to reduce the occurrence of matrix effects on the analyte signal, it is used here to also reduce the dissolved signal relative to the particulate, while maintaining a matrix chemistry that promotes particle stability. We propose a simple, systematic dilution series approach where by the first dilution is used to quantify the dissolved analyte, the second is used to optimize the particle signal, and the third is used as an analytical quality control. Using simple suspensions of well characterized Au and Ag nanoparticles spiked with the dissolved analyte form, as well as suspensions of complex environmental media (i.e., extracts from soils previously contaminated with engineered silver nanoparticles), we show how this dilution series technique improves resolution of the particle signal which in turn improves the accuracy of particle counts, quantification of particulate mass and determination of particle size. The technique proposed here is meant to offer a systematic and reproducible approach to the SP-ICPMS analysis of environmental samples and improve the quality and consistency of data generated from this relatively new analytical tool.

  3. Weak task-related modulation and stimulus representations during arithmetic problem solving in children with developmental dyscalculia

    PubMed Central

    Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Tenison, Caitlin; Menon, Vinod

    2015-01-01

    Developmental dyscalculia (DD) is a disability that impacts math learning and skill acquisition in school-age children. Here we investigate arithmetic problem solving deficits in young children with DD using univariate and multivariate analysis of fMRI data. During fMRI scanning, 17 children with DD (ages 7–9, grades 2 and 3) and 17 IQ- and reading ability-matched typically developing (TD) children performed complex and simple addition problems which differed only in arithmetic complexity. While the TD group showed strong modulation of brain responses with increasing arithmetic complexity, children with DD failed to show such modulation. Children with DD showed significantly reduced activation compared to TD children in the intraparietal sulcus, superior parietal lobule, supramarginal gyrus and bilateral dorsolateral prefrontal cortex in relation to arithmetic complexity. Critically, multivariate representational similarity revealed that brain response patterns to complex and simple problems were less differentiated in the DD group in bilateral anterior IPS, independent of overall differences in signal level. Taken together, these results show that children with DD not only under-activate key brain regions implicated in mathematical cognition, but they also fail to generate distinct neural responses and representations for different arithmetic problems. Our findings provide novel insights into the neural basis of DD. PMID:22682904

  4. Weak task-related modulation and stimulus representations during arithmetic problem solving in children with developmental dyscalculia.

    PubMed

    Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Tenison, Caitlin; Menon, Vinod

    2012-02-15

    Developmental dyscalculia (DD) is a disability that impacts math learning and skill acquisition in school-age children. Here we investigate arithmetic problem solving deficits in young children with DD using univariate and multivariate analysis of fMRI data. During fMRI scanning, 17 children with DD (ages 7-9, grades 2 and 3) and 17 IQ- and reading ability-matched typically developing (TD) children performed complex and simple addition problems which differed only in arithmetic complexity. While the TD group showed strong modulation of brain responses with increasing arithmetic complexity, children with DD failed to show such modulation. Children with DD showed significantly reduced activation compared to TD children in the intraparietal sulcus, superior parietal lobule, supramarginal gyrus and bilateral dorsolateral prefrontal cortex in relation to arithmetic complexity. Critically, multivariate representational similarity revealed that brain response patterns to complex and simple problems were less differentiated in the DD group in bilateral anterior IPS, independent of overall differences in signal level. Taken together, these results show that children with DD not only under-activate key brain regions implicated in mathematical cognition, but they also fail to generate distinct neural responses and representations for different arithmetic problems. Our findings provide novel insights into the neural basis of DD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. DIFFERENTIATION OF AURANTII FRUCTUS IMMATURUS AND FRUCTUS PONICIRI TRIFOLIATAE IMMATURUS BY FLOW-INJECTION WITH ULTRAVIOLET SPECTROSCOPIC DETECTION AND PROTON NUCLEAR MAGNETIC RESONANCE USING PARTIAL LEAST-SQUARES DISCRIMINANT ANALYSIS.

    PubMed

    Zhang, Mengliang; Zhao, Yang; Harrington, Peter de B; Chen, Pei

    2016-03-01

    Two simple fingerprinting methods, flow-injection coupled to ultraviolet spectroscopy and proton nuclear magnetic resonance, were used for discriminating between Aurantii fructus immaturus and Fructus poniciri trifoliatae immaturus . Both methods were combined with partial least-squares discriminant analysis. In the flow-injection method, four data representations were evaluated: total ultraviolet absorbance chromatograms, averaged ultraviolet spectra, absorbance at 193, 205, 225, and 283 nm, and absorbance at 225 and 283 nm. Prediction rates of 100% were achieved for all data representations by partial least-squares discriminant analysis using leave-one-sample-out cross-validation. The prediction rate for the proton nuclear magnetic resonance data by partial least-squares discriminant analysis with leave-one-sample-out cross-validation was also 100%. A new validation set of data was collected by flow-injection with ultraviolet spectroscopic detection two weeks later and predicted by partial least-squares discriminant analysis models constructed by the initial data representations with no parameter changes. The classification rates were 95% with the total ultraviolet absorbance chromatograms datasets and 100% with the other three datasets. Flow-injection with ultraviolet detection and proton nuclear magnetic resonance are simple, high throughput, and low-cost methods for discrimination studies.

  6. Reopening the dialogue between the theory of social representations and discursive psychology for examining the construction and transformation of meaning in discourse and communication.

    PubMed

    Batel, Susana; Castro, Paula

    2018-06-28

    The theory of social representations (TSR) and discursive psychology (DP) originated as different social psychological approaches and have at times been presented as incompatible. However, along the years convergence has also been acknowledged, and, lately, most of all, practised. With this paper, we discuss how versions of TSR focusing on self-other relations for examining cultural meaning systems in/through communication, and versions of DP focusing on discourse at cultural, ideological, and interactional levels, can come together. The goal is to help forge a stronger social-psychological exploration of how meaning is constructed and transformed in and through language, discourse, and communication, thus extending current understanding of social change. After presenting a theoretical proposal for integrating those versions of TSR and DP, we offer also an integrated analytical strategy. We suggest that together these proposals can, on one hand, help TSR systematize analyses of social change that are both more critical and better grounded in theorizations of language use, and, on the other, provide DP with analytical tools able to better examine both the relational contexts where the construction and transformation of meaning are performed and their effects on discourse. Finally, we give some illustrations of the use of this analytical strategy. © 2018 The British Psychological Society.

  7. Use of evidence in a categorization task: analytic and holistic processing modes.

    PubMed

    Greco, Alberto; Moretti, Stefania

    2017-11-01

    Category learning performance can be influenced by many contextual factors, but the effects of these factors are not the same for all learners. The present study suggests that these differences can be due to the different ways evidence is used, according to two main basic modalities of processing information, analytically or holistically. In order to test the impact of the information provided, an inductive rule-based task was designed, in which feature salience and comparison informativeness between examples of two categories were manipulated during the learning phases, by introducing and progressively reducing some perceptual biases. To gather data on processing modalities, we devised the Active Feature Composition task, a production task that does not require classifying new items but reproducing them by combining features. At the end, an explicit rating task was performed, which entailed assessing the accuracy of a set of possible categorization rules. A combined analysis of the data collected with these two different tests enabled profiling participants in regard to the kind of processing modality, the structure of representations and the quality of categorial judgments. Results showed that despite the fact that the information provided was the same for all participants, those who adopted analytic processing better exploited evidence and performed more accurately, whereas with holistic processing categorization is perfectly possible but inaccurate. Finally, the cognitive implications of the proposed procedure, with regard to involved processes and representations, are discussed.

  8. Empowerment of Female Students for Participation in the Representative Councils in Jordanian Universities

    ERIC Educational Resources Information Center

    Saleh, Al-Jufout; Ziad, Abu-Hamatteh; Lama, Al-Qaisy

    2008-01-01

    The current article presents an analytical study of female students' participation in the representative councils in various Jordanian Universities. The data-base applied in the present investigation has indicated a clear weak representation of female students in general. The possible reasons, behind this weakness, have been tracked using a…

  9. Frequency method for determining the parameters of the electromagnetic brakes and slip-type couplings with solid magnetic circuits

    NASA Technical Reports Server (NTRS)

    Guseynov, F. G.; Abbasova, E. M.

    1977-01-01

    The equivalent representation of brakes and coupling by lumped circuits is investigated. Analytical equations are derived for relating the indices of the transients to the parameters of the equivalent circuits for arbitrary rotor speed. A computer algorithm is given for the calculations.

  10. The Effects of Measurement Error on Statistical Models for Analyzing Change. Final Report.

    ERIC Educational Resources Information Center

    Dunivant, Noel

    The results of six major projects are discussed including a comprehensive mathematical and statistical analysis of the problems caused by errors of measurement in linear models for assessing change. In a general matrix representation of the problem, several new analytic results are proved concerning the parameters which affect bias in…

  11. Application of Andrew's Plots to Visualization of Multidimensional Data

    ERIC Educational Resources Information Center

    Grinshpun, Vadim

    2016-01-01

    Importance: The article raises a point of visual representation of big data, recently considered to be demanded for many scientific and real-life applications, and analyzes particulars for visualization of multi-dimensional data, giving examples of the visual analytics-related problems. Objectives: The purpose of this paper is to study application…

  12. The Application of Morpho-Syntactic Language Processing to Effective Phrase Matching.

    ERIC Educational Resources Information Center

    Sheridan, Paraic; Smeaton, Alan F.

    1992-01-01

    Describes a process of morpho-syntactic language analysis for information retrieval. Tree Structured Analytics (TSA) used for text representation is summarized; the matching process developed for such structures is outlined with an example appended; and experiments carried out to evaluate the effectiveness of TSA matching are discussed. (26…

  13. Deriving the exact nonadiabatic quantum propagator in the mapping variable representation.

    PubMed

    Hele, Timothy J H; Ananth, Nandini

    2016-12-22

    We derive an exact quantum propagator for nonadiabatic dynamics in multi-state systems using the mapping variable representation, where classical-like Cartesian variables are used to represent both continuous nuclear degrees of freedom and discrete electronic states. The resulting Liouvillian is a Moyal series that, when suitably approximated, can allow for the use of classical dynamics to efficiently model large systems. We demonstrate that different truncations of the exact Liouvillian lead to existing approximate semiclassical and mixed quantum-classical methods and we derive an associated error term for each method. Furthermore, by combining the imaginary-time path-integral representation of the Boltzmann operator with the exact Liouvillian, we obtain an analytic expression for thermal quantum real-time correlation functions. These results provide a rigorous theoretical foundation for the development of accurate and efficient classical-like dynamics to compute observables such as electron transfer reaction rates in complex quantized systems.

  14. Distributed representations in memory: Insights from functional brain imaging

    PubMed Central

    Rissman, Jesse; Wagner, Anthony D.

    2015-01-01

    Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly leveraged powerful analytical tools (e.g., multi-voxel pattern analysis) to decode the information represented within distributed fMRI activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content, and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses. PMID:21943171

  15. Phonon scattering in nanoscale systems: lowest order expansion of the current and power expressions

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2006-04-01

    We use the non-equilibrium Green's function method to describe the effects of phonon scattering on the conductance of nano-scale devices. Useful and accurate approximations are developed that both provide (i) computationally simple formulas for large systems and (ii) simple analytical models. In addition, the simple models can be used to fit experimental data and provide physical parameters.

  16. Comments on higher rank Wilson loops in N = 2∗

    NASA Astrophysics Data System (ADS)

    Liu, James T.; Zayas, Leopoldo A. Pando; Zhou, Shan

    2018-01-01

    For N = 2∗ theory with U( N ) gauge group we evaluate expectation values of Wilson loops in representations described by a rectangular Young tableau with n rows and k columns. The evaluation reduces to a two-matrix model and we explain, using a combination of numerical and analytical techniques, the general properties of the eigen-value distributions in various regimes of parameters ( N, λ , n, k) where λ is the 't Hooft coupling. In the large N limit we present analytic results for the leading and sub-leading contributions. In the particular cases of only one row or one column we reproduce previously known results for the totally symmetry and totally antisymmetric representations. We also extensively discusss the N = 4 limit of the N = 2∗ theory. While establishing these connections we clarify aspects of various orders of limits and how to relax them; we also find it useful to explicitly address details of the genus expansion. As a result, for the totally symmetric Wilson loop we find new contributions that improve the comparison with the dual holographic computation at one loop order in the appropriate regime.

  17. Keeping It Simple: Can We Estimate Malting Quality Potential Using an Isothermal Mashing Protocol and Common Laboratory Instrumentation?

    USDA-ARS?s Scientific Manuscript database

    Current methods for generating malting quality metrics have been developed largely to support commercial malting and brewing operations, providing accurate, reproducible analytical data to guide malting and brewing production. Infrastructure to support these analytical operations often involves sub...

  18. Analytical evaluation of current starch methods used in the international sugar industry: Part I

    USDA-ARS?s Scientific Manuscript database

    Several analytical starch methods currently exist in the international sugar industry that are used to prevent or mitigate starch-related processing challenges as well as assess the quality of traded end-products. These methods use simple iodometric chemistry, mostly potato starch standards, and uti...

  19. Chemically differentiating ascorbate-mediated dissolution of quantum dots in cell culture media

    NASA Astrophysics Data System (ADS)

    Su, Cheng-Kuan; Sun, Yuh-Chang

    2013-02-01

    To investigate the dynamic dissolution of quantum dots (QDs) in cell culture media, in this study we constructed an online automatic analytical system comprising a sequential in-tube solid phase extraction (SPE) device and an inductively coupled plasma (ICP) mass spectrometer. By means of selectively extracting QDs and cadmium ions (Cd2+) onto the interior surface of the polytetrafluoroethylene (PTFE) tube, this novel SPE device could be used to determine the degree of QD dissolution through a simple adjustment of sample acidity. To the best of our knowledge, this study is the first to exploit PTFE tubing as a selective SPE adsorbent for the online chemical differentiation of QDs and Cd2+ ions with the goal of monitoring the phenomenon of QD dissolution in complicated biological matrices. We confirmed the analytical reliability of this system through comparison of the measured Cd-to-QD ratios to the expected values. When analyzing QDs and Cd2+ ions at picomolar levels, a temporal resolution of 8 min was required to load sufficient amounts of the analytes to meet the sensitivity requirements of the ICP mass spectrometer. To demonstrate the practicability of this developed method, we measured the dynamic variations in the Cd-to-QD705 ratio in the presence of ascorbate as a physiological stimulant to generate reactive oxygen species in cell culture media and trigger the dissolution of QDs; our results suggest that the ascorbate-induced QD dissolution was dependent on the time, treatment concentration, and nature of the biomolecule.To investigate the dynamic dissolution of quantum dots (QDs) in cell culture media, in this study we constructed an online automatic analytical system comprising a sequential in-tube solid phase extraction (SPE) device and an inductively coupled plasma (ICP) mass spectrometer. By means of selectively extracting QDs and cadmium ions (Cd2+) onto the interior surface of the polytetrafluoroethylene (PTFE) tube, this novel SPE device could be used to determine the degree of QD dissolution through a simple adjustment of sample acidity. To the best of our knowledge, this study is the first to exploit PTFE tubing as a selective SPE adsorbent for the online chemical differentiation of QDs and Cd2+ ions with the goal of monitoring the phenomenon of QD dissolution in complicated biological matrices. We confirmed the analytical reliability of this system through comparison of the measured Cd-to-QD ratios to the expected values. When analyzing QDs and Cd2+ ions at picomolar levels, a temporal resolution of 8 min was required to load sufficient amounts of the analytes to meet the sensitivity requirements of the ICP mass spectrometer. To demonstrate the practicability of this developed method, we measured the dynamic variations in the Cd-to-QD705 ratio in the presence of ascorbate as a physiological stimulant to generate reactive oxygen species in cell culture media and trigger the dissolution of QDs; our results suggest that the ascorbate-induced QD dissolution was dependent on the time, treatment concentration, and nature of the biomolecule. Electronic supplementary information (ESI) available: The operation sequence, optimized parameters, instrumental operation conditions, and schematic representations for the proposed sequential in-tube PTFE SPE-ICP-MS hyphenated system are provided. See DOI: 10.1039/c2nr33365a

  20. MOAB : a mesh-oriented database.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tautges, Timothy James; Ernst, Corey; Stimpson, Clint

    A finite element mesh is used to decompose a continuous domain into a discretized representation. The finite element method solves PDEs on this mesh by modeling complex functions as a set of simple basis functions with coefficients at mesh vertices and prescribed continuity between elements. The mesh is one of the fundamental types of data linking the various tools in the FEA process (mesh generation, analysis, visualization, etc.). Thus, the representation of mesh data and operations on those data play a very important role in FEA-based simulations. MOAB is a component for representing and evaluating mesh data. MOAB can storemore » structured and unstructured mesh, consisting of elements in the finite element 'zoo'. The functional interface to MOAB is simple yet powerful, allowing the representation of many types of metadata commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on access to mesh in chunks rather than through individual entities, while also versatile enough to support individual entity access. The MOAB data model consists of a mesh interface instance, mesh entities (vertices and elements), sets, and tags. Entities are addressed through handles rather than pointers, to allow the underlying representation of an entity to change without changing the handle to that entity. Sets are arbitrary groupings of mesh entities and other sets. Sets also support parent/child relationships as a relation distinct from sets containing other sets. The directed-graph provided by set parent/child relationships is useful for modeling topological relations from a geometric model or other metadata. Tags are named data which can be assigned to the mesh as a whole, individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets are a mechanism for describing relations between entities; the combination of these two mechanisms is a powerful yet simple interface for representing metadata or application-specific data. For example, sets and tags can be used together to describe geometric topology, boundary condition, and inter-processor interface groupings in a mesh. MOAB is used in several ways in various applications. MOAB serves as the underlying mesh data representation in the VERDE mesh verification code. MOAB can also be used as a mesh input mechanism, using mesh readers included with MOAB, or as a translator between mesh formats, using readers and writers included with MOAB. The remainder of this report is organized as follows. Section 2, 'Getting Started', provides a few simple examples of using MOAB to perform simple tasks on a mesh. Section 3 discusses the MOAB data model in more detail, including some aspects of the implementation. Section 4 summarizes the MOAB function API. Section 5 describes some of the tools included with MOAB, and the implementation of mesh readers/writers for MOAB. Section 6 contains a brief description of MOAB's relation to the TSTT mesh interface. Section 7 gives a conclusion and future plans for MOAB development. Section 8 gives references cited in this report. A reference description of the full MOAB API is contained in Section 9.« less

  1. A reduced complexity highly power/bandwidth efficient coded FQPSK system with iterative decoding

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Divsalar, D.

    2001-01-01

    Based on a representation of FQPSK as a trellis-coded modulation, this paper investigates the potential improvement in power efficiency obtained from the application of simple outer codes to form a concatenated coding arrangement with iterative decoding.

  2. A SIMPLE, EFFICIENT SOLUTION OF FLUX-PROFILE RELATIONSHIPS IN THE ATMOSPHERIC SURFACE LAYER

    EPA Science Inventory

    This note describes a simple scheme for analytical estimation of the surface layer similarity functions from state variables. What distinguishes this note from the many previous papers on this topic is that this method is specifically targeted for numerical models where simplici...

  3. Emergent Spatial Patterns of Excitatory and Inhibitory Synaptic Strengths Drive Somatotopic Representational Discontinuities and their Plasticity in a Computational Model of Primary Sensory Cortical Area 3b

    PubMed Central

    Grajski, Kamil A.

    2016-01-01

    Mechanisms underlying the emergence and plasticity of representational discontinuities in the mammalian primary somatosensory cortical representation of the hand are investigated in a computational model. The model consists of an input lattice organized as a three-digit hand forward-connected to a lattice of cortical columns each of which contains a paired excitatory and inhibitory cell. Excitatory and inhibitory synaptic plasticity of feedforward and lateral connection weights is implemented as a simple covariance rule and competitive normalization. Receptive field properties are computed independently for excitatory and inhibitory cells and compared within and across columns. Within digit representational zones intracolumnar excitatory and inhibitory receptive field extents are concentric, single-digit, small, and unimodal. Exclusively in representational boundary-adjacent zones, intracolumnar excitatory and inhibitory receptive field properties diverge: excitatory cell receptive fields are single-digit, small, and unimodal; and the paired inhibitory cell receptive fields are bimodal, double-digit, and large. In simulated syndactyly (webbed fingers), boundary-adjacent intracolumnar receptive field properties reorganize to within-representation type; divergent properties are reacquired following syndactyly release. This study generates testable hypotheses for assessment of cortical laminar-dependent receptive field properties and plasticity within and between cortical representational zones. For computational studies, present results suggest that concurrent excitatory and inhibitory plasticity may underlie novel emergent properties. PMID:27504086

  4. Joint Acoustic and Modulation Frequency

    NASA Astrophysics Data System (ADS)

    Atlas, Les; Shamma, Shihab A.

    2003-12-01

    There is a considerable evidence that our perception of sound uses important features which is related to underlying signal modulations. This topic has been studied extensively via perceptual experiments, yet there are few, if any, well-developed signal processing methods which capitalize on or model these effects. We begin by summarizing evidence of the importance of modulation representations from psychophysical, physiological, and other sources. The concept of a two-dimensional joint acoustic and modulation frequency representation is proposed. A simple single sinusoidal amplitude modulator of a sinusoidal carrier is then used to illustrate properties of an unconstrained and ideal joint representation. Added constraints are required to remove or reduce undesired interference terms and to provide invertibility. It is then noted that the constraints would also apply to more general and complex cases of broader modulation and carriers. Applications in single-channel speaker separation and in audio coding are used to illustrate the applicability of this joint representation. Other applications in signal analysis and filtering are suggested.

  5. What puts the how in where? Tool use and the divided visual streams hypothesis.

    PubMed

    Frey, Scott H

    2007-04-01

    An influential theory suggests that the dorsal (occipito-parietal) visual stream computes representations of objects for purposes of guiding actions (determining 'how') independently of ventral (occipito-temporal) stream processes supporting object recognition and semantic processing (determining 'what'). Yet, the ability of the dorsal stream alone to account for one of the most common forms of human action, tool use, is limited. While experience-dependent modifications to existing dorsal stream representations may explain simple tool use behaviors (e.g., using sticks to extend reach) found among a variety of species, skillful use of manipulable artifacts (e.g., cups, hammers, pencils) requires in addition access to semantic representations of objects' functions and uses. Functional neuroimaging suggests that this latter information is represented in a left-lateralized network of temporal, frontal and parietal areas. I submit that the well-established dominance of the human left hemisphere in the representation of familiar skills stems from the ability for this acquired knowledge to influence the organization of actions within the dorsal pathway.

  6. A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish.

    PubMed

    Haesemeyer, Martin; Robson, Drew N; Li, Jennifer M; Schier, Alexander F; Engert, Florian

    2018-05-16

    Thermosensation provides crucial information, but how temperature representation is transformed from sensation to behavior is poorly understood. Here, we report a preparation that allows control of heat delivery to zebrafish larvae while monitoring motor output and imaging whole-brain calcium signals, thereby uncovering algorithmic and computational rules that couple dynamics of heat modulation, neural activity and swimming behavior. This approach identifies a critical step in the transformation of temperature representation between the sensory trigeminal ganglia and the hindbrain: A simple sustained trigeminal stimulus representation is transformed into a representation of absolute temperature as well as temperature changes in the hindbrain that explains the observed motor output. An activity constrained dynamic circuit model captures the most prominent aspects of these sensori-motor transformations and predicts both behavior and neural activity in response to novel heat stimuli. These findings provide the first algorithmic description of heat processing from sensory input to behavioral output. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. A combined analytical and numerical analysis of the flow-acoustic coupling in a cavity-pipe system

    NASA Astrophysics Data System (ADS)

    Langthjem, Mikael A.; Nakano, Masami

    2018-05-01

    The generation of sound by flow through a closed, cylindrical cavity (expansion chamber) accommodated with a long tailpipe is investigated analytically and numerically. The sound generation is due to self-sustained flow oscillations in the cavity. These oscillations may, in turn, generate standing (resonant) acoustic waves in the tailpipe. The main interest of the paper is in the interaction between these two sound sources. An analytical, approximate solution of the acoustic part of the problem is obtained via the method of matched asymptotic expansions. The sound-generating flow is represented by a discrete vortex method, based on axisymmetric vortex rings. It is demonstrated through numerical examples that inclusion of acoustic feedback from the tailpipe is essential for a good representation of the sound characteristics.

  8. The general 2-D moments via integral transform method for acoustic radiation and scattering

    NASA Astrophysics Data System (ADS)

    Smith, Jerry R.; Mirotznik, Mark S.

    2004-05-01

    The moments via integral transform method (MITM) is a technique to analytically reduce the 2-D method of moments (MoM) impedance double integrals into single integrals. By using a special integral representation of the Green's function, the impedance integral can be analytically simplified to a single integral in terms of transformed shape and weight functions. The reduced expression requires fewer computations and reduces the fill times of the MoM impedance matrix. Furthermore, the resulting integral is analytic for nearly arbitrary shape and weight function sets. The MITM technique is developed for mixed boundary conditions and predictions with basic shape and weight function sets are presented. Comparisons of accuracy and speed between MITM and brute force are presented. [Work sponsored by ONR and NSWCCD ILIR Board.

  9. [The fragmentation of representational space in schizophrenia].

    PubMed

    Plagnol, A; Oïta, M; Montreuil, M; Granger, B; Lubart, T

    2003-01-01

    Existent neurocognitive models of schizophrenia converge towards a core of impairments involving working memory, context processing, action planning, controlled and intentional processing. However, the emergence of this core remains itself difficult to explain and more specific hypotheses do not explain the heterogeneity of schizophrenia. To overcome these limits, we propose a new paradigm based on representational theory from cognitive science. Some recent developments of this theory enable us to describe a subjective universe as a representational space which is displayed from memory. We outline a conceptual framework to construct such a representational space from analogical -representations that can be activated in working memory and are connected to a network of symbolic structures. These connections are notably made through an analytic process of the analogical fragments, which involves the attentional focus. This framework allows us to define rigorously some defense processes in response to traumatic tensions that are expressed on the representational space. The fragmentation of representational space is a consequence of a defensive denial based on an impairment of the analytic process. The fragmentation forms some parasitic areas in memory which are excluded from the main part of the representational space and disturb information processing. The key clinical concepts of paranoid syndromes can be defined in this conceptual framework: mental automatism, delusional intuition, acute destructuration, psychotic dissociation, and autistic withdrawal. We show that these syndromes imply each other, which in return increases the fragmentation of the representational space. Some new concepts emerge naturally in this framework, such as the concept of "suture" which is defined as a link between a parasitic area and the main representational space. Schizophrenia appears as a borderline case of fragmentation of the representational space. This conceptual framework is compatible with numerous etiological factors. Multiple clinical forms can be differentiated in accordance with the persistence of parasitic areas, the degree of fragmentation, and the formation of sutures. We use this approach to account for an empirical study concerning the analysis of analogical representations in schizophrenia. We used the Parallel Visual Information Processing Test (PVIPT) which assesses the analysis of interfering visual information. Subjects were asked to connect several small geometric figures printed on a transparency. The transparency was displayed above four photographs which were the interfering material. Then, subjects completed three tasks concerning the photographs: a recognition task, a recall task, and an affective qualification task. Using a case-by-case study, this test allows us to access the defense processes of the subjects, which is not possible with the usual methods in cognitive psychopathology. Twelve clinically-stable schizophrenic subjects participated in the study which also included a self-assessment of alexithymia by the Toronto Alexithymia Scale. We obtained 2 main results: (a) creation of items in recall or false recognition by 8 subjects, and (b) lack of the usual -negative correlations between the alexithymia score and the recall, recognition and affective qualification scores in the PVIPT. These 2 results contrast with what has been previously observed for alexithymia using the same methodology. The result (a) confirms an interfering activation in schizophrenic memory, which can be interpreted in our framework as indicative of parasitic areas. The creation of items suggests the formation of sutures between the semantic content of photographs and some delusional fragments. The result (b) suggests that the apparent alexithymia in schizophrenia is a defense against interfering activation in parasitic areas. We underline the interest of individual protocols to exhibit the dynamic interplay between an interfering activity in memory and a defensive flattening of affects.

  10. Efficient alignment-free DNA barcode analytics

    PubMed Central

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-01-01

    Background In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. Results New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Conclusion Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding. PMID:19900305

  11. QWT: Retrospective and New Applications

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Yang, Xiaokang; Song, Li; Traversoni, Leonardo; Lu, Wei

    Quaternion wavelet transform (QWT) achieves much attention in recent years as a new image analysis tool. In most cases, it is an extension of the real wavelet transform and complex wavelet transform (CWT) by using the quaternion algebra and the 2D Hilbert transform of filter theory, where analytic signal representation is desirable to retrieve phase-magnitude description of intrinsically 2D geometric structures in a grayscale image. In the context of color image processing, however, it is adapted to analyze the image pattern and color information as a whole unit by mapping sequential color pixels to a quaternion-valued vector signal. This paper provides a retrospective of QWT and investigates its potential use in the domain of image registration, image fusion, and color image recognition. It is indicated that it is important for QWT to induce the mechanism of adaptive scale representation of geometric features, which is further clarified through two application instances of uncalibrated stereo matching and optical flow estimation. Moreover, quaternionic phase congruency model is defined based on analytic signal representation so as to operate as an invariant feature detector for image registration. To achieve better localization of edges and textures in image fusion task, we incorporate directional filter bank (DFB) into the quaternion wavelet decomposition scheme to greatly enhance the direction selectivity and anisotropy of QWT. Finally, the strong potential use of QWT in color image recognition is materialized in a chromatic face recognition system by establishing invariant color features. Extensive experimental results are presented to highlight the exciting properties of QWT.

  12. Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD [The Energy-Energy Correlation at Next-to-Leading Order in QCD, Analytically

    DOE PAGES

    Dixon, Lance J.; Luo, Ming-xing; Shtabovenko, Vladyslav; ...

    2018-03-09

    Here, the energy-energy correlation (EEC) between two detectors in e +e – annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple, and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the EEC in the collinear and back-to-back regions through next-to-leading power, information which should aid resummation in these regions.

  13. Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD [The Energy-Energy Correlation at Next-to-Leading Order in QCD, Analytically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Lance J.; Luo, Ming-xing; Shtabovenko, Vladyslav

    Here, the energy-energy correlation (EEC) between two detectors in e +e – annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple, and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the EEC in the collinear and back-to-back regions through next-to-leading power, information which should aid resummation in these regions.

  14. A simplified formalism of the algebra of partially transposed permutation operators with applications

    NASA Astrophysics Data System (ADS)

    Mozrzymas, Marek; Studziński, Michał; Horodecki, Michał

    2018-03-01

    Herein we continue the study of the representation theory of the algebra of permutation operators acting on the n -fold tensor product space, partially transposed on the last subsystem. We develop the concept of partially reduced irreducible representations, which allows us to significantly simplify previously proved theorems and, most importantly, derive new results for irreducible representations of the mentioned algebra. In our analysis we are able to reduce the complexity of the central expressions by getting rid of sums over all permutations from the symmetric group, obtaining equations which are much more handy in practical applications. We also find relatively simple matrix representations for the generators of the underlying algebra. The obtained simplifications and developments are applied to derive the characteristics of a deterministic port-based teleportation scheme written purely in terms of irreducible representations of the studied algebra. We solve an eigenproblem for the generators of the algebra, which is the first step towards a hybrid port-based teleportation scheme and gives us new proofs of the asymptotic behaviour of teleportation fidelity. We also show a connection between the density operator characterising port-based teleportation and a particular matrix composed of an irreducible representation of the symmetric group, which encodes properties of the investigated algebra.

  15. A simple formula for the effective complex conductivity of periodic fibrous composites with interfacial impedance and applications to biological tissues

    NASA Astrophysics Data System (ADS)

    Bisegna, Paolo; Caselli, Federica

    2008-06-01

    This paper presents a simple analytical expression for the effective complex conductivity of a periodic hexagonal arrangement of conductive circular cylinders embedded in a conductive matrix, with interfaces exhibiting a capacitive impedance. This composite material may be regarded as an idealized model of a biological tissue comprising tubular cells, such as skeletal muscle. The asymptotic homogenization method is adopted, and the corresponding local problem is solved by resorting to Weierstrass elliptic functions. The effectiveness of the present analytical result is proved by convergence analysis and comparison with finite-element solutions and existing models.

  16. From Complex to Simple: Interdisciplinary Stochastic Models

    ERIC Educational Resources Information Center

    Mazilu, D. A.; Zamora, G.; Mazilu, I.

    2012-01-01

    We present two simple, one-dimensional, stochastic models that lead to a qualitative understanding of very complex systems from biology, nanoscience and social sciences. The first model explains the complicated dynamics of microtubules, stochastic cellular highways. Using the theory of random walks in one dimension, we find analytical expressions…

  17. A simple analytical thermo-mechanical model for liquid crystal elastomer bilayer structures

    NASA Astrophysics Data System (ADS)

    Cui, Yun; Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Li, Yuhang; Xing, Yufeng; Yu, Cunjiang; Song, Jizhou

    2018-02-01

    The bilayer structure consisting of thermal-responsive liquid crystal elastomers (LCEs) and other polymer materials with stretchable heaters has attracted much attention in applications of soft actuators and soft robots due to its ability to generate large deformations when subjected to heat stimuli. A simple analytical thermo-mechanical model, accounting for the non-uniform feature of the temperature/strain distribution along the thickness direction, is established for this type of bilayer structure. The analytical predictions of the temperature and bending curvature radius agree well with finite element analysis and experiments. The influences of the LCE thickness and the heat generation power on the bending deformation of the bilayer structure are fully investigated. It is shown that a thinner LCE layer and a higher heat generation power could yield more bending deformation. These results may help the design of soft actuators and soft robots involving thermal responsive LCEs.

  18. Assessing the Concreteness of Relational Representation

    ERIC Educational Resources Information Center

    Rein, Jonathan R.; Markman, Arthur B.

    2010-01-01

    Research has shown that people's ability to transfer abstract relational knowledge across situations can be heavily influenced by the concrete objects that fill relational roles. This article provides evidence that the concreteness of the relations themselves also affects performance. In 3 experiments, participants viewed simple relational…

  19. Representation in development: from a model system to some general processes.

    PubMed

    Montuori, Luke M; Honey, Robert C

    2015-03-01

    The view that filial imprinting might serve as a useful model system for studying the neurobiological basis of memory was inspired, at least in part, by a simple idea: acquired filial preferences reflect the formation of a memory or representation of the imprinting object itself, as opposed to the change in the efficacy of stimulus-response pathways, for example. We provide a synthesis of the evidence that supports this idea; and show that the processes of memory formation observed in filial imprinting find surprisingly close counterparts in other species, including our own. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Geometrical interpretation for the outer SU(3) outer multiplicity label

    NASA Technical Reports Server (NTRS)

    Draayer, Jerry P.; Troltenier, D.

    1995-01-01

    A geometrical interpretation for the outer multiplicity rho that occurs in a reduction of the product of two SU(3) representations, (lambda(sub pi), mu(sub pi)) x (lambda(sub nu), mu(sub nu)) approaches sigma(sub rho)(lambda, mu)(sub rho), is introduced. This coupling of proton (pi) and neutron (nu) representations arises, for example, in both boson and fermion descriptions of heavy deformed nuclei. Attributing a geometry to the coupling raises the possibility of introducing a simple interaction that provides a physically meaningful way for distinguishing multiple occurrences of (lambda, mu) values that can arise in such products.

  1. An application of the Braunbeck method to the Maggi-Rubinowicz field representation

    NASA Technical Reports Server (NTRS)

    Meneghini, R.

    1982-01-01

    The Braunbek method is applied to the generalized vector potential associated with the Maggi-rubinowicz representation. Under certain approximations, an asymptotic evaluation of the vector potential is obtained. For observation points away from caustics or shadow boundaries, the field derived from this quantity is the same as that determined from the geometrical theory of diffraction on a singly diffracted edge ray. An evaluation of the field for the simple case of a plane wave normally incident on a circular aperture is presented showing that the field predicted by the Maggi-Rubinowicz theory is continuous across the shadow boundary.

  2. An application of the Braunbeck method to the Maggi-Rubinowicz field representation

    NASA Astrophysics Data System (ADS)

    Meneghini, R.

    1982-06-01

    The Braunbek method is applied to the generalized vector potential associated with the Maggi-rubinowicz representation. Under certain approximations, an asymptotic evaluation of the vector potential is obtained. For observation points away from caustics or shadow boundaries, the field derived from this quantity is the same as that determined from the geometrical theory of diffraction on a singly diffracted edge ray. An evaluation of the field for the simple case of a plane wave normally incident on a circular aperture is presented showing that the field predicted by the Maggi-Rubinowicz theory is continuous across the shadow boundary.

  3. An efficient temporal logic for robotic task planning

    NASA Technical Reports Server (NTRS)

    Becker, Jeffrey M.

    1989-01-01

    Computations required for temporal reasoning can be prohibitively expensive if fully general representations are used. Overly simple representations, such as totally ordered sequence of time points, are inadequate for use in a nonlinear task planning system. A middle ground is identified which is general enough to support a capable nonlinear task planner, but specialized enough that the system can support online task planning in real time. A Temporal Logic System (TLS) was developed during the Intelligent Task Automation (ITA) project to support robotic task planning. TLS is also used within the ITA system to support plan execution, monitoring, and exception handling.

  4. A Hilbert Space Representation of Generalized Observables and Measurement Processes in the ESR Model

    NASA Astrophysics Data System (ADS)

    Sozzo, Sandro; Garola, Claudio

    2010-12-01

    The extended semantic realism ( ESR) model recently worked out by one of the authors embodies the mathematical formalism of standard (Hilbert space) quantum mechanics in a noncontextual framework, reinterpreting quantum probabilities as conditional instead of absolute. We provide here a Hilbert space representation of the generalized observables introduced by the ESR model that satisfy a simple physical condition, propose a generalization of the projection postulate, and suggest a possible mathematical description of the measurement process in terms of evolution of the compound system made up of the measured system and the measuring apparatus.

  5. Maximum entropy production allows a simple representation of heterogeneity in semiarid ecosystems.

    PubMed

    Schymanski, Stanislaus J; Kleidon, Axel; Stieglitz, Marc; Narula, Jatin

    2010-05-12

    Feedbacks between water use, biomass and infiltration capacity in semiarid ecosystems have been shown to lead to the spontaneous formation of vegetation patterns in a simple model. The formation of patterns permits the maintenance of larger overall biomass at low rainfall rates compared with homogeneous vegetation. This results in a bias of models run at larger scales neglecting subgrid-scale variability. In the present study, we investigate the question whether subgrid-scale heterogeneity can be parameterized as the outcome of optimal partitioning between bare soil and vegetated area. We find that a two-box model reproduces the time-averaged biomass of the patterns emerging in a 100 x 100 grid model if the vegetated fraction is optimized for maximum entropy production (MEP). This suggests that the proposed optimality-based representation of subgrid-scale heterogeneity may be generally applicable to different systems and at different scales. The implications for our understanding of self-organized behaviour and its modelling are discussed.

  6. On a Continuum Limit for Loop Quantum Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corichi, Alejandro; Center for Fundamental Theory, Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park PA 16802; Vukasinac, Tatjana

    2008-03-06

    The use of non-regular representations of the Heisenberg-Weyl commutation relations has proved to be useful for studying conceptual and technical issues in quantum gravity. Of particular relevance is the study of Loop Quantum Cosmology (LQC), symmetry reduced theory that is related to Loop Quantum Gravity, and that is based on a non-regular, polymeric representation. Recently, a soluble model was used by Ashtekar, Corichi and Singh to study the relation between Loop Quantum Cosmology and the standard Wheeler-DeWitt theory and, in particular, the passage to the limit in which the auxiliary parameter (interpreted as ''quantum geometry discreetness'') is sent to zeromore » in hope to get rid of this 'regulator' that dictates the LQC dynamics at each 'scale'. In this note we outline the first steps toward reformulating this question within the program developed by the authors for studying the continuum limit of polymeric theories, which was successfully applied to simple systems such as a Simple Harmonic Oscillator.« less

  7. Memory as a hologram: an analysis of learning and recall.

    PubMed

    Franklin, Donald R J; Mewhort, D J K

    2015-03-01

    We present a holographic theory of human memory. According to the theory, a subject's vocabulary resides in a dynamic distributed representation-a hologram. Studying or recalling a word alters both the existing representation of that word in the hologram and all words associated with it. Recall is always prompted by a recall cue (either a start instruction or the word just recalled). Order of report is a joint function of the item and associative information residing in the hologram at the time the report is made. We apply the model to archival data involving simple free recall, learning in multitrial free recall, simple serial recall, and learning in multitrial serial recall. The model captures accuracy and order of report in both free and serial recall. It also captures learning and subjective organisation in multitrial free recall. We offer the model as an alternative to the short- and long-term account of memory postulated in the modal model. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  8. Using Presentation Software to Flip an Undergraduate Analytical Chemistry Course

    ERIC Educational Resources Information Center

    Fitzgerald, Neil; Li, Luisa

    2015-01-01

    An undergraduate analytical chemistry course has been adapted to a flipped course format. Course content was provided by video clips, text, graphics, audio, and simple animations organized as concept maps using the cloud-based presentation platform, Prezi. The advantages of using Prezi to present course content in a flipped course format are…

  9. Data Acquisition Programming (LabVIEW): An Aid to Teaching Instrumental Analytical Chemistry.

    ERIC Educational Resources Information Center

    Gostowski, Rudy

    A course was developed at Austin Peay State University (Tennessee) which offered an opportunity for hands-on experience with the essential components of modern analytical instruments. The course aimed to provide college students with the skills necessary to construct a simple model instrument, including the design and fabrication of electronic…

  10. Operational Environmental Assessment

    DTIC Science & Technology

    1988-09-01

    Chemistry Branch - Physical Chemistry Branch " Analytical Research Division - Analytical Systems Branch - Methodology Research Branch - Spectroscopy Branch...electromagnetic frequency spec- trum and includes radio frequencies, infrared , visible light, ultraviolet, X-rays and gamma rays (in ascending order of...Verruculogen Aflatrem Picrotoxin Ciguatoxin Mycotoxins Simple Tr ichothecenes T-2 Toxin T-2 Tetraol Neosolaniol * Nivalenol Deoxynivalenol Verrucarol B-3 B lank

  11. Numerical Simulation of the Perrin-Like Experiments

    ERIC Educational Resources Information Center

    Mazur, Zygmunt; Grech, Dariusz

    2008-01-01

    A simple model of the random Brownian walk of a spherical mesoscopic particle in viscous liquids is proposed. The model can be solved analytically and simulated numerically. The analytic solution gives the known Einstein-Smoluchowski diffusion law r[superscript 2] = 2Dt, where the diffusion constant D is expressed by the mass and geometry of a…

  12. Quantitative Ultrasound-Assisted Extraction for Trace-Metal Determination: An Experiment for Analytical Chemistry

    ERIC Educational Resources Information Center

    Lavilla, Isela; Costas, Marta; Pena-Pereira, Francisco; Gil, Sandra; Bendicho, Carlos

    2011-01-01

    Ultrasound-assisted extraction (UAE) is introduced to upper-level analytical chemistry students as a simple strategy focused on sample preparation for trace-metal determination in biological tissues. Nickel extraction in seafood samples and quantification by electrothermal atomic absorption spectrometry (ETAAS) are carried out by a team of four…

  13. A simple analytical model of coupled single flow channel over porous electrode in vanadium redox flow battery with serpentine flow channel

    NASA Astrophysics Data System (ADS)

    Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.

    2015-08-01

    A simple analytical model of a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer) is proposed. This analytical model is derived from Navier-Stokes motion in the flow channel and Darcy-Brinkman model in the porous layer. The continuities of flow velocity and normal stress are applied at the interface between the flow channel and the porous layer. The effects of the inlet volumetric flow rate, thickness of the flow channel and thickness of a typical carbon fiber paper porous layer on the volumetric flow rate within this porous layer are studied. The maximum current density based on the electrolyte volumetric flow rate is predicted, and found to be consistent with reported numerical simulation. It is found that, for a mean inlet flow velocity of 33.3 cm s-1, the analytical maximum current density is estimated to be 377 mA cm-2, which compares favorably with experimental result reported by others of ∼400 mA cm-2.

  14. Boundary condition determined wave functions for the ground states of one- and two-electron homonuclear molecules

    NASA Astrophysics Data System (ADS)

    Patil, S. H.; Tang, K. T.; Toennies, J. P.

    1999-10-01

    Simple analytical wave functions satisfying appropriate boundary conditions are constructed for the ground states of one-and two-electron homonuclear molecules. Both the asymptotic condition when one electron is far away and the cusp condition when the electron coalesces with a nucleus are satisfied by the proposed wave function. For H2+, the resulting wave function is almost identical to the Guillemin-Zener wave function which is known to give very good energies. For the two electron systems H2 and He2++, the additional electron-electron cusp condition is rigorously accounted for by a simple analytic correlation function which has the correct behavior not only for r12→0 and r12→∞ but also for R→0 and R→∞, where r12 is the interelectronic distance and R, the internuclear distance. Energies obtained from these simple wave functions agree within 2×10-3 a.u. with the results of the most sophisticated variational calculations for all R and for all systems studied. This demonstrates that rather simple physical considerations can be used to derive very accurate wave functions for simple molecules thereby avoiding laborious numerical variational calculations.

  15. All-organic microelectromechanical systems integrating specific molecular recognition--a new generation of chemical sensors.

    PubMed

    Ayela, Cédric; Dubourg, Georges; Pellet, Claude; Haupt, Karsten

    2014-09-03

    Cantilever-type all-organic microelectromechanical systems based on molecularly imprinted polymers for specific analyte recognition are used as chemical sensors. They are produced by a simple spray-coating-shadow-masking process. Analyte binding to the cantilever generates a measurable change in its resonance frequency. This allows label-free detection by direct mass sensing of low-molecular-weight analytes at nanomolar concentrations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Using Digital Representations of Practical Production Work for Summative Assessment

    ERIC Educational Resources Information Center

    Newhouse, C. Paul

    2014-01-01

    This paper presents the findings of the first phase of a three-year study investigating the efficacy of the digitisation of creative practical work as digital portfolios for the purposes of high-stakes summative assessment. At the same time the paired comparisons method of scoring was tried as an alternative to analytical rubric-based marking…

  17. Where Have All the Indians Gone? American Indian Representation in Secondary History Textbooks

    ERIC Educational Resources Information Center

    Shadowwalker, Depree M.

    2012-01-01

    This dissertation used a mixed method to develop an analytical model from a random selection of one of eight secondary history textbooks for instances of Indians to determine if the textual content: (1) constructs negative or inaccurate knowledge through word choice or narratives; (2) reinforces stereotype portraits; (3) omits similar minority…

  18. Mass spectroscopic apparatus and method

    DOEpatents

    Bomse, David S.; Silver, Joel A.; Stanton, Alan C.

    1991-01-01

    The disclosure is directed to a method and apparatus for ionization modulated mass spectrometric analysis. Analog or digital data acquisition and processing can be used. Ions from a time variant source are detected and quantified. The quantified ion output is analyzed using a computer to provide a two-dimensional representation of at least one component present within an analyte.

  19. Rapid Building Assessment Project

    DTIC Science & Technology

    2014-05-01

    Efficiency Buildings Hub EISA Energy Independence Security Act EPRI The Electric Power and Research Institute ESTCP Environmental Security Technology...Ordinary Least Squares PG&E Pacific Gas & Electric R&D research and development RBA Remote Building Analytics REST representational state...utilities across North America and Europe. Requiring only hourly utility electric meter data, the building type, and address, FirstFuel can produce a

  20. Achievement of Joint Perception in a Computer Supported Collaborative Learning Environment: A Case Study

    ERIC Educational Resources Information Center

    Afacan Adanir, Gulgun

    2017-01-01

    The case study focuses on the interactional mechanisms through which online collaborative teams co-construct a shared understanding of an analytical geometry problem by using dynamic geometry representations. The collaborative study consisted of an assignment on which the learners worked together in groups to solve a ship navigation problem as…

  1. the Integrated Science Textbooks in China

    ERIC Educational Resources Information Center

    Wei, Bing; Li, Yue; Chen, Bo

    2013-01-01

    This study aimed to examine the representations of nature of science (NOS) in the eight histories of science selected from three series of integrated science textbooks used in junior high school in China. Ten aspects of NOS were adopted in the analytical framework. It was found that NOS had not been well treated in the selected histories of…

  2. Modelling dendritic ecological networks in space: An integrated network perspective

    Treesearch

    Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...

  3. A Comparative Study of McDonald's Wedding Narratives with the Model of Anchoring

    ERIC Educational Resources Information Center

    Huang, Mimi

    2016-01-01

    Fast-food giant McDonald's announced in 2010 that they would start hosting wedding ceremonies and receptions for couples who would like to get married in their restaurants in Hong Kong. This paper conducts a study comparing the differing representations of McDonald's wedding services through a narrative analytical approach. Specifically, this…

  4. Cultural Parallax and Content Analysis: Images of Black Women in High School History Textbooks

    ERIC Educational Resources Information Center

    Woyshner, Christine; Schocker, Jessica B.

    2015-01-01

    This study investigates the representation of Black women in high school history textbooks. To examine the extent to which Black women are represented visually and to explore how they are portrayed, the authors use a mixed-methods approach that draws on analytical techniques in content analysis and from visual culture studies. Their findings…

  5. Towards a Context-Aware Proactive Decision Support Framework

    DTIC Science & Technology

    2013-11-15

    initiative that has developed text analytic technology that crosses the semantic gap into the area of event recognition and representation. The...recognizing operational context, and techniques for recognizing context shift. Additional research areas include: • Adequately capturing users...Universal Interaction Context Ontology [12] might serve as a foundation • Instantiating formal models of decision making based on information seeking

  6. Gender Mainstreaming: Myths and Measurement in Higher Education in Ghana and Tanzania

    ERIC Educational Resources Information Center

    Morley, Louise

    2010-01-01

    This article critically examines the concept of gender mainstreaming and raises questions about a series of category slippages in debates and discussions. Some key concerns are the way in which women are constructed as a unified analytical category, and how gender equality is frequently reduced to issues of representation. It also critically…

  7. Charles Morris's Semiotic Model and Analytical Studies of Visual and Verbal Representations in Technical Communication

    ERIC Educational Resources Information Center

    Fan, Jiang-Ping

    2006-01-01

    In this article, the author demonstrates that the semiotic model proposed by Charles Morris enables us to optimize our understanding of technical communication practices and provides a good point of inquiry. To illustrate this point, the author exemplifies the semiotic approaches by scholars in technical communication and elaborates Morris's model…

  8. Evaluation of Mathematics Teacher Candidates' the Ellipse Knowledge According to the Revised Bloom's Taxonomy

    ERIC Educational Resources Information Center

    Kurtulus, Aytaç; Ada, Aytaç

    2017-01-01

    In this study, the teacher candidates who learnt to find the algebraic equation corresponding to geometric structure of the ellipse in analytic geometry classes were requested to find the algebraic representations corresponding to the structures that contained ellipses in different positions. Thus, it would be possible to determine higher order…

  9. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    PubMed

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. pp interaction at very high energies in cosmic ray experiments

    NASA Astrophysics Data System (ADS)

    Kendi Kohara, A.; Ferreira, Erasmo; Kodama, Takeshi

    2014-11-01

    An analysis of p-air cross section data from extensive air shower measurements is presented, based on an analytical representation of the pp scattering amplitudes that describes with high precision all available accelerator data at ISR, SPS and LHC energies. The theoretical basis of the representation, together with the very smooth energy dependence of parameters controlled by unitarity and dispersion relations, permits reliable extrapolation to high energy cosmic ray (CR) and asymptotic energy ranges. Calculations of σ p-airprod based on Glauber formalism are made using the input values of the quantities σ , ρ , BI and BR at high energies, with attention given to the independence of the slope parameters, with {{B}R}\

  11. Calculating the Responses of Self-Powered Radiation Detectors.

    NASA Astrophysics Data System (ADS)

    Thornton, D. A.

    Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual response mechanisms.

  12. A strategy for reducing gross errors in the generalized Born models of implicit solvation

    PubMed Central

    Onufriev, Alexey V.; Sigalov, Grigori

    2011-01-01

    The “canonical” generalized Born (GB) formula [C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson, J. Am. Chem. Soc. 112, 6127 (1990)] is known to provide accurate estimates for total electrostatic solvation energies ΔGel of biomolecules if the corresponding effective Born radii are accurate. Here we show that even if the effective Born radii are perfectly accurate, the canonical formula still exhibits significant number of gross errors (errors larger than 2kBT relative to numerical Poisson equation reference) in pairwise interactions between individual atomic charges. Analysis of exact analytical solutions of the Poisson equation (PE) for several idealized nonspherical geometries reveals two distinct spatial modes of the PE solution; these modes are also found in realistic biomolecular shapes. The canonical GB Green function misses one of two modes seen in the exact PE solution, which explains the observed gross errors. To address the problem and reduce gross errors of the GB formalism, we have used exact PE solutions for idealized nonspherical geometries to suggest an alternative analytical Green function to replace the canonical GB formula. The proposed functional form is mathematically nearly as simple as the original, but depends not only on the effective Born radii but also on their gradients, which allows for better representation of details of nonspherical molecular shapes. In particular, the proposed functional form captures both modes of the PE solution seen in nonspherical geometries. Tests on realistic biomolecular structures ranging from small peptides to medium size proteins show that the proposed functional form reduces gross pairwise errors in all cases, with the amount of reduction varying from more than an order of magnitude for small structures to a factor of 2 for the largest ones. PMID:21528947

  13. Strategy for Improved Representation of Magnetospheric Electric Potential Structure on a Polar-Capped Ionosphere

    NASA Astrophysics Data System (ADS)

    Schulz, M.

    2016-12-01

    In some simple models of magnetospheric electrodynamics [e.g., Volland, Ann. Géophys., 31, 159-173, 1975], the normal component of the convection electric field is discontinuous across the boundary between closed and open magnetic field lines, and this discontinuity facilitates the formation of auroral arcs there. The requisite discontinuity in E is achieved by making the scalar potential proportional to a positive power (typically 1 or 2) of L on closed field lines and to a negative power (typically -1/2) of L on open (i.e., polar-cap) field lines. This suggests that it may be advantageous to construct more realistic (and thus more complicated) empirical magnetospheric and ionospheric electric-field models from superpositions of mutually orthogonal (or not) vector basis functions having this same analytical property (i.e., discontinuity at L = L*, the boundary surface between closed and open magnetic field lines). The present work offers a few examples of such constructions. A major challenge in this project has been to devise a coordinate system that simplifies the required analytical expansions of electric scalar potentials and accommodates the anti-sunward offset of each polar-cap boundary's centroid with respect to the corresponding magnetic pole. For circular northern and southern polar caps containing equal amounts of magnetic flux, one can imagine a geometrical construction of nested circular (but non-concentric) contours of constant quasi-latitude whose centers converge toward the magnetic poles as the contours themselves approach the magnetic equator. For more general polar-cap shapes and (in any case) to assure mutual orthogonality of respective coordinate surfaces on a spherical ionosphere, a formulation based on harmonic coordinates (expanded from eigen-solutions of the two-dimensional Laplace equation) may be preferable.

  14. Automation effects in a multiloop manual control system

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Mcnally, B. D.

    1986-01-01

    An experimental and analytical study was undertaken to investigate human interaction with a simple multiloop manual control system in which the human's activity was systematically varied by changing the level of automation. The system simulated was the longitudinal dynamics of a hovering helicopter. The automation-systems-stabilized vehicle responses from attitude to velocity to position and also provided for display automation in the form of a flight director. The control-loop structure resulting from the task definition can be considered a simple stereotype of a hierarchical control system. The experimental study was complemented by an analytical modeling effort which utilized simple crossover models of the human operator. It was shown that such models can be extended to the description of multiloop tasks involving preview and precognitive human operator behavior. The existence of time optimal manual control behavior was established for these tasks and the role which internal models may play in establishing human-machine performance was discussed.

  15. Spectral properties of thermal fluctuations on simple liquid surfaces below shot-noise levels.

    PubMed

    Aoki, Kenichiro; Mitsui, Takahisa

    2012-07-01

    We study the spectral properties of thermal fluctuations on simple liquid surfaces, sometimes called ripplons. Analytical properties of the spectral function are investigated and are shown to be composed of regions with simple analytic behavior with respect to the frequency or the wave number. The derived expressions are compared to spectral measurements performed orders of magnitude below shot-noise levels, which is achieved using a novel noise reduction method. The agreement between the theory of thermal surface fluctuations and the experiment is found to be excellent, elucidating the spectral properties of the surface fluctuations. The measurement method requires relatively only a small sample both spatially (few μm) and temporally (~20 s). The method also requires relatively weak light power (~0.5 mW) so that it has a broad range of applicability, including local measurements, investigations of time-dependent phenomena, and noninvasive measurements.

  16. Experimental evaluation of expendable supersonic nozzle concepts

    NASA Technical Reports Server (NTRS)

    Baker, V.; Kwon, O.; Vittal, B.; Berrier, B.; Re, R.

    1990-01-01

    Exhaust nozzles for expendable supersonic turbojet engine missile propulsion systems are required to be simple, short and compact, in addition to having good broad-range thrust-minus-drag performance. A series of convergent-divergent nozzle scale model configurations were designed and wind tunnel tested for a wide range of free stream Mach numbers and nozzle pressure ratios. The models included fixed geometry and simple variable exit area concepts. The experimental and analytical results show that the fixed geometry configurations tested have inferior off-design thrust-minus-drag performance in the transonic Mach range. A simple variable exit area configuration called the Axi-Quad nozzle, combining features of both axisymmetric and two-dimensional convergent-divergent nozzles, performed well over a broad range of operating conditions. Analytical predictions of the flow pattern as well as overall performance of the nozzles, using a fully viscous, compressible CFD code, compared very well with the test data.

  17. Student understanding of the direction of the magnetic force on a charged particle

    NASA Astrophysics Data System (ADS)

    Scaife, Thomas M.; Heckler, Andrew F.

    2010-08-01

    We study student understanding of the direction of the magnetic force experienced by a charged particle moving through a homogeneous magnetic field in both the magnetic pole and field line representations of the magnetic field. In five studies, we administer a series of simple questions in either written or interview format. Our results indicate that although students begin at the same low level of performance in both representations, they answer correctly more often in the field line representation than in the pole representation after instruction. This difference is due in part to more students believing that charges are attracted to magnetic poles than believing that charges are pushed along magnetic field lines. Although traditional instruction is fairly effective in teaching students to answer correctly up to a few weeks following instruction, especially for the field line representation, some students revert to their initial misconceptions several months after instruction. The responses reveal persistent and largely random sign errors in the direction of the force. The sign errors are largely nonsystematic and due to confusion about the direction of the magnetic field and the execution and choice of the right-hand rule and lack of recognition of the noncommutativity of the cross product.

  18. Aversive Learning Modulates Cortical Representations of Object Categories

    PubMed Central

    Dunsmoor, Joseph E.; Kragel, Philip A.; Martin, Alex; LaBar, Kevin S.

    2014-01-01

    Experimental studies of conditioned learning reveal activity changes in the amygdala and unimodal sensory cortex underlying fear acquisition to simple stimuli. However, real-world fears typically involve complex stimuli represented at the category level. A consequence of category-level representations of threat is that aversive experiences with particular category members may lead one to infer that related exemplars likewise pose a threat, despite variations in physical form. Here, we examined the effect of category-level representations of threat on human brain activation using 2 superordinate categories (animals and tools) as conditioned stimuli. Hemodynamic activity in the amygdala and category-selective cortex was modulated by the reinforcement contingency, leading to widespread fear of different exemplars from the reinforced category. Multivariate representational similarity analyses revealed that activity patterns in the amygdala and object-selective cortex were more similar among exemplars from the threat versus safe category. Learning to fear animate objects was additionally characterized by enhanced functional coupling between the amygdala and fusiform gyrus. Finally, hippocampal activity co-varied with object typicality and amygdala activation early during training. These findings provide novel evidence that aversive learning can modulate category-level representations of object concepts, thereby enabling individuals to express fear to a range of related stimuli. PMID:23709642

  19. bioWeb3D: an online webGL 3D data visualisation tool

    PubMed Central

    2013-01-01

    Background Data visualization is critical for interpreting biological data. However, in practice it can prove to be a bottleneck for non trained researchers; this is especially true for three dimensional (3D) data representation. Whilst existing software can provide all necessary functionalities to represent and manipulate biological 3D datasets, very few are easily accessible (browser based), cross platform and accessible to non-expert users. Results An online HTML5/WebGL based 3D visualisation tool has been developed to allow biologists to quickly and easily view interactive and customizable three dimensional representations of their data along with multiple layers of information. Using the WebGL library Three.js written in Javascript, bioWeb3D allows the simultaneous visualisation of multiple large datasets inputted via a simple JSON, XML or CSV file, which can be read and analysed locally thanks to HTML5 capabilities. Conclusions Using basic 3D representation techniques in a technologically innovative context, we provide a program that is not intended to compete with professional 3D representation software, but that instead enables a quick and intuitive representation of reasonably large 3D datasets. PMID:23758781

  20. Topic segmentation via community detection in complex networks

    NASA Astrophysics Data System (ADS)

    de Arruda, Henrique F.; Costa, Luciano da F.; Amancio, Diego R.

    2016-06-01

    Many real systems have been modeled in terms of network concepts, and written texts are a particular example of information networks. In recent years, the use of network methods to analyze language has allowed the discovery of several interesting effects, including the proposition of novel models to explain the emergence of fundamental universal patterns. While syntactical networks, one of the most prevalent networked models of written texts, display both scale-free and small-world properties, such a representation fails in capturing other textual features, such as the organization in topics or subjects. We propose a novel network representation whose main purpose is to capture the semantical relationships of words in a simple way. To do so, we link all words co-occurring in the same semantic context, which is defined in a threefold way. We show that the proposed representations favor the emergence of communities of semantically related words, and this feature may be used to identify relevant topics. The proposed methodology to detect topics was applied to segment selected Wikipedia articles. We found that, in general, our methods outperform traditional bag-of-words representations, which suggests that a high-level textual representation may be useful to study the semantical features of texts.

  1. Topic segmentation via community detection in complex networks.

    PubMed

    de Arruda, Henrique F; Costa, Luciano da F; Amancio, Diego R

    2016-06-01

    Many real systems have been modeled in terms of network concepts, and written texts are a particular example of information networks. In recent years, the use of network methods to analyze language has allowed the discovery of several interesting effects, including the proposition of novel models to explain the emergence of fundamental universal patterns. While syntactical networks, one of the most prevalent networked models of written texts, display both scale-free and small-world properties, such a representation fails in capturing other textual features, such as the organization in topics or subjects. We propose a novel network representation whose main purpose is to capture the semantical relationships of words in a simple way. To do so, we link all words co-occurring in the same semantic context, which is defined in a threefold way. We show that the proposed representations favor the emergence of communities of semantically related words, and this feature may be used to identify relevant topics. The proposed methodology to detect topics was applied to segment selected Wikipedia articles. We found that, in general, our methods outperform traditional bag-of-words representations, which suggests that a high-level textual representation may be useful to study the semantical features of texts.

  2. Emerging Standards for Medical Logic

    PubMed Central

    Clayton, Paul D.; Hripcsak, George; Pryor, T. Allan

    1990-01-01

    Sharing medical logic has traditionally occurred in the form of lectures, conversations, books and journals. As knowledge based computer systems have demonstrated their utility in the health care arena, individuals have pondered the best way to transfer knowledge in a computer based representation (1). A simple representation which allows the knowledge to be shared can be constructed when the knowledge base is modular. Within this representation, units have been named Medical Logic Modules (MLM's) and a syntax has emerged which would allow multiple users to create, criticize, and share those types of medical logic which can be represented in this format. In this paper we talk about why standards exist and why they emerge in some areas and not in others. The appropriateness of using the proposed standards for medical logic modules is then examined against this broader context.

  3. Evolution of cellular automata with memory: The Density Classification Task.

    PubMed

    Stone, Christopher; Bull, Larry

    2009-08-01

    The Density Classification Task is a well known test problem for two-state discrete dynamical systems. For many years researchers have used a variety of evolutionary computation approaches to evolve solutions to this problem. In this paper, we investigate the evolvability of solutions when the underlying Cellular Automaton is augmented with a type of memory based on the Least Mean Square algorithm. To obtain high performance solutions using a simple non-hybrid genetic algorithm, we design a novel representation based on the ternary representation used for Learning Classifier Systems. The new representation is found able to produce superior performance to the bit string traditionally used for representing Cellular automata. Moreover, memory is shown to improve evolvability of solutions and appropriate memory settings are able to be evolved as a component part of these solutions.

  4. Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD

    NASA Astrophysics Data System (ADS)

    Dixon, Lance J.; Luo, Ming-xing; Shtabovenko, Vladyslav; Yang, Tong-Zhi; Zhu, Hua Xing

    2018-03-01

    The energy-energy correlation (EEC) between two detectors in e+e- annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple, and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the EEC in the collinear and back-to-back regions through next-to-leading power, information which should aid resummation in these regions.

  5. Multiple Grammars: Old Wine in Old Bottles

    ERIC Educational Resources Information Center

    Sorace, Antonella

    2014-01-01

    Amaral and Roeper (this issue; henceforth A&R) argue that all speakers -- regardless of whether monolingual or bilingual -- have multiple grammars in their mental language representations. They further claim that this simple assumption can explain many things: optionality in second language (L2) language behaviour, multilingualism, language…

  6. Games for Mathematics Skill Practice.

    ERIC Educational Resources Information Center

    Ludeman, Clinton; Sevier, Bonnie

    1982-01-01

    Multivision is designed to practice simple multiplication and division with one-digit numbers, and is played similarly to Sorry. Fraction Monopoly was designed to assist in practicing addition and subtraction skills with fractions, along with recognizing basic parts and matching numerals with pictorial representations, and is similar to Monopoly.…

  7. Small should be the New Big: High-resolution Models with Small Segments have Big Advantages when Modeling Eutrophication in the Great Lakes

    EPA Science Inventory

    Historical mathematical models, especially Great Lakes eutrophication models, traditionally used course segmentation schemes and relatively simple hydrodynamics to represent system behavior. Although many modelers have claimed success using such models, these representations can ...

  8. Exact solutions to the fermion propagator Schwinger-Dyson equation in Minkowski space with on-shell renormalization for quenched QED

    DOE PAGES

    Jia, Shaoyang; Pennington, M. R.

    2017-08-01

    With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion propagator spectral functions are obtained in four dimensions with a renormalizable version of the Gauge Technique anzatz for the fermion-photon vertex in the quenched approximation in the Landau gauge. Despite the limitations of this model, having an explicit solution provides a guiding example of the fermion propagator with the correct analytic structure. The Padé approximation for the spectral functions is also investigated.

  9. Exact solutions to the fermion propagator Schwinger-Dyson equation in Minkowski space with on-shell renormalization for quenched QED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Shaoyang; Pennington, M. R.

    With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion propagator spectral functions are obtained in four dimensions with a renormalizable version of the Gauge Technique anzatz for the fermion-photon vertex in the quenched approximation in the Landau gauge. Despite the limitations of this model, having an explicit solution provides a guiding example of the fermion propagator with the correct analytic structure. The Padé approximation for the spectral functions is also investigated.

  10. Exploring performance issues for a clinical database organized using an entity-attribute-value representation.

    PubMed

    Chen, R S; Nadkarni, P; Marenco, L; Levin, F; Erdos, J; Miller, P L

    2000-01-01

    The entity-attribute-value representation with classes and relationships (EAV/CR) provides a flexible and simple database schema to store heterogeneous biomedical data. In certain circumstances, however, the EAV/CR model is known to retrieve data less efficiently than conventionally based database schemas. To perform a pilot study that systematically quantifies performance differences for database queries directed at real-world microbiology data modeled with EAV/CR and conventional representations, and to explore the relative merits of different EAV/CR query implementation strategies. Clinical microbiology data obtained over a ten-year period were stored using both database models. Query execution times were compared for four clinically oriented attribute-centered and entity-centered queries operating under varying conditions of database size and system memory. The performance characteristics of three different EAV/CR query strategies were also examined. Performance was similar for entity-centered queries in the two database models. Performance in the EAV/CR model was approximately three to five times less efficient than its conventional counterpart for attribute-centered queries. The differences in query efficiency became slightly greater as database size increased, although they were reduced with the addition of system memory. The authors found that EAV/CR queries formulated using multiple, simple SQL statements executed in batch were more efficient than single, large SQL statements. This paper describes a pilot project to explore issues in and compare query performance for EAV/CR and conventional database representations. Although attribute-centered queries were less efficient in the EAV/CR model, these inefficiencies may be addressable, at least in part, by the use of more powerful hardware or more memory, or both.

  11. Integrated Multiscale Modeling of Molecular Computing Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory Beylkin

    2012-03-23

    Significant advances were made on all objectives of the research program. We have developed fast multiresolution methods for performing electronic structure calculations with emphasis on constructing efficient representations of functions and operators. We extended our approach to problems of scattering in solids, i.e. constructing fast algorithms for computing above the Fermi energy level. Part of the work was done in collaboration with Robert Harrison and George Fann at ORNL. Specific results (in part supported by this grant) are listed here and are described in greater detail. (1) We have implemented a fast algorithm to apply the Green's function for themore » free space (oscillatory) Helmholtz kernel. The algorithm maintains its speed and accuracy when the kernel is applied to functions with singularities. (2) We have developed a fast algorithm for applying periodic and quasi-periodic, oscillatory Green's functions and those with boundary conditions on simple domains. Importantly, the algorithm maintains its speed and accuracy when applied to functions with singularities. (3) We have developed a fast algorithm for obtaining and applying multiresolution representations of periodic and quasi-periodic Green's functions and Green's functions with boundary conditions on simple domains. (4) We have implemented modifications to improve the speed of adaptive multiresolution algorithms for applying operators which are represented via a Gaussian expansion. (5) We have constructed new nearly optimal quadratures for the sphere that are invariant under the icosahedral rotation group. (6) We obtained new results on approximation of functions by exponential sums and/or rational functions, one of the key methods that allows us to construct separated representations for Green's functions. (7) We developed a new fast and accurate reduction algorithm for obtaining optimal approximation of functions by exponential sums and/or their rational representations.« less

  12. A computational method for optimizing fuel treatment locations

    Treesearch

    Mark A. Finney

    2006-01-01

    Modeling and experiments have suggested that spatial fuel treatment patterns can influence the movement of large fires. On simple theoretical landscapes consisting of two fuel types (treated and untreated) optimal patterns can be analytically derived that disrupt fire growth efficiently (i.e. with less area treated than random patterns). Although conceptually simple,...

  13. Fock space, symbolic algebra, and analytical solutions for small stochastic systems.

    PubMed

    Santos, Fernando A N; Gadêlha, Hermes; Gaffney, Eamonn A

    2015-12-01

    Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.

  14. A visual analytics approach for pattern-recognition in patient-generated data.

    PubMed

    Feller, Daniel J; Burgermaster, Marissa; Levine, Matthew E; Smaldone, Arlene; Davidson, Patricia G; Albers, David J; Mamykina, Lena

    2018-06-13

    To develop and test a visual analytics tool to help clinicians identify systematic and clinically meaningful patterns in patient-generated data (PGD) while decreasing perceived information overload. Participatory design was used to develop Glucolyzer, an interactive tool featuring hierarchical clustering and a heatmap visualization to help registered dietitians (RDs) identify associative patterns between blood glucose levels and per-meal macronutrient composition for individuals with type 2 diabetes (T2DM). Ten RDs participated in a within-subjects experiment to compare Glucolyzer to a static logbook format. For each representation, participants had 25 minutes to examine 1 month of diabetes self-monitoring data captured by an individual with T2DM and identify clinically meaningful patterns. We compared the quality and accuracy of the observations generated using each representation. Participants generated 50% more observations when using Glucolyzer (98) than when using the logbook format (64) without any loss in accuracy (69% accuracy vs 62%, respectively, p = .17). Participants identified more observations that included ingredients other than carbohydrates using Glucolyzer (36% vs 16%, p = .027). Fewer RDs reported feelings of information overload using Glucolyzer compared to the logbook format. Study participants displayed variable acceptance of hierarchical clustering. Visual analytics have the potential to mitigate provider concerns about the volume of self-monitoring data. Glucolyzer helped dietitians identify meaningful patterns in self-monitoring data without incurring perceived information overload. Future studies should assess whether similar tools can support clinicians in personalizing behavioral interventions that improve patient outcomes.

  15. Transport of a decay chain in homogenous porous media: analytical solutions.

    PubMed

    Bauer, P; Attinger, S; Kinzelbach, W

    2001-06-01

    With the aid of integral transforms, analytical solutions for the transport of a decay chain in homogenous porous media are derived. Unidirectional steady-state flow and radial steady-state flow in single and multiple porosity media are considered. At least in Laplace domain, all solutions can be written in closed analytical formulae. Partly, the solutions can also be inverted analytically. If not, analytical calculation of the steady-state concentration distributions, evaluation of temporal moments and numerical inversion are still possible. Formulae for several simple boundary conditions are given and visualized in this paper. The derived novel solutions are widely applicable and are very useful for the validation of numerical transport codes.

  16. Non-Schwarzschild black-hole metric in four dimensional higher derivative gravity: Analytical approximation

    NASA Astrophysics Data System (ADS)

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2017-09-01

    Higher derivative extensions of Einstein gravity are important within the string theory approach to gravity and as alternative and effective theories of gravity. H. Lü, A. Perkins, C. Pope, and K. Stelle [Phys. Rev. Lett. 114, 171601 (2015), 10.1103/PhysRevLett.114.171601] found a numerical solution describing a spherically symmetric non-Schwarzschild asymptotically flat black hole in Einstein gravity with added higher derivative terms. Using the general and quickly convergent parametrization in terms of the continued fractions, we represent this numerical solution in the analytical form, which is accurate not only near the event horizon or far from the black hole, but in the whole space. Thereby, the obtained analytical form of the metric allows one to study easily all the further properties of the black hole, such as thermodynamics, Hawking radiation, particle motion, accretion, perturbations, stability, quasinormal spectrum, etc. Thus, the found analytical approximate representation can serve in the same way as an exact solution.

  17. Analytical methodology for determination of helicopter IFR precision approach requirements. [pilot workload and acceptance level

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.

    1980-01-01

    A systematic analytical approach to the determination of helicopter IFR precision approach requirements is formulated. The approach is based upon the hypothesis that pilot acceptance level or opinion rating of a given system is inversely related to the degree of pilot involvement in the control task. A nonlinear simulation of the helicopter approach to landing task incorporating appropriate models for UH-1H aircraft, the environmental disturbances and the human pilot was developed as a tool for evaluating the pilot acceptance hypothesis. The simulated pilot model is generic in nature and includes analytical representation of the human information acquisition, processing, and control strategies. Simulation analyses in the flight director mode indicate that the pilot model used is reasonable. Results of the simulation are used to identify candidate pilot workload metrics and to test the well known performance-work-load relationship. A pilot acceptance analytical methodology is formulated as a basis for further investigation, development and validation.

  18. International Medical Graduates in the US Physician Workforce and Graduate Medical Education: Current and Historical Trends.

    PubMed

    Ahmed, Awad A; Hwang, Wei-Ting; Thomas, Charles R; Deville, Curtiland

    2018-04-01

    Data show that international medical graduates (IMGs), both US and foreign born, are more likely to enter primary care specialties and practice in underserved areas. Comprehensive assessments of representation trends for IMGs in the US physician workforce are limited. We reported current and historical representation trends for IMGs in the graduate medical education (GME) training pool and US practicing physician workforce. We compared representation for the total GME and active practicing physician pools with the 20 largest residency specialties. A 2-sided test was used for comparison, with P  < .001 considered significant. To assess significant increases in IMG GME trainee representation for the total pool and each of the specialties from 1990-2015, the slope was estimated using simple linear regression. IMGs showed significantly greater representation among active practicing physicians in 4 specialties: internal medicine (39%), neurology (31%), psychiatry (30%), and pediatrics (25%). IMGs in GME showed significantly greater representation in 5 specialties: pathology (39%), internal medicine (39%), neurology (36%), family medicine (32%), and psychiatry (31%; all P  < .001). Over the past quarter century, IMG representation in GME has increased by 0.2% per year in the total GME pool, and 1.1% per year for family medicine, 0.5% for obstetrics and gynecology and general surgery, and 0.3% for internal medicine. IMGs make up nearly a quarter of the total GME pool and practicing physician workforce, with a disproportionate share, and larger increases over our study period in certain specialties.

  19. A Comprehensive Analytical Solution of the Nonlinear Pendulum

    ERIC Educational Resources Information Center

    Ochs, Karlheinz

    2011-01-01

    In this paper, an analytical solution for the differential equation of the simple but nonlinear pendulum is derived. This solution is valid for any time and is not limited to any special initial instance or initial values. Moreover, this solution holds if the pendulum swings over or not. The method of approach is based on Jacobi elliptic functions…

  20. Sensitivity of Tsunami Waves and Coastal Inundation/Runup to Seabed Displacement Models: Application to the Cascadia Subduction zone

    NASA Astrophysics Data System (ADS)

    Jalali Farahani, R.; Fitzenz, D. D.; Nyst, M.

    2015-12-01

    Major components of tsunami hazard modeling include earthquake source characterization, seabed displacement, wave propagation, and coastal inundation/run-up. Accurate modeling of these components is essential to identify the disaster risk exposures effectively, which would be crucial for insurance industry as well as policy makers to have tsunami resistant design of structures and evacuation planning (FEMA, 2008). In this study, the sensitivity and variability of tsunami coastal inundation due to Cascadia megathrust subduction earthquake are studied by considering the different approaches for seabed displacement model. The first approach is the analytical expressions that were proposed by Okada (1985, 1992) for the surface displacements and strains of rectangular sources. The second approach was introduced by Meade (2006) who introduced analytical solutions for calculating displacements, strains, and stresses on triangular sources. In this study, the seabed displacement using triangular representation of geometrically complex fault surfaces is compared with the Okada rectangular representations for the Cascadia subduction zone. In the triangular dislocation algorithm, the displacement is calculated using superposition of two angular dislocations for each of the three triangle legs. The triangular elements could give a better and gap-free representation of the fault surfaces. In addition, the rectangular representation gives large unphysical vertical displacement along the shallow-depth fault edge that generates unrealistic short-wavelength waves. To study the impact of these two different algorithms on the final tsunami inundation, the initial tsunami wave as well as wave propagation and the coastal inundation are simulated. To model the propagation of tsunami waves and coastal inundation, 2D shallow water equations are modeled using the seabed displacement as the initial condition for the numerical model. Tsunami numerical simulation has been performed on high-resolution bathymetric/topographic computational grids to identify accurate tsunami impact and flooding limits for the west of USA.

Top