Sample records for simple binary eutectic

  1. Estimated heats of fusion of fluoride salt mixtures suitable for thermal energy storage applications

    NASA Technical Reports Server (NTRS)

    Misra, A. K.; Whittenberger, J. D.

    1986-01-01

    The heats of fusion of several fluoride salt mixtures with melting points greater than 973 K were estimated from a coupled analysis of the available thermodynamic data and phase diagrams. Simple binary eutectic systems with and without terminal solid solutions, binary eutectics with congruent melting intermediate phases, and ternary eutectic systems were considered. Several combinations of salts were identified, most notable the eutectics LiF-22CaF2 and NaF-60MgF2 which melt at 1039 and 1273 K respectively which posses relatively high heats of fusion/gm (greater than 0.7 kJ/g). Such systems would seemingly be ideal candidates for the light weight, high energy storage media required by the thermal energy storage unit in advanced solar dynamic power systems envisioned for the future space missions.

  2. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  3. A new strategy to design eutectic high-entropy alloys using simple mixture method

    DOE PAGES

    Jiang, Hui; Han, Kaiming; Gao, Xiaoxia; ...

    2018-01-13

    Eutectic high entropy alloys (EHEAs) hold promising industrial application potential, but how to design EHEA compositions remains challenging. In the present work, a simple and effective strategy by combining mixing enthalpy and constituent binary eutectic compositions was proposed to design EHEA compositions. This strategy was then applied to a series of (CoCrFeNi)M x (M = Nb, Ta, Zr, Hf) HEAs, leading to the discovery of new EHEAs, namely, CoCrFeNiNb 0.45, CoCrFeNiTa 0.4, CoCrFeNiZr 0.55 and CoCrFeNiHf 0.4. The microstructure of these new EHEAs comprised of FCC and Laves phases in the as-cast state. In conclusion, the experimental result shows thatmore » this new alloy design strategy can be used to locate new EHEAs effectively.« less

  4. A new strategy to design eutectic high-entropy alloys using simple mixture method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hui; Han, Kaiming; Gao, Xiaoxia

    Eutectic high entropy alloys (EHEAs) hold promising industrial application potential, but how to design EHEA compositions remains challenging. In the present work, a simple and effective strategy by combining mixing enthalpy and constituent binary eutectic compositions was proposed to design EHEA compositions. This strategy was then applied to a series of (CoCrFeNi)M x (M = Nb, Ta, Zr, Hf) HEAs, leading to the discovery of new EHEAs, namely, CoCrFeNiNb 0.45, CoCrFeNiTa 0.4, CoCrFeNiZr 0.55 and CoCrFeNiHf 0.4. The microstructure of these new EHEAs comprised of FCC and Laves phases in the as-cast state. In conclusion, the experimental result shows thatmore » this new alloy design strategy can be used to locate new EHEAs effectively.« less

  5. Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth

    NASA Astrophysics Data System (ADS)

    Sturz, L.; Witusiewicz, V. T.; Hecht, U.; Rex, S.

    2004-09-01

    Transparent organic alloys showing a plastic crystal phase were investigated experimentally using differential scanning calorimetry and directional solidification with respect to find a suitable model system for regular ternary eutectic growth. The temperature, enthalpy and entropy of phase transitions have been determined for a number of pure substances. A distinction of substances with and without plastic crystal phases was made from their entropy of melting. Binary phase diagrams were determined for selected plastic crystal alloys with the aim to identify eutectic reactions. Examples for lamellar and rod-like eutectic solidification microstructures in binary systems are given. The system (D)Camphor-Neopentylglycol-Succinonitrile is identified as a system that exhibits, among others, univariant and a nonvariant eutectic reaction. The ternary eutectic alloy close to the nonvariant eutectic composition solidifies with a partially faceted solid-liquid interface. However, by adding a small amount of Amino-Methyl-Propanediol (AMPD), the temperature of the nonvariant eutectic reaction and of the solid state transformation from plastic to crystalline state are shifted such, that regular eutectic growth with three distinct nonfaceted phases is observed in univariant eutectic reaction for the first time. The ternary phase diagram and examples for eutectic microstructures in the ternary and the quaternary eutectic alloy are given.

  6. Composition formulas of Fe-based transition metals-metalloid bulk metallic glasses derived from dual-cluster model of binary eutectics.

    PubMed

    Naz, Gul Jabeen; Dong, Dandan; Geng, Yaoxiang; Wang, Yingmin; Dong, Chuang

    2017-08-22

    It is known that bulk metallic glasses follow simple composition formulas [cluster](glue atom) 1 or 3 with 24 valence electrons within the framework of the cluster-plus-glue-atom model. Though the relevant nearest-neighbor cluster can be readily identified from a devitrification phase, the glue atoms remains poorly defined. The present work is devoted to understanding the composition rule of Fe-(B,P,C) based multi-component bulk metallic glasses, by introducing a cluster-based eutectic liquid model. This model regards a eutectic liquid to be composed of two stable liquids formulated respectively by cluster formulas for ideal metallic glasses from the two eutectic phases. The dual cluster formulas are first established for binary Fe-(B,C,P) eutectics: [Fe-Fe 14 ]B 2 Fe + [B-B 2 Fe 8 ]Fe ≈ Fe 83.3 B 16.7 for eutectic Fe 83 B 17 , [P-Fe 14 ]P + [P-Fe 9 ]P 2 Fe≈Fe 82.8 P 17.2 for Fe 83 P 17 , and [C-Fe 6 ]Fe 3  + [C-Fe 9 ]C 2 Fe ≈ Fe 82.6 C 17.4 for Fe 82.7 C 17.3 . The second formulas in these dual-cluster formulas, being respectively relevant to devitrification phases Fe 2 B, Fe 3 P, and Fe 3 C, well explain the compositions of existing Fe-based transition metals-metalloid bulk metallic glasses. These formulas also satisfy the 24-electron rule. The proposition of the composition formulas for good glass formers, directly from known eutectic points, constitutes a new route towards understanding and eventual designing metallic glasses of high glass forming abilities.

  7. Gravity-induced anomalies in interphase spacing reported for binary eutectics.

    PubMed

    Smith, Reginald W

    2002-10-01

    It has been reasoned that desirable microstructural refinement in binary eutectics could result from freezing in reduced-gravity. It is recognized that the interphase spacing in a binary eutectic is controlled by solute transport and that, on Earth, buoyancy-driven convection may enhance this. Hence, it has been presumed that the interphase spacing ought to decrease when a eutectic alloy is frozen under conditions of much-reduced gravity, where such buoyancy effects would be largely absent. The result of such speculation has been that many workers have frozen various eutectics under reduced gravity and have reported that, although some eutectics became finer, others showed no change, and some even became coarser. This reported varied behavior will be reviewed in the light of long term studies by the author at Queen's University, including recent microgravity studies in which samples of two eutectic alloy systems, MnBi-Bi and MnSb-Sb, were frozen under very stable conditions and showed no change in interphase spacing.

  8. Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth

    NASA Astrophysics Data System (ADS)

    Lu, Haiming; Meng, Xiangkang

    2015-06-01

    Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size.

  9. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications

    NASA Astrophysics Data System (ADS)

    Lasfargues, Mathieu; Bell, Andrew; Ding, Yulong

    2016-06-01

    In this study, TiO2 nanoparticles (average particle size 16 nm) were successfully produced in molten salt phase and were showed to significantly enhance the specific heat capacity of a binary eutectic mixture of sodium and potassium nitrate (60/40) by 5.4 % at 390 °C and 7.5 % at 445 °C for 3.0 wt% of precursors used. The objective of this research was to develop a cost-effective alternate method of production which is potentially scalable, as current techniques utilized are not economically viable for large quantities. Enhancing the specific heat capacity of molten salt would promote more competitive pricing for electricity production by concentrating solar power plant. Here, a simple precursor (TiOSO4) was added to a binary eutectic mixture of potassium and sodium nitrate, heated to 450 °C, and cooled to witness the production of nanoparticles.

  10. Kinetic Monte Carlo Simulations of Rod Eutectics and the Surface Roughening Transition in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Bentz, Daniel N.; Betush, William; Jackson, Kenneth A.

    2003-01-01

    In this paper we report on two related topics: Kinetic Monte Carlo simulations of the steady state growth of rod eutectics from the melt, and a study of the surface roughness of binary alloys. We have implemented a three dimensional kinetic Monte Carlo (kMC) simulation with diffusion by pair exchange only in the liquid phase. Entropies of fusion are first chosen to fit the surface roughness of the pure materials, and the bond energies are derived from the equilibrium phase diagram, by treating the solid and liquid as regular and ideal solutions respectively. A simple cubic lattice oriented in the {100} direction is used. Growth of the rods is initiated from columns of pure B material embedded in an A matrix, arranged in a close packed array with semi-periodic boundary conditions. The simulation cells typically have dimensions of 50 by 87 by 200 unit cells. Steady state growth is compliant with the Jackson-Hunt model. In the kMC simulations, using the spin-one Ising model, growth of each phase is faceted or nonfaceted phases depending on the entropy of fusion. There have been many studies of the surface roughening transition in single component systems, but none for binary alloy systems. The location of the surface roughening transition for the phases of a eutectic alloy determines whether the eutectic morphology will be regular or irregular. We have conducted a study of surface roughness on the spin-one Ising Model with diffusion using kMC. The surface roughness was found to scale with the melting temperature of the alloy as given by the liquidus line on the equilibrium phase diagram. The density of missing lateral bonds at the surface was used as a measure of surface roughness.

  11. Thermal phase diagram of acetamide-benzoic acid and benzoic acid-phthalimide binary systems for solar thermal applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rohitash, E-mail: dootrohit1976@gmail.com; Department of Physics & Center for Solar Energy, Indian Institute of Technology Jodhpur, Rajasthan, India 342011, +91-291-2449045; Kumar, Ravindra

    2016-05-06

    Thermal properties of Acetamide (AM) – Benzoic acid (BA) and Benzoic acid (BA) – Phthalimide (PM) binary eutectic systems are theoretically calculated using thermodynamic principles. We found that the binary systems of AM-BA at 67.6 : 32.4 molar ratio, BA-PM at 89.7 : 10.3 molar ratio form eutectic mixtures with melting temperatures ~ 54.5 °C and 114.3 °C respectively. Calculated latent heat of fusion for these eutectic mixtures are 191 kJ/kg and 146.5 kJ/kg respectively. These melting temperatures and heat of fusions of these eutectic mixtures make them suitable for thermal energy storage applications in solar water heating and solarmore » cooking systems.« less

  12. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications.

    PubMed

    Lasfargues, Mathieu; Bell, Andrew; Ding, Yulong

    In this study, TiO 2 nanoparticles (average particle size 16 nm) were successfully produced in molten salt phase and were showed to significantly enhance the specific heat capacity of a binary eutectic mixture of sodium and potassium nitrate (60/40) by 5.4 % at 390 °C and 7.5 % at 445 °C for 3.0 wt% of precursors used. The objective of this research was to develop a cost-effective alternate method of production which is potentially scalable, as current techniques utilized are not economically viable for large quantities. Enhancing the specific heat capacity of molten salt would promote more competitive pricing for electricity production by concentrating solar power plant. Here, a simple precursor (TiOSO 4 ) was added to a binary eutectic mixture of potassium and sodium nitrate, heated to 450 °C, and cooled to witness the production of nanoparticles.

  13. An amino acidic adjuvant to augment cryoinjury of MCF-7 breast cancer cells.

    PubMed

    Wang, Chuo-Li; Teo, Ka Yaw; Han, Bumsoo

    2008-08-01

    One of the major challenges in cryosurgery is to minimize incomplete cryodestruction near the edge of the iceball. In the present study, the feasibility and effectiveness of an amino acidic adjuvant, glycine was investigated to enhance the cryodestruction of MCF-7 human breast cancer cell at mild freezing/thawing conditions via eutectic solidification. The effects of glycine addition on the phase change characteristics of NaCl-water binary mixture were investigated with a differential scanning calorimeter and cryo-macro/microscope. The results confirmed that a NaCl-glycine-water mixture has two distinct eutectic phase change events - binary eutectic solidification of water-glycine, and ternary eutectic solidification of NaCl-glycine-water. In addition, its effects on the cryoinjury of MCF-7 cells were investigated by assessing the post-thaw cellular viability after a single freezing/thawing cycle with various eutectic solidification conditions due to different glycine concentrations, end temperatures and hold times. The viability of MCF-7 cells in isotonic saline supplemented with 10% or 20% glycine without freezing/thawing remained higher than 90% (n=9), indicating no apparent toxicity was induced by the addition of glycine. With 10% glycine supplement, the viability of the cells frozen to -8.5 degrees C decreased from 85.9+/-1.8% to 38.5+/-1.0% on the occurrence of binary eutectic solidification of glycine-water (n=3 for each group). With 20% glycine supplement, the viability of the cells frozen to -8.5 degrees C showed similar trends to those with 10% supplement. However, as the end temperature was lowered to -15 degrees C, the viability drastically decreased from 62.5+/-2.0% to 3.6+/-0.7% (n=3 for each group). The influences of eutectic kinetics such as nucleation temperature, hold time and method were less significant. These results imply that the binary eutectic solidification of water-glycine can augment the cryoinjury of MCF-7 cells, and the extent of the eutectic solidification is significant.

  14. Solidification and microstructures of binary ice-I/hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Kirby, S.H.; Rieck, K.D.; Stern, L.A.

    2007-01-01

    The microstructures of two-phase binary aggregates of ice-I + salt-hydrate, prepared by eutectic solidification, have been characterized by cryogenic scanning electron microscopy (CSEM). The specific binary systems studied were H2O-Na2SO4, H2O-MgSO4, H2O-NaCl, and H2O-H2SO4; these were selected based on their potential application to the study of tectonics on the Jovian moon Europa. Homogeneous liquid solutions of eutectic compositions were undercooled modestly (??T - 1-5 ??C); similarly cooled crystalline seeds of the same composition were added to circumvent the thermodynamic barrier to nucleation and to control eutectic growth under (approximately) isothermal conditions. CSEM revealed classic eutectic solidification microstructures with the hydrate phase forming continuous lamellae, discontinuous lamellae, or forming the matrix around rods of ice-I, depending on the volume fractions of the phases and their entropy of dissolving and forming a homogeneous aqueous solution. We quantify aspects of the solidification behavior and microstructures for each system and, with these data articulate anticipated effects of the microstructure on the mechanical responses of the materials.

  15. Assessment of a Novel Ternary Eutectic Chloride Salt for Next Generation High-Temperature Sensible Heat Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal, Judith C; Mohan, Gowtham; Venkataraman, Mahesh

    A novel ternary eutectic salt mixture for high-temperature sensible heat storage, composed of sodium chloride, potassium chloride and magnesium chloride (NaKMg-Cl) was developed based on a phase diagram generated with FactSage(R). The differential scanning calorimetry (DSC) technique was used to experimentally validate the predicted melting point of the ternary eutectic composition, which was measured as 387 degrees C, in good agreement with the prediction. The ternary eutectic was compared to two binary salts formulated based on prediction of the eutectic composition by FactSage, but unfortunately DSC measurements showed that neither binary salt composition was eutectic. Nonetheless, the measured thermo-physical propertiesmore » of the ternary and the two binary mixtures are compared. Liquid heat capacities of both the ternary and binary salts were determined by using DSC with sapphire as the standard reference. The average heat capacity of the ternary mixture was recorded as 1.18 J g-1 K-1. The mass loss of the molten eutectic salts was studied up to 1000 degrees C using a thermogravimetric analyser in nitrogen, argon and air. The results showed a significant mass loss due to vaporisation in an open system, particularly above 700 degrees C. However, simulation of mass loss in a closed system with an inert cover gas indicates storage temperatures above 700 degrees C may be feasible, and highlights the importance of the design of the storage tank system. In terms of storage material cost, the NaKMg-Cl mixture is approximately 4.5 USD/kWh, which is 60% cheaper than current state-of-the-art nitrate salt mixtures.« less

  16. Composition formulas of binary eutectics

    PubMed Central

    Ma, Y. P.; Dong, D. D.; Dong, C.; Luo, L. J.; Wang, Q.; Qiang, J. B.; Wang, Y. M.

    2015-01-01

    The present paper addresses the long-standing composition puzzle of eutectic points by introducing a new structural tool for the description of short-range-order structural unit, the cluster-plus-glue-atom model. In this model, any structure is dissociated into a 1st-neighbor cluster and a few glue atoms between the clusters, expressed by a cluster formula [cluster]gluex. This model is applied here to establish the structural model for eutectic liquids, assuming that a eutectic liquid consist of two subunits issued from the relevant eutectic phases, each being expressed by the cluster formula for ideal metallic glasses, i.e., [cluster](glue atom)1 or 3. A structural unit is then composed of two clusters from the relevant eutectic phases plus 2, 4, or 6 glue atoms. Such a dual cluster formulism is well validated in all boron-containing (except those located by the extreme phase diagram ends) and in some commonly-encountered binary eutectics, within accuracies below 1 at.%. The dual cluster formulas vary extensively and are rarely identical even for eutectics of close compositions. They are generally formed with two distinctly different cluster types, with special cluster matching rules such as cuboctahedron plus capped trigonal prism and rhombidodecahedron plus octahedral antiprism. PMID:26658618

  17. Free energy change of off-eutectic binary alloys on solidification

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.

    1991-01-01

    A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.

  18. Fluoride salts as phase change materials for thermal energy storage in the temperature range 1000-1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.

  19. Microstructure and physical properties of bismuth-lead-tin ternary eutectic alloy

    NASA Astrophysics Data System (ADS)

    Kamal, M.; Moharram, B. M.; Farag, H.; El-Bediwi, A.; Abosheiasha, H. F.

    2006-07-01

    Using different experimental techniques, microstructure, electrical resistivity, attenuation coefficient, and mechanical and thermal properties of the quenched Bi-Pb-Sn ternary eutectic alloy have been investigated. From the X-ray analysis, Bi3Pb7 and Bi-Sn meta-stable phases are detected, in addition to rhombohedral bismuth and Sn body-centered tetragonal phases. This study also compared the physical properties of the Bi-Sn-Pb ternary eutectic alloys with the base binary Bi-Sn and Bi-Pb eutectic alloys.

  20. An approximate formula for recalescence in binary eutectic alloys

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.

    1993-01-01

    In alloys, solidification takes place along various paths which may be ascertained via phase diagrams; while there would be no single formula applicable to all alloys, an approximate formula for a specific solidification path would be useful in estimating the fraction of the solid formed during recalescence. A formulation is here presented of recalescence in binary eutectic alloys. This formula is applied to Ag-Cu alloys which are of interest in containerless solidification, due to their formation of supersaturated solutions.

  1. Au-Ge MEAM potential fitted to the binary phase diagram

    NASA Astrophysics Data System (ADS)

    Wang, Yanming; Santana, Adriano; Cai, Wei

    2017-02-01

    We have developed a modified embedded atom method potential for the gold-germanium (Au-Ge) binary system that is fitted to the experimental binary phase diagram. The phase diagram is obtained from the common tangent construction of the free energy curves calculated by the adiabatic switching method. While maintaining the accuracy of the melting points of pure Au and Ge, this potential reproduces the eutectic temperature, eutectic composition and the solubility of Ge in solid Au, all in good agreement with the experimental values. To demonstrate the self-consistency of the potential, we performed benchmark molecular dynamics simulations of Ge crystal growth and etching in contact with a Au-Ge liquid alloy.

  2. A comparative study of the microstructures observed in statically cast and continuously cast Bi-In-Sn ternary eutectic alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, S.; Soda, H.; McLean, A.

    2000-01-01

    A ternary eutectic alloy with a composition of 57.2 pct Bi, 24.8 pct In, and 18 pct Sn was continuously cast into wire of 2 mm diameter with casting speeds of 14 and 79 mm/min using the Ohno Continuous Casting (OCC) process. The microstructures obtained were compared with those of statically cast specimens. Extensive segregation of massive Bi blocks, Bi complex structures, and tin-rich dendrites was found in specimens that were statically cast. Decomposition of {radical}Sn by a eutectoid reaction was confirmed based on microstructural evidence. Ternary eutectic alloy with a cooling rate of approximately 1 C/min formed a doublemore » binary eutectic. The double binary eutectic consisted of regions of BiIn and decomposed {radical}Sn in the form of a dendrite cell structure and regions of Bi and decomposed {radical}Sn in the form of a complex-regular cell. The Bi complex-regular cells, which are a ternary eutectic constituent, existed either along the boundaries of the BiIn-decomposed {radical}Sn dendrite cells or at the front of elongated dendrite cell structures. In the continuously cast wires, primary Sn dendrites coupled with a small Bi phase were uniformly distributed within the Bi-In alloy matrix. Neither massive Bi phase, Bi complex-regular cells, no BiIn eutectic dendrite cells were observed, resulting in a more uniform microstructure in contrast to the heavily segregated structures of the statically cast specimens.« less

  3. New eutectic alloys and their heats of transformation

    NASA Technical Reports Server (NTRS)

    Farkas, D.; Birchenall, C. E.

    1985-01-01

    Eutectic compositions and congruently melting intermetallic compounds in binary and multicomponent systems among common elements such as Al, Ca, Cu, Mg, P, Si, and Zn may be useful for high temperature heat storage. In this work, heats of fusion of new multicomponent eutectics and intermetallic phases are reported, some of which are competitive with molten salts in heat storage density at high temperatures. The method used to determine unknown eutectic compositions combined results of differential thermal analysis, metallography, and microprobe analysis. The method allows determination of eutectic compositions in no more than three steps. The heats of fusion of the alloys were measured using commercial calorimeters, a differential thermal analyzer, and a differential scanning calorimeter.

  4. Theoretical Design and Experimental Evaluation of Molten Carbonate Modified LSM Cathode for Low Temperature Solid Oxide Fuel Cells

    DTIC Science & Technology

    2012-01-01

    Li-K binary eutectic salts were prepared for infiltration. Li2CO3 (99%, Alfa Aesar) and K2CO3 (99%, Alfa Aesar) were mixed with a molar ratio of 62:38...99.9%, Alfa Aesar) were also prepared. For infiltration, the eutectic melt was ultrasonic dispersed in ethanol. A few drops of the salt suspension...and heated at 650 oC for 2 h to form a eutectic melt. In addition, eutectic melts containing 0.5 mol % La2O3 (99.9%, Alfa Aesar) or 0.5 mol % Gd2O3

  5. Melting relations in the MgO-MgSiO3 system up to 70 GPa

    NASA Astrophysics Data System (ADS)

    Ohnishi, Satoka; Kuwayama, Yasuhiro; Inoue, Toru

    2017-06-01

    Melting experiments in a binary system MgO-MgSiO3 were performed up to 70 GPa using a CO2 laser heated diamond anvil cell. The quenched samples were polished and analyzed by a dualbeam focused ion beam (FIB) and a field emission scanning electron microscope (FE-SEM), respectively. The liquidus phase and the eutectic composition were determined on the basis of textual and chemical analyses of sample cross sections. Our experimental results show that the eutectic composition is the Si/Mg molar ratio of 0.76 at 35 GPa and it decreases with increasing pressure. Above 45 GPa, it becomes relatively constant at about 0.64-0.65 Si/Mg molar ratio. Using our experimental data collected at a wide pressure range up to 70 GPa together with previous experimental data, we have constructed a thermodynamic model of the eutectic composition of the MgO-MgSiO3 system. The eutectic composition extrapolated to the pressure and temperature conditions at the base of the mantle is about 0.64 Si/Mg molar ratio. The modeled eutectic composition is quite consistent with a previous prediction from ab initio calculations (de Koker et al. in Earth Planet Sci Lett 361:58-63, 2013), suggesting that the simple assumption of a non-ideal regular solution model can well describe the melting relation of the MgO-MgSiO3 system at high pressure. Our results show that the liquidus phase changes from MgO-periclase to MgSiO3-bridgmanite at 35 GPa for the simplified pyrolite composition ( 0.7 Si/Mg molar ratio), while MgSiO3-bridgmanite is the liquidus phase at the entire lower mantle conditions for the chondritic composition ( 0.84 Si/Mg molar ratio).

  6. Crystallization of D-mannitol in binary mixtures with NaCl: phase diagram and polymorphism.

    PubMed

    Telang, Chitra; Suryanarayanan, Raj; Yu, Lian

    2003-12-01

    To study the crystallization, polymorphism, and phase behavior of D-mannitol in binary mixtures with NaCl to better understand their interactions in frozen aqueous solutions. Differential scanning calorimetry, hot-stage microscopy, Raman microscopy, and variable-temperature X-ray diffractometry were used to characterize D-mannitol-NaCl mixtures. NaCl and D-mannitol exhibited significant melt miscibility (up to 7.5% w/w or 0.20 mole fraction of NaCl) and a eutectic phase diagram (eutectic composition 7.5% w/w NaCl; eutectic temperature 150 degrees C for the alpha and beta polymorphs of D-mannitol and 139 degrees C for the delta). The presence of NaCl did not prevent mannitol from crystallizing but, depending on sample size, affected the polymorph crystallized: below 10 mg, delta was obtained; above 100 mg, alpha was obtained. Pure mannitol crystallized under the same conditions first as the delta polymorph and then as the a polymorph, with the latter nucleating on the former. KCl showed similar eutectic points and melt miscibility with D-mannitol as NaCl. LiCl yielded lower eutectic melting points, inhibited the crystallization of D-mannitol during cooling, and enabled the observation of its glass transition. Despite their structural dissimilarity, significant melt miscibility exists between D-mannitol and NaCl. Their phase diagram has been determined and features polymorph-dependent eutectic points. NaCl influences the polymorphic behavior of mannitol, and the effect is linked to the crystallization of mannitol in two polymorphic stages.

  7. Detection of cocrystal formation based on binary phase diagrams using thermal analysis.

    PubMed

    Yamashita, Hiroyuki; Hirakura, Yutaka; Yuda, Masamichi; Teramura, Toshio; Terada, Katsuhide

    2013-01-01

    Although a number of studies have reported that cocrystals can form by heating a physical mixture of two components, details surrounding heat-induced cocrystal formation remain unclear. Here, we attempted to clarify the thermal behavior of a physical mixture and cocrystal formation in reference to a binary phase diagram. Physical mixtures prepared using an agate mortar were heated at rates of 2, 5, 10, and 30 °C/min using differential scanning calorimetry (DSC). Some mixtures were further analyzed using X-ray DSC and polarization microscopy. When a physical mixture consisting of two components which was capable of cocrystal formation was heated using DSC, an exothermic peak associated with cocrystal formation was detected immediately after an endothermic peak. In some combinations, several endothermic peaks were detected and associated with metastable eutectic melting, eutectic melting, and cocrystal melting. In contrast, when a physical mixture of two components which is incapable of cocrystal formation was heated using DSC, only a single endothermic peak associated with eutectic melting was detected. These experimental observations demonstrated how the thermal events were attributed to phase transitions occurring in a binary mixture and clarified the relationship between exothermic peaks and cocrystal formation.

  8. Microstructure and Mechanical Properties of Al2O3/Er3Al5O12 Binary Eutectic Ceramic Prepared by Bridgman Method

    PubMed Central

    Song, Caiyu; Wang, Shunheng; Liu, Juncheng; Zhai, Shuoyan

    2018-01-01

    Directionally solidified Al2O3/Er3Al5O12 (EAG) eutectic ceramic was prepared via vertical Bridgman method with high-frequency induction heating. The effects of the growth rate on the microstructure and mechanical properties of the solidified ceramic were investigated. The experimental results showed that there were no pores or amorphous phases in the directionally solidified Al2O3/EAG eutectic ceramic. Al2O3 phase was embedded in the EAG matrix phase, and the two phases were intertwined with each other to form a typical binary eutectic “hieroglyphic” structure. With the increase of growth rate, the phase size and spacing of the solidified Al2O3/EAG ceramic both decreased, and the growth rate and phase spacing satisfied the λ2v ≈ 60 formula of Jackson-Hunt theory. The cross section microstructure of the solidified ceramic always exhibited an irregular eutectic growth, while the longitudinal section microstructure presented a directional growth. The mechanical properties of the solidified ceramic gradually increased with the increase of growth rate, and the maximum hardness and fracture toughness could reach 21.57 GPa and 2.98 MPa·m1/2 respectively. It was considered that the crack deflection and branching could enhance the toughness of the solidified ceramic effectively. PMID:29601545

  9. A quantitative study of factors influencing lamellar eutectic morphology during solidification

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F. S.

    1981-01-01

    The factors that influence the shape of the solid-liquid interface of a lamellar binary eutectic alloy are evaluated. Alloys of carbon tetrabromide and hexachloroethane which serve as a transparent analogue of lamellar metallic eutectics are used. The observed interface shapes are analyzed by computer-aided methods. The solid-liquid interfacial free energies of each of the individual phases comprising the eutectic system are measured as a function of composition using a 'grain boundary groove' technique. The solid-liquid interfacial free energy of the two phases are evaluated directly from the eutectic interface. The phase diagram for the system, the heat of fusion as a function of composition, and the density as a function of composition are measured. The shape of the eutectic interface is controlled mainly by the solid-liquid and solid-solid interfacial free energy relationships at the interface and by the temperature gradient present, rather than by interlamellar diffusion in the liquid at the interface, over the range of growth rates studied.

  10. Melting and thermal expansion in the Fe-FeO system at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seagle, C. T.; Heinz, D. L.; Campbell, A. J.

    2015-02-26

    Melting in the Fe–FeO system was investigated at pressures up to 93 GPa using synchrotron X-ray diffraction (XRD) and a laser heated diamond anvil cell (DAC). The criteria for melting were the disappearance of reflections associated with one of the end-member phases upon raising the temperature above the eutectic and the reappearance of those reflections on dropping the temperature below the eutectic. The Fe–FeO system is a simple eutectic at 50 GPa and remains eutectic to at least 93 GPa. The eutectic temperature was bound at several pressure points between 19 and 93 GPa, and in some cases the liquidusmore » temperature was also determined. The eutectic temperature rises rapidly with pressure closely following the melting curve of pure Fe. A detailed phase diagram at 50 GPa is presented; the eutectic temperature is 2500 ± 150 K and the eutectic composition is bound between 7.6 ± 1.0 and 9.5 ± 1.0 wt.% O. The coefficient of thermal expansion of FeO is a strong function of volume and decreases with pressure according to a simple power law.« less

  11. Eutectic salt catalyzed environmentally benign and highly efficient Biginelli reaction.

    PubMed

    Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi

    2012-01-01

    A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications.

  12. Eutectic Salt Catalyzed Environmentally Benign and Highly Efficient Biginelli Reaction

    PubMed Central

    Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi

    2012-01-01

    A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications. PMID:22649326

  13. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method

    NASA Astrophysics Data System (ADS)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei

    2016-11-01

    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  14. Relationships between molecular structure and kinetic and thermodynamic controls in lipid systems. Part III. Crystallization and phase behavior of 1-palmitoyl-2,3-stearoyl-sn-glycerol (PSS) and tristearoylglycerol (SSS) binary system.

    PubMed

    Bouzidi, Laziz; Narine, Suresh S

    2012-01-01

    The phase behavior of 1-palmitoyl-2,3-distearoyl-sn-glycerol (PSS)/tristearoylglycerol (SSS) binary system was investigated in terms of polymorphism, crystallization and melting behavior, microstructure and solid fat content (SFC) using widely different constant cooling rates. Kinetic phase diagrams were experimentally determined from the DSC heating thermograms and analyzed using a thermodynamic model to account for non-ideality of mixing. The kinetic phase diagram presented a typical eutectic behavior with a eutectic point at the 0.5(PSS) mixture with a probable precipitation line from 0.5(PSS) to 1.0(PSS), regardless of the rate at which the sample was cooled. The eutectic temperature decreased only slightly with increasing cooling rate. PSS has a strong effect on the physical properties of the PSS-SSS mixtures. In fact, the overall phase behavior of the PSS-SSS binary system was determined, for a very large part, by the asymmetrical TAG. Moreover, PSS is a key driver of the high stability observed in crystal growth, polymorphism and phase development. Levels as low as 10% PSS, when cooled slowly, and 30% when cooled rapidly, were found to be sufficient to suppress the effect of thermal processing. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Data supporting the prediction of the properties of eutectic organic phase change materials.

    PubMed

    Kahwaji, Samer; White, Mary Anne

    2018-04-01

    The data presented in this article include the molar masses, melting temperatures, latent heats of fusion and temperature-dependent heat capacities of fifteen fatty acid phase change materials (PCMs). The data are used in conjunction with the thermodynamic models discussed in Kahwaji and White (2018) [1] to develop a computational tool that calculates the eutectic compositions and thermal properties of eutectic mixtures of PCMs. The computational tool is part of this article and consists of a Microsoft Excel® file available in Mendeley Data repository [2]. A description of the computational tool along with the properties of nearly 100 binary mixtures of fatty acid PCMs calculated using this tool are also included in the present article. The Excel® file is designed such that it can be easily modified or expanded by users to calculate the properties of eutectic mixtures of other classes of PCMs.

  16. Mixing and electronic entropy contributions to thermal energy storage in low melting point alloys

    NASA Astrophysics Data System (ADS)

    Shamberger, Patrick J.; Mizuno, Yasushi; Talapatra, Anjana A.

    2017-07-01

    Melting of crystalline solids is associated with an increase in entropy due to an increase in configurational, rotational, and other degrees of freedom of a system. However, the magnitude of chemical mixing and electronic degrees of freedom, two significant contributions to the entropy of fusion, remain poorly constrained, even in simple 2 and 3 component systems. Here, we present experimentally measured entropies of fusion in the Sn-Pb-Bi and In-Sn-Bi ternary systems, and decouple mixing and electronic contributions. We demonstrate that electronic effects remain the dominant contribution to the entropy of fusion in multi-component post-transition metal and metalloid systems, and that excess entropy of mixing terms can be equal in magnitude to ideal mixing terms, causing regular solution approximations to be inadequate in the general case. Finally, we explore binary eutectic systems using mature thermodynamic databases, identifying eutectics containing at least one semiconducting intermetallic phase as promising candidates to exceed the entropy of fusion of monatomic endmembers, while simultaneously maintaining low melting points. These results have significant implications for engineering high-thermal conductivity metallic phase change materials to store thermal energy.

  17. A Scientific Basis for an Alternate Cathode Architecture.

    DTIC Science & Technology

    1988-02-01

    working it below the annealing temperature. VO Page 11 4K5 However, when the filament operated above the annealing temperature, it recrystallized with...an impregnant ratio of 5 A moles of BaCO3: 2 moles A1203 . This represented the lowest eutectic point in the binary phase diagram. This cathode was...matrix. In its original composition, cathode impregnants in the 1 ratio of 5BaO:2A1203 were chosen because this is the lowest melting point eutectic not

  18. Pairing Heterocyclic Cations with closo-Icosahedral Borane and Carborane Anions. II. Benchtop Alternative Synthetic Methodologies for Binary Triazolium and Tetrazolium Salts with Significant Water Solubility

    DTIC Science & Technology

    2010-04-01

    produced from eutectic melts. Nat. Mater. 2008, 7, 626-630. 9. Any attempt at recrystallizing the 1:1 mixture of cations in (12) is likely to afford... recrystallizations . So, rather than recrystallizing each individual adduct, we concentrated on performing a careful spectroscopic examination of the...suggested. [1] While it is well-known that an admixture of two neutral compounds often affords eutectic behavior, we wondered whether or not the same

  19. A cellular automaton - finite volume method for the simulation of dendritic and eutectic growth in binary alloys using an adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Dobravec, Tadej; Mavrič, Boštjan; Šarler, Božidar

    2017-11-01

    A two-dimensional model to simulate the dendritic and eutectic growth in binary alloys is developed. A cellular automaton method is adopted to track the movement of the solid-liquid interface. The diffusion equation is solved in the solid and liquid phases by using an explicit finite volume method. The computational domain is divided into square cells that can be hierarchically refined or coarsened using an adaptive mesh based on the quadtree algorithm. Such a mesh refines the regions of the domain near the solid-liquid interface, where the highest concentration gradients are observed. In the regions where the lowest concentration gradients are observed the cells are coarsened. The originality of the work is in the novel, adaptive approach to the efficient and accurate solution of the posed multiscale problem. The model is verified and assessed by comparison with the analytical results of the Lipton-Glicksman-Kurz model for the steady growth of a dendrite tip and the Jackson-Hunt model for regular eutectic growth. Several examples of typical microstructures are simulated and the features of the method as well as further developments are discussed.

  20. Phase Behavior of Binary Mixture of Heptaethylene Glycol Decyl Ether and Water: Formation of Phase Compound in Solid Phase

    PubMed

    Nibu; Suemori; Inoue

    1997-07-01

    Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) were used to construct and characterize the phase diagram for a binary mixture of heptaethylene glycol decyl ether (C10 E7 ) and water in the temperature range from -60 to 80°C. Plots of the endothermic peak temperatures obtained by DSC measurements against compositions provided eutectic solid-liquid phase boundaries with a eutectic composition of 34 wt% of H2 O. On the other hand, heat of fusion per unit weight of the mixture changed discretely at the composition corresponding to the "eutectic" composition. Furthermore, the IR spectra obtained for the mixture in the solid phase were well reproduced as a superposition of those for the mixture of 34 wt% H2 O and pure components but were not reproduced by superimposing the spectra obtained for the solid surfactant and ice. These observations indicate that a solid phase compound is formed between C10 E7 and water with a stoichiometry of 1:14 and that the compound and pure components exist as separate phases, rather than the phases separating into surfactant and ice, which would be expected if the C10 E7 /water mixture formed a true eutectic mixture system. It is estimated from the composition corresponding to the phase compounds that two molecules of water per oxyethylene unit are bound to hydrophilic polyoxyethylene chain of C10 E7 to form a hydrated compound.

  1. Interactions between carbamazepine and polyethylene glycol (PEG) 6000: characterisations of the physical, solid dispersed and eutectic mixtures.

    PubMed

    Naima, Z; Siro, T; Juan-Manuel, G D; Chantal, C; René, C; Jerome, D

    2001-02-01

    The influence of a hydrophilic carrier (PEG 6000) on the polymorphism of carbamazepine, an antiepileptic drug, was investigated in binary physical mixtures and solid dispersions by means of differential scanning calorimetry (DSC), thermal gravimetry, hot-stage microscopy (HSM), and X-ray diffractometry, respectively. This study provides also an attempt to develop a method to calculate more precisely the eutectic composition. In rather ideal physical mixtures, carbamazepine was found as monoclinic Form III. In solid dispersions, the drug was found to crystallize as trigonal Form II; a eutectic invariant in the PEG 6000-rich composition domain (6% of carbamazepine mass) was evidenced by DSC experiments and confirmed by HSM observations. In the binary phase diagram the ideal carbamazepine liquidus curve was located at temperatures higher than the respective experimental ones. This suggests that drug can be maintained in the liquid state in the temperature-mass fraction (T--x) region between the two carbamazepine liquidus curves. This indicates in turn that attractive interactions occur between carbamazepine and PEG 6000-chains. These interactions have been also claimed to prevent carbamazepine from degradation into iminostilbene (a compound resulting from the chemical degradation of carbamazepine which is postulated to be responsible for the idiosyncratic toxicity of the drug) and thought to lead to the crystallization of metastable Carbamazepine II from melt. The negative excess entropy for eutectic mixtures indicated that the drug crystals are finely dispersed in the bulk of polymer chains.

  2. Measurements of the liquidus surface and solidus transitions of the NaCl-UCl3 and NaCl-UCl3-CeCl3 phase diagrams

    NASA Astrophysics Data System (ADS)

    Sooby, E. S.; Nelson, A. T.; White, J. T.; McIntyre, P. M.

    2015-11-01

    NaCl-UCl3-PuCl3 is proposed as the fuel salt for a number of molten salt reactor concepts. No experimental data exists for the ternary system, and limited data is available for the binary compositions of this salt system. Differential scanning calorimetry is used in this study to examine the liquidus surface and solidus transition of a surrogate fuel-salt (NaCl-UCl3-CeCl3) and to reinvestigate the NaCl-UCl3 eutectic phase diagram. The results of this study show good agreement with previously reported data for the pure salt compounds used (NaCl, UCl3, and CeCl3) as well as for the eutectic points for the NaCl-UCl3 and NaCl-CeCl3 binary systems. The NaCl-UCl3 liquidus surface produced in this study predicts a 30-40 °C increase on the NaCl-rich side of the binary phase diagram. The increase in liquidus temperature could prove significant to molten salt reactor modeling.

  3. Phase Change Energy Storage Material Suitable for Solar Heating System

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Li, Haihua; Zhang, Lihui; Liu, Zhenfa

    2018-01-01

    Differential scanning calorimetry (DSC) was used to investigate the thermal properties of palmitic acid, myristic acid, laurel acid and the binary composite of palmitic/laurel acid and palmitic/myristic acid. The results showed that the phase transition temperatures of the three monomers were between 46.9-65.9°C, and the latent heats were above 190 J/g, which could be used as solar energy storage material. When the mass ratio of Palmitic acid and myristic was 1:1, the eutectic mixture could be formed. The latent heat of the eutectic mixture was 186.6 J/g, the melting temperature and the solidification temperature was 50.6°C and 43.8°C respectively. The latent heat of phase change and the melting temperature had not obvious variations after 400 thermal cycles, which proved that the binary composite had good thermal stability and was suitable for solar floor radiant heating system.

  4. Fraction eutectic measurements in slowly cooled Pb - 15 wt percent Sn alloys

    NASA Technical Reports Server (NTRS)

    Studer, Anthony C.; Laxmanan, V.

    1988-01-01

    A space shuttle experiment employing the General Purpose Furnace in its isothermal mode of operation is currently manifested for flight circa 1989. The aim of this experiment was to investigate the role of gravity in a slowly, and isothermally, cooled sample of a binary Pb - 15 wt percent Sn alloy. Ground based work in support of the microgravity experiment is discussed. In particular, it is shown that fraction eutectic measurements using an image analyzer, can be used to satisfactorily describe macrosegregation occurring in these slowly cooled ingots.

  5. In situ determination of binary alloy melt compositions in the LHDAC by X- Radiography

    NASA Astrophysics Data System (ADS)

    Lord, O. T.; Walter, M. J.; Walker, D.; Clark, S. M.

    2008-12-01

    Constraining the light element in Earth's molten outer core requires an understanding of the melting phase relations in iron-light element binary systems. For example, it is critical to determine the composition of liquids at binary eutectics. Typically such measurements are carried out after the sample has been quenched in temperature and pressure. Such 'cook and look' methods possibly suffer from systematic errors introduced by exsolution of the light element from the melt on quench and error in the reintegration of the liquid composition [1]. Here, we present a novel method for the determination of melt compositions in iron-light element binary systems in situ in the LHDAC at simultaneous high-pressure, high-temperature conditions. Samples consist of a light element bearing compound, such as FeO, surrounded by a pure iron ring, forming a donut ~100 μm in diameter and ~15 μm thick. The donuts are loaded into stainless steel gaskets in the DAC, sandwiched between discs fabricated from sol-gel deposited nanocrystalline Al2O3 with similar dimensions to the donut. Pressure is monitored by ruby fluorescence during compression. The sample is heated at the boundary between the iron and light element compound using two 100 W IR lasers in a double-sided configuration at beamline 12.2.2 at the Advanced Light Source. Temperature is measured by spectroradiometry. Before, during and after melting, X-radiographic images of the sample are taken by shining a defocused beam of synchrotron X-rays through the sample and onto a CdWO4 phosphor. The visible light from the phosphor is then focused onto a high resolution CCD, where absorption contrast images are recorded. The absorption of the molten region is then determined, and it's composition calculated by linear interpolation between the absorption of the two solid end members. As a test of the reliability of the method we measured the Fe-FeS eutectic to 20 GPa and our results are in good agreement with previous studies that are based on various ex situ techniques. We measured the eutectic composition between Fe and Fe3C up to 44 GPa, and found that the carbon content of the eutectic drops rapidly above about 10 GPa, dropping to less that 1 wt% by 44 GPa. This result is generally consistent with the thermodynamic calculations of Wood [2]. Experiments on the Fe-FeSi eutectic yielded an increase in the Si content of the eutectic to 35 GPa, consistent with data from large volume press experiments [3] Notably, melting experiments at 35-43 GPa and ~2500 K on a boundary between Fe and FeO failed to yield evidence of a melt with a composition distinguishable from pure iron. However, an experiment at 12 GPa and 2700 K between Fe and FeO(OH) did yield a melt with a composition intermediate between the two end members. This suggests that O solubility in the Fe-O eutectic melt is low at mid-mantle pressures, but that H may dissolve into the melt by itself or in combination with O. [1] Walker, D., 2005. Core-Mantle chemical issues. Canad. Min., 43, 1553-1564 [2] Wood, B. J., 1993. Carbon in the core. Earth Planet Sci. Lett., 117, 593-607 [3] Kuwayama, Y. & Hirose, K., 2004. Phase relations in the system Fe-FeSi at 21 GPa. Am. Min., 89, 273-276.

  6. Interface structure and contact melting in AgCu eutectic. A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bystrenko, O.; Kartuzov, V.

    2017-12-01

    Molecular dynamics simulations of the interface structure in binary AgCu eutectic were performed by using the realistic EAM potential. In simulations, we examined the time dependence of the total energy in the process of equilibration, the probability distributions, the composition profiles for the components, and the component diffusivities within the interface zone. It is shown that the relaxation to the equilibrium in the solid state is accompanied by the formation of the steady disordered diffusion zone at the boundary between the crystalline components. At higher temperatures, closer to the eutectic point, the increase in the width of the steady diffusion zone is observed. The particle diffusivities grow therewith to the numbers typical for the liquid metals. Above the eutectic point, the steady zone does not form, instead, the complete contact melting in the system occurs. The results of simulations indicate that during the temperature increase the phenomenon of contact melting is preceded by the similar process spatially localized in the vicinity of the interface.

  7. A Binary Eutectic Mixture of TNAZ and R-Salt Explosives

    NASA Astrophysics Data System (ADS)

    Sandstrom, Mary; Manner, Virginia; Pemberton, Steven; Lloyd, Joseph; Tappan, Bryce

    2011-06-01

    TNAZ is a high performing explosive that is melt castable. However, the casting process can be problematic since TNAZ has a high vapor pressure exacerbated by a fairly high melting temperature. In order to mitigate the ill effects of its high vapor pressure, including a lower melting explosive was explored by making a series of mixtures of TNAZ and R-Salt. Initially, a eutectic temperature and composition was theoretically determined. Then a phase diagram was constructed from a series and mixtures by differential scanning calorimetery (DSC). The vapor pressure of the eutectic composition was determined by thermogravimetric analysis (TGA). Cylinder testing of the eutectic composition was carried out in copper tubes, 5'' long with 1/2 ``inner diameter and 1/16'' thick walls. The detonation velocity was measured using wire switches along the cylinder length and the expanding wall velocity was measured using PDV gauges. A rough evaluation of JWL equation-of-state parameters has been carried out. A more detailed evaluation is in progress.

  8. Surface and cut-edge corrosion behavior of Zn-Mg-Al alloy-coated steel sheets as a function of the alloy coating microstructure

    NASA Astrophysics Data System (ADS)

    Oh, Min-Suk; Kim, Sang-Heon; Kim, Jong-Sang; Lee, Jae-Won; Shon, Je-Ha; Jin, Young-Sool

    2016-01-01

    The effects of Mg and Al content on the microstructure and corrosion resistance of hot-dip Zn-Mg-Al alloycoated steel sheets were investigated. Pure Zn and Zn-based alloy coatings containing Mg (0-5 wt%) and Al (0.2-55 wt%) were produced by a hot-dip galvanizing method. Mg and Al addition induced formation of intermetallic microstructures, like primary Zn, Zn/MgZn2 binary eutectic, dendric Zn/Al eutectoid, and Zn/Al/MgZn2/ternary eutectic structures in the coating layer. MgZn2-related structures (Zn/MgZn2, Zn/Al/MgZn2, MgZn2) played an important role in increasing the corrosion resistance of Zn-Mg-Al alloy-coated steel sheets. Zn-3%Mg-2.5%Al coating layer containing a large volume of lamellar-shaped Zn/MgZn2 binary eutectic structures showed the best cut-edge corrosion resistance. The analysis indicated that Mg dissolved from MgZn2 in the early stage of corrosion and migrated to the cathodic region of steel-exposed cut-edge area to form dense and ordered protective corrosion products, leading to prolonged cathodic protection of Zn-Mg-Al alloy-coated steel sheets.

  9. Electroanalytical measurements of binary-analyte mixtures in molten LiCl-KCl eutectic: Uranium(III)- and Magnesium(II)-Chloride

    NASA Astrophysics Data System (ADS)

    Rappleye, Devin; Newton, Matthew L.; Zhang, Chao; Simpson, Michael F.

    2017-04-01

    The electrochemical behavior of MgCl2 in molten LiCl-KCl eutectic was investigated to evaluate its suitability as a surrogate for PuCl3 in studies related to the eletrorefining of used nuclear fuel. The reduction of Mg2+ was found to be electrochemically reversible up to 300 mV s-1 at 773 K. The diffusion coefficient for Mg2+ was calculated to be 1.74 and 2.17 × 10-5 cm2 s-1 with and without U3+ present, respectively, at 773 K using cyclic voltammetry (CV). Upon comparison to literature data, the diffusion coefficient of Mg2+ differs by only 8.8% (with U3+ present) from that of Pu3+ and the difference in peak potentials was only 79 mV. Binary-analyte mixtures of UCl3 and MgCl2 in eutectic LiCl-KCl were further investigated using CV, normal pulse voltammetry (NPV), chronoamperometry (CA) and open-circuit potential (OCP) measurements for the purpose of comparing each technique's accuracy in measuring U3+ and Mg2+ concentrations. Of all the techniques tested, NPV resulted in the lowest error which was, on average, 11.4% and 9.81% for U3+ and Mg2+, respectively.

  10. Mg-Al-Ca In-Situ Composites with a Refined Eutectic Structure and Their Compressive Properties

    NASA Astrophysics Data System (ADS)

    Shi, Ling-Ling; Xu, Jian; Ma, Evan

    2008-05-01

    In a series of Mg x (Al2Ca)100- x (76 ≤ x ≤ 87) ternary alloys near the Mg-(Mg,Al)2Ca pseudo-binary eutectic point, different phases and morphologies based on ultrafine eutectic microstructure have been obtained by controlling the composition and changing the cooling rate via either induction melting or copper mold casting. For 81 ≤ x ≤ 87, the chill-cast alloys with ductile Mg dendrites embedded in an ultrafine [Mg + (Mg,Al)2Ca] eutectic matrix exhibit gradually increased fracture strength from 415 to 491 MPa with the decrease of Mg content. At x = 79, the Mg79Al14Ca7 alloy contains hard (Mg,Al)2Ca precipitates coexisting with ductile Mg dendrite, dispersed in the strong eutectic matrix. This alloy exhibits the highest compressive fracture strength (600 MPa), and the specific strength reaches 3.4 × 105 N·m·kg-1. The alloys all exhibit substantial plastic strain (5 to 6 pct). The attainment of such a combination of strength and plasticity is an interesting and useful step in improving the mechanical properties of lightweight Mg alloys.

  11. Rheological Analysis of Binary Eutectic Mixture of Sodium and Potassium Nitrate and the Effect of Low Concentration CuO Nanoparticle Addition to Its Viscosity.

    PubMed

    Lasfargues, Mathieu; Cao, Hui; Geng, Qiao; Ding, Yulong

    2015-08-11

    This paper is focused on the characterisation and demonstration of Newtonian behaviour of salt at both high and low shear rate for sodium and potassium nitrate eutectic mixture (60/40) ranging from 250 °C to 500 °C. Analysis of published and experimental data was carried out to correlate all the numbers into one meaningful 4th order polynomial equation. Addition of a low amount of copper oxide nanoparticles to the mixture increased viscosity of 5.0%-18.0% compared to the latter equation.

  12. High electrical resistivity Nd-Fe-B die-upset magnet doped with eutectic DyF3-LiF salt mixture

    NASA Astrophysics Data System (ADS)

    Kim, K. M.; Kim, J. Y.; Kwon, H. W.; Kim, D. H.; Lee, J. G.; Yu, J. H.

    2017-05-01

    Nd-Fe-B-type die-upset magnet with high electrical resistivity was prepared by doping of eutectic DyF3-LiF salt mixture. Mixture of melt-spun Nd-Fe-B flakes (MQU-F: Nd13.6Fe73.6Co6.6Ga0.6B5.6) and eutectic binary (DyF3-LiF) salt (25 mol% DyF3 - 75 mol% LiF) was hot-pressed and then die-upset. By adding the eutectic salt mixture (> 4 wt%), electrical resistivity of the die-upset magnet was enhanced to over 400 μ Ω .cm compared to 190 μ Ω .cm of the un-doped magnet. Remarkable enhancement of the electrical resistivity was attributed to homogeneous and continuous coverage of the interface between flakes by the easily melted eutectic salt dielectric mixture. It was revealed that active substitution of the Nd atoms in neighboring flakes by the Dy atoms from the added (DyF3-LiF) salt mixture had occurred during such a quick thermal processing of hot-pressing and die-upsetting. This Dy substitution led to coercivity enhancement in the die-upset magnet doped with the eutectic (DyF3-LiF) salt mixture. Coercivity and remanence of the die-upset magnet doped with (DyF3-LiF) salt mixture was as good as those of the DyF3-doped magnet.

  13. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Caram, Rubens; Mohanty, A. P.; Seth, Jayshree

    1990-01-01

    In eutectic growth, as the solid phases grow they reject atoms to the liquid. This results in a variation of melt composition along the solid/liquid interface. In the past, mass transfer in eutectic solidification, in the absence of convection, was considered to be governed only by the diffusion induced by compositional gradients. However, mass transfer can also be generated by a temperature gradient. This is called thermotransport, thermomigration, thermal diffusion or the Soret effect. A theoretical model of the influence of the Soret effect on the growth of eutectic alloys is presented. A differential equation describing the compositional field near the interface during unidirectional solidification of a binary eutectic alloy was formulated by including the contributions of both compositional and thermal gradients in the liquid. A steady-state solution of the differential equation was obtained by applying appropriate boundary conditions and accounting for heat flow in the melt. Following that, the average interfacial composition was converted to a variation of undercooling at the interface, and consequently to microstructural parameters. The results obtained show that thermotransport can, under certain circumstances, be a parameter of paramount importance.

  14. Devitrification studies of wollastonite-tricalcium phosphate eutectic glass.

    PubMed

    Magallanes-Perdomo, M; Pena, P; De Aza, P N; Carrodeguas, R G; Rodríguez, M A; Turrillas, X; De Aza, S; De Aza, A H

    2009-10-01

    The present paper describes and discusses the devitrification and crystallization process of wollastonite-tricalcium phosphate (W-TCP) eutectic glass. This process was studied in situ from room temperature up to 1375 degrees C, by neutron diffractometry in vacuum. The data obtained were combined and compared with those performed in ambient atmosphere by differential thermal analysis and with those of samples fired in air at selected temperatures, and then cooled down and subsequently studied by laboratory XRD and field emission scanning electron microscopy fitted with energy X-ray dispersive spectroscopy. The experimental evidence indicates that the devitrification of W-TCP eutectic glass begins at approximately 870 degrees C with the crystallization of a Ca-deficient apatite phase, followed by wollastonite-2M (CaSiO(3)) crystallization at approximately 1006 degrees C. At 1375 degrees C, the bio-glass-ceramic is composed of quasi-rounded colonies formed by a homogeneous mixture of pseudowollastonite (CaSiO(3)) and alpha-tricalcium phosphate (Ca(3)(PO(4))(2)). This microstructure corresponds to irregular eutectic structures. It was also found that it is possible to obtain from the eutectic composition of the wollastonite-tricalcium phosphate binary system a wide range of bio-glass-ceramics, with different crystalline phases present, through appropriate design of thermal treatments.

  15. Thermodynamic study of (anthracene + benzo[a]pyrene) solid mixtures

    PubMed Central

    Rice, James W.; Suuberg, Eric M.

    2010-01-01

    To characterize better the thermodynamic behavior of a binary polycyclic aromatic hydrocarbon mixture, thermochemical and vapor pressure experiments were used to examine the phase behavior of the {anthracene (1) + benzo[a]pyrene (2)} system. A solid-liquid phase diagram was mapped for the mixture. A eutectic point occurs at x1 = 0.26. The eutectic mixture is an amorphous solid that lacks organized crystal structure and melts between T = (414 and 420) K. For mixtures that contain 0.10 < x1 < 0.90, the enthalpy of fusion is dominated by that of the eutectic. Solid-vapor equilibrium studies show that mixtures of anthracene and benzo[a]pyrene at x1 < 0.10 sublime at the vapor pressure of pure benzo[a]pyrene. These results suggest that the solid-vapor equilibrium of benzo[a]pyrene is not significantly influenced by moderate levels of anthracene in the crystal structure. PMID:20814451

  16. Rheological Analysis of Binary Eutectic Mixture of Sodium and Potassium Nitrate and the Effect of Low Concentration CuO Nanoparticle Addition to Its Viscosity

    PubMed Central

    Lasfargues, Mathieu; Cao, Hui; Geng, Qiao; Ding, Yulong

    2015-01-01

    This paper is focused on the characterisation and demonstration of Newtonian behaviour of salt at both high and low shear rate for sodium and potassium nitrate eutectic mixture (60/40) ranging from 250 °C to 500 °C. Analysis of published and experimental data was carried out to correlate all the numbers into one meaningful 4th order polynomial equation. Addition of a low amount of copper oxide nanoparticles to the mixture increased viscosity of 5.0%–18.0% compared to the latter equation. PMID:28793498

  17. Highly Simple Deep Eutectic Solvent Extraction of Manganese in Vegetable Samples Prior to Its ICP-OES Analysis.

    PubMed

    Bağda, Esra; Altundağ, Hüseyin; Soylak, Mustafa

    2017-10-01

    In the present work, simple and sensitive extraction methods for selective determination of manganese have been successfully developed. The methods were based on solubilization of manganese in deep eutectic solvent medium. Three deep eutectic solvents with choline chloride (vitamin B4) and tartaric/oxalic/citric acids have been prepared. Extraction parameters were optimized with using standard reference material (1573a tomato leaves). The quantitative recovery values were obtained with 1.25 g/L sample to deep eutectic solvent (DES) volume, at 95 °C for 2 h. The limit of detection was found as 0.50, 0.34, and 1.23 μg/L for DES/tartaric, DES/oxalic, and DES/citric acid, respectively. At optimum conditions, the analytical signal was linear for the range of 10-3000 μg/L for all studied DESs with the correlation coefficient >0.99. The extraction methods were applied to different real samples such as basil herb, spinach, dill, and cucumber barks. The known amount of manganese was spiked to samples, and good recovery results were obtained.

  18. Nonergodicity in binary alloys

    NASA Astrophysics Data System (ADS)

    Son, Leonid; Sidorov, Valery; Popel, Pjotr; Shulgin, Dmitry

    2015-09-01

    For binary liquids with limited miscibility of the components, we provide the corrections to the equation of state which arise from the nonergogic diffusivity. It is shown that these corrections result in lowering of critical miscibility point. In some cases, it may result in a bifurcation of miscibility curve: the mixtures near 50% concentration which are homogeneous at the microscopic level, occur to be too stable to provide a quasi - eutectic triple point. These features provide a new look on the phase diagrams of some binary systems. In present work, we discuss Ga-Pb, Fe-Cu, and Cu-Zr alloys. Our investigation corresponds their complex behavior in liquid state to the shapes of their phase diagrams.

  19. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    Heats of transformation of eutectic alloys were measured for many binary and ternary systems by differential scanning calorimetry and thermal analysis. Only the relatively cheap and plentiful elements Mg, Al, Si, P, Ca, Cu, Zn were considered. A method for measuring volume change during transformation was developed using x-ray absorption in a confined sample. Thermal expansion coefficients of both solid and liquid states of aluminum and of its eutectics with copper and with silicon also were determined. Preliminary evaluation of containment materials lead to the selection of silicon carbide as the initial material for study. Possible applications of alloy PCMs for heat storage in conventional and solar central power stations, small solar receivers and industrial furnace operations are under consideration.

  20. Microstructure Formation in Dissimilar Metal Welds: Electron Beam Welding of Ti/Ni

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhradeep; Abinandanan, T. A.; Reddy, G. Madhusudhan; Chattopadhyay, Kamanio

    2016-02-01

    We present results for electron beam welding of a binary Ti/Ni dissimilar metal couple. The difference in physical properties of the base metals and metallurgical features (thermodynamics and kinetics) of the system influence both macroscopic transport and microstructure development in the weld. Microstructures near the fusion interfaces are markedly different from those inside the weld region. At the Ti side, Ti2Ni dendrites are observed to grow toward the fusion interface, while in the Ni side, layered growth of γ-Ni, Ni3Ti, and Ni3Ti + NiTi eutectic is observed. Different morphologies of the latter eutectic constitute the predominant microstructure inside the weld metal region. These results are compared and contrasted with those from laser welding of the same binary couple, and a scheme of solidification is proposed to explain the observations. This highlights notable departures from welding of similar and other dissimilar metals such as a significant asymmetry in heat transport that governs progress of solidification from each side of the couple, and a lack of unique liquidus isotherm characterizing the liquid-solid front.

  1. Thermodynamic Investigation of the Eutectic Mixture of the LiNO3-NaNO3-KNO3-Ca(NO3)2 System

    NASA Astrophysics Data System (ADS)

    Peng, Qiang; Ding, Jing; Wei, Xiaolan; Jiang, Gan

    2017-09-01

    Molten nitrate salt is usually employed as heat transfer or energy storage medium in concentrating solar power systems to improve the overall efficiency of thermoelectric conversion. In the present work, the liquidus curves of the LiNO3-NaNO3-KNO3-Ca(NO3)2 system is determined by conformal ionic solution theory according to the solid-liquid equilibrium state of the binary mixture. The calculated eutectic temperature of the mixture is 93.17 {°}C, which is close to the experimental value of 93.22 {°}C obtained from differential scanning calorimetry (DSC). Visualization observation experiments reveal that the quaternary eutectic mixture begins to partially melt when the temperature reaches 50 {°}C, and the degree of melting increases with temperature. The mixture is completely melted at 130 {°}C. The observed changes in the dissolved state at different temperatures correlate well with the DSC heat flow curve fluctuations.

  2. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 to 1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  3. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 - 1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  4. Interdigitated Eutectic Alloy Foil Anodes for Rechargeable Batteries

    DOE PAGES

    Kreder, III, Karl J.; Heligman, Brian T.; Manthiram, Arumugam

    2017-09-19

    An interdigitated eutectic alloy (IdEA) foil is presented as a framework for the development of alloy anodes with a capacity that is significantly higher than that of the traditional graphite/copper assembly. In conclusion, it is a simple, low-cost approach that can be applied to a broad range of alloy systems with various working ions such as Li, Na, or Mg.

  5. Experimental constraints on melting temperatures in the MgO-SiO2 system at lower mantle pressures

    NASA Astrophysics Data System (ADS)

    Baron, Marzena A.; Lord, Oliver T.; Myhill, Robert; Thomson, Andrew R.; Wang, Weiwei; Trønnes, Reidar G.; Walter, Michael J.

    2017-08-01

    Eutectic melting curves in the system MgO-SiO2 have been experimentally determined at lower mantle pressures using laser-heated diamond anvil cell (LH-DAC) techniques. We investigated eutectic melting of bridgmanite plus periclase in the MgO-MgSiO3 binary, and melting of bridgmanite plus stishovite in the MgSiO3-SiO2 binary, as analogues for natural peridotite and basalt, respectively. The melting curve of model basalt occurs at lower temperatures, has a shallower dT / dP slope and slightly less curvature than the model peridotitic melting curve. Overall, melting temperatures detected in this study are in good agreement with previous experiments and ab initio simulations at ∼25 GPa (Liebske and Frost, 2012; de Koker et al., 2013). However, at higher pressures the measured eutectic melting curves are systematically lower in temperature than curves extrapolated on the basis of thermodynamic modelling of low-pressure experimental data, and those calculated from atomistic simulations. We find that our data are inconsistent with previously computed melting temperatures and melt thermodynamic properties of the SiO2 endmember, and indicate a maximum in short-range ordering in MgO-SiO2 melts close to Mg2SiO4 composition. The curvature of the model peridotite eutectic relative to an MgSiO3 melt adiabat indicates that crystallization in a global magma ocean would begin at ∼100 GPa rather than at the bottom of the mantle, allowing for an early basal melt layer. The model peridotite melting curve lies ∼ 500 K above the mantle geotherm at the core-mantle boundary, indicating that it will not be molten unless the addition of other components reduces the solidus sufficiently. The model basalt melting curve intersects the geotherm at the base of the mantle, and partial melting of subducted oceanic crust is expected.

  6. Undercooling and solidification behavior in the InSb-Sb system. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Graves, J. A.

    1985-01-01

    Use of the droplet emulsion technique has been successful in studying the undercooling and crystallization behavior of Sb, InSb, and an InSb-Sb eutectic alloy. Both droplet size and imposed cooling rate were influential in controlling the extent of liquid undercooling. The droplet surface coating was of significant importance in determining the resultant solidification product structure through its effect on nucleation kinetics. The maximum undercooling for pure Sb was extended from 0.08 to 0.23 T sub m. While simple crushing techniques provided a dramatic increase in droplet undercooling over the bulk material, emulsification treatments both enhanced this undercooling and allowed successful formation of a metastable simple cubic Sb phase. This phase was stable to temperatures approaching the melting point. The simple cubic phase was detected in droplet samples processed using DTA, air and water quenching, and drop tube processing under a helium gas atmosphere. A deviation in the InSb parent ingot composition limited interpretation of the line compound results, however, emulsification techniques extended the undercooling of this material to 0.17 T sub L and provided a stable, protective surface coating for the droplets. Emulsification of the eutectic alloy was effective at producing various levels of undercooling from 0.1 to 0.2 T sub E. Microstructural examination revealed a normal-type eutectic structure in the undercooled droplets indicating that solidification occurred within the coupled zone and that this zone is somewhat symmetric about the eutectic composition.

  7. Nonergodicity of microfine binary systems

    NASA Astrophysics Data System (ADS)

    Son, L. D.; Sidorov, V. E.; Popel', P. S.; Shul'gin, D. B.

    2016-02-01

    The correction to the equation of state that is related to the nonergodicity of diffusion dynamics is discussed for a binary solid solution with a limited solubility. It is asserted that, apart from standard thermodynamic variables (temperature, volume, concentration), this correction should be taken into account in the form of the average local chemical potential fluctuations associated with microheterogeneity in order to plot a phase diagram. It is shown that a low value of this correction lowers the miscibility gap and that this gap splits when this correction increases. This situation is discussed for eutectic systems and Ga-Pb, Fe-Cu, and Cu-Zr alloys.

  8. Quantitative phase-field lattice-Boltzmann study of lamellar eutectic growth under natural convection

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Guo, Z.; Xiong, S.-M.

    2018-05-01

    The influence of natural convection on lamellar eutectic growth was determined by a comprehensive phase-field lattice-Boltzmann study for Al-Cu and CB r4-C2C l6 eutectic alloys. The mass differences resulting from concentration differences led to the fluid flow and a robust parallel and adaptive mesh refinement algorithm was employed to improve the computational efficiency. By means of carefully designed "numerical experiments", the eutectic growth under natural convection was explored and a simple analytical model was proposed to predict the adjustment of the lamellar spacing. Furthermore, by alternating the solute expansion coefficient, initial lamellar spacing, and undercooling, the microstructure evolution was presented and compared with the classical eutectic growth theory. Results showed that both interfacial solute distribution and average curvature were affected by the natural convection, the effect of which could be further quantified by adding a constant into the growth rule proposed by Jackson and Hunt [Jackson and Hunt, Trans. Metall. Soc. AIME 236, 1129 (1966)].

  9. Theoretical analysis of the axial growth of nanowires starting with a binary eutectic droplet via vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Li, Hejun; Zhang, Yulei; Zhao, Zhigang

    2018-06-01

    A series of theoretical analysis is carried out for the axial vapor-liquid-solid (VLS) growth of nanowires starting with a binary eutectic droplet. The growth model considering the entire process of axial VLS growth is a development of the approaches already developed by previous studies. In this model, the steady and unsteady state growth are considered both. The amount of solute species in a variable liquid droplet, the nanowire length, radius, growth rate and all other parameters during the entire axial growth process are treated as functions of growth time. The model provides theoretical predictions for the formation of nanowire shape, the length-radius and growth rate-radius dependences. It is also suggested by the model that the initial growth of single nanowire is significantly affected by Gibbs-Thompson effect due to the shape change. The model was applied on predictions of available experimental data of Si and Ge nanowires grown from Au-Si and Au-Ge systems respectively reported by other works. The calculations with the proposed model are in satisfactory agreement with the experimental results of the previous works.

  10. Kinetics of Si and Ge nanowires growth through electron beam evaporation

    PubMed Central

    2011-01-01

    Si and Ge have the same crystalline structure, and although Si-Au and Ge-Au binary alloys are thermodynamically similar (same phase diagram, with the eutectic temperature of about 360°C), in this study, it is proved that Si and Ge nanowires (NWs) growth by electron beam evaporation occurs in very different temperature ranges and fluence regimes. In particular, it is demonstrated that Ge growth occurs just above the eutectic temperature, while Si NWs growth occurs at temperature higher than the eutectic temperature, at about 450°C. Moreover, Si NWs growth requires a higher evaporated fluence before the NWs become to be visible. These differences arise in the different kinetics behaviors of these systems. The authors investigate the microscopic growth mechanisms elucidating the contribution of the adatoms diffusion as a function of the evaporated atoms direct impingement, demonstrating that adatoms play a key role in physical vapor deposition (PVD) NWs growth. The concept of incubation fluence, which is necessary for an interpretation of NWs growth in PVD growth conditions, is highlighted. PMID:21711696

  11. Thermodynamic assessment of the Sn-Co lead-free solder system

    NASA Astrophysics Data System (ADS)

    Liu, Libin; Andersson, Cristina; Liu, Johan

    2004-09-01

    The Sn-Co-Cu eutectic alloy can be a less expensive alternative for the Sn-Ag-Cu alloy. In order to find the eutectic solder composition of the Sn-Co-Cu system, the Sn-Co binary system has been thoroughly assessed with the calculation of phase diagram (CALPHAD) method. The liquid phase, the FCC and HCP Co-rich solid solution, and the BCT Sn-rich solid solution have been described by the Redlich-Kister model. The Hillert-Jarl-Inden model has been used to describe the magnetic contributions to Gibbs energy in FCC and HCP. The CoSn2, CoSn, Co3Sn2_β, and Co3Sn2_α phases have been treated as stoichiometric phases. A series of thermodynamic parameters have been obtained. The calculated phase diagram and thermodynamic properties are in good agreement with the experimental data. The obtained thermodynamic data was used to extrapolate the ternary Sn-Co-Cu phase diagram. The composition of the Sn-rich eutectic point of the Sn-Co-Cu system was found to be 224°C, 0.4% Co, and 0.7% Cu.

  12. Anthracene + Pyrene Solid Mixtures: Eutectic and Azeotropic Character

    PubMed Central

    Rice, James W.; Fu, Jinxia; Suuberg, Eric M.

    2010-01-01

    To better characterize the thermodynamic behavior of a binary polycyclic aromatic hydrocarbon mixture, thermochemical and vapor pressure experiments were used to examine the phase behavior of the anthracene (1) + pyrene (2) system. A solid-liquid phase diagram was mapped for the mixture. A eutectic point occurs at 404 K at x1 = 0.22. A model based on eutectic formation can be used to predict the enthalpy of fusion associated with the mixture. For mixtures that contain x1 < 0.90, the enthalpy of fusion is near that of pure pyrene. This and X-ray diffraction results indicate that mixtures of anthracene and pyrene have pyrene-like crystal structures and energetics until the composition nears that of pure anthracene. Solid-vapor equilibrium studies show that mixtures of anthracene and pyrene form solid azeotropes at x1 of 0.03 and 0.14. Additionally, mixtures at x1 = 0.99 sublime at the vapor pressure of pure anthracene, suggesting that anthracene behavior is not significantly influenced by x2 = 0.01 in the crystal structure. PMID:21116474

  13. Thermal Characterization of Lauric-Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials.

    PubMed

    Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming

    2015-04-01

    The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG.

  14. Microstructure and properties of Ti-Fe-Y alloy fabricated by laser-aided direct metal deposition

    NASA Astrophysics Data System (ADS)

    Wang, Cunshan; Han, Liying

    2018-04-01

    Ti-Fe-Y alloys were designed using a "cluster-plus-glue-atom" model and then were prepared by laser-aided direct metal deposition (LDMD) on a pure titanium substrate. The influence of the Y addition on the microstructure and properties of the alloys were investigated. The results show that the alloys are composed of β-Ti solid solution and FeTi compound. The addition of Y not only suppresses the formation of Ti4Fe2O oxide but also increases the supercooling degree of the melt, leading to the grain refinement and the increase in the solid solution of the β-Ti. Meanwhile, the microstructure changes sequentially from eutectic to hypereutectic to hypoeutectic with the increasing of the Y addition. The strengest Ti-Fe-Y alloy has a dispersed eutectic structure and exhibits a good combination of mechanical, tribological, and forming properties, which is superior to that obtained for the binary Ti70.6Fe29.4 eutectic alloy. This makes the alloy a promising candidate as a LDMD material.

  15. Kinetics of Si and Ge nanowires growth through electron beam evaporation.

    PubMed

    Artoni, Pietro; Pecora, Emanuele Francesco; Irrera, Alessia; Priolo, Francesco

    2011-02-21

    Si and Ge have the same crystalline structure, and although Si-Au and Ge-Au binary alloys are thermodynamically similar (same phase diagram, with the eutectic temperature of about 360°C), in this study, it is proved that Si and Ge nanowires (NWs) growth by electron beam evaporation occurs in very different temperature ranges and fluence regimes. In particular, it is demonstrated that Ge growth occurs just above the eutectic temperature, while Si NWs growth occurs at temperature higher than the eutectic temperature, at about 450°C. Moreover, Si NWs growth requires a higher evaporated fluence before the NWs become to be visible. These differences arise in the different kinetics behaviors of these systems. The authors investigate the microscopic growth mechanisms elucidating the contribution of the adatoms diffusion as a function of the evaporated atoms direct impingement, demonstrating that adatoms play a key role in physical vapor deposition (PVD) NWs growth. The concept of incubation fluence, which is necessary for an interpretation of NWs growth in PVD growth conditions, is highlighted.

  16. Insight into the Li2CO3-K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics

    NASA Astrophysics Data System (ADS)

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-03-01

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

  17. Insight into the Li2CO3-K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics.

    PubMed

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-03-14

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

  18. Phase diagram and structural evolution of tin/indium (Sn/In) nanosolder particles: from a non-equilibrium state to an equilibrium state.

    PubMed

    Shu, Yang; Ando, Teiichi; Yin, Qiyue; Zhou, Guangwen; Gu, Zhiyong

    2017-08-31

    A binary system of tin/indium (Sn/In) in the form of nanoparticles was investigated for phase transitions and structural evolution at different temperatures and compositions. The Sn/In nanosolder particles in the composition range of 24-72 wt% In were synthesized by a surfactant-assisted chemical reduction method under ambient conditions. The morphology and microstructure of the as-synthesized nanoparticles were analyzed by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD). HRTEM and SAED identified InSn 4 and In, with some Sn being detected by XRD, but no In 3 Sn was observed. The differential scanning calorimetry (DSC) thermographs of the as-synthesized nanoparticles exhibited an endothermic peak at around 116 °C, which is indicative of the metastable eutectic melting of InSn 4 and In. When the nanosolders were subjected to heat treatment at 50-225 °C, the equilibrium phase In 3 Sn appeared while Sn disappeared. The equilibrium state was effectively attained at 225 °C. A Tammann plot of the DSC data of the as-synthesized nanoparticles indicated that the metastable eutectic composition is about 62% In, while that of the DSC data of the 225 °C heat-treated nanoparticles yielded a eutectic composition of 54% In, which confirmed the attainment of the equilibrium state at 225 °C. The phase boundaries estimated from the DSC data of heat-treated Sn/In nanosolder particles matched well with those in the established Sn-In equilibrium phase diagram. The phase transition behavior of Sn/In nanosolders leads to a new understanding of binary alloy particles at the nanoscale, and provides important information for their low temperature soldering processing and applications.

  19. Float processing of high-temperature complex silicate glasses and float baths used for same

    NASA Technical Reports Server (NTRS)

    Cooper, Reid Franklin (Inventor); Cook, Glen Bennett (Inventor)

    2000-01-01

    A float glass process for production of high melting temperature glasses utilizes a binary metal alloy bath having the combined properties of a low melting point, low reactivity with oxygen, low vapor pressure, and minimal reactivity with the silicate glasses being formed. The metal alloy of the float medium is exothermic with a solvent metal that does not readily form an oxide. The vapor pressure of both components in the alloy is low enough to prevent deleterious vapor deposition, and there is minimal chemical and interdiffusive interaction of either component with silicate glasses under the float processing conditions. Alloys having the desired combination of properties include compositions in which gold, silver or copper is the solvent metal and silicon, germanium or tin is the solute, preferably in eutectic or near-eutectic compositions.

  20. Acoustic levitation with self-adaptive flexible reflectors.

    PubMed

    Hong, Z Y; Xie, W J; Wei, B

    2011-07-01

    Two kinds of flexible reflectors are proposed and examined in this paper to improve the stability of single-axis acoustic levitator, especially in the case of levitating high-density and high-temperature samples. One kind is those with a deformable reflecting surface, and the other kind is those with an elastic support, both of which are self-adaptive to the change of acoustic radiation pressure. High-density materials such as iridium (density 22.6 gcm(-3)) are stably levitated at room temperature with a soft reflector made of colloid as well as a rigid reflector supported by a spring. In addition, the containerless melting and solidification of binary In-Bi eutectic alloy (melting point 345.8 K) and ternary Ag-Cu-Ge eutectic alloy (melting point 812 K) are successfully achieved by applying the elastically supported reflector with the assistance of a laser beam.

  1. Acoustic levitation with self-adaptive flexible reflectors

    NASA Astrophysics Data System (ADS)

    Hong, Z. Y.; Xie, W. J.; Wei, B.

    2011-07-01

    Two kinds of flexible reflectors are proposed and examined in this paper to improve the stability of single-axis acoustic levitator, especially in the case of levitating high-density and high-temperature samples. One kind is those with a deformable reflecting surface, and the other kind is those with an elastic support, both of which are self-adaptive to the change of acoustic radiation pressure. High-density materials such as iridium (density 22.6 gcm-3) are stably levitated at room temperature with a soft reflector made of colloid as well as a rigid reflector supported by a spring. In addition, the containerless melting and solidification of binary In-Bi eutectic alloy (melting point 345.8 K) and ternary Ag-Cu-Ge eutectic alloy (melting point 812 K) are successfully achieved by applying the elastically supported reflector with the assistance of a laser beam.

  2. An Undergraduate Experiment Using Differential Scanning Calorimetry: A Study of the Thermal Properties of a Binary Eutectic Alloy of Tin and Lead

    ERIC Educational Resources Information Center

    D'Amelia, Ronald P.; Clark, Daniel; Nirode, William

    2012-01-01

    An alloy is an intimate association of two or more metals, with or without a definite composition, which has metallic properties. Heterogeneous alloys, such as tin-lead (Sn/Pb) solders, consist of a mixture of crystalline phases with different compositions. A homogeneous alloy with a unique composition having the lowest possible melting point is…

  3. Approximate formula for recalescence in binary eutectic alloys

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.

    1993-01-01

    Supercooling of a liquid prior to the nucleation of a solid and the subsequent rapid growth are necessary conditions for producing novel microstructures including metastable phases which are not formed by conventional solidification processes. Since containerless techniques, such as levitation and free fall of a sample, are capable of achieving a significant supercooling level of liquids, they are under consideration as possible techniques for material processing on earth and in space.

  4. Combined NMR and molecular dynamics modeling study of transport properties in sulfonamide based deep eutectic lithium electrolytes: LiTFSI based binary systems.

    PubMed

    Pauric, Allen D; Halalay, Ion C; Goward, Gillian R

    2016-03-07

    The trend toward Li-ion batteries operating at increased (>4.3 V vs. Li/Li(+)) voltages requires the development of novel classes of lithium electrolytes with electrochemical stability windows exceeding those of LiPF6/carbonate electrolyte solutions. Several new classes of electrolytes have been synthesized and investigated over the past decade, in the search for LIB electrolytes with improved properties (increased hydrolytic stability, improved thermal abuse tolerance, higher oxidation voltages, etc.) compared with the present state-of-the-art LiPF6 and organic carbonates-based formulations. Among these are deep eutectic electrolytes (DEEs), which share many beneficial characteristics with ionic liquids, such as low vapor pressure and large electrochemical stability windows, with the added advantage of a significantly higher lithium transference number. The present work presents the pulsed field gradient NMR characterization of the transport properties (diffusion coefficients and cation transport numbers) of binary DEEs consisting of a sulfonamide solvent and lithium bis(trifluoromethanesulfonyl)imide salt. Insights into the structural and dynamical properties, which enable one to rationalize the observed ionic conductivity behavior were obtained from a combination of NMR data and MD simulations. The insights thus gained should assist the formulation of novel DEEs with improved properties for LIB applications.

  5. Nial and Nial-Based Composites Directionally Solidified by a Containerless Zone Process. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Joslin, Steven M.

    1995-01-01

    A containerless electromagnetically levitated zone (CELZ) process has been used to directionally solidify NiAl and NiAl-based composites. The CELZ processing results in single crystal NiAl (HP-NiAl) having higher purity than commercially pure NiAl grown by a modified Bridgman process (CP-NiAl). The mechanical properties, specifically fracture toughness and creep strength, of the HP-NiAl are superior to binary CP-NiAl and are used as a base-line for comparison with the composite materials subsequently studied. Two-phase composite materials (NiAl-based eutectic alloys) show improvement in room temperature fracture toughness and 1200 to 1400 K creep strength over that of binary HP-NiAl. Metallic phase reinforcements produce the greatest improvement in fracture toughness, while intermetallic reinforcement produces the largest improvement in high temperature strength. Three-phase eutectic alloys and composite materials were identified and directionally solidified with the intent to combine the improvements observed in the two-phase alloys into one alloy. The room temperature fracture toughness and high temperature strength (in air) serve as the basis for comparison between all of the alloys. Finally, the composite materials are discussed in terms of dominant fracture mechanism observed by fractography.

  6. High temperature regenerative H.sub.2 S sorbents

    NASA Technical Reports Server (NTRS)

    Flytani-Stephanopoulos, Maria (Inventor); Gavalas, George R. (Inventor); Tamhankar, Satish S. (Inventor)

    1988-01-01

    Efficient, regenerable sorbents for removal of H.sub.2 S from high temperature gas streams comprise porous, high surface area particles. A first class of sorbents comprise a thin film of binary oxides that form a eutectic at the temperature of the gas stream coated onto a porous, high surface area refractory support. The binary oxides are a mixture of a Group VB or VIB metal oxide with a Group IB, IIB or VIII metal oxide such as a film of V-Zn-O, V-Cu-O, Cu-Mo-O, Zn-Mo-O or Fe-Mo-O coated on an alumina support. A second class of sorbents consist of particles of unsupported mixed oxides in the form of highly dispersed solid solutions of solid compounds characterized by small crystallite size, high porosity and relatively high surface area. The mixed oxide sorbents contain one Group IB, IIB or VIIB metal oxide such as copper, zinc or manganese and one or more oxides of Groups IIIA, VIB or VII such as aluminum, iron or molybdenum. The presence of iron or aluminum maintains the Group IB, IIB or VIIB metal in its oxidized state. Presence of molybdenum results in eutectic formation at sulfidation temperature and improves the efficiency of the sorbent.

  7. Insight into the Li{sub 2}CO{sub 3}–K{sub 2}CO{sub 3} eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradini, Dario; Vuilleumier, Rodolphe, E-mail: rodolphe.vuilleumier@ens.fr; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, 75005 Paris

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li{sub 2}CO{sub 3}–K{sub 2}CO{sub 3} (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900–1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, wemore » present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture’s self-diffusion coefficients, viscosity, and ionic conductivity.« less

  8. The binary system K2SO4CaSO4

    USGS Publications Warehouse

    Rowe, J.J.; Morey, G.W.; Hansen, I.D.

    1965-01-01

    The binary system K2SO4CaSO4 was studied by means of heating-cooling curves, differential thermal analysis, high-temperature quenching technique and by means of a heating stage mounted on an X-ray diffractometer. Compositions and quench products were identified optically and by X-ray. Limited solid solution of CaSO4 in K2SO4 was found. There is a eutectic at 875??C and 34 wt. per cent CaSO4. Calcium langbeinite melts incongruently at 1011??C. The melting-point of CaSO4 (1462??C) was determined by the quenching technique using sealed platinum tubes. The only intermediate crystalline phase found in the system is K2SO4??2CaSO4 (calcium langbeinite). ?? 1965.

  9. The light element component of the Earth’s core: Constraints from in situ X-Radiography in the LHDAC

    NASA Astrophysics Data System (ADS)

    Lord, O. T.; Walter, M. J.; Walker, D.; Clark, S. M.

    2009-12-01

    The light element budget of the Earth’s core depends in part on the high-pressure melting relations of the relevant iron rich binary systems. Candidate alloying elements include H, C, O, Si and S, due to their cosmochemical abundance. Many of these systems are known to contain eutectic points, the temperatures and compositions of which are critical to reconstructing the phase relations of these systems. Thus far most studies reporting the composition of eutectic liquids depend on ex situ analysis with a potential for systematic errors introduced by quench induced exsolution. To circumvent this issue we have developed an in situ technique for the determination of liquid compositions in iron-rich binary systems at simultaneous high-pressure and high-temperature conditions. Samples consist of Fe(1-x)O or FeS, surrounded by a ring of iron forming a ‘donut’ with a diameter of ~100μm and a thickness of ~20μm. Pressure is monitored by ruby fluorescence. The sample is heated at the boundary between the iron and light element compound using two 100 W IR lasers in a double-sided configuration at beamline 12.2.2 at the Advanced Light Source. Temperature is measured by spectroradiometry. Before, during and after melting, X-radiographic images of the sample are taken by shining a defocused beam of synchrotron X-rays through the sample and onto a CdWO4 phosphor. The visible light from the phosphor is then focused onto a high resolution CCD, where absorption contrast images are recorded. The absorption of the molten region is then determined, and it’s composition calculated by comparison to the absorption of the two solid end members. In previous work we measured the composition of the Fe-FeS eutectic to 20 GPa and the Fe-Fe3C eutectic to 44 GPa [1,2]. Further, we saw no discernible solubility of oxygen in liquid iron up to 43 GPa [1]. Here we extend the data for sulfur up to 70 GPa and for oxygen up to 63 GPa. Our new sulfur data fit well with previous studies at lower pressure, and suggest that the sulfur content of the eutectic is tending to ~15wt% with increasing pressure. In the Fe-FeO system, upon reaching the Fe-FeO eutectic temperature (indicated by a plateau in the power-temperature function), no evidence of a melt was seen within the absorption contrast images. Only when the temperature was raised above this first plateau to a second plateau, representing the melting point of FeO did a ‘ledge’ appear in the absorption contrast image, suggesting the presence of a liquid with a composition intermediate between Fe and FeO. Further, the composition of this ledge was pressure insensitive, and close to a 50:50 mix of Fe and FeO. We interpret these results as the formation of a eutectic melt with an oxygen content below the detection limit (~1 wt%), followed by melting of the FeO end-member and the subsequent mixing of the two liquid phases. These results suggest that the solubility of oxygen remains below ~1wt% beyond 60 GPa, in contradiction with several recent studies [3]. [1] Walker, D., et al. Chem Geol., 2008. [2] Lord, O. T., et al. EPSL, 2009. [3] Seagle, C. T., et al. EPSL, 2008.

  10. Eutectic melting in the MgO-SiO2 system and its implication to Earth's lower mantle evolution

    NASA Astrophysics Data System (ADS)

    Baron, M. A.; Lord, O. T.; Myhill, R.; Thomson, A.; Wang, W.; Tronnes, R. G.; Walter, M. J.

    2017-12-01

    Eutectic melting curves in the system MgO-SiO2 have been experimentally studied at lower mantle pressures using laser-heated diamond anvil cell (LH-DAC) techniques. We investigated eutectic melting of bridgmanite plus periclase in the MgO-MgSiO3 binary and bridgmanite plus stishovite in the MgSiO3-SiO2 sub-system as the simplest models of natural peridotite and basalt. The eutectic melting have been detected on the basis of the thermal perturbations (i.e. melting plateau) during the experiment but also post-experimental textural and chemical analyses of the recovered samples. We also performed a suite of sub-solidus experiments in order to compare and bracket the eutectic melting experiments. The melting curve of model basalt occurs at lower temperatures, has a shallower dT/dP slope and slightly less curvature than the model peridotitic melting curve. Overall, melting temperatures detected in this study are in good agreement with previous experiments and ab initio simulations at 25 GPa (Liebske and Frost, 2012; de Koker et al., 2013). However, at higher pressures the measured eutectic melting curves are systematically lower in temperature than curves extrapolated on the basis of thermodynamic modelling of low-pressure experimental data, and those calculated from atomistic simulations. In turn, when comparing with previously published solidus curves obtained for natural basalt and peridotite (e.g. Fiquet et al., 2010; Andrault et al. 2011; Nomura et al. 2014; Hirose et al. 1999; Andrault et al. 2014 and Pradhan et al. 2015) the melting curves from this study are higher. However, the difference in temperature is less significant than previously though. Based on the comparison of the curvature of the model peridotite eutectic relative to an MgSiO3 melt adiabat we infer that crystallization in a global magma ocean would begin at 100 GPa rather than at the bottom of the mantle, allowing for an early basal melt layer. The model peridotite melting curve lies 500 K above the mantle geotherm at the core-mantle boundary, indicating that it will not be molten. The model basalt melting curve intersects the geotherm at the base of the mantle, and partial melting of subducted oceanic crust is therefore expected.

  11. Metal silicides with energetic pulses

    NASA Astrophysics Data System (ADS)

    D'Anna, E.; Leggieri, G.; Luches, A.; Majni, G.; Nava, F.; Ottaviani, G.

    1986-07-01

    Samples formed of a thin metal film deposited on silicon single crystal were annealed with electron and laser (ruby and excimer) pulses over a wide range of fluences. From a comparison of the experimental results with the temperature profiles of the irradiated samples, it turns out that suicide formation starts when the metal/silicon interface reaches the lowest eutectic temperature of the binary metal/silicon system. The growth rate of reacted layers is of the order of 1 m/s.

  12. Thermodynamic Investigation of the Effect of Interface Curvature on the Solid-Liquid Equilibrium and Eutectic Point of Binary Mixtures.

    PubMed

    Liu, Fanghui; Zargarzadeh, Leila; Chung, Hyun-Joong; Elliott, Janet A W

    2017-10-12

    Thermodynamic phase behavior is affected by curved interfaces in micro- and nanoscale systems. For example, capillary freezing point depression is associated with the pressure difference between the solid and liquid phases caused by interface curvature. In this study, the thermal, mechanical, and chemical equilibrium conditions are derived for binary solid-liquid equilibrium with a curved solid-liquid interface due to confinement in a capillary. This derivation shows the equivalence of the most general forms of the Gibbs-Thomson and Ostwald-Freundlich equations. As an example, the effect of curvature on solid-liquid equilibrium is explained quantitatively for the water/glycerol system. Considering the effect of a curved solid-liquid interface, a complete solid-liquid phase diagram is developed over a range of concentrations for the water/glycerol system (including the freezing of pure water or precipitation of pure glycerol depending on the concentration of the solution). This phase diagram is compared with the traditional phase diagram in which the assumption of a flat solid-liquid interface is made. We show the extent to which nanoscale interface curvature can affect the composition-dependent freezing and precipitating processes, as well as the change in the eutectic point temperature and concentration with interface curvature. Understanding the effect of curvature on solid-liquid equilibrium in nanoscale capillaries has applications in the food industry, soil science, cryobiology, nanoporous materials, and various nanoscience fields.

  13. Melting Experiments in the Fe-FeSi System at High Pressure

    NASA Astrophysics Data System (ADS)

    Ozawa, H.; Hirose, K.

    2013-12-01

    The principal light element in the Earth's core must reproduce the density jump at the inner core boundary (ICB). Silicon is thought to be a plausible light element in the core, and the melting phase relations in Fe-FeSi binary system at the ICB pressure are of great importance. Theoretical calculations on the Fe-FeSi binary system suggested that the difference in Si content between the outer core and the inner core would be too small to satisfy the observed density jump at the ICB [Alfè et al., 2002 EPSL], which requires other light elements in addition to silicon. Here we experimentally examined partitioning of silicon between liquid and solid iron up to 97 GPa. High pressure and temperature conditions were generated in a laser-heated diamond-anvil cell. Chemical compositions of co-existing quenched liquid and solid Fe-Si alloys were determined with a field-emission-type electron probe micro-analyzer. We used Fe-Si alloy containing 9 wt% Si as a starting material. Chemical analyses on the recovered samples from 39 and 49 GPa demonstrated the coexistence of quenched Si-depleted liquid and Si-enriched solid. In contrast, silicon partitions preferentially into liquid metal at 97 GPa, suggesting the starting composition (Fe-9wt% Si) lies on the iron-rich part of the eutectic. These results indicate the eutectic composition shifts toward FeSi between 49 and 97 GPa.

  14. Effect of heat treatment on morphology evolution of Ti2Ni phase in Ti-Ni-Al-Zr alloy

    NASA Astrophysics Data System (ADS)

    Sheng, Liyuan; Yang, Yang; Xi, Tingfei

    2018-03-01

    The Ti6Al2Zr alloy with 15 wt.% Ni addition was prepared and then heat treated in the research. The microstructure of the alloy and evolution of Ti2Ni precipitate were investigated. The microstructure observations demonstrate that the Ni addition could promote the formation of eutectoid and eutectic structures in Ti-Al-Zr alloy. In the eutectoid structure, the ultrafine Ti2Ni fiber precipitates in the α-Ti matrix, but in the eutectic structure, the fine α-Ti phases precipitate in the Ti2Ni matrix. The heat treatment could change the morphology of Ti2Ni precipitates by thinning, fragmenting, merging and spherizing. In the alloy heat treated at and below 1073K, the coarsening of α-Ti precipitates in eutectic structure and Ti2Ni precipitates in eutectoid structure is the mainly characteristic. In the alloy heat treated above 1073K, the phase transformation of α to β phase is the main characteristic, which changes the morphology and amount of Ti2Ni phase by the solid solution of Ni. The phase transformation temperature of Ti-Ni-Al-Zr alloy is between 1073-1123K, which is increased compared with that of the Ti-Ni binary phase diagram.

  15. Coupling Fluid Dynamics and Multiphase Disequilibria: Applications to Eutectic and Peritectic Systems

    NASA Astrophysics Data System (ADS)

    Tweed, L. E. L.; Spiegelman, M. W.; Kelemen, P. B.

    2017-12-01

    Computational thermodynamics has yielded great insights into petrological processes. However, on its own it cannot capture the inherently dynamic nature of many of these processes which depend on the interaction between time-dependent processes including advection, diffusion and chemical reaction. To understand this interplay, and to move away from a purely equilibrium view, requires the integration of computational thermodynamics and fluid mechanics. A key aspect of doing this is the treatment of chemical reactions as time-dependent, irreversible processes. Such a development is integral to understanding a host of petrological questions from the open system evolution of magma chambers to the dynamics of melt migration beneath mid-ocean ridges and flux melting of the mantle wedge in subduction zones. A simple thermodynamically consistent reactive model is developed that can be integrated with conservation equations for mass, momentum and energy. The model rests on the thermodynamic characterization of an independent set of reactions and has the advantage of being completely general and easily extensible to systems comprising multiple solid and liquid phases. The underlying theory is described in detail in another contribution in this session. Here we apply the framework to experimentally constrained simple systems of petrological interest including the fo-qz binary and the fo-qz-k2o ternary. These systems contain a variety of phase topologies including eutectic and peritectic reactions. As the model allows for the seamless exhaustion and stabilization of phases, we can explore the effect that these discontinuous changes have on the compositional and dynamic evolution of the system. To do this we track how the systems respond to sudden changes in intensive variables that perturb them from equilibrium. Such changes are rife in crustal magmatic systems. Simulations for decompression melting are also run to explore the interplay between reactive and advective fluxes. Buffering between the multiple reactions can result in surprising reaction paths highlighting that micro-mechanics could play a significant role in magmatic evolution. By building up the complexity of the problems gradually, we develop an intuition for the effect of model choices including the kinetic law and the set of reactions used.

  16. Pairing Heterocyclic Cations with closo-Icosahedral Borane and Carborane Anions, II: Benchtop Alternative Synthetic Methodologies for Binary Triazolium and Tetrazolium Salts with Significant Water Solubility (POSTPRINT)

    DTIC Science & Technology

    2012-01-01

    interesting property, eutectic melting-point depression. Recrystallization of ternary salts 12–14 was not attempted because of a concern that a cation... recrystallization solvent mixture for these powders, and while some individual successes resulted, a general efficient solvent system for all salt...product recrystallizations could not be found. So, rather than recrystallizing each individual adduct, spectroscopic examination of the amorphous solids was

  17. Investigation of High Temperature Ductility Losses in Alpha-Beta Titanium Alloys

    DTIC Science & Technology

    1988-04-01

    Gleeble simulation of GTAW thermal _ cycles, Figure 1.1 (6). They found that Ti-6AI-4V (Ti-64), Ti-6A1-2Nb-lTa-0.8Mo (Ti-6211), and Ti-6AI suffered...or weak beta stabilizers depending on the other alloying elements present. Vanadium, molybdenum, tantalum, niobium, chromium , silicon, copper...elements. Chromium , - silicon, copper, manganese, cobalt, iron, and hydrogen are all eutectic formers. A schematic binary phase diagram of a 0 beta

  18. Plasma Processing Systems for the Manufacture of Refractory Metals and their Alloys for Military Needs

    DTIC Science & Technology

    1978-10-09

    melting point is around 4000*K. An exceedingly interesting feature of these solidification composites is the formation of fibrous MC type carbide ...the matrix could be refractory metal binary alloys with copper or uranium and the eutectic phase could be carbide of tungsten, * molybdenum, tantalum or...42 Accs -n or - *DTTI Tf Avn ! -7ll ’ i CrDi t , l’’*i,;. LIST OF FIGURES FIG. 1 Flow Diagram of Cemented Carbide Manufacture

  19. Investigation of residual anode material after electrorefining uranium in molten chloride salt

    NASA Astrophysics Data System (ADS)

    Rose, M. A.; Williamson, M. A.; Willit, J.

    2015-12-01

    A buildup of material at uranium anodes during uranium electrorefining in molten chloride salts has been observed. Potentiodynamic testing has been conducted using a three electrode cell, with a uranium working electrode in both LiCl/KCl eutectic and LiCl each containing ∼5 mol% UCl3. The anodic current response was observed at 50° intervals between 450 °C and 650 °C in the eutectic salt. These tests revealed a buildup of material at the anode in LiCl/KCl salt, which was sampled at room temperature, and analyzed using ICP-MS, XRD and SEM techniques. Examination of the analytical data, current response curves and published phase diagrams has established that as the uranium anode dissolves, the U3+ ion concentration in the diffusion layer surrounding the electrode rises precipitously to levels, which may at low temperatures exceed the solubility limit for UCl3 or in the case of the eutectic salt for K2UCl5. The reduction in current response observed at low temperature in eutectic salt is eliminated at 650 °C, where K2UCl5 is absent due to its congruent melting and only simple concentration polarization effects are seen. In LiCl similar concentration effects are seen though significantly longer time at applied potential is required to effect a reduction in the current response as compared to the eutectic salt.

  20. Alloying and Hardness of Eutectics with Nbss and Nb5Si3 in Nb-silicide Based Alloys

    PubMed Central

    Tsakiropoulos, Panos

    2018-01-01

    In Nb-silicide based alloys, eutectics can form that contain the Nbss and Nb5Si3 phases. The Nb5Si3 can be rich or poor in Ti, the Nb can be substituted with other transition and refractory metals, and the Si can be substituted with simple metal and metalloid elements. For the production of directionally solidified in situ composites of multi-element Nb-silicide based alloys, data about eutectics with Nbss and Nb5Si3 is essential. In this paper, the alloying behaviour of eutectics observed in Nb-silicide based alloys was studied using the parameters ΔHmix, ΔSmix, VEC (valence electron concentration), δ (related to atomic size), Δχ (related to electronegativity), and Ω (= Tm ΔSmix/|ΔHmix|). The values of these parameters were in the ranges −41.9 < ΔHmix <−25.5 kJ/mol, 4.7 < ΔSmix < 15 J/molK, 4.33 < VEC < 4.89, 6.23 < δ < 9.44, 0.38 < Ω < 1.35, and 0.118 < Δχ < 0.248, with a gap in Δχ values between 0.164 and 0.181. Correlations between ΔSmix, Ω, ΔSmix, and VEC were found for all of the eutectics. The correlation between ΔHmix and δ for the eutectics was the same as that of the Nbss, with more negative ΔHmix for the former. The δ versus Δχ map separated the Ti-rich eutectics from the Ti-poor eutectics, with a gap in Δχ values between 0.164 and 0.181, which is within the Δχ gap of the Nbss. Eutectics were separated according to alloying additions in the Δχ versus VEC, Δχ versus , δ versus , and VEC versus maps, where = Al + Ge + Si + Sn. Convergence of data in maps occurred at δ ≈ 9.25, VEC ≈ 4.35, Δχ in the range ≈ 0.155 to 0.162, and in the range ≈ 21.6 at.% to ≈ 24.3 at.%. The convergence of data also indicated that the minimum concentration of Ti and maximum concentrations of Al and Si in the eutectic were about 8.7 at.% Ti, 6.3 at.% Al, and 21.6 at.% Si, respectively, and that the minimum concentration of Si in the eutectic was in the range 8 < Si < 10 at.%. PMID:29641503

  1. Alloying and Hardness of Eutectics with Nbss and Nb₅Si₃ in Nb-silicide Based Alloys.

    PubMed

    Tsakiropoulos, Panos

    2018-04-11

    In Nb-silicide based alloys, eutectics can form that contain the Nb ss and Nb₅Si₃ phases. The Nb₅Si₃ can be rich or poor in Ti, the Nb can be substituted with other transition and refractory metals, and the Si can be substituted with simple metal and metalloid elements. For the production of directionally solidified in situ composites of multi-element Nb-silicide based alloys, data about eutectics with Nb ss and Nb₅Si₃ is essential. In this paper, the alloying behaviour of eutectics observed in Nb-silicide based alloys was studied using the parameters ΔH mix , ΔS mix , VEC (valence electron concentration), δ (related to atomic size), Δχ (related to electronegativity), and Ω (= T m ΔS mix /|ΔH mix |). The values of these parameters were in the ranges -41.9 < ΔH mix <-25.5 kJ/mol, 4.7 < ΔS mix < 15 J/molK, 4.33 < VEC < 4.89, 6.23 < δ < 9.44, 0.38 < Ω < 1.35, and 0.118 < Δχ < 0.248, with a gap in Δχ values between 0.164 and 0.181. Correlations between ΔS mix , Ω, ΔS mix , and VEC were found for all of the eutectics. The correlation between ΔH mix and δ for the eutectics was the same as that of the Nb ss , with more negative ΔH mix for the former. The δ versus Δχ map separated the Ti-rich eutectics from the Ti-poor eutectics, with a gap in Δχ values between 0.164 and 0.181, which is within the Δχ gap of the Nb ss . Eutectics were separated according to alloying additions in the Δχ versus VEC, Δχ versus , δ versus , and VEC versus maps, where = Al + Ge + Si + Sn. Convergence of data in maps occurred at δ ≈ 9.25, VEC ≈ 4.35, Δχ in the range ≈ 0.155 to 0.162, and in the range ≈ 21.6 at.% to ≈ 24.3 at.%. The convergence of data also indicated that the minimum concentration of Ti and maximum concentrations of Al and Si in the eutectic were about 8.7 at.% Ti, 6.3 at.% Al, and 21.6 at.% Si, respectively, and that the minimum concentration of Si in the eutectic was in the range 8 < Si < 10 at.%.

  2. Equilibrium distribution of rare earth elements between molten KCl-LiCl eutectic salt and liquid cadmium

    NASA Astrophysics Data System (ADS)

    Sakata, Masahiro; Kurata, Masaki; Hijikata, Takatoshi; Inoue, Tadashi

    1991-11-01

    Distribution experiments for several rare earth elements (La, Ce, Pr, Nd and Y) between molten KCl-LiCl eutectic salt and liquid Cd were carried out at 450, 500 and 600°C. The material balance of rare earth elements after reaching the equilibrium and their distribution and chemical states in a Cd sample frozen after the experiment were examined. The results suggested the formation of solid intermetallic compounds at the lower concentrations of rare earth metals dissolved in liquid Cd than those solubilities measured in the binary alloy system. The distribution coefficients of rare earth elements between two phases (mole fraction in the Cd phase divided by mole fraction in the salt phase) were determined at each temperature. These distribution coefficients were explained satisfactorily by using the activity coefficients of chlorides and metals in salt and Cd. Both the activity coefficients of metal and chloride caused a much smaller distribution coefficient of Y relative to those of other elements.

  3. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STAN, MARIUS; HECKER, SIEGFRIED S.

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuelsmore » suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.« less

  4. Synthesis, crystal growth, structural and physicochemical studies of novel binary organic complex: 4-chloroaniline-3-hydroxy-4-methoxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Sharma, K. P.; Reddi, R. S. B.; Bhattacharya, S.; Rai, R. N.

    2012-06-01

    The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV-Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied.

  5. Deep eutectic solvent-based valorization of spent coffee grounds.

    PubMed

    Yoo, Da Eun; Jeong, Kyung Min; Han, Se Young; Kim, Eun Mi; Jin, Yan; Lee, Jeongmi

    2018-07-30

    Spent coffee grounds (SCGs) are viewed as a valuable resource for useful bioactive compounds, such as chlorogenic acids and flavonoids, and we suggest an eco-friendly and efficient valorization method. A series of choline chloride-based deep eutectic solvents (DESs) were tested as green extraction solvents for use with ultrasound-assisted extraction. Extraction efficiency was evaluated based on total phenolic content (TPC), total flavonoid content, total chlorogenic acids, and/or anti-oxidant activity. A binary DES named HC-6, which was composed of 1,6-hexanediol:choline chloride (molar ratio 7:1) was designed to produce the highest efficiency. Experimental conditions were screened and optimized for maximized efficiency using a two-level fractional factorial design and a central composite design, respectively. As a result, the proposed method presented significantly enhanced TPC and anti-oxidant activity. In addition, phenolic compounds could be easily recovered from extracts at high recovery yields (>90%) by adsorption chromatography. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Experience melting through the Earth's lower mantle via LH-DAC experiments on MgO-SiO2 and CaO-MgO-SiO2 systems

    NASA Astrophysics Data System (ADS)

    Baron, Marzena A.; Lord, Oliver T.; Walter, Michael J.; Trønnes, Reidar G.

    2015-04-01

    The large low shear-wave velocity provinces (LLSVPs) and ultra-low velocity zones (ULVZs) of the lowermost mantle [1] are likely characterized by distinct chemical compositions, combined with temperature anomalies. The heterogeneities may have originated by fractional crystallization of the magma ocean during the earliest history of the Earth [2,3] and/or the continued accretion at the CMB of subducted basaltic oceanic crust [4,5]. These structures and their properties control the distribution and magnitude of the heat flow at the CMB and therefore the convective dynamics and evolution of the whole Earth. To determine the properties of these structures and thus interpret the seismic results, a good understanding of the melting phase relations of relevant basaltic and peridotitic compositions are required throughout the mantle pressure range. The melting phase relations of lower mantle materials are only crudely known. Recent experiments on various natural peridotitic and basaltic compositions [6-8] have given wide ranges of solidus and liquidus temperatures at lower mantle pressures. The melting relations for MgO, MgSiO3 and compositions along the MgO-SiO2 join from ab initio theory [e.g. 9,10] is broadly consistent with a thermodynamic model for eutectic melt compositions through the lower mantle based on melting experiments in the MgO-SiO2 system at 16-26 GPa [3]. We have performed a systematic study of the melting phase relations of analogues for peridotitic mantle and subducted basaltic crust in simple binary and ternary systems that capture the major mineralogy of Earth's lower mantle, using the laser-heated diamond anvil cell (LH-DAC) technique at 25-100 GPa. We determined the eutectic melting temperatures involving the following liquidus mineral assemblages: 1. bridgmanite (bm) + periclase (pc) and bm + silica in the system MgO-SiO2 (MS), corresponding to model peridotite and basalt compositions 2. bm + pc + Ca-perovskite (cpv) and bm + silica + cpv in the system CaO-MgO-SiO2 (CMS). The eutectic melting temperatures (Te) were determined by multi-chamber DAC-experiments on near-eutectic compositions [3,9]. Ultra-fine W-powder mixed into the samples absorbed the laser energy. The samples were heated at a rate of 500-1500 K/min by increasing the laser power. More than 75-90% eutectic melt is produced at the the solidus, resulting in rapid aggregation of the W-powder and inefficient laser energy absorption. The resulting plateau in the temperature versus power curve is interpreted as Te. Our preliminary results show an expected positive p-Te correlation, with lower Te for the CMS-system. The dTe/dp slope for the bm-silica eutectic is lower than for the bm-pc eutectic in the MS-system. The experimental results agree with the DFT-studies and thermodynamic models. We have also developed a novel technique for micro-fabrication of metal-encapsulated samples (Re, W, Mo), to investigate more precisely the melting phase relations in the lower mantle pressure range. The metal-covered, 20 μm thick sample disc, placed between thermal insulation layers in the DAC, will be laser-heated at the two flat surfaces, providing low thermal gradients and preventing reaction between the sample and the pressure medium. [1] Lay and Garnero (2007, AGU Monograph); [2] Labrosse et al (2007, Nature); [3] Liebske and Frost (2012, EPSL); [4] Elkins-Tanton (2012, Ann Rev Earth Planet Sci); [5] Hirose et al (1999, Nature); [6] Fiquet et al (2010, Science); [7] Andrault et al (2011, EPSL); [8] Andrault et al (2014, Science); [9] de Koker et al (2013, EPSL); [10] de Koker and Strixrude (2009, Geophys J Int).

  7. Formation of the Fe-Containing Intermetallic Compounds during Solidification of Al-5Mg-2Si-0.7Mn-1.1Fe Alloy

    NASA Astrophysics Data System (ADS)

    Que, Zhongping; Wang, Yun; Fan, Zhongyun

    2018-06-01

    Iron (Fe) is the most common and the most detrimental impurity element in Al alloys due to the formation of Fe-containing intermetallic compounds (IMCs), which are harmful to mechanical performance of the Al-alloy components. In this paper we investigate the formation of Fe-containing IMCs during solidification of an Al-5Mg-2Si-0.7Mn-1.1Fe alloy under varied solidification conditions. We found that the primary Fe-containing intermetallic compound (P-IMC) in the alloy is the BCC α-Al15(Fe,Mn)3Si2 phase and has a polyhedral morphology with {1 1 0} surface termination. The formation of the P-IMCs can be easily suppressed by increasing the melt superheat and/or cooling rate, suggesting that the nucleation of the α-Al15(Fe,Mn)3Si2 phase is difficult. In addition, we found that the IMCs with a Chinese script morphology is initiated on the {1 0 0} surfaces of the P-IMCs during the binary eutectic reaction with the α-Al phase. Both the binary and ternary eutectic IMCs are also identified as the BCC α-Al15(Fe,Mn)3Si2 phase. Furthermore, we found that the Fe content increases and the Mn content decreases in the Fe-containing intermetallic compounds with the decrease of the formation temperature, although the sum of the Fe and Mn contents in all of the IMCs is constant.

  8. Phase behavior of binary mixture systems of saturated-unsaturated mixed-acid triacylglycerols: effects of glycerol structures and chain-chain interactions.

    PubMed

    Bayés-García, Laura; Calvet, Teresa; Cuevas-Diarte, Miquel Àngel; Ueno, Satoru; Sato, Kiyotaka

    2015-03-26

    We systematically examined the phase behavior of binary mixtures of mixed-acid triacylglycerols (TAGs) containing palmitic and oleic acid moieties 1,3-dioleoyl-2-palmitoyl-glycerol (OPO), 1,2-dipalmitoyl-3-oleoyl-rac-glycerol (PPO), and 1,2-dioleoyl-3-palmitoyl-rac-glycerol (OOP), which are widely present in natural fats and are employed in the food, pharmaceutical, and cosmetic industries. Differential scanning calorimetry and X-ray diffraction methods were applied to observe the mixing behavior of PPO/OPO, OOP/OPO, and PPO/OOP under metastable and stable conditions. The results led to three conclusions: (1) Eutectic behavior was observed in PPO/OPO. (2) Molecular compound (MC) crystals were formed in the mixtures of OOP/OPO and PPO/OOP. (3) However, the MC crystals occurred only under metastable conditions and tended to separate into component TAGs to form eutectic mixture systems after 17 months of incubation. These results were contrary to those of previous studies on 1,3-dipalmitoyl-2-oleoyl glycerol (POP)/OPO and POP/PPO in which the MC crystals were thermodynamically stable. We determined that specific molecular interactions may cause this different phase behavior (stability of POP/OPO and POP/PPO MC crystals and metastability of OOP/OPO and PPO/OOP MC crystals). All results confirm the significant effects of molecular structures of glycerol groups, interactions of fatty acid chains, and polymorphism of the component TAGs on the mixing behavior of mixed-acid TAGs.

  9. Dry silver electromigration process for optical glass waveguide fabrication and fluxless bonding technology for photonics and MEMS packaging

    NASA Astrophysics Data System (ADS)

    Chuang, Ricky Wenkuei

    2001-07-01

    An effectively simple dry silver electromigration technology without the need of evaporating separate gold or aluminum film electrodes onto both sides of glass is reported to fabricate low-loss deep multimode planar and channel waveguides on BK7 and BF450 glass substrates. A relatively high electrical field ranging from 440 to 545 V/mm was applied to the glass to speed up the migration, while at the same time preventing silver ions that were driven into the glass from reducing into silver atom; a major contributor to waveguide loss. The deep planar and channel waveguides thus fabricated showed no discolors or cracks, of which the attenuation losses of less than 2dB/cm and 0.1dB/cm were later measured from channel waveguides constructed on the BK7 and BF450 glass substrates, respectively, using our 0.6328mum He-Ne laser edge-coupling setup. To complete the waveguide studies, the scanning electron microscope (SEM) equipped with energy-dispersive X-ray (EDX) detector was adopted to obtain the concentration profiles of silver and sodium ions distributed in a waveguiding region after the exchange. The EDX measurements acquired hereafter were then utilized along with the Gladstone-Dale relation altogether to deduce the refractive index profile; of which a nearly step-like profile was consistently deduced from every deep planar and channel waveguides fabricated. Finally, a numerical model utilizing the space charge approach was devised to explain the nonlinear current effect often observed during the actual waveguide fabrication. The simulation results have confirmed that the nonlinear current-versus-time profile obtained is mainly attributed to the inhomogeneous distribution of the electric field in the glass substrate due to a space charge region created by the separation between silver- and sodium-ion migration fronts as a result of their unequal mobilities; a phenomenon which is ultimately responsible for the eventual slow down in the ion exchange rate as monitored during the actual electromigration process. A fluxless oxidation-free bonding technology using multilayer composite solders based on the non eutectic binary alloys of indium-tin (In-Sn), silver-indium (Ag-In), gold-tin (Au-Sn), and bismuth-tin (Bi-Sn) has been established and studied to determine its applicability to photonics and MEMS packaging. The scanning acoustic microscopy (SAM) conducted on these solder samples has consistently shown that a nearly void-free joint fabricated from each non-eutectic binary alloy system can be reliably achieved. In addition, the scanning electron microscopy (SEM) equipped with the energy dispersive X-ray (EDX) detector was also performed on the cross section of each sample to determine its joint composition, especially of any sign of intermetallic compounds. These results will demonstrate that any intermetallic compound or phase present in a joint fabricated with a pre-determined multilayer composition based on a specific binary alloy system can be well understood and fully justified by correlating the experimental outcome with its respective binary phase diagram.

  10. Fabrication of the tetrathiafulvalene–2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane charge transfer complex with high crystallinity by eutectic melting method

    NASA Astrophysics Data System (ADS)

    Kim, Jueun; Kang, Youngjong; Lee, Jaejong

    2018-06-01

    We show that high crystallinity and charge transporting gain can be obtained in a noble donor–acceptor system (CT complex) composed of organic complex: tetrathiafulvalene–2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (TTF–F4TCNQ). The complex is small-gap organic metallic or semiconductor (less than 1 eV), and we predict having a high conductivity. We perform an approach to fabricate organic CT complex with high crystallinity by eutectic melting method. Our process is simple and shows crystal growth with improved crystallinity when combined with soft-lithography.

  11. Three-dimensional phase-field simulations of directional solidification

    NASA Astrophysics Data System (ADS)

    Plapp, Mathis

    2007-05-01

    The phase-field method has become the method of choice for simulating microstructural pattern formation during solidification. One of its main advantages is that time-dependent three-dimensional simulations become feasible, which makes it possible to address long-standing questions of pattern stability and pattern selection. Here, a brief introduction to the phase-field model and its implementation is given, and its capabilities are illustrated by examples taken from the directional solidification of binary alloys. In particular, the morphological stability of hexagonal cellular arrays and of eutectic lamellar patterns is investigated.

  12. Densities of some molten fluoride salt mixtures suitable for heat storage in space power applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Liquid densities were determined for a number of fluoride salt mixtures suitable for heat storage in space power applications, using a procedure that consisted of measuring the loss of weight of an inert bob in the melt. The density apparatus was calibrated with pure LiF and NaF at different temperatures. Density data for safe binary and ternary fluoride salt eutectics and congruently melting intermediate compounds are presented. In addition, a comparison was made between the volumetric heat storage capacity of different salt mixtures.

  13. Some properties of low-vapor-pressure braze alloys for thermionic converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1978-01-01

    Property measurements were made for arc-melted, rod-shaped specimens. Density and dc electrical resistivity at 296 K were measured for various binary eutectic alloys. Thermal conductivity was inferred from the electrical conductivity using the Wiedemann, Franz, Lorenz relation. Linear thermal expansion from 293 K to two-thirds melting point, under a helium atmosphere, was measured for Zr, 21.7-wt percent Ru; Zr, 13-wt percent W; Zr, 22.3-wt percent Nb; Nb, 66.9-wt percent Ru; and Zr, 25.7-wt percent Ta.

  14. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Choi, J. H.; Kim, N. Y.; Lee, T. K.; Han, S. Y.; Lee, K. R.; Park, H. S.; Ahn, D. H.

    2016-11-01

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl3). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K2CO3) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd2O3, CeO2, La2O3, Pr2O3) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  15. Innovative Poly(Ionic Liquid)s by the Polymerization of Deep Eutectic Monomers.

    PubMed

    Isik, Mehmet; Ruiperez, Fernando; Sardon, Haritz; Gonzalez, Alba; Zulfiqar, Sonia; Mecerreyes, David

    2016-07-01

    The incorporation of ionic liquid (IL) chemistry into functional polymers has extended the properties and applications of polyelectrolytes. However, ILs are expensive due to the presence of fluorinated anions or complicated synthetic steps which limit their technological viability. Here, we show a new family of poly(ionic liquid)s (PILs) which are based in cheap and renewable chemicals and involves facile synthetic approaches. Thus, deep eutectic monomers (DEMs) are prepared for the first time by using quaternary ammonium compounds and various hydrogen bond donors such as citric acid, terephthalic acid or an amidoxime. The deep eutectic formation is made through a simple mixing of the ingredients. Differential scanning calorimetry, nuclear magnetic resonance (NMR) and computational studies reveal the formation of the DEMs due to the ionic interactions. The resulting DEMs are liquid which facilitates their polymerization using mild photopolymerization or polycondensation strategies. Spectroscopic characterizations reveal the successful formation of the polymers. By this way, a new family of PILs can be synthesized which can be used for different applications. As an example, the polymers show promising performance as solid CO2 sorbents. Altogether the deep eutectic monomer route can lead to non-toxic, cheap and easy-to-prepare alternatives to current PILs for different applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Comparative in vitro study of cholinium-based ionic liquids and deep eutectic solvents toward fish cell line.

    PubMed

    Radošević, Kristina; Železnjak, Jelena; Cvjetko Bubalo, Marina; Radojčić Redovniković, Ivana; Slivac, Igor; Gaurina Srček, Višnja

    2016-09-01

    With the advent of ionic liquids, much was expected concerning their applicability as an alternative to organic solvents in the chemical technology and biotechnology fields. However, the most studied and commonly used ionic liquids based on imidazolium and pyridinium were found not to be as environmentally friendly as it was first expected. Therefore, a new generation of alternative solvents named natural ionic liquids and deep eutectic solvents, composed of natural and/or renewable compounds, have come into focus in recent years. Since the number of newly synthesized chemicals increases yearly, simple and reliable methods for their ecotoxicological assessment are necessary. Permanent fish cell lines can serve as a test system for the evaluation of a chemical's cytotoxicity. This paper presents research results on the cytotoxic effects on Channel Catfish Ovary (CCO) cell line induced by fifteen cholinium-based ionic liquids and deep eutectic solvents. Based on the decrease in cell viability, the most obvious toxic effect on CCO cells was caused by ionic liquid choline oxalate, while other solvents tested exhibited low cytotoxicity. Therefore, we can conclude that cholinium-based ionic liquids and deep eutectic solvents are comparatively less toxic to CCO cells than conventional ionic liquids. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil.

    PubMed

    Sawalha, Hassan; Venema, Paul; Bot, Arjen; Flöter, Eckhard; Adel, Ruud den; van der Linden, Erik

    The phase behavior of binary mixtures of γ-oryzanol and β-sitosterol and ternary mixtures of γ-oryzanol and β-sitosterol in sunflower oil was studied. Binary mixtures of γ-oryzanol and β-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was derived from differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) data, in which a compound that consists of γ-oryzanol and β-sitosterol molecules at a specific ratio can be formed. SAXS shows that the organization of γ-oryzanol and β-sitosterol in the mixed phases is different from the structure of tubules in ternary systems. Ternary mixtures including sunflower oil do not show a sudden structural transition from the compound to a tubule, but a gradual transition occurs as γ-oryzanol and β-sitosterol are diluted in edible oil. The same behavior is observed when melting binary mixtures of γ-oryzanol and β-sitosterol at higher temperatures. This indicates the feasibility of having an organogelling agent in dynamic exchange between solid and liquid phase, which is an essential feature of triglyceride networks.

  18. Novel binary deep eutectic electrolytes for rechargeable Li-ion batteries based on mixtures of alkyl sulfonamides and lithium perfluoroalkylsulfonimide salts

    NASA Astrophysics Data System (ADS)

    Geiculescu, O. E.; DesMarteau, D. D.; Creager, S. E.; Haik, O.; Hirshberg, D.; Shilina, Y.; Zinigrad, E.; Levi, M. D.; Aurbach, D.; Halalay, I. C.

    2016-03-01

    Ionic liquids (IL's) were proposed for use in Li-ion batteries (LIBs), in order to mitigate some of the well-known drawbacks of LiPF6/mixed organic carbonates solutions. However, their large cations seriously decrease lithium transference numbers and block lithium insertion sites at electrode-electrolyte interfaces, leading to poor LIB rate performance. Deep eutectic electrolytes (DEEs) (which share some of the advantages of ILs but possess only one cation, Li+), were then proposed, in order to overcome the difficulties associated with ILs. We report herein on the preparation, thermal properties (melting, crystallization, and glass transition temperatures), transport properties (specific conductivity and viscosity) and thermal stability of binary DEEs based on mixtures of lithium bis(trifluoromethane)sulfonimide or lithium bis(fluoro)sulfonimide salts with an alkyl sulfonamide solvent. Promise for LIB applications is demonstrated by chronoamperometry on Al current collectors, and cycling behavior of negative and positive electrodes. Residual current densities of 12 and 45 nA cm-2 were observed at 5 V vs. Li/Li+ on aluminum, 1.5 and 16 nA cm-2 at 4.5 V vs. Li/Li+, respectively for LiFSI and LiTFSI based DEEs. Capacities of 220, 130, and 175 mAh· g-1 were observed at low (C/13 or C/10) rates, respectively for petroleum coke, LiMn1/3Ni1/3Co1/3O2 (a.k.a. NMC 111) and LiAl0.05Co0.15Ni0.8O2 (a.k.a. NCA).

  19. Green synthesis of mesoporous molecular sieve incorporated monoliths using room temperature ionic liquid and deep eutectic solvents.

    PubMed

    Zhang, Li-Shun; Zhao, Qing-Li; Li, Xin-Xin; Li, Xi-Xi; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-12-01

    A hybrid monolith incorporated with mesoporous molecular sieve MCM-41 of uniform pore structure and high surface area was prepared with binary green porogens in the first time. With a mixture of room temperature ionic liquids and deep eutectic solvents as porogens, MCM-41 was modified with 3-(trimethoxysilyl) propyl methacrylate (γ-MPS) and the resulting MCM-41-MPS was incorporated into poly (BMA-co-EDMA) monoliths covalently. Because of good dispersibility of MCM-41-MPS in the green solvent-based polymerization system, high permeability and homogeneity for the resultant hybrid monolithic columns was achieved. The MCM-41-MPS grafted monolith was characterized by scanning electron microscopy, energy dispersive spectrometer area scanning, transmission electron microscopy, FT-IR spectra and nitrogen adsorption tests. Chromatographic performance of MCM-41-MPS grafted monolith was characterized by separating small molecules in capillary electrochromatography, including phenol series, naphthyl substitutes, aniline series and alkyl benzenes. The maximum column efficiency of MCM-41-MPS grafted monolith reached 209,000 plates/m, which was twice higher than the corresponding MCM-41-MPS free monolith. Moreover, successful separation of non-steroidal anti-inflammatory drugs and polycyclic aromatic hydrocarbons demonstrated the capacity in broad-spectrum application of the MCM-41-MPS incorporated monolith. The results indicated that green synthesis using room temperature ionic liquid and deep eutectic solvents is an effective method to prepare molecular sieve-incorporated monolithic column. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Solid/liquid phase diagram of the ammonium sulfate/glutaric acid/water system.

    PubMed

    Beyer, Keith D; Pearson, Christian S; Henningfield, Drew S

    2013-05-02

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/glutaric acid/water system using differential scanning calorimetry, infrared spectroscopy of thin films, and a new technique: differential scanning calorimetry-video microscopy. Using these techniques, we have determined that there is a temperature-dependent kinetic effect to the dissolution of glutaric acid in aqueous solution. We have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/glutaric acid phase boundary as well as the ternary eutectic composition and temperature. We have also modified our glutaric acid/water binary phase diagram previously published based on these new results. We compare our results for the ternary system to the predictions of the Extended AIM Aerosol Thermodynamics Model (E-AIM), and find good agreement for the ice melting points in the ice primary phase field of this system; however, significant differences were found with respect to phase boundaries, concentration and temperature of the ternary eutectic, and glutaric acid dissolution.

  1. Memory-Based Simple Heuristics as Attribute Substitution: Competitive Tests of Binary Choice Inference Models

    ERIC Educational Resources Information Center

    Honda, Hidehito; Matsuka, Toshihiko; Ueda, Kazuhiro

    2017-01-01

    Some researchers on binary choice inference have argued that people make inferences based on simple heuristics, such as recognition, fluency, or familiarity. Others have argued that people make inferences based on available knowledge. To examine the boundary between heuristic and knowledge usage, we examine binary choice inference processes in…

  2. Preparation of Magnesium, Cobalt and Nickel Ferrite Nanoparticles from Metal Oxides using Deep Eutectic Solvents.

    PubMed

    Söldner, Anika; Zach, Julia; Iwanow, Melanie; Gärtner, Tobias; Schlosser, Marc; Pfitzner, Arno; König, Burkhard

    2016-09-05

    Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel-type ferrite nanoparticles MFe2 O4 (M=Mg, Zn, Co, Ni). The best results for phase-pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid-phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase-pure spinel-type ferrite particles are thoroughly characterized by X-ray diffraction, diffuse-reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Liquid-liquid microextraction of synthetic pigments in beverages using a hydrophobic deep eutectic solvent.

    PubMed

    Zhu, Shuqiang; Zhou, Jia; Jia, Hongfang; Zhang, Haixia

    2018-03-15

    A method was developed for the determination of eight synthetic pigments in beverage samples by liquid-liquid microextraction followed by high performance liquid chromatography. Using hydrophobic deep eutectic solvent (DES) as the microextraction solvent, several key parameters were optimized, including the type and volume of the hydrophobic DES, pH value, vortex time and salt content. Detection limits were in the range 0.016-1.12 ng/mL, recoveries were in the range 74.5-102.5% and relative standard deviations were <5.4%. The method is simple, green and practical, and could be applied to the extraction and determination of synthetic pigments in beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Galvanic reduction of uranium(III) chloride from LiCl-KCl eutectic salt using gadolinium metal

    NASA Astrophysics Data System (ADS)

    Bagri, Prashant; Zhang, Chao; Simpson, Michael F.

    2017-09-01

    The drawdown of actinides is an important unit operation to enable the recycling of electrorefiner salt and minimization of waste. A new method for the drawdown of actinide chlorides from LiCl-KCl molten salt has been demonstrated here. Using the galvanic interaction between the Gd/Gd(III) and U/U(III) redox reactions, it is shown that UCl3 concentration in eutectic LiCl-KCl can be reduced from 8.06 wt.% (1.39 mol %) to 0.72 wt.% (0.12 mol %) in about an hour via plating U metal onto a steel basket. This is a simple process for returning actinides to the electrorefiner and minimizing their loss to the salt waste stream.

  5. A Novel Selective Deep Eutectic Solvent Extraction Method for Versatile Determination of Copper in Sediment Samples by ICP-OES.

    PubMed

    Bağda, Esra; Altundağ, Huseyin; Tüzen, Mustafa; Soylak, Mustafa

    2017-08-01

    In the present study, a simple, mono step deep eutectic solvent (DES) extraction was developed for selective extraction of copper from sediment samples. The optimization of all experimental parameters, e.g. DES type, sample/DES ratio, contact time and temperature were performed with using BCR-280 R (lake sediment certified reference material). The limit of detection (LOD) and the limit of quantification (LOQ) were found as 1.2 and 3.97 µg L -1 , respectively. The RSD of the procedure was 7.5%. The proposed extraction method was applied to river and lake sediments sampled from Serpincik, Çeltek, Kızılırmak (Fadl and Tecer region of the river), Sivas-Turkey.

  6. Memory-Based Simple Heuristics as Attribute Substitution: Competitive Tests of Binary Choice Inference Models.

    PubMed

    Honda, Hidehito; Matsuka, Toshihiko; Ueda, Kazuhiro

    2017-05-01

    Some researchers on binary choice inference have argued that people make inferences based on simple heuristics, such as recognition, fluency, or familiarity. Others have argued that people make inferences based on available knowledge. To examine the boundary between heuristic and knowledge usage, we examine binary choice inference processes in terms of attribute substitution in heuristic use (Kahneman & Frederick, 2005). In this framework, it is predicted that people will rely on heuristic or knowledge-based inference depending on the subjective difficulty of the inference task. We conducted competitive tests of binary choice inference models representing simple heuristics (fluency and familiarity heuristics) and knowledge-based inference models. We found that a simple heuristic model (especially a familiarity heuristic model) explained inference patterns for subjectively difficult inference tasks, and that a knowledge-based inference model explained subjectively easy inference tasks. These results were consistent with the predictions of the attribute substitution framework. Issues on usage of simple heuristics and psychological processes are discussed. Copyright © 2016 Cognitive Science Society, Inc.

  7. Electrochemical Synthesis of Binary Carbides of Tungsten and Iron (Nickel, Cobalt) in Halide-Oxide Melts at 823 K

    NASA Astrophysics Data System (ADS)

    Kushkhov, Hasbi; Adamokova, Marina; Kvashin, Vitalij; Kardanov, Anzor; Gramoteeva, Svetlana

    2007-12-01

    Iron, cobalt and nickel powders are used as binding components for the production of articles of tungsten carbide by the hot pressing method. This fact and the unique properties of binary carbides of tungsten-iron triad metals encouraged the search for new ways of their synthesis. In the present work, the attempt to synthezise binary tungsten-nickel (cobalt, iron) carbides in molten KCl-NaCl-CsCl at 823 K was made. As a result of voltammetry research, it was established that in eutectic KCl-NaCl-CsCl melts the deposition potentials ofWand Ni (Co, Fe) differ by 150 - 350 mV from each other, which makes their co-deposition difficult. It is possible to shift the deposition potentials of tungsten and metals of the iron triad metals towards each other by changing the acid-base properties of the melt. The products of electrolysis in these molten system were identified by X-ray analysis. They are mixtures of tungsten and nickel (cobalt, iron) carbides: Ni2W4C, W6C2.54; Co3W3C, Co6W6C, W2C, Co3C; FeW3C.

  8. High-pressure melting experiments on Fe-Si alloys and implications for silicon as a light element in the core

    NASA Astrophysics Data System (ADS)

    Ozawa, Haruka; Hirose, Kei; Yonemitsu, Kyoko; Ohishi, Yasuo

    2016-12-01

    We carried out melting experiments on Fe-Si alloys to 127 GPa in a laser-heated diamond-anvil cell (DAC). On the basis of textural and chemical characterizations of samples recovered from a DAC, a change in eutectic liquid composition in the Fe-FeSi binary system was examined with increasing pressure. The chemical compositions of coexisting liquid and solid phases were quantitatively determined with field-emission-type electron microprobes. The results demonstrate that silicon content in the eutectic liquid decreases with increasing pressure to less than 1.5 ± 0.1 wt.% Si at 127 GPa. If silicon is a single light element in the core, 4.5 to 12 wt.% Si is required in the outer core in order to account for its density deficit from pure iron. However, such a liquid core, whose composition is on the Si-rich side of the eutectic point, crystallizes less dense solid, CsCl (B2)-type phase at the inner core boundary (ICB). Our data also show that the difference in silicon concentration between coexisting solid and liquid is too small to account for the observed density contrast across the ICB. These indicate that silicon cannot be the sole light element in the core. Previous geochemical and cosmochemical arguments, however, strongly require ∼6 wt.% Si in the core. It is possible that the Earth's core originally included ∼6 wt.% Si but then became depleted in silicon by crystallizing SiO2 or MgSiO3.

  9. Turbine blade processing

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Space processing of directionally solidified eutectic-alloy type turbine blades is envisioned as a simple remelt operations in which precast blades are remelted in a preformed mold. Process systems based on induction melting, continuous resistance furnaces, and batch resistance furnaces were evaluated. The batch resistance furnace type process using a multiblade mold is considered to offer the best possibility for turbine blade processing.

  10. Development of ultrafine Ti-Fe-Sn in-situ composite with enhanced plasticity

    NASA Astrophysics Data System (ADS)

    Mondal, B.; Samal, S.; Biswas, K.; Govind

    2012-01-01

    The present investigation is aimed at developing ultrafine eutectic/dendrite Ti-Fe-Sn in-situ composite with balanced combination of strength and plasticity. It also studies the microstructure evolution in the series of hypereutectic Ti-Fe-Sn ternary alloys. Sn concentration of these alloys has been varied from 0 - 10 atom% in the binary alloy (Ti71Fe29) keeping the Ti concentration fixed. These alloys have been prepared by arc melting under an Ar atmosphere on a water-cooled Cu hearth, which are subsequently suction cast in a split Cu-mold under an Ar atmosphere. Detailed X-ray diffraction (XRD) study shows the presence of TiFe, β-Ti, and Ti3Sn phases. The SEM micrographs reveal that the microstructures consist of fine scale eutectic matrix (β-Ti and TiFe) with primary dendrite phases (TiFe and/or Ti3Sn) depending on concentration of Sn. α -Ti forms as a eutectoid reaction product of β-Ti. The room temperature uniaxial compressive test reveals simultaneous improvement in the strength (1942 MPa) and plasticity (13.1 %) for Ti71Fe26Sn3 ternary alloy. The fracture surface indicates a ductile mode of fracture for the alloy.

  11. Effect of magnesium content on the microstructure and dry sliding wear behavior of centrifugally cast functionally graded A356-Mg2Si in situ composites

    NASA Astrophysics Data System (ADS)

    Ram, Subhash Chandra; Chattopadhyay, K.; Chakrabarty, I.

    2018-04-01

    Functionally graded A356 alloy (Al–7.2Si–0.3Mg) –Mg2Si in situ composites have been synthesized via centrifugal casting route. Mg2Si particles tend to migrate towards the core of the tubular product by centrifugal force. The in situ formed Mg2Si particles in composites are characterized by x-ray diffraction (XRD) analysis, Energy dispersive spectrometry (EDS), Optical, Scanning Electron and Transmission Electron Microscopy. Apart from primary blocky Mg2Si particles the matrix contains other phases viz. Al-Si eutectic, pseudo-binary Al-Mg2Si eutectic and Al-Fe-Si intermetallics. Density is found to decrease and %porosity is increased with increase in volume fraction of Mg2Si. Maximum hardness was observed at the inner core region due to maximum segregation of Mg2Si particles and gradually decreases towards the outer periphery region. The dry sliding wear was evaluated with varying parameters such as normal loads (N) and sliding distances (m). A substantial increase in wear resistance at the inner core region is observed. From the worn surface characterization, the wear mechanisms have been explained.

  12. Separation of non-racemic mixtures of enantiomers: an essential part of optical resolution.

    PubMed

    Faigl, Ferenc; Fogassy, Elemér; Nógrádi, Mihály; Pálovics, Emese; Schindler, József

    2010-03-07

    Non-racemic enantiomeric mixtures form homochiral and heterochiral aggregates in melt or suspension, during adsorption or recrystallization, and these diastereomeric associations determine the distribution of the enantiomers between the solid and other (liquid or vapour) phases. That distribution depends on the stability order of the homo- and heterochiral aggregates (conglomerate or racemate formation). Therefore, there is a correlation between the binary melting point phase diagrams and the experimental ee(I)vs. ee(0) curves (ee(I) refers to the crystallized enantiomeric mixtures, ee(0) is the composition of the starting ones). Accordingly, distribution of the enantiomeric mixtures between two phases is characteristic and usually significant enrichment can be achieved. There are two exceptions: no enrichment could be observed under thermodynamically controlled conditions when the starting enantiomer composition corresponded to the eutectic composition, or when the method used was unsuitable for separation. In several cases, when kinetic control governed the crystallization, the character of the ee(0)-ee(I) curve did not correlate with the melting point binary phase diagram.

  13. Transport Properties of LiTFSI-Acetamide Room Temperature Molten Salt Electrolytes Applied in an Li-Ion Battery

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Chen; Hsu, Hsin-Yi; Hsu, Chen-Ruei

    2007-11-01

    In the present work some transport properties of the binary room temperature molten salt (RTMS) lithium bis(trifluoromethane sulfone)imide (LiTFSI)-acetamide [LiN(SO2CF3)2-CH3CONH2], applied in an Li-ion battery, have been investigated. The phase diagram was determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The result reveals that the binary RTMS has an eutectic point at 201 K and the 30 mol% LiTFSI composition. The electric conductivity was measured using a direct current computerized method. The result shows that the conductivities of the melts increase with increasing temperature and acetamide content. The densities of all melts decrease with increasing temperature and acetamide content. The equivalent conductivities were fitted by the Arrhenius equation, where the activation energies were 18.15, 18.52, 20.35, 25.08 kJ/mol for 10, 20, 30, 40 mol% LiTFSI, respectively. Besides the relationships between conductivity, density composition and temperature, of the ion interaction is discussed.

  14. Development and Processing of Nickel Aluminide-Carbide Alloys

    NASA Technical Reports Server (NTRS)

    Newport, Timothy Scott

    1996-01-01

    With the upper temperature limit of the Ni-based superalloys attained, a new class of materials is required. Intermetallics appear as likely candidates because of their attractive physical properties. With a relatively low density, high thermal conductivity, excellent oxidation resistance, high melting point, and simple crystal structure, nickel aluminide (NiAl) appears to be a potential candidate. However, NiAl is limited in structural applications due to its low room temperature fracture toughness and poor elevated temperature strength. One approach to improving these properties has been through the application of eutectic composites. Researchers have shown that containerless directional solidification of NiAl-based eutectic alloys can provide improvement in both the creep strength and fracture toughness. Although these systems have shown improvements in the mechanical properties, the presence of refractory metals increases the density significantly in some alloys. Lower density systems, such as the carbides, nitrides, and borides, may provide NiAl-based eutectic structure. With little or no information available on these systems, experimental investigation is required. The objective of this research was to locate and develop NiAl-carbide eutectic alloys. Exploratory arc-melts were performed in NiAl-refractory metal-C systems. Refractory metal systems investigated included Co, Cr, Fe, Hf, Mo, Nb, Ta, Ti, W, and Zr. Systems containing carbides with excellent stability (i.e.,HfC, NbC, TaC, TiC, and ZrC) produced large blocky cubic carbides in an NiAl matrix. The carbides appeared to have formed in the liquid state and were randomly distributed throughout the polycrystalline NiAl. The Co, Cr, Fe, Mo, and W systems contained NiAl dendrites with a two-phase interdendritic microconstituent present. Of these systems, the NiAl-Mo-C system had the most promising microstructure for in-situ composites. Three processing techniques were used to evaluate the NiAl-Mo-C system: arc-melting, slow cooling, and containerless directional solidification. Arc-melting provided a wide range of compositions in an economical and simple fashion. The slow cooled ingots provided larger ingots and slower cooling rates than arc-melting. Directional solidification was used to produce in-situ composites consisting of NiAl reinforced with molybdenum carbides.

  15. Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun; Charoensuksai, Purin

    2016-10-01

    Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase.

  16. Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts

    NASA Astrophysics Data System (ADS)

    Li, Mingjun; Kuribayashi, Kazuhiko

    2003-12-01

    Co-20.5 at. pct Sn and Ni-21.4 at. pct Si eutectic alloys have been levitated and undercooled in an electromagnetic levitator (EML) and then solidified spontaneously at different undercoolings. The original surface and cross-sectional morphologies of these solidified samples consist of separate eutectic colonies regardless of melt undercooling, indicating that microstructures in the free solidification of the eutectic systems are nucleation controlled. Regular lamellae always grow from the periphery of an independent anomalous eutectic grain in each eutectic colony. This typical morphology shows that the basic unit should be a single eutectic colony, when discussing the solidification behavior. Special emphasis is focused on the anomalous eutectic formation after a significant difference in linear kinetic coefficients is recognized for terminal eutectic phases, in particular when a eutectic reaction contains a nonfaceted disordered solid solution and a faceted ordered intermetallic compound as the terminal eutectic phases. It is this remarkable difference in the linear kinetic coefficients that leads to a pronounced difference in kinetic undercoolings. The sluggish kinetics in the interface atomic attachment of the intermetallic compound originates the occurrence of the decoupled growth of two eutectic phases. Hence, the current eutectic models are modified to incorporate kinetic undercooling, in order to account for the competitive growth behavior of eutectic phases in a single eutectic colony. The critical condition for generating the decoupled growth of eutectic phases is proposed. Further analysis reveals that a dimensionless critical undercooling may be appropriate to show the tendency for the anomalous eutectic-forming ability when considering the difference in linear kinetic coefficients of terminal eutectic phases. This qualitative criterion, albeit crude with several approximations and assumptions, can elucidate most of the published experimental results with the correct order of magnitude. Solidification modes in some eutectic alloys are predicted on the basis of the present criterion. Future work that may result in some probable errors is briefly directed to improve the model.

  17. Fourier Thermal Analysis of the Eutectic Formed in Pb-Sn Alloys

    NASA Astrophysics Data System (ADS)

    Cruz, H.; Ramírez-Argaez, M.; Juarez, A.; Garcia, A.; González-Rivera, C.

    2009-06-01

    The effect of the presence of two different primary phases on the microstructural characteristics and solidification kinetics of Pb-Sn eutectic was analyzed using Fourier thermal analysis method (FTA) and microstructural characterization. Three Pb-Sn alloys, a hypoeutectic, an eutectic, and a hypereutectic alloy, were melted in an electric furnace under an argon atmosphere and poured into sand molds. Cooling curves were obtained and numerically processed using FTA. Microstructural observations of the probes indicate a lamellar morphology for the eutectic microconstituent of the hypereutectic alloy; the eutectic alloy shows the presence of both lamellar and anomalous eutectic and the hypoeutectic alloy shows only the presence of anomalous eutectic. FTA results indicate that in the case of the probes showing the presence of anomalous eutectic, there is a primary eutectic formed during recalescence at high undercooling and a secondary eutectic yielded at low undercooling at the eutectic plateau temperature. This result shows that the cause behind the observed differences in the eutectic morphologies of the experimental alloys lies on the nucleating ability of the primary phase available as a potential substrate for nucleation of the eutectic microconstituent.

  18. Preferred growth orientation and microsegregation behaviors of eutectic in a nickel-based single-crystal superalloy

    PubMed Central

    Ma, Dexin; Bührig-Polaczek, Andreas

    2015-01-01

    A nickel-based single-crystal superalloy was employed to investigate the preferred growth orientation behavior of the (γ + γ′) eutectic and the effect of these orientations on the segregation behavior. A novel solidification model for the eutectic island was proposed. At the beginning of the eutectic island’s crystallization, the core directly formed from the liquid by the eutectic reaction, and then preferably grew along [100] direction. The crystallization of the eutectic along [110] always lagged behind that in [100] direction. The eutectic growth in [100] direction terminated on impinging the edge of the dendrites or another eutectic island. The end of the eutectic island’s solidification terminates due to the encroachment of the eutectic liquid/solid interface at the dendrites or another eutectic island in [110] direction. The distribution of the alloying elements depended on the crystalline axis. The degree of the alloying elements’ segregation was lower along [100] than [110] direction with increasing distance from the eutectic island’s center. PMID:27877773

  19. Development of deep eutectic solvents applied in extraction and separation.

    PubMed

    Li, Xiaoxia; Row, Kyung Ho

    2016-09-01

    Deep eutectic solvents, as an alternative to ionic liquids, have greener credentials than ionic liquids, and have attracted considerable attention in related chemical research. Deep eutectic solvents have attracted increasing attention in chemistry for the extraction and separation of various target compounds from natural products. This review highlights the preparation of deep eutectic solvents, unique properties of deep eutectic solvents, and synthesis of deep-eutectic-solvent-based materials. On the other hand, application in the extraction and separation of deep eutectic solvents is also included in this report. In this paper, the available data and references in this field are reviewed to summarize the applications and developments of deep eutectic solvents. Based on the development of deep eutectic solvents, an exploitation of new deep eutectic solvents and deep eutectic solvents-based materials is expected to diversify into extraction and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Interaction of metal layers with polycrystalline Si

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Olowolafe, J. O.; Lau, S. S.; Nicolet, M.-A.; Mayer, J. W.; Shima, R.

    1976-01-01

    Solid-phase reactions of metal films deposited on 0.5-micron-thick polycrystalline layers of Si grown by chemical vapor deposition at 640 C were investigated by MeV He-4 backscattering spectrometry, glancing angle X-ray diffraction, and SEM observations. For the metals Al, Ag, and Au, which form simple eutectics, heat treatment at temperatures below the eutectic results in erosion of the poly-Si layer and growth of Si crystallites in the metal film. Crystallite formation is observed at temperatures exceeding 550 C for Ag, at those exceeding 400 C for Al, and at those exceeding 200 C for Au films. For Pd, Ni, and Cr, heat treatment results in silicide formation. The same initial silicides (Pd2Si, Ni2Si, and CrSi2), are formed at similar temperatures on single-crystal substrates.

  1. Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield

    NASA Astrophysics Data System (ADS)

    Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan

    2015-09-01

    Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1, 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, 1H-NMR and 13C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.

  2. Anomalous eutectic formation in the solidification of undercooled Co-Sn alloys

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wei, X. X.; Huang, Q. S.; Li, J. F.; Cheng, X. H.; Zhou, Y. H.

    2012-11-01

    Three Co-Sn alloys with compositions around the eutectic point were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by monitoring the temperature recalescence and examing the solidification structure. It is revealed that the primary phase during rapid solidification changes complexly with the increasing undercooling in the off-eutectic alloys, while coupled eutectic growth takes place at all undercoolings in the eutectic alloy. Two types of anomalous eutectics form in the alloys: one evolving from coupled eutectics and the other from single phase dendrites or seaweeds. The crystallographic orientation of eutectic phases in the anomalous eutectic is dependent on which type their precursors belong to.

  3. Studying of drug solubility in water and alcohols using drug-ammonium ionic liquid-compounds.

    PubMed

    Halayqa, Mohammad; Pobudkowska, Aneta; Domańska, Urszula; Zawadzki, Maciej

    2018-01-01

    Synthesis of three mefenamic acid (MEF) derivatives - ionic liquid compounds composed of MEF in an anionic form and ammonium cation (choline, MEF1), or {di(2-hydroxyethyl)dimethyl ammonium (MEF2)}, or {tri(2-hydroxyethyl)methyl ammonium compound (MEF3)} is presented. The basic thermal properties of pure compounds i.e. fusion temperatures, and the enthalpy of fusion of these compounds have been measured with differential scanning microcalorimetry technique (DSC). Molar volumes have been calculated with the Barton group contribution method. The solubilities of MEF1, MEF2 and MEF3 using the dynamic method were measured at constant pH in a range of temperature from (290 to 370) K in three solvents: water, ethanol and 1-octanol. The experimental solubility data have been correlated by means of three commonly known G E equations: the Wilson, NRTL and UNIQUAC with the assumption that the systems studied here present simple eutectic behaviour. The activity coefficients of pharmaceuticals at saturated solutions in each binary mixture were calculated from the experimental data. The formation of MEF-ionic liquid compounds greatly increases the solubility in water in comparison with pure MEF or complexes with 2-hydroxypropyl-β-cyclodextrin. The development of these compounds formulations will assist in medication taking into account oral solid or gel medicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Constitution and thermodynamics of the Mo-Ru, Mo-Pd, Ru-Pd and Mo-Ru-Pd systems

    NASA Astrophysics Data System (ADS)

    Kleykamp, H.

    1989-09-01

    The constitution of the Mo-Ru, Mo-Pd and Ru-Pd systems was reinvestigated between 800 and 2000°C. The Mo-Ru system is of the eutectic type, a σ-phase Mo 5Ru 3 exists between 1915 and 1143°C. The Mo-Pd system is characterized by an hcp phase Mo 9Pd 11 and by two peritectic reactions, β- Mo( Pd) + L = Mo9Pd11andMo9Pd11 + L = α- Pd( Mo). Mo 9Pd 11 decomposes eutectoidally at 1370°C. The Ru-Pd system is simple peritectic. The continuous series of the hcp solid solutions between Mo 9Pd 11 and ɛ-Ru(Mo, Pd) in the ternary Mo-Ru-Pd system observed at 1700°C are suppressed below 1370°C near the Mo-Pd boundary system by the formation of a narrow α + β + ɛ three-phase field. Relative partial molar Gibbs energies of Mo, Mo and Ru in the respective binary systems and of Mo in the ternary system were measured by the EMF method with a Zr(Ca)O 2 electrolyte. xsΔ ḠMo∞ quantities were evaluated at 1200 K which give -43 kJ/mol Mo in Ru and -94 kJ/mol Mo in Pd at infinite dilution. Gibbs energies of formation of the Mo-Ru and Mo-Pd systems were calculated.

  5. Effect of amino acids on the eutectic behavior of NaCl solutions studied by DSC.

    PubMed

    Chen, N J; Morikawa, J; Hashimoto, T

    2005-06-01

    The effect of a series of amino acids on the eutectic behavior of NaCl solutions at isotonic concentration has been studied by differential scanning calorimetry. The inclusion of different amino acids had different effects on eutectic formation. The amino acids were grouped into four categories based on their effect on eutectic formation: category C were amino acids that had no effect on eutectic formation; category D amino acids inhibited eutectic formation; category T amino acids shifted the melting of the eutectic to a lower temperature; category E amino acids caused the formation of a new eutectic with a melting temperature approximately -5 degrees C. The mechanism of these different effects on eutectic behavior is discussed, based on the chemical structure of the amino acids.

  6. Phase Composition and Hardening of Castable Al - Ca - Ni - Sc Alloys Containing 0.3% Sc

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Naumova, E. A.; Bazlova, T. A.; Doroshenko, V. V.

    2017-05-01

    The phase composition of aluminum alloys of the Al - Ca - Ni - Sc system containing 0.3 wt.% Sc is studied. It is shown that the aluminum solid solution may be in equilibrium not only with binary phases (Al4Ca, Al3Sc and Al3Ni) but also with a ternary Al9NiCa compound. The temperature of attainment of maximum hardening due to precipitation of nanoparticles of phase Al3Sc is determined for all the alloys studied. Principal possibility of creation of castable alloys based on an (Al) + Al4Ca + Al9NiCa eutectic, the hardening heat treatment of which does not require quenching, is substantiated.

  7. A Simple Educational Method for the Measurement of Liquid Binary Diffusivities

    ERIC Educational Resources Information Center

    Rice, Nicholas P.; de Beer, Martin P.; Williamson, Mark E.

    2014-01-01

    A simple low-cost experiment has been developed for the measurement of the binary diffusion coefficients of liquid substances. The experiment is suitable for demonstrating molecular diffusion to small or large undergraduate classes in chemistry or chemical engineering. Students use a cell phone camera in conjunction with open-source image…

  8. A green ultrasonic-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil.

    PubMed

    Khezeli, Tahere; Daneshfar, Ali; Sahraei, Reza

    2016-04-01

    A simple, inexpensive and sensitive ultrasonic-assisted liquid-liquid microextraction method based on deep eutectic solvent (UALLME-DES) was used for the extraction of three phenolic acids (ferulic, caffeic and cinnamic) from vegetable oils. In a typical experiment, deep eutectic solvent as green extraction solvent was added to n-hexane (as a typical oil medium) containing target analytes. Subsequently, the extraction was accelerated by sonication. After the extraction, phase separation (DES rich phase/n-hexane phase) was performed by centrifugation. DES rich phase (lower phase) was withdrawn by a micro-syringe and submitted to isocratic reverse-phase HPLC with UV detection. Under optimum conditions obtained by response surface methodology (RSM) and desirability function (DF), the method has good linear calibration ranges (between 1.30 and 1000 µg L(-1)), coefficients of determination (r(2)>0.9949) and low limits of detection (between 0.39 and 0.63 µg L(-1)). This procedure was successfully applied to the determination of target analytes in olive, almond, sesame and cinnamon oil samples. The relative mean recoveries ranged from 94.7% to 104.6%. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products.

    PubMed

    Bajkacz, Sylwia; Adamek, Jakub

    2017-06-01

    Natural deep eutectic solvents (NADESs) are considered to be new, safe solvents in green chemistry that can be widely used in many chemical processes such as extraction or synthesis. In this study, a simple extraction method based on NADES was used for the isolation of isoflavones (daidzin, genistin, genistein, daidzein) from soy products. Seventeen different NADES systems each including two or three components were tested. Multivariate data analysis revealed that NADES based on a 30% solution of choline chloride: citric acid (molar ratio of 1:1) are the most effective systems for the extraction of isoflavones from soy products. After extraction, the analytes were detected and quantified using ultra-high performance liquid chromatography with ultraviolet detection (UHPLC-UV). The proposed NADES extraction procedure achieved enrichment factors up to 598 for isoflavones and the recoveries of the analytes were in the range 64.7-99.2%. The developed NADES extraction procedure and UHPLC-UV determination method was successfully applied for the analysis of isoflavones in soy-containing food samples. The obtained results indicated that new natural deep eutectic solvents could be an alternative to traditional solvents for the extraction of isoflavones and can be used as sustainable and safe extraction media for another applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Microstructures of tribologically modified surface layers in two-phase alloys

    NASA Astrophysics Data System (ADS)

    Figueroa, C. G.; Ortega, I.; Jacobo, V. H.; Ortiz, A.; Bravo, A. E.; Schouwenaars, R.

    2014-08-01

    When ductile alloys are subject to sliding wear, small increments of plastic strain accumulate into severe plastic deformation and mechanical alloying of the surface layer. The authors constructed a simple coaxial tribometer, which was used to study this phenomenon in wrought Al-Sn and cast Cu-Mg-Sn alloys. The first class of materials is ductile and consists of two immiscible phases. Tribological modification is observed in the form of a transition zone from virgin material to severely deformed grains. At the surface, mechanical mixing of both phases competes with diffusional unmixing. Vortex flow patterns are typically observed. The experimental Cu-Mg-Sn alloys are ductile for Mg-contents up to 2 wt% and consist of a- dendrites with a eutectic consisting of a brittle Cu2Mg-matrix with α-particles. In these, the observations are similar to the Al-Sn Alloys. Alloys with 5 wt% Mg are brittle due to the contiguity of the eutectic compound. Nonetheless, under sliding contact, this compound behaves in a ductile manner, showing mechanical mixing of a and Cu2Mg in the top layers and a remarkable transition from a eutectic to cellular microstructure just below, due to severe shear deformation. AFM-observations allow identifying the mechanically homogenized surface layers as a nanocrystalline material with a cell structure associated to the sliding direction.

  11. Preparation of Supported Palladium Catalysts using Deep Eutectic Solvents.

    PubMed

    Iwanow, Melanie; Finkelmeyer, Jasmin; Söldner, Anika; Kaiser, Manuela; Gärtner, Tobias; Sieber, Volker; König, Burkhard

    2017-09-12

    Deep eutectic solvents (DESs) dissolve metal salts or oxides and are used as solvent and carbon source for the preparation of supported palladium catalysts. After dissolving of the palladium salt in the DES, the pyrolysis of the mixture under nitrogen atmosphere yields catalytically active palladium on supporting material composed of carbon, nitrogen and oxygen (CNO) by a simple single step preparation method without further activation. The catalysts were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and CHNS/O elementary analysis. The amount of functional groups on the surface of the supporting material was determined by Boehm titrations. Moreover, the activity of the prepared catalysts was evaluated in the hydrogenation of linear alkenes and compared with a commercial Pd/C catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mechanical properties of haynes alloy 188 after 22,500 hours of exposure to LiF-22CaF2 and vacuum at 1093 K

    NASA Astrophysics Data System (ADS)

    Whittenberger, J. D.

    1994-12-01

    As a continuation of a study of a space-based thermal energy storage system centered on a LiF-CaF2 eutectic salt contained by Haynes alloy 188, this Co-base superalloy was subjected to molten salt, its vapor, and vacuum for 22,500 h at 1093 K. Samples from all three exposure conditions were tensile tested between 77 to 1200 K; in addition, vacuum and molten-salt exposed specimens were vacuum creep rupture tested at 1050 K. Comparison of these mechanical properties with those measured for the as-received alloy reveals no evidence for degradation beyond that ascribed to simple thermal aging of Haynes alloy 188. This behavior is identical to the 10,000 h results (Ref 3); hence, Haynes alloy 188 is a suitable containment material for an eutectic LiF-CaF2 thermal energy storage salt.

  13. Antimicrobial properties of ternary eutectic aluminum alloys.

    PubMed

    Hahn, Claudia; Hans, Michael; Hein, Christina; Dennstedt, Anne; Mücklich, Frank; Rettberg, Petra; Hellweg, Christine Elisabeth; Leichert, Lars Ingo; Rensing, Christopher; Moeller, Ralf

    2018-06-27

    Several Escherichia coli deletion mutants of the Keio collection were selected for analysis to better understand which genes may play a key role in copper or silver homeostasis. Each of the selected E. coli mutants had a deletion of a single gene predicted to encode proteins for homologous recombination or contained functions directly linked to copper or silver transport or transformation. The survival of these strains on pure copper surfaces, stainless steel, and alloys of aluminum, copper and/or silver was investigated. When exposed to pure copper surfaces, E. coli ΔcueO was the most sensitive, whereas E. coli ΔcopA was the most resistant amongst the different strains tested. However, we observed a different trend in sensitivities in E. coli strains upon exposure to alloys of the system Al-Ag-Cu. While minor antimicrobial effects were detected after exposure of E. coli ΔcopA and E. coli ΔrecA to Al-Ag alloys, no effect was detected after exposure to Al-Cu alloys. The release of copper ions and cell-associated copper ion concentrations were determined for E. coli ΔcopA and the wild-type E. coli after exposure to pure copper surfaces. Altogether, compared to binary alloys, ternary eutectic alloys (Al-Ag-Cu) had the highest antimicrobial effect and thus, warrant further investigation.

  14. Phasor Analysis of Binary Diffraction Gratings with Different Fill Factors

    ERIC Educational Resources Information Center

    Martinez, Antonio; Sanchez-Lopez, Ma del Mar; Moreno, Ignacio

    2007-01-01

    In this work, we present a simple analysis of binary diffraction gratings with different slit widths relative to the grating period. The analysis is based on a simple phasor technique directly derived from the Huygens principle. By introducing a slit phasor and a grating phasor, the intensity of the diffracted orders and the grating's resolving…

  15. Behavior of Sn atoms in GeSn thin films during thermal annealing: Ex-situ and in-situ observations

    NASA Astrophysics Data System (ADS)

    Takase, Ryohei; Ishimaru, Manabu; Uchida, Noriyuki; Maeda, Tatsuro; Sato, Kazuhisa; Lieten, Ruben R.; Locquet, Jean-Pierre

    2016-12-01

    Thermally induced crystallization processes for amorphous GeSn thin films with Sn concentrations beyond the solubility limit of the bulk crystal Ge-Sn binary system have been examined by X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, and (scanning) transmission electron microscopy. We paid special attention to the behavior of Sn before and after recrystallization. In the as-deposited specimens, Sn atoms were homogeneously distributed in an amorphous matrix. Prior to crystallization, an amorphous-to-amorphous phase transformation associated with the rearrangement of Sn atoms was observed during heat treatment; this transformation is reversible with respect to temperature. Remarkable recrystallization occurred at temperatures above 400 °C, and Sn atoms were ejected from the crystallized GeSn matrix. The segregation of Sn became more pronounced with increasing annealing temperature, and the ejected Sn existed as a liquid phase. It was found that the molten Sn remains as a supercooled liquid below the eutectic temperature of the Ge-Sn binary system during the cooling process, and finally, β-Sn precipitates were formed at ambient temperature.

  16. Processing and Mechanical Properties of NiAl-Based In-Situ Composites. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Johnson, David Ray

    1994-01-01

    In-situ composites based on the NiAl-Cr eutectic system were successfully produced by containerless processing and evaluated. The NiAl-Cr alloys had a fibrous microstructure while the NiAl-(Cr,Mo) alloys containing 1 at. percent or more molybdenum exhibited a lamellar structure. The NiAl-28Cr-6Mo eutectic displays promising high temperature strength while still maintaining a reasonable room temperature fracture toughness when compared to other NiAl-based materials. The Laves phase NiAlTa was used to strengthen NiAl and very promising creep strengths were found for the directionally solidified NiAl-NiAlTa eutectic. The eutectic composition was found to be near NiAl-15.5Ta (at. percent) and well aligned microstructures were produced at this composition. An off-eutectic composition of NiAl-14.5Ta was also processed, consisting of NiAl dendrites surrounded by aligned eutectic regions. The room temperature toughness of these two phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa. Polyphase in-situ composites were generated by directional solidification of ternary eutectics. The systems investigated were the Ni-Al-Ta-X (X=Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and both the eutectic composition and temperature were determined. Of these ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr,Al)NiTa-Cr eutectic was intermediate between those of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  17. Evaluation of damage induced by high irradiation levels on α-Ni-Ni3Si eutectic structure

    NASA Astrophysics Data System (ADS)

    Camacho Olguin, Carlos Alberto; Garcia-Borquez, Arturo; González-Rodríguez, Carlos Alberto; Loran-Juanico, Jose Antonio; Cruz-Mejía, Hector

    2015-06-01

    Diluted alloys of the binary system Ni-Si have been used as target of beam of ions, electrons, neutrons and so on because in this kind of alloy occurs transformations order-disorder, when the temperature is raised. This fact has permitted to evaluate the phenomena associated with the damage induced by irradiation (DII). The results of these works have been employed to understand the behavior under irradiation of complex alloys and to evaluate the reliability of the results of mathematical simulation of the evolution of the DII. The interest in the alloy system Ni-Si has been reborn due to the necessity of developing materials, which have better resistance against the corrosion on more aggressive environments such as those generated on the nuclear power plants or those that exist out of the Earth's atmosphere. Now, a growing interest to use concentrated alloys of this binary system on diverse fields of the materials science has been taking place because up to determined concentration of silicon, a regular eutectic is formed, and this fact opens the possibility to develop lamellar composite material by directional solidification. However, nowadays, there is a lack of fundamental knowledge about the behavior of this type of lamellar structure under aggressive environments, like those mentioned before. Hence, the task of this work is to evaluate the effect that has the irradiation over the microstructure of the concentrated alloy Ni22at%Si. The dendritic region of the hypereutectic alloy consists of an intermetallic phase Ni3Si, whereas the interdendritic region is formed by the alternation of lamellas of solid solution α-Ni and intermetallic phase Ni3Si. Such kind of microstructure has the advantage to get information of the DII over different phases individually, and at the same time, about of the microstructure influence over the global damage in the alloy. The hypereutectic Ni22at%Si alloy was irradiated perpendicularly to its surface, with 3.66 MeV - Ni ions up to 380 dpa at 650°C in a Tandetron linear accelerator. The level of irradiation dose was chosen similar to the irradiation conditions of the next-generation nuclear reactors. The theoretical maximum depth of the DII (maximum depth of damage (MDD)) was calculated as 1.35 µm using the SRIM-2013 program; the laminar microstructure of the eutectic was simulated using the lattice parameters of the eutectic before irradiation. The experimental MDD was 1.47 µm, as determined through transmission electron microscope (TEM) images and the DII was characterized using µX-ray diffraction and TEM. The elimination of cubic phase of the intermetallic Ni3Si, the suppression of lamellae of the α-Ni phase, the generation of dislocation loops and lines, all of these changes generated by the irradiation are clear evidences that the DII was severe. Based on theoretical and experimental evidence, we propose that the amount of phases, alternate of lamellae with different chemical concentrations of silicon and lamellae spatial distribution have a direct relation with the severe evolution of the DII.

  18. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  19. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  20. Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy

    NASA Technical Reports Server (NTRS)

    Westra, D. G.; Heinrich, J. C.; Poirier, D. R.

    2003-01-01

    Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value for the rate of change of fraction of liquid as the liquid in an element solidifies. The new method enables us to contrast results of simulations in which the alloy is subjected to no gravity or a steady-state acceleration versus simulations when the alloy is subjected to vibration disturbances; therefore, the effect of vibration disturbances can be assessed more accurately. To assess the impact of these vibration-perturbations, transient accelerometer data from a space shuttle mission are used as inputs for the simulation model. These on-orbit acceleration data were obtained from the Microgravity Science Division at Glenn Research Center (GRC- MSD) and are applied to the buoyancy term of the momentum equation in a simulation of a Pb-5.8 wt. % Sb alloy that solidifies in a thermal gradient of 4000 K/m and a translation velocity of 3 p d s . Figure 2 shows the vertical velocity of a node that begins in the all-liquid region and subsequently solidifies; the vibrations are applied at 5000 seconds in this simulation. An important difficulty, common to all solidification models based on finite elements or 2 The magnitudes of the velocity oscillations that are vibration-induced are very small and acceptable. The biggest concern is whether the concentration of the liquid near the dendrite tips is distorted because of the vibration-induced perturbations. Results for this case show no concentration oscillations present in the all-liquid region.

  1. Growth and scintillation properties of Eu doped BaCl2/LiF eutectic scintillator

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Hishinuma, Kosuke; Kurosawa, Shunsuke; Yamaji, Akihiro; Shoji, Yasuhiro; Pejchal, Jan; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2015-12-01

    Eu doped BaCl2/LiF eutectics were grown by the micro-pulling down method and their directionally solidified eutectic (DSE) system has been investigated. The grown eutectic showed main phases of cubic LiF and orthorhombic BaCl2. In these eutectics, the 399 nm emission of Eu2+ 4f5d was obtained. It shows the intrinsic decay time of about 410 ns. The light yield of the 1-mm-thick eutectic showed 7000 ph/5.5 MeV alpha-ray.

  2. Development of a High Chromium Ni-Base Filler Metal Resistant to Ductility Dip Cracking and Solidification Cracking

    NASA Astrophysics Data System (ADS)

    Hope, Adam T.

    Many nuclear reactor components previously constructed with Ni-based alloys containing 20 wt% Cr have been found to be susceptible to stress corrosion cracking. The nuclear power industry now uses high chromium (˜30wt%) Ni-based filler metals to mitigate stress corrosion cracking. Current alloys are plagued with weldability issues, either solidification cracking or ductility dip cracking (DDC). Solidification cracking is related to solidification temperature range and the DDC is related to the fraction eutectic present in the microstructure. It was determined that an optimal alloy should have a solidification temperature range less than 150°C and at least 2% volume fraction eutectic. Due to the nature of the Nb rich eutectic that forms, it is difficult to avoid both cracking types simultaneously. Through computational modeling, alternative eutectic forming elements, Hf and Ta, have been identified as replacements for Nb in such alloys. Compositions have been optimized through a combination of computational and experimental techniques combined with a design of experiment methodology. Small buttons were melted using commercially pure materials in a copper hearth to obtain the desired compositions. These buttons were then subjected to a gas tungsten arc spot weld. A type C thermocouple was used to acquire the cooling history during the solidification process. The cooling curves were processed using Single Sensor Differential Thermal Analysis to determine the solidification temperature range, and indicator of solidification cracking susceptibility. Metallography was performed to determine the fraction eutectic present, an indicator of DDC resistance. The optimal level of Hf to resist cracking was found to be 0.25 wt%. The optimal level of Ta was found to be 4 wt%. gamma/MC type eutectics were found to form first in all Nb, Ta, and Hf-bearing compositions. Depending on Fe and Cr content, gamma/Laves eutectic was sometimes found in Nb and Ta-bearing compositions, while Hf-bearing compositions had gamma/Ni7Hf2 as the final eutectic to solidify. This study found that the extra Cr in the current generation alloys promotes the gamma/Laves phase eutectic, which expands the solidification temperature range and promotes solidification cracking. Both Ta-bearing and Hf-bearing eutectics were found to solidify at higher temperatures than Nb-bearing eutectics, leading to narrower solidification temperature ranges. Weldability testing on the optimized Ta-bearing compositions revealed good resistance to both DDC and solidification cracking. Unexpectedly, the optimized Hf-bearing compositions were quite susceptible to solidification cracking. This led to an investigation on the possible wetting effect of eutectics on solidification cracking susceptibly, and a theory on how wetting affects the solidification crack susceptibility and the volume fraction of eutectic needed for crack healing has been proposed. Alloys with eutectics that easily wet the grain boundaries have increased solidification crack susceptibility at low volume fraction eutectics, but as the fraction eutectic is increased, experience crack healing at relatively lower fraction eutectics than alloys with eutectics that don't wet as easily. Hf rich eutectics were found to wet grain boundaries significantly more than Nb rich eutectics. Additions of Mo were also found to increase the wetting of eutectics in Nb-bearing alloys.

  3. Field Emission Cold Cathode Devices Based on Eutectic Systems

    DTIC Science & Technology

    1981-07-01

    8217RADC-TR-811-170 ’,Final Technical Report July 1981 FIELD EMISSION COLD CATHODE DEVICES BASED ON EUTECTIC SYSTEMS Fulmer Research Institute Ltd...and identify by block numrber) Field Emission Eutectic Systems Cold Cathode Rod Eutectics Electron Emitter Array Directionally Solidified Eutectics...Identify by block number) A survey has been made of the performance as field emission cold cathodes of selected refractory materials fabricated as

  4. Orbital synchronization capture of two binaries emitting gravitational waves

    NASA Astrophysics Data System (ADS)

    Seto, Naoki

    2018-03-01

    We study the possibility of orbital synchronization capture for a hierarchical quadrupole stellar system composed by two binaries emitting gravitational waves. Based on a simple model including the mass transfer for white dwarf binaries, we find that the capture might be realized for inter-binary distances less than their gravitational wavelength. We also discuss related intriguing phenomena such as a parasitic relation between the coupled white dwarf binaries and significant reductions of gravitational and electromagnetic radiations.

  5. Preparation of porous lead from shape-controlled PbO bulk by in situ electrochemical reduction in ChCl-EG deep eutectic solvent

    NASA Astrophysics Data System (ADS)

    Ru, Juanjian; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Wang, Ding; Zhou, Zhongren; Gong, Kai

    2015-12-01

    Porous lead with different shapes was firstly prepared from controlled geometries of solid PbO bulk by in situ electrochemical reduction in choline chloride-ethylene glycol deep eutectic solvents at cell voltage 2.5 V and 353 K. The electrochemical behavior of PbO powders on cavity microelectrode was investigated by cyclic voltammetry. It is indicated that solid PbO can be directly reduced to metal in the solvent and a nucleation loop is apparent. Constant voltage electrolysis demonstrates that PbO pellet can be completely converted to metal for 13 h, and the current efficiency and specific energy consumption are about 87.79% and 736.82 kWh t-1, respectively. With the electro-deoxidation progress on the pellet surface, the reduction rate reaches the fastest and decreases along the distance from surface to inner center. The morphologies of metallic products are porous and mainly consisted of uniform particles which connect with each other by finer strip-shaped grains to remain the geometry and macro size constant perfectly. In addition, an empirical model of the electro-deoxidation process from spherical PbO bulk to porous lead is also proposed. These findings provide a novel and simple route for the preparation of porous metals from oxide precursors in deep eutectic solvents at room temperature.

  6. Deep eutectic solvent based gas-assisted dispersive liquid-phase microextraction combined with gas chromatography and flame ionization detection for the determination of some pesticide residues in fruit and vegetable samples.

    PubMed

    Farajzadeh, Mir Ali; Sattari Dabbagh, Masoumeh; Yadeghari, Adeleh

    2017-05-01

    In this study, a gas-assisted dispersive liquid-phase microextraction method using a deep eutectic solvent as the extraction solvent combined with gas chromatography and flame ionization detection was developed for the extraction and determination of some pesticide residues in vegetable and fruit juice samples. In this method, choline chloride and 4-chlorophenol at a molar ratio of 1:2 were mixed. By heating and vortexing, a clear, water-immiscible, and homogeneous liquid was formed. The obtained deep eutectic solvent was added to an aqueous solution of the analytes in a conical test tube. Air was bubbled into the aqueous solution and a cloudy solution was obtained. During this step, the analytes were extracted into the fine droplets of the extraction solvent. After centrifugation, an aliquot of the settled phase was injected into the separation system. Under the optimum extraction conditions, enrichment factors, and extraction recoveries were obtained in the ranges of 247-355 and 49-71%, respectively. The obtained values for the limits of detection and quantification were in the ranges of 0.24-1.4 and 0.71-4.2 μg/L, respectively. The proposed method is simple, fast, efficient, and inexpensive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solidification of eutectic system alloys in space (M-19)

    NASA Technical Reports Server (NTRS)

    Ohno, Atsumi

    1993-01-01

    It is well known that in the liquid state eutectic alloys are theoretically homogeneous under 1 g conditions. However, the homogeneous solidified structure of this alloy is not obtained because thermal convection and non-equilibrium solidification occur. The present investigators have clarified the solidification mechanisms of the eutectic system alloys under 1 g conditions by using the in situ observation method; in particular, the primary crystals of the eutectic system alloys never nucleated in the liquid, but instead did so on the mold wall, and the crystals separated from the mold wall by fluid motion caused by thermal convection. They also found that the equiaxed eutectic grains (eutectic cells) are formed on the primary crystals. In this case, the leading phase of the eutectic must agree with the phase of the primary crystals. In space, no thermal convection occurs so that primary crystals should not move from the mold wall and should not appear inside the solidified structure. Therefore no equiaxed eutectic grains will be formed under microgravity conditions. Past space experiments concerning eutectic alloys were classified into two types of experiments: one with respect to the solidification mechanisms of the eutectic alloys and the other to the unidirectional solidification of this alloy. The former type of experiment has the problem that the solidified structures between microgravity and 1 g conditions show little difference. This is why the flight samples were prepared by the ordinary cast techniques on Earth. Therefore it is impossible to ascertain whether or not the nucleation and growth of primary crystals in the melt occur and if primary crystals influence the formation of the equiaxed eutectic grains. In this experiment, hypo- and hyper-eutectic aluminum copper alloys which are near eutectic point are used. The chemical compositions of the samples are Al-32.4mass%Cu (Hypo-eutectic) and Al-33.5mass%Cu (hyper-eutectic). Long rods for the samples are cast by the Ohno Continuous Casting Process and they show the unidirectionally solidified structure. Each flight and ground sample was made of these same rods. The dimensions of all samples are 4.5 mm in diameter and 23.5 mm in length. Each sample is put in a graphite capsule and then vacuum sealed in a double silica ampoule. Then the ampoule is put in the tantalum cartridge and sealed by electron beam welding. For onbard experiments, a Continuous Heating Furnance (CHF) will be used for melting and solidifying samples under microgravity conditions. Six flight samples will be used. Four samples are hypo-eutectic and two are hyper-eutectic alloys. The surface of the two hypo-eutectic alloy samples are covered with aluminum oxide film to prevent Marangoni convection expected under microgravity conditions. Each sample will be heated to 700 C and held at that temperature for 5 min. After that the samples will be allowed to cool to 500 C in the furnace and they will be taken out of the furnace for He gas cooling. The heating and cooling diagrams for the flight experiments are shown. After collecting the flight samples, the solidified structures of the samples will be examined and the mechanisms of eutectic solidification under microgravity conditions will be determined. It is likely that successful flight experiment results will lead to production of high quality eutectic alloys and eutectic composite materials in space.

  8. Eutectics as improved pharmaceutical materials: design, properties and characterization.

    PubMed

    Cherukuvada, Suryanarayan; Nangia, Ashwini

    2014-01-28

    Eutectics are a long known class of multi-component solids with important and useful applications in daily life. In comparison to other multi-component crystalline solids, such as salts, solid solutions, molecular complexes and cocrystals, eutectics are less studied in terms of molecular structure organization and bonding interactions. Classically, a eutectic is defined based on its low melting point compared to the individual components. In this article, we attempt to define eutectics not just based on thermal methods but from a structural organization view point, and discuss their microstructures and properties as organic materials vis-a-vis solid solutions and cocrystals. The X-ray crystal structure of a cocrystal is different from that of the individual components whereas the unit cell of a solid solution is similar to that of one of the components. Eutectics are closer to the latter species in that their crystalline arrangement is similar to the parent components but they are different with respect to the structural integrity. A solid solution possesses structural homogeneity throughout the structure (single phase) but a eutectic is a heterogeneous ensemble of individual components whose crystal structures are like discontinuous solid solutions (phase separated). Thus, a eutectic may be better defined as a conglomerate of solid solutions. A structural analysis of cocrystals, solid solutions and eutectics has led to an understanding that materials with strong adhesive (hetero) interactions between the unlike components will lead to cocrystals whereas those having stronger cohesive (homo/self) interactions will more often give rise to solid solutions (for similar structures of components) and eutectics (for different structures of components). We demonstrate that the same crystal engineering principles which have been profitably utilized for cocrystal design in the past decade can now be applied to make eutectics as novel composite materials, illustrated by stable eutectics of the hygroscopic salt of the anti-tuberculosis drug ethambutol as a case study. A current gap in the characterization of eutectic microstructure may be fulfilled through pair distribution function (PDF) analysis of X-ray diffraction data, which could be a rapid signature technique to differentiate eutectics from their components.

  9. Directionally Solidified Eutectic Ceramics for Multifunctional Aerospace Applications

    DTIC Science & Technology

    2013-01-01

    eutectic materials development through a new initiative entitled Boride Eutectic Project. These results first time organize and populate materials...property databases, and utilize an iterative feedback routine to constantly improve the design process of the boride eutectics LaB6-MeB2 (Me = Zr, Hf, Ti

  10. CORROSION STUDIES FOR A FUSED SALT-LIQUID METAL EXTRACTION PROCESS FOR THE LIQUID METAL FUEL REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susskind, H.; Hill, F.B.; Green, L.

    1960-06-30

    Corrosion screening tests were carried out on potential materials of construction for use in a fused salt-liquid metal extraction process plant. The corrodents of interest were NaCl--KCl-- MgCl/sub 2/ eutectic, LiCl--KCl eutectic, Bi-- U fuel, and BiCl/sub 3/, either separately or in various combinations. Screening tests to determine the resistance of a wide range of commercial alloys to the corrodents were performed in static and tilting-furnace capsules. Some ceramic materials were tested in static capsules. Largerscale tests of metallic materials were conducted in thermal convection loops and in a forced circulation loop. Some of the tests were conducted isothermally atmore » 500 deg C, and others were performed under 40 to 50 deg C temperature differences at roughly the same teinperature level. On the basis of metallographic examination of exposed test tabs and chemical analyses of corrodents, it was found that the binary and ternary eutectics by themselves produced little attack on any of the materials tested. A wide variety of materials including 1020 mild steel, 2 1/4 Cr--1 Mo alloy steel, types 304 (ELC), 310, 316, 347, 430, and 446 stainless steel, 16-1 Croloy, Inconel, Hastelloy C, Inor-8, Mo, and Ta is, therefore, available for further study. Corrosion by the ternary salt-fuel system was characteristic of that produced by the fuel alone. Alloys such as 1020 mild steel, and 1 1/4 Cr--1/ 2 Mo, and 2 1/4 Cr--1 Mo alloy steel, which are resistant to fuel, would be likely choices at present for container materials. BiCl/sub 3/ produced extensive attack on ternary salt-fuel containers when the fuel contained insufficient concentrations of oxidizable solutes. Au and Al/sub 2/O/sub 3/ were the only materials not attacked by BiCl/sub 3/ in ternary salt alone. (auth)« less

  11. Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan

    Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1,more » 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, {sup 1}H-NMR and {sup 13}C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.« less

  12. Metastable Eutectic Equilibrium in Natural Environments: Recent Developments and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Fans J. M.; Nuth, Joseph A., II; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica, compositions of circumstellar dust, presolar and solar nebula grains in the matrix of the collected aggregate IDPs. Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra)fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous and typically nano- to micrometer-sized, metastable eutectic materials.

  13. Chlorination of UO 2, PuO 2 and rare earth oxides using ZrCl 4 in LiCl-KCl eutectic melt

    NASA Astrophysics Data System (ADS)

    Sakamura, Yoshiharu; Inoue, Tadashi; Iwai, Takashi; Moriyama, Hirotake

    2005-04-01

    A new chlorination method using ZrCl 4 in a molten salt bath has been investigated for the pyrometallurgical reprocessing of nuclear fuels. ZrCl 4 has a high reactivity with oxygen but is not corrosive to refractory metals such as steel. Rare earth oxides (La 2O 3, CeO 2, Nd 2O 3 and Y 2O 3) and actinide oxides (UO 2 and PuO 2) were allowed to react with ZrCl 4 in a LiCl-KCl eutectic salt at 773 K to give a metal chloride solution and a precipitate of ZrO 2. An addition of zirconium metal as a reductant was effective in chlorinating the dioxides. When the oxides were in powder form, the reaction was observed to progress rapidly. Cyclic voltammetry provided a convenient way of establishing when the reaction was completed. It was demonstrated that the ZrCl 4 chlorination method, free from corrosive gas, was very simple and useful.

  14. Synthesis and application of magnetic deep eutectic solvents: Novel solvents for ultrasound assisted liquid-liquid microextraction of thiophene.

    PubMed

    Khezeli, Tahere; Daneshfar, Ali

    2017-09-01

    Two novel magnetic deep eutectic solvents (MDESs), comprised of cheap and simple components named [choline chloride/phenol] [FeCl 4 ] and [choline chloride/ethylene glycol] [FeCl 4 ] were prepared and characterized by CHN elemental analysis, proton nuclear magnetic resonance ( 1 H NMR), vibrating sample magnetometery (VSM), Raman, Fourier transform-infrared (FT-IR) and UV-Vis spectrometery. The extraction efficiency of the prepared MDESs has been investigated in ultrasound assisted liquid-liquid microextraction based MDES (UALLME-MDES). Briefly, MDESs were added to n-heptan containing thiophene. Then, MDESs were dispersed in n-heptane by sonication. After that, microdroplets of MDESs were collected by a magnet and the remained concentration of thiophene in n-heptane phase was analyzed by GC-FID. The results indicated that [choline chloride/phenol] [FeCl 4 ] has higher extraction efficiency than [choline chloride/ethylene glycol] [FeCl 4 ]. This work opens a new way to the application of MDESs. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Unraveling the cytotoxicity and metabolic pathways of binary natural deep eutectic solvent systems

    PubMed Central

    Mbous, Yves Paul; Hayyan, Maan; Wong, Won Fen; Looi, Chung Yeng; Hashim, Mohd Ali

    2017-01-01

    In this study, the anticancer potential and cytotoxicity of natural deep eutectic solvents (NADESs) were assessed using HelaS3, PC3, A375, AGS, MCF-7, and WRL-68 hepatic cell lines. NADESs were prepared from choline chloride, fructose, or glucose and compared with an N,N-diethyl ethanolammonium chloride:triethylene glycol DES. The NADESs (98 ≤ EC50 ≥ 516 mM) were less toxic than the DES (34 ≤ EC50 ≥ 120 mM). The EC50 values of the NADESs were significantly higher than those of the aqueous solutions of their individual components but were similar to those of the aqueous solutions of combinations of their chief elements. Due to the uniqueness of these results, the possibility that NADESs could be synthesized intracellularly to counterbalance the cytotoxicity of their excess principal constituents must be entertained. However, further research is needed to explore this avenue. NADESs exerted cytotoxicity by increasing membrane porosity and redox stress. In vivo, they were more destructive than the DES and induced liver failure. The potential of these mixtures was evidenced by their anticancer activity and intracellular processing. This infers that they can serve as tools for increasing our understanding of cell physiology and metabolism. It is likely that we only have begun to comprehend the nature of NADESs. PMID:28145498

  16. Unraveling the cytotoxicity and metabolic pathways of binary natural deep eutectic solvent systems

    NASA Astrophysics Data System (ADS)

    Mbous, Yves Paul; Hayyan, Maan; Wong, Won Fen; Looi, Chung Yeng; Hashim, Mohd Ali

    2017-02-01

    In this study, the anticancer potential and cytotoxicity of natural deep eutectic solvents (NADESs) were assessed using HelaS3, PC3, A375, AGS, MCF-7, and WRL-68 hepatic cell lines. NADESs were prepared from choline chloride, fructose, or glucose and compared with an N,N-diethyl ethanolammonium chloride:triethylene glycol DES. The NADESs (98 ≤ EC50 ≥ 516 mM) were less toxic than the DES (34 ≤ EC50 ≥ 120 mM). The EC50 values of the NADESs were significantly higher than those of the aqueous solutions of their individual components but were similar to those of the aqueous solutions of combinations of their chief elements. Due to the uniqueness of these results, the possibility that NADESs could be synthesized intracellularly to counterbalance the cytotoxicity of their excess principal constituents must be entertained. However, further research is needed to explore this avenue. NADESs exerted cytotoxicity by increasing membrane porosity and redox stress. In vivo, they were more destructive than the DES and induced liver failure. The potential of these mixtures was evidenced by their anticancer activity and intracellular processing. This infers that they can serve as tools for increasing our understanding of cell physiology and metabolism. It is likely that we only have begun to comprehend the nature of NADESs.

  17. Investigation of the feasibility of a simple method for verifying the motion of a binary multileaf collimator synchronized with the rotation of the gantry for helical tomotherapy

    PubMed Central

    Uematsu, Masahiro; Ito, Makiko; Hama, Yukihiro; Inomata, Takayuki; Fujii, Masahiro; Nishio, Teiji; Nakamura, Naoki; Nakagawa, Keiichi

    2012-01-01

    In this paper, we suggest a new method for verifying the motion of a binary multileaf collimator (MLC) in helical tomotherapy. For this we used a combination of a cylindrical scintillator and a general‐purpose camcorder. The camcorder records the light from the scintillator following photon irradiation, which we use to track the motion of the binary MLC. The purpose of this study is to demonstrate the feasibility of this method as a binary MLC quality assurance (QA) tool. First, the verification was performed using a simple binary MLC pattern with a constant leaf open time; secondly, verification using the binary MLC pattern used in a clinical setting was also performed. Sinograms of simple binary MLC patterns, in which leaves that were open were detected as “open” from the measured light, define the sensitivity which, in this case, was 1.000. On the other hand, the specificity, which gives the fraction of closed leaves detected as “closed”, was 0.919. The leaf open error identified by our method was −1.3±7.5%. The 68.6% of observed leaves were performed within ± 3% relative error. The leaf open error was expressed by the relative errors calculated on the sinogram. In the clinical binary MLC pattern, the sensitivity and specificity were 0.994 and 0.997, respectively. The measurement could be performed with −3.4±8.0% leaf open error. The 77.5% of observed leaves were performed within ± 3% relative error. With this method, we can easily verify the motion of the binary MLC, and the measurement unit developed was found to be an effective QA tool. PACS numbers: 87.56.Fc, 87.56.nk PMID:22231222

  18. SIMPL Systems, or: Can We Design Cryptographic Hardware without Secret Key Information?

    NASA Astrophysics Data System (ADS)

    Rührmair, Ulrich

    This paper discusses a new cryptographic primitive termed SIMPL system. Roughly speaking, a SIMPL system is a special type of Physical Unclonable Function (PUF) which possesses a binary description that allows its (slow) public simulation and prediction. Besides this public key like functionality, SIMPL systems have another advantage: No secret information is, or needs to be, contained in SIMPL systems in order to enable cryptographic protocols - neither in the form of a standard binary key, nor as secret information hidden in random, analog features, as it is the case for PUFs. The cryptographic security of SIMPLs instead rests on (i) a physical assumption on their unclonability, and (ii) a computational assumption regarding the complexity of simulating their output. This novel property makes SIMPL systems potentially immune against many known hardware and software attacks, including malware, side channel, invasive, or modeling attacks.

  19. Uranyl(VI) nitrate salts: modeling thermodynamic properties using the binding mean spherical approximation theory and determination of "fictive" binary data.

    PubMed

    Ruas, Alexandre; Bernard, Olivier; Caniffi, Barbara; Simonin, Jean-Pierre; Turq, Pierre; Blum, Lesser; Moisy, Philippe

    2006-02-23

    This work is aimed at a description of the thermodynamic properties of highly concentrated aqueous solutions of uranyl nitrate at 25 degrees C. A new resolution of the binding mean spherical approximation (BIMSA) theory, taking into account 1-1 and also 1-2 complex formation, is developed and used to reproduce, from a simple procedure, experimental uranyl nitrate osmotic coefficient variation with concentration. For better consistency of the theory, binary uranyl perchlorate and chloride osmotic coefficients are also calculated. Comparison of calculated and experimental values is made. The possibility of regarding the ternary system UO(2)(NO(3))(2)/HNO(3)/H(2)O as a "simple" solution (in the sense of Zdanovskii, Stokes, and Robinson) is examined from water activity and density measurements. Also, an analysis of existing uranyl nitrate binary data is proposed and compared with our obtained data. On the basis of the concept of "simple" solution, values for density and water activity for the binary system UO(2)(NO(3))(2)/H(2)O are proposed in a concentration range on which uranyl nitrate precipitates from measurements on concentrated solutions of the ternary system UO(2)(NO(3))(2)/HNO(3)/H(2)O. This new set of binary data is "fictive" in the sense that the real binary system is not stable chemically. Finally, a new, interesting predictive capability of the BIMSA theory is shown.

  20. Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hsin-jay; Chen, Sinn-wen; Foo, Wei-jian

    2012-07-09

    Nanostructured Ag-Pb-Te thermoelectric materials were fabricated by unidirectionally solidifying the ternary Ag-Pb-Te eutectic and near-eutectic alloys using the Bridgeman method. Specially, the Bridgman-grown eutectic alloy exhibited a partially aligned lamellar microstructure, which consisted of Ag{sub 5}Te{sub 3} and Te phases, with additional 200-600 nm size particles of PbTe. The self-assembled interfaces altered the thermal and electronic transport properties in the bulk Ag-Pb-Te eutectic alloy. Presumably due to phonon scattering from the nanoscale microstructure, a low thermal conductivity ({kappa} = 0.3 W/mK) was achieved of the eutectic alloy, leading to a zT peak of 0.41 at 400 K.

  1. Metastable Eutectic Equilibrium in Natural Environments: Recent Development and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A., III; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica compositions of circumstellar dust presolar and solar nebula grains in the matrix of the collected aggregate IDPs (Interplanetary Dust Particles). Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra) fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous, and typically nano-to micrometer-sized, metastable eutectic materials.

  2. The preferential orientation and lattice misfit of the directionally solidified Fe-Al-Ta eutectic composite

    NASA Astrophysics Data System (ADS)

    Cui, Chunjuan; Wang, Pei; Yang, Meng; Wen, Yagang; Ren, Chiqiang; Wang, Songyuan

    2018-01-01

    Fe-Al intermetallic compound has been paid more attentions recently in many fields such as aeronautic, aerospace, automobile, energy and chemical engineering, and so on. In this paper Fe-Al-Ta eutectic was prepared by a modified Bridgman directional solidification technique, and it is found that microstructure of the Fe-Al-Ta eutectic alloy transforms from the broken-lamellar eutectic to cellular eutectic with the increase of the solidification rate. In the cellular eutectic structure, the fibers are parallel to each other within the same grain, but some fibers are deviated from the original orientation at the grain boundaries. To study the crystallographic orientation relationship (OR) between the two phases, the preferential orientation of the Fe-Al-Ta eutectic alloy at the different solidification rates was studied by Selected Area Electron Diffraction (SAED). Moreover, the lattice misfit between Fe2Ta(Al) Laves phase and Fe(Al,Ta) matrix phase was calculated.

  3. Formation of anomalous eutectic in Ni-Sn alloy by laser cladding

    NASA Astrophysics Data System (ADS)

    Wang, Zhitai; Lin, Xin; Cao, Yongqing; Liu, Fencheng; Huang, Weidong

    2018-02-01

    Ni-Sn anomalous eutectic is obtained by single track laser cladding with the scanning velocity from 1 mm/s to 10 mm/s using the Ni-32.5 wt.%Sn eutectic powders. The microstructure of the cladding layer and the grain orientations of anomalous eutectic were investigated. It is found that the microstructure is transformed from primary α-Ni dendrites and the interdendritic (α-Ni + Ni3Sn) eutectic at the bottom of the cladding layer to α-Ni and β-Ni3Sn anomalous eutectic at the top of the cladding layer, whether for single layer or multilayer laser cladding. The EBSD maps and pole figures indicate that the spatially structure of α-Ni phase is discontinuous and the Ni3Sn phase is continuous in anomalous eutectic. The transformation from epitaxial growth columnar at bottom of cladding layer to free nucleation equiaxed at the top occurs, i.e., the columnar to equiaxed transition (CET) at the top of cladding layer during laser cladding processing leads to the generation of anomalous eutectic.

  4. EBSD Study of the Influence of a High Magnetic Field on the Microstructure and Orientation of the Al-Si Eutectic During Directional Solidification

    NASA Astrophysics Data System (ADS)

    Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Ren, Zhongming; Moreau, Rene

    2016-06-01

    The effect of a high magnetic field on the morphology of the Al-Si eutectic was investigated using EBSD technology. The results revealed that the application of the magnetic field modified the morphology of the Al-Si eutectic significantly. Indeed, the magnetic field destroyed the coupled growth of the Al-Si eutectic and caused the formation of the divorced α-Al and Si dendrites at low growth speeds (≤1 μm/s). The magnetic field was also found to refine the eutectic grains and reduce the eutectic spacing at the initial growth stage. Moreover, the magnetic field caused the occurrence of the columnar-to-equiaxed transition of the α-Al phase in the Al-Si eutectic. The abovementioned effects were enhanced as the magnetic field increased. This result should be attributed to the magnetic field restraining the interdiffusion of Si and Al atoms in liquid ahead of the liquid/solid interface and the thermoelectric magnetic force acting on the eutectic lamellae under the magnetic field.

  5. Phase equillibria and solidification behaviour in the vanillin- p-anisidine system

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Das, S. S.; Gupta, Preeti; Dwivedi, M. K.

    2008-12-01

    Phase diagram of the vanillin- p-anisidine system has been studied by the thaw melt method. Congruent melting-type phase diagram exhibiting two eutectic points was obtained. Vanillin and p-anisidine react in 1:1 M ratio and form N-(4-methoxy phenyl)-4-hydroxy-3-methoxy phenyl methanimine (NHM) and water. Heats of fusion of pure components and the eutectic mixtures ( E1 and E2) were obtained from DSC studies. Jackson's roughness parameters ( α) were calculated. Excess Gibbs free energy ( GE), excess entropy ( SE) and excess enthalpy ( HE) of mixing of pre-, post- and eutectic mixtures were also calculated by using activity coefficient data. Linear velocities of solidification of components and eutectic mixtures were determined at different undercoolings. The values of excess thermodynamic functions and linear velocity data have indicated the non-ideal nature of the eutectic mixtures. Interaction energies in the gaseous state, calculated from computer simulation, have also indicated that the eutectics are non-ideal mixtures. Microstructural studies of vanillin, p-anisidine and NHM show the formation of broken lamellar type structures. However, for the eutectic E1, an irregular type and for the eutectic E2, a lamellar type structures were obtained. The effect of impurity on the microstructures of eutectic mixtures was also studied.

  6. Colloidal synthesis of silicon nanoparticles in molten salts.

    PubMed

    Shavel, A; Guerrini, L; Alvarez-Puebla, R A

    2017-06-22

    Silicon nanoparticles are unique materials with applications in a variety of fields, from electronics to catalysis and biomedical uses. Despite technological advancements in nanofabrication, the development of a simple and inexpensive route for the synthesis of homogeneous silicon nanoparticles remains highly challenging. Herein, we describe a new, simple and inexpensive colloidal synthetic method for the preparation, under normal pressure and mild temperature conditions, of relatively homogeneous spherical silicon nanoparticles of either ca. 4 or 6 nm diameter. The key features of this method are the selection of a eutectic salt mixture as a solvent, the identification of appropriate silicon alkoxide precursors, and the unconventional use of alkali earth metals as shape-controlling agents.

  7. Characterization of weld metal microstructure in a Ni-30Cr alloy with additions of niobium and molybdenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeling, Rebecca A., E-mail: wheeling.8@osu.edu; Lippold, John C., E-mail: lippold.1@osu.edu

    2016-05-15

    Additions of niobium (Nb) and molybdenum (Mo) were made to an Alloy 690 base alloy in order to investigate the formation of a eutectic constituent at the end of solidification and to evaluate the effect of the eutectic liquid on backfilling (or healing) of solidification cracks. Solidification cracking was induced using the cast pin tear test (CPTT) and regions of backfilling were located and characterized via optical and electron microscopy. Computational predictions of fraction eutectic and composition of the eutectic constituent were compared to experimental findings and were found to correlate well in both cases. The extent of crack backfillingmore » increased significantly with increasing Nb content, but the addition of Mo did not seem to influence the amount of eutectic constituent or the degree of backfilling. SEM/EDS analysis confirmed that the eutectic composition is constant and that increasing Nb above 4 wt% has little effect on expanding the solidification temperature range, but has a beneficial effect on mitigating solidification cracking by a crack healing effect. - Highlights: • Increasing fraction eutectic as a function of Nb, as predicted by ThermoCalc™, is consistent with image analysis results. • Nb, unlike Mo, had a significant effect on the fraction eutectic formed. • Both influence the composition of the eutectic. • Thermocalc™ predictions regarding Nb content in eutectic are consistent with EDS results, but are high for the Mo content. • Increased levels of niobium resulted in a higher degree of crack backfilling and leads to a lower cracking susceptibility. • Mo may influence the eutectic liquid along solidification grain boundaries, improving backfill and thus cracking resistance.« less

  8. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox. William R.; Regel, Liya L.

    1999-01-01

    This grant began in June of 1996. Its long term goal is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. The primary objective of the projects in the present grant is to test hypotheses for the reported influence of microgravity on the microstructure of eutectics. The prior experimental results on the influence of microgravity on the microstructure of eutectics have been contradictory. With lamellar eutectics, microgravity had a negligible effect on the microstructure. Microgravity experiments with fibrous eutectics sometimes showed a finer microstructure and sometimes a coarser microstructure. Most research has been done on the MnBi/Bi rod-like eutectic. Larson and Pirich obtained a two-fold finer microstructure both from microgravity and by use of a magnetic field to quench buoyancy-driven convection. Smith, on the other hand, observed no change in microgravity. Prior theoretical work at Clarkson University showed that buoyancy-driven convection in the vertical Bridgman configuration is not vigorous enough to alter the concentration field in front of a growing eutectic sufficiently to cause a measurable change in microstructure. We assumed that the bulk melt was at the eutectic composition and that freezing occurred at the extremum, i.e. with minimum total undercooling at the freezing interface. There have been four hypotheses attempting to explain the observed changes in microstructure of fibrous eutectics caused by convection: I .A fluctuating freezing rate, combined with unequal kinetics for fiber termination and branching. 2. Off-eutectic composition, either in the bulk melt due to an off-eutectic feed or at the freezing interface because of departure from the extremum condition. 3. Presence of a strong habit modifying impurity whose concentration at the freezing interface would be altered by convection. At the beginning of the present grant, we favored the first of these hypotheses and set out to test it both experimentally and theoretically. We planned the following approaches: I .Pass electric current pulses through the MnBi/Bi eutectic during directional solidification in order to produce an oscillatory freezing rate. 2. Directionally solidify the MnBi/Bi eutectic on Mir using the QUELD II gradient freeze furnace developed by Professor Smith at Queen's University. 3. Select another fibrous eutectic system for investigation using the Accelerated Crucible Rotation Technique to introduce convection. 4. Develop theoretical models for eutectic solidification with an oscillatory freezing rate. Because of the problems with Mir, we substituted ground-based experiments at Queen's University with QUELD II vertical and horizontal, with and without vibration of the furnace. The Al-Si system was chosen for the ACRT experiments. Three related approaches were used to model eutectic solidification with an oscillatory freezing rate. A sharp interface model was used to calculate composition oscillations at the freezing interface in response to imposed freezing rate oscillations.

  9. Coformer screening using thermal analysis based on binary phase diagrams.

    PubMed

    Yamashita, Hiroyuki; Hirakura, Yutaka; Yuda, Masamichi; Terada, Katsuhide

    2014-08-01

    The advent of cocrystals has demonstrated a growing need for efficient and comprehensive coformer screening in search of better development forms, including salt forms. Here, we investigated a coformer screening system for salts and cocrystals based on binary phase diagrams using thermal analysis and examined the effectiveness of the method. Indomethacin and tenoxicam were used as models of active pharmaceutical ingredients (APIs). Physical mixtures of an API and 42 kinds of coformers were analyzed using Differential Scanning Calorimetry (DSC) and X-ray DSC. We also conducted coformer screening using a conventional slurry method and compared these results with those from the thermal analysis method and previous studies. Compared with the slurry method, the thermal analysis method was a high-performance screening system, particularly for APIs with low solubility and/or propensity to form solvates. However, this method faced hurdles for screening coformers combined with an API in the presence of kinetic hindrance for salt or cocrystal formation during heating or if there is degradation near the metastable eutectic temperature. The thermal analysis and slurry methods are considered complementary to each other for coformer screening. Feasibility of the thermal analysis method in drug discovery practice is ensured given its small scale and high throughput.

  10. Phase Diagram of Kob-Andersen-Type Binary Lennard-Jones Mixtures

    NASA Astrophysics Data System (ADS)

    Pedersen, Ulf R.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-04-01

    The binary Kob-Andersen (KA) Lennard-Jones mixture is the standard model for computational studies of viscous liquids and the glass transition. For very long simulations, the viscous KA system crystallizes, however, by phase separating into a pure A particle phase forming a fcc crystal. We present the thermodynamic phase diagram for KA-type mixtures consisting of up to 50% small (B ) particles showing, in particular, that the melting temperature of the standard KA system at liquid density 1.2 is 1.028(3) in A particle Lennard-Jones units. At large B particle concentrations, the system crystallizes into the CsCl crystal structure. The eutectic corresponding to the fcc and CsCl structures is cutoff in a narrow interval of B particle concentrations around 26% at which the bipyramidal orthorhombic PuBr3 structure is the thermodynamically stable phase. The melting temperature's variation with B particle concentration at two constant pressures, as well as at the constant density 1.2, is estimated from simulations at pressure 10.19 using isomorph theory. Our data demonstrate approximate identity between the melting temperature and the onset temperature below which viscous dynamics appears. Finally, the nature of the solid-liquid interface is briefly discussed.

  11. Binary YORP Effect and Evolution of Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Steinberg, Elad; Sari, Re'em

    2011-02-01

    The rotation states of kilometer-sized near-Earth asteroids are known to be affected by the Yarkevsky O'Keefe-Radzievskii-Paddack (YORP) effect. In a related effect, binary YORP (BYORP), the orbital properties of a binary asteroid evolve under a radiation effect mostly acting on a tidally locked secondary. The BYORP effect can alter the orbital elements over ~104-105 years for a Dp = 2 km primary with a Ds = 0.4 km secondary at 1 AU. It can either separate the binary components or cause them to collide. In this paper, we devise a simple approach to calculate the YORP effect on asteroids and the BYORP effect on binaries including J 2 effects due to primary oblateness and the Sun. We apply this to asteroids with known shapes as well as a set of randomly generated bodies with various degrees of smoothness. We find a strong correlation between the strengths of an asteroid's YORP and BYORP effects. Therefore, statistical knowledge of one could be used to estimate the effect of the other. We show that the action of BYORP preferentially shrinks rather than expands the binary orbit and that YORP preferentially slows down asteroids. This conclusion holds for the two extremes of thermal conductivities studied in this work and the assumption that the asteroid reaches a stable point, but may break down for moderate thermal conductivity. The YORP and BYORP effects are shown to be smaller than could be naively expected due to near cancellation of the effects at small scales. Taking this near cancellation into account, a simple order-of-magnitude estimate of the YORP and BYORP effects as a function of the sizes and smoothness of the bodies is calculated. Finally, we provide a simple proof showing that there is no secular effect due to absorption of radiation in BYORP.

  12. Bulk undercooling

    NASA Technical Reports Server (NTRS)

    Kattamis, T. Z.

    1984-01-01

    Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.

  13. Melting Penetration Simulation of Fe-U System at High Temperature Using MPS_LER

    NASA Astrophysics Data System (ADS)

    Mustari, A. P. A.; Yamaji, A.; Irwanto, Dwi

    2016-08-01

    Melting penetration information of Fe-U system is necessary for simulating the molten core behavior during severe accident in nuclear power plants. For Fe-U system, the information is mainly obtained from experiment, i.e. TREAT experiment. However, there is no reported data on SS304 at temperature above 1350°C. The MPS_LER has been developed and validated to simulate melting penetration on Fe-U system. The MPS_LER modelled the eutectic phenomenon by solving the diffusion process and by applying the binary phase diagram criteria. This study simulates the melting penetration of the system at higher temperature using MPS_LER. Simulations were conducted on SS304 at 1400, 1450 and 1500°C. The simulation results show rapid increase of melting penetration rate.

  14. Solid-liquid phase coexistence of alkali nitrates from molecular dynamics simulations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, Saivenkataraman

    2010-03-01

    Alkali nitrate eutectic mixtures are finding application as industrial heat transfer fluids in concentrated solar power generation systems. An important property for such applications is the melting point, or phase coexistence temperature. We have computed melting points for lithium, sodium and potassium nitrate from molecular dynamics simulations using a recently developed method, which uses thermodynamic integration to compute the free energy difference between the solid and liquid phases. The computed melting point for NaNO3 was within 15K of its experimental value, while for LiNO3 and KNO3, the computed melting points were within 100K of the experimental values [4]. We aremore » currently extending the approach to calculate melting temperatures for binary mixtures of lithium and sodium nitrate.« less

  15. Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach [Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous grazing transmission small angle x-ray scattering and electrochemical methods approach

    DOE PAGES

    Hammons, Joshua A.; Ilavsky, Jan

    2017-01-18

    Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less

  16. Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach [Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous grazing transmission small angle x-ray scattering and electrochemical methods approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammons, Joshua A.; Ilavsky, Jan

    Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less

  17. A highly selective and sensitive ultrasonic assisted dispersive liquid phase microextraction based on deep eutectic solvent for determination of cadmium in food and water samples prior to electrothermal atomic absorption spectrometry.

    PubMed

    Zounr, Rizwan Ali; Tuzen, Mustafa; Deligonul, Nihal; Khuhawar, Muhammad Yar

    2018-07-01

    A simple, fast, green, sensitive and selective ultrasonic assisted deep eutectic solvent liquid-phase microextraction technique was used for preconcentration and extraction of cadmium (Cd) in water and food samples by electrothermal atomic absorption spectrometry (ETAAS). In this technique, a synthesized reagent (Z)-N-(3,5-diphenyl-1H-pyrrol-2-yl)-3,5-diphenyl-2H-pyrrol-2-imine (Azo) was used as a complexing agent for Cd. The main factors effecting the pre-concentration and extraction of Cd such as effect of pH, type and composition of deep eutectic solvent (DES), volume of DES, volume of complexing agent, volume of tetrahydrofuran (THF) and ultrasonication time have been examined in detail. At optimum conditions the value of pH and molar ratio of DES were found to be 6.0 and 1:4 (ChCl:Ph), respectively. The detection limit (LOD), limit of quantification (LOQ), relative standard deviation (RSD) and preconcentration factor (PF) were observed as 0.023 ng L -1 , 0.161 ng L -1 , 3.1% and 100, correspondingly. Validation of the developed technique was observed by extraction of Cd in certified reference materials (CRMs) and observed results were successfully compared with certified values. The developed procedure was practiced to various food, beverage and water samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Smith, Reginald W.

    1999-01-01

    The long term goal of this project is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. Prior experimental results on the influence of microgravity on the microstructure of fibrous eutectics have been contradictory. Theoretical work at Clarkson University showed that buoyancy-driven convection in the vertical Bridgman configuration is not vigorous enough to alter the concentration field in the melt sufficiently to cause a measurable change in microstructure when the eutectic grows at minimum supercooling. Currently, there are four other hypotheses that might explain the observed changes in microstructure of fibrous eutectics caused by convection: (1) Disturbance of the concentration boundary layer arising from an off-eutectic melt composition and growth at the extremum; (2) Disturbance of the concentration boundary layer of a habit-modifying impurity; (3) Disturbance of the concentration boundary layer arising from an off-eutectic interfacial composition due to non-extremum growth; and (4) A fluctuating freezing rate combined with differences in the kinetics of fiber termination and fiber formation. We favor the last of these hypotheses. Thus, the primary objective of the present grant is to determine experimentally and theoretically the influence of a periodically varying freezing rate on eutectic solidification. A secondary objective is to determine the influence of convection on the microstructure of at least one other eutectic alloy that might be suitable for flight experiments.

  19. Simple views on critical binary liquid mixtures in porous glass

    NASA Astrophysics Data System (ADS)

    Tremblay, L.; Socol, S. M.; Lacelle, S.

    2000-01-01

    A simple scenario, different from previous attempts, is proposed to resolve the problem of the slow phase separation dynamics of binary liquid mixtures confined in porous Vycor glass. We demonstrate that simply mutual diffusion, renormalized by critical composition fluctuations and geometrical hindrance of the porous glass, accounts for the slow phase separation kinetics. Capillary invasion studies of porous Vycor glass by the critical isobutyric acid-water mixture, close to the consolute solution temperature, corroborate our analysis.

  20. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires

    PubMed Central

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19′ martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19′ martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  1. EBSD investigation of the effect of the solidification rate on the nucleation behavior of eutectic components in a hypoeutectic Al-Si-Cu alloy

    NASA Astrophysics Data System (ADS)

    Mohsen Sadrossadat, S.; Johansson, Sten; Peng, Ru Lin

    2012-06-01

    This article represents a study of the influence of the solidification rate on the crystallographic orientation of eutectic components with respect to the primary α-Al in the tested hypoeutectic alloy. Electron backscattering diffraction (EBSD) patterns were produced from the Al-Si cast specimens that were solidified with different cooling rates and prepared via ion etch polishing as a complementary method after mechanical polishing. The results indicated a strong orientation relationship between the primary α-Al and eutectic Al phase at all cooling rates. It was also found that the silicon eutectic flakes were heterogeneously nucleated in the interdendritic eutectic liquid. The increase of the cooling rate from 2 to 80 mm/min was found to be effective in lowering the intensity of the relationship between the primary α-Al and eutectic Al phases, and changing the misorientation angle clustering between the primary α-Al and eutectic Si phases in the interval from 41-60° to lower angle intervals.

  2. Feasibility study of tungsten as a diffusion barrier between nickel-chromium-aluminum and Gamma/Gamma prime - Delta eutectic alloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.

  3. Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.

  4. On the existence of binary simplex codes. [using combinatorial construction

    NASA Technical Reports Server (NTRS)

    Taylor, H.

    1977-01-01

    Using a simple combinatorial construction, the existence of a binary simplex code with m codewords for all m is greater than or equal to 1 is proved. The problem of the shortest possible length is left open.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokovinin, Andrei, E-mail: atokovinin@ctio.noao.edu

    Radial velocity (RV) monitoring of solar-type visual binaries has been conducted at the CTIO/SMARTS 1.5 m telescope to study short-period systems. The data reduction is described, and mean and individual RVs of 163 observed objects are given. New spectroscopic binaries are discovered or suspected in 17 objects, and for some of them the orbital periods could be determined. Subsystems are efficiently detected even in a single observation by double lines and/or by the RV difference between the components of visual binaries. The potential of this detection technique is quantified by simulation and used for statistical assessment of 96 wide binariesmore » within 67 pc. It is found that 43 binaries contain at least one subsystem, and the occurrence of subsystems is equally probable in either primary or secondary components. The frequency of subsystems and their periods matches the simple prescription proposed by the author. The remaining 53 simple wide binaries with a median projected separation of 1300 AU have an RV difference distribution between their components that is not compatible with the thermal eccentricity distribution f (e) = 2e but rather matches the uniform eccentricity distribution.« less

  6. Pharmacokinetic Modeling of JP-8 Jet Fuel Components: II. A Conceptual Framework

    DTIC Science & Technology

    2003-12-01

    example, a single type of (simple) binary interaction between 300 components would require the specification of some 105 interaction coefficients . One...individual substances, via binary mechanisms, is enough to predict the interactions present in the mixture. Secondly, complex mixtures can often be...approximated as pseudo- binary systems, consisting of the compound of interest plus a single interacting complex vehicle with well-defined, composite

  7. Experimental and Theoretical Investigations of the Solidification of Eutectic Al-Si Alloy

    NASA Technical Reports Server (NTRS)

    Sen, S.; Catalina, A. V.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The eutectic alloys have a wide spectrum of applications due to their good castability and physical and mechanical properties. The interphase spacing resulting during solidification is an important microstructural feature that significantly influences the mechanical behavior of the material. Thus, knowledge of the evolution of the interphase spacing during solidification is necessary in order to properly design the solidification process and optimize the material properties. While the growth of regular eutectics is rather well understood, the irregular eutectics such as Al-Si or Fe-graphite exhibit undercoolings and lamellar spacings much larger than those theoretically predicted. Despite of a considerable amount of experimental and theoretical work a clear understanding of the true mechanism underlying the spacing selection in irregular eutectics is yet to be achieved. A new experimental study of the solidification of the eutectic Al-Si alloy will be reported in this paper. The measured interface undercoolings and lamellar spacing will be compared to those found in the literature in order to get more general information regarding the growth mechanism of irregular eutectics. A modification of the present theory of the eutectic growth is also proposed. The results of the modified mathematical model, accounting for a non-isothermal solid/liquid interface, will be compared to the experimental measurements.

  8. Binary phase lock loops for simplified OMEGA receivers

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1974-01-01

    A sampled binary phase lock loop is proposed for periodically correcting OMEGA receiver internal clocks. The circuit is particularly simple to implement and provides a means of generating long range 3.4 KHz difference frequency lanes from simultaneous pair measurements.

  9. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1975-01-01

    Bonding of an element comprising sapphire, ruby or blue sapphire to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide is discussed. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  10. Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite

    PubMed Central

    Lee, Seoung Wan; Kim, Jeong Tae; Hong, Sung Hwan; Park, Hae Jin; Park, Jun-Young; Lee, Nae Sung; Seo, Yongho; Suh, Jin Yoo; Eckert, Jürgen; Kim, Do Hyang; Park, Jin Man; Kim, Ki Buem

    2014-01-01

    The outstading mechanical properties of bimodal ultrafine eutectic composites (BUECs) containing length scale hierarchy in eutectic structure were demonstrated by using AFM observation of surface topography with quantitative height measurements and were interpreted in light of the details of the deformation mechanisms by three different interface modes. It is possible to develop a novel strain accommodated eutectic structure for triggering three different interface-controlled deformation modes; (I) rotational boundary mode, (II) accumulated interface mode and (III) individual interface mode. A strain accommodated microstructure characterized by the surface topology gives a hint to design a novel ultrafine eutectic alloys with excellent mechanical properties. PMID:25265897

  11. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Caram, Rubens; Mohanty, A. P.; Seth, Jayshree

    1990-01-01

    The mechanism responsible for the difference in microstructure caused by solidifying the MnBi-Bi eutectic in space is sought. The objectives for the three year period are as follows: (1) completion of the following theoretical analyses - determination of the influence of the Soret effect on the average solid composition versus distance of off-eutectic mixtures directionally solidified in the absence of convection, determination of the influence of convection on the microstructure of off-eutectic mixtures using a linear velocity profile in the adjacent melt, determination of the influence of volumetric changes during solidification on microconvection near the freezing interface and on microstructure, and determination of the influence of convection on microstructure when the MnBi fibers project out in front of the bismuth matrix; (2) search for patterns in the effect of microgravity on different eutectics (for example, eutectic composition, eutectic temperature, usual microstructure, densities of pure constituents, and density changes upon solidification); and (3) determination of the Soret coefficient and the diffusion coefficient for Mn-Bi melts near the eutectic composition, both through laboratory experiements to be performed here and from data from Shuttle experiments.

  12. Eutectic Experiment Development for Space Processing

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1972-01-01

    A ground base test plan and a specimen evaluation scheme have been developed for the aluminum-copper eutectic solidification experiment to be run in the M518 multipurpose electric furnace during the Skylab mission. Besides thermal and solidification studies a detailed description is given of the quantitative metallographic technique which is appropriate for characterizing eutectic structures. This method should prove a key tool for evaluating specimen microstructure which is the most sensitive indicator of changes produced during solidification. It has been recommended that single grain pre-frozen eutectic specimens be used to simplify microstructural evaluation and to eliminate any porosity in the as-cast eutectic specimens. High purity (99.999%) materials from one supplier should be employed for all experiments. Laboratory studies indicate that porosity occurs in the MRC as-cast eutectic ingots but that this porosity can be eliminated by directional freezing. Chemical analysis shows that the MRC ingots are slightly Al rich and contain about .03% impurity. Because of the impurity content the lower cooldown rate (1.2 C/min) should be used for eutectic freezing if MRC material is used in the M518 furnace.

  13. Self-diffusion and microscopic dynamics in a gold-silicon liquid investigated with quasielastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evenson, Zach, E-mail: Zachary.Evenson@frm2.tum.de; Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt; Yang, Fan

    2016-03-21

    We use incoherent quasielastic neutron scattering to study the atomic dynamics of gold in a eutectic Au{sub 81}Si{sub 19} melt. Despite the glass-forming nature of this system, the gold self-diffusivity displays an Arrhenius behavior with a low activation energy characteristic of simple liquids. At high temperatures, long-range transport of gold atoms is well described by hydrodynamic theory with a simple exponential decay of the self-correlation function. On cooling towards the melting temperature, structural relaxation crosses over to a highly stretched exponential behavior. This suggests the onset of a heterogeneous dynamics, even in the equilibrium melt, and is indicative of amore » very fragile liquid.« less

  14. The attentional drift-diffusion model extends to simple purchasing decisions.

    PubMed

    Krajbich, Ian; Lu, Dingchao; Camerer, Colin; Rangel, Antonio

    2012-01-01

    How do we make simple purchasing decisions (e.g., whether or not to buy a product at a given price)? Previous work has shown that the attentional drift-diffusion model (aDDM) can provide accurate quantitative descriptions of the psychometric data for binary and trinary value-based choices, and of how the choice process is guided by visual attention. Here we extend the aDDM to the case of purchasing decisions, and test it using an eye-tracking experiment. We find that the model also provides a reasonably accurate quantitative description of the relationship between choice, reaction time, and visual fixations using parameters that are very similar to those that best fit the previous data. The only critical difference is that the choice biases induced by the fixations are about half as big in purchasing decisions as in binary choices. This suggests that a similar computational process is used to make binary choices, trinary choices, and simple purchasing decisions.

  15. The Attentional Drift-Diffusion Model Extends to Simple Purchasing Decisions

    PubMed Central

    Krajbich, Ian; Lu, Dingchao; Camerer, Colin; Rangel, Antonio

    2012-01-01

    How do we make simple purchasing decisions (e.g., whether or not to buy a product at a given price)? Previous work has shown that the attentional drift-diffusion model (aDDM) can provide accurate quantitative descriptions of the psychometric data for binary and trinary value-based choices, and of how the choice process is guided by visual attention. Here we extend the aDDM to the case of purchasing decisions, and test it using an eye-tracking experiment. We find that the model also provides a reasonably accurate quantitative description of the relationship between choice, reaction time, and visual fixations using parameters that are very similar to those that best fit the previous data. The only critical difference is that the choice biases induced by the fixations are about half as big in purchasing decisions as in binary choices. This suggests that a similar computational process is used to make binary choices, trinary choices, and simple purchasing decisions. PMID:22707945

  16. Directionally solidified eutectic gamma plus beta nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Jackson, M. R. (Inventor)

    1977-01-01

    A directionally solidified multivariant eutectic gamma + beta nickel-base superalloy casting having improved high temperature strength and oxidation resistance properties is provided. This comprises a two phase eutectic structure containing, on a weight percent basis, 5.0-15.0 tungsten, 8.5-14.5 aluminum, 0.0-35.0 cobalt and the balance being nickel. Embedded within the gamma phase nickel-base matrix are aligned eutectic beta phase (primarily (NiCo)Al reinforcing lamellae.

  17. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    NASA Astrophysics Data System (ADS)

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-03-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8-133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  18. Directionally solidified Eu doped CaF2/Li3AlF6 eutectic scintillator for neutron detection

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Hishinuma, Kousuke; Kurosawa, Shunsuke; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-12-01

    Eu doped CaF2/Li3AlF6 eutectics were grown by μ-PD method. The directionally solidified eutectic with well-aligned 600 nm diameter Eu:CaF2 scintillator fibers surrounded with Li3AlF6 was prepared. The grown eutectics showed an emission peak at 422 nm ascribed to Eu2+ 4f-5d transition from Eu:CaF2 scintillation fiber. Li concentration in the Eu:CaF2-Li3AlF6 eutectic is around 0.038 mol/cm3,which is two times higher than that of LiCaAlF6 single crystal (0.016 mol/cm3). The light yield of Eu:CaF2-Li3AlF6 eutectic was around 7000 ph/neutron. The decay time was about 550 ns (89%) and 1450 ns (11%).

  19. Numerical study of the effect of the shape of the phase diagram on the eutectic freezing temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ode, M.; Shimono, M.; Sasajima, N.

    2013-09-11

    To evaluate the reliability of metal-carbon eutectic systems as fixed points for the next generation of high-temperature standards the effect of thermodynamic properties related to the shape of eutectic phase diagram on the freezing temperature is investigated within the context of the numerical multi-phase-field model. The partition coefficient and liquidus slopes of the two solids involved in the eutectic reaction are varied deliberately and independently. The difference between the eutectic temperature and the freezing temperature is determined in dependence of the solid/liquid (s/l) interface shape and concentration. Where appropriate reference is made to the Jackson-Hunt analytical theory. It is shownmore » that there are mainly two typical conditions to decrease the undercooling: 1) a small liquidus slope and 2) the associated difference between the eutectic composition and the liquid composition during solidification.« less

  20. Investigation of the Vortex States of Sr2RuO4-Ru Eutectic Microplates Using DC-SQUIDs

    NASA Astrophysics Data System (ADS)

    Sakuma, Daisuke; Nago, Yusuke; Ishiguro, Ryosuke; Kashiwaya, Satoshi; Nomura, Shintaro; Kono, Kimitoshi; Maeno, Yoshiteru; Takayanagi, Hideaki

    2017-11-01

    We investigated the magnetic properties of a Sr2RuO4-Ru eutectic microplate containing a single Ru-inclusion using micrometer-sized DC-SQUIDs (direct-current superconducting quantum interference devices). A phase frustration at the interface between chiral p-wave superconducting Sr2RuO4 and s-wave superconducting Ru is expected to cause novel magnetic vortex states such as the spontaneous Ru-center vortex under zero magnetic field [as reported by H. Kaneyasu and M. Sigrist, J. Phys. Soc. Jpn. 79, 053706 (2010)]. Our experimental results show no positive evidence for such a spontaneous vortex state. However, in an applied field, an abrupt change in the magnetic flux distribution was observed at a superconducting transition of Ru. The flux distribution is clarified by comparing our experimental results with electromagnetic field simulations in our sample geometry. We discuss the transition of the vortex states and the superconducting coupling at the Sr2RuO4/Ru interface.

  1. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5.

    PubMed

    Kuminek, Gislaine; Cao, Fengjuan; Bahia de Oliveira da Rocha, Alanny; Gonçalves Cardoso, Simone; Rodríguez-Hornedo, Naír

    2016-06-01

    Besides enhancing aqueous solubilities, cocrystals have the ability to fine-tune solubility advantage over drug, supersaturation index, and bioavailability. This review presents important facts about cocrystals that set them apart from other solid-state forms of drugs, and a quantitative set of rules for the selection of additives and solution/formulation conditions that predict cocrystal solubility, supersaturation index, and transition points. Cocrystal eutectic constants are shown to be the most important cocrystal property that can be measured once a cocrystal is discovered, and simple relationships are presented that allow for prediction of cocrystal behavior as a function of pH and drug solubilizing agents. Cocrystal eutectic constant is a stability or supersatuation index that: (a) reflects how close or far from equilibrium a cocrystal is, (b) establishes transition points, and (c) provides a quantitative scale of cocrystal true solubility changes over drug. The benefit of this strategy is that a single measurement, that requires little material and time, provides a principled basis to tailor cocrystal supersaturation index by the rational selection of cocrystal formulation, dissolution, and processing conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Casting Characteristics of High Cerium Content Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, D; Rios, O R; Sims, Z C

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems formore » melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.« less

  3. Effect of length scale on mechanical properties of Al-Cu eutectic alloy

    NASA Astrophysics Data System (ADS)

    Tiwary, C. S.; Roy Mahapatra, D.; Chattopadhyay, K.

    2012-10-01

    This paper attempts a quantitative understanding of the effect of length scale on two phase eutectic structure. We first develop a model that considers both the elastic and plastic properties of the interface. Using Al-Al2Cu lamellar eutectic as model system, the parameters of the model were experimentally determined using indentation technique. The model is further validated using the results of bulk compression testing of the eutectics having different length scales.

  4. Directional solidification of Al2-Cu-Al and Al3-Ni-Al eutectics during TEXUS rocket flight

    NASA Technical Reports Server (NTRS)

    Favier, J. J.; Degoer, J.

    1984-01-01

    One lamellar eutectic sample and one fiber-like eutectic sample were solidified directionally during the TEXUS-6 rocket flight. The microstructures and the results of the thermal analysis, obtained from the temperatures recorded on the cartridge skin, are compared. No appreciable modifications of the regularity of the eutectic structures were observed by passing from 1 g to 0.0001 g in these experiments. No steady state growth conditions were achieved in these experiments.

  5. Close binary systems among very low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Jeffries, R. D.; Maxted, P. F. L.

    2005-12-01

    Using Monte Carlo simulations and published radial velocity surveys we have constrained the frequency and separation (a) distribution of very low-mass star (VLM) and brown dwarf (BD) binary systems. We find that simple Gaussian extensions of the observed wide binary distribution, with a peak at 4 AU and 0.6<\\sigma_{\\log(a/AU)}<1.0, correctly reproduce the observed number of close binary systems, implying a close (a<2.6 AU) binary frequency of 17-30 % and overall frequency of 32-45 %. N-body models of the dynamical decay of unstable protostellar multiple systems are excluded with high confidence because they do not produce enough close binary VLMs/BDs. The large number of close binaries and high overall binary frequency are also completely inconsistent with published smoothed particle hydrodynamical modelling and argue against a dynamical origin for VLMs/BDs.

  6. Characterization and comparison of lidocaine-tetracaine and lidocaine-camphor eutectic mixtures based on their crystallization and hydrogen-bonding abilities.

    PubMed

    Gala, Urvi; Chuong, Monica C; Varanasi, Ravi; Chauhan, Harsh

    2015-06-01

    Eutectic mixtures formed between active pharmaceutical ingredients and/or excipients provide vast scope for pharmaceutical applications. This study aimed at the exploration of the crystallization abilities of two eutectic mixtures (EM) i.e., lidocaine-tetracaine and lidocaine-camphor (1:1 w/w). Thermogravimetric analysis (TGA) for degradation behavior whereas modulated temperature differential scanning calorimetry (MTDSC) set in first heating, cooling, and second heating cycles, was used to qualitatively analyze the complex exothermic and endothermic thermal transitions. Raman microspectroscopy characterized vibrational information specific to chemical bonds. Prepared EMs were left at room temperature for 24 h to visually examine their crystallization potentials. The degradation of lidocaine, tetracaine, camphor, lidocaine-tetracaine EM, and lidocaine-camphor EM began at 196.56, 163.82, 76.86, 146.01, and 42.72°C, respectively, which indicated that eutectic mixtures are less thermostable compared to their individual components. The MTDSC showed crystallization peaks for lidocaine, tetracaine, and camphor at 31.86, 29.36, and 174.02°C, respectively (n = 3). When studying the eutectic mixture, no crystallization peak was observed in the lidocaine-tetracaine EM, but a lidocaine-camphor EM crystallization peak was present at 18.81°C. Crystallization occurred in lidocaine-camphor EM after being kept at room temperature for 24 h, but not in lidocaine-tetracaine EM. Certain peak shifts were observed in Raman spectra which indicated possible interactions of eutectic mixture components, when a eutectic mixture was formed. We found that if the components forming a eutectic mixture have crystallization peaks close to each other and have sufficient hydrogen-bonding capability, then their eutectic mixture is least likely to crystallize out (as seen in lidocaine-tetracaine EM) or vice versa (lidocaine-camphor EM).

  7. Eutectic Formation During Solidification of Ni-Based Single-Crystal Superalloys with Additional Carbon

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Ma, Dexin; Bührig-Polaczek, Andreas

    2017-11-01

    γ/ γ' eutectics' nucleation behavior during the solidification of a single-crystal superalloy with additional carbon was investigated by using directional solidification quenching method. The results show that the nucleation of the γ/ γ' eutectics can directly occur on the existing γ dendrites, directly in the remaining liquid, or on the primary MC-type carbides. The γ/γ' eutectics formed through the latter two mechanisms have different crystal orientations than that of the γ matrix. This suggests that the conventional Ni-based single-crystal superalloy castings with additional carbon only guarantee the monocrystallinity of the γ matrix and some γ/ γ' eutectics and, in addition to the carbides, there are other misoriented polycrystalline microstructures existing in macroscopically considered "single-crystal" superalloy castings.

  8. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOEpatents

    Lee, K.; Coburn, M.D.

    1984-05-17

    The ethylenediamine salt of 5-nitrotetrazole has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol% of ammonium nitrate, is close to the CO/sub 2/-balanced composition of 90 mol%, and has a relatively low melting point of 110.5 C making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  9. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOEpatents

    Lee, Kien-yin; Coburn, Michael D.

    1985-01-01

    Ethylenediamine salt of 5-nitrotetrazole and preparation. This salt has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol % of ammonium nitrate, is close to the CO.sub.2 -balanced composition of 90 mol %, and has a relatively low melting point of 110.5 C. making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C. and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  10. Microstructural investigation of Sr-modified Al-15 wt%Si alloys in the range from micrometer to atomic scale.

    PubMed

    Timpel, M; Wanderka, N; Vinod Kumar, G S; Banhart, J

    2011-05-01

    Strontium-modified Al-15 wt%Si casting alloys were investigated after 5 and 60 min of melt holding. The eutectic microstructures were studied using complementary methods at different length scales: focused ion beam-energy selective backscattered tomography, transmission electron microscopy and 3D atom probe. Whereas the samples after 5 min of melt holding show that the structure of eutectic Si changes into a fine fibrous morphology, the increase of prolonged melt holding (60 min) leads to the loss of Sr within the alloy with an evolution of an unmodified eutectic microstructure displaying coarse interconnected Si plates. Strontium was found at the Al/Si eutectic interfaces on the side of the eutectic Al region, measured by 3D atom probe. The new results obtained using 3D atom probe shed light on the location of Sr within the Al-Si eutectic microstructure. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Directional growth and characterization of Fe?Al?Nb eutectic alloys

    NASA Astrophysics Data System (ADS)

    Mota, M. A.; Coelho, A. A.; Bejarano, J. M. Z.; Gama, S.; Caram, R.

    1999-03-01

    The manufacturing of components for operation at high temperatures requires the use of metallic materials which can keep satisfactory mechanical and chemical properties, even at temperatures beyond 1000°C. An interesting alternative to solve such a problem is the use of directionally solidified eutectic alloys. A potentially promising system for the manufacture of structural materials, and so far not totally studied, is the eutectic based on the Fe-Al-Nb system, which involves the (FeAl) 2Nb phase and the FeAl solid solution. Eutectic samples from this system were directionally solidified in a vertical Bridgman crystal growth unit. The objective of the experiments was to determine the influence of the growth rate on the eutectic microstructure. The ingots obtained were investigated by using optical and electron scanning microscopy. At low growth rate, the eutectic microstructure remained regular, even though it showed several types of microstructure defects. As the growth rate was increased, a transition from lamellar to fibrous morphology was observed.

  12. Solidification and Re-melting Phenomena During Slurry Preparation Using the RheoMetal™ Process

    NASA Astrophysics Data System (ADS)

    Payandeh, M.; Sabzevar, Mohsen Haddad; Jarfors, A. E. W.; Wessén, M.

    2017-12-01

    The melting sequence of the enthalpy exchange material (EEM) and formation of a slurry in the RheoMetal™ process was investigated. The EEM was extracted and quenched, together with a portion of the slurry at different processing times before complete melting. The EEM initially increased in size/diameter due to melt freezing onto its surface, forming a freeze- on layer. The initial growth of this layer was followed by a period of a constant diameter of the EEM with subsequent melting and decrease of diameter. Microstructural characterization of the size and morphology of different phases in the EEM and in the freeze-on layer was made. Dendritic equiaxed grains and eutectic regions containing Si particles and Cu-bearing particles and Fe-rich particles were observed in the as-cast EEM. The freeze-on layer consisted of dendritic aluminum tilted by about 30 deg in the upstream direction, caused by the rotation of the EEM. Energy dispersion spectroscopy analysis showed that the freeze-on layer had a composition corresponding to an alloy with higher melting point than the EEM and thus shielding the EEM from the surrounding melt. Microstructural changes in the EEM showed that temperature rapidly increased to 768 K (495 °C), indicated by incipient melting of the lowest temperature melting eutectic in triple junction grain boundary regions with Al2Cu and Al5Mg8Si6Cu2 phases present. As the EEM temperature increased further the binary Al-Si eutectic started to melt to form a region of a fully developed coherent mushy state. Experimental results and a thermal model indicated that as the dendrites spheroidized near to the interface at the EEM/freeze-on layer reached a mushy state with 25 pct solid fraction, coherency was lost and disintegration of the freeze-on layer took place. Subsequently, in the absence of the shielding effect from the freeze-on Layer, the EEM continued to disintegrate with a coherency limit of a solid fraction estimated to be 50 pct.

  13. Semiconductor Eutectic Solar Cell.

    DTIC Science & Technology

    1986-12-01

    growth of the eutectics was conducted in a three-zone furnace ( SATEC Systems, Inc.). Figure 4 is the temperature-regulation circuit. The main power...34Electromagnetic Properties of Eutectic Composites (A Critical Review)", Met. Trans. 2, 1513 (1971). 6. B. Paul and H. Weiss, "Anisotropic InSb-NiSb Es an

  14. Surface waves on floating liquids induced by ultrasound field

    NASA Astrophysics Data System (ADS)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2013-01-01

    We demonstrate a kind of wave pattern on the surface of floating liquids in a modulated ultrasound field. The waves are related to the liquid/solid phase transformation process. The nucleation sites of the eutectics locate at the center of these waves, and the eutectic growth direction is parallel to the propagation direction of the waves. It is revealed that such wave phenomenon can be ascribed to the interaction between ultrasound and eutectic growth at the liquid/solid interface. This result may provide a potential method for fabricating wave patterned surfaces on eutectic alloys.

  15. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  16. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-09-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

  17. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-04-28

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption.

  18. The roles of Eu during the growth of eutectic Si in Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-09-02

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helinski, Ryan

    This Python package provides high-performance implementations of the functions and examples presented in "BiEntropy - The Approximate Entropy of a Finite Binary String" by Grenville J. Croll, presented at ANPA 34 in 2013. https://arxiv.org/abs/1305.0954 According to the paper, BiEntropy is "a simple algorithm which computes the approximate entropy of a finite binary string of arbitrary length" using "a weighted average of the Shannon Entropies of the string and all but the last binary derivative of the string."

  20. Factors affecting the formation of eutectic solid dispersions and their dissolution behavior.

    PubMed

    Vippagunta, Sudha R; Wang, Zeren; Hornung, Stefanie; Krill, Steven L

    2007-02-01

    The objective of this work was to obtain a fundamental understanding of the factors, specifically the properties of poorly water-soluble drugs and water-soluble carriers, which influence predominantly, the formation of eutectic or monotectic crystalline solid dispersion and their dissolution behavior. A theoretical model was applied on five poorly water-soluble drugs (fenofibrate, flurbiprofen, griseofulvin, naproxen, and ibuprofen) having diverse physicochemical properties and water-soluble carrier (polyethylene glycol (PEG) 8000) for the evaluation of these factors. Of these, two drugs, fenofibrate and flurbiprofen, and PEG of different molecular weights (3350, 8000, and 20000), were chosen as model drugs and carriers for further investigation. Experimental phase diagrams were constructed and dissolution testing was performed to assess the performance of the systems. The theoretical model predicted the formation of eutectic or monotectic solid dispersions of fenofibrate, griseofulvin, ibuprofen, and naproxen with PEG, holding the contribution of specific intermolecular interactions between compound and carrier to zero. In the case of the flurbiprofen-PEG eutectic system, intermolecular interactions between drug and polymer needed to be taken into consideration to predict the experimental phase diagram. The results of the current work suggest that the thermodynamic function of melting point and heat of fusion (as a measure of crystal energy of drug) plays a significant role in the formation of a eutectic system. Lipophilicity of the compound (as represented by cLog P) was also demonstrated to have an effect. Specific interactions between drug and carrier play a significant role in influencing the eutectic composition. Molar volume of the drug did not seem to have an impact on eutectic formation. The polymer molecular weight appeared to have an impact on the eutectic composition for flurbiprofen, which exhibits specific interactions with PEG, whereas no such impact of polymer molecular weight on eutectic composition was observed for fenofibrate, which does not exhibit specific interactions with PEG. The impact of polymer molecular weight on dissolution of systems where specific drug-polymer interactions are exhibited was also observed. The current work provides valuable insight into factors affecting formation and dissolution of eutectic systems, which can facilitate the rational selection of suitable water-soluble carriers. Copyright (c) 2006 Wiley-Liss, Inc.

  1. Macrosegregation and nucleation in undercooled Pb-Sn alloys

    NASA Technical Reports Server (NTRS)

    Degroh, Henry C., III

    1989-01-01

    A technique resulting in large undercoolings in bulk samples (23g) of lead-tin alloys was developed. Samples of Pb-12.5 wt percent Sn, Pb-61 wt percent Sn, and Pb-77 wt percent Sn were processed with undercoolings ranging from 4 to 34 K and with cooling rates varying between 0.04 and 4 K/sec. The nucleation behavior of the Pb-Sn system was found to be nonreciprocal. The solid Sn phase effectively nucleated the Pb phase of the eutectic; however, large undercoolings developed in Sn-rich eutectic liquid in the presence of the solid Pb phase. This phenomenon is believed to be mainly the result of differences in interfacial energies between solid Sn-eutectic liquid, and solid Pb-eutectic liquid rather than lattice misfit between Pb and Sn. Large amounts of segregation developed in the highly undercooled eutectic ingots. This macrosegregation was found to increase as undercooling increases. Macrosegregation in these undercooled eutectic alloys was found to be primarily due to a sink/float mechanism and the nucleation behavior of the alloy. Lead-rich dendrites are the primary phase in the undercooled eutectic system. These dendrites grow rapidly into the undercooled bath and soon break apart due to recalescence and Sn enrichment of the liquid. These fragmented Pb dendrites are then free to settle to the bottom portion of the ingot causing the macrosegregation observed in this study. A eutectic Pb-Sn alloy undercooled 20 K and cooled at 4 K/sec had a composition of about Pb-72 wt percent Sn at the top and 55 percent Sn at the bottom.

  2. Macrosegregation and nucleation in undercooled Pb-Sn alloys

    NASA Technical Reports Server (NTRS)

    Degroh, Henry C., III

    1989-01-01

    A novel technique resulting in large undercoolings in bulk samples (23 g) of lead-tin alloys was developed. Samples of Pb-12.5 wt percent Sn, Pb-61.9 wt.% Sn, and Pb-77 wt.% Sn were processed with undercoolings ranging from 4 to 34 K and with cooling rates varying between 0.04 and 4 K/s. The nucleation behavior of the Pb-Sn system was found to be nonreciprocal. The solid Sn phase effectively nucleated the Pb phase of the eutectic; however, large undercoolings developed in Sn-rich eutectic liquid in the presence of the solid Pb phase. This phenomenon is believed to be mainly the result of differences in interfacial energies between solid Sn-eutectic liquid, and solid Pb-eutectic liquid rather than lattice misfit between Pb and Sn. Large amounts of segregation developed in the highly undercooled eutectic ingots. This macrosegregation was found to increase as undercooling increases. Macrosegregation in these undercooled eutectic alloys was found to be primarily due to a sink/float mechanism and the nucleation behavior of the alloy. Lead-rich dendrites are the primary phase in the undercooled eutectic system. These dendrites grow rapidly into the undercooled bath and soon break apart due to recalescence and Sn enrichment of the liquid. These fragmented Pb dendrites are then free to settle to the bottom portion of the ingot causing the macrosegregation observed in this study. A eutectic Pb-Sn alloy undercooled 20 K and cooled at 4 K/s had a composition of about Pb-72 wt.% Sn at the top and 55% Sn at the bottom.

  3. Low-Absorption Liquid Crystals for Infrared Beam Steering

    DTIC Science & Technology

    2013-10-22

    Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic mixture, deuteration, nematic phase, birefringence, overtone...absorption compounds for LWIR and SWIR are also investigated. Key words: Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic ...the melting point significantly. We did careful investigation and formed a eutectic mixture consisting of five fluorinated compounds without any

  4. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  5. PU/SS EUTECTIC ASSESSMENT IN 9975 PACKAGINGS IN A STORAGE FACILITY DURING EXTENDED FIRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, N.

    2012-03-26

    In a radioactive material (RAM) packaging, the formation of eutectic at the Pu/SS (plutonium/stainless steel) interface is a serious concern and must be avoided to prevent of leakage of fissile material to the environment. The eutectic temperature for the Pu/SS is rather low (410 C) and could seriously impact the structural integrity of the containment vessel under accident conditions involving fire. The 9975 packaging is used for long term storage of Pu bearing materials in the DOE complex where the Pu comes in contact with the stainless steel containment vessel. Due to the serious consequences of the containment breach atmore » the eutectic site, the Pu/SS interface temperature is kept well below the eutectic formation temperature of 410 C. This paper discusses the thermal models and the results for the extended fire conditions (1500 F for 86 minutes) that exist in a long term storage facility and concludes that the 9975 packaging Pu/SS interface temperature is well below the eutectic temperature.« less

  6. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    NASA Astrophysics Data System (ADS)

    Tiwary, C. S.; Chakraborty, S.; Mahapatra, D. R.; Chattopadhyay, K.

    2014-05-01

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.

  7. The Effect of Oscillating Traverse Welding on Performance of Cr-Fe-C Hardfacing Alloys

    NASA Astrophysics Data System (ADS)

    Lai, Hsuan-Han; Hsieh, Chih-Chun; Wang, Jia-Siang; Lin, Chi-Ming; Wu, Weite

    2015-11-01

    In this study, a series of experiments involving Cr-Fe-C hardfacing alloys is conducted to evaluate the effect of oscillating traverse welding on microstructure and performance of clad alloys. The alloys are designed to exhibit hypoeutectic, eutectic, and hypereutectic morphology. The morphology of the heat-affected zone (HAZ) of the unmelted metal, the solidified remelted metal, and the fusion boundary exhibited distinct characteristics. In the hypoeutectic and the eutectic alloys, the same lamellar eutectic structure can be observed as the solidified structure, and they also showed the same evolution in the HAZ. In the hypereutectic alloy, the incomplete weld pool blending results in a eutectic morphology instead of a fully hypereutectic morphology. The hardness result reveals that, for the hypereutectic alloy, the eutectic region, instead of the HAZ, is the weak point. The wear test shows that the hypoeutectic alloy exhibits the same wear behaviors in both the remelted metal and the HAZ, and so is the hypereutectic alloy; the eutectic alloy remelted metal and the HAZ have different wear morphologies.

  8. Electrical conductivity and phase diagram of binary alloys. 21: The system palladium-chromium

    NASA Technical Reports Server (NTRS)

    Grube, G.; Knabe, R.

    1985-01-01

    Pd-Cr alloys were investigated by thermal analysis, hardness measurements, X-ray analysis, microscopic examination of etched pieces, and temperature-resistance curves of the solid alloys. Only one compound, Pd2Cr3, m, 1389 deg, is formed. It possesses a cubic face centered lattice and forms with excess Pd a series of solid solutions with a minimum m.p. at 45 atoms% Pd. Hardness maximum appears at the Pd2Cr3 point. Pd2Cr3 forms no solid solutions with Cr but eutectic point appears at 25 atoms% Pd, m. 1320 deg. The sp. resistance of pure Cr in an atom of H, indicates no allotropic forms. Cr2O3 is solid in molten Cr. Pure Cr melts at 1890 plus or minus 10 deg but Cr contg. Cr2O3 starts to melt at 1770 to 1790 deg.

  9. Controlling the growth of multiple ordered heteromolecular phases by utilizing intermolecular repulsion

    NASA Astrophysics Data System (ADS)

    Henneke, Caroline; Felter, Janina; Schwarz, Daniel; Stefan Tautz, F.; Kumpf, Christian

    2017-06-01

    Metal/organic interfaces and their structural, electronic, spintronic and thermodynamic properties have been investigated intensively, aiming to improve and develop future electronic devices. In this context, heteromolecular phases add new design opportunities simply by combining different molecules. However, controlling the desired phases in such complex systems is a challenging task. Here, we report an effective way of steering the growth of a bimolecular system composed of adsorbate species with opposite intermolecular interactions--repulsive and attractive, respectively. The repulsive species forms a two-dimensional lattice gas, the density of which controls which crystalline phases are stable. Critical gas phase densities determine the constant-area phase diagram that describes our experimental observations, including eutectic regions with three coexisting phases. We anticipate the general validity of this type of phase diagram for binary systems containing two-dimensional gas phases, and also show that the density of the gas phase allows engineering of the interface structure.

  10. Thermal Aspects of Future Spacecraft Thermal Management Systems.

    DTIC Science & Technology

    1986-07-01

    eutectic salt ) (278 278) (168) (n-a n-a) (0.78 0.78) (2290 2290) (inexpensive))) (95.4 % NaNO3 - 4.6 % NaCl) (inorganic eutectic salt ) (297 297) (178) (n-a...n-a) (0.69 0.69) (2260 2260) (inexpensive))) (69.9 % CaC12 - 30.1 % NaCI) (inorganic eutectic salt ) (490 490) (233) (n-a n-a) (4 4) (2400 2400...inexpensive))) (46.2 % KC1 - 29.9 X CaCI2 -23.9 X NaCi) (inorganic eutectic salt ) (515 515) (265) (n-a n-a) (3.8 3.8) (2160 2160) (inexpensive))) (79

  11. On Nb Silicide Based Alloys: Alloy Design and Selection.

    PubMed

    Tsakiropoulos, Panos

    2018-05-18

    The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb₅Si₃ (Materials 11 (2018) 69), and hexagonal C14-NbCr₂ and cubic A15-Nb₃X phases (Materials 11 (2018) 395) and eutectics with Nb ss and Nb₅Si₃ (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys.

  12. On Nb Silicide Based Alloys: Alloy Design and Selection

    PubMed Central

    Tsakiropoulos, Panos.

    2018-01-01

    The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb5Si3 (Materials 11 (2018) 69), and hexagonal C14-NbCr2 and cubic A15-Nb3X phases (Materials 11 (2018) 395) and eutectics with Nbss and Nb5Si3 (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys. PMID:29783707

  13. Evaluation and modeling of the eutectic composition of various drug-polyethylene glycol solid dispersions.

    PubMed

    Baird, Jared A; Taylor, Lynne S

    2011-06-01

    The purpose of this study was to gain a better understanding of which factors contribute to the eutectic composition of drug-polyethylene glycol (PEG) blends and to compare experimental values with predictions from the semi-empirical model developed by Lacoulonche et al. Eutectic compositions of various drug-PEG 3350 solid dispersions were predicted, assuming athermal mixing, and compared to experimentally determined eutectic points. The presence or absence of specific interactions between the drug and PEG 3350 were investigated using Fourier transform infrared (FT-IR) spectroscopy. The eutectic composition for haloperidol-PEG and loratadine-PEG solid dispersions was accurately predicted using the model, while predictions for aceclofenac-PEG and chlorpropamide-PEG were very different from those experimentally observed. Deviations in the model prediction from ideal behavior for the systems evaluated were confirmed to be due to the presence of specific interactions between the drug and polymer, as demonstrated by IR spectroscopy. Detailed analysis showed that the eutectic composition prediction from the model is interdependent on the crystal lattice energy of the drug compound (evaluated from the melting temperature and the heat of fusion) as well as the nature of the drug-polymer interactions. In conclusion, for compounds with melting points less than 200°C, the model is ideally suited for predicting the eutectic composition of systems where there is an absence of drug-polymer interactions.

  14. Phase dissolution of γ-Mg17Al12 during homogenization of as-cast AZ80 Magnesium alloy and its effect on room temperature mechanical properties

    NASA Astrophysics Data System (ADS)

    Kulkarni, Rahul R.; Prabhu, Nityanand; Hodgson, Peter D.; Kashyap, Bhagwati P.

    As-cast AZ80 Mg alloy contains α-Mg, partially divorce eutectic of α and γ (Mg17Al12), fully divorce eutectic of α and γ, and lamellar eutectic of α and γ phases. During homogenization, second phase (γ-Mg17Al12) gets dissolved can change the mechanical properties. Therefore, the aim of the present work is to bring out the kinetics of dissolution of γ phase and evaluate its effect on mechanical properties. Microstructure evolution during homogenization was investigated as a function of time for 0.5 to 100 h and at the temperatures of 400° and 439°C. In as-cast state, this material was found to contain 70% α-Mg and 30% eutectic phase. With increasing homogenization time, dissolution of lamellar eutectic occurs first which is followed by dissolution of fully divorce eutectic and partially divorce eutectic. The dissolution kinetics of γ phase was analyzed based on the decrease in its volume fraction as a function of time. The time exponent for dissolution was found to be 0.38 and the activation energy for the dissolution of γ phase was found to be 84.1 kJ/mol. This dissolution of γ phase leads to decrease in hardness and tensile strength with increase in homogenization time.

  15. Binary centrifugal microfluidics enabling novel, digital addressable functions for valving and routing.

    PubMed

    Wang, Guanghui; Tan, Jie; Tang, Minghui; Zhang, Changbin; Zhang, Dongying; Ji, Wenbin; Chen, Junhao; Ho, Ho-Pui; Zhang, Xuping

    2018-03-16

    Centrifugal microfluidics or lab-on-a-disc (LOAD) is a promising branch of lab-on-a-chip or microfluidics. Besides effective fluid transportation and inherently available density-based sample separation in centrifugal microfluidics, uniform actuation of flow on the disc makes the platform compact and scalable. However, the natural radially outward centrifugal force in a LOAD system limits its capacity to perform complex fluid manipulation steps. In order to increase the fluid manipulation freedom and integration capacity of the LOAD system, we propose a binary centrifugal microfluidics platform. With the help of Euler force, our platform allows free switching of both left and right states based on a rather simple mechanical structure. The periodical switching of state would provide a "clock" signal for a sequence of droplet binary logic operations. With the binary state platform and the "clock" signal, we can accurately handle the droplet separately in each time step with a maximum main frequency of about 10 S s-1 (switching per second). Apart from droplet manipulations such as droplet generation and metering, we also demonstrate a series of droplet logic operations, such as binary valving, droplet routing and digital addressable droplet storage. Furthermore, complex bioassays such as the Bradford assay and DNA purification assay are demonstrated on a binary platform, which is totally impossible for a traditional LOAD system. Our binary platform largely improves the capability for logic operation on the LOAD platform, and it is a simple and promising approach for microfluidic lab-on-a-disc large-scale integration.

  16. Binary encoding of multiplexed images in mixed noise.

    PubMed

    Lalush, David S

    2008-09-01

    Binary coding of multiplexed signals and images has been studied in the context of spectroscopy with models of either purely constant or purely proportional noise, and has been shown to result in improved noise performance under certain conditions. We consider the case of mixed noise in an imaging system consisting of multiple individually-controllable sources (X-ray or near-infrared, for example) shining on a single detector. We develop a mathematical model for the noise in such a system and show that the noise is dependent on the properties of the binary coding matrix and on the average number of sources used for each code. Each binary matrix has a characteristic linear relationship between the ratio of proportional-to-constant noise and the noise level in the decoded image. We introduce a criterion for noise level, which is minimized via a genetic algorithm search. The search procedure results in the discovery of matrices that outperform the Hadamard S-matrices at certain levels of mixed noise. Simulation of a seven-source radiography system demonstrates that the noise model predicts trends and rank order of performance in regions of nonuniform images and in a simple tomosynthesis reconstruction. We conclude that the model developed provides a simple framework for analysis, discovery, and optimization of binary coding patterns used in multiplexed imaging systems.

  17. Precision of proportion estimation with binary compressed Raman spectrum.

    PubMed

    Réfrégier, Philippe; Scotté, Camille; de Aguiar, Hilton B; Rigneault, Hervé; Galland, Frédéric

    2018-01-01

    The precision of proportion estimation with binary filtering of a Raman spectrum mixture is analyzed when the number of binary filters is equal to the number of present species and when the measurements are corrupted with Poisson photon noise. It is shown that the Cramer-Rao bound provides a useful methodology to analyze the performance of such an approach, in particular when the binary filters are orthogonal. It is demonstrated that a simple linear mean square error estimation method is efficient (i.e., has a variance equal to the Cramer-Rao bound). Evolutions of the Cramer-Rao bound are analyzed when the measuring times are optimized or when the considered proportion for binary filter synthesis is not optimized. Two strategies for the appropriate choice of this considered proportion are also analyzed for the binary filter synthesis.

  18. Indium and Zinc Alloys as Cadmium Brush Plating Replacements

    DTIC Science & Technology

    2011-05-10

    process development Salt Fog Corrosion Resistance 18 Coating Condition First Sign of White Rust First Sign of Red Rust Noticeable Propagation of...coupons] 31 1. Low temperature eutectic : • The Sn-In system eutectic is 244°F at ~48.3 weight % Sn • Cd-In-Sn system eutectic is ~199°F • Good for a

  19. In situ fabrication of electrochemically grown mesoporous metallic thin films by anodic dissolution in deep eutectic solvents.

    PubMed

    Renjith, Anu; Roy, Arun; Lakshminarayanan, V

    2014-07-15

    We describe here a simple electrodeposition process of forming thin films of noble metallic nanoparticles such as Au, Ag and Pd in deep eutectic solvents (DES). The method consists of anodic dissolution of the corresponding metal in DES followed by the deposition on the cathodic surface. The anodic dissolution process in DES overcomes the problems associated with copious hydrogen and oxygen evolution on the electrode surface when carried out in aqueous medium. The proposed method utilizes the inherent abilities of DES to act as a reducing medium while simultaneously stabilizing the nanoparticles that are formed. The mesoporous metal films were characterized by SEM, XRD and electrochemical techniques. Potential applications of these substrates in surface enhanced Raman spectroscopy and electrocatalysis have been investigated. A large enhancement of Raman signal of analyte was achieved on the mesoporous silver substrate after removing all the stabilizer molecules from the surface by calcination. The highly porous texture of the electrodeposited film provides superior electro catalytic performance for hydrogen evolution reaction (HER). The mechanisms of HER on the fabricated substrates were studied by Tafel analysis and electrochemical impedance spectroscopy (EIS). Copyright © 2014 Elsevier Inc. All rights reserved.

  20. On the structure of contact binaries. I - The contact discontinuity

    NASA Technical Reports Server (NTRS)

    Shu, F. H.; Lubow, S. H.; Anderson, L.

    1976-01-01

    The problem of the interior structure of contact binaries is reviewed, and a simple resolution of the difficulties which plague the theory is suggested. It is proposed that contact binaries contain a contact discontinuity between the lower surface of the common envelope and the Roche lobe of the cooler star. This discontinuity is maintained against thermal diffusion by fluid flow, and the transition layer is thin to the extent that the dynamical time scale is short in comparison with the thermal time scale. The idealization that the transition layer has infinitesimal thickness allows a simple formulation of the structure equations which are closed by appropriate jump conditions across the discontinuity. The further imposition of the standard boundary conditions suffices to define a unique model for the system once the chemical composition, the masses of the two stars, and the orbital separation are specified.

  1. Binary fingerprints at fluctuation-enhanced sensing.

    PubMed

    Chang, Hung-Chih; Kish, Laszlo B; King, Maria D; Kwan, Chiman

    2010-01-01

    We have developed a simple way to generate binary patterns based on spectral slopes in different frequency ranges at fluctuation-enhanced sensing. Such patterns can be considered as binary "fingerprints" of odors. The method has experimentally been demonstrated with a commercial semiconducting metal oxide (Taguchi) sensor exposed to bacterial odors (Escherichia coli and Anthrax-surrogate Bacillus subtilis) and processing their stochastic signals. With a single Taguchi sensor, the situations of empty chamber, tryptic soy agar (TSA) medium, or TSA with bacteria could be distinguished with 100% reproducibility. The bacterium numbers were in the range of 2.5 × 10(4)-10(6). To illustrate the relevance for ultra-low power consumption, we show that this new type of signal processing and pattern recognition task can be implemented by a simple analog circuitry and a few logic gates with total power consumption in the microWatts range.

  2. Role of bismuth on solidification, microstructure and mechanical properties of a near eutectic Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Farahany, Saeed; Ourdjini, Ali; Bakar, Tuty Asma Abu; Idris, Mohd Hasbullah

    2014-09-01

    Computer aided thermal analysis and microstructural observation showed that addition of bismuth (Bi) within the range of 0.25 and 2 wt% produced a greater effect on the Al-Si eutectic phase than on primary aluminium and Al2Cu phases. Results showed that with addition of 1 wt% Bi the eutectic silicon structure was refined from flake-like morphology into lamellar. Bi refines rather than modifies the Si structure and increases the Al-Si eutectic fraction solid and more significantly there was no fading even up to 180 min of melt holding. Transmission electron microscopy study showed that the Si twin spacing decreased from 160 to 75 nm which is likely attributed to the refining effect of Bi. It was also found that addition of 1 wt% Bi increased the tensile strength, elongation and the absorbed energy for fracture due to the refined eutectic silicon structure.

  3. Microstructure of directionally solidified Ti-Fe eutectic alloy with low interstitial and high mechanical strength

    NASA Astrophysics Data System (ADS)

    Contieri, R. J.; Lopes, E. S. N.; Taquire de La Cruz, M.; Costa, A. M.; Afonso, C. R. M.; Caram, R.

    2011-10-01

    The performance of Ti alloys can be considerably enhanced by combining Ti and other elements, causing an eutectic transformation and thereby producing composites in situ from the liquid phase. This paper reports on the processing and characterization of a directionally solidified Ti-Fe eutectic alloy. Directional solidification at different growth rates was carried out in a setup that employs a water-cooled copper crucible combined with a voltaic electric arc moving through the sample. The results obtained show that a regular fiber-like eutectic structure was produced and the interphase spacing was found to be a function of the growth rate. Mechanical properties were measured using compression, microindentation and nanoindentation tests to determine the Vickers hardness, compressive strength and elastic modulus. Directionally solidified eutectic samples presented high values of compressive strength in the range of 1844-3000 MPa and ductility between 21.6 and 25.2%.

  4. A simple and reliable multi-gene transformation method for switchgrass.

    PubMed

    Ogawa, Yoichi; Shirakawa, Makoto; Koumoto, Yasuko; Honda, Masaho; Asami, Yuki; Kondo, Yasuhiro; Hara-Nishimura, Ikuko

    2014-07-01

    A simple and reliable Agrobacterium -mediated transformation method was developed for switchgrass. Using this method, many transgenic plants carrying multiple genes-of-interest could be produced without untransformed escape. Switchgrass (Panicum virgatum L.) is a promising biomass crop for bioenergy. To obtain transgenic switchgrass plants carrying a multi-gene trait in a simple manner, an Agrobacterium-mediated transformation method was established by constructing a Gateway-based binary vector, optimizing transformation conditions and developing a novel selection method. A MultiRound Gateway-compatible destination binary vector carrying the bar selectable marker gene, pHKGB110, was constructed to introduce multiple genes of interest in a single transformation. Two reporter gene expression cassettes, GUSPlus and gfp, were constructed independently on two entry vectors and then introduced into a single T-DNA region of pHKGB110 via sequential LR reactions. Agrobacterium tumefaciens EHA101 carrying the resultant binary vector pHKGB112 and caryopsis-derived compact embryogenic calli were used for transformation experiments. Prolonged cocultivation for 7 days followed by cultivation on media containing meropenem improved transformation efficiency without overgrowth of Agrobacterium, which was, however, not inhibited by cefotaxime or Timentin. In addition, untransformed escape shoots were completely eliminated during the rooting stage by direct dipping the putatively transformed shoots into the herbicide Basta solution for a few seconds, designated as the 'herbicide dipping method'. It was also demonstrated that more than 90 % of the bar-positive transformants carried both reporters delivered from pHKGB112. This simple and reliable transformation method, which incorporates a new selection technique and the use of a MultiRound Gateway-based binary vector, would be suitable for producing a large number of transgenic lines carrying multiple genes.

  5. Eutectic Composite Turbine Blade Development

    DTIC Science & Technology

    1976-11-01

    turbine blades for aircraft engines . An MC carbide fiber reinforced eutectic alloy, NiTaC-13...composites in turbine blades for aircraft engines . An MC carbide fiber reinforced eutectic alloy, NiTaC-13 and the low pressure turbine blade of the...identified that appeared to have potential for application to aircraft engine turbine blade hardware. The potential benefits offered by these materials

  6. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwary, C. S., E-mail: cst.iisc@gmail.com; Chattopadhyay, K.; Chakraborty, S.

    2014-05-28

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al{sub 2}Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al{sub 2}Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different lengthmore » scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.« less

  7. Molecular interactions in the betaine monohydrate-polyol deep eutectic solvents: Experimental and computational studies

    NASA Astrophysics Data System (ADS)

    Zahrina, Ida; Mulia, Kamarza; Yanuar, Arry; Nasikin, Mohammad

    2018-04-01

    DES (deep eutectic solvents) are a new class of ionic liquids that have excellent properties. The strength of interaction between molecules in the DES affects their properties and applications. In this work, the strength of molecular interactions between components in the betaine monohydrate salt and polyol (glycerol or/and propylene glycol) eutectic mixtures was studied by experimental and computational studies. The melting point and fusion enthalpy of the mixtures were measured using STA (Simultaneous Thermal Analyzer). The nature and strength of intermolecular interactions were observed by FT-IR and NMR spectroscopy. The molecular dynamics simulation was used to determine the number of H-bonds, percent occupancy, and radial distribution functions in the eutectic mixtures. The interaction between betaine monohydrate and polyol is following order: betaine monohydrate-glycerol-propylene glycol > betaine monohydrate-glycerol > betaine monohydrate-propylene glycol, where the latter is the eutectic mixture with the lowest stability, strength and extent of the hydrogen bonding interactions between component molecules. The presence of intra-molecular hydrogen bonding interactions, the inter-molecular hydrogen bonding interactions between betaine molecule and polyol, and also interactions between polyol and H2O of betaine monohydrate in the eutectic mixtures.

  8. Characteristics of Eutectic α(Cr,Fe)-(Cr,Fe)23C6 in the Eutectic Fe-Cr-C Hardfacing Alloy

    NASA Astrophysics Data System (ADS)

    Lai, Hsuan-Han; Hsieh, Chih-Chun; Lin, Chi-Ming; Wu, Weite

    2017-01-01

    A specific eutectic (Cr,Fe)-(Cr,Fe)23C6 structure had been previously reported in the research studies of Fe-Cr-C hardfacing alloys. In this study, a close observation and discussion of the eutectic (Cr,Fe)-(Cr,Fe)23C6 were conducted. The eutectic solidification occurred when the chromium content of the alloy exceeded 35 wt pct. The eutectic structure showed a triaxial radial fishbone structure which was the so called "complex regular structure." Lamellar costa plates showed local asymmetry at two sides of a spine. Individual costae were able to combine as one, and spines showed extra branches. Costae that were nearly parallel to the heat flow direction were longer than those that were vertical to the heat flow direction. The triaxial spines preferred to intersect at 120 deg, while the costae preferred to intersect the spine at 90 deg and 35.26 deg due to the lattice relationships. The solidified metal near the fusion boundary showed an irregular structure instead of a complex regular structure. The reason for the irregular morphology was the high growth rate near the fusion boundary.

  9. Microstructure of the Sn-Cu{sub 6}Sn{sub 5} fibrous eutectic and its modification by segregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drevet, B.; Camel, D.; Favier, J.J.

    The influence of segregation due to thermal convection on the microstructure of Sn-Cu{sub 6}Sn{sub 5} fibrous eutectic alloys is studied in a Bridgman type configuration. The eutectic microstructure is characterized by means of image analysis, X-ray diffraction and scanning and transmission electron microscopy. In the absence of segregation, the eutectic is regular and its growth controlled by that of the Cu{sub 6}Sn{sub 5} fibers. The effect of interphases on eutectic spacing, through orientation relationships between fibers and matrix, is also evidenced. The influence of segregation can be summed up by the following effects. At first, in agreement with the Jacksonmore » and Hunt model, it leads to a variation of the eutectic spacing which results from a variation of the fiber volume fraction. Then, the spacing is much greater than the one obtained in the absence of segregation, due to a different tin growth plane and non-optimized fiber/matrix orientation relationships. Finally, the absence of steady state leads to a large dispersion of the spacing associated with a microstructural disorder.« less

  10. Rare Earth Electrochemical Property Measurements and Phase Diagram Development in a Complex Molten Salt Mixture for Molten Salt Recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinsuo; Guo, Shaoqiang

    Pyroprocessing is a promising alternative for the reprocessing of used nuclear fuel (UNF) that uses electrochemical methods. Compared to the hydrometallurgical reprocessing method, pyroprocessing has many advantages such as reduced volume of radioactive waste, simple waste processing, ability to treat refractory material, and compatibility with fast reactor fuel recycle. The key steps of the process are the electro-refining of the spent metallic fuel in the LiCl-KCl eutectic salt, which can be integrated with an electrolytic reduction step for the reprocessing of spent oxide fuels.

  11. Precise Analysis of Microstructural Effects on Mechanical Properties of Cast ADC12 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Okayasu, Mitsuhiro; Takeuchi, Shuhei; Yamamoto, Masaki; Ohfuji, Hiroaki; Ochi, Toshihiro

    2015-04-01

    The effects of microstructural characteristics (secondary dendrite arm spacing, SDAS) and Si- and Fe-based eutectic structures on the mechanical properties and failure behavior of an Al-Si-Cu alloy are investigated. Cast Al alloy samples are produced using a special continuous-casting technique with which it is easy to control both the sizes of microstructures and the direction of crystal orientation. Dendrite cells appear to grow in the casting direction. There are linear correlations between SDAS and tensile properties (ultimate tensile strength σ UTS, 0.2 pct proof strength σ 0.2, and fracture strain ɛ f). These linear correlations, however, break down, especially for σ UTS vs SDAS and ɛ f vs SDAS, as the eutectic structures become more than 3 μm in diameter, when the strength and ductility ( σ UTS and ɛ f) decrease significantly. For eutectic structures larger than 3 μm, failure is dominated by the brittle eutectic phases, for which SDAS is no longer strongly correlated with σ UTS and ɛ f. In contrast, a linear correlation is obtained between σ 0.2 and SDAS, even for eutectic structures larger than 3 μm, and the eutectic structure does not have a strong effect on yield behavior. This is because failure in the eutectic phases occurs just before final fracture. In situ failure observation during tensile testing is performed using microstructural and lattice characteristics. From the experimental results obtained, models of failure during tensile loading are proposed.

  12. Enhancement of dissolution rate through eutectic mixture and solid solution of posaconazole and benznidazole.

    PubMed

    Figueirêdo, Camila Bezerra Melo; Nadvorny, Daniela; de Medeiros Vieira, Amanda Carla Quintas; Soares Sobrinho, José Lamartine; Rolim Neto, Pedro José; Lee, Ping I; de La Roca Soares, Monica Felts

    2017-06-15

    Benznidazole (BNZ), the only commercialized antichagasic drug, and the antifungal compound posaconazole (PCZ) have shown synergistic action in the therapy of Chagas disease, however both active pharmaceutical ingredients (APIs) exhibit low aqueous solubility potentially limiting their bioavailability and therapeutic efficacy. In this paper, we report for the first time the formation of a eutectic mixture as well as an amorphous solid solution of PCZ and BNZ (at the same characteristic ratio of 80:20wt%), which provided enhanced solubility and dissolution rate for both APIs. This eutectic system was characterized by DSC and the melting points obtained were used for the construction of a phase diagram. The preservation of the characteristic PXRD patterns and the IR spectra of the parent APIs, and the visualization of a characteristic eutectic lamellar crystalline microstructure using Confocal Raman Microscopy confirm this system as a true eutectic mixture. The PXRD result also confirms the amorphous nature of the prepared solid solution. Theoretical chemical analyses indicate the predominance of π-stacking interactions in the amorphous solid solution, whereas an electrostatic interaction between the APIs is responsible for maintaining the alternating lamellar crystalline microstructure in the eutectic mixture. Both the eutectic mixture and the amorphous solid solution happen to have a characteristic PCZ to BNZ ratio similar to that of their pharmacological doses for treating Chagas disease, thus providing a unique therapeutic combination dose with enhanced apparent solubility and dissolution rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of Mn addition on microstructure and hardness of Al-12.6Si alloy

    NASA Astrophysics Data System (ADS)

    Biswas, Prosanta; Patra, Surajit; Mondal, Manas Kumar

    2018-03-01

    In this work, eutectic Al-12.6Si alloy with and without manganese (Mn) have been developed through gravity casting route. The effect of Mn concentration (0.0 wt.%, 1 wt%, 2 wt% and 3 wt%) on microstructural morphology and hardness property of the alloy has been investigated. The eutectic Al-12.6 Si alloy exhibits the presence of combine plate, needle and rod-like eutectic silicon phase with very sharp corners and coarser primary silicon particles within the α-Al phase. In addition of 1wt.% of Mn in the eutectic Al-12.6Si alloy, sharp corners of the primary Si and needle-like eutectic Si are became blunt and particles size is reduced. Further, increase in Mn concentration (2.0 wt.%) in the Al-12.6Si alloy, irregular plate shape Al6(Mn,Fe) intermetallics are formed inside the α-Al phase, but the primary and eutectic phase morphology is similar to the eutectic Al-12.6Si alloy. The volume fraction of Al6(Mn,Fe) increases and Al6(Mn,Fe) particles appear as like chain structure in the alloy with 3 wt.% Mn. An increase in Mn concentration in the Al-12.6Si alloys result in the increase in bulk hardness of the alloy as an effects of microstructure modification as well as the presence of harder Al6(Mn,Fe) phase in the developed alloy.

  14. Redundant binary number representation for an inherently parallel arithmetic on optical computers.

    PubMed

    De Biase, G A; Massini, A

    1993-02-10

    A simple redundant binary number representation suitable for digital-optical computers is presented. By means of this representation it is possible to build an arithmetic with carry-free parallel algebraic sums carried out in constant time and parallel multiplication in log N time. This redundant number representation naturally fits the 2's complement binary number system and permits the construction of inherently parallel arithmetic units that are used in various optical technologies. Some properties of this number representation and several examples of computation are presented.

  15. Directionally solidified eutectic alloy gamma-beta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1977-01-01

    A pseudobinary eutectic alloy composition was determined by a previously developed bleed-out technique. The directionally solidified eutectic alloy with a composition of Ni-37.4Fe-10.0Cr-9.6Al (in wt%) had tensile strengths decreasing from 1,090 MPa at room temperature to 54 MPa at 1,100 C. The low density, excellent microstructural stability, and oxidation resistance of the alloy during thermal cycling suggest that it might have applicability as a gas turbine vane alloy while its relatively low high temperature strength precludes its use as a blade alloy. A zirconium addition increased the 750 C strength, and a tungsten addition was ineffective. The gamma=beta eutectic alloys appeared to obey a normal freezing relation.

  16. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb.

    PubMed

    Zhang, Lijin; Wang, Maoshan

    2017-02-01

    In this study, deep eutectic solvents were proposed for the ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. Several deep eutectic solvents were prepared for the extraction of polysaccharides, among which the deep eutectic solvent composed of choline chloride and 1,4-butanediol was proved to be suitable for the extraction. Based on the screening of single-factor experiment design and orthogonal experiment design, three experimental factors were optimized for the Box-Behnken experimental design combined with response surface methodology, which gave the optimal extraction conditions: water content of 32.89%(v/v), extraction temperature of 94.00°C, and the extraction time of 44.74min. The optimal extraction conditions could supply higher extraction yield than those of hot water extraction and water-based ultrasound-assisted extraction. Therefore, deep eutectic solvents were an excellent extraction solvent alternative to the extraction of polysaccharides from sample matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Directional solidification of eutectic composites in space environment

    NASA Technical Reports Server (NTRS)

    Yue, A. S.

    1972-01-01

    The Ni-Ni3Ta eutectic and a nickel-base alloy containing 30 wt pct Ta were solidified unidirectionally in an electron beam floating zone melting apparatus. It was found that the volume fraction of the Ni3Ta phase in the Ni-Ni3Ta eutectic mixture was increased from 7.6 to 36 volume pct in agreement with the theory as predicted. Tensile properties of the randomly solidified and unidirectionally solidified Ni-Ni3Ta eutectic were determined as function of solidification rate and temperature. It was found that the ultimate tensile strength decreased as both the test temperature and solidification rate increased. An elongation of 40 pct was obtained for a nickelbase alloy containing 30 wt at room temperature. This unusually large elongation was attributed to the superplastic behavior of the alloy. The critical currents versus the external fields at 2.5, 3.0, 3.5 and 4.2 deg for the unidirectionally solidified Pb-Sn eutectic were measured. The values of critical fields at zero critical currents were obtained by extrapolation.

  18. Microstructure and crystallography of Al2O3-Y3Al5O12-ZrO2 ternary eutectic oxide grown by the micropulling down technique

    NASA Astrophysics Data System (ADS)

    Benamara, Omar; Cherif, Maya; Duffar, Thierry; Lebbou, Kheirreddine

    2015-11-01

    The directional solidification of Al2O3-YAG-ZrO2 eutectic ceramic by a micro-pulling down (μ-PD) technique is investigated. The effect of the pulling rate (0.1-1 mm min-1) on the crystallography and the microstructure is discussed. This ternary eutectic system has a Chinese script microstructure and the eutectic spacing λ depends on the pulling rate υ following the law: λ = 6.5υ-1/2 where λ is in μm and υ in μm/s as derived from the Jackson-Hunt model. With the lower pulling rates, all phases are oriented with the <100> direction parallel to the growth direction; however other orientations appear at the higher pulling rates. The Cr3+ ions R-lines emission in the sapphire phase in the ternary eutectic composite is measured to estimate the stress in the alumina phase which is also shown to depend on the pulling rate.

  19. The Effect of Microstructure on Mechanical Properties of Directionally Solidified Al2O3/ZrO2(Y2O3) Eutectic

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Farmer, Serene C.

    1999-01-01

    The eutectic architecture of a continuous reinforcing phase within a higher volume fraction phase or matrix can be described as a naturally occurring in-situ composite. Here we report the results of experiments aimed at identifying the sources of high temperature creep resistance and high levels of strength in a two phase Al2O3/ZrO2(Y2O3) system. The mechanical properties of two phase Al2O3/ZrO2(Y2O3) eutectic are superior to those of either constituent alone due to strong constraining effects provided by the coherent interfaces and microstructure. The AlO3/ZrO2(Y2O3) eutectic maintains a low energy interface resulting from directional solidification and can produce strong and stable reinforcing phase/matrix bonding. The phases comprising a eutectic are thermodynamically compatible at higher homologous temperatures than man-made composites and as such offer the potential for superior high temperature properties.

  20. Establishment of the Co-C Eutectic Fixed-Point Cell for Thermocouple Calibrations at NIMT

    NASA Astrophysics Data System (ADS)

    Ongrai, O.; Elliott, C. J.

    2017-08-01

    In 2015, NIMT first established a Co-C eutectic temperature reference (fixed-point) cell measurement capability for thermocouple calibration to support the requirements of Thailand's heavy industries and secondary laboratories. The Co-C eutectic fixed-point cell is a facility transferred from NPL, where the design was developed through European and UK national measurement system projects. In this paper, we describe the establishment of a Co-C eutectic fixed-point cell for thermocouple calibration at NIMT. This paper demonstrates achievement of the required furnace uniformity, the Co-C plateau realization and the comparison data between NIMT and NPL Co-C cells by using the same standard Pt/Pd thermocouple, demonstrating traceability. The NIMT measurement capability for noble metal type thermocouples at the new Co-C eutectic fixed point (1324.06°C) is estimated to be within ± 0.60 K (k=2). This meets the needs of Thailand's high-temperature thermocouple users—for which previously there has been no traceable calibration facility.

  1. A Framework for Designing Cluster Randomized Trials with Binary Outcomes

    ERIC Educational Resources Information Center

    Spybrook, Jessaca; Martinez, Andres

    2011-01-01

    The purpose of this paper is to provide a frame work for approaching a power analysis for a CRT (cluster randomized trial) with a binary outcome. The authors suggest a framework in the context of a simple CRT and then extend it to a blocked design, or a multi-site cluster randomized trial (MSCRT). The framework is based on proportions, an…

  2. Microstructural Characterization of Base Metal Alloys with Conductive Native Oxides for Electrical Contact Applications

    NASA Astrophysics Data System (ADS)

    Senturk, Bilge Seda

    Metallic contacts are a ubiquitous method of connecting electrical and electronic components/systems. These contacts are usually fabricated from base metals because they are inexpensive, have high bulk electrical conductivities and exhibit excellent formability. Unfortunately, such base metals oxidize in air under ambient conditions, and the characteristics of the native oxide scales leads to contact resistances orders of magnitude higher than those for mating bare metal surface. This is a critical technological issue since the development of unacceptably high contact resistances over time is now by far the most common cause of failure in electrical/electronic devices and systems. To overcome these problems, several distinct approaches are developed for alloying base metals to promote the formation of self-healing inherently conductive native oxide scales. The objective of this dissertation study is to demonstrate the viability of these approaches through analyzing the data from Cu-9La (at%) and Fe-V binary alloy systems. The Cu-9 La alloy structure consists of eutectic colonies tens of microns in diameter wherein a rod-like Cu phase lies within a Cu6La matrix phase. The thin oxide scale formed on the Cu phase was found to be Cu2O as expected while the thicker oxide scale formed on the Cu6La phase was found to be a polycrystalline La-rich Cu2O. The enhanced electrical conductivity in the native oxide scale of the Cu-9La alloy arises from heavy n-type doping of the Cu2O lattice by La3+. The Fe-V alloy structures consist of a mixture of large elongated and equiaxed grains. A thin polycrystalline Fe3O4 oxide scale formed on all of the Fe-V alloys. The electrical conductivities of the oxide scales formed on the Fe-V alloys are higher than that formed on pure Fe. It is inferred that this enhanced conductivity arises from doping of the magnetite with V+4 which promotes electron-polaron hopping. Thus, it has been demonstrated that even in simple binary alloy systems one can obtain a dramatic reduction in the contact resistances of alloy oxidized surfaces as compared with those of the pure base metals.

  3. Research and Development of EDDN and DETN at Pilot Scale

    DTIC Science & Technology

    2009-07-17

    based fills which fails to meet Insensitive Munitions (1M) requirements. These formulations are based upon a nitrate salt based eutectic mixture...155mm M795 artillery projectile. Two components of this DEMN eutectic are the energetic salts , Ethylenediamine 15. SUBJECT TERMS EDDN, DETN, DEMN...need, ARL has been developing a series of reduced sensitivity melt cast explosive formulations that are based on the nitrate salt containing eutectic

  4. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    NASA Astrophysics Data System (ADS)

    Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; dos Santos, Jorge F.

    2014-05-01

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  5. Microstructure and phase composition of hypoeutectic Te-Bi alloy as evaporation source for photoelectric cathode

    NASA Astrophysics Data System (ADS)

    Wang, Bao-guang; Yang, Wen-hui; Gao, Hong-ye; Tian, Wen-huai

    2018-05-01

    A hypoeutectic 60Te-40Bi alloy in mass percent was designed as a tellurium atom evaporation source instead of pure tellurium for an ultraviolet detection photocathode. The alloy was prepared by slow solidification at about 10-2 K·s-1. The microstructure, crystal structure, chemical composition, and crystallographic orientation of each phase in the as-prepared alloy were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The experimental results suggest that the as-prepared 60Te-40Bi alloy consists of primary Bi2Te3 and eutectic Bi2Te3/Te phases. The primary Bi2Te3 phase has the characteristics of faceted growth. The eutectic Bi2Te3 phase is encased by the eutectic Te phase in the eutectic structure. The purity of the eutectic Te phase reaches 100wt% owing to the slow solidification. In the eutectic phases, the crystallographic orientation relationship between Bi2Te3 and Te is confirmed as {[0001]_{B{i_2}T{e_3}}}//{[1\\bar 21\\bar 3]_{Te}} and the direction of Te phase parallel to {[11\\bar 20]_{B{i_2}T{e_3}}} is deviated by 18° from Te N{(2\\bar 1\\bar 11)_{Te}}.

  6. Activation mechanism and dehydrogenation behavior in bulk hypo/hyper-eutectic Mg-Ni alloy

    NASA Astrophysics Data System (ADS)

    Ding, Xin; Chen, Ruirun; Jin, Yinling; Chen, Xiaoyu; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2018-01-01

    To investigate the effect of microstructure on the better de-/hydrogenation property of Mg-based alloy, hypo-eutectic Mg-8Ni (at. %) alloy and hyper-eutectic Mg-15Ni alloy are prepared by metallurgy method. The phase constitutions and microstructures are characterized by XRD and SEM/EDS. Mg-8/15Ni alloy is composed of primary Mg/Mg2Ni and eutectic Mg-Mg2Ni. In isothermal sorption test, Mg-15Ni alloy shows preferable activation performance and faster de-/hydrogenation rates than Mg-8Ni alloy. The respective hydrogen uptake capacity in 165min is 5.62 wt% and 5.76 wt% H2 at 300 °C 3 MPa. Intersections of Mg-Mg2Ni eutectic phase boundaries with particle surface provide excellent sites and paths for the dissociation and permeation of hydrogen. The de-/hydrogenation enthalpy and entropy values are determined by PCI measurement. Based on the DSC curves at different heating rates, the desorption behavior of Mg-8/15Ni hydride is revealed and the respective activation energy is calculated to be 134.67 kJ mol-1 and 88.34 kJ mol-1 H2 by Kissinger method. Synergic dehydrogenation occurs in eutectic MgH2-Mg2NiH4, which facilitates the primary MgH2 in Mg-8Ni hydride to decompose at a lower temperature. The rapid H diffusion and synergic effect in eutectic MgH2-Mg2NiH4 collectively contribute to the lower dehydrogenation energy barrier of Mg-15Ni hydride.

  7. Solidification and solidification cracking in nitrogen-strengthened austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Ritter, Ann M.; Savage, Warren F.

    1986-04-01

    The solidification behavior of three heats of nitrogen-strengthened austenitic stainless steel was examined and was correlated with solidification mode predictions and with hot cracking resistance. The heat of NITRONIC* 50 solidified by the austenitic-ferrite mode, and the NITRONIC 50W and NITRONIC 50W - Nb heats solidified by the ferritic-austenitic mode. This behavior was in good agreement with predictions based on Espy’s formulas for Cr and Ni equivalents. Both the NITRONIC 50W and NITRONIC 50W + Nb welds contained primary delta-ferrite, with the latter weld and the NITRONIC 50 weld also containing some eutectic ferrite. Solute profiles in austenite near the eutectic ferrite showed decreasing Fe and increasing Cr, Ni, Mn, and Mo relative to austenite in the dendrite cores. Numerous Nb-rich precipitates were found on the eutectic ferrite/austenite interfaces and within the eutectic ferrite. The precipitates were mainly Nb(C, N), with some Z-phase, a Nb-rich nitride, also detected. One instance of the transformation of eutectic ferrite to sigma-phase was observed to have occurred during cooling of the NITRONIC 50 weld. Hot cracking was seen in the NITRONIC 50 and NITRONIC 50W + Nb welds and resulted from the formation of a niobium carbonitride eutectic in the interdendritic regions. In the absence of Nb, the NITRONIC 50W heat formed no observable eutectic constituents and did not hot crack. The presence of hot cracks in the NITRONIC 50W + Nb weld indicates that solidification by the ferritic-austenitic mode did not counteract the effects of small Nb additions.

  8. Ternary eutectic dendrites: Pattern formation and scaling properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rátkai, László; Szállás, Attila; Pusztai, Tamás

    2015-04-21

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendrites → dendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with themore » interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.« less

  9. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique

    PubMed Central

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (Tg) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and −31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064

  10. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (T g) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and -31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully.

  11. Inferences about Supernova Physics from Gravitational-Wave Measurements: GW151226 Spin Misalignment as an Indicator of Strong Black-Hole Natal Kicks

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Richard; Gerosa, Davide; Wysocki, Daniel

    2017-07-01

    The inferred parameters of the binary black hole GW151226 are consistent with nonzero spin for the most massive black hole, misaligned from the binary's orbital angular momentum. If the black holes formed through isolated binary evolution from an initially aligned binary star, this misalignment would then arise from a natal kick imparted to the first-born black hole at its birth during stellar collapse. We use simple kinematic arguments to constrain the characteristic magnitude of this kick, and find that a natal kick vk≳50 km /s must be imparted to the black hole at birth to produce misalignments consistent with GW151226. Such large natal kicks exceed those adopted by default in most of the current supernova and binary evolution models.

  12. Mesoscopic model for binary fluids

    NASA Astrophysics Data System (ADS)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  13. Inferences about Supernova Physics from Gravitational-Wave Measurements: GW151226 Spin Misalignment as an Indicator of Strong Black-Hole Natal Kicks.

    PubMed

    O'Shaughnessy, Richard; Gerosa, Davide; Wysocki, Daniel

    2017-07-07

    The inferred parameters of the binary black hole GW151226 are consistent with nonzero spin for the most massive black hole, misaligned from the binary's orbital angular momentum. If the black holes formed through isolated binary evolution from an initially aligned binary star, this misalignment would then arise from a natal kick imparted to the first-born black hole at its birth during stellar collapse. We use simple kinematic arguments to constrain the characteristic magnitude of this kick, and find that a natal kick v_{k}≳50  km/s must be imparted to the black hole at birth to produce misalignments consistent with GW151226. Such large natal kicks exceed those adopted by default in most of the current supernova and binary evolution models.

  14. Emergency deployable core catcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewell, M.P.

    An emergency melt down core catcher apparatus for a nuclear reactor having a retrofitable eutectic solute holding vessel connected to a core containment vessel with particle transferring fluid and particles or granules of solid eutectic solute materials contained therein and transferable by automatically operated valve means to transport and position the solid eutectic solute material in a position below the core to catch and react with any partial or complete melt down of the fuel core.

  15. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Junjun, E-mail: junjun.shen@hzg.de; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.

    2014-05-12

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl{sub 2} eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  16. Deformation Behavior of SiC/2014 Al Metal-Matrix Composite

    DTIC Science & Technology

    1989-05-01

    the 2014 aluminum is an Al-Cu alloy with the eutectic temperature equal to 5400C, at which the specimens were tested in this study. Summary Room...temperature, decreasing heating rate, and increasing holding time, while ductility increased under the same condition until the eutectic temperature 540...drastically reduced the ductility to 1.5 percent. At high temperature, the modulus decreases but retains a large portion of it even at the eutectic

  17. Two-Phase Eutectic Growth in Al-Cu and Al-Cu-Ag

    NASA Astrophysics Data System (ADS)

    Senninger, Oriane; Peters, Matthew; Voorhees, Peter W.

    2018-02-01

    The microstructure developed by two-phase lamellar eutectics (α ) -(θ {-Al}2{Cu}) in Al-Cu and Al-Cu-Ag alloys is analyzed. A model of two-phase eutectic growth in multicomponent alloys is used to determine the scaling law of the eutectic microstructure using the alloy thermophysical properties. The application of the model to these alloys shows that the addition of Ag to Al-Cu alloys does not significantly change the length scale of the microstructure, which is in agreement with previous experimental studies. This is explained by the combined phenomena of the decrease in interface energies with the addition of Ag and the superheating of the (α ) phase interface induced by the Ag composition profile.

  18. The solidification behavior of calcium oxide-aluminum oxide slags

    NASA Astrophysics Data System (ADS)

    Prapakorn, Kritsada

    The binary CaO-Al2O3 based slag and the ternary CaO-Al2O3-MgO based slag are common slags covering and inclusions that are found in calcium treated Al-killed, continuously cast steels. However, the effect of cooling conditions and chemistry on the solidification behavior of these slags is not well characterized. To better understand this phenomena, the solidification behavior of these slags was studied by using double hot thermocouple technique. TTT and CCT diagrams of these slags were determined to quantify the solidification behavior in both dry and humid atmospheres. In this work, these slag samples were easily undercooled and the solidification behavior of these slags was found to be a strong function of cooling conditions. The crystallization tendency of these slags follows the trends suggested by the phase diagram. In CaO-Al2O3 based slags, The eutectic composition (50%CaO) give the lowest crystallization tendency due to the lowest liquidus temperature. In a eutectic CaO-Al2O3 slag sample, dissolved water in the sample increases crystallization tendency and enhances the growth. It was also found that the crystalline phase that formed during cooling in both the dry and humid conditions is the mixture between 3CaO.Al2O 3 and CaO.Al2O3 phases. In CaO-Al2O3-MgO based slags, the crystallization tendency increases with MgO content because the high MgO content leads to the high liquidus temperature. The effect of dissolved of water on the crystallization of CaO-Al2O3-MgO based slags is not as prominent as in the eutectic CaO-Al2O3 slag. Thus, the addition of MgO to CaO-Al2O3 slags was seen to minimize or eliminate the effect of humidity on the solidification of CaO-Al2O3 based slags. In this work, Uhlmann's method was used to estimate the solid-liquid interfacial energy of CaO-Al2O3 based slag for the temperature between 1100--1250°C. The result is between 0.25--0.4 Joules/m 2.

  19. Enhanced Sintering of TiNi Shape Memory Foams under Mg Vapor Atmosphere

    NASA Astrophysics Data System (ADS)

    Aydoğmuş, Tarik; Bor, Şakir

    2012-12-01

    TiNi alloy foams are promising candidates for biomaterials to be used as artificial orthopedic implant materials for bone replacement applications in biomedical sector. However, certain problems exist in their processing routes, such as formation of unwanted secondary intermetallic phases leading to brittleness and deterioration of shape memory and superelasticity characteristics; and the contamination during processing resulting in oxides and carbonitrides which affect mechanical properties negatively. Moreover, the eutectic reaction present in Ti-Ni binary system at 1391 K (1118 °C) prevents employment of higher sintering temperatures (and higher mechanical properties) even when equiatomic prealloyed powders are used because of Ni enrichment of TiNi matrix as a result of oxidation. It is essential to prevent oxidation of TiNi powders during processing for high-temperature (>1391 K i.e., 1118 °C) sintering practices. In the current study, magnesium powders were used as space holder material to produce TiNi foams with the porosities in the range of 40 to 65 pct. It has been found that magnesium prevents secondary phase formation and contamination. It also prevents liquid phase formation while enabling employment of higher sintering temperatures by two-step sintering processing: holding the sample at 1373 K (1100 °C) for 30 minutes, and subsequently sintering at temperatures higher than the eutectic temperature, 1391 K (1118 °C). By this procedure, magnesium may allow sintering up to temperatures close to the melting point of TiNi. TiNi foams produced with porosities in the range of 40 to 55 pct were found to be acceptable as implant materials in the light of their favorable mechanical properties.

  20. Half-cell potentials of semiconductive simple binary sulphides in aqueous solution

    USGS Publications Warehouse

    Sato, M.

    1966-01-01

    Theoretical consideration of the charge-transfer mechanism operative in cells with an electrode of a semiconductive binary compound leads to the conclusion that the half-cell potential of such a compound is not only a function of ionic activities in the electrolytic solution, but also a function of the activities of the component elements in the compound phase. The most general form of the electrode equation derived for such a compound with a formula MiXj which dissociates into Mj+ and Xi- ions in aqueous solution is. EMiXj = EMiXj0 + R T 2 ij ln [ (sua Mj+)aqi ?? (suaX)jMiXj/ (suaXi-)aqj ?? (suaM)iMiXj],. where. EMiXj0 = 1 2(EM,Mj+0 + EXi-,X). The equation can be modified to other forms. When applied to semiconductive simple binary sulphides, these equations appear to give better descriptions of the observed electrode potentials of such sulphides than any other proposed equations. ?? 1966.

  1. METALLURGICAL PROGRAMS: CALCULATION OF MASS FROM VOLUME, DENSITY OF MIXTURES, AND CONVERSION OF ATOMIC TO WEIGHT PERCENT

    NASA Technical Reports Server (NTRS)

    Degroh, H.

    1994-01-01

    The Metallurgical Programs include three simple programs which calculate solutions to problems common to metallurgical engineers and persons making metal castings. The first program calculates the mass of a binary ideal (alloy) given the weight fractions and densities of the pure components and the total volume. The second program calculates the densities of a binary ideal mixture. The third program converts the atomic percentages of a binary mixture to weight percentages. The programs use simple equations to assist the materials staff with routine calculations. The Metallurgical Programs are written in Microsoft QuickBASIC for interactive execution and have been implemented on an IBM PC-XT/AT operating MS-DOS 2.1 or higher with 256K bytes of memory. All instructions needed by the user appear as prompts as the software is used. Data is input using the keyboard only and output is via the monitor. The Metallurgical programs were written in 1987.

  2. A fast method for finding bound systems in numerical simulations: Results from the formation of asteroid binaries

    NASA Astrophysics Data System (ADS)

    Leinhardt, Zoë M.; Richardson, Derek C.

    2005-08-01

    We present a new code ( companion) that identifies bound systems of particles in O(NlogN) time. Simple binaries consisting of pairs of mutually bound particles and complex hierarchies consisting of collections of mutually bound particles are identifiable with this code. In comparison, brute force binary search methods scale as O(N) while full hierarchy searches can be as expensive as O(N), making analysis highly inefficient for multiple data sets with N≳10. A simple test case is provided to illustrate the method. Timing tests demonstrating O(NlogN) scaling with the new code on real data are presented. We apply our method to data from asteroid satellite simulations [Durda et al., 2004. Icarus 167, 382-396; Erratum: Icarus 170, 242; reprinted article: Icarus 170, 243-257] and note interesting multi-particle configurations. The code is available at http://www.astro.umd.edu/zoe/companion/ and is distributed under the terms and conditions of the GNU Public License.

  3. Crystallographic characterizations of eutectic and secondary carbides in a Fe-12Cr-2.5Mo-1.5W-3V-1.25C alloy

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Liu, Ligang; Feng, Yunli; Liu, Sha; Ren, Xuejun; Yang, Qingxiang

    2017-03-01

    In this work, the morphology and structures of the eutectic and secondary carbides in a new high chromium Fe-12Cr-2.5Mo-1.5W-3V-1.25C designed for cold-rolling work roll were systematically studied. The precipitated carbides inside the grains and along the grain boundaries were investigated with optical microscope, scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscopy and X-Ray diffraction. Selected area diffraction patterns have been successfully used to identify the crystal formation and lattice constants of the carbides with different alloying elements. The results show that the eutectic carbides precipitated contain MC and M2C distributed along the grain boundaries with dendrite feature. The composition and crystal structure analysis shows that the eutectic MC carbides contain VC and WC with a cubic and hexagonal crystal lattice structures respectively, while the eutectic M2C carbides predominantly contain V2C and Mo2C with orthorhombic and hexagonal crystal lattices respectively. The secondary carbides contain MC, M2C, M7C3 formed along the grain boundaries and their sizes are much larger than the eutectic carbides ones. The secondary M23C6 is much small (0.3-0.5μm) and is distributed dispersively inside the grain. Similar to the eutectic carbides, the secondary carbides also contain VC, WC, V2C, and Mo2C. M7C3 is hexagonal (Fe,Cr)7C3, while M23C6 is indexed to be in a cubic crystal form.

  4. On the Nonequilibrium Interface Kinetics of Rapid Coupled Eutectic Growth

    NASA Astrophysics Data System (ADS)

    Dong, H.; Chen, Y. Z.; Shan, G. B.; Zhang, Z. R.; Liu, F.

    2017-08-01

    Nonequilibrium interface kinetics (NEIK) is expected to play an important role in coupled growth of eutectic alloys, when solidification velocity is high and intermetallic compound or topologically complex phases form in the crystallized product. In order to quantitatively evaluate the effect of NEIK on the rapid coupled eutectic growth, in this work, two nonequilibrium interface kinetic effects, i.e., atom attachment and solute trapping at the solid-liquid interface, were incorporated into the analyses of the coupled eutectic growth under the rapid solidification condition. First, a coupled growth model incorporating the preceding two nonequilibrium kinetic effects was derived. On this basis, an expression of kinetic undercooling (Δ T k), which is used to characterize the NEIK, was defined. The calculations based on the as-derived couple growth model show good agreement with the reported experimental results achieved in rapidly solidified eutectic Al-Sm alloys consisting of a solid solution phase ( α-Al) and an intermetallic compound phase (Al11Sm3). In terms of the definition of Δ T k defined in this work, the role of NEIK in the coupled growth of the Al-Sm eutectic system was analyzed. The results show that with increasing the coupled growth velocity, Δ T k increases continuously, and its ratio to the total undercooling reaches 0.32 at the maximum growth velocity for coupled eutectic growth. Parametric analyses on two key alloy parameters that influence Δ T k, i.e., interface kinetic parameter ( μ i ) and solute distribution coefficient ( k e ), indicate that both μ i and k e influence the NEIK significantly and the decrease of either these two parameters enhances the NEIK effect.

  5. Analytical and Experimental Investigations of Sodium Heat Pipes and Thermal Energy Storage Systems.

    DTIC Science & Technology

    1982-01-01

    continued) Figure Page 5.1 Cylindrical container for eutectic salt (LiF-NgF -KF) . . . . . . 91 5.2 TESC sample . . . . . . ... . . 0...of fluorides of Mg, Li and K. Experimental results have been used to verify the melting point, and latent heat of fusion of the eutectic salt , in...a melting or solidification curve will provide experimental verification for the latent heat value and melting point of a given eutectic salt . In the

  6. Fast dissolving drug-drug eutectics with improved compressibility and synergistic effects.

    PubMed

    Thipparaboina, Rajesh; Thumuri, Dinesh; Chavan, Rahul; Naidu, V G M; Shastri, Nalini R

    2017-06-15

    Combinational therapy has become increasingly popular in recent times due to various advantages like greater therapeutic effect, reduced number of prescriptions, lower administrative costs, and an increase in patient compliance. Drug-drug multicomponent adducts could help in combination of drugs at supramolecular level. Two drug-drug eutectics of etodolac with paracetamol (EP) and etodolac with propranolol hydrochloride (EPHC) were successfully designed and synthesized for the first time. These eutectics significantly improved dissolution and material properties. A 6 to 9 fold enhancement in % dissolution efficiency was found at 1min suggesting the fast dissolving capabilities of the eutectic mixtures when compared to plain drug. In addition, eutectic mixtures have shown improved hardness compared to plain drugs. EP and EPHC have shown around 5 fold and 3 fold improvements in hardness respectively at 10MPa when compared to plain etodolac. Cell culture studies have shown improved effects of EP. Western blotting analysis revealed that the said combination successfully reduced various inflammatory mediators like TNF-α, COX-2 and IL-6. Whereas, the eutectic combination EPHC has shown enhanced cytotoxic effects with synergistic combination index and favorable dose reduction index. The generated multi-component systems EP and EPHC with fast dissolving capabilities, improved hardness at lower pressures and synergistic effects represent prospective combinations for effective treatment of osteoarthritis and cancer chemotherapy respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Phase Diagram of the Al-Ca-Fe-Si System and Its Application for the Design of Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Belov, Nikolay A.; Naumova, Evgeniya A.; Akopyan, Torgom K.; Doroshenko, Vitaliy V.

    2018-05-01

    The phase composition of aluminum alloys in the Al-Ca-Fe-Si system, including the distribution of phases in the solid state and solidification reactions, has been studied. It is shown that the addition of iron and silicon to Al-Ca alloys leads to the formation of ternary Al2CaSi2 and Al10CaFe2 compounds. The equilibrium between these compounds implies the occurrence of the quaternary L → Al + Al4Ca + Al2CaSi2 + Al10CaFe2 eutectic reaction. The alloys near this eutectic have the best structure, which is typical of aluminum matrix composites. It is shown that Al-Ca alloys can have high manufacturability during both shape casting and rolling. This is due to the combination of a narrow temperature range of solidification and a favorable morphology for the eutectic, which has a fine structure. The combination of the mechanical and physical properties of the Al-Ca eutectic-based alloys significantly exceed those of branded alloys based on aluminum-silicon eutectics.

  8. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Eisa, Gaber Faheem; Chandrasekhar, S.; Larrousse, Mark; Banan, Mohsen

    1988-01-01

    The influence was studied of convection during directional solidification on the resulting microstructure of eutectics, specifically lead/tin and manganese/bismuth. A theory was developed for the influence of convection on the microstructure of lamellar and fibrous eutectics, through the effect of convection on the concentration field in the melt in front of the growing eutectic. While the theory agrees with the experimental spin-up spin-down results, it predicts that the weak convection expected due to buoyancy will not produce a measurable change in eutectic microstructure. Thus, this theory does not explain the two fold decrease in MnBi fiber size and spacing observed when MnBi-Bi is solidified in space or on Earth with a magnetic field applied. Attention was turned to the morphology of the MnBi-Bi interface and to the generation of freezing rate fluctuations by convection. Decanting the melt during solidification of MnBi-Bi eutectic showed that the MnBi phase projects into the melt ahead of the Bi matrix. Temperature measurements in a Bi melt in the vertical Bridgman-Stockbarger configuration showed temperature variations of up to 25 C. Conclusions are drawn and discussed.

  9. Towards constructing multi-bit binary adder based on Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Mao; Wong, Ieong; Chou, Meng-Ta; Zhao, Xin

    2012-04-01

    It has been proposed that the spatial excitable media can perform a wide range of computational operations, from image processing, to path planning, to logical and arithmetic computations. The realizations in the field of chemical logical and arithmetic computations are mainly concerned with single simple logical functions in experiments. In this study, based on Belousov-Zhabotinsky reaction, we performed simulations toward the realization of a more complex operation, the binary adder. Combining with some of the existing functional structures that have been verified experimentally, we designed a planar geometrical binary adder chemical device. Through numerical simulations, we first demonstrated that the device can implement the function of a single-bit full binary adder. Then we show that the binary adder units can be further extended in plane, and coupled together to realize a two-bit, or even multi-bit binary adder. The realization of chemical adders can guide the constructions of other sophisticated arithmetic functions, ultimately leading to the implementation of chemical computer and other intelligent systems.

  10. Near-Infrared Polarimetry of the GG Tauri A Binary System

    NASA Technical Reports Server (NTRS)

    Itoh, Yoichi; Oasa, Yumiko; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; hide

    2014-01-01

    A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope. The image shows a circumbinary disk scattering the light from the central binary. The azimuthal profile of the intensity of polarization for the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein phase function and the Rayleigh function, indicating there are small dust grains at the surface of the disk. Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits counterclockwise, but material in the disk orbits clockwise. We propose that there is a shadow caused by material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 yr are consistent with the binary orbit with a = 33.4 AU and e = 0.34.

  11. Correcting Velocity Dispersions of Dwarf Spheroidal Galaxies for Binary Orbital Motion

    NASA Astrophysics Data System (ADS)

    Minor, Quinn E.; Martinez, Greg; Bullock, James; Kaplinghat, Manoj; Trainor, Ryan

    2010-10-01

    We show that the measured velocity dispersions of dwarf spheroidal galaxies from about 4 to 10 km s-1 are unlikely to be inflated by more than 30% due to the orbital motion of binary stars and demonstrate that the intrinsic velocity dispersions can be determined to within a few percent accuracy using two-epoch observations with 1-2 yr as the optimal time interval. The crucial observable is the threshold fraction—the fraction of stars that show velocity changes larger than a given threshold between measurements. The threshold fraction is tightly correlated with the dispersion introduced by binaries, independent of the underlying binary fraction and distribution of orbital parameters. We outline a simple procedure to correct the velocity dispersion to within a few percent accuracy by using the threshold fraction and provide fitting functions for this method. We also develop a methodology for constraining properties of binary populations from both single- and two-epoch velocity measurements by including the binary velocity distribution in a Bayesian analysis.

  12. Main chemical species and molecular structure of deep eutectic solvent studied by experiments with DFT calculation: a case of choline chloride and magnesium chloride hexahydrate.

    PubMed

    Zhang, Chao; Jia, Yongzhong; Jing, Yan; Wang, Huaiyou; Hong, Kai

    2014-08-01

    The infrared spectrum of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was measured by the FTIR spectroscopy and analyzed with the aid of DFT calculations. The main chemical species and molecular structure in deep eutectic solvent of [MgClm(H2O)6-m]2-m and [ChxCly]x+y complexes were mainly identified and the active ion of magnesium complex during the electrochemical process was obtained. The mechanism of the electrochemical process of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was well explained by combination theoretical calculations and experimental. Besides, based on our results we proposed a new system for the dehydration study of magnesium chloride hexahydrate.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Elad; Sari, Re'em, E-mail: elad.steinberg@mail.huji.ac.il

    The rotation states of kilometer-sized near-Earth asteroids are known to be affected by the Yarkevsky O'Keefe-Radzievskii-Paddack (YORP) effect. In a related effect, binary YORP (BYORP), the orbital properties of a binary asteroid evolve under a radiation effect mostly acting on a tidally locked secondary. The BYORP effect can alter the orbital elements over {approx}10{sup 4}-10{sup 5} years for a D{sub p} = 2 km primary with a D{sub s} = 0.4 km secondary at 1 AU. It can either separate the binary components or cause them to collide. In this paper, we devise a simple approach to calculate the YORPmore » effect on asteroids and the BYORP effect on binaries including J{sub 2} effects due to primary oblateness and the Sun. We apply this to asteroids with known shapes as well as a set of randomly generated bodies with various degrees of smoothness. We find a strong correlation between the strengths of an asteroid's YORP and BYORP effects. Therefore, statistical knowledge of one could be used to estimate the effect of the other. We show that the action of BYORP preferentially shrinks rather than expands the binary orbit and that YORP preferentially slows down asteroids. This conclusion holds for the two extremes of thermal conductivities studied in this work and the assumption that the asteroid reaches a stable point, but may break down for moderate thermal conductivity. The YORP and BYORP effects are shown to be smaller than could be naively expected due to near cancellation of the effects at small scales. Taking this near cancellation into account, a simple order-of-magnitude estimate of the YORP and BYORP effects as a function of the sizes and smoothness of the bodies is calculated. Finally, we provide a simple proof showing that there is no secular effect due to absorption of radiation in BYORP.« less

  14. Mechanical Dispersion of Nanoparticles and Its Effect on the Specific Heat Capacity of Impure Binary Nitrate Salt Mixtures.

    PubMed

    Lasfargues, Mathieu; Geng, Qiao; Cao, Hui; Ding, Yulong

    2015-06-29

    In this study, the effect of nanoparticle concentration was tested for both CuO and TiO₂ in eutectic mixture of sodium and potassium nitrate. Results showed an enhancement in specific heat capacity ( C p ) for both types of nanoparticles (+10.48% at 440 °C for 0.1 wt % CuO and +4.95% at 440 °C for 0.5 wt % TiO₂) but the behavior toward a rise in concentration was different with CuO displaying its highest enhancement at the lowest concentration whilst TiO₂ showed no concentration dependence for three of the four different concentrations tested. The production of cluster of nanoparticles was visible in CuO but not in TiO₂. This formation of nanostructure in molten salt might promote the enhancement in C p . However, the size and shape of these structures will most likely impact the energy density of the molten salt.

  15. Mechanical Dispersion of Nanoparticles and Its Effect on the Specific Heat Capacity of Impure Binary Nitrate Salt Mixtures

    PubMed Central

    Lasfargues, Mathieu; Geng, Qiao; Cao, Hui; Ding, Yulong

    2015-01-01

    In this study, the effect of nanoparticle concentration was tested for both CuO and TiO2 in eutectic mixture of sodium and potassium nitrate. Results showed an enhancement in specific heat capacity (Cp) for both types of nanoparticles (+10.48% at 440 °C for 0.1 wt % CuO and +4.95% at 440 °C for 0.5 wt % TiO2) but the behavior toward a rise in concentration was different with CuO displaying its highest enhancement at the lowest concentration whilst TiO2 showed no concentration dependence for three of the four different concentrations tested. The production of cluster of nanoparticles was visible in CuO but not in TiO2. This formation of nanostructure in molten salt might promote the enhancement in Cp. However, the size and shape of these structures will most likely impact the energy density of the molten salt. PMID:28347056

  16. Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S. M.; Xiao, X.; Faber, K. T.

    Alumina ceramics were freeze-cast from water- and camphene-based slurries under varying freezing conditions and examined using X-ray computed tomography (XCT). Pore network characteristics, i.e., porosity, pore size, geometric surface area, and tortuosity, were measured from XCT reconstructions and the data were used to develop a model to predict feature size from processing conditions. Classical solidification theory was used to examine relationships between pore size, temperature gradients, and freezing front velocity. Freezing front velocity was subsequently predicted from casting conditions via the two-phase Stefan problem. Resulting models for water-based samples agreed with solidification-based theories predicting lamellar spacing of binary eutectic alloys,more » and models for camphene-based samples concurred with those for dendritic growth. Relationships between freezing conditions and geometric surface area were also modeled by considering the inverse relationship between pore size and surface area. Tortuosity was determined to be dependent primarily on the type of dispersion medium. (C) 2015 Elsevier Ltd. All rights reserved.« less

  17. Rapid solidification of high-conductivity copper alloys. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bloom, Theodore Atlas

    1989-01-01

    The main objective was to develop improved copper alloys of high strength and high thermal and electric conductivity. Chill block melt spinning was used to produce binary alloys of Cu-Cr and Cu-Zr, and ternary alloys of Cu-Cr-Ag. By quenching from the liquid state, up to 5 atomic percent of Cr and Zr were retained in metastable extended solid solution during the rapid solidification process. Eutectic solidification was avoided and the full strengthening benefits of the large volume fraction of precipitates were realized by subsequent aging treatment. The very low solid solubility of Cr and Zr in Cu result in a high conductivity Cu matrix strengthened by second phase precipitates. Tensile properties on as-cast and aged ribbons were measured at room and elevated temperatures. Precipitate coarsening of Cr in Cu was studied by changes in electrical resistance during aging. X-ray diffraction was used to measure the lattice parameter and the degree of supersaturation of the matrix. The microstructures were characterized by optical and electron microscopy.

  18. High-temperature phase relations and thermodynamics in the iron-lead-sulfur system

    NASA Astrophysics Data System (ADS)

    Eric, R. Hurman; Ozok, Hakan

    1994-01-01

    The PbS activities in FeS-PbS liquid mattes were obtained at 1100 °C and 1200 °C by the dew-point method. Negative deviations were observed, and the liquid-matte solutions were modeled by the Krupkowski formalism. The liquid boundaries of the FeS-PbS phase diagram were derived from the model equations yielding a eutectic temperature of 842 °C at X Pbs = 0.46. A phase diagram of the pseudobinary FeS-PbS was also verified experimentally by quenching samples equilibrated in evacuated and sealed silica capsules. No terminal solid solution ranges could be found. Within the Fe-Pb-S ternary system, the boundaries of the immiscibility region together with the tie-line distributions were established at 1200 °C. Activities of Pb were measured by the dew-point technique along the metal-rich boundary of the miscibility gap. Activities of Fe, Pb, and S, along the miscibility gap were also calculated by utilizing the bounding binary thermodynamics, phase equilibria, and tie-lines.

  19. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Smith, Reginald W.

    1998-01-01

    This grant began in June of 1996. Its long term goal is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. The primary objective of the present projects is to test hypotheses for the reported influence of microgravity on the microstructure of three fibrous eutectics (MnBi-Bi, InSb-NiSb, Al3Ni-Al). A secondary objective is to determine the influence of convection on the microstructure of other eutectic alloys. Two doctoral students and a masters student supported as a teaching assistant were recruited for this research. Techniques were developed for directional solidification of MnBi-Bi eutectics with periodic application of current pulses to produce an oscillatory freezing rate. Image analysis techniques were developed to obtain the variation in MnBi fiber spacing, which was found to be normally distributed. The mean and standard deviation of fiber spacing were obtained for several freezing conditions. Eighteen ampoules were prepared for use in the gradient freeze furnace QUELD developed at Queen's University for use in microgravity. Nine of these ampoules will be solidified soon at Queen's in a ground-based model. We hope to solidify the other nine in the QUELD that is mounted on the Canadian Microgravity Isolation Mount on MIR. Techniques are being developed for directional solidification of the Al-Si eutectic at different freezing rates, with and without application of accelerated crucible rotation to induce convection. For the first time, theoretical methods are being developed to analyze eutectic solidification with an oscillatory freezing rate. In a classical sharp-interface model, we found that an oscillatory freezing rate increases the deviation of the average interfacial composition from the eutectic, and increases the undercooling of the two phases by different amounts. This would be expected to change the volume fraction solidifying and the fiber spacing. Because of difficulties in tracking the freezing interfaces of the two solid phases, a phase-field model is also being developed. A paper demonstrating application of phase field methods to periodic structures has been submitted for publication.

  20. Explaining LIGO's observations via isolated binary evolution with natal kicks

    NASA Astrophysics Data System (ADS)

    Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel E.

    2018-02-01

    We compare binary evolution models with different assumptions about black-hole natal kicks to the first gravitational-wave observations performed by the LIGO detectors. Our comparisons attempt to reconcile merger rate, masses, spins, and spin-orbit misalignments of all current observations with state-of-the-art formation scenarios of binary black holes formed in isolation. We estimate that black holes (BHs) should receive natal kicks at birth of the order of σ ≃200 (50 ) km /s if tidal processes do (not) realign stellar spins. Our estimate is driven by two simple factors. The natal kick dispersion σ is bounded from above because large kicks disrupt too many binaries (reducing the merger rate below the observed value). Conversely, the natal kick distribution is bounded from below because modest kicks are needed to produce a range of spin-orbit misalignments. A distribution of misalignments increases our models' compatibility with LIGO's observations, if all BHs are likely to have natal spins. Unlike related work which adopts a concrete BH natal spin prescription, we explore a range of possible BH natal spin distributions. Within the context of our models, for all of the choices of σ used here and within the context of one simple fiducial parameterized spin distribution, observations favor low BH natal spin.

  1. Effect of annealing temperature on optical properties of binary zinc tin oxide nano-composite prepared by sol-gel route using simple precursors: structural and optical studies by DRS, FT-IR, XRD, FESEM investigations.

    PubMed

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Eutectic Contact Inks for Solar Cells

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1985-01-01

    Low-resistance electrical contacts formed on solar cells by melting powders of eutectic composition of semiconductor and dopant. Process improves cell performance without subjecting cell to processing temperatures high enough to degrade other characteristics.

  3. The first gravitational-wave burst GW150914, as predicted by the scenario machine

    NASA Astrophysics Data System (ADS)

    Lipunov, V. M.; Kornilov, V.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.

    2017-02-01

    The Advanced LIGO observatory recently reported (Abbott et al., 2016a) the first direct detection of gravitational waves predicted by Einstein (1916). The detection of this event was predicted in 1997 on the basis of the Scenario Machine population synthesis calculations (Lipunov et al., 1997b) Now we discuss the parameters of binary black holes and event rates predicted by different scenarios of binary evolution. We give a simple explanation of the big difference between detected black hole masses and the mean black hole masses observed in of X-ray Nova systems. The proximity of the masses of the components of GW150914 is in good agreement with the observed initial mass ratio distribution in massive binary systems, as is used in Scenario Machine calculations for massive binaries.

  4. Eutectic growth under acoustic levitation conditions.

    PubMed

    Xie, W J; Cao, C D; Lü, Y J; Wei, B

    2002-12-01

    Samples of Pb-Sn eutectic alloy with a high density of 8.5 x 10(3) kg/m(3) are levitated with a single-axis acoustic levitator, and containerlessly melted and then solidified in argon atmosphere. High undercoolings up to 38 K are obtained, which results in a microstructural transition of "lamellas-broken lamellas-dendrites." This transition is further investigated in the light of the coupled zone for eutectic growth and the effects of ultrasound. The breaking of regular eutectic lamellas and suppression of gravity-induced macrosegregation of (Pb) and (Sn) dendrites are explained by the complicated internal flow inside the levitated drop, which is jointly induced by the shape oscillation, bulk vibration and rotation of the levitated drop. The ultrasonic field is also found to drive forced surface vibration, which subsequently excites capillary ripples and catalyzes nucleation on the sample surface.

  5. Eutectic growth under acoustic levitation conditions

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Cao, C. D.; Lü, Y. J.; Wei, B.

    2002-12-01

    Samples of Pb-Sn eutectic alloy with a high density of 8.5×103 kg/m3 are levitated with a single-axis acoustic levitator, and containerlessly melted and then solidified in argon atmosphere. High undercoolings up to 38 K are obtained, which results in a microstructural transition of ``lamellas-broken lamellas-dendrites.'' This transition is further investigated in the light of the coupled zone for eutectic growth and the effects of ultrasound. The breaking of regular eutectic lamellas and suppression of gravity-induced macrosegregation of (Pb) and (Sn) dendrites are explained by the complicated internal flow inside the levitated drop, which is jointly induced by the shape oscillation, bulk vibration and rotation of the levitated drop. The ultrasonic field is also found to drive forced surface vibration, which subsequently excites capillary ripples and catalyzes nucleation on the sample surface.

  6. Prediction of poly(ethylene) glycol-drug eutectic compositions using an index based on the van't Hoff equation.

    PubMed

    Law, Devalina; Wang, Weili; Schmitt, Eric A; Long, Michelle A

    2002-03-01

    To define an index based on the van't Hoff equation that can be used as a screening tool for predicting poly(ethylene) glycol (PEG)-drug eutectic composition. Phase diagrams of PEG with ritonavir, ibuprofen, fenofibrate. naproxen, and griseofulvin were constructed using differential scanning calorimetry, hot stage microscopy and powder X-ray diftractometry. Previously reported phase diagrams were also used to test the predictive capability of the index. This work shows that a modified van't Hoff equation can be used to model the drug liquidus line of these phase diagrams. The slope of the liquidus line depends on the melting point (T(f)d) and heat of fusion (deltaH(f)d) of the drug and describes the initial rate at which the eutectic or monotectic point is approached. Based on this finding, a dimensionless index Ic was defined. The index can be calculated from the melting points of the pure components and heat of fusion of the drug. In addition to the compounds listed above, the index was found to predict the eutectic composition for flurbiprofen, temazepam and indomethacin. These compounds range over 150 degrees C in T(f)d, and from 25-65 kJ/mole in deltaH(f)d. Using Ic the approximate eutectic composition for eight different compounds was predicted. The index provides a useful screening tool for assessing the maximum drug loading in a drug-polymer eutectic/monotectic formulation.

  7. Large-Grain Tin-Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique.

    PubMed

    Tavakoli, Mohammad Mahdi; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Fan, Zhiyong

    2018-03-01

    Fast research progress on lead halide perovskite solar cells has been achieved in the past a few years. However, the presence of lead (Pb) in perovskite composition as a toxic element still remains a major issue for large-scale deployment. In this work, a novel and facile technique is presented to fabricate tin (Sn)-rich perovskite film using metal precursors and an alloying technique. Herein, the perovskite films are formed as a result of the reaction between Sn/Pb binary alloy metal precursors and methylammonium iodide (MAI) vapor in a chemical vapor deposition process carried out at 185 °C. It is found that in this approach the Pb/Sn precursors are first converted to (Pb/Sn)I 2 and further reaction with MAI vapor leads to the formation of perovskite films. By using Pb-Sn eutectic alloy, perovskite films with large grain sizes up to 5 µm can be grown directly from liquid phase metal. Consequently, using an alloying technique and this unique growth mechanism, a less-toxic and efficient perovskite solar cell with a power conversion efficiency (PCE) of 14.04% is demonstrated, while pure Sn and Pb perovskite solar cells prepared in this manner yield PCEs of 4.62% and 14.21%, respectively. It is found that this alloying technique can open up a new direction to further explore different alloy systems (binary or ternary alloys) with even lower melting point. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Transportable Maps Software. Volume I.

    DTIC Science & Technology

    1982-07-01

    being collected at the beginning or end of the routine. This allows the interaction to be followed sequentially through its steps by anyone reading the...flow is either simple sequential , simple conditional (the equivalent of ’if-then-else’), simple iteration (’DO-loop’), or the non-linear recursion...input raster images to be in the form of sequential binary files with a SEGMENTED record type. The advantage of this form is that large logical records

  9. Lattice relations and solidification of the complex regular eutectic (Cr,Fe)-(Cr,Fe)23C6

    NASA Astrophysics Data System (ADS)

    Lai, Hsuan-Han; Hsieh, Chih-Chun; Lin, Chi-Ming; Wu, Weite

    2017-05-01

    The eutectic (Cr,Fe)-(Cr,Fe)23C6 showed a triaxial fishbone structure and could be categorized as a "complex regular structure". In this study, the lattice relations of the fishbone (Cr,Fe)23C6 were examined and the solidification process was observed using a transmission electron microscope and a confocal laser scanning microscope. For one of the three fish bones in a eutectic cell, parallel (Cr,Fe)23C6 lamellas at one side of the spine had the same lattice direction, as did those in the (Cr,Fe) phase. The lattices of neighboring (Cr,Fe)23C6 and (Cr,Fe) phases were not coherent. Lamellar (Cr,Fe)23C6 on opposite sides of a spine had different lattice directions, and their lattice boundary was in the spine. By using the confocal laser scanning microscope, the solidification of lamellar eutectic structure could be observed. At the low cooling rate of 5 o C·min-1, parallel lamellas would grow thick blocks instead of thin plates. To obtain a thin lamellar eutectic structure, the cooling rate should be higher, like the rate in welding.

  10. Application of the rotating cylinder electrode in molten LiCl-KCl eutectic containing uranium(III)- and magnesium(II)-chloride

    NASA Astrophysics Data System (ADS)

    Rappleye, Devin; Simpson, Michael F.

    2017-04-01

    The application of the rotating cylinder electrode (RCE) to molten LiCl-KCl eutectic mixtures for electroanalytical measurements is presented. This enabled the measurement of the limiting current which was observed to follow a linear trend with the rotational rate raised to 0.64-0.65 power on average, which closely agrees with existing RCE mass-transfer correlations. This is the first publication of electroanalytical RCE measurements in LiCl-KCl eutectic based molten salt mixtures, to our knowledge. These measurements were made in mixtures of molten LiCl-KCl eutectic containing UCl3 and MgCl2. Kinetic parameters were calculated for Mg2+ in LiCl-KCl eutectic. The exchange current density (io) of Mg2+ deposition varied with mole fraction (x) according to io(A cm-2) = 1.64x0.689. The parameters from RCE measurements were also applied in an electrochemical co-deposition model entitled DREP to detect and predict the deposition rate of U and Mg. DREP succeeded in detecting the co-deposition of U and Mg, even when Mg constituted less than 0.5 wt% of the deposit.

  11. Phase Evolution in and Creep Properties of Nb-Rich Nb-Si-Cr Eutectics

    NASA Astrophysics Data System (ADS)

    Gang, Florian; Kauffmann, Alexander; Heilmaier, Martin

    2018-03-01

    In this work, the Nb-rich ternary eutectic in the Nb-Si-Cr system has been experimentally determined to be Nb-10.9Si-28.4Cr (in at. pct). The eutectic is composed of three main phases: Nb solid solution (Nbss), β-Cr2Nb, and Nb9(Si,Cr)5. The ternary eutectic microstructure remains stable for several hundred hours at a temperature up to 1473 K (1200 °C). At 1573 K (1300 °C) and above, the silicide phase Nb9(Si,Cr)5 decomposes into α-Nb5Si3, Nbss, and β-Cr2Nb. Under creep conditions at 1473 K (1200 °C), the alloy deforms by dislocation creep while the major creep resistance is provided by the silicide matrix. If the silicide phase is fragmented and, thus, its matrix character is destroyed by prior heat treatment [ e.g., at 1773 K (1500 °C) for 100 hours], creep is mainly controlled by the Laves phase β-Cr2Nb, resulting in increased minimum strain rates. Compared to state of the art Ni-based superalloys, the creep resistance of this three-phase eutectic alloy is significantly higher.

  12. Linear magnetic field dependence of the magnetodielectric effect in eutectic BaTiO3-CoFe2O4 multiferroic material fabricated by containerless processing

    NASA Astrophysics Data System (ADS)

    Fukushima, J.; Ara, K.; Nojima, T.; Iguchi, S.; Hayashi, Y.; Takizawa, H.

    2018-05-01

    To maximize the formation of an anisotropic interface between the magnetostrictive phase and the electrostrictive phase, a eutectic BaTiO3-CoFe2O4 multiferroic material is fabricated by containerless processing. The composites in this process had a fine eutectic structure, especially at a eutectic composition of BaTiO3:CoFe2O4 = 62:38. TEM observations revealed that the (1 0 0) plane of tetragonal BaTiO3 and the (1 0 0) plane of CoFe2O4 were oriented in parallel. In addition to the largest magnetodielectric effect in the eutectic-composition samples, we confirmed the permittivity is controlled linearly by applying a high magnetic field through forced magnetostriction. So far, the peak of the magnetodielectric effect around 0.25 T has been only found in the sintered CoFe2O4 polycrystalline sample. Thus, the containerless processing provides us a route to produce an ideal microstructure without accompanying 90° domain wall process and rotational magnetization process, which enhances the magnetodielectric effect.

  13. Tensile Strength and Microstructure of Al2O3-ZrO2 Hypo-Eutectic Fibers Studied

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali

    2001-01-01

    Oxide eutectics offer high-temperature strength retention and creep resistance in oxidizing environments. Al2O3-ZrO2 eutectic strengths have been studied since the 1970's. Directionally solidified oxide eutectics exhibit improved resistance to slow crack growth and excellent strength retention at high temperatures up to 1400 C. Materials studied typically contain Y2O3 to metastably retain the high-temperature cubic and tetragonal polymorphs at room temperature. Al2O3-ZrO2 is of fundamental interest for creep studies because it combines a creep-resistant material, Al2O3, with a very low creep resistance material, ZrO2. Results on mechanical properties and microstructures of these materials will be used to define compositions for creep testing in future work. Substantial variations from the eutectic alumina to zirconia ratio can be tolerated without a loss in room-temperature strength. The effect of increasing Y2O3 addition on the room-temperature tensile strength of an Al2O3-ZrO2 material containing excess Al2O3 was examined at the NASA Glenn Research Center, where the materials were grown using Glenn's world-class laser growth facilities.

  14. GetData: A filesystem-based, column-oriented database format for time-ordered binary data

    NASA Astrophysics Data System (ADS)

    Wiebe, Donald V.; Netterfield, Calvin B.; Kisner, Theodore S.

    2015-12-01

    The GetData Project is the reference implementation of the Dirfile Standards, a filesystem-based, column-oriented database format for time-ordered binary data. Dirfiles provide a fast, simple format for storing and reading data, suitable for both quicklook and analysis pipelines. GetData provides a C API and bindings exist for various other languages. GetData is distributed under the terms of the GNU Lesser General Public License.

  15. Bin-Carver: Automatic Recovery of Binary Executable Files

    DTIC Science & Technology

    2012-05-01

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Texas A&M University,Department of Computer Science and Engineering,College Station,TX,77840 8...PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT...least 23 4K data blocks) and observed how this binary file gets organized in a brand new disk. We found that this simple ls file actually gets

  16. Selecting Resolving Agents with Respect to Their Eutectic Compositions.

    PubMed

    Szeleczky, Zsolt; Semsey, Sándor; Bagi, Péter; Pálovics, Emese; Faigl, Ferenc; Fogassy, Elemér

    2016-03-01

    In order to develop a resolution procedure for a given racemic compound, the first and the most important step is finding the most suitable resolving agent. We studied 18 individual resolutions that were carried out with resolving agents having high eutectic composition. We found that very high enantiomeric excess values were obtained in all cases. We assume that the eutectic composition of a given resolving agent is one of the most important properties that should always be considered during the search for the most efficient resolving agent. © 2016 Wiley Periodicals, Inc.

  17. Fiber Optic Couplers

    DTIC Science & Technology

    1981-01-01

    exchange and diffusion systems have been studied. The approaches we have tried at HRL include: (1) Li2SO2-K2so4 eutectic salt melt/soda lime glass (2...LiC1-KCL eutectic salt melt/soda lime glass (3) Ag metal field-assisted diffusion (solid phase)/soda lime glass (4) AgNO3 melt/soda lime glass (with...measurements were made of the throughput of guides formed by the ion exchange of soda lime glass in Li2SO4-K2S04 eutectic salt baths. The results of the

  18. Nonvisual Route Following with Guidance from a Simple Haptic or Auditory Display

    ERIC Educational Resources Information Center

    Marston, James R.; Loomis, Jack M.; Klatzky, Roberta L.; Golledge, Reginald G.

    2007-01-01

    A path-following experiment, using a global positioning system, was conducted with participants who were legally blind. On- and off-course confirmations were delivered by either a vibrotactile or an audio stimulus. These simple binary cues were sufficient for guidance and point to the need to offer output options for guidance systems for people…

  19. Maximum Oxygen Content of Flowing Eutectic NaK in a Stainless Steel System.

    DTIC Science & Technology

    EUTECTICS, ALKALI METAL ALLOYS), (*LIQUID METALS, OXYGEN), (*POTASSIUM ALLOYS, SODIUM ALLOYS), LIQUID METAL PUMPS , FLUID FLOW, CONCENTRATION...CHEMISTRY), HIGH TEMPERATURE, FLOWMETERS, STAINLESS STEEL, ELECTROMAGNETIC PUMPS , TEMPERATURE, SAMPLING, LIQUID METAL COOLANTS, OXIDES, CRYSTALLIZATION.

  20. Directional solidification of Bi-Mn alloys using an applied magnetic field

    NASA Technical Reports Server (NTRS)

    Decarlo, J. L.; Pirich, R. G.

    1987-01-01

    Off-eutectic compositions of Bi-Mn were directionally solidified in applied transverse magnetic fields up to 3 kG, to determine the effects on thermal and solutal convection. Plane front directional solidification of eutectic and near-eutectic Bi-Mn results in a two-phase rodlike morphology consisting of ferromagnetic MnBi rods in a Bi solid solution matrix. Compositions of either side of the eutectic were studied in growth orientations vertically up and down. Temperature gradient was monitored during growth by means of an in-situ thermocouple. For Bi-rich compositions, the magnetic field appeared to increase mixing as determined from thermal, morphological, chemical, and magnetic analyses. For Mn-rich compositions, morphological and chemical analyses suggest some reduction in mixing due to application of the magnetic force. The capability for carrying out directional solidification of Bi-Mn in high longitudinal magnetic fields was established.

  1. Secondary Confinement of Water Observed in Eutectic Melting of Aqueous Salt Systems in Nanopores.

    PubMed

    Meissner, Jens; Prause, Albert; Findenegg, Gerhard H

    2016-05-19

    Freezing and melting of aqueous solutions of alkali halides confined in the cylindrical nanopores of MCM-41 and SBA-15 silica was probed by differential scanning calorimetry (DSC). We find that the confinement-induced shift of the eutectic temperature in the pores can be significantly greater than the shift of the melting temperature of pure water. Greatest shifts of the eutectic temperature are found for salts that crystallize as oligohydrates at the eutectic point. This behavior is explained by the larger fraction of pore volume occupied by salt hydrates as compared to anhydrous salts, on the assumption that precipitated salt constitutes an additional confinement for ice/water in the pores. A model based on this secondary confinement effect gives a good representation of the experimental data. Salt-specific secondary confinement may play a role in a variety of fields, from salt-impregnated advanced adsorbents and catalysts to the thermal weathering of building materials.

  2. High Temperature Mechanical Behavior of MgAl2O4-YAG Eutectic Ceramic In Situ Composites by Float Zone Method

    NASA Astrophysics Data System (ADS)

    Abalı, Serkan

    2017-09-01

    The directionally solidified eutectic MgAl2O4-Y3Al5O12 crystal was prepared at a pressure of 0.4 MPa of ambient nitrogen gas by the high frequency induction heated floating zone furnace. In order to determine the high temperature characteristics, directionally solidified MgAl2O4-Y3Al5O12 eutectic phase has been analyzed with creep test, tensile strength, young modulus and fracture toughness at the various temperatures and the microstructural variations have been studied according to the analysis results. It has been seen that directionally solidified with zone melting MgAl2O4-YAG eutectic ceramic which has given the value of 168 MPa below 10-6/s strain rate at 1,700 °C temperature has revealed minimum stress.

  3. Microstructure and mechanical properties of Al-3Fe alloy processed by equal channel angular extrusion

    NASA Astrophysics Data System (ADS)

    Fuxiao, Yu; Fang, Liu; Dazhi, Zhao; Toth, Laszlo S.

    2014-08-01

    Al-Fe alloys are attractive for applications at temperatures beyond those normally associated with the conventional aluminum alloys. Under proper solidification condition, a full eutectic microstructure can be generated in Al-Fe alloys at Fe concentration well in excess of the eutectic composition of 1.8 wt.% Fe. The microstructure in this case is characterized by the metastable regular eutectic Al-Al6Fe fibers of nano-scale in diameter, instead of the equilibrium eutectic Al-Al3Fe phase. In this study, the microstructure and mechanical properties of the Al-3Fe alloy with metastable Al6Fe particles deformed by equal channel angular extrusion were investigated. Severe plastic deformation results in a microstructure consisting of submicron equiaxed Al grains with a uniform distribution of submicron Al6Fe particles on the grain boundaries. The room temperature tensile properties of the alloy with this microstructure will be presented.

  4. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Stanway, E. R.; Xiao, L.; McClelland, L. A. S.; Taylor, G.; Ng, M.; Greis, S. M. L.; Bray, J. C.

    2017-11-01

    The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.

  5. Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect

    NASA Astrophysics Data System (ADS)

    Hoang, Bao-Minh; Naoz, Smadar; Kocsis, Bence; Rasio, Frederic A.; Dosopoulou, Fani

    2018-04-01

    Nuclear star clusters around a central massive black hole (MBH) are expected to be abundant in stellar black hole (BH) remnants and BH–BH binaries. These binaries form a hierarchical triple system with the central MBH, and gravitational perturbations from the MBH can cause high-eccentricity excitation in the BH–BH binary orbit. During this process, the eccentricity may approach unity, and the pericenter distance may become sufficiently small so that gravitational-wave emission drives the BH–BH binary to merge. In this work, we construct a simple proof-of-concept model for this process, and specifically, we study the eccentric Kozai–Lidov mechanism in unequal-mass, soft BH–BH binaries. Our model is based on a set of Monte Carlo simulations for BH–BH binaries in galactic nuclei, taking into account quadrupole- and octupole-level secular perturbations, general relativistic precession, and gravitational-wave emission. For a typical steady-state number of BH–BH binaries, our model predicts a total merger rate of ∼1–3 {Gpc} ‑3 {yr} ‑1, depending on the assumed density profile in the nucleus. Thus, our mechanism could potentially compete with other dynamical formation processes for merging BH–BH binaries, such as the interactions of stellar BHs in globular clusters or in nuclear star clusters without an MBH.

  6. First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries

    NASA Astrophysics Data System (ADS)

    London, Lionel; Khan, Sebastian; Fauchon-Jones, Edward; García, Cecilio; Hannam, Mark; Husa, Sascha; Jiménez-Forteza, Xisco; Kalaghatgi, Chinmay; Ohme, Frank; Pannarale, Francesco

    2018-04-01

    Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the dominant multipoles (ℓ=2 ,|m |=2 ) of the radiation during inspiral, merger, and ringdown. We introduce a simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are appropriately stretched and rescaled using post-Newtonian results (for the inspiral), perturbation theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity simulations is required. We apply a variant of this method to the nonprecessing PhenomD model. The result, PhenomHM, constitutes the first higher-multipole model of spinning and coalescing black-hole binaries, and currently includes the (ℓ,|m |)=(2 ,2 ),(3 ,3 ),(4 ,4 ),(2 ,1 ),(3 ,2 ),(4 ,3 ) radiative moments. Comparisons with numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-only models for all binary configurations, and typically improves the measurement of binary properties.

  7. First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries.

    PubMed

    London, Lionel; Khan, Sebastian; Fauchon-Jones, Edward; García, Cecilio; Hannam, Mark; Husa, Sascha; Jiménez-Forteza, Xisco; Kalaghatgi, Chinmay; Ohme, Frank; Pannarale, Francesco

    2018-04-20

    Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the dominant multipoles (ℓ=2,|m|=2) of the radiation during inspiral, merger, and ringdown. We introduce a simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are appropriately stretched and rescaled using post-Newtonian results (for the inspiral), perturbation theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity simulations is required. We apply a variant of this method to the nonprecessing PhenomD model. The result, PhenomHM, constitutes the first higher-multipole model of spinning and coalescing black-hole binaries, and currently includes the (ℓ,|m|)=(2,2),(3,3),(4,4),(2,1),(3,2),(4,3) radiative moments. Comparisons with numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-only models for all binary configurations, and typically improves the measurement of binary properties.

  8. Correction: Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-28

    Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.

  9. Structure and creep rupture properties of directionally solidified eutectic gamma/gamma-prime-alpha alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Wirth, G.

    1982-01-01

    A simple ternary gamma/gamma-prime-alpha alloy of nominal composition (wt-%) Ni-32Mo-6Al has been directionally solidified at 17 mm/h and tested in creep rupture at 1073, 1173, and 1273 K. A uniform microstructure consisting of square-shaped Mo fibers in a gamma + gamma-prime matrix was found despite some variation in the molybdenum and aluminum concentrations along the growth direction. Although the steady-state creep rate is well described by the normal stress temperature equation, the stress exponent (12) and the activation energy (580 kJ/mol) are high. The rupture behavior is best characterized by the Larson-Miller parameter where the constant equals 20.

  10. Iterative quantization: a Procrustean approach to learning binary codes for large-scale image retrieval.

    PubMed

    Gong, Yunchao; Lazebnik, Svetlana; Gordo, Albert; Perronnin, Florent

    2013-12-01

    This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient alternating minimization algorithm to accomplish this task. This algorithm, dubbed iterative quantization (ITQ), has connections to multiclass spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). The resulting binary codes significantly outperform several other state-of-the-art methods. We also show that further performance improvements can result from transforming the data with a nonlinear kernel mapping prior to PCA or CCA. Finally, we demonstrate an application of ITQ to learning binary attributes or "classemes" on the ImageNet data set.

  11. CLOSE BINARIES WITH INFRARED EXCESS: DESTROYERS OF WORLDS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matranga, M.; Drake, J. J.; Kashyap, V. L.

    2010-09-10

    We present the results of a Spitzer photometric investigation into the IR excesses of close binary systems. In a sample of 10 objects, excesses in Infrared Array Camera and MIPS24 bands implying the presence of warm dust are found for 3. For two objects, we do not find excesses reported in earlier IRAS studies. We discuss the results in the context of the scenario suggested by Rhee and co-workers, in which warm dust is continuously created by destructive collisions between planetary bodies. A simple numerical model for the steady-state distribution of dust in one IR excess system shows a centralmore » clearing of radius 0.22 AU caused by dynamical perturbations from the binary star. This is consistent with the size of the central clearing derived from the Spitzer spectral energy distribution. We conclude that close binaries could be efficient 'destroyers of worlds' and lead to destabilization of the orbits of their planetary progeny by magnetically driven angular momentum loss and secular shrinkage of the binary separation.« less

  12. Design and Construction of an Ice-in-Tank Diurnal Ice Storage for the PX Building at Fort Stewart, GA

    DTIC Science & Technology

    1988-07-01

    of a Eutectic Salt System 16 0 11 Energy Characteristics of Fort Stewart PX on a Hot Day 21 12 Peak Day Load Profile for Fort Stewart 21 13 Chiller...at Yuma Proving Ground, AZ in FY 88. An ice-shucking and a eutectic salt DIS cooling system are scheduled to be installed in the coming years. The...water, ice, or freezing eutectic salt . Ice and salt systems can be grouped • together as phase-change systems. In a recent survey of over a hundred

  13. Deep Metastable Eutectic Nanometer-Scale Particles in the MgO-Al2O3-SiO2 System

    NASA Technical Reports Server (NTRS)

    Reitmeijer, Frans J. M.; Nash, J. A., III

    2011-01-01

    Laboratory vapor phase condensation experiments systematically yield amorphous, homogeneous, nanoparticles with unique deep metastable eutectic compositions. They formed during the nucleation stage in rapidly cooling vapor systems. These nanoparticles evidence the complexity of the nucleation stage. Similar complex behavior may occur during the nucleation stage in quenched-melt laboratory experiments. Because of the bulk size of the quenched system many of such deep metastable eutectic nanodomains will anneal and adjust to local equilibrium but some will persist metastably depending on the time-temperature regime and melt/glass transformation.

  14. LIQUID PHASE SINTERING OF METALLIC CARBIDES

    DOEpatents

    Hammond, J.; Sease, J.D.

    1964-01-21

    An improved method is given for fabricating uranium carbide composites, The method comprises forming a homogeneous mixture of powdered uranium carbide, a uranium intermetallic compound which wets and forms a eutectic with said carbide and has a non-uranium component which has a relatively high vapor pressure at a temperature in the range 1200 to 1500 deg C, and an organic binder, pressing said mixture to a composite of desired green strength, and then vacuum sintering said composite at the eutectic forming temperature for a period sufficient to remove at least a portion of the non-uranium containing component of said eutectic. (AEC)

  15. The effect of porosity and gamma-gamma' eutectic content on the low cycle fatigue behavior of hydrogen-charged PWA-1480

    NASA Technical Reports Server (NTRS)

    Gayda, John; Dreshfield, Robert L.; Gabb, Timothy P.

    1991-01-01

    Single crystal superalloys such as PWA 1480 are considered for turbopump blades in the main engines of the space shuttle. As fatigue resistance in a hydrogen environment is a key issue in this application, a study of the effect of porosity and gamma-gamma' eutectic content on the fatigue life of a hydrogen-charged PWA 1480 was performed. Porosity and eutectic were linked to fatigue initiation, and therefore reduction of either of both may be one means to improve fatigue life of PWA 1480 when hydrogen is present.

  16. Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Tianping; Chen, Zhan W.; Gao Wei

    2008-11-15

    During gas tungsten arc (GTA) welding of AZ91 Mg cast alloy, constitutional liquid forms locally in the original interdendritic regions in the partially melted zone (PMZ). The PMZ re-solidification behaviour has not been well understood. In this study, the gradual change of the re-solidification microstructure within PMZ from base metal side to weld metal side was characterised. High cooling rate experiments using Gleeble thermal simulator were also conducted to understand the morphological change of the {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} phase interface formed during re-solidification after partial melting. It was found that the original partially divorced eutectic structure has become a moremore » regular eutectic phase in most of the PMZ, although close to the fusion boundary the re-solidified eutectic is again a divorced one. Proceeding the eutectic re-solidification, if the degree of partial melting is sufficiently high, {alpha}-Mg re-solidified with a cellular growth, resulting in a serrated interface between {alpha}-Mg and {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} in the weld sample and between {alpha}-Mg and {beta}-Mg{sub 17}Al{sub 12} (fully divorced eutectic) in Gleeble samples. The morphological changes affected by the peak temperature and cooling rate are also explained.« less

  17. Microstructural Evolution of Hypoeutectic, Near-Eutectic, and Hypereutectic High-Carbon Cr-Based Hard-Facing Alloys

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Ming; Chang, Chia-Ming; Chen, Jie-Hao; Hsieh, Chih-Chun; Wu, Weite

    2009-05-01

    A series of high-carbon Cr-based hard-facing alloys were successfully fabricated on a substrate of 0.45 pct C carbon steel by gas tungsten arc welding (GTAW) process using various alloy fillers with chromium and chromium carbide, CrC (Cr:C = 4:1) powders. These claddings were designed to observe hypoeutectic, near-eutectic, and hypereutectic structures with various (Cr,Fe)23C6 and (Cr,Fe)7C3 carbides at room temperature. According to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and optical microscopy (OM), in 3.8 pct C cladding, the microstructure consisted of the primary carbides with outer shells (Cr,Fe)23C6 surrounding (Cr,Fe)7C3 cores and [ α + (Cr,Fe)23C6] eutectic structures. In 5.9 pct C cladding, the composite comprised primary (Cr,Fe)7C3 as the reinforcing phase and [α + (Cr,Fe)7C3] eutectic structures as matrix. Various morphologies of carbides were found in primary and eutectic (Cr,Fe)7C3 carbides, which included bladelike and rodlike (with a hexagonal cross section). The 5.9C cladding with great amounts of primary (Cr,Fe)7C3 carbides had the highest hardness (approximately HRC 63.9) of the all conditions.

  18. Deep eutectic solvent formation: a structural view using molecular dynamics simulations with classical force fields

    NASA Astrophysics Data System (ADS)

    Mainberger, Sebastian; Kindlein, Moritz; Bezold, Franziska; Elts, Ekaterina; Minceva, Mirjana; Briesen, Heiko

    2017-06-01

    Deep eutectic solvents (DES) have gained a reputation as inexpensive and easy to handle ionic liquid analogues. This work employs molecular dynamics (MD) to simulate a variety of DES. The hydrogen bond acceptor (HBA) choline chloride was paired with the hydrogen bond donors (HBD) glycerol, 1,4-butanediol, and levulinic acid. Levulinic acid was also paired with the zwitterionic HBA betaine. In order to evaluate the reliability of data MD simulations can provide for DES, two force fields were compared: the Merck Molecular Force Field and the General Amber Force Field with two different sets of partial charges for the latter. The force fields were evaluated by comparing available experimental thermodynamic and transport properties against simulated values. Structural analysis was performed on the eutectic systems and compared to non-eutectic compositions. All force fields could be validated against certain experimental properties, but performance varied depending on the system and property in question. While extensive hydrogen bonding was found for all systems, details about the contribution of individual groups strongly varied among force fields. Interaction potentials revealed that HBA-HBA interactions weaken linearly with increasing HBD ratio, while HBD-HBD interactions grew disproportionally in magnitude, which might hint at the eutectic composition of a system.

  19. Experiments with the low melting indium-bismuth alloy system

    NASA Technical Reports Server (NTRS)

    Krepski, Richard P.

    1992-01-01

    The following is a laboratory experiment designed to create an interest in and to further understanding of materials science. The primary audience for this material is the junior high school or middle school science student having no previous familiarity with the material, other than some knowledge of temperature and the concepts of atoms, elements, compounds, and chemical reactions. The objective of the experiment is to investigate the indium-bismuth alloy system. Near the eutectic composition, the liquidus is well below the boiling point of water, allowing simple, minimal hazard casting experiments. Such phenomena as metal oxidation, formation of intermetallic compound crystals, and an unusual volume increase during solidification could all be directly observed. A key concept for students to absorb is that properties of an alloy (melting point, mechanical behavior) may not correlate with simple interpolation of properties of the pure components. Discussion of other low melting metals and alloys leads to consideration of environmental and toxicity issues, as well as providing some historical context. Wetting behavior can also be explored.

  20. Material Recycling and Waste Minimization by Freeze Crystallization. Phase 1

    DTIC Science & Technology

    1995-05-01

    or centrifuge for recovery. DESIGN PARAMETERS - Crystallizer Gives direct scale-up information. - Eutectic Salt Separation Gives direct scale-up...because of sfer rates and crystal kinetics, differences in crystallizer construction. - Eutectic Salt Separation No ability in this system. - Wash Columns

  1. Cellulosic ethanol production from green solvent-pretreated rice straw

    USDA-ARS?s Scientific Manuscript database

    Natural deep eutectic solvents (NADES) are recently developed “green solvents” consisted of bio-based ionic liquids and deep eutectic solvents mainly from plant based metabolites. NADES are biodegradable, non-toxic and environment-friendly. Conventional chemically synthesized ionic liquids have be...

  2. Tuning filler shape, surface chemistry and ion content in nanofilled polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ganapatibhotla, Lalitha V. N. R.

    We investigate how nanofiller surface chemistry and aspect ratio affect the performance of nanofilled solid polymer electrolytes. Polymer-based electrolytes are an attractive alternative to the organic electrolytes currently used in lithium ion batteries. We characterize acidic nanoparticle filled electrolytes and compare them to neutral particle-filled electrolytes previously measured in our lab. Dielectric spectroscopy measurements indicate that the highest increase in conductivity occurs at the eutectic composition (EO/Li=10) and is independent of filler surface chemistry. We measure PEO dynamics using quasi-elastic neutron scattering and do not observe any change in polymer dynamics with particle surface chemistry. When we examine the elastic incoherent structure factor associated with the rotational process, fillers are found to restrict the rotation of the highly conducting PEO6:LiClO4 tunnels. At the eutectic composition, these tunnels are stabilized at the filler surface even above PEO melting temperature. Marginal stability theory predicts formation of alternating layers of coexisting phases at the eutectic composition. We propose a new mechanism, via stabilization of alternating layers of PEO and highly conducting PEO 6:LiClO4 tunnels at the filler surface. When compared to spherical particles, more such structures would be stabilized at a filler surface with high aspect ratio. Consistent with this hypothesis, neutral gamma-Al2O3 nanowhiskers (2-4 nm in diameter and 200-400 nm in length) intensify the effect of neutral gamma-Al 2O3 nanoparticles. The diameters of the two fillers are similar, but the change in aspect ratio (1 to 100) improves conductivity by a factor of 5. This enhancement occurs at battery operation temperatures! Although the change in aspect ratio does not affect thermal transitions and segmental dynamics at optimal whisker loading, the rotation of PEO6 remnants is distinct at the eutectic composition. Because the mechanism by which nanofillers enhance conductivity is related to stabilization of conducting structures at the filler-electrolyte interface, we determine the interface morphology using neutron reflectometry. For this, we spin-coat the unfilled electrolytes EO/Li = 8, 10 on sapphire substrate, which has the same surface chemistry as alpha-Al2O3. When freshly-spin coated on sapphire substrate, the non-eutectic sample does not exhibit any segregation of layers. The freshly spin-coated eutectic sample forms layers with alternating high and low salt concentrations, very similar to the eutectic lamellae predicted by the marginal stability theory for eutectic solidification. Such lamellae do not develop further when the sample is annealed at eutectic temperature and the salt concentration in the polymer decreases gradually away from the surface of sapphire. To take fullest advantage of the surface mechanism and obtain larger increases in conductivity we tailor the aspect ratio of high aspect ratio fillers. Commercial availability of alumina nanowhiskers is limited to neutral surface chemistry and aspect ratio of 100, cellulose nanowhiskers provide a model system where a wide range of surface chemistries may be accessed with variable aspect ratio. We synthesized cellulose whiskers of two different aspect ratios [cotton whiskers: aspect ratio ˜ 10, acetobacter whiskers: aspect ratio ˜ 200] and tested their influence on conductivity and morphology of polymer electrolytes. Similar to all fillers studied in this work, both types of cellulose whiskers provide highest increase in conductivity at the eutectic composition, with the longer acetobacter whiskers providing a marginally higher increase than the cotton whiskers. Although both cellulose whiskers do not alter the crystallinity or glass transition temperature at the optimal 1 wt% loading, they amplify the faint cold crystallization behavior observed in the unfilled eutectic electrolyte without changing the overall crystallinity. At the non-eutectic compositions, cellulose whiskers behave similar to the acidic nanoparticles. To determine the function of nanofillers in entire composition range of the phase diagram, we extend the range of measurements on the nanofilled PEO+LiClO4 electrolyte to EO/Li = 4 to 100. Because PEO+LiAsF 6 electrolytes have similar phase diagram as the PEO+LiClO4 electrolytes, we augment the study of nanofilled PEO+LiAsF6 complexes to the PEO+LiClO4 electrolytes. At compositions near the high and low ends of the phase diagram, the effect of nanofillers on conductivity is governed by reduction in crystallinity of PEO and PEO-salt complexes. In the absence of PEO6, fillers interact directly with PEO and suppress crystallization. This is consistent with the reflectometry experiment where sapphire surface prefers to interact with the salt-rich layers. Around the eutectic composition fillers restrict the highly conducting PEO6 complex at their surface and any increase in conductivity is due to stabilization of these conducting tunnels. For room temperature applications, lithium hexafluoroarsenate seems to be the better salt than lithium perchlorate. At temperatures higher than the eutectic temperature (50°C), conductivity levels off at the value set by the eutectic composition. (Abstract shortened by ProQuest.).

  3. On the Impurity Parameters for Impurities Detected in the Eutectics Co-C and Pt-C and Their Role in the Estimate of the Uncertainty in the Eutectic Temperatures

    NASA Astrophysics Data System (ADS)

    Bloembergen, Pieter; Dong, Wei; Bai, Cheng-Yu; Wang, Tie-Jun

    2011-12-01

    In this paper, impurity parameters m i and k i have been calculated for a range of impurities I as detected in the eutectics Co-C and Pt-C, by means of the software package Thermo-Calc within the ternary phase spaces Co-C- I and Pt-C- I. The choice of the impurities is based upon a selection out of the results of impurity analyses performed for a representative set of samples for each of the eutectics in study. The analyses in question are glow discharge mass spectrometry (GDMS) or inductively coupled plasma mass spectrometry (ICP-mass). Tables and plots of the impurity parameters against the atomic number Z i of the impurities will be presented, as well as plots demonstrating the validity of van't Hoff's law, the cornerstone to this study, for both eutectics. For the eutectics in question, the uncertainty u( T E - T liq ) in the correction T E - T liq will be derived, where T E and T liq refer to the transition temperature of the pure system and to the liquidus temperature in the limit of zero growth rate of the solid phase during solidification of the actual system, respectively. Uncertainty estimates based upon the current scheme SIE-OME, combining the sum of individual estimates (SIE) and the overall maximum estimate (OME) are compared with two alternative schemes proposed in this paper, designated as IE-IRE, combining individual estimates (IE) and individual random estimates (IRE), and the hybrid scheme SIE-IE-IRE, combining SIE, IE, and IRE.

  4. Microstructural evolution of SiC joints soldered using Zn-Al filler metals with the assistance of ultrasound.

    PubMed

    Wu, Bingzhi; Leng, Xuesong; Xiu, Ziyang; Yan, Jiuchun

    2018-06-01

    SiC ceramics were successfully soldered with the assistance of ultrasound. Two kinds of filler metals, namely non-eutectic Zn-5Al-3Cu and eutectic Zn-5Al alloys, were used. The effects of ultrasonic action on the microstructure and mechanical properties of the soldered joints were investigated. The results showed that ultrasound could promote the wetting and bonding between the SiC ceramic and filler metals within tens of seconds. For the Zn-5Al-3Cu solder, a fully grain-refined structure in the bond layer was obtained as the ultrasonic action time increased. This may lead to a substantial enhancement in the strength of the soldered joints. For the Zn-5Al solder, the shear strength of the soldered joints was only ∼102 MPa when the ultrasonic action time was shorter, and fractures occurred in the brittle lamellar eutectic phases in the center of the bond layer. With increasing ultrasonic action time, the lamellar eutectic phase in the bond layer of SiC joints could be completely transformed to a fine non-lamellar eutectic structure. Meanwhile, the grains in the bond layer were obviously refined. Those results led to the remarkable enhancement of the shear strength of the joints (∼138 MPa) using the Zn-5Al solder, which had approached that enhancement using the Zn-5Al-3Cu solder. The enhanced mechanical properties of the joints were attributed to the significant refinement of the grains and the change in the eutectic structure in the bond layer. Prolonged enhanced heterogeneous nucleation triggered by ultrasonic cavitation is the predominant refinement mechanism of the bond metals of the SiC joints. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Goldsby, D.L.; Durham, W.B.; Kirby, S.H.

    2011-01-01

    Using uniaxial compression creep experiments, we characterized the transient and steady state deformation behaviors of eutectic aggregates of system ice I and MgSO4 11H2O (MS11; meridianiite), which has significance because of its likely presence on moons of the outer solar system. Synthetic samples of eutectic liquid bulk composition, which produce eutectic colonies containing 0.35-0.50 volume fraction MS11, were tested as functions of colony size and lamellar spacing, temperature (230-250 K), and confining pressure (0.1 and 50 MPa) to strains ???0.2. Up to a differential stress of 6 MPa, the ice I-MS11 aggregates display an order of magnitude higher effective viscosity and higher stress sensitivity than do aggregates of pure polycrystalline ice at the same conditions. The creep data and associated microstructural observations demonstrate, however, that the aggregates are additionally more brittle than pure ice, approaching rate-independent plasticity that includes rupture of the hydrate phase at 6-8 MPa, depending on the scale of the microstructure. Microstructures of deformed samples reveal forms of semibrittle flow in which the hydrate phase fractures while the ice phase deforms plastically. Semibrittle flow in the icy shell of a planetary body would truncate the lithospheric strength envelope and thereby decrease the depth to the brittle-ductile transition by 55% and reduce the failure limit for compressional surface features from 10 to ???6 MPa. A constitutive equation that includes eutectic colony boundary sliding and intracolony flow is used to describe the steady state rheology of the eutectic aggregates. Copyright ?? 2011 by the American Geophysical Union.

  6. An empirical relationship for homogenization in single-phase binary alloy systems

    NASA Technical Reports Server (NTRS)

    Unnam, J.; Tenney, D. R.; Stein, B. A.

    1979-01-01

    A semiempirical formula is developed for describing the extent of interaction between constituents in single-phase binary alloy systems with planar, cylindrical, or spherical interfaces. The formula contains two parameters that are functions of mean concentration and interface geometry of the couple. The empirical solution is simple, easy to use, and does not involve sequential calculations, thereby allowing quick estimation of the extent of interactions without lengthy calculations. Results obtained with this formula are in good agreement with those from a finite-difference analysis.

  7. Getting Astrophysical Information from LISA Data

    NASA Technical Reports Server (NTRS)

    Stebbins, R. T.; Bender, P. L.; Folkner, W. M.

    1997-01-01

    Gravitational wave signals from a large number of astrophysical sources will be present in the LISA data. Information about as many sources as possible must be estimated from time series of strain measurements. Several types of signals are expected to be present: simple periodic signals from relatively stable binary systems, chirped signals from coalescing binary systems, complex waveforms from highly relativistic binary systems, stochastic backgrounds from galactic and extragalactic binary systems and possibly stochastic backgrounds from the early Universe. The orbital motion of the LISA antenna will modulate the phase and amplitude of all these signals, except the isotropic backgrounds and thereby give information on the directions of sources. Here we describe a candidate process for disentangling the gravitational wave signals and estimating the relevant astrophysical parameters from one year of LISA data. Nearly all of the sources will be identified by searching with templates based on source parameters and directions.

  8. Two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images.

    PubMed

    He, Lifeng; Chao, Yuyan; Suzuki, Kenji

    2011-08-01

    Whenever one wants to distinguish, recognize, and/or measure objects (connected components) in binary images, labeling is required. This paper presents two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images. One is voxel based and the other is run based. For the voxel-based one, we present an efficient method of deciding the order for checking voxels in the mask. For the run-based one, instead of assigning each foreground voxel, we assign each run a provisional label. Moreover, we use run data to label foreground voxels without scanning any background voxel in the second scan. Experimental results have demonstrated that our voxel-based algorithm is efficient for 3-D binary images with complicated connected components, that our run-based one is efficient for those with simple connected components, and that both are much more efficient than conventional 3-D labeling algorithms.

  9. Monte Carlo simulation of magnetic properties of mixed spin (3/2, 1) ferromagnetic and ferrimagnetic disordered binary alloys with amorphous structure

    NASA Astrophysics Data System (ADS)

    Motlagh, H. Nakhaei; Rezaei, G.

    2018-01-01

    Monte Carlo simulation is used to study the magnetic properties of mixed spin (3/2, 1) disordered binary alloys on simple cubic, hexagonal and amorphous magnetic ultra-thin films with 18 × 18 × 2 atoms. To this end, at the first approximation, the exchange coupling interaction between the spins is considered as a constant value and at the second one, the Ruderman-Kittel-Kasuya-Yosida (RKKY) model is used. Effects of concentration, structure, exchange interaction, single ion-anisotropy and the film size on the magnetic properties of disordered ferromagnetic and ferrimagnetic binary alloys are investigated. Our results indicate that the spontaneous magnetization and critical temperatures of rare earth-3d transition binary alloys are affected by these parameters. It is also found that in the ferrimagnetic state, the compensation temperature (Tcom) and the magnetic rearrangement temperature (TR) appear for some concentrations.

  10. Solidification kinetics of a near eutectic Al-Si alloy, unmodified and modified with Sr

    NASA Astrophysics Data System (ADS)

    Aparicio, R.; Barrera, G.; Trapaga, G.; Ramirez-Argaez, M.; Gonzalez-Rivera, C.

    2013-07-01

    The purpose of this work was to explore the differences in solidification kinetics between unmodified and Sr modified eutectic Al-Si alloy as revealed by Fourier Thermal Analysis (FTA) and grain-growth kinetics characterization. Thermal analysis were performed in cylindrical stainless steel cups coated with a thin layer of boron nitride, using two type-K thermocouples connected to a data acquisition system. Grain growth kinetics characterization was carried out using solid fraction evolution and grain density data. FTA results for the non modified and modified alloys suggest that there are changes in the solidification rate during eutectic nucleation followed, during growth, by similar solidification rate evolutions, suggesting that this parameter is governed principally by the heat extraction conditions. On the other hand the change of the grain growth parameters estimated for the experimental probes suggest that the presence of Sr may modify the relationship between grain growth rate and undercooling in eutectic Al-Si.

  11. Fundamental studies on the feasibility of deep eutectic solvents for the selective partition of glaucarubinone present in the roots of Simarouba glauca.

    PubMed

    Kholiya, Faisal; Bhatt, Nidhi; Rathod, Meena R; Meena, Ramavatar; Prasad, Kamalesh

    2015-07-14

    Several deep eutectic solvents prepared by the complexation of choline chloride as the hydrogen bond acceptor and hydrogen bond donors such as urea, thiourea, ethylene glycol, and glycerol were employed to partition glaucarubinone, an antimalarial compound present in roots of the plant, Simarouba glauca. Among all the solvents, the deep eutectic solvent consisting of the mixture of choline chloride and urea the most suitable to partition the antimalarial compound from the extract selectively. Analytical tools such as high-performance liquid chromatography and electrospray ionization mass spectrometry were used for characterizations, and glaucarubinone extracted from the roots of the plant by conventional solvent extraction method was used as a reference for comparison. The hydrogen and noncovalent bonds formed between glaucarubinone and the deep eutectic solvents could be responsible for the selective partition of the drug molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An optimal method for phosphorylation of rare earth chlorides in LiCl-KCl eutectic based waste salt

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Kim, J. H.; Cho, Y. Z.; Choi, J. H.; Lee, T. K.; Park, H. S.; Park, G. I.

    2013-11-01

    A study on an optimal method for the phosphorylation of rare earth chlorides in LiCl-KCl eutectic waste salt generated the pyrochemical process of spent nuclear fuel was performed. A reactor with a pitched four blade impeller was designed to create a homogeneous mixing zone in LiCl-KCl eutectic salt. A phosphorylation test of NdCl3 in the salt was carried out by changing the operation conditions (operation temperature, stirring rate, agent injection amount). Based on the results of the test, a proper operation condition (450 °C, 300 rpm, 1 eq. of phosphorylation agent) for over a 0.99 conversion ratio of NdCl3 to NdPO4 was determined. Under this condition, multi-component rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Y) chlorides were effectively converted into phosphate forms. It was confirmed that the existing regeneration process of LiCl-KCl eutectic waste salt can be greatly improved and simplified through these phosphorylation test results.

  13. Magnetization measurements of Sr2RuO4-Ru eutectic microplates using dc-SQUIDs

    NASA Astrophysics Data System (ADS)

    Nago, Y.; Sakuma, D.; Ishiguro, R.; Kashiwaya, S.; Nomura, S.; Kono, K.; Maeno, Y.; Takayanagi, H.

    2018-03-01

    We report magnetization measurements of Sr2RuO4-Ru eutectic microplates using micro-dc-SQUIDs. Sr2RuO4 is considered as a chiral p-wave superconductor and hence Sr2RuO4-Ru eutectic becomes in an unstable state with a superconducting phase frustration between a chiral p-wave state of Sr2RuO4 and a s-wave state of Ru. To compensate the frustration, a single quantum vortex is spontaneously formed at the center of the Ru inclusion at sufficiently low temperatures. However, such a spontaneous vortex state has not been experimentally observed yet. In this study, we prepared a micro-dc-SQUID and a Sr2RuO4-Ru eutectic microplate containing a single Ru-inclusion at the center of the microplate. We performed magnetization measurements down below the superconducting transition temperature of the Ru inclusion to investigate the spontaneous Ru-center vortex state.

  14. Properties and heat transfer coefficients of four molten-salt high temperature heat transfer fluid candidates for concentrating solar power plants

    NASA Astrophysics Data System (ADS)

    Liu, T. L.; Liu, W. R.; Xu, X. H.

    2017-11-01

    Heat transfer fluid is one critical component for transferring and storing heat energy in concentrating solar power systems. Molten-salt mixtures can be used as high temperature heat transfer fluids because of their thermophysical properties. This paper studied the thermophysical properties of Li2CO3-Na2CO3-K2CO3 eutectic salt and three eutectic chloride salts NaCl-KCl-ZnCl2 with different compositions in the range of 450-600°C and 250-800°C, respectively. Properties including specific heat capacity, thermal conductivity, density and viscosity were determined based on imperial correlations and compared at different operating temperatures. The heat transfer coefficients of using different eutectic salts as heat transfer fluids were also calculated and compared in their operating temperature range. It is concluded that all the four eutectic salts can satisfy the requirements of a high-temperature heat transfer fluid.

  15. Vaporization of liquid Pb-Li eutectic alloy from 1000K to 1200K - A high temperature mass spectrometric study

    NASA Astrophysics Data System (ADS)

    Jain, U.; Mukherjee, A.; Dey, G. K.

    2017-09-01

    Liquid lead-lithium eutectic will be used as a coolant in fusion reactor blanket loop. Vapor pressure of the eutectic is an important parameter to accurately predict its in-loop behavior. Past measurements of vapor pressure of the eutectic relied on indirect methods. In this paper, we report for the first time the in-situ vaporization behavior of the liquid alloy between 1042 and 1176 K by Knudsen effusion mass spectrometry (KEMS). It was seen that the vaporization occurred by independent evaporation of lead and lithium. No complex intermetallic vapor was seen in the mass spectra. The partial pressures and enthalpy of vaporization of Pb and Li were evaluated directly from the measured ion intensities formed from the equilibrium vapor over the alloy. The activity of Li over a temperature range of 1042-1176 K was found to be 4.8 × 10-5 to that of pure Li, indicating its very low activity in the alloy.

  16. SPAR X Technical Report for Experiment 76-22 Directional Solidification of Magnetic Composites

    NASA Technical Reports Server (NTRS)

    Bethin, J.

    1984-01-01

    The effects of gravity on Bridgman-Stockbarger directional solidification of off-eutectic Bi/MnBi were studied in reduced gravity aboard the SPAR X flight and compared to normal-gravity investigations and previous eutectic Bi/MnBi SPAR flight experiments. The directional solidification of off-eutectic Bi/MnBi results in either a dendritic structure connected with local cooperative growth or a coupled low volume fraction faceted/non faceted aligned rod eutectic whose Mn macrosegregation, MnBi rod size, interrod spacing, and thermal and magnetic properties are sensitive functions of the solidification processing conditions. Two hypoeutectic and two hypereutectic samples were solidified during 605 sec of furnace travel, with an initial 265 sec low-gravity interval. Comparison Earth-gravity samples were solidified in the same furance assembly under identical processing conditions. Macrosegregation in the low-g samples was consistent with a metastable increase in Mn solubility in the Bi matrix, in partial agreement with previous Bi/MnBi SPAR findings of MnBi volume reduction.

  17. Equilibrium, stability, and orbital evolution of close binary systems

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.

    1994-01-01

    We present a new analytic study of the equilibrium and stability properties of close binary systems containing polytropic components. Our method is based on the use of ellipsoidal trial functions in an energy variational principle. We consider both synchronized and nonsynchronized systems, constructing the compressible generalizations of the classical Darwin and Darwin-Riemann configurations. Our method can be applied to a wide variety of binary models where the stellar masses, radii, spins, entropies, and polytropic indices are all allowed to vary over wide ranges and independently for each component. We find that both secular and dynamical instabilities can develop before a Roche limit or contact is reached along a sequence of models with decreasing binary separation. High incompressibility always makes a given binary system more susceptible to these instabilities, but the dependence on the mass ratio is more complicated. As simple applications, we construct models of double degenerate systems and of low-mass main-sequence star binaries. We also discuss the orbital evoltuion of close binary systems under the combined influence of fluid viscosity and secular angular momentum losses from processes like gravitational radiation. We show that the existence of global fluid instabilities can have a profound effect on the terminal evolution of coalescing binaries. The validity of our analytic solutions is examined by means of detailed comparisons with the results of recent numerical fluid calculations in three dimensions.

  18. Microstructural development and mechanical properties of a near-eutectic directionally solidified Sn–Bi solder alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Bismarck Luiz, E-mail: bismarck_luiz@yahoo.com.br; Reinhart, Guillaume; Nguyen-Thi, Henri

    2015-09-15

    Sn–Bi solders may be applied for electronic applications where low-temperature soldering is required, i.e., sensitive components, step soldering and soldering LEDs. In spite of their potential to cover such applications, the mechanical response of soldered joints of Sn–Bi alloys in some cases does not meet the strength requirements due to inappropriate resulting microstructures. Hence, careful examination and control of as-soldered microstructures become necessary with a view to pre-programming reliable final properties. The present study aims to investigate the effects of solidification thermal parameters (growth rate — V{sub L} and cooling rate — T-dot{sub L}) on the microstructure of the Sn–52more » wt.%Bi solder solidified under unsteady-state conditions. Samples were obtained by upward directional solidification (DS), followed by characterization through metallography and scanning electron microscopy (SEM). The microstructures are shown to be formed by Sn-rich dendrites decorated with Bi precipitates surrounded by a complex regular eutectic mixture, with alternated Bi-rich and Sn-rich phases. Experimental correlations of primary (λ{sub 1}), secondary (λ{sub 2}), tertiary (λ{sub 3}) dendritic and eutectic spacings (λ{sub coarse} and λ{sub fine}) with cooling rate and growth rate are established. Two ranges of lamellar eutectic sizes were determined, described by two experimental equations λ = 1.1 V{sub L}{sup −1/2} and λ = 0.67 V{sub L}{sup −1/2}. The onset of tertiary branches within the dendritic array along the Sn–52 wt.%Bi alloy DS casting is shown to occur for cooling rates lower than 1.5 °C/s. - Highlights: • The Sn–52 wt.%Bi solder was shown to have two eutectic sizes. • The fishbone eutectic is preferably located adjacent to the Bi-rich lamellar phases. • The onset of tertiary dendritic branches in Sn–Bi is associated with T-dot{sub L} < 1.5 °C/s. • Higher eutectic fraction and λ{sub 3} provoked a reverse increase in σ{sub u} and σ{sub y}.« less

  19. A simple transferable adaptive potential to study phase separation in large-scale xMgO-(1-x)SiO2 binary glasses.

    PubMed

    Bidault, Xavier; Chaussedent, Stéphane; Blanc, Wilfried

    2015-10-21

    A simple transferable adaptive model is developed and it allows for the first time to simulate by molecular dynamics the separation of large phases in the MgO-SiO2 binary system, as experimentally observed and as predicted by the phase diagram, meaning that separated phases have various compositions. This is a real improvement over fixed-charge models, which are often limited to an interpretation involving the formation of pure clusters, or involving the modified random network model. Our adaptive model, efficient to reproduce known crystalline and glassy structures, allows us to track the formation of large amorphous Mg-rich Si-poor nanoparticles in an Mg-poor Si-rich matrix from a 0.1MgO-0.9SiO2 melt.

  20. Lead-free solder

    DOEpatents

    Anderson, Iver E.; Terpstra, Robert L.

    2001-05-15

    A Sn--Ag--Cu eutectic alloy is modified with one or more low level and low cost alloy additions to enhance high temperature microstructural stability and thermal-mechanical fatigue strength without decreasing solderability. Purposeful fourth or fifth element additions in the collective amount not exceeding about 1 weight % (wt. %) are added to Sn--Ag--Cu eutectic solder alloy based on the ternary eutectic Sn--4.7%Ag--1.7%Cu (wt. %) and are selected from the group consisting essentially of Ni, Fe, and like-acting elements as modifiers of the intermetallic interface between the solder and substrate to improve high temperature solder joint microstructural stability and solder joint thermal-mechanical fatigue strength.

  1. Effect of thermal cycling in a Mach 0.3 burner rig on properties and structure of directionally solidified gamma/gamma prime - delta eutectic

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Sanders, W. A.

    1975-01-01

    Tensile and stress rupture properties at 1040 C of a thermally cycled gamma/gamma prime - delta eutectic were essentially equivalent to the as-grown properties. Tensile strength and rupture life at 760 C appeared to decrease slightly by thermal cycling. Thermal cycling resulted in gamma prime coarsening and Widmanstatten delta precipitation in the gamma phase. An unidentified precipitate, presumably gamma prime, was observed within the delta phase. The eutectic alloy exhibited a high rate of oxidation-erosion weight loss during thermal cycling in the Mach 0.3 burner rig.

  2. Crystallography of Alumina-YAG-Eutectic

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali; Dickerson, Robert M.; Matson, Lawrence E.

    2000-01-01

    Multiple descriptions of the alumina-YAG eutectic crystallography appear in the ceramic literature. The orientation between two phases in a eutectic system has direct impact on residual stress, morphology, microstructural stability, and high temperature mechanical properties. A study to demonstrate that the different crystallographic relationships can be correlated with different growth constraints was undertaken. Fibers produced by Laser-Heated Float Zone (LHFZ) and Edge-defined Film-fed Growth (EFG) were examined. A map of the orientation relationship between Al2O3 and Y3Al5O12 and their relationship to the fiber growth axis as a function of pull rate are presented. Regions in which a single orientation predominates are identified.

  3. Embedded binaries and their dense cores

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Stahler, Steven W.

    2017-08-01

    We explore the relationship between young, embedded binaries and their parent cores, using observations within the Perseus Molecular Cloud. We combine recently published Very Large Array observations of young stars with core properties obtained from Submillimetre Common-User Bolometer Array 2 observations at 850 μm. Most embedded binary systems are found towards the centres of their parent cores, although several systems have components closer to the core edge. Wide binaries, defined as those systems with physical separations greater than 500 au, show a tendency to be aligned with the long axes of their parent cores, whereas tight binaries show no preferred orientation. We test a number of simple, evolutionary models to account for the observed populations of Class 0 and I sources, both single and binary. In the model that best explains the observations, all stars form initially as wide binaries. These binaries either break up into separate stars or else shrink into tighter orbits. Under the assumption that both stars remain embedded following binary break-up, we find a total star formation rate of 168 Myr-1. Alternatively, one star may be ejected from the dense core due to binary break-up. This latter assumption results in a star formation rate of 247 Myr-1. Both production rates are in satisfactory agreement with current estimates from other studies of Perseus. Future observations should be able to distinguish between these two possibilities. If our model continues to provide a good fit to other star-forming regions, then the mass fraction of dense cores that becomes stars is double what is currently believed.

  4. EVOLUTION OF A RING AROUND THE PLUTO–CHARON BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu

    We consider the formation of satellites around the Pluto–Charon binary. An early collision between the two partners likely produced the binary and a narrow ring of debris, out of which arose the moons Styx, Nix, Kerberos, and Hydra. How the satellites emerged from the compact ring is uncertain. Here we show that a particle ring spreads from physical collisions and collective gravitational scattering, similar to migration. Around a binary, these processes take place in the reference frames of “most circular” orbits, akin to circular ones in a Keplerian potential. Ring particles damp to these orbits and avoid destructive collisions. Dampingmore » and diffusion also help particles survive dynamical instabilities driven by resonances with the binary. In some situations, particles become trapped near resonances that sweep outward with the tidal evolution of the Pluto–Charon binary. With simple models and numerical experiments, we show how the Pluto–Charon impact ring may have expanded into a broad disk, out of which grew the circumbinary moons. In some scenarios, the ring can spread well beyond the orbit of Hydra, the most distant moon, to form a handful of smaller satellites. If these small moons exist, New Horizons will find them.« less

  5. Performance Analysis of New Binary User Codes for DS-CDMA Communication

    NASA Astrophysics Data System (ADS)

    Usha, Kamle; Jaya Sankar, Kottareddygari

    2016-03-01

    This paper analyzes new binary spreading codes through correlation properties and also presents their performance over additive white Gaussian noise (AWGN) channel. The proposed codes are constructed using gray and inverse gray codes. In this paper, a n-bit gray code appended by its n-bit inverse gray code to construct the 2n-length binary user codes are discussed. Like Walsh codes, these binary user codes are available in sizes of power of two and additionally code sets of length 6 and their even multiples are also available. The simple construction technique and generation of code sets of different sizes are the salient features of the proposed codes. Walsh codes and gold codes are considered for comparison in this paper as these are popularly used for synchronous and asynchronous multi user communications respectively. In the current work the auto and cross correlation properties of the proposed codes are compared with those of Walsh codes and gold codes. Performance of the proposed binary user codes for both synchronous and asynchronous direct sequence CDMA communication over AWGN channel is also discussed in this paper. The proposed binary user codes are found to be suitable for both synchronous and asynchronous DS-CDMA communication.

  6. The microstructure and composition of equilibrium phases formed in hypoeutectic Te-In alloy during solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Baoguang

    As a key tellurium atoms evaporation source for ultraviolet detection photocathode, the hypoeutectic Te{sub 75}In{sub 25} alloy was prepared by employing a slow solidification speed of about 10{sup −2} K/s. The microstructure and chemical composition of the equilibrium phases formed in the as-prepared alloy were studied in this research work. The experimental results show that the as-prepared Te-In alloy was constituted by primary In{sub 2}Te{sub 5} phase and eutectic In{sub 2}Te{sub 5}/Te phases. The eutectic In{sub 2}Te{sub 5}/Te phases are distributed in the grain boundaries of primary In{sub 2}Te{sub 5} phase. With the slow solidification speed, a pure eutectic Temore » phase without any excessive indium solute was obtained, where Te content of eutectic Te phase is 100 mass%. Moreover, it can be considered that the stress between the In{sub 2}Te{sub 5} and Te phases plays an important role in reducing the tellurium vapor pressure in Te{sub 75}In{sub 25} alloy. - Highlights: • The microstructure of Te-In alloy as an evaporation source was analyzed. • A pure eutectic Te phase was obtained by using a slow solidification speed method. • The relation between vapor pressure and inner-stress in the alloy was discussed.« less

  7. Air-assisted dispersive liquid-liquid microextraction based on a new hydrophobic deep eutectic solvent for the preconcentration of benzophenone-type UV filters from aqueous samples.

    PubMed

    Ge, Dandan; Zhang, Yi; Dai, Yixiu; Yang, Shumin

    2018-04-01

    Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl-menthol-based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air-assisted dispersive liquid-liquid microextraction method for preconcentration and extraction of benzophenone-type UV filters from aqueous samples followed by high-performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl-menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high-performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone-type filters in environmental water samples with relative recoveries of 88.8-105.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Influence of Mg on Grain Refinement of Near Eutectic Al-Si Alloys

    NASA Astrophysics Data System (ADS)

    Ravi, K. R.; Manivannan, S.; Phanikumar, G.; Murty, B. S.; Sundarraj, Suresh

    2011-07-01

    Although the grain-refinement practice is well established for wrought Al alloys, in the case of foundry alloys such as near eutectic Al-Si alloys, the underlying mechanisms and the use of grain refiners need better understanding. Conventional grain refiners such as Al-5Ti-1B are not effective in grain refining the Al-Si alloys due to the poisoning effect of Si. In this work, we report the results of a newly developed grain refiner, which can effectively grain refine as well as modify eutectic and primary Si in near eutectic Al-Si alloys. Among the material choices, the grain refining response with Al-1Ti-3B master alloy is found to be superior compared to the conventional Al-5Ti-1B master alloy. It was also found that magnesium additions of 0.2 wt pct along with the Al-1Ti-3B master alloy further enhance the near eutectic Al-Si alloy's grain refining efficiency, thus leading to improved bulk mechanical properties. We have found that magnesium essentially scavenges the oxygen present on the surface of nucleant particles, improves wettability, and reduces the agglomeration tendency of boride particles, thereby enhancing grain refining efficiency. It allows the nucleant particles to act as potent and active nucleation sites even at levels as low as 0.2 pct in the Al-1Ti-3B master alloy.

  9. Dynamic texture recognition using local binary patterns with an application to facial expressions.

    PubMed

    Zhao, Guoying; Pietikäinen, Matti

    2007-06-01

    Dynamic texture (DT) is an extension of texture to the temporal domain. Description and recognition of DTs have attracted growing attention. In this paper, a novel approach for recognizing DTs is proposed and its simplifications and extensions to facial image analysis are also considered. First, the textures are modeled with volume local binary patterns (VLBP), which are an extension of the LBP operator widely used in ordinary texture analysis, combining motion and appearance. To make the approach computationally simple and easy to extend, only the co-occurrences of the local binary patterns on three orthogonal planes (LBP-TOP) are then considered. A block-based method is also proposed to deal with specific dynamic events such as facial expressions in which local information and its spatial locations should also be taken into account. In experiments with two DT databases, DynTex and Massachusetts Institute of Technology (MIT), both the VLBP and LBP-TOP clearly outperformed the earlier approaches. The proposed block-based method was evaluated with the Cohn-Kanade facial expression database with excellent results. The advantages of our approach include local processing, robustness to monotonic gray-scale changes, and simple computation.

  10. Multi-Scale Distributed Representation for Deep Learning and its Application to b-Jet Tagging

    NASA Astrophysics Data System (ADS)

    Lee, Jason Sang Hun; Park, Inkyu; Park, Sangnam

    2018-06-01

    Recently machine learning algorithms based on deep layered artificial neural networks (DNNs) have been applied to a wide variety of high energy physics problems such as jet tagging or event classification. We explore a simple but effective preprocessing step which transforms each realvalued observational quantity or input feature into a binary number with a fixed number of digits. Each binary digit represents the quantity or magnitude in different scales. We have shown that this approach improves the performance of DNNs significantly for some specific tasks without any further complication in feature engineering. We apply this multi-scale distributed binary representation to deep learning on b-jet tagging using daughter particles' momenta and vertex information.

  11. Improving agar electrospinnability with choline-based deep eutectic solvents

    USDA-ARS?s Scientific Manuscript database

    One percent agar (% wt) was dissolved in the deep eutectic solvent (DES), (2-hydroxyethyl) trimethylammonium chloride/urea at a 1:2 molar ratio, and successfully electrospun into nanofibers. An existing electrospinning set-up, operated at 50 deg C, was adapted for use with an ethanol bath to collect...

  12. Reply to "On Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K- A high temperature mass spectrometric study"

    NASA Astrophysics Data System (ADS)

    Jain, Uttam; Mukherjee, Abhishek

    2018-03-01

    This communication is in response to a letter to editor commenting on the authors' earlier paper "Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K - A high temperature mass spectrometric study".

  13. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control.

  14. Extending cluster Lot Quality Assurance Sampling designs for surveillance programs

    PubMed Central

    Hund, Lauren; Pagano, Marcello

    2014-01-01

    Lot quality assurance sampling (LQAS) has a long history of applications in industrial quality control. LQAS is frequently used for rapid surveillance in global health settings, with areas classified as poor or acceptable performance based on the binary classification of an indicator. Historically, LQAS surveys have relied on simple random samples from the population; however, implementing two-stage cluster designs for surveillance sampling is often more cost-effective than simple random sampling. By applying survey sampling results to the binary classification procedure, we develop a simple and flexible non-parametric procedure to incorporate clustering effects into the LQAS sample design to appropriately inflate the sample size, accommodating finite numbers of clusters in the population when relevant. We use this framework to then discuss principled selection of survey design parameters in longitudinal surveillance programs. We apply this framework to design surveys to detect rises in malnutrition prevalence in nutrition surveillance programs in Kenya and South Sudan, accounting for clustering within villages. By combining historical information with data from previous surveys, we design surveys to detect spikes in the childhood malnutrition rate. PMID:24633656

  15. Extending cluster lot quality assurance sampling designs for surveillance programs.

    PubMed

    Hund, Lauren; Pagano, Marcello

    2014-07-20

    Lot quality assurance sampling (LQAS) has a long history of applications in industrial quality control. LQAS is frequently used for rapid surveillance in global health settings, with areas classified as poor or acceptable performance on the basis of the binary classification of an indicator. Historically, LQAS surveys have relied on simple random samples from the population; however, implementing two-stage cluster designs for surveillance sampling is often more cost-effective than simple random sampling. By applying survey sampling results to the binary classification procedure, we develop a simple and flexible nonparametric procedure to incorporate clustering effects into the LQAS sample design to appropriately inflate the sample size, accommodating finite numbers of clusters in the population when relevant. We use this framework to then discuss principled selection of survey design parameters in longitudinal surveillance programs. We apply this framework to design surveys to detect rises in malnutrition prevalence in nutrition surveillance programs in Kenya and South Sudan, accounting for clustering within villages. By combining historical information with data from previous surveys, we design surveys to detect spikes in the childhood malnutrition rate. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Influence of the cooling rate and the blend ratio on the physical stability of co-amorphous naproxen/indomethacin.

    PubMed

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2016-12-01

    Co-amorphization represents a promising approach to increase the physical stability and dissolution rate of amorphous active pharmaceutical ingredients (APIs) as an alternative to polymer glass solutions. For amorphous and co-amorphous systems, it is reported that the preparation method and the blend ratio play major roles with regard to the resulting physical stability. Therefore, in the present study, co-amorphous naproxen-indomethacin (NAP/IND) was prepared by melt-quenching at three different cooling rates and at ten different NAP/IND blend ratios. The samples were analyzed using XRPD and FTIR, both directly after preparation and during storage to investigate their physical stabilities. All cooling methods led to fully amorphous samples, but with significantly different physical stabilities. Samples prepared by fast cooling had a higher degree of crystallinity after 300d of storage than samples prepared by intermediate cooling and slow cooling. Intermediate cooling was subsequently used to prepare co-amorphous NAP/IND at different blend ratios. In a previous study, it was postulated that the equimolar (0.5:0.5) co-amorphous blend of NAP/IND is most stable. However, in the present study the physically most stable blend was found for a NAP/IND ratio of 0.6:0.4, which also represents the eutectic composition of the crystalline NAP/γ-IND system. This indicates that the eutectic point may be of major importance for the stability of binary co-amorphous systems. Slight deviations from the optimal naproxen molar fraction led to significant recrystallization during storage. Either naproxen or γ-indomethacin recrystallized until a naproxen molar fraction of about 0.6 in the residual co-amorphous phase was reached again. In conclusion, the physical stability of co-amorphous NAP/IND may be significantly improved, if suitable preparation conditions and the optimal phase composition are chosen. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Revisiting the Aqueous Solutions of Dimethyl Sulfoxide by Spectroscopy in the Mid- and Near-Infrared: Experiments and Car-Parrinello Simulations.

    PubMed

    Wallace, Victoria M; Dhumal, Nilesh R; Zehentbauer, Florian M; Kim, Hyung J; Kiefer, Johannes

    2015-11-19

    The infrared and near-infrared spectra of the aqueous solutions of dimethyl sulfoxide are revisited. Experimental and computational vibrational spectra are analyzed and compared. The latter are determined as the Fourier transformation of the velocity autocorrelation function of data obtained from Car-Parrinello molecular dynamics simulations. The experimental absorption spectra are deconvolved, and the excess spectra are determined. The two-dimensional excess contour plot provides a means of visualizing and identifying spectral regions and concentration ranges exhibiting nonideal behavior. In the binary mixtures, the analysis of the SO stretching band provides a semiquantitative picture of the formation and dissociation of hydrogen-bonded DMSO-water complexes. A maximum concentration of these clusters is found in the equimolar mixture. At high DMSO concentration, the formation of rather stable 3DMSO:1water complexes is suggested. The formation of 1DMSO:2water clusters, in which the water oxygen atoms interact with the sulfoxide methyl groups, is proposed as a possible reason for the marked depression of the freezing temperature at the eutectic point.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotkowski, A.; Rios, O.; Sridharan, N.

    Our present research in metal additive manufacturing (AM) focuses on designing processing parameters around existing alloys designed for traditional manufacturing. However, to maximize the benefits of AM, alloys should be designed to specifically take advantage of the unique thermal conditions of these processes. Furthermore, our study focuses on the development of a design methodology for alloys in AM, using a newly developed Al-Ce alloy as an initial case study. To evaluate the candidacy of this system for fusion based additive manufacturing, single-line laser melts were made on cast Al-12Ce plates using three different beam velocities (100, 200, and 300 mm/min).more » The microstructure was evaluated in the as-melted and heat treated conditions (24 hrs at 300°C). An extremely fine microstructure was observed within the weld pools, evolving from eutectic at the outer solid-liquid boundaries to a primary Al FCC dendritic/cellular structure nearer the melt-pool centerline. We rationalized the observed microstructures through the construction of a microstructure selection map for the Al-Ce binary system, which will be used to enable future alloy design. Interestingly, the heat treated samples exhibited no microstructural coarsening.« less

  19. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    NASA Astrophysics Data System (ADS)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun; Heuser, Brent J.; Mandapaka, Kiran K.; Was, Gary S.

    2016-03-01

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  20. Pharmaceutical cocrystals: a comparison of sulfamerazine with sulfamethazine

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Li, Yi-Ping; Wang, Jing; Li, Zhen; Rohani, Sohrab; Ching, Chi-Bun

    2011-11-01

    Although there has been much debate about its definition among scientists, a cocrystal may be defined as a crystalline material that consists of two or more electrically neutral molecular species held together by non-covalent forces, and meanwhile all components are solids at room temperature. Obviously it is great to introduce predictable structural motifs to an active pharmaceutical ingredient (API) by design. One widely used approach to cocrystal design is based on the consideration of Δp Ka, which can represent the propensity of molecular species to form a cocrystal or a salt. In this work, p-aminobenzoic acid (PABA) was mixed with sulfamerazine (SMZ) or sulfamethazine (STH) by use of neat cogrinding and solvent-drop cogrinding. It was found that PABA and SMZ with a Δp Ka of 2.13 would form a binary eutectic, while PABA and STH with a larger Δp Ka of 2.59 can form a cocrystal in the ratio of 1:1. The phenomenon indicates that not only the Δp Ka but also the stereo-hindrance effect (geometric fit) should be considered during the design of pharmaceutical cocrystals.

  1. The Effects of Adding Elements of Zinc and Magnesium on Ag-Cu Eutectic Alloy for Warming Acupuncture

    PubMed Central

    Park, Il Song; Kim, Keun Sik; Lee, Min Ho

    2013-01-01

    The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material. Ag-Cu binary alloys and ternary alloys added 5 wt% Zn or 2 wt% Mg were casted and then cold drawn to manufacture needles for acupuncture, and their physical properties, thermal conductivity, and biocompatibility were evaluated for their potential use in warming acupuncture. The results of this study showed that the physical and mechanical properties of the Ag-Cu alloys were improved by additives and that the thermal conductivity, machinability, and biocompatibility of the Ag-Cu alloys were improved by Mg addition. PMID:24078827

  2. The effects of adding elements of zinc and magnesium on ag-cu eutectic alloy for warming acupuncture.

    PubMed

    Kim, Yu Kyoung; Park, Il Song; Kim, Keun Sik; Lee, Min Ho

    2013-01-01

    The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material. Ag-Cu binary alloys and ternary alloys added 5 wt% Zn or 2 wt% Mg were casted and then cold drawn to manufacture needles for acupuncture, and their physical properties, thermal conductivity, and biocompatibility were evaluated for their potential use in warming acupuncture. The results of this study showed that the physical and mechanical properties of the Ag-Cu alloys were improved by additives and that the thermal conductivity, machinability, and biocompatibility of the Ag-Cu alloys were improved by Mg addition.

  3. Some properties of low-vapor-pressure braze alloys for thermionic converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1978-01-01

    Density, dc electrical resistivity, thermal conductivity, and linear thermal expansion are measured for arc-melted rod-shaped samples of binary eutectics of Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W selected as very-low-pressure braze fillers for thermionic converters. The first two properties are measured at 296 K for Zr-21.7 at% Ru, Zr-13 wt% W, Zr-19 wt% W, Zr-22.3 at% Nb, Nb-66.9 at% Ru, Hf-25.3 wt% Re, Zr-25.7 at% Ta, Hf-22.5 at% W, and Nb-35 wt% Mo. The last property is measured from 293 K to 2/3 melting point for specified alloys of different compositions. Resistivities of 0.000055 to 0.000181 ohm-cm are observed with the alloys having resistivities about ten times that of the less resistive constituent metal and about three times that of the more resistive constituent metal, except for Zr-19 wt% W and Nb-35 wt% Mo (greater resistivities). Thermal expansion coefficients vary from 0.000006 to 0.0000105/K. All brazes exhibit linear thermal expansion near that of their constituent metals.

  4. A two-step initial mass function:. Consequences of clustered star formation for binary properties

    NASA Astrophysics Data System (ADS)

    Durisen, R. H.; Sterzik, M. F.; Pickett, B. K.

    2001-06-01

    If stars originate in transient bound clusters of moderate size, these clusters will decay due to dynamic interactions in which a hard binary forms and ejects most or all the other stars. When the cluster members are chosen at random from a reasonable initial mass function (IMF), the resulting binary characteristics do not match current observations. We find a significant improvement in the trends of binary properties from this scenario when an additional constraint is taken into account, namely that there is a distribution of total cluster masses set by the masses of the cloud cores from which the clusters form. Two distinct steps then determine final stellar masses - the choice of a cluster mass and the formation of the individual stars. We refer to this as a ``two-step'' IMF. Simple statistical arguments are used in this paper to show that a two-step IMF, combined with typical results from dynamic few-body system decay, tends to give better agreement between computed binary characteristics and observations than a one-step mass selection process.

  5. Gamma-rays from the binary system containing PSR J2032+4127 during its periastron passage

    NASA Astrophysics Data System (ADS)

    Bednarek, Włodek; Banasiński, Piotr; Sitarek, Julian

    2018-01-01

    The energetic pulsar, PSR J2032+4127, has recently been discovered in the direction of the unidentified HEGRA TeV γ-ray source (TeV J2032+4130). It is proposed that this pulsar forms a binary system with the Be type star, MT91 213, expected to reach periastron late in 2017. We performed detailed calculations of the γ-ray emission produced close to the binary system’s periastron passage by applying a simple geometrical model. Electrons accelerated at the collision region of pulsar and stellar winds initiate anisotropic inverse Compton {e}+/- pair cascades by scattering soft radiation from the massive companion. The γ-ray spectra, from such a comptonization process, are compared with the measurements of the extended TeV γ-ray emission from the HEGRA TeV γ-ray source. We discuss conditions within the binary system, at the periastron passage of the pulsar, for which the γ-ray emission from the binary can overcome the extended, steady TeV γ-ray emission from the HEGRA TeV γ-ray source.

  6. Real-Time X-Ray Microscopy of Al-Cu Eutectic Solidification

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Curreri, Peter A.; Sen, Subhayu

    1998-01-01

    Recent improvements in the resolution of the X-ray Transmission Microscope (XTM) for Solidification Studies provide microstructure feature detectability down to 5 micrometers during solidification. This presentation will show the recent results from observations made in real-time of the solid-liquid interfacial morphologies of the Al-CuAI2 eutectic alloy. Lamellar dimensions and spacings, transitions of morphology caused by growth rate changes, and eutectic grain structures are open to measurements. A unique vantage point viewing the face of the interface isotherm is possible for the first time with the XTM due to its infinite depth of field. A video of the solid-liquid interfaces seen in-situ and in real-time will be shown.

  7. High temperature oxidation resistant coatings for the directionally solidified Ni-Nb-Cr-Al eutectic superalloy

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Ulion, N. E.; Felten, E. J.

    1977-01-01

    Protective coatings required for the Ni-Nb-Cr-Al directionally solidified eutectic superalloy were developed and evaluated on the basis of oxidation resistance, diffusional stability, thermal fatigue, and creep resistance. NiCrAlY+Pt and NiCrAlY physical vapor-deposition coating systems exhibited the best combination of properties. Burner-rig testing indicated that the useful life of a 127-micron-thick NiCrAlY+Pt coating exceeds 1000 h at 1366 K. Eutectic-alloy creep lives at 1311 K and a stress of 151.7 MN/sq m were greater for NiCrAlY+Pt-coated specimens than for uncoated specimens by a factor of two.

  8. Primordial main equence binary stars in the globular cluster M71

    NASA Technical Reports Server (NTRS)

    Yan, Lin; Mateo, Mario

    1994-01-01

    We report the identification of five short-period variables near the center of the metal-rich globular cluster M71. Our observations consist of multiepoch VI charge coupled device (CCD) images centered on the cluster and covering a 6.3 min x 6.3 min field. Four of these variables are contact eclipsing binaries with periods between 0.35 and 0.41 days; one is a detached or semidetached eclipsing binary with a period of 0.56 days. Two of the variables were first identified as possible eclipsing binaries in an earlier survey by Hodder et al. (1992). We have used a variety of arguments to conclude that all five binary stars are probable members of M71, a result that is consistent with the low number (0.15) of short-period field binaries expected along this line of sight. Based on a simple model of how contact binaries evolve from initially detached binaries, we have determined a lower limit of 1.3% on the frequency of primordial binaries in M71 with initial orbital periods in the range 2.5 - 5 days. This implies that the overall primordial binary frequency, f, is 22(sup +26)(sub -12)% assuming df/d log P = const ( the 'flat' distribution), or f = 57(sup +15)(sub -8)% for df/d log P = 0.032 log P + const as observed for G-dwarf binaries in the solar neighborhood (the 'sloped' distribution). Both estimates of f correspond to binaries with initial periods shorter than 800 yr since any longer-period binaries would have been disrupted over the lifetime of the cluster. Our short-period binary frequency is in excellent agreement with the observed frequency of red-giant binaries observed in globulars if we adopt the flat distribution. For the sloped distribution, our results significantly overestimate the number of red-giant binaries. All of the short-period M71 binaries lie within 1 mag of the luminosity of the cluster turnoff in the color-magnitude diagram despite the fact we should have easily detected similar eclipsing binaries 2 - 2.5 mag fainter than this. We discuss the implications of this on our estimates of the binary frequency in M71 and on the formation of blue stragglers.

  9. Eclipsing Binaries From the CSTAR Project at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Zhang, Hui; Wang, Songhu; Zhou, Ji-Lin; Zhou, Xu; Wang, Lingzhi; Wang, Lifan; Wittenmyer, R. A.; Liu, Hui-Gen; Meng, Zeyang; Ashley, M. C. B.; Storey, J. W. V.; Bayliss, D.; Tinney, Chris; Wang, Ying; Wu, Donghong; Liang, Ensi; Yu, Zhouyi; Fan, Zhou; Feng, Long-Long; Gong, Xuefei; Lawrence, J. S.; Liu, Qiang; Luong-Van, D. M.; Ma, Jun; Wu, Zhenyu; Yan, Jun; Yang, Huigen; Yang, Ji; Yuan, Xiangyan; Zhang, Tianmeng; Zhu, Zhenxi; Zou, Hu

    2015-04-01

    The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About 20,000 light curves in the i band were obtained during the observation season lasting from 2008 March to July. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb-Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore, the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis, and a locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence method. The primary and secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.

  10. Efficient Merge and Insert Operations for Binary Heaps and Trees

    NASA Technical Reports Server (NTRS)

    Kuszmaul, Christopher Lee; Woo, Alex C. (Technical Monitor)

    2000-01-01

    Binary heaps and binary search trees merge efficiently. We introduce a new amortized analysis that allows us to prove the cost of merging either binary heaps or balanced binary trees is O(l), in the amortized sense. The standard set of other operations (create, insert, delete, extract minimum, in the case of binary heaps, and balanced binary trees, as well as a search operation for balanced binary trees) remain with a cost of O(log n). For binary heaps implemented as arrays, we show a new merge algorithm that has a single operation cost for merging two heaps, a and b, of O(absolute value of a + min(log absolute value of b log log absolute value of b. log absolute value of a log absolute value of b). This is an improvement over O(absolute value of a + log absolute value of a log absolute value of b). The cost of the new merge is so low that it can be used in a new structure which we call shadow heaps. to implement the insert operation to a tunable efficiency. Shadow heaps support the insert operation for simple priority queues in an amortized time of O(f(n)) and other operations in time O((log n log log n)/f (n)), where 1 less than or equal to f (n) less than or equal to log log n. More generally, the results here show that any data structure with operations that change its size by at most one, with the exception of a merge (aka meld) operation, can efficiently amortize the cost of the merge under conditions that are true for most implementations of binary heaps and search trees.

  11. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    NASA Astrophysics Data System (ADS)

    Almog, Assaf; Garlaschelli, Diego

    2014-09-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.

  12. Processing, Microstructure, and Tensile Properties of the Ti-6Al-4V-1.55B Eutectic Alloy (Preprint)

    DTIC Science & Technology

    2007-02-01

    compositions via induction skull melting using a water-cooled segmented copper crucible . The charge was incrementally added to give chemical homogeneity...achieved near the water-cooled wall of the segmented copper crucible . The regular eutectic arrangement was destroyed and an irregular distribution of fine

  13. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS FROM NEUTRON- BOMBARDED URANIUM

    DOEpatents

    Martin, A.E.; Johnson, I.; Burris, L. Jr.; Winsch, I.O.; Feder, H.M.

    1962-11-13

    A process is given for removing plutonium and/or fission products from uranium fuel. The fuel is dissolved in molten zinc--magnesium (10 to 18% Mg) alloy, more magnesium is added to obtain eutectic composition whereby uranium precipitates, and the uranium are separated from the Plutoniumand fission-product- containing eutectic. (AEC)

  14. Traffic signal control enhancements under vehicle infrastructure integration systems.

    DOT National Transportation Integrated Search

    2011-12-01

    Most current traffic signal systems are operated using a very archaic traffic-detection simple binary : logic (vehicle presence/non presence information). The logic was originally developed to provide input for old : electro-mechanical controllers th...

  15. Containerless processing of undercooled melts

    NASA Technical Reports Server (NTRS)

    Shong, D. S.; Graves, J. A.; Ujiie, Y.; Perepezko, J. H.

    1987-01-01

    Containerless drop tube processing allows for significant levels of liquid undercooling through control of parameters such as sample size, surface coating and cooling rate. A laboratory scale (3 m) drop tube has been developed which allows the undercooling and solidification behavior of powder samples to be evaluated under low gravity free-fall conditions. The level of undercooling obtained in an InSb-Sb eutectic alloy has been evaluated by comparing the eutectic spacing in drop tube samples with a spacing/undercooling relationship established using thermal analysis techniques. Undercoolings of 0.17 and 0.23 T(e) were produced by processing under vacuum and He gas conditions respectively. Alternatively, the formation of an amorphous phase in a Ni-Nb eutectic alloy indicates that undercooling levels of approximately 500 C were obtained by drop tube processing. The influence of droplet size and gas environment on undercooling behavior in the Ni-Nb eutectic was evaluated through their effect on the amorphous/crystalline phase ratio. To supplement the structural analysis, heat flow modeling has been developed to describe the undercooling history during drop tube processing, and the model has been tested experimentally.

  16. Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window.

    PubMed

    Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao

    2018-06-15

    SrAl 2 O 4 -Sr 3 Al 2 O 6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO 2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV-vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl 2 O 4 -Sr 3 Al 2 O 6 samples fabricated by the containerless process and SPS between 852 °C-857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl 2 O 4 -Sr 3 Al 2 O 6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.

  17. Evolution of insoluble eutectic Si particles in anodic oxidation films during adipic-sulfuric acid anodizing processes of ZL114A aluminum alloys

    NASA Astrophysics Data System (ADS)

    Hua, Lei; Liu, Jian-hua; Li, Song-mei; Yu, Mei; Wang, Lei; Cui, Yong-xin

    2015-03-01

    The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.

  18. Deep eutectic liquid organic salt as a new solvent for liquid-phase microextraction and its application in ligandless extraction and preconcentraion of lead and cadmium in edible oils.

    PubMed

    Karimi, Mehdi; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Tamaddon, Fatemeh; Azadi, Davood

    2015-11-01

    Deep eutectic liquid organic salt was used as the solvent and a liquid phase microextraction (DES-LPME) combined with electrothermal atomic absorption spectrometry (ETAAS) was developed for separation, preconcentration and determination of lead and cadmium in edible oils. A 4:1 mixture of deep eutectic solvent and 2% nitric acid (200 µL) was added to an oil sample. The mixture was vortexed and transferred into a water bath at 50 °C and stirred for 5 minutes. After the extraction was completed, the phases were separated by centrifugation, and the enriched analytes in the deep eutectic solvent phase were determined by ETAAS. Under optimized extraction conditions and for an oil sample of 28 g, enhancement factors of 198 and 195 and limits of detection (defined as 3 Sb/m) of 8 and 0. 2 ng kg(-1) were achieved for lead and cadmium respectively. The method was successfully applied to the determination of lead and cadmium in various edible oils. Copyright © 2015. Published by Elsevier B.V.

  19. Zero-gravity growth of NaF-NaCl eutectics in the NASA Skylab program

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Allen, F. G.; Yu, J. G.

    1976-01-01

    Continuous and discontinuous NaF fibers, embedded in a NaCl matrix, were produced in space and on earth. The production of continuous fibers in a eutectic mixture is attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It is shown that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of NaF fibers along the ingot axis. A new concept is advanced to explain the phenomenon of transmittance versus far infrared wavelength of the directionally solidified NaCl-NaF eutectic in terms of the two-dimensional Bragg Scattering and the polarization effect of Rayleigh scattering. This concept can be applied to other eutectic systems as long as the index of refraction of the matrix over a range of wavelengths is known. Experimental data are in agreement with the theoretical prediction.

  20. Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co-Cr-Mo-(Cu) ultrafine eutectic alloys

    PubMed Central

    Kim, J. T.; Hong, S. H.; Park, H. J.; Kim, Y. S.; Suh, J. Y.; Lee, J. K.; Park, J. M.; Maity, T.; Eckert, J.; Kim, K. B.

    2017-01-01

    In the present study, the microstructural evolution and the modulation of the mechanical properties have been investigated for a Co-Cr-Mo (CCM) ternary eutectic alloy by addition of a small amount of copper (0.5 and 1 at.%). The microstructural observations reveal a distinct dissimilarity in the eutectic structure such as a broken lamellar structure and a well-aligned lamellar structure and an increasing volume fraction of Co lamellae as increasing amount of copper addition. This microstructural evolution leads to improved plasticity from 1% to 10% without the typical tradeoff between the overall strength and compressive plasticity. Moreover, investigation of the fractured samples indicates that the CCMCu alloy exhibits higher plastic deformability and combinatorial mechanisms for improved plastic behavior. The improved plasticity of CCMCu alloys originates from several deformation mechanisms; i) slip, ii) deformation twinning, iii) strain-induced transformation and iv) shear banding. These results reveal that the mechanical properties of eutectic alloys in the Co-Cr-Mo system can be ameliorated by micro-alloying such as Cu addition. PMID:28067248

  1. Spark plasma sintering of bulk SrAl2O4-Sr3Al2O6 eutectic glass with wide-band optical window

    NASA Astrophysics Data System (ADS)

    Liu, Jiaxi; Lu, Nan; He, Gang; Li, Xiaoyu; Li, Jianqiang; Li, Jiangtao

    2018-06-01

    SrAl2O4-Sr3Al2O6 eutectic glass was prepared by using an aerodynamic levitator equipped with a CO2 laser device. A bulk transparent amorphous sample was obtained by the spark plasma sintering (SPS) of the prepared eutectic glass. XRD, a UV–vis-NIR spectrophotometer and FT-IR were employed to characterize the phase evolution and optical properties. The results show that the bulk SrAl2O4-Sr3Al2O6 samples fabricated by the containerless process and SPS between 852 °C–857 °C were fully amorphous. The amorphous sample has a wide transparent window between 270 nm and 6.2 μm. The average refractive index in the visible light region is 1.680 and the Abbe number is 27.4. The prepared bulk SrAl2O4-Sr3Al2O6 eutectic glass with the wide-band optical window may be a promising candidate for optical applications.

  2. A Comparative Study of the Corrosion Behavior of Three Stainless Steels in an Eutectic (Li,Na,K)2CO3 Melt with and without (Na,K)Cl Additives at 973K in Air

    NASA Astrophysics Data System (ADS)

    Zeng, C. L.; Liu, Y.

    2011-04-01

    The ternary carbonate eutectic mixture of Li2CO3, K2CO3 and Na2CO3 as a heat transfer and storage medium has excellent thermophysical properties, but with high viscidity as compared with some other inorganic salts such as chlorides and nitrates. The addition of chlorides or fluorides to molten carbonates may improve their fluidity, but possibly making the melt become more corrosive. In this study, the corrosion behavior of type 304, 310 and 316 stainless steels in an eutectic (Li,Na,K)2CO3 melt with and without an eutectic mixture of NaCl and KCl at 973K in air have been examined. The experimental results indicated that 310 steel shows a much better corrosion resistance in molten carbonates than both 304 and 316 steels, due to the formation of a continuous LiCrO2 scale. The addition of chlorides to carbonates melt accelerated the corrosion of the steels, especially 310 steel, producing scales with more porosity.

  3. Mathematical modeling of microstructural development in hypoeutectic cast iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maijer, D.; Cockcroft, S.L.; Patt, W.

    A mathematical heat-transfer/microstructural model has been developed to predict the evolution of proeutectic austenite, white iron eutectic, and gray iron eutectic during solidification of hypoeutectic cast iron, based on the commercial finite-element code ABAQUS. Specialized routines which employ relationships describing nucleation and growth of equiaxed primary austenite, gray iron eutectic, and white iron eutectic have been formulated and incorporated into ABAQUS through user-specified subroutines. The relationships used in the model to describe microstructural evolution have been adapted from relationships describing equiaxed growth in the literature. The model has been validated/fine tuned against temperature data collected from a QuiK-Cup sample, whichmore » contained a thermocouple embedded approximately in the center of the casting. The phase distribution predicted with the model has been compared to the measured phase distribution inferred from the variation in hardness within the QuiK-Cup sample and from image analysis of photomicrographs of the polished and etched microstructure. Overall, the model results were found to agree well with the measured distribution of the microstructure.« less

  4. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  5. Sr-Al-Si co-segregated regions in eutectic Si phase of Sr-modified Al-10Si alloy.

    PubMed

    Timpel, M; Wanderka, N; Schlesiger, R; Yamamoto, T; Isheim, D; Schmitz, G; Matsumura, S; Banhart, J

    2013-09-01

    The addition of 200 ppm strontium to an Al-10 wt% Si casting alloy changes the morphology of the eutectic silicon phase from coarse plate-like to fine fibrous networks. In order to clarify this modification mechanism the location of Sr within the eutectic Si phase has been investigated by a combination of high-resolution methods. Whereas three-dimensional atom probe tomography allows us to visualise the distribution of Sr on the atomic scale and to analyse its local enrichment, transmission electron microscopy yields information about the crystallographic nature of segregated regions. Segregations with two kinds of morphologies were found at the intersections of Si twin lamellae: Sr-Al-Si co-segregations of rod-like morphology and Al-rich regions of spherical morphology. Both are responsible for the formation of a high density of multiple twins and promote the anisotropic growth of the eutectic Si phase in specific crystallographic directions during solidification. The experimental findings are related to the previously postulated mechanism of "impurity induced twinning". Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Microstructural evolution with various Ti contents in Fe-based hardfacing alloys using a GTAW technique

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Chun; Liu, Yi-Chia; Wang, Jia-Siang; Wu, Weite

    2014-07-01

    The aim of this study is to discuss the effect of microstructural development with different Ti contents in Fe-based hardfacing alloys. A series of Fe-Cr-C-Si-Mn-xTi alloy fillers was deposited on SS400 low carbon steel substrate using oscillating gas tungsten arc welding. The microstructure in the Fe-based hardfacing alloy without Ti content addition included: the primary γ, eutectic γ+(Fe,Cr)3C, eutectic γ+(Fe,Cr)2C and martensite. With increasing Ti contents, the microstructures showed the primary TiC carbide, γ phase and eutectic γ+(Fe,Cr,Ti)3C. The amount and size of TiC carbide in the hardfacing layers increased as the Ti content increased. However, the eutectic γ+(Fe,Cr,Ti)3C content decreased as the Ti content increased. According to the results of the hardness test, the lowest hardness value (HRC 54.93) was found with 0% wt% Ti and the highest hardness (HRC 60.29) was observed with 4.87 wt% Ti.

  7. Solubilization of Genistein in Poly(Ethylene Glycol) via Eutectic Crystal Melting

    NASA Astrophysics Data System (ADS)

    Buddhiranon, Sasiwimon; Kyu, Thein

    2012-02-01

    Genistein (5,7,4'-trihydroxyisoflavone) is a phytoestrogen found in soybean. It possesses various biological/pharmacological functions, e.g., tyrosine kinase inhibitory, anticarcinogenic, antioxidant, anti-inflammatory, and anti-microbial activities. However, genistein has poor water solubility and skin permeability, which have seemingly prohibited the progress to preclinical evaluation. Eutectic melting approach has been performed as a means of solubilizing genistein in poly(ethylene glycol) (PEG). Eutectic phase diagrams of blends containing genistein and PEG having three different molecular weights, i.e., 44k, 7k, and 500 g/mol, were established by means of DSC and compared with the theoretical liquidus and solidus lines, calculated self-consistently by taking into consideration all interactions including amorphous-amorphous, crystal-amorphous, amorphous-crystal, and crystal-crystal interactions. The eutectic temperatures were found to decrease with decreasing molecular weight of PEG. Guided by the phase diagram, it was found that genistein can be dissolved in PEG500 up to ˜7 wt% at room temperature. More importantly, the solubility of genistein in PEG can be improved to meet the end-use criteria of the PEG/genistein mixtures.

  8. Bayesian truthing and experimental validation in homeland security and defense

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Wang, Wenjian; Kostrzewski, Andrew; Pradhan, Ranjit

    2014-05-01

    In this paper we discuss relations between Bayesian Truthing (experimental validation), Bayesian statistics, and Binary Sensing in the context of selected Homeland Security and Intelligence, Surveillance, Reconnaissance (ISR) optical and nonoptical application scenarios. The basic Figure of Merit (FoM) is Positive Predictive Value (PPV), as well as false positives and false negatives. By using these simple binary statistics, we can analyze, classify, and evaluate a broad variety of events including: ISR; natural disasters; QC; and terrorism-related, GIS-related, law enforcement-related, and other C3I events.

  9. Binary Colloidal Alloy Test-5: Phase Separation

    NASA Technical Reports Server (NTRS)

    Lynch, Matthew; Weitz, David A.; Lu, Peter J.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) experiment will photograph initially randomized colloidal samples onboard the ISS to determine their resulting structure over time. This allows the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-PhaseSep studies collapse (phase separation rates that impact product shelf-life); in microgravity the physics of collapse is not masked by being reduced to a simple top and bottom phase as it is on Earth.

  10. The Maui International Double Star Conference

    NASA Astrophysics Data System (ADS)

    Genet, Russell

    2013-04-01

    A three-day double star conference in February, 2013, covered double star observations from simple eyepiece astrometry of wide binaries, with orbital periods of centuries, to amplitude interferometry of binaries with periods measured in days or even hours. A wide range of participants, from students and amateurs to professionals shared their perspectives in panel discussions. This was the first conference of the newly-formed International Association of Double Star Observers (IADSO). PDFs of 22 of the talks and YouTube links to 23 of the talks and panels are available at www.IADSO.org.

  11. Thermal characteristic investigation of eutectic composite fatty acid as heat storage material for solar heating and cooling application

    NASA Astrophysics Data System (ADS)

    Thaib, R.; Fauzi, H.; Ong, H. C.; Rizal, S.; Mahlia, T. M. I.; Riza, M.

    2018-03-01

    A composite phase change material (CPCM) of myristic acid/palmitic acid/sodium myristate (MA/PA/SM) and of myristic acid/palmitic acid/sodium laurate (MA/PA/SL) were impregnated with purified damar gum as called Shorea Javanica (SJ) to improve the thermal conductivity of CPCM. The thermal properties, thermal conductivity, and thermal stability of both CPCM have investigated by using a Differential Scanning Calorimetry (DSC) thermal analysis, hot disc thermal conductivity analyzer, and Simultaneous Thermal Analyzer (STA), simultaneously. However, a chemical compatibility between both fatty acid eutectic mixtures and SJ in composite mixtures measured by Fourier Transform Infra-Red (FT-IR) spectrophotometer. The results were obtained that the thermal conductivity of MA/PA/SM/SJ and MA/PA/SL/SJ eutectic composite phase change material (CPCM) were improved by addition 3 wt.% and 2 wt.% of Shorea javanica (SJ), respectively, without occur a significant change on thermal properties of CPCM. Moreover, the absorbance spectrum of FT-IR shows the good compatibility of SJ with both MA/PA/SM and MA/PA/SL eutectic mixtures, the composite PCM also present good thermal performance and good thermal stability. Therefore, it can be noted that the purified Shorea Javanica proposed, the as high conductive material in this study was able to improve the thermal conductivity of eutectic PCM without any significant reduction on its thermo-physical and chemical properties and can be recommended as novelty composite phase change material for thermal energy storage application.

  12. Investigation of TiC C Eutectic and WC C Peritectic High-Temperature Fixed Points

    NASA Astrophysics Data System (ADS)

    Sasajima, Naohiko; Yamada, Yoshiro

    2008-06-01

    TiC C eutectic (2,761°C) and WC C peritectic (2,749°C) fixed points were investigated to compare their potential as high-temperature thermometric reference points. Two TiC C and three WC C fixed-point cells were constructed, and the melting and freezing plateaux were evaluated by means of radiation thermometry. The repeatability of the TiC C eutectic within a day was 60 mK with a melting range roughly 200 mK. The repeatability of the melting temperature of the WC C peritectic within 1 day was 17 mK with a melting range of ˜70 mK. The repeatability of the freezing temperature of the WC C peritectic was 21 mK with a freezing range less than 20 mK. One of the TiC C cells was constructed from a TiC and graphite powder mixture. The filling showed the reaction with the graphite crucible was suppressed and the ingot contained less voids, although the lack of high-purity TiC powder poses a problem. The WC C cells were easily constructed, like metal carbon eutectic cells, without any evident reaction with the crucible. From these results, it is concluded that the WC C peritectic has more potential than the TiC C eutectic as a high-temperature reference point. The investigation of the purification of the TiC C cell during filling and the plateau observation are also reported.

  13. How a protein can remain stable in a solvent with high content of urea: insights from molecular dynamics simulation of Candida antarctica lipase B in urea : choline chloride deep eutectic solvent.

    PubMed

    Monhemi, Hassan; Housaindokht, Mohammad Reza; Moosavi-Movahedi, Ali Akbar; Bozorgmehr, Mohammad Reza

    2014-07-28

    Deep eutectic solvents (DESs) are utilized as green and inexpensive alternatives to classical ionic liquids. It has been known that some of DESs can be used as solvent in the enzymatic reactions to obtain very green chemical processes. DESs are quite poorly understood at the molecular level. Moreover, we do not know much about the enzyme microstructure in such systems. For example, how some hydrolase can remain active and stable in a deep eutectic solvent including 9 M of urea? In this study, the molecular dynamics of DESs as a liquid was simulated at the molecular level. Urea : choline chloride as a well-known eutectic mixture was chosen as a model DES. The behavior of the lipase as a biocatalyst was studied in this system. For comparison, the enzyme structure was also simulated in 8M urea. The thermal stability of the enzyme was also evaluated in DESs, water, and 8M urea. The enzyme showed very good conformational stability in the urea : choline chloride mixture with about 66% urea (9 M) even at high temperatures. The results are in good agreement with recent experimental observations. In contrast, complete enzyme denaturation occurred in 8M urea with only 12% urea in water. It was found that urea molecules denature the enzyme by interrupting the intra-chain hydrogen bonds in a "direct denaturation mechanism". However, in a urea : choline chloride deep eutectic solvent, as a result of hydrogen bonding with choline and chloride ions, urea molecules have a low diffusion coefficient and cannot reach the protein domains. Interestingly, urea, choline, and chloride ions form hydrogen bonds with the surface residues of the enzyme which, instead of lipase denaturation, leads to greater enzyme stability. To the best of our knowledge, this is the first study in which the microstructural properties of a macromolecule are examined in a deep eutectic solvent.

  14. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.

    1994-01-01

    The primary motivation for this research was to determine the cause for space processing altering the microstructure of some eutectics, especially the MnBi-Bi eutectic. Four primary hypotheses were to be tested under this current grant: (1) A fibrous microstructure is much more sensitive to convection than a lamellar microstructure, which was assumed in our prior theoretical treatment. (2) An interface with one phase projecting out into the melt is much more sensitive to convection than a planar interface, which was assumed in our prior theoretical treatment. (3) The Soret effect is much more important in the absence of convection and has a sufficiently large influence on microstructure that its action can explain the flight results. (4) The microstructure is much more sensitive to convection when the composition of the bulk melt is off eutectic. These hypotheses were tested. It was concluded that none of these can explain the Grumman flight results. Experiments also were performed on the influence of current pulses on MnBi-Bi microstructure. A thorough review was made of all experimental results on the influence of convection on the fiber spacing in rod eutectics, including results from solidification in space or at high gravity, and use of mechanical stirring or a magnetic field. Contradictory results were noted. The predictions of models for convective influences were compared with the experimental results. Vigorous mechanical stirring appears to coarsen the microstructure by altering the concentration field in front of the freezing interface. Gentle convection is believed to alter the microstructure of a fibrous eutectic only when it causes a fluctuating freezing rate with a system for which the kinetics of fiber branching differs from that for fiber termination. These fluctuations may cause the microstructure to coarsen or to become finer, depending on the relative kinetics of these processes. The microstructure of lamellar eutectics is less sensitive to freezing rate fluctuations and to gentle convection.

  15. The UC2-x - Carbon eutectic: A laser heating study

    NASA Astrophysics Data System (ADS)

    Manara, D.; Boboridis, K.; Morel, S.; De Bruycker, F.

    2015-11-01

    The UC2-x - carbon eutectic has been studied by laser heating and fast multi-wavelength pyrometry under inert atmosphere. The study has been carried out on three compositions, two of which close to the phase boundary of the UC2-x - C miscibility gap (with C/U atomic ratios 2 and 2.1), and one, more crucial, with a large excess of carbon (C/U = 2.82). The first two compositions were synthesised by arc-melting. This synthesis method could not be applied to the last composition, which was therefore completed directly by laser irradiation. The U - C - O composition of the samples was checked by using a combustion method in an ELTRA® analyser. The eutectic temperature, established to be 2737 K ± 20 K, was used as a radiance reference together with the cubic - tetragonal (α → β) solid state transition, fixed at 2050 K ± 20 K. The normal spectral emissivity of the carbon-richer compounds increases up to 0.7, whereas the value 0.53 was established for pure hypostoichiometric uranium dicarbide at the limit of the eutectic region. This increase is analysed in the light of the demixing of excess carbon, and used for the determination of the liquidus temperature (3220 K ± 50 K for UC2.82). Due to fast solid state diffusion, also fostered by the cubic - tetragonal transition, no obvious signs of a lamellar eutectic structure could be observed after quenching to room temperature. The eutectic surface C/UC2-x composition could be qualitatively, but consistently, followed during the cooling process with the help of the recorded radiance spectra. Whereas the external liquid surface is almost entirely constituted by uranium dicarbide, it gets rapidly enriched in demixed carbon upon freezing. Demixed carbon seems to quickly migrate towards the inner bulk during further cooling. At the α → β transition, uranium dicarbide covers again the almost entire external surface.

  16. The influence of natural deep eutectic solvents on bioactive natural products: studying interactions between a hydrogel model and Schisandra chinensis metabolites.

    PubMed

    Liu, Yang; Zhang, Yu; Chen, Shao-Nong; Friesen, J Brent; Nikolić, Dejan; Choules, Mary P; McAlpine, James B; Lankin, David C; Gemeinhart, Richard A; Pauli, Guido F

    2018-06-01

    Natural Deep Eutectic Solvent (NADES) species can exhibit unexpected solubilizing power for lipophilic molecules despite their simple composition: hydrophilic organic molecules and water. In the present study, the unique properties of NADES species were applied in combination with a model polymer system: a hydrophilic chitosan/alginate hydrogel. Briefly, NADES species (e.g., mannose-dimethylurea-water, 2:5:5, mole/mole) formed matrices to 1) dissolve lipophilic molecules (e.g., curcumin), 2) load lipophilic molecule(s) into the hydrogel, and 3) spontaneously vacate from the system. NADES species ubiquitously occur in natural sources, and a crude extract is a mixture of the NADES species and bioactive metabolites. Based on these ideas, we hypothesized that the crude extract may also allow the loading of natural bioactive molecules from a natural NADES species into (bio)hydrogel systems. To evaluate this hypothesis in vitro, Schisandra chinensis fruit extract was chosen as a representative mixture of lipophilic botanical molecules and hydrophilic NADES species. The results showed that the NADES matrix of S. chinensis was capable of loading at least three bioactive lignans (i.e., gomisin A, gomisin J, and angeloylgomisin H) into the polymer system. The lipophilic metabolites can subsequently be released from the hydrogel. The outcomes suggest that a unique drug delivery mechanism may exist in nature, thereby potentially improving the bioavailability of lipophilic metabolites through physicochemical interactions with the NADES. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Improvement on electrical conductivity and electron field emission properties of Au-ion implanted ultrananocrystalline diamond films by using Au-Si eutectic substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankaran, K. J.; Institute for Materials Research; Sundaravel, B.

    2015-08-28

    In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm){sup −1}, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm{sup 2} (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of themore » UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices.« less

  18. Natural deep eutectic solvents as eco-friendly and sustainable dilution medium for the determination of residual organic solvents in pharmaceuticals with static headspace-gas chromatography.

    PubMed

    Wang, Meilian; Fang, Sheng; Liang, Xianrui

    2018-06-04

    Reported here is a simple and rapid static headspace gas chromatography (SHS-GC) method for the determination of trace solvents including ethanol, isopropanol, n-butanol, 1,4-dioxane, tetrahydrofuran, acetonitrile, methanol and acetone which commonly used in drug production process. Natural deep eutectic solvents (NADESs) are firstly used as the matrix medium for this method, which provided high sensitivity for residual solvents detection. With the optimized method, validation experiments were performed and the data showed excellent linearity for all the solvents (R 2 ≥ 0.999, n = 7). The limits of detection (LOD) for ethanol, isopropanol, n-butanol, 1,4-dioxane, tetrahydrofuran, acetonitrile, methanol and acetone are 0.09, 0.08, 0.07, 0.11, 0.06, 0.10, 0.12 and 0.08 μg g -1 , respectively. Accuracy was checked by a recovery experiment at three different levels, and the recoveries of the tested solvents were ranged from 94.3% to 105.4%. The relative standard deviation (RSD) of each solvent for intra- and inter-day precision is in the range of 0.85 to 3.65 and 1.51 to 4.53, respectively. The developed approach can be readily used for determination of the residual solvents in six active pharmaceutical ingredients including pramipexole dihydrochloride, rivaroxaban, lisinopril, ramipril, imatinib mesylate and sitagliptin. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Quantum memory receiver for superadditive communication using binary coherent states

    NASA Astrophysics Data System (ADS)

    Klimek, Aleksandra; Jachura, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2016-11-01

    We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.

  20. Quantum memory receiver for superadditive communication using binary coherent states.

    PubMed

    Klimek, Aleksandra; Jachura, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2016-11-12

    We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011 , 106 , 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.

  1. ON THE PULSATIONAL-ORBITAL-PERIOD RELATION OF ECLIPSING BINARIES WITH δ-SCT COMPONENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X. B.; Luo, C. Q.; Fu, J. N.

    2013-11-01

    We have deduced a theoretical relation between the pulsation and orbital-periods of pulsating stars in close binaries based on their Roche lobe filling. It appears to be of a simple linear form, with the slope as a function of the pulsation constant, the mass ratio, and the filling factor for an individual system. Testing the data of 69 known eclipsing binaries containing δ-Sct-type components yields an empirical slope of 0.020 ± 0.006 for the P{sub pul}-P{sub orb} relation. We have further derived the upper limit of the P{sub pul}/P{sub orb} ratio for the δ-Sct stars in eclipsing binaries with amore » value of 0.09 ± 0.02. This value could serve as a criterion to distinguish whether or not a pulsator in an eclipsing binary pulsates in the p-mode. Applying the deduced P{sub pul}-P{sub orb} relation, we have computed the dominant pulsation constants for 37 δ-Sct stars in eclipsing systems with definite photometric solutions. These ranged between 0.008 and 0.033 days with a mean value of about 0.014 days, indicating that δ-Sct stars in eclipsing binaries mostly pulsate in the fourth or fifth overtones.« less

  2. Numerical Simulations of Dynamical Mass Transfer in Binaries

    NASA Astrophysics Data System (ADS)

    Motl, P. M.; Frank, J.; Tohline, J. E.

    1999-05-01

    We will present results from our ongoing research project to simulate dynamically unstable mass transfer in near contact binaries with mass ratios different from one. We employ a fully three-dimensional self-consistent field technique to generate synchronously rotating polytropic binaries. With our self-consistent field code we can create equilibrium binaries where one component is, by radius, within about 99 of filling its Roche lobe for example. These initial configurations are evolved using a three-dimensional, Eulerian hydrodynamics code. We make no assumptions about the symmetry of the subsequent flow and the entire binary system is evolved self-consistently under the influence of its own gravitational potential. For a given mass ratio and polytropic index for the binary components, mass transfer via Roche lobe overflow can be predicted to be stable or unstable through simple theoretical arguments. The validity of the approximations made in the stability calculations are tested against our numerical simulations. We acknowledge support from the U.S. National Science Foundation through grants AST-9720771, AST-9528424, and DGE-9355007. This research has been supported, in part, by grants of high-performance computing time on NPACI facilities at the San Diego Supercomputer Center, the Texas Advanced Computing Center and through the PET program of the NAVOCEANO DoD Major Shared Resource Center in Stennis, MS.

  3. Efficient Residue to Binary Conversion Based on a Modified Flexible Moduli Set

    NASA Astrophysics Data System (ADS)

    Molahosseini, Amir Sabbagh

    2011-09-01

    The Residue Number System (RNS) is a non-weighted number system which can perform addition (subtraction) and multiplication on residues without carry-propagation; resulting in high-speed hardware implementations of computation systems. The problem of converting residue numbers to equivalent binary weighted form has been attracted a lot of research for many years. Recently, some researchers proposed using flexible moduli sets instead of previous traditional moduli sets to enhance the performance of residue to binary converters. This paper introduces the modified flexible moduli set {22p+k. 22p+1, 2p+1, 2p-1} which is achieved from the flexible set {2p+k, 22p+1, 2p+1, 2p-1} by enhancing modulo 2p+k. Next, new Chinese remainder theorem-1 is used to design simple and efficient residue to binary converter for this modified set with better performance than the converter of the moduli set {2p+k, 22p+1, 2p+1, 2p-1}.

  4. Ternary and coupled binary zinc tin oxide nanopowders: Synthesis, characterization, and potential application in photocatalytic processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivetić, T.B., E-mail: tamara.ivetic@df.uns.ac.rs; Finčur, N.L.; Đačanin, Lj. R.

    2015-02-15

    Highlights: • Mechanochemically synthesized nanocrystalline zinc tin oxide (ZTO) powders. • Photocatalytic degradation of alprazolam in the presence of ZTO water suspensions. • Coupled binary ZTO exhibits enhanced photocatalytic activity compared to ternary ZTO. - Abstract: In this paper, ternary and coupled binary zinc tin oxide nanocrystalline powders were prepared via simple solid-state mechanochemical method. X-ray diffraction, scanning electron microscopy, Raman and reflectance spectroscopy were used to study the structure and optical properties of the obtained powder samples. The thermal behavior of zinc tin oxide system was examined through simultaneous thermogravimetric-differential scanning calorimetric analysis. The efficiencies of ternary (Zn{sub 2}SnO{submore » 4} and ZnSnO{sub 3}) and coupled binary (ZnO/SnO{sub 2}) zinc tin oxide water suspensions in the photocatalytic degradation of alprazolam, short-acting anxiolytic of the benzodiazepine class of psychoactive drugs, under UV irradiation were determined and compared with the efficiency of pure ZnO and SnO{sub 2}.« less

  5. Neighborhood binary speckle pattern for deformation measurements insensitive to local illumination variation by digital image correlation.

    PubMed

    Zhao, Jian; Yang, Ping; Zhao, Yue

    2017-06-01

    Speckle pattern-based characteristics of digital image correlation (DIC) restrict its application in engineering fields and nonlaboratory environments, since serious decorrelation effect occurs due to localized sudden illumination variation. A simple and efficient speckle pattern adjusting and optimizing approach presented in this paper is aimed at providing a novel speckle pattern robust enough to resist local illumination variation. The new speckle pattern, called neighborhood binary speckle pattern, derived from original speckle pattern, is obtained by means of thresholding the pixels of a neighborhood at its central pixel value and considering the result as a binary number. The efficiency of the proposed speckle pattern is evaluated in six experimental scenarios. Experiment results indicate that the DIC measurements based on neighborhood binary speckle pattern are able to provide reliable and accurate results, even though local brightness and contrast of the deformed images have been seriously changed. It is expected that the new speckle pattern will have more potential value in engineering applications.

  6. Detecting gravity waves from binary black holes

    NASA Technical Reports Server (NTRS)

    Wahlquist, Hugo D.

    1989-01-01

    One of the most attractive possible sources of strong gravitational waves would be a binary system comprising massive black holes (BH). The gravitational radiation from a binary is an elliptically polarized, periodic wave which could be observed continuously - or at intervals whenever a detector was available. This continuity of the signal is certainly appealing compared to waiting for individual pulses from infrequent random events. It also has the advantage over pulses that continued observation can increase the signal-to-noise ratio almost indefinitely. Furthermore, this system is dynamically simple; the theory of the generation of the radiation is unambiguous; all characteristics of the signal can be precisely related to the dynamical parameters of the source. The current situation is that while there is no observational evidence as yet for the existence of massive binary BH, their formation is theoretically plausible, and within certain coupled constraints of mass and location, their existence cannot be observationally excluded. Detecting gravitational waves from these objects might be the first observational proof of their existence.

  7. Processing eutectics in space

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Galasso, F. S.

    1974-01-01

    Studies which have been done in an earth-based laboratory environment have generally not yielded specimens with the degree of perfection required of the eutectic microstructure to provide test data to evaluate their nonstructural applications. It has been recognized that the low-g environment of an orbiting space laboratory provides a unique environment to re-examine the process of solidification with the goal of producing better microstructures. The objective of this program is to evaluate the feasibility of using the space environment for producing eutectics with microstructures which can be of value on earth. In carrying out this objective, evaluative investigations were carried out on the technology of solidification in a 1-g environment to provide sound baseline data for planning space laboratory experiments.

  8. Experimental study of modification mechanism at a wear-resistant surfacing

    NASA Astrophysics Data System (ADS)

    Dema, R. R.; Amirov, R. N.; Kalugina, O. B.

    2018-01-01

    In the study, a simulation of the crystallization process was carried out for the deposition of the near-eutectic structure alloys with inoculants presence in order to reveal the regularities of the inoculant effect and parameters of the process mode simulating surfacing on the structure of the crystallization front and on the nucleation rate and kinetics of growth of equiaxed crystallites of primary phases occurring in the volume of the melt. The simulation technique of primary crystallization of alloys similar to eutectic alloys in the presence of modifiers is offered. The possibility of fully eutectic structure during surfacing of nominal hypereutectic alloys of type white cast irons in wide range of deviations from the nominal composition is revealed.

  9. Chip bonding of low-melting eutectic alloys by transmitted laser radiation

    NASA Astrophysics Data System (ADS)

    Hoff, Christian; Venkatesh, Arjun; Schneider, Friedrich; Hermsdorf, Jörg; Bengsch, Sebastian; Wurz, Marc C.; Kaierle, Stefan; Overmeyer, Ludger

    2017-06-01

    Present-day thermode bond systems for the assembly of radio-frequency identification (RFID) chips are mechanically inflexible, difficult to control, and will not meet future manufacturing challenges sufficiently. Chip bonding, one of the key processes in the production of integrated circuits (ICs), has a high potential for optimization with respect to process duration and process flexibility. For this purpose, the technologies used, so far, are supposed to be replaced by a transmission laser-bonding process using low-melting eutectic alloys. In this study, successful bonding investigations of mock silicon chips and of RFID chips on flexible polymer substrates are presented using the low-melting eutectic alloy, 52In48Sn, and a laser with a wavelength of 2 μm.

  10. Context-free parsing with connectionist networks

    NASA Astrophysics Data System (ADS)

    Fanty, M. A.

    1986-08-01

    This paper presents a simple algorithm which converts any context-free grammar into a connectionist network which parses strings (of arbitrary but fixed maximum length) in the language defined by that grammar. The network is fast, O(n), and deterministicd. It consists of binary units which compute a simple function of their input. When the grammar is put in Chomsky normal form, O(n3) units needed to parse inputs of length up to n.

  11. Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors

    DTIC Science & Technology

    2011-04-15

    funded by Mitsubishi Electric Research Laboratories. †ICTEAM Institute, ELEN Department, Université catholique de Louvain (UCL), B-1348 Louvain-la-Neuve...reduced to a simple comparator that tests for values above or below zero, enabling extremely simple, efficient, and fast quantization. A 1-bit quantizer is...these two terms appears to be significantly different, according to the previously discussed experiments. To test the hypothesis that this term is the key

  12. A computer tool for a minimax criterion in binary response and heteroscedastic simple linear regression models.

    PubMed

    Casero-Alonso, V; López-Fidalgo, J; Torsney, B

    2017-01-01

    Binary response models are used in many real applications. For these models the Fisher information matrix (FIM) is proportional to the FIM of a weighted simple linear regression model. The same is also true when the weight function has a finite integral. Thus, optimal designs for one binary model are also optimal for the corresponding weighted linear regression model. The main objective of this paper is to provide a tool for the construction of MV-optimal designs, minimizing the maximum of the variances of the estimates, for a general design space. MV-optimality is a potentially difficult criterion because of its nondifferentiability at equal variance designs. A methodology for obtaining MV-optimal designs where the design space is a compact interval [a, b] will be given for several standard weight functions. The methodology will allow us to build a user-friendly computer tool based on Mathematica to compute MV-optimal designs. Some illustrative examples will show a representation of MV-optimal designs in the Euclidean plane, taking a and b as the axes. The applet will be explained using two relevant models. In the first one the case of a weighted linear regression model is considered, where the weight function is directly chosen from a typical family. In the second example a binary response model is assumed, where the probability of the outcome is given by a typical probability distribution. Practitioners can use the provided applet to identify the solution and to know the exact support points and design weights. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. A simple and green pathway toward nitrogen and sulfur dual doped hierarchically porous carbons from ionic liquids for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Cui, Zhentao; Wang, Shuguang; Zhang, Yihe; Cao, Minhua

    2014-08-01

    We for the first time demonstrate a simple and green approach to heteroatom (N and S) co-doped hierarchically porous carbons (N-S-HC) with high surface area by using one organic ionic liquid as nitrogen, sulfur and carbon sources and the eutectic salt as templating. The resultant dual-doped N-S-HC catalysts exhibit significantly enhanced electrocatalytic activity, long-term operation stability, and tolerance to crossover effect compared to commercial Pt/C for oxygen reduction reactions (ORR) in alkaline environment. The excellent electrocatalytic performance may be attributed to the synergistic effects, which includes more catalytic sites for ORR provided by N-S heteroatom doping and high electron transfer rate provided by hierarchically porous structure. The DFT calculations reveal that the dual doping of S and N atoms lead to the redistribution of spin and charge densities, which may be responsible for the formation of a large number of carbon atom active sites. This newly developed approach may supply an efficient platform for the synthesis of a series of heteroatom doped carbon materials for fuel cells and other applications.

  14. The respective roles of polar/nonpolar binary patterns and amino acid composition in protein regular secondary structures explored exhaustively using hydrophobic cluster analysis.

    PubMed

    Rebehmed, Joseph; Quintus, Flavien; Mornon, Jean-Paul; Callebaut, Isabelle

    2016-05-01

    Several studies have highlighted the leading role of the sequence periodicity of polar and nonpolar amino acids (binary patterns) in the formation of regular secondary structures (RSS). However, these were based on the analysis of only a few simple cases, with no direct mean to correlate binary patterns with the limits of RSS. Here, HCA-derived hydrophobic clusters (HC) which are conditioned binary patterns whose positions fit well those of RSS, were considered. All the HC types, defined by unique binary patterns, which were commonly observed in three-dimensional (3D) structures of globular domains, were analyzed. The 180 HC types with preferences for either α-helices or β-strands distinctly contain basic binary units typical of these RSS. Therefore a general trend supporting the "binary pattern preference" assumption was observed. HC for which observed RSS are in disagreement with their expected behavior (discordant HC) were also examined. They were separated in HC types with moderate preferences for RSS, having "weak" binary patterns and versatile RSS and HC types with high preferences for RSS, having "strong" binary patterns and then displaying nonpolar amino acids at the protein surface. It was shown that in both cases, discordant HC could be distinguished from concordant ones by well-differentiated amino acid compositions. The obtained results could, thus, help to complement the currently available methods for the accurate prediction of secondary structures in proteins from the only information of a single amino acid sequence. This can be especially useful for characterizing orphan sequences and for assisting protein engineering and design. © 2016 Wiley Periodicals, Inc.

  15. Binary dislocation junction formation and strength in hexagonal close-packed crystals

    DOE PAGES

    Wu, Chi -Chin; Aubry, Sylvie; Arsenlis, Athanasios; ...

    2015-12-17

    This work examines binary dislocation interactions, junction formation and junction strengths in hexagonal close-packed ( hcp ) crystals. Through a line-tension model and dislocation dynamics (DD) simulations, the interaction and dissociation of different sets of binary junctions are investigated involving one dislocation on the (011¯0) prismatic plane and a second dislocation on one of the following planes: (0001) basal, (11¯00) prismatic, (11¯01) primary pyramidal, or (2¯112) secondary pyramidal. Varying pairs of Burgers vectors are chosen from among the common types the basal type < a > 1/3 < 112¯0 >, prismatic type < c > <0001>, and pyramidal type 1/3 < 112¯3¯ >. For binary interaction due to dislocation intersection, both the analytical results and DD-simulations indicate a relationship between symmetry of interaction maps and the relative magnitude of the Burgers vectors that constitute the junction. Using analytical formulae, a simple regressive model is also developed to represent the junction yield surface. The equation is treated as a degenerated super elliptical equation to quantify the aspect ratio and tilting angle. Lastly, the results provide analytical insights on binary dislocation interactions that may occur in general hcp metals.« less

  16. Robust watermarking scheme for binary images using a slice-based large-cluster algorithm with a Hamming Code

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Yuan; Liu, Chen-Chung

    2006-01-01

    The problems with binary watermarking schemes are that they have only a small amount of embeddable space and are not robust enough. We develop a slice-based large-cluster algorithm (SBLCA) to construct a robust watermarking scheme for binary images. In SBLCA, a small-amount cluster selection (SACS) strategy is used to search for a feasible slice in a large-cluster flappable-pixel decision (LCFPD) method, which is used to search for the best location for concealing a secret bit from a selected slice. This method has four major advantages over the others: (a) SBLCA has a simple and effective decision function to select appropriate concealment locations, (b) SBLCA utilizes a blind watermarking scheme without the original image in the watermark extracting process, (c) SBLCA uses slice-based shuffling capability to transfer the regular image into a hash state without remembering the state before shuffling, and finally, (d) SBLCA has enough embeddable space that every 64 pixels could accommodate a secret bit of the binary image. Furthermore, empirical results on test images reveal that our approach is a robust watermarking scheme for binary images.

  17. Very high energy gamma-ray binary stars.

    PubMed

    Lamb, R C; Weekes, T C

    1987-12-11

    One of the major astronomical discoveries of the last two decades was the detection of luminous x-ray binary star systems in which gravitational energy from accretion is released by the emission of x-ray photons, which have energies in the range of 0.1 to 10 kiloelectron volts. Recent observations have shown that some of these binary sources also emit photons in the energy range of 10(12) electron volts and above. Such sources contain a rotating neutron star that is accreting matter from a companion. Techniques to detect such radiation are ground-based, simple, and inexpensive. Four binary sources (Hercules X-1, 4U0115+63, Vela X-1, and Cygnus X-3) have been observed by at least two independent groups. Although the discovery of such very high energy "gamma-ray binaries" was not theoretically anticipated, models have now been proposed that attempt to explain the behavior of one or more of the sources. The implications of these observations is that a significant portion of the more energetic cosmic rays observed on Earth may arise from the action of similar sources within the galaxy during the past few million years.

  18. Microstructure and mechanical properties of eutectic B2O3-UO2 ceramic composites solidified at different cooling rates

    NASA Astrophysics Data System (ADS)

    Yusufu, Aikebaier; Uno, Masayoshi

    2018-02-01

    The removal of nuclear debris from damaged reactors by drilling or cutting requires an understanding of various properties of the solidified debris, such as mechanical properties (hardness, fractural features, strength, etc.) and microstructural properties like porosity, which have a significant impact on the mechanical properties. In this study, B2O3-UO2 composites were prepared by the eutectic reaction as solidified samples of mock fuel debris with a wide variety of porosities, and the porosity dependence of the mechanical properties under compression were characterized to obtain fundamental data on the complicated fuel debris. The porous eutectic B2O3-UO2 (B2O3/UO2 atomic ratio = 0.225:0.775) samples were successfully prepared by solidification of the molten phase below 2073 K, and the porosity increased as the pore network developed as the cooling rate was decreased. The nano- and microhardness as well as Young's moduli of the eutectic B2O3-UO2 samples were higher than those of UO2. However, the compressive strengths of the eutectic B2O3-UO2 samples were lower than that of UO2, and they decreased as the porosity increased. All samples showed typical brittle fracturing behavior. The low-porosity samples showed a linear elastic step up to a sudden rupture, whereas the high-porosity samples exhibited two main regimes: a linear elastic region that can be attributed to pore-edge bending or face stretching; a zigzag step that is related to the progression of pore collapse.

  19. Electrically Conducting, Ca-Rich Brines, Rather Than Water, Expected in the Martian Subsurface

    NASA Technical Reports Server (NTRS)

    Burt, D. M.; Knauth, L. P.

    2003-01-01

    If Mars ever possessed a salty liquid hydrosphere, which later partly evaporated and froze down, then any aqueous fluids left near the surface could have evolved to become dense eutectic brines. Eutectic brines, by definition, are the last to freeze and the first to melt. If CaC12-rich, such brines can remain liquid until temperatures below 220 K, close to the average surface temperature of Mars. In the Martian subsurface, in intimate contact with the Ca-rich basaltic regolith, NaC1-rich early brines should have reacted to become Ca-rich. Fractional crystallization (freezing) and partial melting would also drive brines toward CaC12-rich compositions. In other words, eutectic brine compositions could be present in the shallow subsurface of Mars, for the same reasons that eutectic magma compositions are common on Earth. Don Juan Pond, Antarctica, a CaC12-rich eutectic brine, provides a possible terrestrial analog, particularly because it is fed from a basaltic aquifer. Owing to their relative density and fluid nature, brines in the Martian regolith should eventually become sandwiched between ice above and salts beneath. A thawing brine sandwich provides one explanation (among many) for the young gullies recently attributed to seepage of liquid water on Mars. Whether or not brine seepage explains the gullies phenomenon, dense, CaC12-rich brines are to be expected in the deep subsurface of Mars, although they might be somewhat diluted (temperatures permitting) and of variable salt composition. In any case, they should be good conductors of electricity.

  20. Spectroscopic studies of transition metal ions in molten alkali metal carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroni, V.A.; Maciejewski, M.L.

    Electronic absorption and C-13 NMR spectroscopic studies were carried out to investigate the structure of (i) alkali metal formate (Fm) and acetate (Ac) eutectic melts and (ii) solutions of 3d transition metal (TM) cations in these eutectics. Measurements were made over the temperature range 90..-->..190/sup 0/C. The most stable oxidation states of the individual TMs in the Fm and Ac eutectics were: Ti/sup 3 +/, V/sup 3 +/, VO/sup 2 +/, Cr/sup 3 +/, Mn/sup 2 +/, Fe/sup 2 +/, Co/sup 2 +/, Ni/sup 2 +/, and Cu/sup 2 +/. The ligand field absorption spectra obtained in these carboxylate meltsmore » bore a consistent resemblance to the spectra of these same cations in aqueous media, but the absorptivities were generally higher than are observed for the hexaquo complexes. The results were interpreted in terms of the existence of bidentate coordination in some (if not all) cases, leading to noncentrosymmetric complexation geometries. Key results of the NMR measurements included the apparent observation of two different carboxylate anion environments in Ni/sup 2 +/ solutions. C-13 spin-lattice relaxation of the carboxylate anions in the TM-free eutectics was found to be controlled by dipolar coupling to another nucleus. In the TM-containing solutions, the spin-lattice relaxation times were reduced by a factor of 10 to 1000, evidencing the expected shift to electron-nuclear dipolar coupling. Activation energies for viscous flow derived from the spin-lattice relaxation measurements on TM-free melts were in the 10..-->..11 kcal/mol range, reflecting the highly ordered, glassy nature of the eutectics studied.« less

  1. Finite Element Analysis of Eutectic Structures

    DTIC Science & Technology

    2014-03-12

    Reported are the details of processing conditions, microstructure development, and temperature dependent thermoelectric properties . The material system...Sootsman et al ., Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites, Chem. Mater. 22 (2010) 869. 7. J...Professor) CASE WESTERN RESERVE UNIVERSTY Thermoelectric Properties of WSi2-SixGe1-x Composites Thermoelectric properties of the W/Si/Ge alloy

  2. Synthesis of novel lidocaine-releasing poly(diol-co-citrate) elastomers by using deep eutectic solvents.

    PubMed

    Serrano, M Concepción; Gutiérrez, María C; Jiménez, Ricardo; Ferrer, M Luisa; del Monte, Francisco

    2012-01-14

    Poly(octanediol-co-citrate) elastomers containing high loading of lidocaine were synthesized at temperatures below 100 °C by means of using deep eutectic mixtures of 1,8-octanediol and lidocaine. The preservation of lidocaine integrity resulted in high-capacity drug-eluting elastomers. This journal is © The Royal Society of Chemistry 2012

  3. Directionally Solidified Eutectic Ceramics for Multifunctional Aerospace Applications

    DTIC Science & Technology

    2009-06-01

    Solidified Alumina - Titania Composites", Key Engineering Materials, 290 (2005) pp 199 - 202. PEER REVIEWED CONFERENCE PROCEEDINGS 22. A. Sayir, S...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 1 Progress Report for 2006 For the Grant Directionally Solidified Eutectic Ceramics ...incorporating structural ceramics in future aerospace applications: (1) the challenges associated with ceramics are improving strength, toughness and

  4. Determining the thermodynamic melting parameters of sulfamethoxazole, trimethoprim, urea, nicodin, and their double eutectics by differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Agafonova, E. V.; Moshchenskii, Yu. V.; Tkachenko, M. L.

    2013-08-01

    The literature data on the thermodynamic melting characteristics of sulfamethoxazole, urea, trimethoprim, and nicodin are analyzed for individual compounds. Their enthalpies and melting points, either individually or in the composition of eutectics, are found by means of DSC. The entropies of fusion and the cryoscopic constants of individual compounds are calculated.

  5. Microwave heat treating of manufactured components

    DOEpatents

    Ripley, Edward B.

    2007-01-09

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  6. Improved calcium sulfate recovery from a reverse osmosis retentate using eutectic freeze crystallization.

    PubMed

    Randall, D G; Mohamed, R; Nathoo, J; Rossenrode, H; Lewis, A E

    2013-01-01

    A novel low temperature crystallization process called eutectic freeze crystallization (EFC) can produce both salt(s) and ice from a reverse osmosis (RO) stream by operating at the eutectic temperature of a solution. The EFC reject stream, which is de-supersaturated with respect to the scaling component, can subsequently be recycled back to the RO process for increased water recovery. This paper looks at the feasibility of using EFC to remove calcium sulfate from an RO retentate stream and compares the results to recovery rates at 0 and 20 °C. The results showed that there was a greater yield of calcium sulfate obtained at 0 °C as compared with 20 °C. Operation under eutectic conditions, with only a 20% ice recovery, resulted in an even greater yield of calcium sulfate (48%) when compared with yields obtained at operating temperatures of 0 and 20 °C (15% at 0 °C and 13% at 20 °C). The theoretical calcium recoveries were found to be 75 and 70% at 0 and 20 °C respectively which was higher than the experimentally determined values. The EFC process has the added advantage of producing water along with a salt.

  7. Vacuum distillation of a mixture of LiCl-KCl eutectic salts and RE oxidative precipitates and a dechlorination and oxidation of RE oxychlorides.

    PubMed

    Eun, Hee Chul; Yang, Hee Chul; Cho, Yung Zun; Lee, Han Soo; Kim, In Tae

    2008-12-30

    In this study, a vacuum distillation of a mixture of LiCl-KCl eutectic salt and rare-earth oxidative precipitates was performed to separate a pure LiCl-KCl eutectic salt from the mixture. Also, a dechlorination and oxidation of the rare-earth oxychlorides was carried out to stabilize a final waste form. The mixture was distilled under a range of 710-759.5Torr of a reduced pressure at a fixed heating rate of 4 degrees C/min and the LiCl-KCl eutectic salt was completely separated from the mixture. The required time for the salt distillation and the starting temperature for the salt vaporization were lowered with a reduction in the pressure. Dechlorination and oxidation of the rare-earth oxychlorides was completed at a temperature below 1300 degrees C and this was dependent on the partial pressure of O2. The rare-earth oxychlorides (NdOCl/PrOCl) were transformed to oxides (Nd2O3/PrO2) during the dechlorination and oxidation process. These results will be utilized to design a concept for a process for recycling the waste salt from an electrorefining process.

  8. Effect of Ni on Fe FeS phase relations at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Fei, Yingwei

    2008-04-01

    A series of melting experiments in the Fe-rich portion of the Fe-Ni-S system have been conducted at 19-23 GPa and 800-1100 °C. The solubility of S in the Fe-Ni solid alloy and the eutectic melting in the Fe-Ni-S system were determined as a function of Ni content. The maximum S solubility in the Fe-Ni alloy is 2.7 wt.% at 20 GPa and the eutectic temperature. The eutectic melting temperature in the Fe-Ni(5wt.%)-S system is ~ 1000 °C lower than the melting point of pure Fe at 20 GPa. We also found that Ni can substitute Fe in the Fe 3S structure to form (Fe,Ni) 3S solid solutions up to at least a Fe/Ni atomic ratio of 0.5. Similar to melting behavior in the Fe-FeS system, the eutectic melting relations in the Fe-Ni-S system could produce inner and outer cores with the right light element balance to account for the density difference between the solid inner core and the liquid outer core.

  9. Density measurements of the lithium fluoride/lithium sulfide eutectic at high temperature

    NASA Astrophysics Data System (ADS)

    Lloyd, Charles L.; Gilbert, James B.

    1994-10-01

    A straightforward and reliable method to determine densities of molten salts at high temperatures was de-veloped by Janz and Lorenz several years ago.[1] This method was followed in order to determine the density of the LiF/Li2S eutectic[2] over the temperature range of 1176 to 1355 K in which the eutectic is liquid. The rel-ative lack of data for this eutectic is surprising given its potential usefulness in the study of advanced batteries'31 and electrowinning of metals from molten sulfides.[41] The method is based on the fact that a solid piece of metal of known volume suspended from a pan balance into a molten salt will weigh less than if it were sus-pended in air at the same temperature. This difference in weight measured in grams will be equal to the buoyant force of the liquid at that temperature. The density of the salt bath can then readily be determined by dividing this difference by the volume of the solid piece of metal that is immersed in the bath. The procedure can be re-peated to give density values over a range of temperatures.

  10. Antioxidant-Based Eutectics of Irbesartan: Viable Multicomponent Forms for the Management of Hypertension.

    PubMed

    Haneef, Jamshed; Chadha, Renu

    2018-04-01

    The present research work highlights the development of multicomponent solid form of the antihypertensive drug irbesartan (IRB) to improve its biopharmaceutical attributes. Mechanochemical synthesis of a new solid form of IRB with coformers having antioxidant properties (syringic acid, nicotinic acid, and ascorbic acid) resulted into three eutectic mixtures (EMs). Formation of eutectic was ascertained by differential scanning calorimetry whereas exact stoichiometry (50/50% w/w) was established by phase diagram and Tamman's triangle. The strong homomeric interaction between individual components and steric hindrances is responsible for the eutectic formation. EMs exhibited superior apparent solubility (five- to nine fold) and significant enhancement in intrinsic dissolution rate (two- to three fold) as compared to the plain drug. In vivo pharmacokinetic and in vivo pharmacodynamic studies revealed a significant improvement in the biopharmaceutical performance of EMs. Marked protection against oxidative stress was observed in EMs over plain drug by controlling the level/activity of plasma H 2 O 2 and antioxidant enzymes (superoxide dismutase and catalase) in the kidney matrix of dexamethasone (Dexa)-induced hypertensive rats. Thus, these solid forms of IRB can serve as viable multicomponent forms to be translated into product development for better therapeutic efficacy in the management of hypertension.

  11. Metastable solidification of hypereutectic Co 2Si-CoSi composition: Microstructural studies and in-situ observations

    DOE PAGES

    Wang, Yeqing; Gao, Jianrong; Kolbe, Matthias; ...

    2017-09-18

    Metastable solidification of undercooled Co 60Si 40 melts was investigated by microstructural studies and in-situ high-energy X-ray diffraction. Five solidification paths were identified. Three of them were observed at low undercoolings, which show uncoupled and coupled growth of stable β-Co 2Si and CoSi compounds. The other paths were observed at high undercoolings, which show peritectic and primary crystallization of a metastable Co 5Si 3 compound. The β-Co 2Si and Co 5Si 3 compounds crystallize into a hexagonal crystal structure and experience solid-state decomposition. Microstructure formation depends on solidification path. The coupled and uncoupled growth of the stable compounds produces amore » regular lamellar eutectic structure and an anomalous eutectic structure, respectively. The crystallization and solid-state decomposition of the metastable Co 5Si 3 compound brings about a fine-grained two-phase mixture, which represents another type of anomalous eutectic structure. Here, the results provide proof of two rare mechanisms of anomalous eutectic formation and shed light onto metastable phase relations in the undercooled region of the Co-Si system.« less

  12. Metastable solidification of hypereutectic Co 2Si-CoSi composition: Microstructural studies and in-situ observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yeqing; Gao, Jianrong; Kolbe, Matthias

    Metastable solidification of undercooled Co 60Si 40 melts was investigated by microstructural studies and in-situ high-energy X-ray diffraction. Five solidification paths were identified. Three of them were observed at low undercoolings, which show uncoupled and coupled growth of stable β-Co 2Si and CoSi compounds. The other paths were observed at high undercoolings, which show peritectic and primary crystallization of a metastable Co 5Si 3 compound. The β-Co 2Si and Co 5Si 3 compounds crystallize into a hexagonal crystal structure and experience solid-state decomposition. Microstructure formation depends on solidification path. The coupled and uncoupled growth of the stable compounds produces amore » regular lamellar eutectic structure and an anomalous eutectic structure, respectively. The crystallization and solid-state decomposition of the metastable Co 5Si 3 compound brings about a fine-grained two-phase mixture, which represents another type of anomalous eutectic structure. Here, the results provide proof of two rare mechanisms of anomalous eutectic formation and shed light onto metastable phase relations in the undercooled region of the Co-Si system.« less

  13. Effect of arsenic content and quenching temperature on solidification microstructure and arsenic distribution in iron-arsenic alloys

    NASA Astrophysics Data System (ADS)

    Xin, Wen-bin; Song, Bo; Huang, Chuan-gen; Song, Ming-ming; Song, Gao-yang

    2015-07-01

    The solidification microstructure, grain boundary segregation of soluble arsenic, and characteristics of arsenic-rich phases were systematically investigated in Fe-As alloys with different arsenic contents and quenching temperatures. The results show that the solidification microstructures of Fe-0.5wt%As alloys consist of irregular ferrite, while the solidification microstructures of Fe-4wt%As and Fe-10wt%As alloys present the typical dendritic morphology, which becomes finer with increasing arsenic content and quenching temperature. In Fe-0.5wt%As alloys quenched from 1600 and 1200°C, the grain boundary segregation of arsenic is detected by transmission electron microscopy. In Fe-4wt%As and Fe-10wt%As alloys quenched from 1600 and 1420°C, a fully divorced eutectic morphology is observed, and the eutectic Fe2As phase distributes discontinuously in the interdendritic regions. In contrast, the eutectic morphology of Fe-10wt%As alloy quenched from 1200°C is fibrous and forms a continuous network structure. Furthermore, the area fraction of the eutectic Fe2As phase in Fe-4wt%As and Fe-10wt%As alloys increases with increasing arsenic content and decreasing quenching temperature.

  14. Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem

    NASA Astrophysics Data System (ADS)

    Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico

    2017-11-01

    The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.

  15. Extraction of phenolic compounds from extra virgin olive oil by a natural deep eutectic solvent: Data on UV absorption of the extracts.

    PubMed

    Paradiso, Vito Michele; Clemente, Antonia; Summo, Carmine; Pasqualone, Antonella; Caponio, Francesco

    2016-09-01

    This data article refers to the paper "Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection" [1]. A deep eutectic solvent (DES) based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO) samples (n=65) were submitted to liquid-liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin-Ciocalteu assay.

  16. Coatings for directional eutectics. [for corrosion and oxidation resistance

    NASA Technical Reports Server (NTRS)

    Felten, E. J.; Strangman, T. E.; Ulion, N. E.

    1974-01-01

    Eleven coating systems based on MCrAlY overlay and diffusion aluminide prototypes were evaluated to determine their capability for protecting the gamma/gamma prime-delta directionally solidified eutectic alloy (Ni-20Cb-6Cr-2.5Al) in gas turbine engine applications. Furnace oxidation and hot corrosion, Mach 0.37 burner-rig, tensile ductility, stress-rupture and thermomechanical fatigue tests were used to evaluate the coated gamma/gamma prime-delta alloy. The diffusion aluminide coatings provided adequate oxidation resistance at 1144 K (1600 F) but offered very limited protection in 114 K (1600 F) hot corrosion and 1366 K (2000 F) oxidation tests. A platinum modified NiCrAlY overlay coating exhibited excellent performance in oxidation testing and had no adverse effects upon the eutectic alloy.

  17. Seismic evidence for non-synchronization in two close sdb+dM binaries from Kepler photometry

    NASA Astrophysics Data System (ADS)

    Pablo, Herbert; Kawaler, Steven D.; Reed, M. D.; Bloemen, S.; Charpinet, S.; Hu, H.; Telting, J.; Østensen, R. H.; Baran, A. S.; Green, E. M.; Hermes, J. J.; Barclay, T.; O'Toole, S. J.; Mullally, Fergal; Kurtz, D. W.; Christensen-Dalsgaard, J.; Caldwell, Douglas A.; Christiansen, Jessie L.; Kinemuchi, K.

    2012-05-01

    We report on extended photometry of two pulsating subdwarf B (sdB) stars in close binaries. For both cases, we use rotational splitting of the pulsation frequencies to show that the sdB component rotates much too slowly to be in synchronous rotation. We use a theory of tidal interaction in binary stars to place limits on the mass ratios that are independent of estimates based on the radial velocity curves. The companions have masses below 0.26 M⊙. The pulsation spectra show the signature of high-overtone g-mode pulsation. One star, KIC 11179657, has a clear sequence of g modes with equal period spacings as well as several periodicities that depart from that trend. KIC 02991403 shows a similar sequence, but has many more modes that do not fit the simple pattern.

  18. Bit-Table Based Biclustering and Frequent Closed Itemset Mining in High-Dimensional Binary Data

    PubMed Central

    Király, András; Abonyi, János

    2014-01-01

    During the last decade various algorithms have been developed and proposed for discovering overlapping clusters in high-dimensional data. The two most prominent application fields in this research, proposed independently, are frequent itemset mining (developed for market basket data) and biclustering (applied to gene expression data analysis). The common limitation of both methodologies is the limited applicability for very large binary data sets. In this paper we propose a novel and efficient method to find both frequent closed itemsets and biclusters in high-dimensional binary data. The method is based on simple but very powerful matrix and vector multiplication approaches that ensure that all patterns can be discovered in a fast manner. The proposed algorithm has been implemented in the commonly used MATLAB environment and freely available for researchers. PMID:24616651

  19. Influence of solvent on micellar morphologies of semifluorinated block copolymers.

    PubMed

    Lee, Min Young; Kim, Sang Jae; Jeong, Yeon Tae; Kim, Joo Hyun; Gal, Yeong-Soon; Lim, Kwon Taek

    2009-12-01

    The influence of solvents on micellar architectures of block copolymers composed of poly(1H,1H-dihydroperfluorooctyl methacrylate) and poly(ethylene oxide) was investigated. In this study, binary solvents with desired proportions were chosen, which had remarkable influence on the morphology of the resulting micelles. With simple adjusting the composition of the binary solvent of chloroform and trichlorofluoromethane, interesting shapes of micelle-like aggregates, such as core-shell, cylinder, worm-like and inverted micelles were formed with sizes of 15, 70, 30 and 250 nm, respectively. In the case of methanol/water system, core-shell spheres and vesicles were produced by varying the proportion of the contents. The morphologies were also tuned to honeycomb-like and bowl-shaped micelles as well as large planar lamellae with holes in DMF and water binary solvent.

  20. Configuration-specific kinetic theory applied to an ideal binary gas mixture.

    PubMed

    Wiseman, Floyd L

    2006-10-05

    This paper is the second in a two-part series dealing with the configuration-specific analyses for molecular collision events of hard, spherical molecules at thermal equilibrium. The first paper analyzed a single-component system, and the reader is referred to it for the fundamental concepts. In this paper, the expressions for the configuration-specific collision frequencies and the average line-of-centers collision angles and speeds are derived for an ideal binary gas mixture. The analyses show that the average line-of-centers quantities are all dependent upon the ratio of the masses of the two components, but not upon molecular size. Of course, the configuration-specific collision frequencies do depend on molecular size. The expression for the overall binary collision frequency is a simple sum of the configuration-specific collision frequencies and is identical to the conventional expression.

  1. Three-port beam splitter of a binary fused-silica grating.

    PubMed

    Feng, Jijun; Zhou, Changhe; Wang, Bo; Zheng, Jiangjun; Jia, Wei; Cao, Hongchao; Lv, Peng

    2008-12-10

    A deep-etched polarization-independent binary fused-silica phase grating as a three-port beam splitter is designed and manufactured. The grating profile is optimized by use of the rigorous coupled-wave analysis around the 785 nm wavelength. The physical explanation of the grating is illustrated by the modal method. Simple analytical expressions of the diffraction efficiencies and modal guidelines for the three-port beam splitter grating design are given. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in good agreement with the theoretical values.

  2. Characterization and modeling of microstructural evolution of near-eutectic tin-silver-copper solder joints

    NASA Astrophysics Data System (ADS)

    Zbrzezny, Adam R.

    Near-eutectic Sn-Ag-Cu (SAC) solders are currently considered as major lead-free replacement candidates for Sn-Pb eutectic alloys in microelectronics applications. In this thesis, the microstructural thermal stability including recrystallization, grain growth behavior, Pb and Au contamination effects and interaction of the SAC solder with Cu and Ni substrates were investigated. The true eutectic composition of the Sn-Ag-Cu alloy was verified to be Sn3.5Ag0.9Cu wt.%, and the eutectic melting temperature was determined to be 217.4 +/- 0.8°C. The system was classified as belonging to faceting (Cu6Sn5)-faceting (Ag3Sn)-nonfaceting (Sn matrix) ternary eutectic. The most significant consequence of Pb contamination was the formation of a quaternary eutectic phase (Sn-Ag-Cu-Pb) with a melting point at 176°C. Similarly, the presence of gold in the SAC alloy led to a development of a new quaternary phase (Sn-Ag-Cu-Au) melting at 204°C. Prolonged aging of SAC-4 wt.% Au on nickel resulted in the deposition of a new, previously unreported, intermetallic (IMC) layer, ((Au1-xCUx)6Sn 5, 15 wt.% of Au) on top of the existing (Cu1-yNi y)6Sn5 layer. The interfacial products that formed during soldering to copper were Cu6Sn5 and Cu3Sn. Soldering to nickel resulted in the formation of one layer, (Cu1-yNiy) 6Sn5, which was different from the expected Ni3Sn 4 layer. A small copper content in the SAC solder (0.7 wt.%) was sufficient to promote this thermodynamic shift. Intermetallic growth on Cu during solid state aging was established to be bulk diffusion controlled. The IMC layers in the SAC system grew at a slower rate than in the Sn-Pb system. It was found that the reliability of SAC solder joints on copper was considerably better than on nickel due to copper enrichment during reflow and subsequent Cu6Sn5 intermetallic precipitation. Enhanced copper and silver diffusion followed by tin recrystallization and grain growth, cavity nucleation and subsequent micro-crack linkage formed the framework of a proposed microstructural model of solder degradation mechanisms under cyclic creep conditions. A multilayer diffusion model of the SAC/Cu couple was proposed and employed for predicting intermetallic layer growth kinetics. In general, the calculated IMC thicknesses for short and intermediate aging times were in reasonable agreement with the experimental data.

  3. Thermodynamic properties of lanthanum in gallium-zinc alloys

    NASA Astrophysics Data System (ADS)

    Dedyukhin, A. S.; Shepin, I. E.; Kharina, E. A.; Shchetinskiy, A. V.; Volkovich, V. A.; Yamshchikov, L. F.

    2016-09-01

    Thermodynamic properties of lanthanum were determined in gallium-zinc alloys of the eutectic and over-eutectic compositions. The electromotive force measurements were used to determine thermodynamic activity and sedimentation technique to measure solubility of lanthanum in liquid metal alloys. Temperature dependencies of lanthanum activity, solubility and activity coefficients in alloys with Ga-Zn mixtures containing 3.64, 15 and 50 wt. % zinc were obtained.

  4. An Analysis of the System Installation Costs of Diurnal Ice Storage Cooling Systems for Army Facilities

    DTIC Science & Technology

    1991-07-01

    integrate -into the existing -structure and HVAC system. Costs-for a eutectic salt system are shown in Table 5 to compare with the DIS cooling systems. The... eutectic salt system is not an ice storage system, but is a phase change system that stores energy iniits heat of fusion and changes phase at 47 ’F

  5. Results of Copper-Silver Rail Materials Tests

    DTIC Science & Technology

    2006-05-01

    dislocation-dense grain structure. An annealing, recrystallization , and re-straining model is proposed to predict the bandwidth within which the...darker phase is the copper-rich solid solution, while the lighter regions are the eutectic structure consisting of both copper-rich and silver-rich solid...solutions. The eutectic phase ribbons consist of finer copper and silver filaments [1], [5]. The two phases are inhomogeneously deformed during the

  6. Phase Diagram for a Four-Component System of Pentanedioic, Hexanedioic, Nonanedioic, and Decanedioic Acids

    NASA Astrophysics Data System (ADS)

    Kolyado, A. V.; Alenova, S. M.; Garkushin, I. K.

    2018-05-01

    Phase equilibria in a four-component system of pentanedioic, hexanedioic, nonanedioic, and decanedioic acids are studied via differential thermal analysis. The determined eutectic composition is pentanedioic acid, 48.1 wt %; hexanedioic acid, 10.0 wt %; nonanedioic acid, 25.7 wt %; and decanedioic acid, 16.2 wt %. The melting point of the eutectic mixture is 63.1°C.

  7. ELECTROLYTIC PROCESS FOR PRODUCING METALS

    DOEpatents

    Kopelman, B.; Holden, R.B.

    1961-06-01

    A method is described for reducing beryllium halides to beryllium. The beryllfum halide fs placed in an eutectic mixture of alkali halides and alkaline earth halides. The constituents of this eutectic bath are so chosen that it has a melting point less than the boiling point of mercury, which acts as a cathode for the system. The beryllium metal is then deposited in the mercury upon electrolysis.

  8. Apparatus with moderating material for microwave heat treatment of manufactured components

    DOEpatents

    Ripley, Edward B [Knoxville, TN

    2011-05-10

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  9. Apparatus for microwave heat treatment of manufactured components

    DOEpatents

    Babcock & Wilcox Technical Services Y-12, LLC

    2008-04-15

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  10. Methods for microwave heat treatment of manufactured components

    DOEpatents

    Ripley, Edward B.

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  11. Investigation on drug solubility enhancement using deep eutectic solvents and their derivatives.

    PubMed

    Li, Zheng; Lee, Ping I

    2016-05-30

    Deep eutectic solvent (DES) is a room temperature liquid typically formed by mixing two solid compounds, such as a quaternary ammonium salt (QAS) (e.g. choline chloride) and a hydrogen bond donor (HBD) (e.g. urea or a carboxylic acid) at their eutectic composition. Very often, a range of room temperature liquids can also be obtained near the eutectic composition. Hence, it is more convenient to introduce a more general term deep eutectic solvent derivatives (DESDs) to describe a wide range of DES-like derivatives including those derived from ternary mixtures. The melting point of the mixture is lowered because the hydrogen bonding between DESD components reduces the lattice energy of components of the eutectic system. Based on the analysis of available data for 22 such choline chloride-based DES pairs, we found that the observed melting point depression can be statistically correlated with the difference between the hydrogen bonding contribution (δh) and the polar contribution (δp) to the solubility parameter of the hydrogen bond donor (HBD) component. The correlation was validated with a new DESD based on glycolic acid and choline chloride, which form DESDs at a molar ratio between 1:1 and 1:4 with DES-like properties. As a room temperature liquid, this DESD exhibits a wide range of solubility enhancement on several weakly basic poorly water-soluble drugs. For example, the solubility of itraconazole, piroxicam, lidocaine, and posaconazole has been observed to increase by 6700, 430, 28, and 6400-fold, respectively as compared to their aqueous solubility at room temperature. Furthermore, another new ternary DESD based on choline chloride, glycolic acid, and oxalic acid at a molar ratio of 1:1.6:0.4 is shown to further increase the solubility of itraconazole to a remarkable level of 5.36mg/mL (a 53,600-fold increase!). Because the components of such DESDs can include those biodegradable ones that had previously been used in formulated human products, the potential applicability of suitable DESDs to drug delivery, especially in enhancing drug solubility for topical formulations could be very attractive. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing

    NASA Astrophysics Data System (ADS)

    Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Choi, Jung-Hoon; Kim, In-Tae; Park, Geun-Il

    2013-06-01

    The separation characteristics of surrogate rare-earth fission products in a eutectic (LiCl-KCl) molten salt were investigated. This system is based on the eutectic salt used for the pyroprocessing treatment of used nuclear fuel (UNF). The investigation was performed using an integrated rare-earth separation apparatus comprising a precipitation reactor, a solid detachment device, and a layer separation device. To separate rare-earth fission products, a phosphate precipitation method using both Li3PO4 and K3PO4 as a precipitant was performed. The use of an equivalent phosphate precipitant composed of 0.408 molar ratio-K3PO4 and 0.592 molar ratio-Li3PO4 can preserve the original eutectic ratio, LiCl-0.592 molar ratio (or 45.2 wt%), as well as provide a high separation efficiency of over 99.5% under conditions of 550 °C and Ar sparging when using La, Nd, Ce, and Pr chlorides. The mixture of La, Nd, Ce, and Pr phosphate had a typical monoclinic (or monazite) structure, which has been proposed as a reliable host matrix for the permanent disposal of a high-level waste form. To maximize the reusability of purified eutectic waste salt after rare-earth separation, the successive rare-earth separation process, which uses both phosphate precipitation and an oxygen sparging method, were introduced and tested with eight rare-earth (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) chlorides. In the successive rare-earth separation process, the phosphate reaction was terminated within 1 h at 550 °C, and a 4-8 h oxygen sparging time were required to obtain over a 99% separation efficiency at 700-750 °C. The mixture of rare-earth precipitates separated by the successive rare-earth separation process was found to be phosphate, oxychloride, and oxide. Through the successive rare-earth separation process, the eutectic ratio of purified salt maintained its original value, and impurity content including the residual precipitant of purified salt can be minimized.

  13. Melting diagrams of Fe-rich alloys determined from synchrotron in situ measurements in the 15-23 GPa pressure range

    NASA Astrophysics Data System (ADS)

    Andrault, D.; Bolfan-Casanova, N.; Ohtaka, O.; Fukui, H.; Arima, H.; Fialin, M.; Funakoshi, K.

    2009-05-01

    We report in situ observations of the melting behaviour of iron alloyed with 10-20 at.% C, O, S, or Si at pressures between 15 and 24 GPa, using X-ray diffraction in a multi-anvil press (SPring8). The degree of partial melting of the iron alloys has been quantified from analysis of the intensity of diffuse X-ray scattering of molten iron as a function for decreasing temperature with a 50° step. Coupled with microanalysis of recovered samples, the in situ observations bring direct constraints on shape and positions of liquidus and solidus curves in the melting diagrams. For the Fe-S system, our results are in good agreement with previous works. We observe that the eutectic temperature increases from 1023 K at 15 GPa to 1123 K at 20.6 GPa and that the eutectic composition decreases with increases pressure. Concerning the Fe-C system the eutectic temperature of 1460 K at 20.7 GPa falls slightly below a linear extrapolation of the previous work. In the case of the Fe-Ni-Si system and the Fe-O system, we find eutectic temperatures significantly lower than previously reported. For the two systems, both eutectic temperature and composition increase with increasing pressure in the 15-20 GPa range. Compare to previous work, we observe eutectic compositions (a) richer in light elements in the Fe-O system, with 9.0 and 10.5 wt% O at 16.5 and 20.5 GPa, respectively, and (b) poorer in the Fe-Ni-Si system with 11.5 wt% Si at 16.9 GPa. We confirm very high solubility of Si and C with solid iron, and report a Si partitioning coefficient of 1.3(2) at 16.9 GPa. The S and O solubility in solid iron appears very small. Therefore, both S and/or O could explain density jumps between liquid outer and solid inner parts of planetary cores, at least up to ˜25 GPa.

  14. Do group 1 metal salts form deep eutectic solvents?

    PubMed

    Abbott, A P; D'Agostino, C; Davis, S J; Gladden, L F; Mantle, M D

    2016-09-14

    Mixtures of metal salts such as ZnCl 2 , AlCl 3 and CrCl 3 ·6H 2 O form eutectic mixtures with complexing agents, such as urea. The aim of this research was to see if alkali metal salts also formed eutectics in the same way. It is shown that only a limited number of sodium salts form homogeneous liquids at ambient temperatures and then only with glycerol. None of these mixtures showed eutectic behaviour but the liquids showed the physical properties similar to the group of mixtures classified as deep eutectic solvents. This study focussed on four sodium salts: NaBr, NaOAc, NaOAc·3H 2 O and Na 2 B 4 O 7 ·10H 2 O. The ionic conductivity and viscosity of these salts with glycerol were studied, and it was found that unlike previous studies of quaternary ammonium salts with glycerol, where the salt decreased the viscosity, most of the sodium salts increased the viscosity. This suggests that sodium salts have a structure making effect on glycerol. This phenomenon is probably due to the high charge density of Na + , which coordinates to the glycerol. 1 H and 23 Na NMR diffusion and relaxation methods have been used to understand the molecular dynamics in the glycerol-salt mixtures, and probe the effect of water on some of these systems. The results reveal a complex dynamic behaviour of the different species within these liquids. Generally, the translational dynamics of the 1 H species, probed by means of PFG NMR diffusion coefficients, is in line with the viscosity of these liquids. However, 1 H and 23 Na T 1 relaxation measurements suggest that the Na-containing species also play a crucial role in the structure of the liquids.

  15. Metallurgical Parameters Controlling the Eutectic Silicon Charateristics in Be-Treated Al-Si-Mg Alloys.

    PubMed

    Ibrahim, Mohamed F; Elgallad, Emad M; Valtierra, Salvador; Doty, Herbert W; Samuel, Fawzy H

    2016-01-27

    The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be), where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS) of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150-200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al₄SrSi₂, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt%) Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode.

  16. Metallurgical Parameters Controlling the Eutectic Silicon Charateristics in Be-Treated Al-Si-Mg Alloys

    PubMed Central

    Ibrahim, Mohamed F.; Elgallad, Emad M.; Valtierra, Salvador; Doty, Herbert W.; Samuel, Fawzy H.

    2016-01-01

    The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be), where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS) of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150–200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al4SrSi2, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt%) Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode. PMID:28787877

  17. Spectroelectrochemistry of EuCl 3 in Four Molten Salt Eutectics; 3 LiCl−NaCl, 3 LiCl−2 KCl, LiCl−RbCl, and 3 LiCl−2 CsCl; at 873 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroll, Cynthia A.; Chatterjee, Sayandev; Levitskaia, Tatiana

    Key electrochemical properties affecting pyroprocessing of nuclear fuel were examined in four eutectic melts using using Eu3+/2+ as a representative probe. We report the electrochemical and spectroelectrochemical behavior of EuCl3 in four molten salt eutectics (3 LiCl – NaCl, 3 LiCl – 2 KCl, LiCl – RbCl and 3 LiCl – 2 CsCl) at 873 K. Cyclic voltammetry was used to determine the redox potential for Eu3+/2+ and the applied potentials for spectroelectrochemistry. Single step chronoabsorptometry and thin-layer spectroelectrochemistry were used to obtain the number of electrons transferred, redox potentials and diffusion coefficients for Eu3+ in each eutectic melt. Themore » redox potentials determined by thin-layer spectroelectrochemistry were extremely close to those obtained using cyclic voltammetry. The redox potential for Eu3+/2+ was most positive in the 3 LiCl - NaCl melt, showed a negative shift in the 3 LiCl - 2 KCl melt, and was the most negative in the LiCl - RbCl and 3 LiCl - 2 CsCl eutectics. The diffusion coefficient for Eu3+ followed this same trend; it was the largest in the 3 LiCl - NaCl melt and the smallest in the LiCl - RbCl and 3 LiCl - 2 CsCl melts. The basic one-electron reversible electron transfer for Eu3+/2+ was not changed by melt composition.« less

  18. Boiling Temperature vs. Composition. An Almost-Exact Explicit Equation for a Binary Mixture Following Raoult's Law.

    ERIC Educational Resources Information Center

    Cardinali, Mario Emilio; Giomini, Claudio

    1989-01-01

    Proposes a simple procedure based on an expansion of the exponential terms of Raoult's law by applying it to the case of the benzene-toluene mixture. The results with experimental values are presented as a table. (YP)

  19. Synthesis and Mechanical Characterization of Binary and Ternary Intermetallic Alloys Based on Fe-Ti-Al by Resonant Ultrasound Vibrational Methods.

    PubMed

    Chanbi, Daoud; Ogam, Erick; Amara, Sif Eddine; Fellah, Z E A

    2018-05-07

    Precise but simple experimental and inverse methods allowing the recovery of mechanical material parameters are necessary for the exploration of materials with novel crystallographic structures and elastic properties, particularly for new materials and those existing only in theory. The alloys studied herein are of new atomic compositions. This paper reports an experimental study involving the synthesis and development of methods for the determination of the elastic properties of binary (Fe-Al, Fe-Ti and Ti-Al) and ternary (Fe-Ti-Al) intermetallic alloys with different concentrations of their individual constituents. The alloys studied were synthesized from high purity metals using an arc furnace with argon flow to ensure their uniformity and homogeneity. Precise but simple methods for the recovery of the elastic constants of the isotropic metals from resonant ultrasound vibration data were developed. These methods allowed the fine analysis of the relationships between the atomic concentration of a given constituent and the Young’s modulus or alloy density.

  20. Cellular and dendritic growth in a binary melt - A marginal stability approach

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1986-01-01

    A simple model for the constrained growth of an array of cells or dendrites in a binary alloy in the presence of an imposed positive temperature gradient in the liquid is proposed, with the dendritic or cell tip radius calculated using the marginal stability criterion of Langer and Muller-Krumbhaar (1977). This approach, an approach adopting the ad hoc assumption of minimum undercooling at the cell or dendrite tip, and an approach based on the stability criterion of Trivedi (1980) all predict tip radii to within 30 percent of each other, and yield a simple relationship between the tip radius and the growth conditions. Good agreement is found between predictions and data obtained in a succinonitrile-acetone system, and under the present experimental conditions, the dendritic tip stability parameter value is found to be twice that obtained previously, possibly due to a transition in morphology from a cellular structure with just a few side branches, to a more fully developed dendritic structure.

Top