SimpleBox 4.0: Improving the model while keeping it simple….
Hollander, Anne; Schoorl, Marian; van de Meent, Dik
2016-04-01
Chemical behavior in the environment is often modeled with multimedia fate models. SimpleBox is one often-used multimedia fate model, firstly developed in 1986. Since then, two updated versions were published. Based on recent scientific developments and experience with SimpleBox 3.0, a new version of SimpleBox was developed and is made public here: SimpleBox 4.0. In this new model, eight major changes were implemented: removal of the local scale and vegetation compartments, addition of lake compartments and deep ocean compartments (including the thermohaline circulation), implementation of intermittent rain instead of drizzle and of depth dependent soil concentrations, adjustment of the partitioning behavior for organic acids and bases as well as of the value for enthalpy of vaporization. In this paper, the effects of the model changes in SimpleBox 4.0 on the predicted steady-state concentrations of chemical substances were explored for different substance groups (neutral organic substances, acids, bases, metals) in a standard emission scenario. In general, the largest differences between the predicted concentrations in the new and the old model are caused by the implementation of layered ocean compartments. Undesirable high model complexity caused by vegetation compartments and a local scale were removed to enlarge the simplicity and user friendliness of the model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.
2009-01-01
Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.
Increasing the realism of a laparoscopic box trainer: a simple, inexpensive method.
Hull, Louise; Kassab, Eva; Arora, Sonal; Kneebone, Roger
2010-01-01
Simulation-based training in medical education is increasing. Realism is an integral element of creating an engaging, effective training environment. Although physical trainers offer a low-cost alternative to expensive virtual reality (VR) simulators, many lack in realism. The aim of this research was to enhance the realism of a laparoscopic box trainer by using a simple, inexpensive method. Digital images of the abdominal cavity were captured from a VR simulator. The images were printed onto a laminated card that lined the bottom and sides of the box-trainer cavity. The standard black neoprene material that encloses the abdominal cavity was replaced with a skin-colored silicon model. The realism of the modified box trainer was assessed by surgeons, using quantitative and qualitative methodologies. Results suggest that the modified box trainer was more realistic than a standard box trainer alone. Incorporating this technique in the training of laparoscopic skills is an inexpensive means of emulating surgical reality that may enhance the engagement of the learner in simulation.
Spatial Pattern of Cell Damage in Tissue from Heavy Ions
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Huff, Janice L.; Cucinotta, Francis A.
2007-01-01
A new Monte Carlo algorithm was developed that can model passage of heavy ions in a tissue, and their action on the cellular matrix for 2- or 3-dimensional cases. The build-up of secondaries such as projectile fragments, target fragments, other light fragments, and delta-rays was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix). A simple model of tissue was given as abstract spheres with close approximation to real cell geometries (3-d cell matrix), as well as a realistic model of tissue was proposed based on microscopy images. Image segmentation was used to identify cells in an irradiated cell culture monolayer, or slices of tissue. The cells were then inserted into the model box pixel by pixel. In the case of cell monolayers (2-d), the image size may exceed the modeled box size. Such image was is moved with respect to the box in order to sample as many cells as possible. In the case of the simple tissue (3-d), the tissue box is modeled with periodic boundary conditions, which extrapolate the technique to macroscopic volumes of tissue. For real tissue, specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated based on BNL data, and other experimental data.
NASA Astrophysics Data System (ADS)
Goswami, M.; O'Connor, K. M.; Shamseldin, A. Y.
The "Galway Real-Time River Flow Forecasting System" (GFFS) is a software pack- age developed at the Department of Engineering Hydrology, of the National University of Ireland, Galway, Ireland. It is based on a selection of lumped black-box and con- ceptual rainfall-runoff models, all developed in Galway, consisting primarily of both the non-parametric (NP) and parametric (P) forms of two black-box-type rainfall- runoff models, namely, the Simple Linear Model (SLM-NP and SLM-P) and the seasonally-based Linear Perturbation Model (LPM-NP and LPM-P), together with the non-parametric wetness-index-based Linearly Varying Gain Factor Model (LVGFM), the black-box Artificial Neural Network (ANN) Model, and the conceptual Soil Mois- ture Accounting and Routing (SMAR) Model. Comprised of the above suite of mod- els, the system enables the user to calibrate each model individually, initially without updating, and it is capable also of producing combined (i.e. consensus) forecasts us- ing the Simple Average Method (SAM), the Weighted Average Method (WAM), or the Artificial Neural Network Method (NNM). The updating of each model output is achieved using one of four different techniques, namely, simple Auto-Regressive (AR) updating, Linear Transfer Function (LTF) updating, Artificial Neural Network updating (NNU), and updating by the Non-linear Auto-Regressive Exogenous-input method (NARXM). The models exhibit a considerable range of variation in degree of complexity of structure, with corresponding degrees of complication in objective func- tion evaluation. Operating in continuous river-flow simulation and updating modes, these models and techniques have been applied to two Irish catchments, namely, the Fergus and the Brosna. A number of performance evaluation criteria have been used to comparatively assess the model discharge forecast efficiency.
The Box-and-Dot Method: A Simple Strategy for Counting Significant Figures
NASA Astrophysics Data System (ADS)
Stephenson, W. Kirk
2009-08-01
A visual method for counting significant digits is presented. This easy-to-learn (and easy-to-teach) method, designated the box-and-dot method, uses the device of "boxing" significant figures based on two simple rules, then counting the number of digits in the boxes.
The time series approach to short term load forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, M.T.; Behr, S.M.
The application of time series analysis methods to load forecasting is reviewed. It is shown than Box and Jenkins time series models, in particular, are well suited to this application. The logical and organized procedures for model development using the autocorrelation function make these models particularly attractive. One of the drawbacks of these models is the inability to accurately represent the nonlinear relationship between load and temperature. A simple procedure for overcoming this difficulty is introduced, and several Box and Jenkins models are compared with a forecasting procedure currently used by a utility company.
Particle in a box in PT-symmetric quantum mechanics and an electromagnetic analog
NASA Astrophysics Data System (ADS)
Dasarathy, Anirudh; Isaacson, Joshua P.; Jones-Smith, Katherine; Tabachnik, Jason; Mathur, Harsh
2013-06-01
In PT-symmetric quantum mechanics a fundamental principle of quantum mechanics, that the Hamiltonian must be Hermitian, is replaced by another set of requirements, including notably symmetry under PT, where P denotes parity and T denotes time reversal. Here we study the role of boundary conditions in PT-symmetric quantum mechanics by constructing a simple model that is the PT-symmetric analog of a particle in a box. The model has the usual particle-in-a-box Hamiltonian but boundary conditions that respect PT symmetry rather than Hermiticity. We find that for a broad class of PT-symmetric boundary conditions the model respects the condition of unbroken PT symmetry, namely, that the Hamiltonian and the symmetry operator PT have simultaneous eigenfunctions, implying that the energy eigenvalues are real. We also find that the Hamiltonian is self-adjoint under the PT-symmetric inner product. Thus we obtain a simple soluble model that fulfills all the requirements of PT-symmetric quantum mechanics. In the second part of this paper we formulate a variational principle for PT-symmetric quantum mechanics that is the analog of the textbook Rayleigh-Ritz principle. Finally we consider electromagnetic analogs of the PT-symmetric particle in a box. We show that the isolated particle in a box may be realized as a Fabry-Perot cavity between an absorbing medium and its conjugate gain medium. Coupling the cavity to an external continuum of incoming and outgoing states turns the energy levels of the box into sharp resonances. Remarkably we find that the resonances have a Breit-Wigner line shape in transmission and a Fano line shape in reflection; by contrast, in the corresponding Hermitian case the line shapes always have a Breit-Wigner form in both transmission and reflection.
The Box-and-Dot Method: A Simple Strategy for Counting Significant Figures
ERIC Educational Resources Information Center
Stephenson, W. Kirk
2009-01-01
A visual method for counting significant digits is presented. This easy-to-learn (and easy-to-teach) method, designated the box-and-dot method, uses the device of "boxing" significant figures based on two simple rules, then counting the number of digits in the boxes. (Contains 4 notes.)
Numerical study on the effect of configuration of a simple box solar cooker for boiling water
NASA Astrophysics Data System (ADS)
Ambarita, H.
2018-02-01
In this work, a numerical study is carried out to investigate the effect of configuration of a simple box solar cooker. In order to validate the numerical results, a simple a simple solar box cooker with absorber area of 0.835 m × 0.835 m is designed and fabricated. The solar box cooker is employed to boil water by exposing to the solar radiation in Medan city of Indonesia. In the numerical method, a set of transient governing equations are developed. The governing equations are solved using forward time step marching technique. The main objective is to explore the effect of double glasses cover, dimensions of the cooking vessel, and depth of the box cooker to the performance of the solar box cooker. The results show that the experimental and numerical results show good agreement. The performance of the solar box cooker strongly affected by the distance of the double glass cover, the solar cooker depth, and the solar collector length.
NASA Technical Reports Server (NTRS)
Bell, Thomas L.; Kundu, Prasun K.; Kummerow, Christian D.; Einaudi, Franco (Technical Monitor)
2000-01-01
Quantitative use of satellite-derived maps of monthly rainfall requires some measure of the accuracy of the satellite estimates. The rainfall estimate for a given map grid box is subject to both remote-sensing error and, in the case of low-orbiting satellites, sampling error due to the limited number of observations of the grid box provided by the satellite. A simple model of rain behavior predicts that Root-mean-square (RMS) random error in grid-box averages should depend in a simple way on the local average rain rate, and the predicted behavior has been seen in simulations using surface rain-gauge and radar data. This relationship was examined using satellite SSM/I data obtained over the western equatorial Pacific during TOGA COARE. RMS error inferred directly from SSM/I rainfall estimates was found to be larger than predicted from surface data, and to depend less on local rain rate than was predicted. Preliminary examination of TRMM microwave estimates shows better agreement with surface data. A simple method of estimating rms error in satellite rainfall estimates is suggested, based on quantities that can be directly computed from the satellite data.
Making Simple Folk Instruments for Children.
ERIC Educational Resources Information Center
Cline, Dallas
1980-01-01
Instructions are provided for making these simple musical instruments from inexpensive materials: an Indian bull-roarer; bottle chimes; a ham can guitar; flower pot, box, and steel drums; a xylophone; a musical sawhorse; rattles; a melody box; and a box thumb harp. (SJL)
Kim, Hee Seok; Lee, Dong Soo
2017-11-01
SimpleBox is an important multimedia model used to estimate the predicted environmental concentration for screening-level exposure assessment. The main objectives were (i) to quantitatively assess how the magnitude and nature of prediction bias of SimpleBox vary with the selection of observed concentration data set for optimization and (ii) to present the prediction performance of the optimized SimpleBox. The optimization was conducted using a total of 9604 observed multimedia data for 42 chemicals of four groups (i.e., polychlorinated dibenzo-p-dioxins/furans (PCDDs/Fs), polybrominated diphenyl ethers (PBDEs), phthalates, and polycyclic aromatic hydrocarbons (PAHs)). The model performance was assessed based on the magnitude and skewness of prediction bias. Monitoring data selection in terms of number of data and kind of chemicals plays a significant role in optimization of the model. The coverage of the physicochemical properties was found to be very important to reduce the prediction bias. This suggests that selection of observed data should be made such that the physicochemical property (such as vapor pressure, octanol-water partition coefficient, octanol-air partition coefficient, and Henry's law constant) range of the selected chemical groups be as wide as possible. With optimization, about 55%, 90%, and 98% of the total number of the observed concentration ratios were predicted within factors of three, 10, and 30, respectively, with negligible skewness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nagendran, Myura; Toon, Clare D; Davidson, Brian R; Gurusamy, Kurinchi Selvan
2014-01-17
Surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time consuming, costly, and of variable effectiveness. Training using a box model physical simulator - either a video box or a mirrored box - is an option to supplement standard training. However, the impact of this modality on trainees with no prior laparoscopic experience is unknown. To compare the benefits and harms of box model training versus no training, another box model, animal model, or cadaveric model training for surgical trainees with no prior laparoscopic experience. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, and Science Citation Index Expanded to May 2013. We included all randomised clinical trials comparing box model trainers versus no training in surgical trainees with no prior laparoscopic experience. We also included trials comparing different methods of box model training. Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager for analysis. For each outcome, we calculated the standardised mean difference (SMD) with 95% confidence intervals (CI) based on intention-to-treat analysis whenever possible. Twenty-five trials contributed data to the quantitative synthesis in this review. All but one trial were at high risk of bias. Overall, 16 trials (464 participants) provided data for meta-analysis of box training (248 participants) versus no supplementary training (216 participants). All the 16 trials in this comparison used video trainers. Overall, 14 trials (382 participants) provided data for quantitative comparison of different methods of box training. There were no trials comparing box model training versus animal model or cadaveric model training. Box model training versus no training: The meta-analysis showed that the time taken for task completion was significantly shorter in the box trainer group than the control group (8 trials; 249 participants; SMD -0.48 seconds; 95% CI -0.74 to -0.22). Compared with the control group, the box trainer group also had lower error score (3 trials; 69 participants; SMD -0.69; 95% CI -1.21 to -0.17), better accuracy score (3 trials; 73 participants; SMD 0.67; 95% CI 0.18 to 1.17), and better composite performance scores (SMD 0.65; 95% CI 0.42 to 0.88). Three trials reported movement distance but could not be meta-analysed as they were not in a format for meta-analysis. There was significantly lower movement distance in the box model training compared with no training in one trial, and there were no significant differences in the movement distance between the two groups in the other two trials. None of the remaining secondary outcomes such as mortality and morbidity were reported in the trials when animal models were used for assessment of training, error in movements, and trainee satisfaction. Different methods of box training: One trial (36 participants) found significantly shorter time taken to complete the task when box training was performed using a simple cardboard box trainer compared with the standard pelvic trainer (SMD -3.79 seconds; 95% CI -4.92 to -2.65). There was no significant difference in the time taken to complete the task in the remaining three comparisons (reverse alignment versus forward alignment box training; box trainer suturing versus box trainer drills; and single incision versus multiport box model training). There were no significant differences in the error score between the two groups in any of the comparisons (box trainer suturing versus box trainer drills; single incision versus multiport box model training; Z-maze box training versus U-maze box training). The only trial that reported accuracy score found significantly higher accuracy score with Z-maze box training than U-maze box training (1 trial; 16 participants; SMD 1.55; 95% CI 0.39 to 2.71). One trial (36 participants) found significantly higher composite score with simple cardboard box trainer compared with conventional pelvic trainer (SMD 0.87; 95% CI 0.19 to 1.56). Another trial (22 participants) found significantly higher composite score with reverse alignment compared with forward alignment box training (SMD 1.82; 95% CI 0.79 to 2.84). There were no significant differences in the composite score between the intervention and control groups in any of the remaining comparisons. None of the secondary outcomes were adequately reported in the trials. The results of this review are threatened by both risks of systematic errors (bias) and risks of random errors (play of chance). Laparoscopic box model training appears to improve technical skills compared with no training in trainees with no previous laparoscopic experience. The impacts of this decreased time on patients and healthcare funders in terms of improved outcomes or decreased costs are unknown. There appears to be no significant differences in the improvement of technical skills between different methods of box model training. Further well-designed trials of low risk of bias and random errors are necessary. Such trials should assess the impacts of box model training on surgical skills in both the short and long term, as well as clinical outcomes when the trainee becomes competent to operate on patients.
Meesters, Johannes A J; Koelmans, Albert A; Quik, Joris T K; Hendriks, A Jan; van de Meent, Dik
2014-05-20
Screening level models for environmental assessment of engineered nanoparticles (ENP) are not generally available. Here, we present SimpleBox4Nano (SB4N) as the first model of this type, assess its validity, and evaluate it by comparisons with a known material flow model. SB4N expresses ENP transport and concentrations in and across air, rain, surface waters, soil, and sediment, accounting for nanospecific processes such as aggregation, attachment, and dissolution. The model solves simultaneous mass balance equations (MBE) using simple matrix algebra. The MBEs link all concentrations and transfer processes using first-order rate constants for all processes known to be relevant for ENPs. The first-order rate constants are obtained from the literature. The output of SB4N is mass concentrations of ENPs as free dispersive species, heteroaggregates with natural colloids, and larger natural particles in each compartment in time and at steady state. Known scenario studies for Switzerland were used to demonstrate the impact of the transport processes included in SB4N on the prediction of environmental concentrations. We argue that SB4N-predicted environmental concentrations are useful as background concentrations in environmental risk assessment.
Modeling Hidden Circuits: An Authentic Research Experience in One Lab Period
NASA Astrophysics Data System (ADS)
Moore, J. Christopher; Rubbo, Louis J.
2016-10-01
Two wires exit a black box that has three exposed light bulbs connected together in an unknown configuration. The task for students is to determine the circuit configuration without opening the box. In the activity described in this paper, we navigate students through the process of making models, developing and conducting experiments that can support or falsify models, and confronting ways of distinguishing between two different models that make similar predictions. We also describe a twist that forces students to confront new phenomena, requiring revision of their mental model of electric circuits. This activity is designed to mirror the practice of science by actual scientists and expose students to the "messy" side of science, where our simple explanations of reality often require expansion and/or revision based on new evidence. The purpose of this paper is to present a simple classroom activity within the context of electric circuits that supports students as they learn to test hypotheses and refine and revise models based on evidence.
Boxes of Poison: Baroque Technique as Antidote to Simple Views of Literacy
ERIC Educational Resources Information Center
Burnett, Cathy; Merchant, Guy
2016-01-01
Rich and complex meaning making experiences, such as those associated with virtual play, sit uneasily with the view of literacy reflected in and sustained by current systems of accountability in education. This article develops a baroque perspective as a way of destabilizing the "regime of truth" associated with simple models of…
Dynamics of movie competition and popularity spreading in recommender systems.
Yeung, C H; Cimini, G; Jin, C-H
2011-01-01
We introduce a simple model to study movie competition in recommender systems. Movies of heterogeneous quality compete against each other through viewers' reviews and generate interesting dynamics at the box office. By assuming mean-field interactions between the competing movies, we show that the runaway effect of popularity spreading is triggered by defeating the average review score, leading to box-office hits: Popularity rises and peaks before fade-out. The average review score thus characterizes the critical movie quality necessary for transition from box-office bombs to blockbusters. The major factors affecting the critical review score are examined. By iterating the mean-field dynamical equations, we obtain qualitative agreements with simulations and real systems in the dynamical box-office forms, revealing the significant role of competition in understanding box-office dynamics.
Dynamics of movie competition and popularity spreading in recommender systems
NASA Astrophysics Data System (ADS)
Yeung, C. H.; Cimini, G.; Jin, C.-H.
2011-01-01
We introduce a simple model to study movie competition in recommender systems. Movies of heterogeneous quality compete against each other through viewers’ reviews and generate interesting dynamics at the box office. By assuming mean-field interactions between the competing movies, we show that the runaway effect of popularity spreading is triggered by defeating the average review score, leading to box-office hits: Popularity rises and peaks before fade-out. The average review score thus characterizes the critical movie quality necessary for transition from box-office bombs to blockbusters. The major factors affecting the critical review score are examined. By iterating the mean-field dynamical equations, we obtain qualitative agreements with simulations and real systems in the dynamical box-office forms, revealing the significant role of competition in understanding box-office dynamics.
Forgetting in Immediate Serial Recall: Decay, Temporal Distinctiveness, or Interference?
ERIC Educational Resources Information Center
Oberauer, Klaus; Lewandowsky, Stephan
2008-01-01
Three hypotheses of forgetting from immediate memory were tested: time-based decay, decreasing temporal distinctiveness, and interference. The hypotheses were represented by 3 models of serial recall: the primacy model, the SIMPLE (scale-independent memory, perception, and learning) model, and the SOB (serial order in a box) model, respectively.…
Predicting a future lifetime through Box-Cox transformation.
Yang, Z
1999-09-01
In predicting a future lifetime based on a sample of past lifetimes, the Box-Cox transformation method provides a simple and unified procedure that is shown in this article to meet or often outperform the corresponding frequentist solution in terms of coverage probability and average length of prediction intervals. Kullback-Leibler information and second-order asymptotic expansion are used to justify the Box-Cox procedure. Extensive Monte Carlo simulations are also performed to evaluate the small sample behavior of the procedure. Certain popular lifetime distributions, such as Weibull, inverse Gaussian and Birnbaum-Saunders are served as illustrative examples. One important advantage of the Box-Cox procedure lies in its easy extension to linear model predictions where the exact frequentist solutions are often not available.
Design of the Cross Section Shape of AN Aluminum Crash Box for Crashworthiness Enhancement of a CAR
NASA Astrophysics Data System (ADS)
Kim, S. B.; Huh, H.; Lee, G. H.; Yoo, J. S.; Lee, M. Y.
This paper deals with the crashworthiness of an aluminum crash box for an auto-body with the various shapes of cross section such as a rectangle, a hexagon and an octagon. First, crash boxes with various cross sections were tested with numerical simulation to obtain the energy absorption capacity and the mean load. In case of the simple axial crush, the octagon shape shows higher mean load and energy absorption than the other two shapes. Secondly, the crash boxes were assembled to a simplified auto-body model for the overall crashworthiness. The model consists of a bumper, crash boxes, front side members and a sub-frame representing the behavior of a full car at the low speed impact. The analysis result shows that the rectangular cross section shows the best performance as a crash box which deforms prior to the front side member. The hexagonal and octagonal cross sections undergo torsion and local buckling as the width of cross section decreases while the rectangular cross section does not. The simulation result of the rectangular crash box was verified with the experimental result. The simulation result shows close tendency in the deformed shape and the load-displacement curve to the experimental result.
An Alternative Derivation of the Energy Levels of the "Particle on a Ring" System
NASA Astrophysics Data System (ADS)
Vincent, Alan
1996-10-01
All acceptable wave functions must be continuous mathematical functions. This criterion limits the acceptable functions for a particle in a linear 1-dimensional box to sine functions. If, however, the linear box is bent round into a ring, acceptable wave functions are those which are continuous at the 'join'. On this model some acceptable linear functions become unacceptable for the ring and some unacceptable cosine functions become acceptable. This approach can be used to produce a straightforward derivation of the energy levels and wave functions of the particle on a ring. These simple wave mechanical systems can be used as models of linear and cyclic delocalised systems such as conjugated hydrocarbons or the benzene ring. The promotion energy of an electron can then be used to calculate the wavelength of absorption of uv light. The simple model gives results of the correct order of magnitude and shows that, as the chain length increases, the uv maximum moves to longer wavelengths, as found experimentally.
Data and methodological problems in establishing state gasoline-conservation targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, D.L.; Walton, G.H.
The Emergency Energy Conservation Act of 1979 gives the President the authority to set gasoline-conservation targets for states in the event of a supply shortage. This paper examines data and methodological problems associated with setting state gasoline-conservation targets. The target-setting method currently used is examined and found to have some flaws. Ways of correcting these deficiencies through the use of Box-Jenkins time-series analysis are investigated. A successful estimation of Box-Jenkins models for all states included the estimation of the magnitude of the supply shortages of 1979 in each state and a preliminary estimation of state short-run price elasticities, which weremore » found to vary about a median value of -0.16. The time-series models identified were very simple in structure and lent support to the simple consumption growth model assumed by the current target method. The authors conclude that the flaws in the current method can be remedied either by replacing the current procedures with time-series models or by using the models in conjunction with minor modifications of the current method.« less
ERIC Educational Resources Information Center
Eaton, Bruce G., Ed.
1977-01-01
Presents four short articles on: a power supply for the measurement of the charge-to-mass ratio of the electron; a modified centripetal force apparatus; a black box electronic unknown for the scientific instruments laboratory; and a simple scaling model for biological systems. (MLH)
NASA Astrophysics Data System (ADS)
Russano, Euan; Schwanenberg, Dirk; Alvarado Montero, Rodolfo
2017-04-01
Operational forecasting and decision support systems for flood mitigation and the daily management of water resources require computationally efficient flow routing models. If backwater effects do not play an important role, a hydrological routing approach is often a pragmatic choice. It offers a reasonable accuracy at low computational costs in comparison to a more detailed hydraulic model. This work presents a nonlinear reservoir routing scheme as well as its implementation for the flow propagation between the hydro reservoir Três Marias and a downstream inundation-affected city Pirapora in Brazil. We refer to the model as a gray-box approach due to the identification of the parameter k by a data-driven approach for each reservoir of the cascade, instead of using estimates based on physical characteristics. The model reproduces the discharge at the gauge Pirapora, using 15 reservoirs in the cascade. The obtained results are compared with the ones obtained from the full-hydrodynamic model SOBEK. Results show a relatively good performance for the validation period, with a RMSE of 139.48 for the gray-box model, while the full-hydrodynamic model shows a RMSE of 136.67. The simulation time for a period of several years for the full-hydrodynamic took approximately 64s, while the gray-box model only required about 0.50s. This provides a significant speedup of the computation by only a little trade-off in accuracy, pointing at the potential of the simple approach in the context of time-critical, operational applications. Key-words: flow routing, reservoir routing, gray-box model
The dynamics of coastal models
Hearn, Clifford J.
2008-01-01
Coastal basins are defined as estuaries, lagoons, and embayments. This book deals with the science of coastal basins using simple models, many of which are presented in either analytical form or Microsoft Excel or MATLAB. The book introduces simple hydrodynamics and its applications, from the use of simple box and one-dimensional models to flow over coral reefs. The book also emphasizes models as a scientific tool in our understanding of coasts, and introduces the value of the most modern flexible mesh combined wave-current models. Examples from shallow basins around the world illustrate the wonders of the scientific method and the power of simple dynamics. This book is ideal for use as an advanced textbook for graduate students and as an introduction to the topic for researchers, especially those from other fields of science needing a basic understanding of the basic ideas of the dynamics of coastal basins.
CSciBox: An Intelligent Assistant for Dating Ice and Sediment Cores
NASA Astrophysics Data System (ADS)
Finlinson, K.; Bradley, E.; White, J. W. C.; Anderson, K. A.; Marchitto, T. M., Jr.; de Vesine, L. R.; Jones, T. R.; Lindsay, C. M.; Israelsen, B.
2015-12-01
CSciBox is an integrated software system for the construction and evaluation of age models of paleo-environmental archives. It incorporates a number of data-processing and visualization facilities, ranging from simple interpolation to reservoir-age correction and 14C calibration via the Calib algorithm, as well as a number of firn and ice-flow models. It employs modern database technology to store paleoclimate proxy data and analysis results in an easily accessible and searchable form, and offers the user access to those data and computational elements via a modern graphical user interface (GUI). In the case of truly large data or computations, CSciBox is parallelizable across modern multi-core processors, or clusters, or even the cloud. The code is open source and freely available on github, as are one-click installers for various versions of Windows and Mac OSX. The system's architecture allows users to incorporate their own software in the form of computational components that can be built smoothly into CSciBox workflows, taking advantage of CSciBox's GUI, data importing facilities, and plotting capabilities. To date, BACON and StratiCounter have been integrated into CSciBox as embedded components. The user can manipulate and compose all of these tools and facilities as she sees fit. Alternatively, she can employ CSciBox's automated reasoning engine, which uses artificial intelligence techniques to explore the gamut of age models and cross-dating scenarios automatically. The automated reasoning engine captures the knowledge of expert geoscientists, and can output a description of its reasoning.
Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle.
Xue, Song; Wang, Ruiying; Yang, Fangping; Terns, Rebecca M; Terns, Michael P; Zhang, Xinxin; Maxwell, E Stuart; Li, Hong
2010-09-24
Box C/D small nucleolar and Cajal body ribonucleoprotein particles (sno/scaRNPs) direct site-specific 2'-O-methylation of ribosomal and spliceosomal RNAs and are critical for gene expression. Here we report crystal structures of an archaeal box C/D RNP containing three core proteins (fibrillarin, Nop56/58, and L7Ae) and a half-mer box C/D guide RNA paired with a substrate RNA. The structure reveals a guide-substrate RNA duplex orientation imposed by a composite protein surface and the conserved GAEK motif of Nop56/58. Molecular modeling supports a dual C/D RNP structure that closely mimics that recently visualized by electron microscopy. The substrate-bound dual RNP model predicts an asymmetric protein distribution between the RNP that binds and methylates the substrate RNA. The predicted asymmetric nature of the holoenzyme is consistent with previous biochemical data on RNP assembly and provides a simple solution for accommodating base-pairing between the C/D guide RNA and large ribosomal and spliceosomal substrate RNAs. Copyright © 2010 Elsevier Inc. All rights reserved.
POD Model Reconstruction for Gray-Box Fault Detection
NASA Technical Reports Server (NTRS)
Park, Han; Zak, Michail
2007-01-01
Proper orthogonal decomposition (POD) is the mathematical basis of a method of constructing low-order mathematical models for the "gray-box" fault-detection algorithm that is a component of a diagnostic system known as beacon-based exception analysis for multi-missions (BEAM). POD has been successfully applied in reducing computational complexity by generating simple models that can be used for control and simulation for complex systems such as fluid flows. In the present application to BEAM, POD brings the same benefits to automated diagnosis. BEAM is a method of real-time or offline, automated diagnosis of a complex dynamic system.The gray-box approach makes it possible to utilize incomplete or approximate knowledge of the dynamics of the system that one seeks to diagnose. In the gray-box approach, a deterministic model of the system is used to filter a time series of system sensor data to remove the deterministic components of the time series from further examination. What is left after the filtering operation is a time series of residual quantities that represent the unknown (or at least unmodeled) aspects of the behavior of the system. Stochastic modeling techniques are then applied to the residual time series. The procedure for detecting abnormal behavior of the system then becomes one of looking for statistical differences between the residual time series and the predictions of the stochastic model.
Ben Abdallah, Nada M-B; Fuss, Johannes; Trusel, Massimo; Galsworthy, Michael J; Bobsin, Kristin; Colacicco, Giovanni; Deacon, Robert M J; Riva, Marco A; Kellendonk, Christoph; Sprengel, Rolf; Lipp, Hans-Peter; Gass, Peter
2011-01-01
Deficits in executive functions are key features of schizophrenia. Rodent behavioral paradigms used so far to find animal correlates of such deficits require extensive effort and time. The puzzle box is a problem-solving test in which mice are required to complete escape tasks of increasing difficulty within a limited amount of time. Previous data have indicated that it is a quick but highly reliable test of higher-order cognitive functioning. We evaluated the use of the puzzle box to explore executive functioning in five different mouse models of schizophrenia: mice with prefrontal cortex and hippocampus lesions, mice treated sub-chronically with the NMDA-receptor antagonist MK-801, mice constitutively lacking the GluA1 subunit of AMPA-receptors, and mice over-expressing dopamine D2 receptors in the striatum. All mice displayed altered executive functions in the puzzle box, although the nature and extent of the deficits varied between the different models. Deficits were strongest in hippocampus-lesioned and GluA1 knockout mice, while more subtle deficits but specific to problem solving were found in the medial prefrontal-lesioned mice, MK-801-treated mice, and in mice with striatal overexpression of D2 receptors. Data from this study demonstrate the utility of the puzzle box as an effective screening tool for executive functions in general and for schizophrenia mouse models in particular. Published by Elsevier Inc.
Spatially inhomogeneous acceleration of electrons in solar flares
NASA Astrophysics Data System (ADS)
Stackhouse, Duncan J.; Kontar, Eduard P.
2018-04-01
The imaging spectroscopy capabilities of the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) enable the examination of the accelerated electron distribution throughout a solar flare region. In particular, it has been revealed that the energisation of these particles takes place over a region of finite size, sometimes resolved by RHESSI observations. In this paper, we present, for the first time, a spatially distributed acceleration model and investigate the role of inhomogeneous acceleration on the observed X-ray emission properties. We have modelled transport explicitly examining scatter-free and diffusive transport within the acceleration region and compare with the analytic leaky-box solution. The results show the importance of including this spatial variation when modelling electron acceleration in solar flares. The presence of an inhomogeneous, extended acceleration region produces a spectral index that is, in most cases, different from the simple leaky-box prediction. In particular, it results in a generally softer spectral index than predicted by the leaky-box solution, for both scatter-free and diffusive transport, and thus should be taken into account when modelling stochastic acceleration in solar flares.
NASA Astrophysics Data System (ADS)
Verginelli, Iason; Nocentini, Massimo; Baciocchi, Renato
2017-09-01
Simplified analytical solutions of fate and transport models are often used to carry out risk assessment on contaminated sites, to evaluate the long-term air quality in relation to volatile organic compounds in either soil or groundwater. Among the different assumptions employed to develop these solutions, in this work we focus on those used in the ASTM-RBCA ;box model; for the evaluation of contaminant dispersion in the atmosphere. In this simple model, it is assumed that the contaminant volatilized from the subsurface is dispersed in the atmosphere within a mixing height equal to two meters, i.e. the height of the breathing zone. In certain cases, this simplification could lead to an overestimation of the outdoor air concentration at the point of exposure. In this paper we first discuss the maximum source lengths (in the wind direction) for which the application of the ;box model; can be considered acceptable. Specifically, by comparing the results of ;box model; with the SCREEN3 model of U.S.EPA we found that under very stable atmospheric conditions (class F) the ASTM-RBCA approach provides acceptable results for source lengths up to 200 m while for very unstable atmospheric conditions (class A and B) the overestimation of the concentrations at the point of the exposure can be already observed for source lengths of only 10 m. In the latter case, the overestimation of the ;box model; can be of more than one order of magnitude for source lengths above 500 m. To overcome this limitation, in this paper we introduce a simple analytical solution that can be used for the calculation of the concentration at the point of exposure for large contaminated sites. The method consists in the introduction of an equivalent mixing zone height that allows to account for the dispersion of the contaminants along the source length while keeping the simplistic ;box model; approach that is implemented in most of risk assessment tools that are based on the ASTM-RBCA standard (e.g. RBCA toolkit). Based on our testing, we found that the developed model replicates very well the results of the more sophisticated dispersion SCREEN3 model with deviations always below 10%. The key advantage of this approach is that it can be very easily incorporated in the current risk assessment screening tools that are based on the ASTM standards while ensuring a more accurate evaluation of the concentration at the point of exposure.
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; MacMurdy, Dale E.; Kapania, Rakesh K.
1994-01-01
Strong interactions between flow about an aircraft wing and the wing structure can result in aeroelastic phenomena which significantly impact aircraft performance. Time-accurate methods for solving the unsteady Navier-Stokes equations have matured to the point where reliable results can be obtained with reasonable computational costs for complex non-linear flows with shock waves, vortices and separations. The ability to combine such a flow solver with a general finite element structural model is key to an aeroelastic analysis in these flows. Earlier work involved time-accurate integration of modal structural models based on plate elements. A finite element model was developed to handle three-dimensional wing boxes, and incorporated into the flow solver without the need for modal analysis. Static condensation is performed on the structural model to reduce the structural degrees of freedom for the aeroelastic analysis. Direct incorporation of the finite element wing-box structural model with the flow solver requires finding adequate methods for transferring aerodynamic pressures to the structural grid and returning deflections to the aerodynamic grid. Several schemes were explored for handling the grid-to-grid transfer of information. The complex, built-up nature of the wing-box complicated this transfer. Aeroelastic calculations for a sample wing in transonic flow comparing various simple transfer schemes are presented and discussed.
NASA Astrophysics Data System (ADS)
Kirchner, J. W.
2016-01-01
Methods for estimating mean transit times from chemical or isotopic tracers (such as Cl-, δ18O, or δ2H) commonly assume that catchments are stationary (i.e., time-invariant) and homogeneous. Real catchments are neither. In a companion paper, I showed that catchment mean transit times estimated from seasonal tracer cycles are highly vulnerable to aggregation error, exhibiting strong bias and large scatter in spatially heterogeneous catchments. I proposed the young water fraction, which is virtually immune to aggregation error under spatial heterogeneity, as a better measure of transit times. Here I extend this analysis by exploring how nonstationarity affects mean transit times and young water fractions estimated from seasonal tracer cycles, using benchmark tests based on a simple two-box model. The model exhibits complex nonstationary behavior, with striking volatility in tracer concentrations, young water fractions, and mean transit times, driven by rapid shifts in the mixing ratios of fluxes from the upper and lower boxes. The transit-time distribution in streamflow becomes increasingly skewed at higher discharges, with marked increases in the young water fraction and decreases in the mean water age, reflecting the increased dominance of the upper box at higher flows. This simple two-box model exhibits strong equifinality, which can be partly resolved by simple parameter transformations. However, transit times are primarily determined by residual storage, which cannot be constrained through hydrograph calibration and must instead be estimated by tracer behavior. Seasonal tracer cycles in the two-box model are very poor predictors of mean transit times, with typical errors of several hundred percent. However, the same tracer cycles predict time-averaged young water fractions (Fyw) within a few percent, even in model catchments that are both nonstationary and spatially heterogeneous (although they may be biased by roughly 0.1-0.2 at sites where strong precipitation seasonality is correlated with precipitation tracer concentrations). Flow-weighted fits to the seasonal tracer cycles accurately predict the flow-weighted average Fyw in streamflow, while unweighted fits to the seasonal tracer cycles accurately predict the unweighted average Fyw. Young water fractions can also be estimated separately for individual flow regimes, again with a precision of a few percent, allowing direct determination of how shifts in a catchment's hydraulic regime alter the fraction of water reaching the stream by fast flowpaths. One can also estimate the chemical composition of idealized "young water" and "old water" end-members, using relationships between young water fractions and solute concentrations across different flow regimes. These results demonstrate that mean transit times cannot be estimated reliably from seasonal tracer cycles and that, by contrast, the young water fraction is a robust and useful metric of transit times, even in catchments that exhibit strong nonstationarity and heterogeneity.
Black-boxing and cause-effect power
Albantakis, Larissa; Tononi, Giulio
2018-01-01
Reductionism assumes that causation in the physical world occurs at the micro level, excluding the emergence of macro-level causation. We challenge this reductionist assumption by employing a principled, well-defined measure of intrinsic cause-effect power–integrated information (Φ), and showing that, according to this measure, it is possible for a macro level to “beat” the micro level. Simple systems were evaluated for Φ across different spatial and temporal scales by systematically considering all possible black boxes. These are macro elements that consist of one or more micro elements over one or more micro updates. Cause-effect power was evaluated based on the inputs and outputs of the black boxes, ignoring the internal micro elements that support their input-output function. We show how black-box elements can have more common inputs and outputs than the corresponding micro elements, revealing the emergence of high-order mechanisms and joint constraints that are not apparent at the micro level. As a consequence, a macro, black-box system can have higher Φ than its micro constituents by having more mechanisms (higher composition) that are more interconnected (higher integration). We also show that, for a given micro system, one can identify local maxima of Φ across several spatiotemporal scales. The framework is demonstrated on a simple biological system, the Boolean network model of the fission-yeast cell-cycle, for which we identify stable local maxima during the course of its simulated biological function. These local maxima correspond to macro levels of organization at which emergent cause-effect properties of physical systems come into focus, and provide a natural vantage point for scientific inquiries. PMID:29684020
Using Origami Boxes to Explore Concepts of Geometry and Calculus
ERIC Educational Resources Information Center
Wares, Arsalan
2011-01-01
The purpose of this classroom note is to provide an example of how a simple origami box can be used to explore important concepts of geometry and calculus. This article describes how an origami box can be folded, then it goes on to describe how its volume and surface area can be calculated. Finally, it describes how the box could be folded to…
Learning Extended Finite State Machines
NASA Technical Reports Server (NTRS)
Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard
2014-01-01
We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.
Babaei, Behzad; Abramowitch, Steven D.; Elson, Elliot L.; Thomopoulos, Stavros; Genin, Guy M.
2015-01-01
The viscoelastic behaviour of a biological material is central to its functioning and is an indicator of its health. The Fung quasi-linear viscoelastic (QLV) model, a standard tool for characterizing biological materials, provides excellent fits to most stress–relaxation data by imposing a simple form upon a material's temporal relaxation spectrum. However, model identification is challenging because the Fung QLV model's ‘box’-shaped relaxation spectrum, predominant in biomechanics applications, can provide an excellent fit even when it is not a reasonable representation of a material's relaxation spectrum. Here, we present a robust and simple discrete approach for identifying a material's temporal relaxation spectrum from stress–relaxation data in an unbiased way. Our ‘discrete QLV’ (DQLV) approach identifies ranges of time constants over which the Fung QLV model's typical box spectrum provides an accurate representation of a particular material's temporal relaxation spectrum, and is effective at providing a fit to this model. The DQLV spectrum also reveals when other forms or discrete time constants are more suitable than a box spectrum. After validating the approach against idealized and noisy data, we applied the methods to analyse medial collateral ligament stress–relaxation data and identify the strengths and weaknesses of an optimal Fung QLV fit. PMID:26609064
Charge and energy dependence of the residence time of cosmic ray nuclei below 15 GeV/nucleon
NASA Technical Reports Server (NTRS)
Soutoul, A.; Engelmann, J. J.; Ferrando, P.; Koch-Miramond, L.; Masse, P.; Webber, W. R.
1985-01-01
The relative abundance of nuclear species measured in cosmic rays at Earth has often been interpreted with the simple leaky box model. For this model to be consistent an essential requirement is that the escape length does not depend on the nuclear species. The discrepancy between escape length values derived from iron secondaries and from the B/C ratio was identified by Garcia-Munoz and his co-workers using a large amount of experimental data. Ormes and Protheroe found a similar trend in the HEAO data although they questioned its significance against uncertainties. They also showed that the change in the B/C ratio values implies a decrease of the residence time of cosmic rays at low energies in conflict with the diffusive convective picture. These conclusions crucially depend on the partial cross section values and their uncertainties. Recently new accurate cross sections of key importance for propagation calculations have been measured. Their statistical uncertainties are often better than 4% and their values significantly different from those previously accepted. Here, these new cross sections are used to compare the observed B/C+O and (Sc to Cr)/Fe ratio to those predicted with the simple leaky box model.
A System for Cooling inside a Glove Box
ERIC Educational Resources Information Center
Sanz, Martial
2010-01-01
An easy, efficient, reliable, and low-cost method of constructing a cooling system using a simple circulating pump is described. The system is employed in conjunction with an inert atmosphere glove box to achieve the synthesis of air- and moisture-sensitive compounds inside the glove box at controlled, low temperatures without contaminating the…
The History of Venting (part I)
NASA Technical Reports Server (NTRS)
Leiter, Stephen C.
2017-01-01
Venting techniques and design are an important implementation strategy for observatory and payload contamination control, and yet venting analysis has seen a topsey turvey history, at lease from the perspective of the simple Layman trying to design a black box. Additionally, designing the vent has competing controls from Safety and EMIEMC. In the days of Shuttle, Safety placed liens against the vents of blankets, boxes, and large structural items principally to protect cargo bay vents but also from a flammability perspective. What continues to elude the Designer Community is a stable, simple way of designing vents for black boxes that satisfies everybody. But we continue to try.
Simple Statistical Model to Quantify Maximum Expected EMC in Spacecraft and Avionics Boxes
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Bremner, Paul
2014-01-01
This study shows cumulative distribution function (CDF) comparisons of composite a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. Test and model data correlation is shown. In addition, this presentation shows application of the power balance and extention of this method to predict the variance and maximum exptected mean of the E-field data. This is valuable for large scale evaluations of transmission inside cavities.
A Simple Illustrative Model of a Charge-Coupled Device (CCD)
ERIC Educational Resources Information Center
Santillo, Michael F.
2009-01-01
Many students (as well as the general public) use modern technology without an understanding of how these devices actually work. They are what scientists refer to in the laboratory as "black boxes." Students often wonder how physics relates to the technology used in the real world and are interested in such applications. An example of one such…
1988-04-21
Layton Senior Software Engineer Martin Marietta Denver Aerospace MS L0425 P.O. Box 179 Denver, CO 80201 Larry L. Lehman Integrated Systems Inc. 2500...Mission College Road Santa Clara, CA 95054 Eric Leighninger Dynamics Research 60 Frontage Road Andover, MA 01810 . Peter Lempp Software Products and
An Inductive Logic Programming Approach to Validate Hexose Binding Biochemical Knowledge.
Nassif, Houssam; Al-Ali, Hassan; Khuri, Sawsan; Keirouz, Walid; Page, David
2010-01-01
Hexoses are simple sugars that play a key role in many cellular pathways, and in the regulation of development and disease mechanisms. Current protein-sugar computational models are based, at least partially, on prior biochemical findings and knowledge. They incorporate different parts of these findings in predictive black-box models. We investigate the empirical support for biochemical findings by comparing Inductive Logic Programming (ILP) induced rules to actual biochemical results. We mine the Protein Data Bank for a representative data set of hexose binding sites, non-hexose binding sites and surface grooves. We build an ILP model of hexose-binding sites and evaluate our results against several baseline machine learning classifiers. Our method achieves an accuracy similar to that of other black-box classifiers while providing insight into the discriminating process. In addition, it confirms wet-lab findings and reveals a previously unreported Trp-Glu amino acids dependency.
Grey-box modelling of aeration tank settling.
Bechman, Henrik; Nielsen, Marinus K; Poulsen, Niels Kjølstad; Madsen, Henrik
2002-04-01
A model of the concentrations of suspended solids (SS) in the aeration tanks and in the effluent from these during Aeration tank settling (ATS) operation is established. The model is based on simple SS mass balances, a model of the sludge settling and a simple model of how the SS concentration in the effluent from the aeration tanks depends on the actual concentrations in the tanks and the sludge blanket depth. The model is formulated in continuous time by means of stochastic differential equations with discrete-time observations. The parameters of the model are estimated using a maximum likelihood method from data from an alternating BioDenipho waste water treatment plant (WWTP). The model is an important tool for analyzing ATS operation and for selecting the appropriate control actions during ATS, as the model can be used to predict the SS amounts in the aeration tanks as well as in the effluent from the aeration tanks.
Implementing the DC Mode in Cosmological Simulations with Supercomoving Variables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y; Kravtsov, Andrey V; Rudd, Douglas H
2011-06-02
As emphasized by previous studies, proper treatment of the density fluctuation on the fundamental scale of a cosmological simulation volume - the 'DC mode' - is critical for accurate modeling of spatial correlations on scales ~> 10% of simulation box size. We provide further illustration of the effects of the DC mode on the abundance of halos in small boxes and show that it is straightforward to incorporate this mode in cosmological codes that use the 'supercomoving' variables. The equations governing evolution of dark matter and baryons recast with these variables are particularly simple and include the expansion factor, andmore » hence the effect of the DC mode, explicitly only in the Poisson equation.« less
Mathematical thinking and origami
NASA Astrophysics Data System (ADS)
Wares, Arsalan
2016-01-01
The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and calculus.
Models for forecasting hospital bed requirements in the acute sector.
Farmer, R D; Emami, J
1990-01-01
STUDY OBJECTIVE--The aim was to evaluate the current approach to forecasting hospital bed requirements. DESIGN--The study was a time series and regression analysis. The time series for mean duration of stay for general surgery in the age group 15-44 years (1969-1982) was used in the evaluation of different methods of forecasting future values of mean duration of stay and its subsequent use in the formation of hospital bed requirements. RESULTS--It has been suggested that the simple trend fitting approach suffers from model specification error and imposes unjustified restrictions on the data. Time series approach (Box-Jenkins method) was shown to be a more appropriate way of modelling the data. CONCLUSION--The simple trend fitting approach is inferior to the time series approach in modelling hospital bed requirements. PMID:2277253
1983-01-13
Naval .1 Ordnance Systems Command ) codes are detailed propagation simulations mostly at lower frequencies . These are combined with WEPH code phenomenology...AD B062349L. Scope /Abstract: This report describes a simple model for predicting the loads on box-like target structures subject to air blast. A... model and applying it to targets which can be approximated by a series of rectangular parallelopipeds. In this report the physical phenomena of high
Wealth Condensation and ``Corruption'' in a Toy Model
NASA Astrophysics Data System (ADS)
Johnston, D.; Burda, Z.; Jurkiewicz, J.; Kaminski, M.; Nowak, M. A.; Papp, G.; Zahed, I.
2005-09-01
We discuss the wealth condensation mechanism in a simple toy economy in which individual agent's wealths are distributed according to a Pareto power law and the overall wealth is fixed. The observed behaviour is the manifestation of a transition which occurs in Zero Range Processes (ZRPs) or ``balls in boxes'' models. An amusing feature of the transition in this context is that the condensation can be induced by increasing the exponent in the power law, which one might have naively assumed penalised greater wealths more.
Bioturbation, advection, and diffusion of a conserved tracer in a laboratory flume
NASA Astrophysics Data System (ADS)
Work, P. A.; Moore, P. R.; Reible, D. D.
2002-06-01
Laboratory experiments indicating the relative influences of advection, diffusion, and bioturbation on transport of NaCl tracer between a stream and streambed are described. Data were collected in a recirculating flume housing a box filled with test sediments. Peclet numbers ranged from 0 to 1.5. Sediment components included a medium sand (d50 = 0.31 mm), kaolinite, and topsoil. Lumbriculus variegatus were introduced as bioturbators. Conductivity probes were employed to document the flux of the tracer solution out of the bed. Measurements are compared to one-dimensional effective diffusion models assuming one or two horizontal sediment layers. These simple models provide a good indication of tracer half-life in the bed if a suitable effective diffusion coefficient is chosen but underpredict initial flux and overpredict flux at long times. Organism activity was limited to the upper reaches of the sediment test box but eventually exerts a secondary influence on flux from deeper regions.
Wilson, Lydia J; Newhauser, Wayne D
2015-01-01
State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 minutes. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models. PMID:26040833
Jagetic, Lydia J; Newhauser, Wayne D
2015-06-21
State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 min. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models.
Simple Deterministically Constructed Recurrent Neural Networks
NASA Astrophysics Data System (ADS)
Rodan, Ali; Tiňo, Peter
A large number of models for time series processing, forecasting or modeling follows a state-space formulation. Models in the specific class of state-space approaches, referred to as Reservoir Computing, fix their state-transition function. The state space with the associated state transition structure forms a reservoir, which is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be potentially exploited by the reservoir-to-output readout mapping. The largely "black box" character of reservoirs prevents us from performing a deeper theoretical investigation of the dynamical properties of successful reservoirs. Reservoir construction is largely driven by a series of (more-or-less) ad-hoc randomized model building stages, with both the researchers and practitioners having to rely on a series of trials and errors. We show that a very simple deterministically constructed reservoir with simple cycle topology gives performances comparable to those of the Echo State Network (ESN) on a number of time series benchmarks. Moreover, we argue that the memory capacity of such a model can be made arbitrarily close to the proved theoretical limit.
A Systematic Study of Simple Combinatorial Configurations.
ERIC Educational Resources Information Center
Dubois, Jean-Guy
1984-01-01
A classification of the simple combinatorial configurations which correspond to various cases of distribution and ordering of objects into boxes is given (in French). Concrete descriptions, structured relations, translations, and formalizations are discussed. (MNS)
Molecular Thermodynamics for Cell Biology as Taught with Boxes
Mayorga, Luis S.; López, María José; Becker, Wayne M.
2012-01-01
Thermodynamic principles are basic to an understanding of the complex fluxes of energy and information required to keep cells alive. These microscopic machines are nonequilibrium systems at the micron scale that are maintained in pseudo-steady-state conditions by very sophisticated processes. Therefore, several nonstandard concepts need to be taught to rationalize why these very ordered systems proliferate actively all over our planet in seeming contradiction to the second law of thermodynamics. We propose a model consisting of boxes with different shapes that contain small balls that are in constant motion due to a stream of air blowing from below. This is a simple macroscopic system that can be easily visualized by students and that can be understood as mimicking the behavior of a set of molecules exchanging energy. With such boxes, the basic concepts of entropy, enthalpy, and free energy can be taught while reinforcing a molecular understanding of the concepts and stressing the stochastic nature of the thermodynamic laws. In addition, time-related concepts, such as reaction rates and activation energy, can be readily visualized. Moreover, the boxes provide an intuitive way to introduce the role in cellular organization of “information” and Maxwell's demons operating under nonequilibrium conditions. PMID:22383615
Molecular thermodynamics for cell biology as taught with boxes.
Mayorga, Luis S; López, María José; Becker, Wayne M
2012-01-01
Thermodynamic principles are basic to an understanding of the complex fluxes of energy and information required to keep cells alive. These microscopic machines are nonequilibrium systems at the micron scale that are maintained in pseudo-steady-state conditions by very sophisticated processes. Therefore, several nonstandard concepts need to be taught to rationalize why these very ordered systems proliferate actively all over our planet in seeming contradiction to the second law of thermodynamics. We propose a model consisting of boxes with different shapes that contain small balls that are in constant motion due to a stream of air blowing from below. This is a simple macroscopic system that can be easily visualized by students and that can be understood as mimicking the behavior of a set of molecules exchanging energy. With such boxes, the basic concepts of entropy, enthalpy, and free energy can be taught while reinforcing a molecular understanding of the concepts and stressing the stochastic nature of the thermodynamic laws. In addition, time-related concepts, such as reaction rates and activation energy, can be readily visualized. Moreover, the boxes provide an intuitive way to introduce the role in cellular organization of "information" and Maxwell's demons operating under nonequilibrium conditions.
Beyond the Simple Model of Child Care Facilities: Support Spaces for Quality
ERIC Educational Resources Information Center
Greenman, Jim
2006-01-01
The age of child care building on a wide scale really began in the 1970s. Before that, there had been a history of day nurseries going back to the turn of the century and Lanham Act centers during World War II to provide care for "Rosie the Riveter" mothers in the work force. The "purpose built" child care center was an economical box with almost…
Utilization of Boxes for Pesticide Storage in Sri Lanka.
Pieris, Ravi; Weerasinghe, Manjula; Abeywickrama, Tharaka; Manuweera, Gamini; Eddleston, Michael; Dawson, Andrew; Konradsen, Flemming
2017-01-01
Pesticide self-poisoning is now considered one of the two most common methods of suicide worldwide. Encouraging safe storage of pesticides is one particular approach aimed at reducing pesticide self-poisoning. CropLife Sri Lanka (the local association of pesticide manufacturers), with the aid of the Department of Agriculture, distributed lockable in-house pesticide storage boxes free of charge to a farming community in a rural district of Sri Lanka. Padlocks were not provided with the boxes. These storage boxes were distributed to the farmers without prior education. The authors carried out a cross-sectional follow-up survey to assess the usage of boxes at 7 months after distribution. In an inspection of a sample of 239 box recipients' households, 142 households stored pesticides in the provided box at the time of survey. Among them, only 42 (42/142, 29.65%) households had locked the box; the remaining households (100/142, 70.4%) had not locked the box. A simple hand over of in-house pesticide storage boxes without awareness/education results in poor use of boxes. Additionally, providing in-house storage boxes may encourage farmers to store pesticides in and around houses and, if they are not locked, may lead to unplanned adverse effects.
Goyal, Saumitra; Radi, Mohamed Abdel; Ramadan, Islam Karam-allah; Said, Hatem Galal
2016-01-01
Purpose: Arthroscopic skills training outside the operative room may decrease risks and errors by trainee surgeons. There is a need of simple objective method for evaluating proficiency and skill of arthroscopy trainees using simple bench model of arthroscopic simulator. The aim of this study is to correlate motor task performance to level of prior arthroscopic experience and establish benchmarks for training modules. Methods: Twenty orthopaedic surgeons performed a set of tasks to assess a) arthroscopic triangulation, b) navigation, c) object handling and d) meniscus trimming using SAWBONES “FAST” arthroscopy skills workstation. Time to completion and the errors were computed. The subjects were divided into four levels; “Novice”, “Beginner”, “Intermediate” and “Advanced” based on previous arthroscopy experience, for analyses of performance. Results: The task performance under transparent dome was not related to experience of the surgeon unlike opaque dome, highlighting the importance of hand-eye co-ordination required in arthroscopy. Median time to completion for each task improved as the level of experience increased and this was found to be statistically significant (p < .05) e.g. time for maze navigation (Novice – 166 s, Beginner – 135.5 s, Intermediate – 100 s, Advance – 97.5 s) and the similar results for all tasks. Majority (>85%) of subjects across all the levels reported improvement in performance with sequential tasks. Conclusion: Use of the arthroscope requires visuo-spatial coordination which is a skill that develops with practice. This simple box model can reliably differentiate the arthroscopic skills based on experience and can be used to monitor progression of skills of trainees in institutions. PMID:27801643
Estimating the Wavelength of Sodium Emission in Flame--The Easy Way
ERIC Educational Resources Information Center
Wahab, M. Farooq
2009-01-01
Simple "box spectroscopes" are not new. Different methods of building them at home using cheap diffraction gratings have been described. However, their use has often been confined to looking at street lights, discharge tubes, and enjoying the beautiful spectra of various lamps. Construction of the box spectroscope usually involves a narrow slit…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
... interests of investors to have lower Auction Transaction costs for non-Professional, Public Customers, and that the BOX fee structure will continue to attract this customer order flow to these auction... simple fact that price improvement occurs in the PIP. Since the PIP began in 2004, customers have...
ERIC Educational Resources Information Center
Wares, Arsalan; Elstak, Iwan
2017-01-01
The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…
Improving Robot Locomotion Through Learning Methods for Expensive Black-Box Systems
2013-11-01
development of a class of “gradient free” optimization techniques; these include local approaches, such as a Nelder- Mead simplex search (c.f. [73]), and global...1Note that this simple method differs from the Nelder Mead constrained nonlinear optimization method [73]. 39 the Non-dominated Sorting Genetic Algorithm...Kober, and Jan Peters. Model-free inverse reinforcement learning. In International Conference on Artificial Intelligence and Statistics, 2011. [12] George
Energetics and monsoon bifurcations
NASA Astrophysics Data System (ADS)
Seshadri, Ashwin K.
2017-01-01
Monsoons involve increases in dry static energy (DSE), with primary contributions from increased shortwave radiation and condensation of water vapor, compensated by DSE export via horizontal fluxes in monsoonal circulations. We introduce a simple box-model characterizing evolution of the DSE budget to study nonlinear dynamics of steady-state monsoons. Horizontal fluxes of DSE are stabilizing during monsoons, exporting DSE and hence weakening the monsoonal circulation. By contrast latent heat addition (LHA) due to condensation of water vapor destabilizes, by increasing the DSE budget. These two factors, horizontal DSE fluxes and LHA, are most strongly dependent on the contrast in tropospheric mean temperature between land and ocean. For the steady-state DSE in the box-model to be stable, the DSE flux should depend more strongly on the temperature contrast than LHA; stronger circulation then reduces DSE and thereby restores equilibrium. We present conditions for this to occur. The main focus of the paper is describing conditions for bifurcation behavior of simple models. Previous authors presented a minimal model of abrupt monsoon transitions and argued that such behavior can be related to a positive feedback called the `moisture advection feedback'. However, by accounting for the effect of vertical lapse rate of temperature on the DSE flux, we show that bifurcations are not a generic property of such models despite these fluxes being nonlinear in the temperature contrast. We explain the origin of this behavior and describe conditions for a bifurcation to occur. This is illustrated for the case of the July-mean monsoon over India. The default model with mean parameter estimates does not contain a bifurcation, but the model admits bifurcation as parameters are varied.
Forgetting in immediate serial recall: decay, temporal distinctiveness, or interference?
Oberauer, Klaus; Lewandowsky, Stephan
2008-07-01
Three hypotheses of forgetting from immediate memory were tested: time-based decay, decreasing temporal distinctiveness, and interference. The hypotheses were represented by 3 models of serial recall: the primacy model, the SIMPLE (scale-independent memory, perception, and learning) model, and the SOB (serial order in a box) model, respectively. The models were fit to 2 experiments investigating the effect of filled delays between items at encoding or at recall. Short delays between items, filled with articulatory suppression, led to massive impairment of memory relative to a no-delay baseline. Extending the delays had little additional effect, suggesting that the passage of time alone does not cause forgetting. Adding a choice reaction task in the delay periods to block attention-based rehearsal did not change these results. The interference-based SOB fit the data best; the primacy model overpredicted the effect of lengthening delays, and SIMPLE was unable to explain the effect of delays at encoding. The authors conclude that purely temporal views of forgetting are inadequate. Copyright (c) 2008 APA, all rights reserved.
North American box turtles: A natural history
Dodd, C. Kenneth
2002-01-01
Once a familiar backyard visitor in many parts of the United States and Mexico, the box turtle is losing the battle against extinction. In North American Box Turtles, C. Kenneth Dodd, Jr., has written the first book-length natural history of the twelve species and subspecies of this endangered animal. This volume includes comprehensive information on the species’ evolution, behavior, courtship and reproduction, habitat use, diet, population structure, systematics, and disease. Special features include color photos of all species, subspecies, and their habitats; a simple identification guide to both living and fossil species; and a summary of information on fossil Terrapene and Native uses of box turtles. End-of-chapter sections highlight future research directions, including the need for long-term monitoring and observation of box turtles within their natural habitat and conservation applications. A glossary and a bibliography of literature on box turtles accompany the text.
Viewing boxes: a survey in diagnostic radiology departments of Moroccan hospitals.
Bentayeb, F; Nfaoiu, K; Basraoui, O; Azevedo, A C P
2010-10-01
This work consists on a survey of the performance of viewing boxes installed in diagnostic radiology departments and included several aspects: checking the illuminance of the diagnostic rooms where the viewing boxes are located as well as the viewing boxes luminance levels and homogeneity. Seven hospitals took part in the survey, being three in the city of Casablanca and four in Rabat. A total of 136 viewing boxes and 18 diagnostic rooms have been checked. It was found that one diagnostic room works under normal conditions and that 80% of the viewing boxes present luminance levels below the international recommendations and the homogeneity is inadequate in 85%. Some simple and cheap initiatives can be performed in these departments to increase luminance and improve homogeneity levels such as cleaning and bulbs replacement. Copyright © 2009 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Titration of DnaA protein by oriC DnaA-boxes increases dnaA gene expression in Escherichia coli.
Hansen, F G; Koefoed, S; Sørensen, L; Atlung, T
1987-01-01
Binding of the DnaA protein to its binding sites, the DnaA-boxes (TTATCCACA), was measured by a simple physiological approach. The presence of extra DnaA-boxes in growing cells leads to a derepression of dnaA gene expression, measured as beta-galactosidase activity of a dnaA-lacZ fusion polypeptide. Different DnaA-boxes caused different degrees of derepression indicating that the DnaA protein requires sequences in addition to the DnaA-box for efficient binding. The DnaA-boxes in oriC might act cooperatively in binding of the DnaA protein. The derepressed levels of DnaA protein obtained in a strain carrying an oriC+-pBR322 chimera were very high and sufficient to activate oriC on the chimeric plasmid, which was maintained at a copy number more than three times that of pBR322. PMID:3034578
ERIC Educational Resources Information Center
Santos, Joel; Centurio, Tina
2012-01-01
What happens in the first week of school could very well set the stage for the rest of the school year. Setting high standards for science activities based in inquiry can start on the first day of science class and develop as the year unfolds. With the use of simple, readily available, inexpensive materials, an efficient mystery box lesson can be…
Upstream Density for Plasma Detachment with Conventional and Lithium Vapor-Box Divertors
NASA Astrophysics Data System (ADS)
Goldston, Rj; Schwartz, Ja
2016-10-01
Fusion power plants are likely to require detachment of the divertor plasma from material targets. The lithium vapor box divertor is designed to achieve this, while limiting the flux of lithium vapor to the main plasma. We develop a simple model of near-detachment to evaluate the required upstream plasma density, for both conventional and lithium vapor-box divertors, based on particle and dynamic pressure balance between up- and down-stream, at near-detachment conditions. A remarkable general result is found, not just for lithium-induced detachment, that the upstream density divided by the Greenwald-limit density scales as (P 5 / 8 /B 3 / 8) Tdet1 / 2 / (ɛcool + γTdet) , with no explicit size scaling. Tdet is the temperature just before strong pressure loss, 1/2 of the ionization potential of the dominant recycling species, ɛcool is the average plasma energy lost per injected hydrogenic and impurity atom, and γ is the sheath heat transmission factor. A recent 1-D calculation agrees well with this scaling. The implication is that the plasma exhaust problem cannot be solved by increasing R. Instead significant innovation, such as the lithium vapor box divertor, will be required. This work supported by DOE Contract No. DE-AC02-09CH11466.
Maximum entropy production allows a simple representation of heterogeneity in semiarid ecosystems.
Schymanski, Stanislaus J; Kleidon, Axel; Stieglitz, Marc; Narula, Jatin
2010-05-12
Feedbacks between water use, biomass and infiltration capacity in semiarid ecosystems have been shown to lead to the spontaneous formation of vegetation patterns in a simple model. The formation of patterns permits the maintenance of larger overall biomass at low rainfall rates compared with homogeneous vegetation. This results in a bias of models run at larger scales neglecting subgrid-scale variability. In the present study, we investigate the question whether subgrid-scale heterogeneity can be parameterized as the outcome of optimal partitioning between bare soil and vegetated area. We find that a two-box model reproduces the time-averaged biomass of the patterns emerging in a 100 x 100 grid model if the vegetated fraction is optimized for maximum entropy production (MEP). This suggests that the proposed optimality-based representation of subgrid-scale heterogeneity may be generally applicable to different systems and at different scales. The implications for our understanding of self-organized behaviour and its modelling are discussed.
Cloud fluid models of gas dynamics and star formation in galaxies
NASA Technical Reports Server (NTRS)
Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.
1987-01-01
The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.
Baseline simple and complex reaction times in female compared to male boxers.
Bianco, M; Ferri, M; Fabiano, C; Giorgiano, F; Tavella, S; Manili, U; Faina, M; Palmieri, V; Zeppilli, P
2011-06-01
The aim of the study was to compare baseline cognitive performance of female in respect to male amateur boxers. Study population included 28 female amateur boxers. Fifty-six male boxers, matched for age, employment and competitive level to female athletes, formed the control group. All boxers had no history of head concussions (except boxing). Each boxer was requested to: 1) fulfill a questionnaire collecting demographic data, level of education, occupational status, boxing record and number of head concussions during boxing; 2) undergo a baseline computerized neuropsychological (NP) test (CogSport) measuring simple and complex reaction times (RT). Female were lighter than male boxers (56±7 vs. 73.1±9.8 kg, P<0.0001). No significant differences at CogSport scores were observed between groups. Male boxers showed a longer simple-RT at the end of the NP battery than at the beginning (0.247±0.007 vs. 0.243±0.007 s, P=0.02), however, with a significant lower rate of mistakes (0.7±1.6 vs. 2.0±3.1%, P=0.005), observed also in the female group (0.5±1.1 vs. 2.2±3.0%, P=0.005). No boxing activity parameter (record, number of knock-outs, etc.) correlated with NP scores. Female and male Olympic-style boxers have no (or minimal) differences in baseline cognitive performance. Further research with larger series of female boxers is required to confirm these findings.
"ABC's Earthquake" (Experiments and models in seismology)
NASA Astrophysics Data System (ADS)
Almeida, Ana
2017-04-01
Ana Almeida, Portugal Almeida, Ana Escola Básica e Secundária Dr. Vieira de Carvalho Moreira da Maia, Portugal The purpose of this presentation, in poster format, is to disclose an activity which was planned and made by me, in a school on the north of Portugal, using a kit of materials simple and easy to use - the sismo-box. The activity "ABC's Earthquake" was developed under the discipline of Natural Sciences, with students from 7th grade, geosciences teachers and other areas. The possibility of work with the sismo-box was seen as an exciting and promising opportunity to promote science, seismology more specifically, to do science, when using the existing models in the box and with them implement the scientific method, to work and consolidate content and skills in the area of Natural Sciences, to have a time of sharing these materials with classmates, and also with other teachers from the different areas. Throughout the development of the activity, either with students or teachers, it was possible to see the admiration by the models presented in the earthquake-box, as well as, the interest and the enthusiasm in wanting to move and understand what the results after the proposed procedure in the script. With this activity, we managed to promote: - educational success in this subject; a "school culture" with active participation, with quality, rules, discipline and citizenship values; fully integration of students with special educational needs; strengthen the performance of the school as a cultural, informational and formation institution; provide activities to date and innovative; foment knowledge "to be, being and doing" and contribute to a moment of joy and discovery.Learn by doing!
Exploring global carbon turnover and radiocarbon cycling in terrestrial biosphere models
NASA Astrophysics Data System (ADS)
Graven, H. D.; Warren, H.
2017-12-01
The uptake of carbon into terrestrial ecosystems through net primary productivity (NPP) and the turnover of that carbon through various pathways are the fundamental drivers of changing carbon stocks on land, in addition to human-induced and natural disturbances. Terrestrial biosphere models use different formulations for carbon uptake and release, resulting in a range of values in NPP of 40-70 PgC/yr and biomass turnover times of about 25-40 years for the preindustrial period in current-generation models from CMIP5. Biases in carbon uptake and turnover impact simulated carbon uptake and storage in the historical period and later in the century under changing climate and CO2 concentration, however evaluating global-scale NPP and carbon turnover is challenging. Scaling up of plot-scale measurements involves uncertainty due to the large heterogeneity across ecosystems and biomass types, some of which are not well-observed. We are developing the modelling of radiocarbon in terrestrial biosphere models, with a particular focus on decadal 14C dynamics after the nuclear weapons testing in the 1950s-60s, including the impact of carbon flux trends and variability on 14C cycling. We use an estimate of the total inventory of excess 14C in the biosphere constructed by Naegler and Levin (2009) using a 14C budget approach incorporating estimates of total 14C produced by the weapons tests and atmospheric and oceanic 14C observations. By simulating radiocarbon in simple biosphere box models using carbon fluxes from the CMIP5 models, we find that carbon turnover is too rapid in many of the simple models - the models appear to take up too much 14C and release it too quickly. Therefore many CMIP5 models may also simulate carbon turnover that is too rapid. A caveat is that the simple box models we use may not adequately represent carbon dynamics in the full-scale models. Explicit simulation of radiocarbon in terrestrial biosphere models would allow more robust evaluation of biosphere models and the investigation of climate-carbon cycle feedbacks on various timescales. Explicit simulation of radiocarbon and carbon-13 in terrestrial biosphere models of Earth System Models, as well as in ocean models, is recommended by CMIP6 and supported by CMIP6 protocols and forcing datasets.
A nonlinear isobologram model with Box-Cox transformation to both sides for chemical mixtures.
Chen, D G; Pounds, J G
1998-12-01
The linear logistical isobologram is a commonly used and powerful graphical and statistical tool for analyzing the combined effects of simple chemical mixtures. In this paper a nonlinear isobologram model is proposed to analyze the joint action of chemical mixtures for quantitative dose-response relationships. This nonlinear isobologram model incorporates two additional new parameters, Ymin and Ymax, to facilitate analysis of response data that are not constrained between 0 and 1, where parameters Ymin and Ymax represent the minimal and the maximal observed toxic response. This nonlinear isobologram model for binary mixtures can be expressed as [formula: see text] In addition, a Box-Cox transformation to both sides is introduced to improve the goodness of fit and to provide a more robust model for achieving homogeneity and normality of the residuals. Finally, a confidence band is proposed for selected isobols, e.g., the median effective dose, to facilitate graphical and statistical analysis of the isobologram. The versatility of this approach is demonstrated using published data describing the toxicity of the binary mixtures of citrinin and ochratoxin as well as a new experimental data from our laboratory for mixtures of mercury and cadmium.
A nonlinear isobologram model with Box-Cox transformation to both sides for chemical mixtures.
Chen, D G; Pounds, J G
1998-01-01
The linear logistical isobologram is a commonly used and powerful graphical and statistical tool for analyzing the combined effects of simple chemical mixtures. In this paper a nonlinear isobologram model is proposed to analyze the joint action of chemical mixtures for quantitative dose-response relationships. This nonlinear isobologram model incorporates two additional new parameters, Ymin and Ymax, to facilitate analysis of response data that are not constrained between 0 and 1, where parameters Ymin and Ymax represent the minimal and the maximal observed toxic response. This nonlinear isobologram model for binary mixtures can be expressed as [formula: see text] In addition, a Box-Cox transformation to both sides is introduced to improve the goodness of fit and to provide a more robust model for achieving homogeneity and normality of the residuals. Finally, a confidence band is proposed for selected isobols, e.g., the median effective dose, to facilitate graphical and statistical analysis of the isobologram. The versatility of this approach is demonstrated using published data describing the toxicity of the binary mixtures of citrinin and ochratoxin as well as a new experimental data from our laboratory for mixtures of mercury and cadmium. PMID:9860894
NASA Astrophysics Data System (ADS)
Simmonds, P. G.; Derwent, R. G.; Manning, A. J.; Grant, A.; O'Doherty, S.; Spain, T. G.
2011-02-01
During stable nocturnal inversions with low wind speeds, we observed strong depletions of both hydrogen and ozone caused by deposition to the peat bogs in the vicinity of the Mace Head Atmospheric Research Station, Connemara, County Galway, Ireland. From these temporally correlated fluxes and using a simple box model, we have estimated the strength of the molecular hydrogen soil sink over a 14-yr period (1995-2008). Over this entire period 269 nocturnal deposition events were identified that satisfied the strict selection criteria. The average hydrogen deposition velocity determined from these events was 0.53 mm s-1, covering a range of 0.18-1.29 mm s-1, which is in agreement with the range of deposition velocities reported in the literature for similar peaty biomes. By annually averaging all of the nocturnal inversion events over the most seasonally active period from April-September we reveal a positive correlation with ambient temperature in the relative deposition velocities of hydrogen and ozone, which is not readily apparent in all of the individual events. Furthermore, average hydrogen deposition velocities and accumulated rainfall from 48 h before and during each event were to a reasonable extent anti-correlated. However, due to the large uncertainties in determining monthly mean H2 deposition velocities there is no statistically significant trend in the hydrogen deposition velocities over time.
A flexible importance sampling method for integrating subgrid processes
Raut, E. K.; Larson, V. E.
2016-01-29
Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that containsmore » both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). Here, the resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.« less
A solution to the biodiversity paradox by logical deterministic cellular automata.
Kalmykov, Lev V; Kalmykov, Vyacheslav L
2015-06-01
The paradox of biological diversity is the key problem of theoretical ecology. The paradox consists in the contradiction between the competitive exclusion principle and the observed biodiversity. The principle is important as the basis for ecological theory. On a relatively simple model we show a mechanism of indefinite coexistence of complete competitors which violates the known formulations of the competitive exclusion principle. This mechanism is based on timely recovery of limiting resources and their spatio-temporal allocation between competitors. Because of limitations of the black-box modeling there was a problem to formulate the exclusion principle correctly. Our white-box multiscale model of two-species competition is based on logical deterministic individual-based cellular automata. This approach provides an automatic deductive inference on the basis of a system of axioms, and gives a direct insight into mechanisms of the studied system. It is one of the most promising methods of artificial intelligence. We reformulate and generalize the competitive exclusion principle and explain why this formulation provides a solution of the biodiversity paradox. In addition, we propose a principle of competitive coexistence.
Appreciation of Mathematics through Origami
ERIC Educational Resources Information Center
Wares, Arsalan
2013-01-01
The purpose of this classroom note is to provide an example of how a simple origami box can be used to explore important mathematical concepts in geometry like surface area. This article describes how an origami box can be folded from a rectangular sheet of paper, then it goes on to describe how its surface area can be determined in terms of the…
Can the design of glove dispensing boxes influence glove contamination?
Assadian, O; Leaper, D J; Kramer, A; Ousey, K J
2016-11-01
Few studies have explored the microbial contamination of glove boxes in clinical settings. The objective of this observational study was to investigate whether a new glove packaging system in which single gloves are dispensed vertically, cuff end first, has lower levels of contamination on the gloves and on the surface around the box aperture compared with conventional glove boxes. Seven participating sites were provided with vertical glove dispensing systems (modified boxes) and conventional boxes. Before opening glove boxes, the surface around the aperture was sampled microbiologically to establish baseline levels of superficial contamination. Once the glove boxes were opened, the first pair of gloves in each box was sampled for viable bacteria. Thereafter, testing sites were visited on a weekly basis over a period of six weeks and the same microbiological assessments were made. The surface near the aperture of the modified boxes became significantly less contaminated over time compared with the conventional boxes (P<0.001), with an average of 46.7% less contamination around the aperture. Overall, gloves from modified boxes showed significantly less colony-forming unit contamination than gloves from conventional boxes (P<0.001). Comparing all sites over the entire six-week period, gloves from modified boxes had 88.9% less bacterial contamination. This simple improvement to glove box design reduces contamination of unused gloves. Such modifications could decrease the risk of microbial cross-transmission in settings that use gloves. However, such advantages do not substitute for strict hand hygiene compliance and appropriate use of non-sterile, single-use gloves. Copyright © 2016 The Healthcare Infection Society. All rights reserved.
A PC parallel port button box provides millisecond response time accuracy under Linux.
Stewart, Neil
2006-02-01
For psychologists, it is sometimes necessary to measure people's reaction times to the nearest millisecond. This article describes how to use the PC parallel port to receive signals from a button box to achieve millisecond response time accuracy. The workings of the parallel port, the corresponding port addresses, and a simple Linux program for controlling the port are described. A test of the speed and reliability of button box signal detection is reported. If the reader is moderately familiar with Linux, this article should provide sufficient instruction for him or her to build and test his or her own parallel port button box. This article also describes how the parallel port could be used to control an external apparatus.
NASA Astrophysics Data System (ADS)
Wares, Arsalan; Elstak, Iwan
2017-02-01
The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra and geometry, like other branches of mathematics, are interrelated.
Bird song: in vivo, in vitro, in silico
NASA Astrophysics Data System (ADS)
Mukherjee, Aryesh; Mandre, Shreyas; Mahadevan, Lakshminarayan
2010-11-01
Bird song, long since an inspiration for artists, writers and poets also poses challenges for scientists interested in dissecting the mechanisms underlying the neural, motor, learning and behavioral systems behind the beak and brain, as a way to recreate and synthesize it. We use a combination of quantitative visualization experiments with physical models and computational theories to understand the simplest aspects of these complex musical boxes, focusing on using the controllable elastohydrodynamic interactions to mimic aural gestures and simple songs.
Ignorance is a bliss: Mathematical structure of many-box models
NASA Astrophysics Data System (ADS)
Tylec, Tomasz I.; Kuś, Marek
2018-03-01
We show that the propositional system of a many-box model is always a set-representable effect algebra. In particular cases of 2-box and 1-box models, it is an orthomodular poset and an orthomodular lattice, respectively. We discuss the relation of the obtained results with the so-called Local Orthogonality principle. We argue that non-classical properties of box models are the result of a dual enrichment of the set of states caused by the impoverishment of the set of propositions. On the other hand, quantum mechanical models always have more propositions as well as more states than the classical ones. Consequently, we show that the box models cannot be considered as generalizations of quantum mechanical models and seeking additional principles that could allow us to "recover quantum correlations" in box models are, at least from the fundamental point of view, pointless.
Highlight shapes and perception of gloss for real and photographed objects.
van Assen, Jan Jaap R; Wijntjes, Maarten W A; Pont, Sylvia C
2016-01-01
Gloss perception strongly depends on the three-dimensional shape and the illumination of the object under consideration. In this study we investigated the influence of the spatial structure of the illumination on gloss perception. A diffuse light box in combination with differently shaped masks was used to produce a set of six simple and complex highlight shapes. The geometry of the simple highlight shapes was inspired by conventional artistic practice (e.g., ring flash for photography, window shape for painting and disk or square for cartoons). In the box we placed spherical stimuli that were painted in six degrees of glossiness. This resulted in a stimulus set of six highlight shapes and six gloss levels, a total of 36 stimuli. We performed three experiments of which two took place using digital photographs on a computer monitor and one with the real spheres in the light box. The observers had to perform a comparison task in which they chose which of two stimuli was glossiest and a rating task in which they rated the glossiness. The results show that, perhaps surprisingly, more complex highlight shapes were perceived to produce a less glossy appearance than simple highlight shapes such as a disk or square. These findings were confirmed for both viewing conditions, on a computer display and in a real setting. The results show that variations in the spatial structure of "rather simple" illumination of the "extended source" type highlight influences perceived glossiness.
A scale-invariant cellular-automata model for distributed seismicity
NASA Technical Reports Server (NTRS)
Barriere, Benoit; Turcotte, Donald L.
1991-01-01
In the standard cellular-automata model for a fault an element of stress is randomly added to a grid of boxes until a box has four elements, these are then redistributed to the adjacent boxes on the grid. The redistribution can result in one or more of these boxes having four or more elements in which case further redistributions are required. On the average added elements are lost from the edges of the grid. The model is modified so that the boxes have a scale-invariant distribution of sizes. The objective is to model a scale-invariant distribution of fault sizes. When a redistribution from a box occurs it is equivalent to a characteristic earthquake on the fault. A redistribution from a small box (a foreshock) can trigger an instability in a large box (the main shock). A redistribution from a large box always triggers many instabilities in the smaller boxes (aftershocks). The frequency-size statistics for both main shocks and aftershocks satisfy the Gutenberg-Richter relation with b = 0.835 for main shocks and b = 0.635 for aftershocks. Model foreshocks occur 28 percent of the time.
Lipid Adjustment for Chemical Exposures: Accounting for Concomitant Variables
Li, Daniel; Longnecker, Matthew P.; Dunson, David B.
2013-01-01
Background Some environmental chemical exposures are lipophilic and need to be adjusted by serum lipid levels before data analyses. There are currently various strategies that attempt to account for this problem, but all have their drawbacks. To address such concerns, we propose a new method that uses Box-Cox transformations and a simple Bayesian hierarchical model to adjust for lipophilic chemical exposures. Methods We compared our Box-Cox method to existing methods. We ran simulation studies in which increasing levels of lipid-adjusted chemical exposure did and did not increase the odds of having a disease, and we looked at both single-exposure and multiple-exposures cases. We also analyzed an epidemiology dataset that examined the effects of various chemical exposures on the risk of birth defects. Results Compared with existing methods, our Box-Cox method produced unbiased estimates, good coverage, similar power, and lower type-I error rates. This was the case in both single- and multiple-exposure simulation studies. Results from analysis of the birth-defect data differed from results using existing methods. Conclusion Our Box-Cox method is a novel and intuitive way to account for the lipophilic nature of certain chemical exposures. It addresses some of the problems with existing methods, is easily extendable to multiple exposures, and can be used in any analyses that involve concomitant variables. PMID:24051893
An ergonomics approach model to prevention of occupational musculoskeletal injuries.
Koltan, Altan
2009-01-01
The objective of this study was to prevent occupational musculoskeletal injuries. Our workers stacked boxes of ceramics weighing 10-27 kg, making low back pain common in our enterprise. In all the stacking stations, recommended weight limits (RWL) were separately calculated using the revised National Institute for Occupational Health lifting equation. Since the boxes weighed significantly more than the RWL, we developed a new ergonomic design that completely changed the stacking process. The load put on the workers' waist vertebrae in the new and the old stacking methods was compared to evaluate the success of the new ergonomic design, using Newton's third law of motion. Thanks to the new ergonomic design, the load on the workers' vertebrae decreased by 80%. Due to its simple technology and its very low cost compared to robots, the new ergonomic design can be commonly used in enterprises with repeated and constraining stacking.
A Novel Image Encryption Based on Algebraic S-box and Arnold Transform
NASA Astrophysics Data System (ADS)
Farwa, Shabieh; Muhammad, Nazeer; Shah, Tariq; Ahmad, Sohail
2017-09-01
Recent study shows that substitution box (S-box) only cannot be reliably used in image encryption techniques. We, in this paper, propose a novel and secure image encryption scheme that utilizes the combined effect of an algebraic substitution box along with the scrambling effect of the Arnold transform. The underlying algorithm involves the application of S-box, which is the most imperative source to create confusion and diffusion in the data. The speciality of the proposed algorithm lies, firstly, in the high sensitivity of our S-box to the choice of the initial conditions which makes this S-box stronger than the chaos-based S-boxes as it saves computational labour by deploying a comparatively simple and direct approach based on the algebraic structure of the multiplicative cyclic group of the Galois field. Secondly the proposed method becomes more secure by considering a combination of S-box with certain number of iterations of the Arnold transform. The strength of the S-box is examined in terms of various performance indices such as nonlinearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. We prove through the most significant techniques used for the statistical analyses of the encrypted image that our image encryption algorithm satisfies all the necessary criteria to be usefully and reliably implemented in image encryption applications.
powerbox: Arbitrarily structured, arbitrary-dimension boxes and log-normal mocks
NASA Astrophysics Data System (ADS)
Murray, Steven G.
2018-05-01
powerbox creates density grids (or boxes) with an arbitrary two-point distribution (i.e. power spectrum). The software works in any number of dimensions, creates Gaussian or Log-Normal fields, and measures power spectra of output fields to ensure consistency. The primary motivation for creating the code was the simple creation of log-normal mock galaxy distributions, but the methodology can be used for other applications.
Use of Collapsible Box Trainer as a Module for Resident Education
Caban, Angel M.; Guido, Christopher; Silver, Michele; Rossidis, George; Sarosi, George
2013-01-01
Background and Objectives: We sought to determine whether training with a simple collapsible mobile box trainer leads to improved performance of fundamental laparoscopic skills (FLSs) during a 6-month interval versus validated laparoscopic box trainers and virtual-reality trainers, only accessible at a simulation training center. Methods: With institutional review board approval, 20 first- and second-year general surgery residents were randomized to scheduled training sessions in a surgical simulation laboratory or training in the use of a portable, collapsible Train Anywhere Skill Kit (TASKit) (Ethicon Endo-Surgery Cincinnati, OH, USA) trainer. Training was geared toward the FLS set for a skill assessment examination at a 6-month interval. Results: The residents who trained with the TASKit performed the peg-transfer, pattern-cut exercise, Endoloop, and intracorporeal knot-tying FLS tasks statistically more efficiently during their 6-month assessment versus their initial evaluation as compared with the group randomized to the simulation laboratory training. Conclusions: Using a simple collapsible mobile box trainer such as the TASKit can be a cost-effective method of training and preparing residents for FLS tasks considering the current cost associated with virtual and high-definition surgical trainers. This mode of surgical training allows residents to practice in their own time by removing barriers associated with simulation centers. PMID:24018083
Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.
Hammi, Oualid
2014-01-01
A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.
The influence of polarization on box air mass factors for UV/vis nadir satellite observations
NASA Astrophysics Data System (ADS)
Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.
2015-04-01
Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.
Multivariate geostatistical application for climate characterization of Minas Gerais State, Brazil
NASA Astrophysics Data System (ADS)
de Carvalho, Luiz G.; de Carvalho Alves, Marcelo; de Oliveira, Marcelo S.; Vianello, Rubens L.; Sediyama, Gilberto C.; de Carvalho, Luis M. T.
2010-11-01
The objective of the present study was to assess for Minas Gerais the cokriging methodology, in order to characterize the spatial variability of Thornthwaite annual moisture index, annual rainfall, and average annual air temperature, based on geographical coordinates, altitude, latitude, and longitude. The climatic element data referred to 39 INMET climatic stations located in the state of Minas Gerais and in nearby areas and the covariables altitude, latitude, and longitude to the SRTM digital elevation model. Spatial dependence of data was observed through spherical cross semivariograms and cross covariance models. Box-Cox and log transformation were applied to the positive variables. In these situations, kriged predictions were back-transformed and returned to the same scale as the original data. Trend was removed using global polynomial interpolation. Universal simple cokriging best characterized the climate variables without tendentiousness and with high accuracy and precision when compared to simple cokriging. Considering the satisfactory implementation of universal simple cokriging for the monitoring of climatic elements, this methodology presents enormous potential for the characterization of climate change impact in Minas Gerais state.
Object permanence in orangutans (Pongo pygmaeus) and squirrel monkeys (Saimiri sciureus).
de Blois, S T; Novak, M A; Bond, M
1998-06-01
The authors tested orangutans (Pongo pygmaeus) and squirrel monkeys (Saimiri sciureus) on object permanence tasks. In Experiment 1, orangutans solved all visible displacements and most invisible displacements except those involving movements into 2 boxes successively. In Experiment 2, performance of orangutans on double invisible displacements and control displacements (assessing simple strategies) was compared. Orangutans did not use the simple strategy of selecting the box visited last by the experimenter. Instead, poorer performance on double invisible displacements may have been related to increased memory requirements. In Experiment 3, squirrel monkeys were tested using the procedure of Experiment 1. Squirrel monkeys solved visible but did not comprehend invisible displacements. Results suggest that orangutans but not squirrel monkeys possess Stage 6 object permanence capabilities.
Augmented Twin-Nonlinear Two-Box Behavioral Models for Multicarrier LTE Power Amplifiers
2014-01-01
A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients. PMID:24624047
Crash energy absorption of two-segment crash box with holes under frontal load
NASA Astrophysics Data System (ADS)
Choiron, Moch. Agus; Sudjito, Hidayati, Nafisah Arina
2016-03-01
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.
On the inversion of the 1 Bu and 2 Ag electronic states in α,ω-diphenylpolyenes
NASA Astrophysics Data System (ADS)
Catalán, J.
2003-07-01
An alternative model to that of the inversion of the states 1Bu and 2Ag is proposed for interpreting the photophysics of the α,ω-diphenylpolyenes. This model is based upon the existence of two chemical structures with Bu symmetry, which may be ascribed to the same excited electronic state 1Bu. One of the two chemical structures corresponds to the Franck-Condon structure with conjugated single and double bonds for the polyene chain, and another consists of a nearly equivalent series of partial double bonds along the polyene chain. The latter relaxed structure is consistent with the observation of high torsional energy barriers and low photoisomerization quantum yields for diphenylhexatriene in the singlet excited state manifold. Interestingly, such a simple quantum model as that of the particle in a one-dimensional box provides quite an accurate description of the absorption spectroscopic properties of these major compounds. This is partly the result of the most stable structures for these compounds being of the all-trans type; such structures increase in length as additional ethylene units are added, which makes them very similar to a one-dimensional box becoming increasingly longer.
A white-box model of S-shaped and double S-shaped single-species population growth
Kalmykov, Lev V.
2015-01-01
Complex systems may be mechanistically modelled by white-box modeling with using logical deterministic individual-based cellular automata. Mathematical models of complex systems are of three types: black-box (phenomenological), white-box (mechanistic, based on the first principles) and grey-box (mixtures of phenomenological and mechanistic models). Most basic ecological models are of black-box type, including Malthusian, Verhulst, Lotka–Volterra models. In black-box models, the individual-based (mechanistic) mechanisms of population dynamics remain hidden. Here we mechanistically model the S-shaped and double S-shaped population growth of vegetatively propagated rhizomatous lawn grasses. Using purely logical deterministic individual-based cellular automata we create a white-box model. From a general physical standpoint, the vegetative propagation of plants is an analogue of excitation propagation in excitable media. Using the Monte Carlo method, we investigate a role of different initial positioning of an individual in the habitat. We have investigated mechanisms of the single-species population growth limited by habitat size, intraspecific competition, regeneration time and fecundity of individuals in two types of boundary conditions and at two types of fecundity. Besides that, we have compared the S-shaped and J-shaped population growth. We consider this white-box modeling approach as a method of artificial intelligence which works as automatic hyper-logical inference from the first principles of the studied subject. This approach is perspective for direct mechanistic insights into nature of any complex systems. PMID:26038717
NASA Technical Reports Server (NTRS)
Thompson, C. P.; Leaf, G. K.; Vanrosendale, J.
1991-01-01
An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction.
An Isopycnal Box Model with predictive deep-ocean structure for biogeochemical cycling applications
NASA Astrophysics Data System (ADS)
Goodwin, Philip
2012-07-01
To simulate global ocean biogeochemical tracer budgets a model must accurately determine both the volume and surface origins of each water-mass. Water-mass volumes are dynamically linked to the ocean circulation in General Circulation Models, but at the cost of high computational load. In computationally efficient Box Models the water-mass volumes are simply prescribed and do not vary when the circulation transport rates or water mass densities are perturbed. A new computationally efficient Isopycnal Box Model is presented in which the sub-surface box volumes are internally calculated from the prescribed circulation using a diffusive conceptual model of the thermocline, in which upwelling of cold dense water is balanced by a downward diffusion of heat. The volumes of the sub-surface boxes are set so that the density stratification satisfies an assumed link between diapycnal diffusivity, κd, and buoyancy frequency, N: κd = c/(Nα), where c and α are user prescribed parameters. In contrast to conventional Box Models, the volumes of the sub-surface ocean boxes in the Isopycnal Box Model are dynamically linked to circulation, and automatically respond to circulation perturbations. This dynamical link allows an important facet of ocean biogeochemical cycling to be simulated in a highly computationally efficient model framework.
Homemade laparoscopic simulators for surgical trainees.
Khine, Myo; Leung, Edward; Morran, Chris; Muthukumarasamy, Giri
2011-06-01
Laparoscopic surgery has become increasingly popular in recent times. Laparoscopic skills and dexterity can be improved by using simulators. We provide a step-by-step guide with diagrams to build an individual homemade laparoscopic trainer box, which is easily available and affordable. We collected the required material for our homemade trainer box from a local DIY shop and purchased a high-definition (HD) webcam online. We used a 12-litre plastic storage box and mounted the webcam inside the lid of the plastic box. The ultraslim energy-saving fluorescent light was mounted behind the webcam. Holes were made in the plastic lid and patched with circular pieces of Neoprene to accommodate the insertion of laparoscopic instruments. The trainer box can be built in 3 hours. The trainer box weighs 1.2 kg with a light source, and is easily portable. It was demonstrated to a cohort of surgical trainees and they were very receptive, and liked the idea of an easy to assemble, low-cost trainer box with high-quality images. Our homemade trainer box offers HD vision that can be viewed on a personal computer, and the webcam is adjustable so it gives hands-free stability. It is built with a lightweight plastic box so it can be easily carried around by a trainee. This simple, inexpensive, easy-to-build trainer box makes a perfect solution for individuals who want to practise basic laparoscopic skills at home or in the workplace. © Blackwell Publishing Ltd 2011.
O’Brien, J. Patrick; Malvankar, Nikhil S.
2017-01-01
Anaerobic microorganisms play a central role in several environmental processes and regulate global biogeochemical cycling of nutrients and minerals. Many anaerobic microorganisms are important for the production of bioenergy and biofuels. However, the major hurdle in studying anaerobic microorganisms in the laboratory is the requirement for sophisticated and expensive gassing stations and glove boxes to create and maintain the anaerobic environment. This appendix presents a simple design for a gassing station that can be used readily by an inexperienced investigator for cultivation of anaerobic microorganisms. In addition, this appendix also details the low-cost assembly of bioelectrochemical systems and outlines a simplified procedure for cultivating and analyzing bacterial cell cultures and biofilms that produce electric current, using Geobacter sulfurreducens as a model organism. PMID:27858972
Potential and timescales for oxygen depletion in coastal upwelling systems: A box-model analysis
NASA Astrophysics Data System (ADS)
Harrison, C. S.; Hales, B.; Siedlecki, S.; Samelson, R. M.
2016-05-01
A simple box model is used to examine oxygen depletion in an idealized ocean-margin upwelling system. Near-bottom oxygen depletion is controlled by a competition between flushing with oxygenated offshore source waters and respiration of particulate organic matter produced near the surface and retained near the bottom. Upwelling-supplied nutrients are consumed in the surface box, and some surface particles sink to the bottom where they respire, consuming oxygen. Steady states characterize the potential for hypoxic near-bottom oxygen depletion; this potential is greatest for faster sinking rates, and largely independent of production timescales except in that faster production allows faster sinking. Timescales for oxygen depletion depend on upwelling and productivity differently, however, as oxygen depletion can only be reached in meaningfully short times when productivity is rapid. Hypoxia thus requires fast production, to capture upwelled nutrients, and fast sinking, to deliver the respiration potential to model bottom waters. Combining timescales allows generalizations about tendencies toward hypoxia. If timescales of sinking are comparable to or smaller than the sum of those for respiration and flushing, the steady state will generally be hypoxic, and results indicate optimal timescales and conditions exist to generate hypoxia. For example, the timescale for approach to hypoxia lengthens with stronger upwelling, since surface particle and nutrient are shunted off-shelf, in turn reducing subsurface respiration and oxygen depletion. This suggests that if upwelling winds intensify with climate change the increased forcing could offer mitigation of coastal hypoxia, even as the oxygen levels in upwelled source waters decline.
Crash energy absorption of two-segment crash box with holes under frontal load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choiron, Moch Agus, E-mail: agus-choiron@ub.ac.id; Sudjito,; Hidayati, Nafisah Arina
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base.more » Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.« less
Unifying Model-Based and Reactive Programming within a Model-Based Executive
NASA Technical Reports Server (NTRS)
Williams, Brian C.; Gupta, Vineet; Norvig, Peter (Technical Monitor)
1999-01-01
Real-time, model-based, deduction has recently emerged as a vital component in AI's tool box for developing highly autonomous reactive systems. Yet one of the current hurdles towards developing model-based reactive systems is the number of methods simultaneously employed, and their corresponding melange of programming and modeling languages. This paper offers an important step towards unification. We introduce RMPL, a rich modeling language that combines probabilistic, constraint-based modeling with reactive programming constructs, while offering a simple semantics in terms of hidden state Markov processes. We introduce probabilistic, hierarchical constraint automata (PHCA), which allow Markov processes to be expressed in a compact representation that preserves the modularity of RMPL programs. Finally, a model-based executive, called Reactive Burton is described that exploits this compact encoding to perform efficIent simulation, belief state update and control sequence generation.
Gurusamy, Kurinchi Selvan; Nagendran, Myura; Toon, Clare D; Davidson, Brian R
2014-03-01
Surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time consuming, costly, and of variable effectiveness. Training using a box model physical simulator is an option to supplement standard training. However, the value of this modality on trainees with limited prior laparoscopic experience is unknown. To compare the benefits and harms of box model training for surgical trainees with limited prior laparoscopic experience versus standard surgical training or supplementary animal model training. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, and Science Citation Index Expanded to May 2013. We planned to include all randomised clinical trials comparing box model trainers versus other forms of training including standard laparoscopic training and supplementary animal model training in surgical trainees with limited prior laparoscopic experience. We also planned to include trials comparing different methods of box model training. Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager 5. For each outcome, we calculated the risk ratio (RR), mean difference (MD), or standardised mean difference (SMD) with 95% confidence intervals (CI) based on intention-to-treat analysis whenever possible. We identified eight trials that met the inclusion criteria. One trial including 17 surgical trainees did not contribute to the meta-analysis. We included seven trials (249 surgical trainees belonging to various postgraduate years ranging from year one to four) in which the participants were randomised to supplementary box model training (122 trainees) versus standard training (127 trainees). Only one trial (50 trainees) was at low risk of bias. The box trainers used in all the seven trials were video trainers. Six trials were conducted in USA and one trial in Canada. The surgeries in which the final assessments were made included laparoscopic total extraperitoneal hernia repairs, laparoscopic cholecystectomy, laparoscopic tubal ligation, laparoscopic partial salpingectomy, and laparoscopic bilateral mid-segment salpingectomy. The final assessments were made on a single operative procedure.There were no deaths in three trials (0/82 (0%) supplementary box model training versus 0/86 (0%) standard training; RR not estimable; very low quality evidence). The other trials did not report mortality. The estimated effect on serious adverse events was compatible with benefit and harm (three trials; 168 patients; 0/82 (0%) supplementary box model training versus 1/86 (1.1%) standard training; RR 0.36; 95% CI 0.02 to 8.43; very low quality evidence). None of the trials reported patient quality of life. The operating time was significantly shorter in the supplementary box model training group versus the standard training group (1 trial; 50 patients; MD -6.50 minutes; 95% CI -10.85 to -2.15). The proportion of patients who were discharged as day-surgery was significantly higher in the supplementary box model training group versus the standard training group (1 trial; 50 patients; 24/24 (100%) supplementary box model training versus 15/26 (57.7%) standard training; RR 1.71; 95% CI 1.23 to 2.37). None of the trials reported trainee satisfaction. The operating performance was significantly better in the supplementary box model training group versus the standard training group (seven trials; 249 trainees; SMD 0.84; 95% CI 0.57 to 1.10).None of the trials compared box model training versus animal model training or versus different methods of box model training. There is insufficient evidence to determine whether laparoscopic box model training reduces mortality or morbidity. There is very low quality evidence that it improves technical skills compared with standard surgical training in trainees with limited previous laparoscopic experience. It may also decrease operating time and increase the proportion of patients who were discharged as day-surgery in the first total extraperitoneal hernia repair after box model training. However, the duration of the benefit of box model training is unknown. Further well-designed trials of low risk of bias and random errors are necessary. Such trials should assess the long-term impact of box model training on clinical outcomes and compare box training with other forms of training.
GPS-ARM: Computational Analysis of the APC/C Recognition Motif by Predicting D-Boxes and KEN-Boxes
Ren, Jian; Cao, Jun; Zhou, Yanhong; Yang, Qing; Xue, Yu
2012-01-01
Anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase incorporated with Cdh1 and/or Cdc20 recognizes and interacts with specific substrates, and faithfully orchestrates the proper cell cycle events by targeting proteins for proteasomal degradation. Experimental identification of APC/C substrates is largely dependent on the discovery of APC/C recognition motifs, e.g., the D-box and KEN-box. Although a number of either stringent or loosely defined motifs proposed, these motif patterns are only of limited use due to their insufficient powers of prediction. We report the development of a novel GPS-ARM software package which is useful for the prediction of D-boxes and KEN-boxes in proteins. Using experimentally identified D-boxes and KEN-boxes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted. By extensive evaluation and comparison, the GPS-ARM performance was found to be much better than the one using simple motifs. With this powerful tool, we predicted 4,841 potential D-boxes in 3,832 proteins and 1,632 potential KEN-boxes in 1,403 proteins from H. sapiens, while further statistical analysis suggested that both the D-box and KEN-box proteins are involved in a broad spectrum of biological processes beyond the cell cycle. In addition, with the co-localization information, we predicted hundreds of mitosis-specific APC/C substrates with high confidence. As the first computational tool for the prediction of APC/C-mediated degradation, GPS-ARM is a useful tool for information to be used in further experimental investigations. The GPS-ARM is freely accessible for academic researchers at: http://arm.biocuckoo.org. PMID:22479614
SLTCAP: A Simple Method for Calculating the Number of Ions Needed for MD Simulation.
Schmit, Jeremy D; Kariyawasam, Nilusha L; Needham, Vince; Smith, Paul E
2018-04-10
An accurate depiction of electrostatic interactions in molecular dynamics requires the correct number of ions in the simulation box to capture screening effects. However, the number of ions that should be added to the box is seldom given by the bulk salt concentration because a charged biomolecule solute will perturb the local solvent environment. We present a simple method for calculating the number of ions that requires only the total solute charge, solvent volume, and bulk salt concentration as inputs. We show that the most commonly used method for adding salt to a simulation results in an effective salt concentration that is too high. These findings are confirmed using simulations of lysozyme. We have established a web server where these calculations can be readily performed to aid simulation setup.
Global and Local Stress Analyses of McDonnell Douglas Stitched/RFI Composite Wing Stub Box
NASA Technical Reports Server (NTRS)
Wang, John T.
1996-01-01
This report contains results of structural analyses performed in support of the NASA structural testing of an all-composite stitched/RFI (resin film infusion) wing stub box. McDonnell Douglas Aerospace Company designed and fabricated the wing stub box. The analyses used a global/local approach. The global model contains the entire test article. It includes the all-composite stub box, a metallic load-transition box and a metallic wing-tip extension box. The two metallic boxes are connected to the inboard and outboard ends of the composite wing stub box, respectively. The load-transition box was attached to a steel and concrete vertical reaction structure and a load was applied at the tip of the extension box to bend the wing stub box upward. The local model contains an upper cover region surrounding three stringer runouts. In that region, a large nonlinear deformation was identified by the global analyses. A more detailed mesh was used for the local model to obtain more accurate analysis results near stringer runouts. Numerous analysis results such as deformed shapes, displacements at selected locations, and strains at critical locations are included in this report.
Explicit modeling of groundwater-surface water interactions using a simple bucket-type model
NASA Astrophysics Data System (ADS)
Staudinger, Maria; Carlier, Claire; Brunner, Philip; Seibert, Jan
2017-04-01
Longer dry spells can become critical for water supply and groundwater dependent ecosystems. During these dry spells groundwater is often the most relevant source for streams. Hence, the hydrological behavior of a catchment is often dominated by groundwater surface water interactions, which can vary considerably in space and time. While classical hydrological approaches hardly consider this spatial dependence, quantitative, hydrogeological modeling approaches can couple surface runoff processes and groundwater processes. Hydrogeological modeling can help to gain an improved understanding of catchment processes during low flow. However, due to their complex parametrization and large computational requirements, such hydrogeological models are difficult to employ at catchment scale, particularly for a larger set of catchments. Then bucket-type hydrological models remain a practical alternative. In this study we combine the strengths of both the hydrogeological and bucket-type hydrological models to better understand low flow processes and ultimately to use this knowledge for low flow projections. Bucket-type hydrological models have traditionally not been developed with focus on the simulation of low flow. One consequence is that interactions between surface and groundwater are not explicitly considered. Water fluxes in bucket-type hydrological models are commonly simulated only in one direction, namely from the groundwater to the stream but not from the stream to the groundwater. This latter flux, however, can become more important during low flow situations. We therefore further developed the bucket-type hydrological model HBV to simulate low flow situations by allowing for exchange in both directions i.e. also from the stream to the groundwater. The additional HBV exchange box is developed by using a variety of synthetic hydrogeological models as training set that were generated using a fully coupled, physically based hydrogeological model. In this way processes that occur in different spatial settings within the catchment are translated to functional relationships and effective parameter values for the conceptual exchange box can be extracted. Here, we show the development and evaluation of the HBV exchange box. We further show a first application in real catchments and evaluate the model performance by comparing the simulations to benchmark models that do not consider groundwater surface water interaction.
Particle-in-a-box model of one-dimensional excitons in conjugated polymers
NASA Astrophysics Data System (ADS)
Pedersen, Thomas G.; Johansen, Per M.; Pedersen, Henrik C.
2000-04-01
A simple two-particle model of excitons in conjugated polymers is proposed as an alternative to usual highly computationally demanding quantum chemical methods. In the two-particle model, the exciton is described as an electron-hole pair interacting via Coulomb forces and confined to the polymer backbone by rigid walls. Furthermore, by integrating out the transverse part, the two-particle equation is reduced to one-dimensional form. It is demonstrated how essentially exact solutions are obtained in the cases of short and long conjugation length, respectively. From a linear combination of these cases an approximate solution for the general case is obtained. As an application of the model the influence of a static electric field on the electron-hole overlap integral and exciton energy is considered.
Modelling the Krebs cycle and oxidative phosphorylation.
Korla, Kalyani; Mitra, Chanchal K
2014-01-01
The Krebs cycle and oxidative phosphorylation are the two most important sets of reactions in a eukaryotic cell that meet the major part of the total energy demands of a cell. In this paper, we present a computer simulation of the coupled reactions using open source tools for simulation. We also show that it is possible to model the Krebs cycle with a simple black box with a few inputs and outputs. However, the kinetics of the internal processes has been modelled using numerical tools. We also show that the Krebs cycle and oxidative phosphorylation together can be combined in a similar fashion - a black box with a few inputs and outputs. The Octave script is flexible and customisable for any chosen set-up for this model. In several cases, we had no explicit idea of the underlying reaction mechanism and the rate determining steps involved, and we have used the stoichiometric equations that can be easily changed as and when more detailed information is obtained. The script includes the feedback regulation of the various enzymes of the Krebs cycle. For the electron transport chain, the pH gradient across the membrane is an essential regulator of the kinetics and this has been modelled empirically but fully consistent with experimental results. The initial conditions can be very easily changed and the simulation is potentially very useful in a number of cases of clinical importance.
NASA Astrophysics Data System (ADS)
Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.
2014-12-01
The three-dimensional Lagrangian particle-based smooth particle hydrodynamics method described in Part I of this two-part paper is used to simulate the flow of self-compacting concrete (SCC) with and without steel fibres in the L-box configuration. As in Part I, the simulation of the SCC mixes without fibres emphasises the distribution of large aggregate particles of different sizes throughout the flow, whereas the simulation of high strength SCC mixes which contain steel fibres is focused on the distribution of fibres and their orientation during the flow. The capabilities of this methodology are validated by comparing the simulation results with the L-box test carried out in the laboratory. A simple method is developed to assess the reorientation and distribution of short steel fibres in self-compacting concrete mixes during the flow. The reorientation of the fibres during the flow is used to estimate the fibre orientation factor (FOF) in a cross section perpendicular to the principal direction of flow. This estimation procedure involves the number of fibres cut by the section and their inclination to the cutting plane. This is useful to determine the FOF in practical image analysis on cut sections.
NASA Astrophysics Data System (ADS)
Fang, Shin-Yi; Smith, Garrett; Tabor, Whitney
2018-04-01
This paper analyses a three-layer connectionist network that solves a translation-invariance problem, offering a novel explanation for transposed letter effects in word reading. Analysis of the hidden unit encodings provides insight into two central issues in cognitive science: (1) What is the novelty of claims of "modality-specific" encodings? and (2) How can a learning system establish a complex internal structure needed to solve a problem? Although these topics (embodied cognition and learnability) are often treated separately, we find a close relationship between them: modality-specific features help the network discover an abstract encoding by causing it to break the initial symmetries of the hidden units in an effective way. While this neural model is extremely simple compared to the human brain, our results suggest that neural networks need not be black boxes and that carefully examining their encoding behaviours may reveal how they differ from classical ideas about the mind-world relationship.
NASA Astrophysics Data System (ADS)
Halliwell, C. M.; McKay, W. A.
1994-02-01
The impact of liquid effluent discharges, from both existing nuclear power stations and from a possible future pressurized water reactor (PWR), on the levels of radioactivity in Welsh Severn coastal waters has been addressed in this study through the use of a simple box model. If a PWR was in operation at Hinkley Point, and assuming that the existing discharges into the estuary remained the same as in 1989, the levels of the most radiologically significant radionuclide, 137Cs, in seawater along the Welsh shoreline are predicted to increase by 7% (inner estuary), 7% (Welsh outer estuary) and 5% (inner channel) and in sediment by 0·3, 1·3 and 2% respectively. The radiation dose rate from 137Cs to members of the coastal population alone would show only a marginal increase due to these changes, and would remain less than 1% of the internationally recognized limit.
NASA Technical Reports Server (NTRS)
Kaaret, P.; Piraino, S.; Halpern, Jules P.; Eracleous, M.; Oliversen, Ronald (Technical Monitor)
2001-01-01
We have discovered an X-ray source, SAX J0635+0533, with a hard spectrum within the error box of the GeV gamma-ray source in Monoceros, 2EG J0635+0521. The unabsorbed flux from the source is 1.2 x 10(exp -11) ergs /sq cm s in the 2-10 keV band. The X-ray spectrum is consistent with a simple power-law model with absorption. The photon index is 1.50 +/- 0.08, and we detect emission out to 40 keV. Optical observations identify a counterpart with a V magnitude of 12.8. The counterpart has broad emission lines and the colors of an early B-type star. If the identification of the X-ray/optical source with the gamma-ray source is correct, then the source would be a gamma-ray-emitting X-ray binary.
Inside the "Black Box" of a Knowledge Translation Program in Applied Health Research.
Heaton, Janet; Day, Jo; Britten, Nicky
2015-11-01
In this article, we present the findings of a participatory realistic evaluation of a 5-year program of health care research intended to promote the translation of knowledge into routine clinical practice. The program was one of the nine pilot Collaborations for Leadership in Applied Health Research and Care funded by the English National Institute for Health Research between 2008 and 2013. Our aim was to delineate the mechanisms by which, and circumstances in which, some projects carried out under the program achieved success in knowledge translation while others were frustrated. Using qualitative methods, we examined how closer collaboration between academics and clinicians worked in four purposefully chosen case studies. In a synthesis of the findings, we produced a "black box" model of how knowledge translation was enabled by the activation of nine mechanisms. These are summarized in the form of five simple rules for promoting knowledge translation through collaborations based on principles of coproduction. © The Author(s) 2015.
Aerodynamic drag reduction tests on a box-shaped vehicle
NASA Technical Reports Server (NTRS)
Peterson, R. L.; Sandlin, D. R.
1981-01-01
The intent of the present experiment is to define a near optimum value of drag coefficient for a high volume type of vehicle through the use of a boattail, on a vehicle already having rounded front corners and an underbody seal, or fairing. The results of these tests will constitute a baseline for later follow-on studies to evaluate candidate methods of obtaining afterbody drag coefficients approaching the boattail values, but without resorting to such impractical afterbody extensions. The current modifications to the box-shaped vehicle consisted of a full and truncated boattail in conjunction with the faired and sealed underbody. Drag results from these configurations are compared with corresponding wind tunnel results of a 1/10 scale model. Test velocities ranged up to 96.6 km/h (60 mph) and the corresponding Reynolds numbers ranged up to 1.3 x 10 to the 7th power based on the vehicles length which includes the boattail. A simple coast-down technique was used to define drag.
Gimenez-Pinto, Vianney; Ye, Fangfu; Mbanga, Badel; Selinger, Jonathan V.; Selinger, Robin L. B.
2017-01-01
Various experimental and theoretical studies demonstrate that complex stimulus-responsive out-of-plane distortions such as twist of different chirality, emergence of cones, simple and anticlastic bending can be engineered and pre-programmed in a liquid crystalline rubbery material given a well-controlled director microstructure. Via 3-d finite element simulation studies, we demonstrate director-encoded chiral shape actuation in thin-film nematic polymer networks under external stimulus. Furthermore, we design two complex director fields with twisted nematic domains and nematic disclinations that encode a pattern of folds for an auto-origami box. This actuator will be flat at a reference nematic state and form four well-controlled bend distortions as orientational order changes. Device fabrication is applicable via current experimental techniques. These results are in qualitative agreement with theoretical predictions, provide insight into experimental observations, and demonstrate the value of finite element methods at the continuum level for designing and engineering liquid crystal polymeric devices. PMID:28349949
Clevin, Lotte; Grantcharov, Teodor P
2008-01-01
Laparoscopic box model trainers have been used in training curricula for a long time, however data on their impact on skills acquisition is still limited. Our aim was to validate a low cost box model trainer as a tool for the training of skills relevant to laparoscopic surgery. Randomised, controlled trial (Canadian Task Force Classification I). University Hospital. Sixteen gynaecologic residents with limited laparoscopic experience were randomised to a group that received a structured box model training curriculum, and a control group. Performance before and after the training was assessed in a virtual reality laparoscopic trainer (LapSim and was based on objective parameters, registered by the computer system (time, error, and economy of motion scores). Group A showed significantly greater improvement in all performance parameters compared with the control group: economy of movement (p=0.001), time (p=0.001) and tissue damage (p=0.036), confirming the positive impact of box-trainer curriculum on laparoscopic skills acquisition. Structured laparoscopic skill training on a low cost box model trainer improves performance as assessed using the VR system. Trainees who used the box model trainer showed significant improvement compared to the control group. Box model trainers are valid tools for laparoscopic skills training and should be implemented in the comprehensive training curricula in gynaecology.
A Calculus for Boxes and Traits in a Java-Like Setting
NASA Astrophysics Data System (ADS)
Bettini, Lorenzo; Damiani, Ferruccio; de Luca, Marco; Geilmann, Kathrin; Schäfer, Jan
The box model is a component model for the object-oriented paradigm, that defines components (the boxes) with clear encapsulation boundaries. Having well-defined boundaries is crucial in component-based software development, because it enables to argue about the interference and interaction between a component and its context. In general, boxes contain several objects and inner boxes, of which some are local to the box and cannot be accessed from other boxes and some can be accessible by other boxes. A trait is a set of methods divorced from any class hierarchy. Traits can be composed together to form classes or other traits. We present a calculus for boxes and traits. Traits are units of fine-grained reuse, whereas boxes can be seen as units of coarse-grained reuse. The calculus is equipped with an ownership type system and allows us to combine coarse- and fine-grained reuse of code by maintaining encapsulation of components.
Automatic Reconstruction of 3D Building Models from Terrestrial Laser Scanner Data
NASA Astrophysics Data System (ADS)
El Meouche, R.; Rezoug, M.; Hijazi, I.; Maes, D.
2013-11-01
With modern 3D laser scanners we can acquire a large amount of 3D data in only a few minutes. This technology results in a growing number of applications ranging from the digitalization of historical artifacts to facial authentication. The modeling process demands a lot of time and work (Tim Volodine, 2007). In comparison with the other two stages, the acquisition and the registration, the degree of automation of the modeling stage is almost zero. In this paper, we propose a new surface reconstruction technique for buildings to process the data obtained by a 3D laser scanner. These data are called a point cloud which is a collection of points sampled from the surface of a 3D object. Such a point cloud can consist of millions of points. In order to work more efficiently, we worked with simplified models which contain less points and so less details than a point cloud obtained in situ. The goal of this study was to facilitate the modeling process of a building starting from 3D laser scanner data. In order to do this, we wrote two scripts for Rhinoceros 5.0 based on intelligent algorithms. The first script finds the exterior outline of a building. With a minimum of human interaction, there is a thin box drawn around the surface of a wall. This box is able to rotate 360° around an axis in a corner of the wall in search for the points of other walls. In this way we can eliminate noise points. These are unwanted or irrelevant points. If there is an angled roof, the box can also turn around the edge of the wall and the roof. With the different positions of the box we can calculate the exterior outline. The second script draws the interior outline in a surface of a building. By interior outline we mean the outline of the openings like windows or doors. This script is based on the distances between the points and vector characteristics. Two consecutive points with a relative big distance will form the outline of an opening. Once those points are found, the interior outline can be drawn. The designed scripts are able to ensure for simple point clouds: the elimination of almost all noise points and the reconstruction of a CAD model.
A model for genesis of transcription systems.
Burton, Zachary F; Opron, Kristopher; Wei, Guowei; Geiger, James H
2016-01-01
Repeating sequences generated from RNA gene fusions/ligations dominate ancient life, indicating central importance of building structural complexity in evolving biological systems. A simple and coherent story of life on earth is told from tracking repeating motifs that generate α/β proteins, 2-double-Ψ-β-barrel (DPBB) type RNA polymerases (RNAPs), general transcription factors (GTFs), and promoters. A general rule that emerges is that biological complexity that arises through generation of repeats is often bounded by solubility and closure (i.e., to form a pseudo-dimer or a barrel). Because the first DNA genomes were replicated by DNA template-dependent RNA synthesis followed by RNA template-dependent DNA synthesis via reverse transcriptase, the first DNA replication origins were initially 2-DPBB type RNAP promoters. A simplifying model for evolution of promoters/replication origins via repetition of core promoter elements is proposed. The model can explain why Pribnow boxes in bacterial transcription (i.e., (-12)TATAATG(-6)) so closely resemble TATA boxes (i.e., (-31)TATAAAAG(-24)) in archaeal/eukaryotic transcription. The evolution of anchor DNA sequences in bacterial (i.e., (-35)TTGACA(-30)) and archaeal (BRE(up); BRE for TFB recognition element) promoters is potentially explained. The evolution of BRE(down) elements of archaeal promoters is potentially explained.
Zhang; Lindberg
2000-10-02
From 1996 to 1998 we determined dissolved gaseous mercury (DGM) in waters of the Everglades Nutrient Removal Project (ENR), a constructed wetlands. The concentrations of DGM measured in these waters (mean 7.3 +/- 9.5 pg l(-1)) are among the lowest reported in the literature, and suggest a system often near or slightly above equilibrium with Hg in ambient air. DGM exhibited both seasonal and diel trends, peaking at midday and during the summer. A simple box budget model of DGM in waters of the Everglades was developed using an interactive spreadsheet based on a mass balance among light-induced reduction of HgII (production of DGM), Hg0 oxidation (removal), and Hg0 evasion in a box (water column) consisting of a surface region with sunlight available and a lower dark region. The modeling results suggest high sensitivity of hourly DGM concentrations to DGM production rates and initial DGM levels. The sensitivity to Hg oxidation is lower than the sensitivity to DGM production. The model performance demonstrates successful simulations of a variety of DGM trends in the Everglades. In particular, it clearly demonstrates how it is possible to measure comparable rates of evasion over several Everglades sites with different DGM concentrations.
NASA Astrophysics Data System (ADS)
Nikurashin, Maxim; Gunn, Andrew
2017-04-01
The meridional overturning circulation (MOC) is a planetary-scale oceanic flow which is of direct importance to the climate system: it transports heat meridionally and regulates the exchange of CO2 with the atmosphere. The MOC is forced by wind and heat and freshwater fluxes at the surface and turbulent mixing in the ocean interior. A number of conceptual theories for the sensitivity of the MOC to changes in forcing have recently been developed and tested with idealized numerical models. However, the skill of the simple conceptual theories to describe the MOC simulated with higher complexity global models remains largely unknown. In this study, we present a systematic comparison of theoretical and modelled sensitivity of the MOC and associated deep ocean stratification to vertical mixing and southern hemisphere westerlies. The results show that theories that simplify the ocean into a single-basin, zonally-symmetric box are generally in a good agreement with a realistic, global ocean circulation model. Some disagreement occurs in the abyssal ocean, where complex bottom topography is not taken into account by simple theories. Distinct regimes, where the MOC has a different sensitivity to wind or mixing, as predicted by simple theories, are also clearly shown by the global ocean model. The sensitivity of the Indo-Pacific, Atlantic, and global basins is analysed separately to validate the conceptual understanding of the upper and lower overturning cells in the theory.
Zou, Kelly H; Resnic, Frederic S; Talos, Ion-Florin; Goldberg-Zimring, Daniel; Bhagwat, Jui G; Haker, Steven J; Kikinis, Ron; Jolesz, Ferenc A; Ohno-Machado, Lucila
2005-10-01
Medical classification accuracy studies often yield continuous data based on predictive models for treatment outcomes. A popular method for evaluating the performance of diagnostic tests is the receiver operating characteristic (ROC) curve analysis. The main objective was to develop a global statistical hypothesis test for assessing the goodness-of-fit (GOF) for parametric ROC curves via the bootstrap. A simple log (or logit) and a more flexible Box-Cox normality transformations were applied to untransformed or transformed data from two clinical studies to predict complications following percutaneous coronary interventions (PCIs) and for image-guided neurosurgical resection results predicted by tumor volume, respectively. We compared a non-parametric with a parametric binormal estimate of the underlying ROC curve. To construct such a GOF test, we used the non-parametric and parametric areas under the curve (AUCs) as the metrics, with a resulting p value reported. In the interventional cardiology example, logit and Box-Cox transformations of the predictive probabilities led to satisfactory AUCs (AUC=0.888; p=0.78, and AUC=0.888; p=0.73, respectively), while in the brain tumor resection example, log and Box-Cox transformations of the tumor size also led to satisfactory AUCs (AUC=0.898; p=0.61, and AUC=0.899; p=0.42, respectively). In contrast, significant departures from GOF were observed without applying any transformation prior to assuming a binormal model (AUC=0.766; p=0.004, and AUC=0.831; p=0.03), respectively. In both studies the p values suggested that transformations were important to consider before applying any binormal model to estimate the AUC. Our analyses also demonstrated and confirmed the predictive values of different classifiers for determining the interventional complications following PCIs and resection outcomes in image-guided neurosurgery.
Alteration of Box-Jenkins methodology by implementing genetic algorithm method
NASA Astrophysics Data System (ADS)
Ismail, Zuhaimy; Maarof, Mohd Zulariffin Md; Fadzli, Mohammad
2015-02-01
A time series is a set of values sequentially observed through time. The Box-Jenkins methodology is a systematic method of identifying, fitting, checking and using integrated autoregressive moving average time series model for forecasting. Box-Jenkins method is an appropriate for a medium to a long length (at least 50) time series data observation. When modeling a medium to a long length (at least 50), the difficulty arose in choosing the accurate order of model identification level and to discover the right parameter estimation. This presents the development of Genetic Algorithm heuristic method in solving the identification and estimation models problems in Box-Jenkins. Data on International Tourist arrivals to Malaysia were used to illustrate the effectiveness of this proposed method. The forecast results that generated from this proposed model outperformed single traditional Box-Jenkins model.
UDATE1: A computer program for the calculation of uranium-series isotopic ages
Rosenbauer, R.J.
1991-01-01
UDATE1 is a FORTRAN-77 program with an interface for an Apple Macintosh computer that calculates isotope activities from measured count rates to date geologic materials by uranium-series disequilibria. Dates on pure samples can be determined directly by the accumulation of 230Th from 234U and of 231Pa from 235U. Dates for samples contaminated by clays containing abundant natural thorium can be corrected by the program using various mixing models. Input to the program and file management are made simple and user friendly by a series of Macintosh modal dialog boxes. ?? 1991.
NASA Astrophysics Data System (ADS)
Zhang, Yi-Qing; Cui, Jing; Zhang, Shu-Min; Zhang, Qi; Li, Xiang
2016-02-01
Modelling temporal networks of human face-to-face contacts is vital both for understanding the spread of airborne pathogens and word-of-mouth spreading of information. Although many efforts have been devoted to model these temporal networks, there are still two important social features, public activity and individual reachability, have been ignored in these models. Here we present a simple model that captures these two features and other typical properties of empirical face-to-face contact networks. The model describes agents which are characterized by an attractiveness to slow down the motion of nearby people, have event-triggered active probability and perform an activity-dependent biased random walk in a square box with periodic boundary. The model quantitatively reproduces two empirical temporal networks of human face-to-face contacts which are testified by their network properties and the epidemic spread dynamics on them.
NASA Astrophysics Data System (ADS)
Christl, Marcus
2007-09-01
The response and the sensitivity of the marine beryllium-10 flux to abrupt production changes (e.g., caused by a geomagnetic event) are investigated by using a simple box model. The effect of mixing processes in the water column on the 10Be flux is simulated, and the influence of bioturbation on the sedimentary record is studied. While the effect of the oceanic residence time is found to be small, bioturbation can drastically change the shape and the amplitude of the modeled 10Be peak. The simulations indicate that 10Be production peaks persisting for more than 1500 years are recorded well in deep-sea sediments if bioturbation-induced integration times are small (tbio ≤ 1000 years), while sediment cores with tbio ≥ 1000 years are found to be not well suited for stratigraphic purposes. The results further show that the sedimentary 10Be peak lags initial signal. This time lag is almost independent of the event duration (for tbio ≤ 1000 years), ranging between about 400 and 600 years. Therefore the model results support the idea that marine 10Be peaks corresponding to geomagnetic events can be used as a global time marker to match marine, terrestrial, and ice core chronologies on the millennial and (if the time lag of (500 ± 100) years is considered) the submillennial timescale.
Opening Pandora's Box: The impact of open system modeling on interpretations of anoxia
NASA Astrophysics Data System (ADS)
Hotinski, Roberta M.; Kump, Lee R.; Najjar, Raymond G.
2000-06-01
The geologic record preserves evidence that vast regions of ancient oceans were once anoxic, with oxygen levels too low to sustain animal life. Because anoxic conditions have been postulated to foster deposition of petroleum source rocks and have been implicated as a kill mechanism in extinction events, the genesis of such anoxia has been an area of intense study. Most previous models of ocean oxygen cycling proposed, however, have either been qualitative or used closed-system approaches. We reexamine the question of anoxia in open-system box models in order to test the applicability of closed-system results over long timescales and find that open and closed-system modeling results may differ significantly on both short and long timescales. We also compare a scenario with basinwide diffuse upwelling (a three-box model) to a model with upwelling concentrated in the Southern Ocean (a four-box model). While a three-box modeling approach shows that only changes in high-latitude convective mixing rate and character of deepwater sources are likely to cause anoxia, four-box model experiments indicate that slowing of thermohaline circulation, a reduction in wind-driven upwelling, and changes in high-latitude export production may also cause dysoxia or anoxia in part of the deep ocean on long timescales. These results suggest that box models must capture the open-system and vertically stratified nature of the ocean to allow meaningful interpretations of long-lived episodes of anoxia.
Akdemir, Ali; Ergenoğlu, Ahmet Mete; Yeniel, Ahmet Özgür; Sendağ, Fatih
2013-01-01
Box model trainers have been used for many years to facilitate the improvement of laparoscopic skills. However, there are limited data available on box trainers and their impact on skill acquisition, assessed by virtual reality systems. Twenty-two Postgraduate Year 1 gynecology residents with no laparoscopic experience were randomly divided into one group that received structured box model training and a control group. All residents performed a salpingectomy on LapSim before and after the training. Performances before and after the training were assessed using LapSim and were recorded using objective parameters, registered by a computer system (time, damage, and economy of motion scores). There were initially no differences between the two groups. The box trainer group showed significantly greater improvement in time (p=0.01) and economy of motion scores (p=0.001) compared with the control group post-training. The present study confirmed the positive effect of low cost box model training on laparoscopic skill acquisition as assessed using LapSim. Novice surgeons should obtain practice on box trainers and teaching centers should make efforts to establish training laboratories.
NASA Astrophysics Data System (ADS)
Knipp, D.; Kilcommons, L. M.; Damas, M. C.
2015-12-01
We have created a simple and user-friendly web application to visualize output from empirical atmospheric models that describe the lower atmosphere and the Space-Atmosphere Interface Region (SAIR). The Atmospheric Model Web Explorer (AtModWeb) is a lightweight, multi-user, Python-driven application which uses standard web technology (jQuery, HTML5, CSS3) to give an in-browser interface that can produce plots of modeled quantities such as temperature and individual species and total densities of neutral and ionized upper-atmosphere. Output may be displayed as: 1) a contour plot over a map projection, 2) a pseudo-color plot (heatmap) which allows visualization of a variable as a function of two spatial coordinates, or 3) a simple line plot of one spatial coordinate versus any number of desired model output variables. The application is designed around an abstraction of an empirical atmospheric model, essentially treating the model code as a black box, which makes it simple to add additional models without modifying the main body of the application. Currently implemented are the Naval Research Laboratory NRLMSISE00 model for neutral atmosphere and the International Reference Ionosphere (IRI). These models are relevant to the Low Earth Orbit environment and the SAIR. The interface is simple and usable, allowing users (students and experts) to specify time and location, and choose between historical (i.e. the values for the given date) or manual specification of whichever solar or geomagnetic activity drivers are required by the model. We present a number of use-case examples from research and education: 1) How does atmospheric density between the surface and 1000 km vary with time of day, season and solar cycle?; 2) How do ionospheric layers change with the solar cycle?; 3 How does the composition of the SAIR vary between day and night at a fixed altitude?
Multivariate Spline Algorithms for CAGD
NASA Technical Reports Server (NTRS)
Boehm, W.
1985-01-01
Two special polyhedra present themselves for the definition of B-splines: a simplex S and a box or parallelepiped B, where the edges of S project into an irregular grid, while the edges of B project into the edges of a regular grid. More general splines may be found by forming linear combinations of these B-splines, where the three-dimensional coefficients are called the spline control points. Univariate splines are simplex splines, where s = 1, whereas splines over a regular triangular grid are box splines, where s = 2. Two simple facts render the development of the construction of B-splines: (1) any face of a simplex or a box is again a simplex or box but of lower dimension; and (2) any simplex or box can be easily subdivided into smaller simplices or boxes. The first fact gives a geometric approach to Mansfield-like recursion formulas that express a B-spline in B-splines of lower order, where the coefficients depend on x. By repeated recursion, the B-spline will be expressed as B-splines of order 1; i.e., piecewise constants. In the case of a simplex spline, the second fact gives a so-called insertion algorithm that constructs the new control points if an additional knot is inserted.
Pitts-Singer, T. L.
2017-01-01
The blue orchard bee, Osmia lignaria (Say), is a solitary bee that is an excellent pollinator of tree fruit orchards. Due to the annual rising costs of honey bee hive rentals, many orchardists are eager to develop management tools and practices to support O. lignaria as an alternative pollinator. Establishing O. lignaria pollination as a sustainable industry requires careful consideration of both bee and orchard management. Here, we test the effect of artificial nest box distribution on in-orchard propagation of O. lignaria in Utah commercial tart cherry orchards. Two nest box distributions were compared across three paired, 1.2-ha plots. One distribution, traditionally employed by O. lignaria consultants, included a centrally located tote for mass-nesting with smaller, surrounding ‘satellite’ nest boxes at orchard margins. The other distribution was composed of smaller, more equally distributed nest boxes throughout the 1.2-ha plots. Significantly higher propagation of O. lignaria was observed in the latter nest box distribution, although all treatments resulted in bee return exceeding the number of bees initially released. These findings provide support for the use of O. lignaria in tart cherry orchards, and demonstrate how simple changes to bee set-up and management can influence propagation efforts. PMID:28365763
Thomas J. Urbanik; Edmond P. Saliklis
2002-01-01
Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study employs a finite element model, instead of actual experiments, to...
NASA Astrophysics Data System (ADS)
Paredes-Miranda, G.; Arnott, W. P.; Moosmuller, H.
2010-12-01
The global trend toward urbanization and the resulting increase in city population has directed attention toward air pollution in megacities. A closely related question of importance for urban planning and attainment of air quality standards is how pollutant concentrations scale with city population. In this study, we use measurements of light absorption and light scattering coefficients as proxies for primary (i.e., black carbon; BC) and total (i.e., particulate matter; PM) pollutant concentration, to start addressing the following questions: What patterns and generalizations are emerging from our expanding data sets on urban air pollution? How does the per-capita air pollution vary with economic, geographic, and meteorological conditions of an urban area? Does air pollution provide an upper limit on city size? Diurnal analysis of black carbon concentration measurements in suburban Mexico City, Mexico, Las Vegas, NV, USA, and Reno, NV, USA for similar seasons suggests that commonly emitted primary air pollutant concentrations scale approximately as the square root of the urban population N, consistent with a simple 2-d box model. The measured absorption coefficient Babs is approximately proportional to the BC concentration (primary pollution) and thus scales with the square root of population (N). Since secondary pollutants form through photochemical reactions involving primary pollutants, they scale also with square root of N. Therefore the scattering coefficient Bsca, a proxy for PM concentration is also expected to scale with square root of N. Here we present light absorption and scattering measurements and data on meteorological conditions and compare the population scaling of these pollutant measurements with predictions from the simple 2-d box model. We find that these basin cities are connected by the square root of N dependence. Data from other cities will be discussed as time permits.
Steady state rheology from homogeneous and locally averaged simple shear simulations
NASA Astrophysics Data System (ADS)
Shi, Hao; Luding, Stefan; Magnanimo, Vanessa
2017-06-01
Granular materials and particulate matter are ubiquitous in our daily life and they display interesting bulk behaviors from static to dynamic, solid to fluid or gas like states, or even all these states together. To understand how the micro structure and inter-particle forces influence the macroscopic bulk behavior is still a great challenge today. This short paper presents stress controlled homogeneous simple shear results in a 3D cuboidal box using MercuryDPM software. An improved rheological model is proposed for macroscopic friction, volume fraction and coordination number as a function of inertial number and pressure. In addition, the results are compared with the locally averaged data from steady state shear bands in a split bottom ring shear cell and very good agreement is observed in low to intermediate inertia regime at various confining pressure but not for high inertia collisional granular flow.
NASA Technical Reports Server (NTRS)
Lee, Jason H.
2011-01-01
Cables are very important electrical devices that carry power and signals across multiple instruments. Any fault in a cable can easily result in a catastrophic outcome. Therefore, verifying that all cables are built to spec is a very important part of Electrical Integration Procedures. Currently, there are two methods used in lab for verifying cable connectivity. (1) Using a Break-Out Box and an ohmmeter this method is time-consuming but effective for custom cables and (2) Commercial Automated Cable Tester Boxes this method is fast, but to test custom cables often requires pre-programmed configuration files, and cables used on spacecraft are often uniquely designed for specific purposes. The idea is to develop a semi-automatic continuity tester that reduces human effort in cable testing, speeds up the electrical integration process, and ensures system safety. The JPL-Cable Tester Box is developed to check every single possible electrical connection in a cable in parallel. This system indicates connectivity through LED (light emitting diode) circuits. Users can choose to test any pin/shell (test node) with a single push of a button, and any other nodes that are shorted to the test node, even if they are in the same connector, will light up with the test node. The JPL-Cable Tester Boxes offers the following advantages: 1. Easy to use: The architecture is simple enough that it only takes 5 minutes for anyone to learn how operate the Cable Tester Box. No pre-programming and calibration are required, since this box only checks continuity. 2. Fast: The cable tester box checks all the possible electrical connections in parallel at a push of a button. If a cable normally takes half an hour to test, using the Cable Tester Box will improve the speed to as little as 60 seconds to complete. 3. Versatile: Multiple cable tester boxes can be used together. As long as all the boxes share the same electrical potential, any number of connectors can be tested together.
Construction of a Simple Actograph
ERIC Educational Resources Information Center
Quackenbush, Roger E.
1977-01-01
Diagrams and explains construction of an actograph which quantitatively records daily movements of animals for a 24-hour period. Combines use of a kymograph and the teetering box of Palmer. Biorhythm activities with fiddler crabs, cockroaches, and hamsters are suggested. (CS)
Evaluation of numerical models by FerryBox and Fixed Platform in-situ data in the southern North Sea
NASA Astrophysics Data System (ADS)
Haller, M.; Janssen, F.; Siddorn, J.; Petersen, W.; Dick, S.
2015-02-01
FerryBoxes installed on ships of opportunity (SoO) provide high-frequency surface biogeochemical measurements along selected tracks on a regular basis. Within the European FerryBox Community, several FerryBoxes are operated by different institutions. Here we present a comparison of model simulations applied to the North Sea with FerryBox temperature and salinity data from a transect along the southern North Sea and a more detailed analysis at three different positions located off the English East coast, at the Oyster Ground and in the German Bight. In addition to the FerryBox data, data from a Fixed Platform of the MARNET network are applied. Two operational hydrodynamic models have been evaluated for different time periods: results of BSHcmod v4 are analysed for 2009-2012, while simulations of FOAM AMM7 NEMO have been available from MyOcean data base for 2011 and 2012. The simulation of water temperatures is satisfying; however, limitations of the models exist, especially near the coast in the southern North Sea, where both models are underestimating salinity. Statistical errors differ between the models and the measured parameters, as the root mean square error (rmse) accounts for BSHcmod v4 to 0.92 K, for AMM7 only to 0.44 K. For salinity, BSHcmod is slightly better than AMM7 (0.98 and 1.1 psu, respectively). The study results reveal weaknesses of both models, in terms of variability, absolute levels and limited spatial resolution. In coastal areas, where the simulation of the transition zone between the coasts and the open ocean is still a demanding task for operational modelling, FerryBox data, combined with other observations with differing temporal and spatial scales serve as an invaluable tool for model evaluation and optimization. The optimization of hydrodynamical models with high frequency regional datasets, like the FerryBox data, is beneficial for their subsequent integration in ecosystem modelling.
Matsumura, Yoshihiro; Sakai, Juro; Skach, William R.
2013-01-01
The C terminus of Hsp70 interacting protein (CHIP) E3 ligase functions as a key regulator of protein quality control by binding the C-terminal (M/I)EEVD peptide motif of Hsp/c70(90) with its N-terminal tetratricopeptide repeat (TPR) domain and facilitating polyubiquitination of misfolded client proteins via its C-terminal catalytic U-box. Using CFTR as a model client, we recently showed that the duration of the Hsc70-client binding cycle is a primary determinant of stability. However, molecular features that control CHIP recruitment to Hsp/c70, and hence the fate of the Hsp/c70 client, remain unknown. To understand how CHIP recognizes Hsp/c70, we utilized a dominant negative mutant in which loss of a conserved proline in the U-box domain (P269A) eliminates E3 ligase activity. In a cell-free reconstituted ER-associated degradation system, P269A CHIP inhibited Hsc70-dependent CFTR ubiquitination and degradation in a dose-dependent manner. Optimal inhibition required both the TPR and the U-box, indicating cooperativity between the two domains. Neither the wild type nor the P269A mutant changed the extent of Hsc70 association with CFTR nor the dissociation rate of the Hsc70-CFTR complex. However, the U-box mutation stimulated CHIP binding to Hsc70 while promoting CHIP oligomerization. CHIP binding to Hsc70 binding was also stimulated by the presence of an Hsc70 client with a preference for the ADP-bound state. Thus, the Hsp/c70 (M/I)EEVD motif is not a simple anchor for the TPR domain. Rather CHIP recruitment involves reciprocal allosteric interactions between its TPR and U-box domains and the substrate-binding and C-terminal domains of Hsp/c70. PMID:23990462
The Delta Box: a Table-top Glimpse Into Sequence Stratigraphy
NASA Astrophysics Data System (ADS)
Campbell, K. M.; Hickson, T.; Martin, J.; Paola, C.
2006-12-01
Physical models offer an effective means of providing greater understanding of surface processes and depositional products. At the National Center for Earth-surface Dynamics' research facility, St. Anthony Falls Laboratory; we have seen that in addition to being critically important to the advancement of surface process research, experiments are extremely effective tools for engaging students, especially undergraduates, in understanding these linkages. However, many colleges and universities cannot afford the space or time to support large research or teaching flumes, so we have devised an inexpensive table-top tank that can be used in teaching deltaic depositional processes and concepts of sequence stratigraphy. Our "Delta Box" measures approximately 1.2 by 0.6 meters and is built primarily of parts available at local hardware stores or lumberyards. A simple pond pump drives a water recirculation system, while a constant head tank constructed from PVC pipe regulates the rate of water flow into the flume. A sand/coal sediment mix, fed by hand into the tank, provides a very clear visual distinction between coarse and fine particles on a continental shelf and slope constructed of foam insulation. We have tested the box with a group of undergraduate faculty from around the United States at an "On the Cutting Edge" workshop, at which we were able to consistently build many classic deltaic features, as well as show delta progradation, the effects of waves on sediment transport and deposition, and the formation of sequence boundaries and the entire suite of key sequence stratigraphic features. A manual for building the box, as well as a short movie clip of the workshop participants experimenting with it, is available at http://www.nced.edu/SERC.html. Several of the participants are currently building additional boxes; we plan to post improved instructions and example exercises on the National Center for Earth-surface Dynamics website.
The effects of sexual experience and estrus on male-seeking motivated behavior in the female rat
Nofrey, Barbara; Rocha, Beatriz; Lopez, Hassan H.; Ettenberg, Aaron
2008-01-01
Ovariectomized (OVX) female rats were trained to traverse a straight alley and return to a goal box where they had previously encountered a male rat, a female rat or an empty goal box. The time required to run the alley was used as an index of the subjects’ motivation to re-engage the goal box target. Subjects were tested in both estrus and non-estrus, first sexually naïve and then again after sexual experience. Female rats ran most quickly for a male target, most slowly for an empty goal box, and at intermediate speeds for a female target. Sexual experience tended to slow run times for all but male targets. Estrus enhanced approach behavior for males and an empty goal box, but tended to slow the approach toward females, both before and after sexual experience. This latter finding was further investigated in a second experiment in which sexually naïve OVX females were tested during estrus and non-estrus in a locomotor activity apparatus, a runway with an empty goal box, and an open field. Estrus produced no changes in spontaneous locomotion either in the activity box or the open field, but decreased run times in the alley and increased the number of center-square entries in the open-field. Thus, estrus produces increases in sexual motivation that selectively enhance exploratory, presumably male-seeking behavior, but not simple spontaneous locomotion. PMID:18761024
A methodology for the assessment of inhalation exposure to aluminium from antiperspirant sprays.
Schwarz, Katharina; Pappa, Gerlinde; Miertsch, Heike; Scheel, Julia; Koch, Wolfgang
2018-04-01
Inhalative exposure can occur accidentally when using cosmetic spray products. Usually, a tiered approach is applied for exposure assessment, starting with rather conservative, simplistic calculation models that may be improved with measured data and more refined modelling. Here we report on an advanced methodology to mimic in-use conditions for antiperspirant spray products to provide a more accurate estimate of the amount of aluminium possibly inhaled and taken up systemically, thus contributing to the overall body burden. Four typical products were sprayed onto a skin surrogate in defined rooms. For aluminium, size-related aerosol release fractions, i.e. inhalable, thoracic and respirable, were determined by a mass balance method taking droplet maturation into account. These data were included into a simple two-box exposure model, allowing calculation of the inhaled aluminium dose over 12 min. Systemic exposure doses were calculated for exposure of the deep lung and the upper respiratory tract using the Multiple Path Particle Deposition Model (MPPD) model. The total systemically available dose of aluminium was in all cases found to be less than 0.5 µg per application. With this study it could be demonstrated that refinement of the input data of the two-box exposure model with measured data of released airborne aluminium is a valuable approach to analyse the contribution of antiperspirant spray inhalation to total aluminium exposure as part of the overall risk assessment. We suggest the methodology which can also be applied to other exposure modelling approaches for spray products, and further is adapted to other similar use scenarios.
The Use of the Puzzle Box as a Means of Assessing the Efficacy of Environmental Enrichment
O'Connor, Angela M.; Burton, Thomas J.; Leamey, Catherine A.; Sawatari, Atomu
2014-01-01
Environmental enrichment can dramatically influence the development and function of neural circuits. Further, enrichment has been shown to successfully delay the onset of symptoms in models of Huntington’s disease 1-4, suggesting environmental factors can evoke a neuroprotective effect against the progressive, cellular level damage observed in neurodegenerative disorders. The ways in which an animal can be environmentally enriched, however, can vary considerably. Further, there is no straightforward manner in which the effects of environmental enrichment can be assessed: most methods require either fairly complicated behavioral paradigms and/or postmortem anatomical/physiological analyses. This protocol describes the use of a simple and inexpensive behavioral assay, the Puzzle Box 5-7 as a robust means of determining the efficacy of increased social, sensory and motor stimulation on mice compared to cohorts raised in standard laboratory conditions. This simple problem solving task takes advantage of a rodent’s innate desire to avoid open enclosures by seeking shelter. Cognitive ability is assessed by adding increasingly complex impediments to the shelter’s entrance. The time a given subject takes to successfully remove the obstructions and enter the shelter serves as the primary metric for task performance. This method could provide a reliable means of rapidly assessing the efficacy of different enrichment protocols on cognitive function, thus paving the way for systematically determining the role specific environmental factors play in delaying the onset of neurodevelopmental and neurodegenerative disease. PMID:25590345
A Simulation of an Energy-Efficient Home.
ERIC Educational Resources Information Center
McLeod, Richard J.; And Others
1981-01-01
A shoe box is converted into a model home to demonstrate the energy efficiency of various insulation measures. Included are instructions for constructing the model home from a shoe box, insulating the shoe box, several activities involving different insulation measures, extensions of the experiment, and post-lab discussion topics. (DS)
A Review of the Ginzburg-Syrovatskii's Galactic Cosmic-Ray Propagation Model and its Leaky-Box Limit
NASA Technical Reports Server (NTRS)
Barghouty, A. F.
2012-01-01
Phenomenological models of galactic cosmic-ray propagation are based on a diffusion equation known as the Ginzburg-Syrovatskii s equation, or variants (or limits) of this equation. Its one-dimensional limit in a homogeneous volume, known as the leaky-box limit or model, is sketched here. The justification, utility, limitations, and a typical numerical implementation of the leaky-box model are examined in some detail.
Exchange Standards for Electronic Product Data
1988-10-01
Implementation Stds Product Definition Stds Graphics Stds j- Image Archival Stds 3 VDMNAPLPS GKS Manipulation I Core PHIGS VDI Textual Stds [ - Simple...Douglas Astronautics 5301 Bolsa Avenue Huntington Beach, CA 92647- 2048 Mr. Siegfried Goldstein Siegfried Enterprises, Inc. P. 0. Box 2308 North
An Enhanced Box-Wing Solar Radiation pressure model for BDS and initial results
NASA Astrophysics Data System (ADS)
Zhao, Qunhe; Wang, Xiaoya; Hu, Xiaogong; Guo, Rui; Shang, Lin; Tang, Chengpan; Shao, Fan
2016-04-01
Solar radiation pressure forces are the largest non-gravitational perturbations acting on GNSS satellites, which is difficult to be accurately modeled due to the complicated and changing satellite attitude and unknown surface material characteristics. By the end of 2015, there are more than 50 stations of the Multi-GNSS Experiment(MGEX) set-up by the IGS. The simple box-plate model relies on coarse assumptions about the dimensions and optical properties of the satellite due to lack of more detailed information. So, a physical model based on BOX-WING model is developed, which is more sophisticated and more detailed physical structure has been taken into account, then calculating pressure forces according to the geometric relations between light rays and surfaces. All the MGEX stations and IGS core stations had been processed for precise orbit determination tests with GPS and BDS observations. Calculation range covers all the two kinds of Eclipsing and non-eclipsing periods in 2015, and we adopted the un-differential observation mode and more accurate values of satellite phase centers. At first, we tried nine parameters model, and then eliminated the parameters with strong correlation between them, came into being five parameters of the model. Five parameters were estimated, such as solar scale, y-bias, three material coefficients of solar panel, x-axis and z-axis panels. Initial results showed that, in the period of yaw-steering mode, use of Enhanced ADBOXW model results in small improvement for IGSO and MEO satellites, and the Root-Mean-Square(RMS) error value of one-day arc orbit decreased by about 10%~30% except for C08 and C14. The new model mainly improved the along track acceleration, up to 30% while in the radial track was not obvious. The Satellite Laser Ranging(SLR) validation showed, however, that this model had higher prediction accuracy in the period of orbit-normal mode, compared to GFZ multi-GNSS orbit products, as well with relative post-processing results. Because of the system bias and unknown reasons, GEO satellites had bad results, when after adding some Chinese regional stations, there had an obviously improvement of the orbit precision. This model can be used as a priori model to help build experience models for the later works.
NASA Astrophysics Data System (ADS)
McGillivray, Max Falkenberg; Cheng, William; Peters, Nicholas S.; Christensen, Kim
2018-04-01
Mapping resolution has recently been identified as a key limitation in successfully locating the drivers of atrial fibrillation (AF). Using a simple cellular automata model of AF, we demonstrate a method by which re-entrant drivers can be located quickly and accurately using a collection of indirect electrogram measurements. The method proposed employs simple, out-of-the-box machine learning algorithms to correlate characteristic electrogram gradients with the displacement of an electrogram recording from a re-entrant driver. Such a method is less sensitive to local fluctuations in electrical activity. As a result, the method successfully locates 95.4% of drivers in tissues containing a single driver, and 95.1% (92.6%) for the first (second) driver in tissues containing two drivers of AF. Additionally, we demonstrate how the technique can be applied to tissues with an arbitrary number of drivers. In its current form, the techniques presented are not refined enough for a clinical setting. However, the methods proposed offer a promising path for future investigations aimed at improving targeted ablation for AF.
Kang, Danmiao; Liu, Qinglei; Gu, Jiajun; Su, Yishi; Zhang, Wang; Zhang, Di
2015-11-24
Here we report a method to fabricate porous carbon with small mesopores around 2-4 nm by simple activation of charcoals derived from carbonization of seaweed consisting of microcrystalline domains formed by the "egg-box" model. The existence of mesopores in charcoals leads to a high specific surface area up to 3270 m(2) g(-1), with 95% surface area provided by small mesopores. This special pore structure shows high adaptability when used as electrode materials for an electric double layer capacitor, especially at high charge-discharge rate. The gravimetric capacitance values of the porous carbon are 425 and 210 F g(-1) and volumetric capacitance values are 242 and 120 F cm(-3) in 1 M H2SO4 and 1 M TEA BF4/AN, respectively. The capacitances even remain at 280 F g(-1) (160 F cm(-3)) at 100 A g(-1) and 156 F g(-1) (90 F cm(-3)) at 50 A g(-1) in the aqueous and organic electrolytes, demonstrating excellent high-rate capacitive performance.
The Virtual Solar Observatory: Still a Small Box
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Bogart, R. S.; Davey, A. R.; Dimitoglou, G.; Hill, F.; Hourcle, J. A.; Martens, P. C.; Surez-Sola, I.; Tian, K. Q.; Wampler, S.
2005-01-01
Two and a half years after a design study began, and a year and a half after development commenced, version 1.0 of the Virtual Solar Observatory (VSO) was released at the 2004 Fall AGU meeting. Although internal elements of the VSO have changed, the basic design has remained the same, reflecting the team's belief in the importance of a simple, robust mechanism for registering data provider holdings, initiating queries at the appropriate provider sites, aggregating the responses, allowing the user to iterate before making a final selection, and enabling the delivery of data directly from the providers. In order to make the VSO transparent, lightweight, and portable, the developers employed XML for the registry, SOAP for communication between a VSO instance and data services, and HTML for the graphic user interface (GUI's). We discuss the internal data model, the API, and user responses to various trial GUI's as typical design issues for any virtual observatory. We also discuss the role of the "small box" of data search, identification, and delivery services provided by the VSO in the larger, Sun-Solar System Connection virtual observatory (VxO) scheme.
Measurements of PANs during the New England Air Quality Study 2002
NASA Astrophysics Data System (ADS)
Roberts, J. M.; Marchewka, M.; Bertman, S. B.; Sommariva, R.; Warneke, C.; de Gouw, J.; Kuster, W.; Goldan, P.; Williams, E.; Lerner, B. M.; Murphy, P.; Fehsenfeld, F. C.
2007-10-01
Measurements of peroxycarboxylic nitric anhydrides (PANs) were made during the New England Air Quality Study 2002 cruise of the NOAA RV Ronald H Brown. The four compounds observed, PAN, peroxypropionic nitric anhydride (PPN), peroxymethacrylic nitric anhydride (MPAN), and peroxyisobutyric nitric anhydride (PiBN) were compared with results from other continental and Gulf of Maine sites. Systematic changes in PPN/PAN ratio, due to differential thermal decomposition rates, were related quantitatively to air mass aging. At least one early morning period was observed when O3 seemed to have been lost probably due to NO3 and N2O5 chemistry. The highest O3 episode was observed in the combined plume of isoprene sources and anthropogenic volatile organic compounds (VOCs) and NOx sources from the greater Boston area. A simple linear combination model showed that the organic precursors leading to elevated O3 were roughly half from the biogenic and half from anthropogenic VOC regimes. An explicit chemical box model confirmed that the chemistry in the Boston plume is well represented by the simple linear combination model. This degree of biogenic hydrocarbon involvement in the production of photochemical ozone has significant implications for air quality control strategies in this region.
International trade network: fractal properties and globalization puzzle.
Karpiarz, Mariusz; Fronczak, Piotr; Fronczak, Agata
2014-12-12
Globalization is one of the central concepts of our age. The common perception of the process is that, due to declining communication and transport costs, distance becomes less and less important. However, the distance coefficient in the gravity model of trade, which grows in time, indicates that the role of distance increases rather than decreases. This, in essence, captures the notion of the globalization puzzle. Here, we show that the fractality of the international trade system (ITS) provides a simple solution for the puzzle. We argue that the distance coefficient corresponds to the fractal dimension of ITS. We provide two independent methods, the box counting method and spatial choice model, which confirm this statement. Our results allow us to conclude that the previous approaches to solving the puzzle misinterpreted the meaning of the distance coefficient in the gravity model of trade.
International Trade Network: Fractal Properties and Globalization Puzzle
NASA Astrophysics Data System (ADS)
Karpiarz, Mariusz; Fronczak, Piotr; Fronczak, Agata
2014-12-01
Globalization is one of the central concepts of our age. The common perception of the process is that, due to declining communication and transport costs, distance becomes less and less important. However, the distance coefficient in the gravity model of trade, which grows in time, indicates that the role of distance increases rather than decreases. This, in essence, captures the notion of the globalization puzzle. Here, we show that the fractality of the international trade system (ITS) provides a simple solution for the puzzle. We argue that the distance coefficient corresponds to the fractal dimension of ITS. We provide two independent methods, the box counting method and spatial choice model, which confirm this statement. Our results allow us to conclude that the previous approaches to solving the puzzle misinterpreted the meaning of the distance coefficient in the gravity model of trade.
Griffiths, Stephen R; Rowland, Jessica A; Briscoe, Natalie J; Lentini, Pia E; Handasyde, Kathrine A; Lumsden, Linda F; Robert, Kylie A
2017-01-01
Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons.
Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife
Rowland, Jessica A.; Briscoe, Natalie J.; Lentini, Pia E.; Handasyde, Kathrine A.; Lumsden, Linda F.; Robert, Kylie A.
2017-01-01
Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons. PMID:28472147
NASA Astrophysics Data System (ADS)
Roslindar Yaziz, Siti; Zakaria, Roslinazairimah; Hura Ahmad, Maizah
2017-09-01
The model of Box-Jenkins - GARCH has been shown to be a promising tool for forecasting higher volatile time series. In this study, the framework of determining the optimal sample size using Box-Jenkins model with GARCH is proposed for practical application in analysing and forecasting higher volatile data. The proposed framework is employed to daily world gold price series from year 1971 to 2013. The data is divided into 12 different sample sizes (from 30 to 10200). Each sample is tested using different combination of the hybrid Box-Jenkins - GARCH model. Our study shows that the optimal sample size to forecast gold price using the framework of the hybrid model is 1250 data of 5-year sample. Hence, the empirical results of model selection criteria and 1-step-ahead forecasting evaluations suggest that the latest 12.25% (5-year data) of 10200 data is sufficient enough to be employed in the model of Box-Jenkins - GARCH with similar forecasting performance as by using 41-year data.
A Local-Realistic Model of Quantum Mechanics Based on a Discrete Spacetime
NASA Astrophysics Data System (ADS)
Sciarretta, Antonio
2018-01-01
This paper presents a realistic, stochastic, and local model that reproduces nonrelativistic quantum mechanics (QM) results without using its mathematical formulation. The proposed model only uses integer-valued quantities and operations on probabilities, in particular assuming a discrete spacetime under the form of a Euclidean lattice. Individual (spinless) particle trajectories are described as random walks. Transition probabilities are simple functions of a few quantities that are either randomly associated to the particles during their preparation, or stored in the lattice nodes they visit during the walk. QM predictions are retrieved as probability distributions of similarly-prepared ensembles of particles. The scenarios considered to assess the model comprise of free particle, constant external force, harmonic oscillator, particle in a box, the Delta potential, particle on a ring, particle on a sphere and include quantization of energy levels and angular momentum, as well as momentum entanglement.
Dispersion of a Passive Scalar Within and Above an Urban Street Network
NASA Astrophysics Data System (ADS)
Goulart, E. V.; Coceal, O.; Belcher, S. E.
2018-03-01
The transport of a passive scalar from a continuous point-source release in an urban street network is studied using direct numerical simulation (DNS). Dispersion through the network is characterized by evaluating horizontal fluxes of scalar within and above the urban canopy and vertical exchange fluxes through the canopy top. The relative magnitude and balance of these fluxes are used to distinguish three different regions relative to the source location: a near-field region, a transition region and a far-field region. The partitioning of each of these fluxes into mean and turbulent parts is computed. It is shown that within the canopy the horizontal turbulent flux in the street network is small, whereas above the canopy it comprises a significant fraction of the total flux. Vertical fluxes through the canopy top are predominantly turbulent. The mean and turbulent fluxes are respectively parametrized in terms of an advection velocity and a detrainment velocity and the parametrization incorporated into a simple box-network model. The model treats the coupled dispersion problem within and above the street network in a unified way and predictions of mean concentrations compare well with the DNS data. This demonstrates the usefulness of the box-network approach for process studies and interpretation of results from more detailed numerical simulations.
Computer simulations and experimental study on crash box of automobile in low speed collision
NASA Astrophysics Data System (ADS)
Liu, Yanjie; Ding, Lin; Yan, Shengyuan; Yang, Yongsheng
2008-11-01
Based on the problems of energy-absorbing components in the automobile low speed collision process, according to crash box frontal crash test in low speed as the example, the simulation analysis of crash box impact process was carried out by Hyper Mesh and LS-DYNA. Each parameter on the influence modeling was analyzed by mathematics analytical solution and test comparison, which guaranteed that the model was accurate. Combination of experiment and simulation result had determined the weakness part of crash box structure crashworthiness aspect, and improvement method of crash box crashworthiness was discussed. Through numerical simulation of the impact process of automobile crash box, the obtained analysis result was used to optimize the design of crash box. It was helpful to improve the vehicles structure and decrease the collision accident loss at most. And it was also provided a useful method for the further research on the automobile collision.
Dissecting children's observational learning of complex actions through selective video displays.
Flynn, Emma; Whiten, Andrew
2013-10-01
Children can learn how to use complex objects by watching others, yet the relative importance of different elements they may observe, such as the interactions of the individual parts of the apparatus, a model's movements, and desirable outcomes, remains unclear. In total, 140 3-year-olds and 140 5-year-olds participated in a study where they observed a video showing tools being used to extract a reward item from a complex puzzle box. Conditions varied according to the elements that could be seen in the video: (a) the whole display, including the model's hands, the tools, and the box; (b) the tools and the box but not the model's hands; (c) the model's hands and the tools but not the box; (d) only the end state with the box opened; and (e) no demonstration. Children's later attempts at the task were coded to establish whether they imitated the hierarchically organized sequence of the model's actions, the action details, and/or the outcome. Children's successful retrieval of the reward from the box and the replication of hierarchical sequence information were reduced in all but the whole display condition. Only once children had attempted the task and witnessed a second demonstration did the display focused on the tools and box prove to be better for hierarchical sequence information than the display focused on the tools and hands only. Copyright © 2013 Elsevier Inc. All rights reserved.
The CEO's role in business model reinvention.
Govindarajan, Vijay; Trimble, Chris
2011-01-01
Fending off new competitors is a perennial struggle for established companies. Govindarajan and Trimble, of Dartmouth's Tuck School of Business, explain why: Many corporations become too comfortable with their existing business models and neglect the necessary work of radically reinventing them. The authors map out an alternative in their "three boxes" framework. They argue that while a CEO manages the present (box 1), he or she must also selectively forget the past (box 2) in order to create the future (box 3). Infosys chairman N.R. Narayana Murthy mastered the three boxes to reinvigorate his company and greatly increased its changes of enduring for generations.
A novel method for objective vision testing in canine models of inherited retinal disease.
Gearhart, Patricia M; Gearhart, Chris C; Petersen-Jones, Simon M
2008-08-01
The use of canine models of retinal disease in the development of therapeutic strategies for inherited retinal disorders is a growing area of research. To evaluate accurately the success of potential vision-enhancing treatments, reliable methods for objectively assessing visual function in canine models is necessary. A simple vision-testing device was constructed that consisted of a junction box with four exit tunnels. Dogs were placed in the junction box and given one vision-based choice for exit. The first-choice tunnel and time to exit were recorded and analyzed. Two canine models of retinal disease with distinct molecular defects, a null mutation in the gene encoding the alpha subunit of rod cyclic GMP phosphodiesterase (PDE6A), and a null mutation in the gene encoding a retinal pigment epithelium-specific protein (RPE65) were tested and compared to those in unaffected dogs. With the use of bright light versus dim red light, the test differentiated between unaffected dogs and dogs affected with either mutation with a high degree of certainty. The white-light intensity series showed a significantly different performance between the unaffected and affected dogs. A significant difference in performance was detected between the dogs with each mutation. The results indicate that this novel canine vision-testing method is an accurate and sensitive means of distinguishing between unaffected dogs and dogs affected with two different forms of inherited retinal disease and should be useful as a means of assessing response to therapy in future studies.
NASA Astrophysics Data System (ADS)
Ishijima, K.; Takigawa, M.; Sudo, K.; Toyoda, S.; Yoshida, N.; Röckmann, T.; Kaiser, J.; Aoki, S.; Morimoto, S.; Sugawara, S.; Nakazawa, T.
2015-07-01
This paper presents the development of an atmospheric N2O isotopocule model based on a chemistry-coupled atmospheric general circulation model (ACTM). We also describe a simple method to optimize the model and present its use in estimating the isotopic signatures of surface sources at the hemispheric scale. Data obtained from ground-based observations, measurements of firn air, and balloon and aircraft flights were used to optimize the long-term trends, interhemispheric gradients, and photolytic fractionation, respectively, in the model. This optimization successfully reproduced realistic spatial and temporal variations of atmospheric N2O isotopocules throughout the atmosphere from the surface to the stratosphere. The very small gradients associated with vertical profiles through the troposphere and the latitudinal and vertical distributions within each hemisphere were also reasonably simulated. The results of the isotopic characterization of the global total sources were generally consistent with previous one-box model estimates, indicating that the observed atmospheric trend is the dominant factor controlling the source isotopic signature. However, hemispheric estimates were different from those generated by a previous two-box model study, mainly due to the model accounting for the interhemispheric transport and latitudinal and vertical distributions of tropospheric N2O isotopocules. Comparisons of time series of atmospheric N2O isotopocule ratios between our model and observational data from several laboratories revealed the need for a more systematic and elaborate intercalibration of the standard scales used in N2O isotopic measurements in order to capture a more complete and precise picture of the temporal and spatial variations in atmospheric N2O isotopocule ratios. This study highlights the possibility that inverse estimation of surface N2O fluxes, including the isotopic information as additional constraints, could be realized.
NASA Astrophysics Data System (ADS)
Ishijima, K.; Takigawa, M.; Sudo, K.; Toyoda, S.; Yoshida, N.; Röckmann, T.; Kaiser, J.; Aoki, S.; Morimoto, S.; Sugawara, S.; Nakazawa, T.
2015-12-01
This work presents the development of an atmospheric N2O isotopocule model based on a chemistry-coupled atmospheric general circulation model (ACTM). We also describe a simple method to optimize the model and present its use in estimating the isotopic signatures of surface sources at the hemispheric scale. Data obtained from ground-based observations, measurements of firn air, and balloon and aircraft flights were used to optimize the long-term trends, interhemispheric gradients, and photolytic fractionation, respectively, in the model. This optimization successfully reproduced realistic spatial and temporal variations of atmospheric N2O isotopocules throughout the atmosphere from the surface to the stratosphere. The very small gradients associated with vertical profiles through the troposphere and the latitudinal and vertical distributions within each hemisphere were also reasonably simulated. The results of the isotopic characterization of the global total sources were generally consistent with previous one-box model estimates, indicating that the observed atmospheric trend is the dominant factor controlling the source isotopic signature. However, hemispheric estimates were different from those generated by a previous two-box model study, mainly due to the model accounting for the interhemispheric transport and latitudinal and vertical distributions of tropospheric N2O isotopocules. Comparisons of time series of atmospheric N2O isotopocule ratios between our model and observational data from several laboratories revealed the need for a more systematic and elaborate intercalibration of the standard scales used in N2O isotopic measurements in order to capture a more complete and precise picture of the temporal and spatial variations in atmospheric N2O isotopocule ratios. This study highlights the possibility that inverse estimation of surface N2O fluxes, including the isotopic information as additional constraints, could be realized.
Uncertainty propagation of p-boxes using sparse polynomial chaos expansions
NASA Astrophysics Data System (ADS)
Schöbi, Roland; Sudret, Bruno
2017-06-01
In modern engineering, physical processes are modelled and analysed using advanced computer simulations, such as finite element models. Furthermore, concepts of reliability analysis and robust design are becoming popular, hence, making efficient quantification and propagation of uncertainties an important aspect. In this context, a typical workflow includes the characterization of the uncertainty in the input variables. In this paper, input variables are modelled by probability-boxes (p-boxes), accounting for both aleatory and epistemic uncertainty. The propagation of p-boxes leads to p-boxes of the output of the computational model. A two-level meta-modelling approach is proposed using non-intrusive sparse polynomial chaos expansions to surrogate the exact computational model and, hence, to facilitate the uncertainty quantification analysis. The capabilities of the proposed approach are illustrated through applications using a benchmark analytical function and two realistic engineering problem settings. They show that the proposed two-level approach allows for an accurate estimation of the statistics of the response quantity of interest using a small number of evaluations of the exact computational model. This is crucial in cases where the computational costs are dominated by the runs of high-fidelity computational models.
Uncertainty propagation of p-boxes using sparse polynomial chaos expansions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schöbi, Roland, E-mail: schoebi@ibk.baug.ethz.ch; Sudret, Bruno, E-mail: sudret@ibk.baug.ethz.ch
2017-06-15
In modern engineering, physical processes are modelled and analysed using advanced computer simulations, such as finite element models. Furthermore, concepts of reliability analysis and robust design are becoming popular, hence, making efficient quantification and propagation of uncertainties an important aspect. In this context, a typical workflow includes the characterization of the uncertainty in the input variables. In this paper, input variables are modelled by probability-boxes (p-boxes), accounting for both aleatory and epistemic uncertainty. The propagation of p-boxes leads to p-boxes of the output of the computational model. A two-level meta-modelling approach is proposed using non-intrusive sparse polynomial chaos expansions tomore » surrogate the exact computational model and, hence, to facilitate the uncertainty quantification analysis. The capabilities of the proposed approach are illustrated through applications using a benchmark analytical function and two realistic engineering problem settings. They show that the proposed two-level approach allows for an accurate estimation of the statistics of the response quantity of interest using a small number of evaluations of the exact computational model. This is crucial in cases where the computational costs are dominated by the runs of high-fidelity computational models.« less
Silva, Fabyano Fonseca; Tunin, Karen P.; Rosa, Guilherme J.M.; da Silva, Marcos V.B.; Azevedo, Ana Luisa Souza; da Silva Verneque, Rui; Machado, Marco Antonio; Packer, Irineu Umberto
2011-01-01
Now a days, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant animals, and identify the respective quantitative trait loci (QTLs) and DNA markers, for posterior use in breeding programs. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected animals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP) may provide a better description of the data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized) with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these approaches to a QTL study of tick resistance in an F2 cattle (Gyr × Holstein) population. It was concluded that, when working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transformation-approach, such as square-root or Box-Cox transformation, are applicable. PMID:22215960
Fundamental studies of structure borne noise for advanced turboprop applications
NASA Technical Reports Server (NTRS)
Eversman, W.; Koval, L. R.
1985-01-01
The transmission of sound generated by wing-mounted, advanced turboprop engines into the cabin interior via structural paths is considered. The structural model employed is a beam representation of the wing box carried into the fuselage via a representative frame type of carry through structure. The structure for the cabin cavity is a stiffened shell of rectangular or cylindrical geometry. The structure is modelled using a finite element formulation and the acoustic cavity is modelled using an analytical representation appropriate for the geometry. The structural and acoustic models are coupled by the use of hard wall cavity modes for the interior and vacuum structural modes for the shell. The coupling is accomplished using a combination of analytical and finite element models. The advantage is the substantial reduction in dimensionality achieved by modelling the interior analytically. The mathematical model for the interior noise problem is demonstrated with a simple plate/cavity system which has all of the features of the fuselage interior noise problem.
This tool box of ecological risk assessment (Eco-box) includes over 400+ links to tools, models, and databases found within EPA and our Government partners designed that can aid risk assessors with performing exposure assessments.
NASA Astrophysics Data System (ADS)
Romaniello, Stephen J.; Derry, Louis A.
2010-08-01
We present a new high-resolution 1-D intermediate-complexity box model (ICBM) of ocean biogeochemical processes for paleoceanographic applications. The model contains 79 reservoirs in three regions that should be generally applicable throughout much of Earth history: (1) a stratified gyre region, (2) a high-latitude convective region, and (3) an upwelling region analogous to those found associated with eastern boundary currents. Transport processes are modeled as exchange fluxes between boxes and by eddy diffusion terms. Significant improvement in the representation of middepth oxygen budgets was achieved by implementing nonlocal mixing between the high-latitude surface and gyre thermocline reservoirs. The biogeochemical submodel simulates coupled C, N, P, O, and S systematics with explicit representation of microbial populations, using a process-based approach. Primary production follows Redfield stoichiometry, while water column remineralization is depth- and redox couple-dependent. Settling particulate organic matter is incorporated into a benthic submodel that accounts for burial and remineralization. The C/P ratio of burial depends on bottom water oxygen. Denitrification takes place both by classical and anammox pathways. The ICBM was tested against modern oceanographic observations from the Global Ocean Data Analysis Project, Joint Global Ocean Flux Study, and other databases. Comparisons of model output with circulation tracers including θ, salinity, CFC-12, and radiocarbon permit a test of the physical exchange scheme. Vertical profiles of biogeochemically reactive components in each of the three regions are in good agreement with observations. Under modern conditions the upwelling zone displays a pronounced oxygen minimum zone and water column denitrification, while these are not present in the high-latitude or gyre regions. Model-generated global fluxes also compare well to independent estimates of primary production, burial, and phosphorous and nitrogen cycling. The ICBM appears to adequately simulate the long-term (kyr) evolution of several biogeochemical cycles and improves on previous box models in several important ways. In a companion paper, the model's performance under euxinic conditions is tested against modern Black Sea data. The simple and adaptable structure of the model should make it applicable to a wide range of paleoceanographic problems. The model source code is available in MATLABTM 7 m-files provided as auxiliary material.
NASA Technical Reports Server (NTRS)
Canfield, Stephen
1999-01-01
This work will demonstrate the integration of sensor and system dynamic data and their appropriate models using an optimal filter to create a robust, adaptable, easily reconfigurable state (motion) estimation system. This state estimation system will clearly show the application of fundamental modeling and filtering techniques. These techniques are presented at a general, first principles level, that can easily be adapted to specific applications. An example of such an application is demonstrated through the development of an integrated GPS/INS navigation system. This system acquires both global position data and inertial body data, to provide optimal estimates of current position and attitude states. The optimal states are estimated using a Kalman filter. The state estimation system will include appropriate error models for the measurement hardware. The results of this work will lead to the development of a "black-box" state estimation system that supplies current motion information (position and attitude states) that can be used to carry out guidance and control strategies. This black-box state estimation system is developed independent of the vehicle dynamics and therefore is directly applicable to a variety of vehicles. Issues in system modeling and application of Kalman filtering techniques are investigated and presented. These issues include linearized models of equations of state, models of the measurement sensors, and appropriate application and parameter setting (tuning) of the Kalman filter. The general model and subsequent algorithm is developed in Matlab for numerical testing. The results of this system are demonstrated through application to data from the X-33 Michael's 9A8 mission and are presented in plots and simple animations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
III, FredOppel; Rigdon, J. Brian
2014-09-08
A collection of general Umbra modules that are reused by other Umbra libraries. These capabilities include line segments, file utilities, color utilities, string utilities (for std::string), list utilities (for std ::vector ), bounding box intersections, range limiters, simple filters, cubic roots solvers and a few other utilities.
Unconventional bearing capacity analysis and optimization of multicell box girders.
Tepic, Jovan; Doroslovacki, Rade; Djelosevic, Mirko
2014-01-01
This study deals with unconventional bearing capacity analysis and the procedure of optimizing a two-cell box girder. The generalized model which enables the local stress-strain analysis of multicell girders was developed based on the principle of cross-sectional decomposition. The applied methodology is verified using the experimental data (Djelosevic et al., 2012) for traditionally formed box girders. The qualitative and quantitative evaluation of results obtained for the two-cell box girder is realized based on comparative analysis using the finite element method (FEM) and the ANSYS v12 software. The deflection function obtained by analytical and numerical methods was found consistent provided that the maximum deviation does not exceed 4%. Multicell box girders are rationally designed support structures characterized by much lower susceptibility of their cross-sectional elements to buckling and higher specific capacity than traditionally formed box girders. The developed local stress model is applied for optimizing the cross section of a two-cell box carrier. The author points to the advantages of implementing the model of local stresses in the optimization process and concludes that the technological reserve of bearing capacity amounts to 20% at the same girder weight and constant load conditions.
No significant impact of Foxf1 siRNA treatment in acute and chronic CCl4 liver injury.
Abshagen, Kerstin; Rotberg, Tobias; Genz, Berit; Vollmar, Brigitte
2017-08-01
Chronic liver injury of any etiology is the main trigger of fibrogenic responses and thought to be mediated by hepatic stellate cells. Herein, activating transcription factors like forkhead box f1 are described to stimulate pro-fibrogenic genes in hepatic stellate cells. By using a liver-specific siRNA delivery system (DBTC), we evaluated whether forkhead box f1 siRNA treatment exhibit beneficial effects in murine models of acute and chronic CCl 4 -induced liver injury. Systemic administration of DBTC-forkhead box f1 siRNA in mice was only sufficient to silence forkhead box f1 in acute CCl 4 model, but was not able to attenuate liver injury as measured by liver enzymes and necrotic liver cell area. Therapeutic treatment of mice with DBTC-forkhead box f1 siRNA upon chronic CCl 4 exposition failed to inhibit forkhead box f1 expression and hence lacked to diminish hepatic stellate cells activation or fibrosis development. As a conclusion, DBTC-forkhead box f1 siRNA reduced forkhead box f1 expression in a model of acute but not chronic toxic liver injury and showed no positive effects in either of these mice models. Impact statement As liver fibrosis is a worldwide health problem, antifibrotic therapeutic strategies are urgently needed. Therefore, further developments of new technologies including validation in different experimental models of liver disease are essential. Since activation of hepatic stellate cells is a key event upon liver injury, the activating transcription factor forkhead box f1 (Foxf1) represents a potential target gene. Previously, we evaluated Foxf1 silencing by a liver-specific siRNA delivery system (DBTC), exerting beneficial effects in cholestasis. The present study was designed to confirm the therapeutic potential of Foxf1 siRNA in models of acute and chronic CCl 4 -induced liver injury. DBTC-Foxf1 siRNA was only sufficient to silence Foxf1 in acute CCl 4 model and did not ameliorate liver injury or fibrogenesis. This underlines the significance of the experimental model used. Each model displays specific characteristics in the pathogenic nature, time course and severity of fibrosis and the optimal time point for starting a therapy.
ERIC Educational Resources Information Center
Stoeger, Heidrun; Steinbach, Julia; Obergriesser, Stefanie; Matthes, Benjamin
2014-01-01
Multidimensional models of giftedness specify individual and environmental moderators or catalysts that help transform potential into achievement. However, these models do not state whether the importance of the "individual boxes" and the "environmental boxes" changes during this process. The present study examines whether,…
Colbourn, E A; Roskilly, S J; Rowe, R C; York, P
2011-10-09
This study has investigated the utility and potential advantages of gene expression programming (GEP)--a new development in evolutionary computing for modelling data and automatically generating equations that describe the cause-and-effect relationships in a system--to four types of pharmaceutical formulation and compared the models with those generated by neural networks, a technique now widely used in the formulation development. Both methods were capable of discovering subtle and non-linear relationships within the data, with no requirement from the user to specify the functional forms that should be used. Although the neural networks rapidly developed models with higher values for the ANOVA R(2) these were black box and provided little insight into the key relationships. However, GEP, although significantly slower at developing models, generated relatively simple equations describing the relationships that could be interpreted directly. The results indicate that GEP can be considered an effective and efficient modelling technique for formulation data. Copyright © 2011 Elsevier B.V. All rights reserved.
Density Driven Removal of Sediment from a Buoyant Muddy Plume
NASA Astrophysics Data System (ADS)
Rouhnia, M.; Strom, K.
2014-12-01
Experiments were conducted to study the effect of settling driven instabilities on sediment removal from hypopycnal plumes. Traditional approaches scale removal rates with particle settling velocity however, it has been suggested that the removal from buoyant suspensions happens at higher rates. The enhancement of removal is likely due to gravitational instabilities, such as fingering, at two-fluid interface. Previous studies have all sought to suppress flocculation, and no simple model exists to predict the removal rates under the effect of such instabilities. This study examines whether or not flocculation hampers instability formation and presents a simple removal rate model accounting for gravitational instabilities. A buoyant suspension of flocculated Kaolinite overlying a base of clear saltwater was investigated in a laboratory tank. Concentration was continuously measured in both layers with a pair of OBS sensors, and interface was monitored with digital cameras. Snapshots from the video were used to measure finger velocity. Samples of flocculated particles at the interface were extracted to retrieve floc size data using a floc camera. Flocculation did not stop creation of settling-driven fingers. A simple cylinder-based force balance model was capable of predicting finger velocity. Analogy of fingering process of fine grained suspensions to thermal plume formation and the concept of Grashof number enabled us to model finger spacing as a function of initial concentration. Finally, from geometry, the effective cross-sectional area was correlated to finger spacing. Reformulating the outward flux expression was done by substitution of finger velocity, rather than particle settling velocity, and finger area instead of total area. A box model along with the proposed outward flux was used to predict the SSC in buoyant layer. The model quantifies removal flux based on the initial SSC and is in good agreement with the experimental data.
Clark, James E; Osborne, Jason W; Gallagher, Peter; Watson, Stuart
2016-07-01
Neuroendocrine data are typically positively skewed and rarely conform to the expectations of a Gaussian distribution. This can be a problem when attempting to analyse results within the framework of the general linear model, which relies on assumptions that residuals in the data are normally distributed. One frequently used method for handling violations of this assumption is to transform variables to bring residuals into closer alignment with assumptions (as residuals are not directly manipulated). This is often attempted through ad hoc traditional transformations such as square root, log and inverse. However, Box and Cox (Box & Cox, ) observed that these are all special cases of power transformations and proposed a more flexible method of transformation for researchers to optimise alignment with assumptions. The goal of this paper is to demonstrate the benefits of the infinitely flexible Box-Cox transformation on neuroendocrine data using syntax in spss. When applied to positively skewed data typical of neuroendocrine data, the majority (~2/3) of cases were brought into strict alignment with Gaussian distribution (i.e. a non-significant Shapiro-Wilks test). Those unable to meet this challenge showed substantial improvement in distributional properties. The biggest challenge was distributions with a high ratio of kurtosis to skewness. We discuss how these cases might be handled, and we highlight some of the broader issues associated with transformation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Elkins, J. W.; Nance, J. D.; Dutton, G. S.; Montzka, S. A.; Hall, B. D.; Miller, B.; Butler, J. H.; Mondeel, D. J.; Siso, C.; Moore, F. L.; Hintsa, E. J.; Wofsy, S. C.; Rigby, M. L.
2015-12-01
The Halocarbons and other Atmospheric Trace Species (HATS) of NOAA's Global Monitoring Division started measurements of the major chlorofluorocarbons and nitrous oxide in 1977 from flask samples collected at five remote sites around the world. Our program has expanded to over 40 compounds at twelve sites, which includes six in situ instruments and twelve flask sites. The Montreal Protocol for Substances that Deplete the Ozone Layer and its subsequent amendments has helped to decrease the concentrations of many of the ozone depleting compounds in the atmosphere. Our goal is to provide zonal emission estimates for these trace gases from multi-box models and their estimated atmospheric lifetimes in this presentation and make the emission values available on our web site. We plan to use our airborne measurements to calibrate the exchange times between the boxes for 5-box and 12-box models using sulfur hexafluoride where emissions are better understood.
Boyle, N K; Pitts-Singer, T L
2017-01-01
The blue orchard bee, Osmia lignaria (Say), is a solitary bee that is an excellent pollinator of tree fruit orchards. Due to the annual rising costs of honey bee hive rentals, many orchardists are eager to develop management tools and practices to support O. lignaria as an alternative pollinator. Establishing O. lignaria pollination as a sustainable industry requires careful consideration of both bee and orchard management. Here, we test the effect of artificial nest box distribution on in-orchard propagation of O. lignaria in Utah commercial tart cherry orchards. Two nest box distributions were compared across three paired, 1.2-ha plots. One distribution, traditionally employed by O. lignaria consultants, included a centrally located tote for mass-nesting with smaller, surrounding 'satellite' nest boxes at orchard margins. The other distribution was composed of smaller, more equally distributed nest boxes throughout the 1.2-ha plots. Significantly higher propagation of O. lignaria was observed in the latter nest box distribution, although all treatments resulted in bee return exceeding the number of bees initially released. These findings provide support for the use of O. lignaria in tart cherry orchards, and demonstrate how simple changes to bee set-up and management can influence propagation efforts. Published by Oxford University Press on behalf of the Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
Favorite Demonstrations: Simple "Jack-in-the-Box" Demonstrations for Physical Science Courses.
ERIC Educational Resources Information Center
Cole, Theodor C. H.
1993-01-01
The demonstrations presented in this article relate to everyday life, address interdisciplinary aspects, and have implications for the life sciences. Topics of the demonstrations are electricity calculations, astronomy, electrolysis of water, ester synthesis from butyric acid and pentanol, catalysis, and minerals. (PR)
The Correspondence Principle Revisited.
ERIC Educational Resources Information Center
Liboff, Richard L.
1984-01-01
Addresses the question of frequency correspondence in the domain of large quantum numbers, with reference to periodic systems. Provides two simple counterexamples (a particle in a cubical box and a rigid rotator) to show that the classical result is not always recovered in the limit of large quantum numbers. (JM)
VERTICAL ATMOSPHERIC PROFILE OF MERCURY SPECIES OVER SOUTH FLORIDA
The Florida Atmospheric Mercury Study (FAMS) was conducted from 1992 to 1996 to characterize the atmospheric loadings of mercury to Florida. This study found relatively high levels of annual wet mercury deposition (32-43 Itg m') to south Florida. Guentzel developed a simple box m...
Antonioletti, Mario; Biktashev, Vadim N; Jackson, Adrian; Kharche, Sanjay R; Stary, Tomas; Biktasheva, Irina V
2017-01-01
The BeatBox simulation environment combines flexible script language user interface with the robust computational tools, in order to setup cardiac electrophysiology in-silico experiments without re-coding at low-level, so that cell excitation, tissue/anatomy models, stimulation protocols may be included into a BeatBox script, and simulation run either sequentially or in parallel (MPI) without re-compilation. BeatBox is a free software written in C language to be run on a Unix-based platform. It provides the whole spectrum of multi scale tissue modelling from 0-dimensional individual cell simulation, 1-dimensional fibre, 2-dimensional sheet and 3-dimensional slab of tissue, up to anatomically realistic whole heart simulations, with run time measurements including cardiac re-entry tip/filament tracing, ECG, local/global samples of any variables, etc. BeatBox solvers, cell, and tissue/anatomy models repositories are extended via robust and flexible interfaces, thus providing an open framework for new developments in the field. In this paper we give an overview of the BeatBox current state, together with a description of the main computational methods and MPI parallelisation approaches.
A comparison between skeleton and bounding box models for falling direction recognition
NASA Astrophysics Data System (ADS)
Narupiyakul, Lalita; Srisrisawang, Nitikorn
2017-12-01
Falling is an injury that can lead to a serious medical condition in every range of the age of people. However, in the case of elderly, the risk of serious injury is much higher. Due to the fact that one way of preventing serious injury is to treat the fallen person as soon as possible, several works attempted to implement different algorithms to recognize the fall. Our work compares the performance of two models based on features extraction: (i) Body joint data (Skeleton Data) which are the joint's positions in 3 axes and (ii) Bounding box (Box-size Data) covering all body joints. Machine learning algorithms that were chosen are Decision Tree (DT), Naïve Bayes (NB), K-nearest neighbors (KNN), Linear discriminant analysis (LDA), Voting Classification (VC), and Gradient boosting (GB). The results illustrate that the models trained with Skeleton data are performed far better than those trained with Box-size data (with an average accuracy of 94-81% and 80-75%, respectively). KNN shows the best performance in both Body joint model and Bounding box model. In conclusion, KNN with Body joint model performs the best among the others.
Kiely, Daniel J; Stephanson, Kirk; Ross, Sue
2011-10-01
Low-cost laparoscopic box trainers built using home computers and webcams may provide residents with a useful tool for practice at home. This study set out to evaluate the image quality of low-cost laparoscopic box trainers compared with a commercially available model. Five low-cost laparoscopic box trainers including the components listed were compared in random order to one commercially available box trainer: A (high-definition USB 2.0 webcam, PC laptop), B (Firewire webcam, Mac laptop), C (high-definition USB 2.0 webcam, Mac laptop), D (standard USB webcam, PC desktop), E (Firewire webcam, PC desktop), and F (the TRLCD03 3-DMEd Standard Minimally Invasive Training System). Participants observed still image quality and performed a peg transfer task using each box trainer. Participants rated still image quality, image quality with motion, and whether the box trainer had sufficient image quality to be useful for training. Sixteen residents in obstetrics and gynecology took part in the study. The box trainers showing no statistically significant difference from the commercially available model were A, B, C, D, and E for still image quality; A for image quality with motion; and A and B for usefulness of the simulator based on image quality. The cost of the box trainers A-E is approximately $100 to $160 each, not including a computer or laparoscopic instruments. Laparoscopic box trainers built from a high-definition USB 2.0 webcam with a PC (box trainer A) or from a Firewire webcam with a Mac (box trainer B) provide image quality comparable with a commercial standard.
Bouard, Charlotte; Terreux, Raphael; Honorat, Mylène; Manship, Brigitte; Ansieau, Stéphane; Vigneron, Arnaud M.; Puisieux, Alain; Payen, Léa
2016-01-01
Abstract The TWIST1 bHLH transcription factor controls embryonic development and cancer processes. Although molecular and genetic analyses have provided a wealth of data on the role of bHLH transcription factors, very little is known on the molecular mechanisms underlying their binding affinity to the E-box sequence of the promoter. Here, we used an in silico model of the TWIST1/E12 (TE) heterocomplex and performed molecular dynamics (MD) simulations of its binding to specific (TE-box) and modified E-box sequences. We focused on (i) active E-box and inactive E-box sequences, on (ii) modified active E-box sequences, as well as on (iii) two box sequences with modified adjacent bases the AT- and TA-boxes. Our in silico models were supported by functional in vitro binding assays. This exploration highlighted the predominant role of protein side-chain residues, close to the heart of the complex, at anchoring the dimer to DNA sequences, and unveiled a shift towards adjacent ((-1) and (-1*)) bases and conserved bases of modified E-box sequences. In conclusion, our study provides proof of the predictive value of these MD simulations, which may contribute to the characterization of specific inhibitors by docking approaches, and their use in pharmacological therapies by blocking the tumoral TWIST1/E12 function in cancers. PMID:27151200
Shave, Megan E; Lindell, Catherine A
2017-01-01
Nest boxes for predators in agricultural regions are an easily implemented tool to improve local habitat quality with potential benefits for both conservation and agriculture. The potential for nest boxes to increase raptor populations in agricultural regions is of particular interest given their positions as top predators. This study examined the effects of cherry orchard nest boxes on the local breeding population of a declining species, the American Kestrel (Falco sparverius), in a fruit-growing region of Michigan. During the 2013-2016 study, we added a total of 23 new nest boxes in addition to 24 intact boxes installed previously; kestrels used up to 100% of our new boxes each season. We conducted temporally-replicated surveys along four roadside transects divided into 1.6 km × 500 m sites. We developed a multi-season occupancy model under a Bayesian framework and found that nest boxes had strong positive effects on first-year site occupancy, site colonization, and site persistence probabilities. The estimated number of occupied sites increased between 2013 and 2016, which correlated with the increase in number of sites with boxes. Kestrel detections decreased with survey date but were not affected by time of day or activity at the boxes themselves. These results indicate that nest boxes determined the presence of kestrels at our study sites and support the conclusion that the local kestrel population is likely limited by nest site availability. Furthermore, our results are highly relevant to the farmers on whose properties the boxes were installed, for we can conclude that installing a nest box in an orchard resulted in a high probability of kestrels occupying that orchard or the areas adjacent to it.
Bailly-du-Bois, Pascal; Laguionie, Philippe; Morillon, Mehdi; Arnaud, Mireille; Cunin, Pascal
2017-01-01
The Fukushima Daï-ichi nuclear power plant (FDNPP) accident resulted in radioactive Cs being discharged into the local marine environment. While Cs bioaccumulates in biota and slowly depurates, the Cs concentrated in biota constitutes a source of Cs for animals feeding on each other. The marine biota therefore serves as a pool that recycles Cs, and this recycling process delays depuration in the fish feeding on this biota pool. Because the continental shelf is squeezed between the coast and very deep sea, the demersal marine species are confined to a narrow strip along the coast, close to the source of the radioactive input. Unlike demersal species, however, pelagic species are not restricted to the most contaminated area but instead spend some, if not most, of their time and feeding off-shore, far from the input source. We suggest that the feeding pathway for fish is a box whose size depends on their mobility, and that this feeding box is much larger and less contaminated (because of dilution through distance) for pelagic fish than for demersal fish. The aim of this paper is to test this hypothesis and to propose a simple operational model implementing two transfer routes: from seawater and from feeding. The model is then used to match the observational data in the aftermath of the FDNPP accident. PMID:28248982
Vakalis, Stergios; Patuzzi, Francesco; Baratieri, Marco
2016-04-01
Modeling can be a powerful tool for designing and optimizing gasification systems. Modeling applications for small scale/fixed bed biomass gasifiers have been interesting due to their increased commercial practices. Fixed bed gasifiers are characterized by a wide range of operational conditions and are multi-zoned processes. The reactants are distributed in different phases and the products from each zone influence the following process steps and thus the composition of the final products. The present study aims to improve the conventional 'Black-Box' thermodynamic modeling by means of developing multiple intermediate 'boxes' that calculate two phase (solid-vapor) equilibriums in small scale gasifiers. Therefore the model is named ''Multi-Box''. Experimental data from a small scale gasifier have been used for the validation of the model. The returned results are significantly closer with the actual case study measurements in comparison to single-stage thermodynamic modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simplifying the Mathematical Treatment of Radioactive Decay
ERIC Educational Resources Information Center
Auty, Geoff
2011-01-01
Derivation of the law of radioactive decay is considered without prior knowledge of calculus or the exponential series. Calculus notation and exponential functions are used because ultimately they cannot be avoided, but they are introduced in a simple way and explained as needed. (Contains 10 figures, 1 box, and 1 table.)
ERIC Educational Resources Information Center
Pember, Mary Annette
2007-01-01
For American Indian scholars, securing a job in higher education can sometimes be as simple as checking a box. Most of the country's colleges and universities do not require proof of tribal enrollment from faculty or staff who identify themselves as American Indians. Students looking to receive financial aid, however, must submit proof that they…
E-Learning Systems Requirements Elicitation: Perspectives and Considerations
ERIC Educational Resources Information Center
AlKhuder, Shaikha B.; AlAli, Fatma H.
2017-01-01
Training and education have evolved far beyond black boards and chalk boxes. The environment of knowledge exchange requires more than simple materials and assessments. This article is an attempt of parsing through the different aspects of e-learning, understanding the real needs, and conducting the right requirements to build the appropriate…
Hatori, Tsuyoshi; Takemura, Kazuhisa; Fujii, Satoshi; Ideno, Takashi
2011-06-01
This paper presents a new model of category judgment. The model hypothesizes that, when more attention is focused on a category, the psychological range of the category gets narrower (category-focusing hypothesis). We explain this hypothesis by using the metaphor of a "mental-box" model: the more attention that is focused on a mental box (i.e., a category set), the smaller the size of the box becomes (i.e., a cardinal number of the category set). The hypothesis was tested in an experiment (N = 40), where the focus of attention on prescribed verbal categories was manipulated. The obtained data gave support to the hypothesis: category-focusing effects were found in three experimental tasks (regarding the category of "food", "height", and "income"). The validity of the hypothesis was discussed based on the results.
Lorenz, Ralph D
2010-05-12
The 'two-box model' of planetary climate is discussed. This model has been used to demonstrate consistency of the equator-pole temperature gradient on Earth, Mars and Titan with what would be predicted from a principle of maximum entropy production (MEP). While useful for exposition and for generating first-order estimates of planetary heat transports, it has too low a resolution to investigate climate systems with strong feedbacks. A two-box MEP model agrees well with the observed day : night temperature contrast observed on the extrasolar planet HD 189733b.
Models for nearly every occasion: Part I - One box models.
Hewett, Paul; Ganser, Gary H
2017-01-01
The standard "well mixed room," "one box" model cannot be used to predict occupational exposures whenever the scenario involves the use of local controls. New "constant emission" one box models are proposed that permit either local exhaust or local exhaust with filtered return, coupled with general room ventilation or the recirculation of a portion of the general room exhaust. New "two box" models are presented in Part II of this series. Both steady state and transient models were developed. The steady state equation for each model, including the standard one box steady state model, is augmented with an additional factor reflecting the fraction of time the substance was generated during each task. This addition allows the easy calculation of the average exposure for cyclic and irregular emission patterns, provided the starting and ending concentrations are zero or near zero, or the cumulative time across all tasks is long (e.g., several tasks to a full shift). The new models introduce additional variables, such as the efficiency of the local exhaust to immediately capture freshly generated contaminant and the filtration efficiency whenever filtered exhaust is returned to the workspace. Many of the model variables are knowable (e.g., room volume and ventilation rate). A structured procedure for calibrating a model to a work scenario is introduced that can be applied to both continuous and cyclic processes. The "calibration" procedure generates estimates of the generation rate and all of remaining unknown model variables.
Correlation of spacecraft thermal mathematical models to reference data
NASA Astrophysics Data System (ADS)
Torralbo, Ignacio; Perez-Grande, Isabel; Sanz-Andres, Angel; Piqueras, Javier
2018-03-01
Model-to-test correlation is a frequent problem in spacecraft-thermal control design. The idea is to determine the values of the parameters of the thermal mathematical model (TMM) that allows reaching a good fit between the TMM results and test data, in order to reduce the uncertainty of the mathematical model. Quite often, this task is performed manually, mainly because a good engineering knowledge and experience is needed to reach a successful compromise, but the use of a mathematical tool could facilitate this work. The correlation process can be considered as the minimization of the error of the model results with regard to the reference data. In this paper, a simple method is presented suitable to solve the TMM-to-test correlation problem, using Jacobian matrix formulation and Moore-Penrose pseudo-inverse, generalized to include several load cases. Aside, in simple cases, this method also allows for analytical solutions to be obtained, which helps to analyze some problems that appear when the Jacobian matrix is singular. To show the implementation of the method, two problems have been considered, one more academic, and the other one the TMM of an electronic box of PHI instrument of ESA Solar Orbiter mission, to be flown in 2019. The use of singular value decomposition of the Jacobian matrix to analyze and reduce these models is also shown. The error in parameter space is used to assess the quality of the correlation results in both models.
The Full Monte Carlo: A Live Performance with Stars
NASA Astrophysics Data System (ADS)
Meng, Xiao-Li
2014-06-01
Markov chain Monte Carlo (MCMC) is being applied increasingly often in modern Astrostatistics. It is indeed incredibly powerful, but also very dangerous. It is popular because of its apparent generality (from simple to highly complex problems) and simplicity (the availability of out-of-the-box recipes). It is dangerous because it always produces something but there is no surefire way to verify or even diagnosis that the “something” is remotely close to what the MCMC theory predicts or one hopes. Using very simple models (e.g., conditionally Gaussian), this talk starts with a tutorial of the two most popular MCMC algorithms, namely, the Gibbs Sampler and the Metropolis-Hasting Algorithm, and illustratestheir good, bad, and ugly implementations via live demonstration. The talk ends with a story of how a recent advance, the Ancillary-Sufficient Interweaving Strategy (ASIS) (Yu and Meng, 2011, http://www.stat.harvard.edu/Faculty_Content/meng/jcgs.2011-article.pdf)reduces the danger. It was discovered almost by accident during a Ph.D. student’s (Yaming Yu) struggle with fitting a Cox process model for detecting changes in source intensity of photon counts observed by the Chandra X-ray telescope from a (candidate) neutron/quark star.
A comparative study on the motion of various objects inside an air tunnel
NASA Astrophysics Data System (ADS)
Shibani, Wanis Mustafa E.; Zulkafli, Mohd Fadhli; Basunoand, Bambang
2017-04-01
This paper presents a comparative study of the movement of various rigid bodies through an air tunnel for both two and three-dimensional flow problems. Three kinds of objects under investigation are in the form of box, ball and wedge shape. The investigation was carried out through the use of a commercial CFD software, named Fluent, in order to determine aerodynamic forces, act on the object as well as to track its movement. Adopted numerical scheme is the time-averaged Navier-Stokes equation with k - ɛ as its turbulence modeling and the scheme was solved using the SIMPLE algorithm. Triangular elements grid was used in 2D case, while tetrahedron elements for 3D case. Grid independence studies were performed for each problem from a coarse to fine grid. The motion of an object is restricted in one direction only and is found by tracking its center of mass at every time step. The result indicates the movement of the object is increasing as the flow moves down stream and the box have the fastest speed compare to the other two shapes for both 2D and 3D cases.
The Carnegie Quick Deploy Box (QDB) for use with broadband and intermediate period sensors
NASA Astrophysics Data System (ADS)
Wagner, L. S.; Roman, D.; Bartholomew, T.; Golden, S.; Schleigh, B.
2017-12-01
Recent data processing advances have increased the call for dense recordings of teleseismic data. However, traditional broadband field installations typically comprise 1) a sensor vault 2) a field box to hold the recording and power systems, and 3) a solar panel mount. The construction of these installations is time consuming and requires bulky construction materials, limiting the number of stations that can be installed from a single vehicle without repeated trips to a storage facility. Depending on the deployment location, watertight containers for both vault and field box can be difficult to find, resulting in a loss of data due to flooding. Recent technological improvements have made possible the direct burial of sensors (no vault required) and a reduction in the size of the solar panels needed to run a station. With support from the Brinson Foundation, we take advantage of these advances to create a field box/shipping container that will greatly simplify these types of seismic deployments. The goal of the Carnegie Quick Deploy Box (QDB) is to have everything needed for an intermediate period station install (except battery and shovel) contained in a single box for shipment, and to be able to leave everything (except the shovel) in that box when the station is deployed. The box is small enough ( 13"x13"x21") and lightweight enough (< 35 lbs) to be checked as airline luggage. The solar panel mount can be attached securely to the top of the box, but it can also be pole mounted with U-bolts or hose clamps. The sensor can be direct-buried. The sensor cable and solar panel cable plug into watertight bulkhead-fitted plugs on the outside of the box that are in turn plugged into the digitizer and power regulator inside the box. Our prototype boxes (Pelican Cases) have proved watertight when submerged for days. This equipment has been tested in Alaska in winter and Nicaragua in summer without failure due to flooding or power. The cost for parts for a single box (not including sensor cable, sensor, or digitizer) is $500. The setup is simple, and can be completed in a matter of minutes once the sensor is installed. QDBs such as ours will make possible a dramatic increase in the number of stations that can be installed, while also significantly decreasing the cost of deployment per station by reducing vehicle time, fuel, personnel time, and shipping costs.
NASA Astrophysics Data System (ADS)
Ritterbush, K. A.; West, A. J.; Berelson, W.; Rosas, S.; Bottjer, D. J.; Yager, J. A.; Corsetti, F. A.
2014-12-01
Two aspects of the Triassic/Jurassic transition that seem incongruous are increasing warming and increasing ecological dominance by siliceous sponges on shallow shelves. Warming is interpreted from proxy data showing increased atmospheric carbon dioxide concentrations associated with eruption pulses of the Central Atlantic Province (CAMP) basalts across rifting Pangea. Post-extinction ecological dominance by siliceous sponges is found in recent field investigations of Nevada and Peru, and literature on the Austrian Alps. Whereas evidence from the Panthalassan siliceous sponge ramps of the early Jurassic clearly records deposition on sub- and tropical shallow shelves (a warm environment), modern sponge occupations of comparable intensity exist only in deep and cold environments. Resolving this apparent contrast requires consideration of silica cycling. Silica is a limiting nutrient for siliceous sponges, and the post-extinction sponges of the earliest Jurassic show desmid spicule morphologies matching modern phenotypic indicators of high silica concentration. During the Triassic the major documented biosiliceous sink was radiolarian deep sea chert deposits despite a major species-level turnover at the extinction. Diatoms did not exist in the Triassic. A major alteration to silica cycling in the early Jurassic could have resulted from increased terrigenous supply for two reasons: increased atmospheric carbon dioxide would likely intensify continental weathering, and the extensive flood basalts produced an easily-weathered silica source. Simple box model calculations allow consideration of supply vs demand, and of the pace of possible changes. Potential weathering rates of silica are contrasted with recent published data on sponge silica sequestration, showing that the presence of the CAMP basalts alone could support increased sponge abundance across tropical carbonate shelves. Estimates of doubling and residence times in a simple one-box model show that the change in silica concentration likely occurred over hundred-thousand year timescales relevant to the post-extinction ecology. The influence of climate and weathering on marine chemistry and ecological opportunity presents an excellent example of interrelated Earth and life systems at a critical transition point.
Brane boxes, anomalies, bending, and tadpoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leigh, R.G.; Rozali, M.
1999-01-01
Certain classes of chiral four-dimensional gauge theories may be obtained as the world volume theories of D5-branes are suspended between networks of NS5-branes, the so-called brane box models. In this paper, we derive the stringy consistency conditions placed on these models, and show that they are equivalent to an anomaly cancellation of the gauge theories. We derive these conditions in the orbifold theories which are {ital T} dual to the elliptic brane box models. Specifically, we show that the expression for tadpoles for unphysical twisted Ramond-Ramond 4-form fields in the orbifold theory are proportional to the gauge anomalies of themore » brane box theory. Thus string consistency is equivalent to world volume gauge anomaly cancellation. Furthermore, we find additional cylinder amplitudes which give the {beta} functions of the gauge theory. We show how these correspond to bending of the NS-branes in the brane box theory. {copyright} {ital 1998} {ital The American Physical Society}« less
Quantifying parameter uncertainty in stochastic models using the Box Cox transformation
NASA Astrophysics Data System (ADS)
Thyer, Mark; Kuczera, George; Wang, Q. J.
2002-08-01
The Box-Cox transformation is widely used to transform hydrological data to make it approximately Gaussian. Bayesian evaluation of parameter uncertainty in stochastic models using the Box-Cox transformation is hindered by the fact that there is no analytical solution for the posterior distribution. However, the Markov chain Monte Carlo method known as the Metropolis algorithm can be used to simulate the posterior distribution. This method properly accounts for the nonnegativity constraint implicit in the Box-Cox transformation. Nonetheless, a case study using the AR(1) model uncovered a practical problem with the implementation of the Metropolis algorithm. The use of a multivariate Gaussian jump distribution resulted in unacceptable convergence behaviour. This was rectified by developing suitable parameter transformations for the mean and variance of the AR(1) process to remove the strong nonlinear dependencies with the Box-Cox transformation parameter. Applying this methodology to the Sydney annual rainfall data and the Burdekin River annual runoff data illustrates the efficacy of these parameter transformations and demonstrate the value of quantifying parameter uncertainty.
Demographic consequences of nest box use for Red-footed Falcons Falco vespertinus in Central Asia
Bragin, Evgeny A.; Bragin, Alexander E.; Katzner, Todd
2017-01-01
Nest box programs are frequently implemented for the conservation of cavity-nesting birds, but their effectiveness is rarely evaluated in comparison to birds not using nest boxes. In the European Palearctic, Red-footed Falcon Falco vespertinus populations are both of high conservation concern and are strongly associated with nest box programs in heavily managed landscapes. We used a 21-year monitoring dataset collected on 753 nesting attempts by Red-footed Falcons in unmanaged natural or semi-natural habitats to provide basic information on this poorly known species; to evaluate long-term demographic trends; and to evaluate response of demographic parameters of Red-footed Falcons to environmental factors including use of nest boxes. We observed significant differences among years in laying date, offspring loss, and numbers of fledglings produced, but not in egg production. Of these four parameters, offspring loss and, to a lesser extent, number of fledglings exhibited directional trends over time. Variation in laying date and in numbers of eggs were not well explained by any one model, but instead by combinations of models, each with informative terms for nest type. Nevertheless, laying in nest boxes occurred 2.10 ± 0.70 days earlier than in natural nests. In contrast, variation in both offspring loss and numbers of fledglings produced were fairly well explained by a single model including terms for nest type, nest location, and an interaction between the two parameters (65% and 81% model weights respectively), with highest offspring loss in nest boxes on forest edges. Because, for other species, earlier laying dates are associated with more fit individuals, this interaction highlighted a possible ecological trap, whereby birds using nest boxes on forest edges lay eggs earlier but suffer greater offspring loss and produce lower numbers of fledglings than do those in other nesting settings. If nest boxes increase offspring loss for Red-footed Falcons in heavily managed landscapes where populations are at greater risk, or for the many other species of rare or endangered birds supported by nest box programs, these processes could have important demographic and conservation consequences.
Structure of an E3:E2~Ub Complex Reveals an Allosteric Mechanism Shared among RING/U-box Ligases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruneda, Jonathan N.; Littlefield, Peter J.; Soss, Sarah E.
2012-09-28
Despite the widespread importance of RING/U-box E3 ubiquitin ligases in ubiquitin (Ub) signaling, the mechanismby which this class of enzymes facilitates Ub transfer remains enigmatic. Here, we present a structural model for a RING/U-box E3:E2~Ub complex poised for Ub transfer. The model and additional analyses reveal that E3 binding biases dynamic E2~Ub ensembles toward closed conformations with enhanced reactivity for substrate lysines. We identify a key hydrogen bond between a highly conserved E3 side chain and an E2 backbone carbonyl, observed in all structures of active RING/ U-Box E3/E2 pairs, as the linchpin for allosteric activation of E2~Ub. The conformationalmore » biasing mechanism is generalizable across diverse E2s and RING/U-box E3s, but is not shared by HECT-type E3s. The results provide a structural model for a RING/ U-box E3:E2~Ub ligase complex and identify the long sought-after source of allostery for RING/UBox activation of E2~Ub conjugates.« less
Preliminary analysis on hybrid Box-Jenkins - GARCH modeling in forecasting gold price
NASA Astrophysics Data System (ADS)
Yaziz, Siti Roslindar; Azizan, Noor Azlinna; Ahmad, Maizah Hura; Zakaria, Roslinazairimah; Agrawal, Manju; Boland, John
2015-02-01
Gold has been regarded as a valuable precious metal and the most popular commodity as a healthy return investment. Hence, the analysis and prediction of gold price become very significant to investors. This study is a preliminary analysis on gold price and its volatility that focuses on the performance of hybrid Box-Jenkins models together with GARCH in analyzing and forecasting gold price. The Box-Cox formula is used as the data transformation method due to its potential best practice in normalizing data, stabilizing variance and reduces heteroscedasticity using 41-year daily gold price data series starting 2nd January 1973. Our study indicates that the proposed hybrid model ARIMA-GARCH with t-innovation can be a new potential approach in forecasting gold price. This finding proves the strength of GARCH in handling volatility in the gold price as well as overcomes the non-linear limitation in the Box-Jenkins modeling.
Unstable Box Orbits in Cuspy Elliptical Galaxies
NASA Technical Reports Server (NTRS)
Hasan, H.; Pfenniger, D.
1996-01-01
The aim of this work is to gain physical insight into the role played by a concentrated central mass in affecting the shape of elliptical galaxies, by examining its effect on the stability of box orbits which are the backbone of triaxial elliptical galaxies. Ample observational evidence is now available for the existence of a central mass concentration or central cusps in galaxies. The central mass is expected to cause orbital stochasticity and chaotic mixing of orbits, which could have ramifications on galactic evolution. We investigate here the interplay between potential cuspiness and eccentricity on the stability of axial orbits in a scale-free potential in a simple, preliminary attempt to characterize this effect.
Finite volume solution of the compressible boundary-layer equations
NASA Technical Reports Server (NTRS)
Loyd, B.; Murman, E. M.
1986-01-01
A box-type finite volume discretization is applied to the integral form of the compressible boundary layer equations. Boundary layer scaling is introduced through the grid construction: streamwise grid lines follow eta = y/h = const., where y is the normal coordinate and h(x) is a scale factor proportional to the boundary layer thickness. With this grid, similarity can be applied explicity to calculate initial conditions. The finite volume method preserves the physical transparency of the integral equations in the discrete approximation. The resulting scheme is accurate, efficient, and conceptually simple. Computations for similar and non-similar flows show excellent agreement with tabulated results, solutions computed with Keller's Box scheme, and experimental data.
Slow relaxation of cascade-induced defects in Fe
Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...
2015-02-17
On-the-fly kinetic Monte Carlo (KMC) simulations are performed to investigate slow relaxation of non-equilibrium systems. Point defects induced by 25 keV cascades in α -Fe are shown to lead to a characteristic time-evolution, described by the replenish and relax mechanism. Then, we produce an atomistically-based assessment of models proposed to explain the slow structural relaxation by focusing on the aggregation of 50 vacancies and 25 self-interstital atoms (SIA) in 10-lattice-parameter α-Fe boxes, two processes that are closely related to cascade annealing and exhibit similar time signature. Four atomistic effects explain the timescales involved in the evolution: defect concentration heterogeneities, concentration-enhancedmore » mobility, cluster-size dependent bond energies and defect-induced pressure. In conclusion, these findings suggest that the two main classes of models to explain slow structural relaxation, the Eyring model and the Gibbs model, both play a role to limit the rate of relaxation of these simple point-defect systems.« less
The vertical distribution of nutrients and oxygen 18 in the upper Arctic Ocean
NASA Astrophysics Data System (ADS)
BjöRk, GöRan
1990-09-01
The observed vertical nutrient distribution including a maximum at about 100 m depth in the Arctic Ocean is investigated using a one-dimensional time-dependent circulation model together with a simple biological model. The circulation model includes a shelf-forced circulation. This is thought to take place in a box from which the outflow is specified regarding temperature and volume flux at different salinities. It has earlier been shown that the circulation model is able to reproduce the observed mean salinity and temperature stratification in the Arctic Ocean. Before introducing nutrients in the model a test is performed using the conservative tracer δ18 (18O/16O ratio) as one extra state variable in order to verify the circulation model. It is shown that the field measurements can be simulated. The result is, however, rather sensitive to the tracer concentration in the Bering Strait inflow. The nutrients nitrate, phosphate, and silicate are then treated by coupling a simple biological model to the circulation model. The biological model describes some overall effects of production, sinking, and decomposition of organic matter. First a standard case of the biological model is presented. This is followed by some modified cases. It is shown that the observed nutrient distribution including the maximum can be generated. The available nutrient data from the Arctic Ocean are not sufficient to decide which among the cases is the most likely to occur. One case is, however, chosen as the best case. A nutrient budget and estimates of the magnitudes of the new production are presented for this case.
Unit: Little Boxes, Inspection Set, National Trial Print.
ERIC Educational Resources Information Center
Australian Science Education Project, Toorak, Victoria.
The core portion of this unit prepared for students in grades seven and eight of Australian secondary schools aims to develop a greater awareness of the nature and function of housing. The historical development of housing styles and materials in Australia and elsewhere is studied from photographs, and simple investigations are suggested to…
e-Learning Business Research Methods
ERIC Educational Resources Information Center
Cowie, Jonathan
2004-01-01
This paper outlines the development of a generic Business Research Methods course from a simple name in a box to a full e-Learning web based module. It highlights particular issues surrounding the nature of the discipline and the integration of a large number of cross faculty subject specific research methods courses into a single generic module.…
Assessment and Planning Using Portfolio Analysis
ERIC Educational Resources Information Center
Roberts, Laura B.
2010-01-01
Portfolio analysis is a simple yet powerful management tool. Programs and activities are placed on a grid with mission along one axis and financial return on the other. The four boxes of the grid (low mission, low return; high mission, low return; high return, low mission; high return, high mission) help managers identify which programs might be…
ERIC Educational Resources Information Center
Blanzaco, Andre; And Others
This booklet presents information about venereal disease to the student in a simple, step-by-step way. It includes at least one question box on almost every page, requiring the reader to become actively involved with the material which is presented. The booklet is made up of seven sections, and is accompanied by a separate booklet which contains…
Results for both sequential and simultaneous calibration of exchange flows between segments of a 10-box, one-dimensional, well-mixed, bifurcated tidal mixing model for Tampa Bay are reported. Calibrations were conducted for three model options with different mathematical expressi...
Time Series ARIMA Models of Undergraduate Grade Point Average.
ERIC Educational Resources Information Center
Rogers, Bruce G.
The Auto-Regressive Integrated Moving Average (ARIMA) Models, often referred to as Box-Jenkins models, are regression methods for analyzing sequential dependent observations with large amounts of data. The Box-Jenkins approach, a three-stage procedure consisting of identification, estimation and diagnosis, was used to select the most appropriate…
NASA Astrophysics Data System (ADS)
Gammie, Charles F.; Guan, Xiaoyue
2012-10-01
HAM solves non-relativistic hyperbolic partial differential equations in conservative form using high-resolution shock-capturing techniques. This version of HAM has been configured to solve the magnetohydrodynamic equations of motion in axisymmetry to evolve a shearing box model.
Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G.; Shah, Arvind K.; Lin, Jianxin
2013-01-01
In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data (IPD) in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the Deviance Information Criterion (DIC) is used to select the best transformation model. Since the model is quite complex, a novel Monte Carlo Markov chain (MCMC) sampling scheme is developed to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol lowering drugs where the goal is to jointly model the three dimensional response consisting of Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). Since the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately: however, a multivariate approach would be more appropriate since these variables are correlated with each other. A detailed analysis of these data is carried out using the proposed methodology. PMID:23580436
Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G; Shah, Arvind K; Lin, Jianxin
2013-10-15
In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the deviance information criterion is used to select the best transformation model. Because the model is quite complex, we develop a novel Monte Carlo Markov chain sampling scheme to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol-lowering drugs where the goal is to jointly model the three-dimensional response consisting of low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TG) (LDL-C, HDL-C, TG). Because the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately; however, a multivariate approach would be more appropriate because these variables are correlated with each other. We carry out a detailed analysis of these data by using the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.
Rosin-Rammler Distributions in ANSYS Fluent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunham, Ryan Q.
In Health Physics monitoring, particles need to be collected and tracked. One method is to predict the motion of potential health hazards with computer models. Particles released from various sources within a glove box can become a respirable health hazard if released into the area surrounding a glove box. The goal of modeling the aerosols in a glove box is to reduce the hazards associated with a leak in the glove box system. ANSYS Fluent provides a number of tools for modeling this type of environment. Particles can be released using injections into the flow path with turbulent properties. Themore » models of particle tracks can then be used to predict paths and concentrations of particles within the flow. An attempt to understand and predict the handling of data by Fluent was made, and results iteratively tracked. Trends in data were studied to comprehend the final results. The purpose of the study was to allow a better understanding of the operation of Fluent for aerosol modeling for future application in many fields.« less
Chetnani, Bhaskar
2017-01-01
Abstract A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes. PMID:28531275
System load forecasts for an electric utility. [Hourly loads using Box-Jenkins method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uri, N.D.
This paper discusses forecasting hourly system load for an electric utility using Box-Jenkins time-series analysis. The results indicate that a model based on the method of Box and Jenkins, given its simplicity, gives excellent results over the forecast horizon.
PowerWheel - A new look at waterwheels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisman, R.N.; Broome, K.R.; Mayo, H.A.
1995-12-31
The PowerWheel is an advanced overshot water wheel, designed to generate electric power at drop structures on canals or on overflow spillways. Unlike the wheels of the 18th and 19th century which were designed to have maximum efficiency at a single flow rate, the current applications demand a wheel that can operate efficiently over a wide range of flows. The prototype PowerWheel will have a width to diameter ratio of 3 or more, in contrast to the wheels of the 19th century, which had large diameters and narrow widths. A model PowerWheel was built of plexiglass and delivered for testingmore » to the Imbt Hydraulics Laboratory at Lehigh University. The wheel has a diameter of 3.5 ft and is 16 in wide. The wheel contains 20 buckets and the bucket depth can be varied from a shallow depth of 4 in to a mid depth of 7 in to 10 in for the deep bucket. The blades have a rather simple geometry with a 4 in radius quarter circle at the outside of the wheel and then straight to the bottom of the bucket. The flume in which the wheel was tested has a width of 18 in. A hole was cut in the head box of the flume and a delivery chute was connected to the head box. The position of the chute can readily be moved up or down in relation to the wheel; for a fixed position of the chute on the head box, the slope of the chute can be changed because the chute was attached to the head box with a piano hinge. The laboratory flow system can deliver flow up to 6 cfs through a calibrated Venturi meter. The PowerWheel was subjected to flows ranging from 0.3 to 3.5 cfs.« less
Cache and energy efficient algorithms for Nussinov's RNA Folding.
Zhao, Chunchun; Sahni, Sartaj
2017-12-06
An RNA folding/RNA secondary structure prediction algorithm determines the non-nested/pseudoknot-free structure by maximizing the number of complementary base pairs and minimizing the energy. Several implementations of Nussinov's classical RNA folding algorithm have been proposed. Our focus is to obtain run time and energy efficiency by reducing the number of cache misses. Three cache-efficient algorithms, ByRow, ByRowSegment and ByBox, for Nussinov's RNA folding are developed. Using a simple LRU cache model, we show that the Classical algorithm of Nussinov has the highest number of cache misses followed by the algorithms Transpose (Li et al.), ByRow, ByRowSegment, and ByBox (in this order). Extensive experiments conducted on four computational platforms-Xeon E5, AMD Athlon 64 X2, Intel I7 and PowerPC A2-using two programming languages-C and Java-show that our cache efficient algorithms are also efficient in terms of run time and energy. Our benchmarking shows that, depending on the computational platform and programming language, either ByRow or ByBox give best run time and energy performance. The C version of these algorithms reduce run time by as much as 97.2% and energy consumption by as much as 88.8% relative to Classical and by as much as 56.3% and 57.8% relative to Transpose. The Java versions reduce run time by as much as 98.3% relative to Classical and by as much as 75.2% relative to Transpose. Transpose achieves run time and energy efficiency at the expense of memory as it takes twice the memory required by Classical. The memory required by ByRow, ByRowSegment, and ByBox is the same as that of Classical. As a result, using the same amount of memory, the algorithms proposed by us can solve problems up to 40% larger than those solvable by Transpose.
SeqBox: RNAseq/ChIPseq reproducible analysis on a consumer game computer.
Beccuti, Marco; Cordero, Francesca; Arigoni, Maddalena; Panero, Riccardo; Amparore, Elvio G; Donatelli, Susanna; Calogero, Raffaele A
2018-03-01
Short reads sequencing technology has been used for more than a decade now. However, the analysis of RNAseq and ChIPseq data is still computational demanding and the simple access to raw data does not guarantee results reproducibility between laboratories. To address these two aspects, we developed SeqBox, a cheap, efficient and reproducible RNAseq/ChIPseq hardware/software solution based on NUC6I7KYK mini-PC (an Intel consumer game computer with a fast processor and a high performance SSD disk), and Docker container platform. In SeqBox the analysis of RNAseq and ChIPseq data is supported by a friendly GUI. This allows access to fast and reproducible analysis also to scientists with/without scripting experience. Docker container images, docker4seq package and the GUI are available at http://www.bioinformatica.unito.it/reproducibile.bioinformatics.html. beccuti@di.unito.it. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Time-Series Forecast Modeling on High-Bandwidth Network Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Wucherl; Sim, Alex
With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less
Time-Series Forecast Modeling on High-Bandwidth Network Measurements
Yoo, Wucherl; Sim, Alex
2016-06-24
With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less
Gene transfer of high-mobility group box 1 box-A domain in a rat acute liver failure model.
Tanaka, Masayuki; Shinoda, Masahiro; Takayanagi, Atsushi; Oshima, Go; Nishiyama, Ryo; Fukuda, Kazumasa; Yagi, Hiroshi; Hayashida, Tetsu; Masugi, Yohei; Suda, Koichi; Yamada, Shingo; Miyasho, Taku; Hibi, Taizo; Abe, Yuta; Kitago, Minoru; Obara, Hideaki; Itano, Osamu; Takeuchi, Hiroya; Sakamoto, Michiie; Tanabe, Minoru; Maruyama, Ikuro; Kitagawa, Yuko
2015-04-01
High-mobility group box 1 (HMGB1) has recently been identified as an important mediator of various kinds of acute and chronic inflammation. The protein encoded by the box-A domain of the HMGB1 gene is known to act as a competitive inhibitor of HMGB1. In this study, we investigated whether box-A gene transfer results in box-A protein production in rats and assessed therapeutic efficacy in vivo using an acute liver failure (ALF) model. Three types of adenovirus vectors were constructed-a wild type and two mutants-and a mutant vector was then selected based on the secretion from HeLa cells. The secreted protein was subjected to a tumor necrosis factor (TNF) production inhibition test in vitro. The vector was injected via the portal vein in healthy Wistar rats to confirm box-A protein production in the liver. The vector was then injected via the portal vein in rats with ALF. Western blot analysis showed enhanced expression of box-A protein in HeLa cells transfected with one of the mutant vectors. The culture supernatant from HeLa cells transfected with the vector inhibited TNF-α production from macrophages. Expression of box-A protein was confirmed in the transfected liver at 72 h after transfection. Transfected rats showed decreased hepatic enzymes, plasma HMGB1, and hepatic TNF-α messenger RNA levels, and histologic findings and survival were significantly improved. HMGB1 box-A gene transfer results in box-A protein production in the liver and appears to have a beneficial effect on ALF in rats. Copyright © 2015 Elsevier Inc. All rights reserved.
Cscibox: A Software System for Age-Model Construction and Evaluation
NASA Astrophysics Data System (ADS)
Bradley, E.; Anderson, K. A.; Marchitto, T. M., Jr.; de Vesine, L. R.; White, J. W. C.; Anderson, D. M.
2014-12-01
CSciBox is an integrated software system for the construction and evaluation of age models of paleo-environmetal archives, both directly dated and cross dated. The time has come to encourage cross-pollinization between earth science and computer science in dating paleorecords. This project addresses that need. The CSciBox code, which is being developed by a team of computer scientists and geoscientists, is open source and freely available on github. The system employs modern database technology to store paleoclimate proxy data and analysis results in an easily accessible and searchable form. This makes it possible to do analysis on the whole core at once, in an interactive fashion, or to tailor the analysis to a subset of the core without loading the entire data file. CSciBox provides a number of 'components' that perform the common steps in age-model construction and evaluation: calibrations, reservoir-age correction, interpolations, statistics, and so on. The user employs these components via a graphical user interface (GUI) to go from raw data to finished age model in a single tool: e.g., an IntCal09 calibration of 14C data from a marine sediment core, followed by a piecewise-linear interpolation. CSciBox's GUI supports plotting of any measurement in the core against any other measurement, or against any of the variables in the calculation of the age model-with or without explicit error representations. Using the GUI, CSciBox's user can import a new calibration curve or other background data set and define a new module that employs that information. Users can also incorporate other software (e.g., Calib, BACON) as 'plug ins.' In the case of truly large data or significant computational effort, CSciBox is parallelizable across modern multicore processors, or clusters, or even the cloud. The next generation of the CSciBox code, currently in the testing stages, includes an automated reasoning engine that supports a more-thorough exploration of plausible age models and cross-dating scenarios.
NASA Astrophysics Data System (ADS)
Ying, Jinyong; Xie, Dexuan
2015-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.
Lima, C B S; Nunes, L A; Carvalho, C A L; Ribeiro, M F; Souza, B A; Silva, C S B
2016-01-01
A geometric morphometrics approach was applied to evaluate differences in forewing patterns of the Jandaira bee (Melipona subnitida Ducke). For this, we studied the presence of fluctuating asymmetry (FA) in forewing shape and size of colonies kept in either rational hive boxes or natural tree trunks. We detected significant FA for wing size as well as wing shape independent of the type of housing (rational box or tree trunks), indicating the overall presence of stress during the development of the studied specimens. FA was also significant (p < 0.01) between rational boxes, possibly related to the use of various models of rational boxes used for keeping stingless bees. In addition, a Principal Component Analysis indicated morphometric variation between bee colonies kept in either rational hive boxes or in tree trunks, that may be related to the different origins of the bees: tree trunk colonies were relocated natural colonies while rational box colonies originated from multiplying other colonies. We conclude that adequate measures should be taken to reduce the amount of stress during bee handling by using standard models of rational boxes that cause the least disruption.
Absorption spectra and optical transitions in InAs/GaAs self-assembled quantum dots
NASA Astrophysics Data System (ADS)
Cusack, M. A.; Briddon, P. R.; Jaros, M.
1997-08-01
We have applied the multiband effective mass/valence force field method to the calculation of optical transitions and absorption spectra in InAs/GaAs self-organized dots of different sizes. We have found that the apparently conflicting assignments of luminescence features to optical transitions in different experiments are in fact entirely compatible with each other. Whether the optical signature of a dot is constructed from transitions between states of the same quantum numbers, or via additional processes between the ground conduction state and a low-lying valence state depends on the aspect ratio of the quantum dot radius and height. The states involved can be predicted from a simple particle in a rigid rectangular box model.
The binding domain of the HMGB1 inhibitor carbenoxolone: Theory and experiment
NASA Astrophysics Data System (ADS)
Mollica, Luca; Curioni, Alessandro; Andreoni, Wanda; Bianchi, Marco E.; Musco, Giovanna
2008-05-01
We present a combined computational and experimental study of the interaction of the Box A of the HMGB1 protein and carbenoxolone, an inhibitor of its pro-inflammatory activity. The computational approach consists of classical molecular dynamics (MD) simulations based on the GROMOS force field with quantum-refined (QRFF) atomic charges for the ligand. Experimental data consist of fluorescence intensities, chemical shift displacements, saturation transfer differences and intermolecular Nuclear Overhauser Enhancement signals. Good agreement is found between observations and the conformation of the ligand-protein complex resulting from QRFF-MD. In contrast, simple docking procedures and MD based on the unrefined force field provide models inconsistent with experiment. The ligand-protein binding is dominated by non-directional interactions.
Lorenz, Ralph D.
2010-01-01
The ‘two-box model’ of planetary climate is discussed. This model has been used to demonstrate consistency of the equator–pole temperature gradient on Earth, Mars and Titan with what would be predicted from a principle of maximum entropy production (MEP). While useful for exposition and for generating first-order estimates of planetary heat transports, it has too low a resolution to investigate climate systems with strong feedbacks. A two-box MEP model agrees well with the observed day : night temperature contrast observed on the extrasolar planet HD 189733b. PMID:20368253
PCR-based approach to SINE isolation: simple and complex SINEs.
Borodulina, Olga R; Kramerov, Dmitri A
2005-04-11
Highly repeated copies of short interspersed elements (SINEs) occur in eukaryotic genomes. The distribution of each SINE family is usually restricted to some genera, families, or orders. SINEs have an RNA polymerase III internal promoter, which is composed of boxes A and B. Here we propose a method for isolation of novel SINE families based on genomic DNA PCR with oligonucleotide identical to box A as a primer. Cloning of the size-heterogeneous PCR-products and sequencing of their terminal regions allow determination of SINE structure. Using this approach, two novel SINE families, Rhin-1 and Das-1, from the genomes of great horseshoe bat (Rhinolophus ferrumequinum) and nine-banded armadillo (Dasypus novemcinctus), respectively, were isolated and studied. The distribution of Rhin-1 is restricted to two of six bat families tested. Copies of this SINE are characterized by frequent internal insertions and significant length (200-270 bp). Das-1 being only 90 bp in length is one of the shortest SINEs known. Most of Das-1 nucleotide sequences demonstrate significant similarity to alanine tRNA which appears to be an evolutionary progenitor of this SINE. Together with three other known SINEs (ID, Vic-1, and CYN), Das-1 constitutes a group of simple SINEs. Interestingly, three SINE families of this group are alanine tRNA-derived. Most probably, this tRNA gave rise to short and simple but successful SINEs several times during mammalian evolution.
NASA Astrophysics Data System (ADS)
Derwent, Richard; Beevers, Sean; Chemel, Charles; Cooke, Sally; Francis, Xavier; Fraser, Andrea; Heal, Mathew R.; Kitwiroon, Nutthida; Lingard, Justin; Redington, Alison; Sokhi, Ranjeet; Vieno, Massimo
2014-09-01
Simple emission scenarios have been implemented in eight United Kingdom air quality models with the aim of assessing how these models compared when addressing whether photochemical ozone formation in southern England was NOx- or VOC-sensitive and whether ozone precursor sources in the UK or in the Rest of Europe (RoE) were the most important during July 2006. The suite of models included three Eulerian-grid models (three implementations of one of these models), a Lagrangian atmospheric dispersion model and two moving box air parcel models. The assignments as to NOx- or VOC-sensitive and to UK- versus RoE-dominant, turned out to be highly variable and often contradictory between the individual models. However, when the assignments were filtered by model performance on each day, many of the contradictions could be eliminated. Nevertheless, no one model was found to be the 'best' model on all days, indicating that no single air quality model could currently be relied upon to inform policymakers robustly in terms of NOx- versus VOC-sensitivity and UK- versus RoE-dominance on each day. It is important to maintain a diversity in model approaches.
NASA Astrophysics Data System (ADS)
Sang, Nguyen Anh; Thu Thuy, Do Thi; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai
2017-06-01
Using the simple deformed three-level model (D3L model) proposed in our early work, we study the entanglement problem of composite bosons. Consider three first energy levels are known, we can get two energy separations, and can define the level deformation parameter δ. Using connection between q-deformed harmonic oscillator and Morse-like anharmonic potential, the deform parameter q also can be derived explicitly. Like the Einstein’s theory of special relativity, we introduce the observer e˙ects: out side observer (looking from outside the studying system) and inside observer (looking inside the studying system). Corresponding to those observers, the outside entanglement entropy and inside entanglement entropy will be defined.. Like the case of Foucault pendulum in the problem of Earth rotation, our deformation energy level investigation might be useful in prediction the environment e˙ect outside a confined box.
Partial molar enthalpies and reaction enthalpies from equilibrium molecular dynamics simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnell, Sondre K.; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720; Department of Chemistry, Faculty of Natural Science and Technology, Norwegian University of Science and Technology, 4791 Trondheim
2014-10-14
We present a new molecular simulation technique for determining partial molar enthalpies in mixtures of gases and liquids from single simulations, without relying on particle insertions, deletions, or identity changes. The method can also be applied to systems with chemical reactions. We demonstrate our method for binary mixtures of Weeks-Chandler-Anderson particles by comparing with conventional simulation techniques, as well as for a simple model that mimics a chemical reaction. The method considers small subsystems inside a large reservoir (i.e., the simulation box), and uses the construction of Hill to compute properties in the thermodynamic limit from small-scale fluctuations. Results obtainedmore » with the new method are in excellent agreement with those from previous methods. Especially for modeling chemical reactions, our method can be a valuable tool for determining reaction enthalpies directly from a single MD simulation.« less
A review of presented mathematical models in Parkinson's disease: black- and gray-box models.
Sarbaz, Yashar; Pourakbari, Hakimeh
2016-06-01
Parkinson's disease (PD), one of the most common movement disorders, is caused by damage to the central nervous system. Despite all of the studies on PD, the formation mechanism of its symptoms remained unknown. It is still not obvious why damage only to the substantia nigra pars compacta, a small part of the brain, causes a wide range of symptoms. Moreover, the causes of brain damages remain to be fully elucidated. Exact understanding of the brain function seems to be impossible. On the other hand, some engineering tools are trying to understand the behavior and performance of complex systems. Modeling is one of the most important tools in this regard. Developing quantitative models for this disease has begun in recent decades. They are very effective not only in better understanding of the disease, offering new therapies, and its prediction and control, but also in its early diagnosis. Modeling studies include two main groups: black-box models and gray-box models. Generally, in the black-box modeling, regardless of the system information, the symptom is only considered as the output. Such models, besides the quantitative analysis studies, increase our knowledge of the disorders behavior and the disease symptoms. The gray-box models consider the involved structures in the symptoms appearance as well as the final disease symptoms. These models can effectively save time and be cost-effective for the researchers and help them select appropriate treatment mechanisms among all possible options. In this review paper, first, efforts are made to investigate some studies on PD quantitative analysis. Then, PD quantitative models will be reviewed. Finally, the results of using such models are presented to some extent.
Finite element corroboration of buckling phenomena observed in corrugated boxes
Thomas J. Urbanik; Edmond P. Saliklis
2003-01-01
Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study combines a finite element model with a parametric design of the...
USDA-ARS?s Scientific Manuscript database
DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are SHORT VEGETATIVE PHASE–Like MADS box transcription factors linked to endodormancy induction. We have cloned and characterized several cDNA and genomic clones of DAM genes from the model perennial weed leafy spurge (Euphorbia esula). We present evidence fo...
Wiltshire, C J; Sutherland, S K; Fenner, P J; Young, A R
2000-01-01
To optimize venom extraction and to undertake preliminary biochemical studies of venom from the box jellyfish (Chironex fleckeri), the Irukandji jellyfish (Carukia barnesi), and the blubber jellyfish (Catostylus mosaicus). Lyophilized crude venoms from box jellyfish tentacles and whole Irukandji jellyfish were prepared in water by homogenization, sonication, and rapid freeze thawing. A second technique, consisting of grinding samples with a glass mortar and pestle and using phosphate-buffered saline, was used to prepare crude venom from isolated nematocysts of the box jellyfish, the bells of Irukandji jellyfish, and the oral lobes of blubber jellyfish. Venoms were compared by use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot test. Toxicity of some venoms was determined by intravenous median lethal dose assay in mice. Different venom extraction techniques produced significantly different crude venoms for both box and Irukandji jellyfish. Irukandji and blubber venom SDS-PAGE protein profiles were established for the first time. Analysis of Western blot tests revealed that box jellyfish antivenin reacted specifically with the venom of each jellyfish. Toxicity was found in Irukandji jellyfish venom derived by use of the mortar-and-pestle method, but not in the lyophilized venom. Glass mortar-and-pestle grinding and use of an appropriate buffer was found to be a simple and suitable method for the preparation of venom from each jellyfish species studied. This study contributes to biochemical investigations of jellyfish venoms, particularly the venom of the Irukandji jellyfish, for which there are, to our knowledge, no published studies. It also highlights the importance of optimizing venom extraction as the first step toward understanding the complex biological effects of jellyfish venoms.
Quantum Dots in a Polymer Composite: A Convenient Particle-in-a-Box Laboratory Experiment
ERIC Educational Resources Information Center
Rice, Charles V.; Giffin, Guinevere A.
2008-01-01
Semiconductor quantum dots are at the forefront of materials science chemistry with applications in biological imaging and photovoltaic technologies. We have developed a simple laboratory experiment to measure the quantum-dot size from fluorescence spectra. A major roadblock of quantum-dot based exercises is the particle synthesis and handling;…
ERIC Educational Resources Information Center
Jurado-Parras, M. Teresa; Gruart, Agnes; Delgado-Garcia, Jose M.
2012-01-01
The neural structures involved in ongoing appetitive and/or observational learning behaviors remain largely unknown. Operant conditioning and observational learning were evoked and recorded in a modified Skinner box provided with an on-line video recording system. Mice improved their acquisition of a simple operant conditioning task by…
NASA Astrophysics Data System (ADS)
Spiers, E. M.; Schmidt, B. E.
2018-05-01
I aim to acquire better understanding of coupled thermal evolution and geochemical fluxes of an ocean world through a box model. A box model divides the system into plainer elements with realistically-solvable, dynamic equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaskey, Alex; Billings, Jay Jay; de Almeida, Valmor F
2011-08-01
This report details the progress made in the development of the Reprocessing Plant Toolkit (RPTk) for the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. RPTk is an ongoing development effort intended to provide users with an extensible, integrated, and scalable software framework for the modeling and simulation of spent nuclear fuel reprocessing plants by enabling the insertion and coupling of user-developed physicochemical modules of variable fidelity. The NEAMS Safeguards and Separations IPSC (SafeSeps) and the Enabling Computational Technologies (ECT) supporting program element have partnered to release an initial version of the RPTk with a focus on software usabilitymore » and utility. RPTk implements a data flow architecture that is the source of the system's extensibility and scalability. Data flows through physicochemical modules sequentially, with each module importing data, evolving it, and exporting the updated data to the next downstream module. This is accomplished through various architectural abstractions designed to give RPTk true plug-and-play capabilities. A simple application of this architecture, as well as RPTk data flow and evolution, is demonstrated in Section 6 with an application consisting of two coupled physicochemical modules. The remaining sections describe this ongoing work in full, from system vision and design inception to full implementation. Section 3 describes the relevant software development processes used by the RPTk development team. These processes allow the team to manage system complexity and ensure stakeholder satisfaction. This section also details the work done on the RPTk ``black box'' and ``white box'' models, with a special focus on the separation of concerns between the RPTk user interface and application runtime. Section 4 and 5 discuss that application runtime component in more detail, and describe the dependencies, behavior, and rigorous testing of its constituent components.« less
Chetnani, Bhaskar; Mondragón, Alfonso
2017-07-27
A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ford, W. Mark; Evans, A.M.; Odom, Richard H.; Rodrigue, Jane L.; Kelly, C.A.; Abaid, Nicole; Diggins, Corinne A.; Newcomb, Doug
2016-01-01
In the southern Appalachians, artificial nest-boxes are used to survey for the endangered Carolina northern flying squirrel (CNFS; Glaucomys sabrinus coloratus), a disjunct subspecies associated with high elevation (>1385 m) forests. Using environmental parameters diagnostic of squirrel habitat, we created 35 a priori occupancy models in the program PRESENCE for boxes surveyed in western North Carolina, 1996-2011. Our best approximating model showed CNFS denning associated with sheltered landforms and montane conifers, primarily red spruce Picea rubens. As sheltering decreased, decreasing distance to conifers was important. Area with a high probability (>0.5) of occupancy was distributed over 18662 ha of habitat, mostly across 10 mountain ranges. Because nest-box surveys underrepresented areas >1750 m and CNFS forage in conifers, we combined areas of high occupancy with conifer GIS coverages to create an additional distribution model of likely habitat. Regionally, above 1385 m, we determined that 31795 ha could be occupied by CNFS. Known occupied patches ranged from
NASA Astrophysics Data System (ADS)
Liang, Q.; Chipperfield, M.; Daniel, J. S.; Burkholder, J. B.; Rigby, M. L.; Velders, G. J. M.
2015-12-01
The hydroxyl radical (OH) is the major oxidant in the atmosphere. Reaction with OH is the primary removal process for many non-CO2greenhouse gases (GHGs), ozone-depleting substances (ODSs) and their replacements, e.g. hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). Traditionally, the global OH abundance is inferred using the observed atmospheric rate of change for methyl chloroform (MCF). Due to the Montreal Protocol regulation, the atmospheric abundance of MCF has been decreasing rapidly to near-zero values. It is becoming critical to find an alternative reference compound to continue to provide quantitative information for the global OH abundance. Our model analysis using the NASA 3-D GEOS-5 Chemistry Climate Model suggests that the inter-hemispheric gradients (IHG) of the HCFCs and HFCs show a strong linear correlation with their global emissions. Therefore it is possible to use (i) the observed IHGs of HCFCs and HFCs to estimate their global emissions, and (ii) use the derived emissions and the observed long-term trend to calculate their lifetimes and to infer the global OH abundance. Preliminary analysis using a simple global two-box model (one box for each hemisphere) and information from the global 3-D model suggests that the quantitative relationship between IHG and global emissions varies slightly among individual compounds depending on their lifetime, their emissions history and emission fractions from the two hemispheres. While each compound shows different sensitivity to the above quantities, the combined suite of the HCFCs and HFCs provides a means to derive global OH abundance and the corresponding atmospheric lifetimes of long-lived gases with respect to OH (tOH). The fact that the OH partial lifetimes of these compounds are highly correlated, with the ratio of tOH equal to the reverse ratio of their OH thermal reaction rates at 272K, provides an additional constraint that can greatly reduce the uncertainty in the OH abundance and tOH estimates. We will use the observed IHGs and long-term trends of three major HCFCs and six major HFCs in the two-box model to derive their global emissions and atmospheric lifetimes as well as the global OH abundance. The derived global OH abundance between 2000 and 2014 will be compared with that derived using MCF for consistency.
Stochastic Thermodynamics of a Particle in a Box.
Gong, Zongping; Lan, Yueheng; Quan, H T
2016-10-28
The piston system (particles in a box) is the simplest paradigmatic model in traditional thermodynamics. However, the recently established framework of stochastic thermodynamics (ST) fails to apply to this model system due to the embedded singularity in the potential. In this Letter, we study the ST of a particle in a box by adopting a novel coordinate transformation technique. Through comparing with the exact solution of a breathing harmonic oscillator, we obtain analytical results of work distribution for an arbitrary protocol in the linear response regime and verify various predictions of the fluctuation-dissipation relation. When applying to the Brownian Szilard engine model, we obtain the optimal protocol λ_{t}=λ_{0}2^{t/τ} for a given sufficiently long total time τ. Our study not only establishes a paradigm for studying ST of a particle in a box but also bridges the long-standing gap in the development of ST.
Sjåstad, Knut-Endre; Simonsen, Siri Lene; Andersen, Tom H
2014-11-01
To establish a link between a bullet fired from a suspected firearm, investigation of striation marks are one of the corner stones in the forensic laboratory. Nevertheless, on some occasions, the bullet may be deformed to such extent that traditional investigation of striation marks will be impossible. Fragments of lead can be investigated by lead isotope ratio determination in order to distinguish between bullets with different origin. This approach initially seems reasonable, since the abundance of lead isotopes varies significantly in nature. To make a method valid for forensic purposes, it is important to have a fundamental understanding of the variation within a box of lead bullets and the expected variation between boxes. Studies of variability within and between boxes of ammunition are imperative to perform any type of forensic interpretation, both in an investigative and evaluative context. This work presents an extensive study of variability within and between boxes of ammunition by use of multicollector inductive coupled mass spectrometry. As a first approximation to classify bullets to any given source, a simple and robust graphical method is presented. In addition, an easy-to-use sampling procedure of lead is presented. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Load Distribution Factors for Composite Multicell Box Girder Bridges
NASA Astrophysics Data System (ADS)
Tiwari, Sanjay; Bhargava, Pradeep
2017-12-01
Cellular steel section composite with a concrete deck is one of the most suitable superstructures in resisting torsional and warping effects induced by highway loading. This type of structure has inherently created new design problems for engineers in estimating its load distribution when subjected to moving vehicles. Indian Codes of Practice does not provide any specific guidelines for the design of straight composite concrete deck-steel multi-cell bridges. To meet the practical requirements arising during the design process, a simple design method is needed for straight composite multi-cell bridges in the form of load distribution factors for moment and shear. This work presents load distribution characteristics of straight composite multi-cell box girder bridges under IRC trains of loads.
CERESVis: A QC Tool for CERES that Leverages Browser Technology for Data Validation
NASA Astrophysics Data System (ADS)
Chu, C.; Sun-Mack, S.; Heckert, E.; Chen, Y.; Doelling, D.
2015-12-01
In this poster, we are going to present three user interfaces that CERES team uses to validate pixel-level data. Besides our home grown tools, we will aslo present the browser technology that we use to provide interactive interfaces, such as jquery, HighCharts and Google Earth. We pass data to the users' browsers and use the browsers to do some simple computations. The three user interfaces are: Thumbnails -- it displays hundrends images to allow users to browse 24-hour data files in few seconds. Multiple-synchronized cursors -- it allows users to compare multiple images side by side. Bounding Boxes and Histograms -- it allows users to draw multiple bounding boxes on an image and the browser computes/display the histograms.
A Box-Cox normal model for response times.
Klein Entink, R H; van der Linden, W J; Fox, J-P
2009-11-01
The log-transform has been a convenient choice in response time modelling on test items. However, motivated by a dataset of the Medical College Admission Test where the lognormal model violated the normality assumption, the possibilities of the broader class of Box-Cox transformations for response time modelling are investigated. After an introduction and an outline of a broader framework for analysing responses and response times simultaneously, the performance of a Box-Cox normal model for describing response times is investigated using simulation studies and a real data example. A transformation-invariant implementation of the deviance information criterium (DIC) is developed that allows for comparing model fit between models with different transformation parameters. Showing an enhanced description of the shape of the response time distributions, its application in an educational measurement context is discussed at length.
Sensitivity of Polar Stratospheric Ozone Loss to Uncertainties in Chemical Reaction Kinetics
NASA Technical Reports Server (NTRS)
Kawa, S. Randolph; Stolarski, Richard S.; Douglass, Anne R.; Newman, Paul A.
2008-01-01
Several recent observational and laboratory studies of processes involved in polar stratospheric ozone loss have prompted a reexamination of aspect of out understanding for this key indicator of global change. To a large extent, our confidence in understanding and projecting changes in polar and global ozone is based on our ability to to simulate these process in numerical models of chemistry and transport. These models depend on laboratory-measured kinetic reaction rates and photlysis cross section to simulate molecular interactions. In this study we use a simple box-model scenario for Antarctic ozone to estimate the uncertainty in loss attributable to known reaction kinetic uncertainties. Following the method of earlier work, rates and uncertainties from the latest laboratory evaluation are applied in random combinations. We determine the key reaction and rates contributing the largest potential errors and compare the results to observations to evaluate which combinations are consistent with atmospheric data. Implications for our theoretical and practical understanding of polar ozone loss will be assessed.
Origin and propagation of galactic cosmic rays
NASA Technical Reports Server (NTRS)
Cesarsky, Catherine J.; Ormes, Jonathan F.
1987-01-01
The study of systematic trends in elemental abundances is important for unfolding the nuclear and/or atomic effects that should govern the shaping of source abundances and in constraining the parameters of cosmic ray acceleration models. In principle, much can be learned about the large-scale distributions of cosmic rays in the galaxy from all-sky gamma ray surveys such as COS-B and SAS-2. Because of the uncertainties in the matter distribution which come from the inability to measure the abundance of molecular hydrogen, the results are somewhat controversial. The leaky-box model accounts for a surprising amount of the data on heavy nuclei. However, a growing body of data indicates that the simple picture may have to be abandoned in favor of more complex models which contain additional parameters. Future experiments on the Spacelab and space station will hopefully be made of the spectra of individual nuclei at high energy. Antiprotons must be studied in the background free environment above the atmosphere with much higher reliability and presion to obtain spectral information.
Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas
NASA Astrophysics Data System (ADS)
Hu, S. X.
2017-08-01
Continuum lowering is a well known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal- or pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K -edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics calculations based on the all-electron density-functional theory. The resulting K -edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of "single-atom-in-box," developed in this work, accurately predicts K -edge locations as ab initio calculations provide.
NASA Astrophysics Data System (ADS)
Hu, Ya-Peng; Pan, Feng; Wu, Xin-Meng
2017-09-01
It is well known that the black hole can have temperature and radiate the particles with black body spectrum, i.e. Hawking radiation. Therefore, if the black hole is surrounded by an isolated box, there is a thermal equilibrium between the black hole and radiation gas. A simple case considering the thermal equilibrium between the Schwarzschild black hole and radiation gas in an isolated box has been well investigated previously in detail, i.e. taking the conservation of energy and principle of maximal entropy for the isolated system into account. In this paper, following the above spirit, the effects of massive graviton on the thermal equilibrium will be investigated. For the gravity with massive graviton, we will use the de Rham-Gabadadze-Tolley (dRGT) massive gravity which has been proven to be ghost free. Because the graviton mass depends on two parameters in the dRGT massive gravity, here we just investigate two simple cases related to the two parameters, respectively. Our results show that in the first case the massive graviton can suppress or increase the condensation of black hole in the radiation gas although the T-E diagram is similar as the Schwarzschild black hole case. For the second case, a new T-E diagram has been obtained. Moreover, an interesting and important prediction is that the condensation of black hole just increases from the zero radius of horizon in this case, which is very different from the Schwarzschild black hole case.
Price of gasoline: forecasting comparisons. [Box-Jenkins, econometric, and regression methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bopp, A.E.; Neri, J.A.
Gasoline prices are simulated using three popular forecasting methodologies: A Box--Jenkins type method, an econometric method, and a regression method. One-period-ahead and 18-period-ahead comparisons are made. For the one-period-ahead method, a Box--Jenkins type time-series model simulated best, although all do well. However, for the 18-period simulation, the econometric and regression methods perform substantially better than the Box-Jenkins formulation. A rationale for and implications of these results ae discussed. 11 references.
NASA Technical Reports Server (NTRS)
Wang, John T.; Jegley, Dawn C.; Bush, Harold G.; Hinrichs, Stephen C.
1996-01-01
The analytical and experimental results of an all-composite wing stub box are presented in this report. The wing stub box, which is representative of an inboard portion of a commercial transport high-aspect-ratio wing, was fabricated from stitched graphite-epoxy material with a Resin Film Infusion manufacturing process. The wing stub box was designed and constructed by the McDonnell Douglas Aerospace Company as part of the NASA Advanced Composites Technology program. The test article contained metallic load-introduction structures on the inboard and outboard ends of the graphite-epoxy wing stub box. The root end of the inboard load introduction structure was attached to a vertical reaction structure, and an upward load was applied to the outermost tip of the outboard load introduction structure to induce bending of the wing stub box. A finite element model was created in which the center portion of the wing-stub-box upper cover panel was modeled with a refined mesh. The refined mesh was required to represent properly the geometrically nonlinear structural behavior of the upper cover panel and to predict accurately the strains in the stringer webs of the stiffened upper cover panel. The analytical and experimental results for deflections and strains are in good agreement.
Modular vaccine packaging increases packing efficiency
Norman, Bryan A.; Rajgopal, Jayant; Lim, Jung; Gorham, Katrin; Haidari, Leila; Brown, Shawn T.; Lee, Bruce Y.
2015-01-01
Background Within a typical vaccine supply chain, vaccines are packaged into individual cylindrical vials (each containing one or more doses) that are bundled together in rectangular “inner packs” for transport via even larger groupings such as cold boxes and vaccine carriers. The variability of vaccine inner pack and vial size may hinder efficient vaccine distribution because it constrains packing of cold boxes and vaccine carriers to quantities that are often inappropriate or suboptimal in the context of country-specific vaccination guidelines. Methods We developed in Microsoft Excel (Microsoft Corp., Redmond, WA) a spreadsheet model that evaluated the impact of different packing schemes for the Benin routine regimen plus the introduction of the Rotarix vaccine. Specifically, we used the model to compare the current packing scheme to that of a proposed modular packing scheme. Results Conventional packing of a Dometic RCW25 that aims to maximize fully-immunized children (FICs) results in 123 FICs and a packing efficiency of 81.93% compared to a maximum of 155 FICs and 94.1% efficiency for an alternative modular packaging system. Conclusions Our analysis suggests that modular packaging systems could offer significant advantages over conventional vaccine packaging systems with respect to space efficiency and potential FICs, when they are stored in standard vaccine carrying devices. This allows for more vaccines to be stored within the same volume while also simplifying the procedures used by field workers to pack storage devices. Ultimately, modular packaging systems could be a simple way to help increase vaccine coverage worldwide. PMID:25957666
Terraforming planet Dune: Climate-vegetation interactions on a sandy planet
NASA Astrophysics Data System (ADS)
Cresto Aleina, F.; Baudena, M.; D'Andrea, F.; Provenzale, A.
2012-04-01
The climate and the biosphere of planet Earth interact in multiple, complicated ways and on many spatial and temporal scales. Some of these processes can be studied with the help of simple mathematical models, as done for the effects of vegetation on albedo in desert areas and for the mechanisms by which terrestrial vegetation affects water fluxes in arid environments. Conceptual models of this kind do not attempt at providing quantitative descriptions of the climate-biosphere interaction, but rather to explore avenues and mechanisms which can play a role in the real system, providing inspiration for further research. In this work, we develop a simple conceptual box model in the spirit illustrated above, to explore whether and how vegetation affects the planetary hydrologic cycle. We imagine a planet with no oceans and whose surface is entirely covered with sand, quite similar to planet Dune of the science-fiction series by Frank Herbert (1965). We suppose that water is entirely in the sand, below the surface. Without vegetation, only evaporation takes place, affecting the upper sand layer for a maximum depth of a few cm. The amount of water that is evaporated in the atmosphere is relatively small, and not sufficient to trigger a full hydrologic cycle. The question is what happens to this planet when vegetation is introduced: the root depth can reach a meter or more, and plant transpiration can then transfer a much larger amount of water to the atmosphere. One may wonder whether the presence of vegetation is sufficient to trigger a hydrologic cycle with enough precipitation to sustain the vegetation itself and, if the answer is positive, what is the minimum vegetation cover that is required to maintain the cycle active. In more precise terms, we want to know whether the introduction of vegetation and of the evapotranspiration feedback allows for the existence of multiple equilibria (or solutions) in the soil-vegetation-atmosphere system. Although the box model introduced here is best formulated in terms of a hypothetical sandy planet, the results can be used to study the hydrologic cycle on wide continental regions of the Earth. On the other hand, our findings show how the definition of a habitable climate may also depend on surface characteristics, and in particular on biosphere and climate interactions.
NASA Astrophysics Data System (ADS)
Xia, Hongyi; Steele, Charles R.; Puria, Sunil
2018-05-01
The gerbil basilar membrane (BM) differs from other mammalian BMs in that the lower collagen-fiber layer of the pectinate zone (PZ) forms an arch, the upper fiber layer is flat, and ground substance separates the two layers. The role of this arch has been unknown, but can be elucidated by models. In the standard simple beam model (SBM), the upper and lower collagen-fiber layers of the BM are represented as a single layer in both the PZ and the arcuate zone (AZ). In our new arch-beam model (ABM), the upper fiber layer is flat, the lower layer forms an arch in the PZ, and the two layers combine to form the flat portion of the BM in the AZ. This design is incorporated into a 3D finite-element tapered-box model of the cochlea with viscous fluid. We find in the model that the PZ rotates as a rigid body, so its specific properties have little influence, while the AZ thickness and collagen volume fraction primarily determine passive BM mechanics.
An effective box trap for capturing lynx
Jay A. Kolbe; John R. Squires; Thomas W. Parker
2003-01-01
We designed a box trap for capturing lynx (Lynx lynx) that is lightweight, safe, effective, and less expensive than many commercial models. It can be constructed in approximately 3-4 hours from readily available materials. We used this trap to capture 40 lynx 89 times (96% of lynx entering traps) and observed no trapping related injuries. We compare our box...
Comparison of distributed reacceleration and leaky-box models of cosmic-ray abundances (Z = 3-28)
NASA Technical Reports Server (NTRS)
Letaw, John R.; Silberberg, Rein; Tsao, C. H.
1993-01-01
A large collection of elemental and isotopic cosmic-ray data has been analyzed using the leaky-box transport model with and without reacceleration in the interstellar medium. Abundances of isotopes and elements with charges Z = 3-28 and energies E = 10 MeV/nucleon-1 TeV/nucleon were explored. Our results demonstrate that reacceleration models make detailed and accurate predictions with the same number of parameters or fewer as standard leaky-box models. Ad hoc fitting parameters in the standard model are replaced by astrophysically significant reacceleration parameters. Distributed reacceleration models explain the peak in secondary-to-primary ratios around 1 GeV/nucleon. They diminish the discrepancy between rigidity-dependent leakage and energy-independent anisotropy. They also offer the possibility of understanding isotopic anomalies at low energy.
Cosmic ray antiprotons in closed galaxy model
NASA Technical Reports Server (NTRS)
Protheroe, R.
1981-01-01
The flux of secondary antiprotons expected for the leaky-box model was calculated as well as that for the closed galaxy model of Peters and Westergard (1977). The antiproton/proton ratio observed at several GeV is a factor of 4 higher than the prediction for the leaky-box model but is consistent with that predicted for the closed galaxy model. New low energy data is not consistent with either model. The possibility of a primary antiproton component is discussed.
The Particle/Wave-in-a-Box Model in Dutch Secondary Schools
ERIC Educational Resources Information Center
Hoekzema, Dick; van den Berg, Ed; Schooten, Gert; van Dijk, Leo
2007-01-01
The combination of mathematical and conceptual difficulties makes teaching quantum physics at secondary schools a precarious undertaking. With many of the conceptual difficulties being unavoidable, simplifying the mathematics becomes top priority. The particle/wave-in-a-box provides a teaching model which includes many aspects of serious …
SUSCEPTIBILITY OF A GULF OF MEXICO ESTUARY TO HYPOXIA: AN ANALYSIS USING BOX MODELS
The extent of hypoxia and the physical factors affecting development and maintenance of hypoxia were examined for Pensacola Bay, Florida (USA) by conducting monthly water quality surveys for 3 years and by constructing salt-and-water balance box models using the resulting data. W...
The Analysis of Organizational Diagnosis on Based Six Box Model in Universities
ERIC Educational Resources Information Center
Hamid, Rahimi; Siadat, Sayyed Ali; Reza, Hoveida; Arash, Shahin; Ali, Nasrabadi Hasan; Azizollah, Arbabisarjou
2011-01-01
Purpose: The analysis of organizational diagnosis on based six box model at universities. Research method: Research method was descriptive-survey. Statistical population consisted of 1544 faculty members of universities which through random strafed sampling method 218 persons were chosen as the sample. Research Instrument were organizational…
Prestressing force monitoring method for a box girder through distributed long-gauge FBG sensors
NASA Astrophysics Data System (ADS)
Chen, Shi-Zhi; Wu, Gang; Xing, Tuo; Feng, De-Cheng
2018-01-01
Monitoring prestressing forces is essential for prestressed concrete box girder bridges. However, the current monitoring methods used for prestressing force were not applicable for a box girder neither because of the sensor’s setup being constrained or shear lag effect not being properly considered. Through combining with the previous analysis model of shear lag effect in the box girder, this paper proposed an indirect monitoring method for on-site determination of prestressing force in a concrete box girder utilizing the distributed long-gauge fiber Bragg grating sensor. The performance of this method was initially verified using numerical simulation for three different distribution forms of prestressing tendons. Then, an experiment involving two concrete box girders was conducted to study the feasibility of this method under different prestressing levels preliminarily. The results of both numerical simulation and lab experiment validated this method’s practicability in a box girder.
Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Zhang, Bing; Chen, Hua
2016-04-01
The ~80 amino acid A box DNA-binding domain of high mobility group box 1 (HMGB1) protein antagonizes proinflammatory responses during myocardial ischemia reperfusion (I/R) injury. The exact role of microRNA-21 (miR-21) is unknown, but its altered levels are evident in I/R injury. This study examined the roles of HMGB1 A-box and miR-21 in rat myocardial I/R injury model. Sixty Sprague-Dawley rats were randomly divided into six equal groups: (1) Sham; (2) I/R; (3) Ischemic postconditioning (IPost); (4) AntagomiR-21 post-treatment; (5) Recombinant HMGB1 A-box pretreatment; and (6) Recombinant HMGB1 A-box + antagomiR-21 post-treatment. Hemodynamic indexes, arrhythmia scores, ischemic area and infarct size, myocardial injury, and related parameters were studied. Expression of miR-21 was detected by real-time quantitative polymerase chain reaction (qRT-PCR) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to quantify apoptosis. Left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), maximal rate of pressure rise (+dp/dtmax), and decline (-dp/dtmax) showed clear reduction upon treatment with recombinant HMGB1 A-box. Arrhythmia was relieved and infarct area decreased in the group pretreated with recombinant HMGB1 A-box, compared with other groups. Circulating lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels increased in response to irreversible cellular injury, while creatine kinase MB isoenzymes (CK-MB) and superoxide dismutase (SOD) activities were reduced in the I/R group, which was reversed following recombinant HMGB1 A-box treatment. Interestingly, pretreatment with recombinant HMGB1 A-box showed the most dramatic reductions in miR-21 levels, compared with other groups. Significantly reduced apoptotic index (AI) was seen in recombinant HMGB1 A-box pretreatment group and recombinant HMGB1 A-box + antagomiR-21 post-treatment group, with the former showing a more dramatic lowering in AI than the latter. Bax, caspase-8, and CHOP showed reduced expression, and Bcl-2 and p-AKT levels were upregulated in recombinant HMGB1 A-box pretreatment group. Thus, recombinant HMGB1 A-box treatment protects against I/R injury and the mechanisms may involve inhibition of miR-21 expression.
Antidepressant treatment and suicide attempts and self-inflicted injury in children and adolescents.
Gibbons, Robert D; Coca Perraillon, Marcelo; Hur, Kwan; Conti, Rena M; Valuck, Robert J; Brent, David A
2015-02-01
In the 2004, FDA placed a black box warning on antidepressants for risk of suicidal thoughts and behavior in children and adolescents. The purpose of this paper is to examine the risk of suicide attempt and self-inflicted injury in depressed children ages 5-17 treated with antidepressants in two large observational datasets taking account time-varying confounding. We analyzed two large US medical claims databases (MarketScan and LifeLink) containing 221,028 youth (ages 5-17) with new episodes of depression, with and without antidepressant treatment during the period of 2004-2009. Subjects were followed for up to 180 days. Marginal structural models were used to adjust for time-dependent confounding. For both datasets, significantly increased risk of suicide attempts and self-inflicted injury were seen during antidepressant treatment episodes in the unadjusted and simple covariate adjusted analyses. Marginal structural models revealed that the majority of the association is produced by dynamic confounding in the treatment selection process; estimated odds ratios were close to 1.0 consistent with the unadjusted and simple covariate adjusted association being a product of chance alone. Our analysis suggests antidepressant treatment selection is a product of both static and dynamic patient characteristics. Lack of adjustment for treatment selection based on dynamic patient characteristics can lead to the appearance of an association between antidepressant treatment and suicide attempts and self-inflicted injury among youths in unadjusted and simple covariate adjusted analyses. Marginal structural models can be used to adjust for static and dynamic treatment selection processes such as that likely encountered in observational studies of associations between antidepressant treatment selection, suicide and related behaviors in youth. Copyright © 2014 John Wiley & Sons, Ltd.
Diagramming Scientific Papers - A New Idea for Understanding/Teaching/Sharing Science
NASA Astrophysics Data System (ADS)
Saltus, R. W.; Fedi, M.
2014-12-01
How do we best communicate scientific results? As the number of scientists and scientific papers steadily increases, one of the greatest challenges is effective and efficient sharing of science. The official repository of scientific knowledge is the peer-reviewed journal archive. However, this primary knowledge can be difficult to access and understand by anyone but a relevant specialist. We propose some new ideas for diagramming the content and significance of scientific papers using a simple and intuitive graphical approach. We propose a visual mapping that highlights four fundamental aspects of most scientific papers: Data, Methods/Models, Results/Ideas, and Implications/Importance. Each of these aspects is illustrated within boxed fields which contain one or more labeled elements positioned to reflect novelty (aka originality) and impact relative to the vertical and horizontal axes. The relative position of the boxed fields themselves indicates the relative significance of data, methods, ideas, or implications to the paper. Optional lines between boxed elements indicate the flow and dependence of data/methods/ideas within the paper. As with any graphical depiction, you need to see it to best appreciate it -- this written abstract is only meant as an introduction to the idea.We anticipate that diagramming may prove useful in both communication of scientific ideas among scientists as well as in education and outreach. For example, professors could assign diagramming of papers as a way to help students organize their thoughts about the structure and impact of scientific articles. Students could compare and defend their diagrams as a way to facilitate discussion/debate. Authors could diagram their own work as a way to efficiently summarize the importance and significance of their work. We also imagine that (in the future) automatic diagramming might be used to help summarize or facilitate the discovery of archived work.
Issues around Creating a Reusable Learning Object to Support Statistics Teaching
ERIC Educational Resources Information Center
Gilchrist, Mollie
2007-01-01
Although our health professional students have some experience of simple charts, such as pie and bar, and some intuition of histograms, they do not appear to have much knowledge or understanding about box and whisker plots and their relation to the data they are describing or compared to histograms. The boxplot is a versatile charting tool, useful…
Night and Day--It's Obvious How It Works, Isn't It?
ERIC Educational Resources Information Center
Kibble, Bob
2011-01-01
How many children entering a classroom already have a day/night explanation that employs a turning Earth? This question ought to be of interest to most teachers, along with questions such as "What are children thinking after one's teaching of this topic?" The author has used a simple diagram and tick-box response sheet to help him assess the range…
ISIS and Social Media: The Combatant Commander’s Guide to Countering ISIS’s Social Media Campaign
2015-06-07
temptation to use mirror imaging, or to try to fit ISIS into a simple, pre-determined ideological box. This is especially important when trying to design...fighters play an important role as willing suicide bombers and they also portray the image that the Islamic State stands as a transnational force of
ERIC Educational Resources Information Center
Rule, Audrey C.; Baldwin, Samantha; Schell, Robert
2009-01-01
This repeated measures study examined second graders' (n = 21) performance in creating inventions related to animal adaptations for simple products under two conditions that alternated each week for a six-week period. In the analogy condition, students used form and function analogy object boxes to learn about animal adaptations, applying these…
Booth, Jonathan; Vazquez, Saulo; Martinez-Nunez, Emilio; Marks, Alison; Rodgers, Jeff; Glowacki, David R; Shalashilin, Dmitrii V
2014-08-06
In this paper, we briefly review the boxed molecular dynamics (BXD) method which allows analysis of thermodynamics and kinetics in complicated molecular systems. BXD is a multiscale technique, in which thermodynamics and long-time dynamics are recovered from a set of short-time simulations. In this paper, we review previous applications of BXD to peptide cyclization, solution phase organic reaction dynamics and desorption of ions from self-assembled monolayers (SAMs). We also report preliminary results of simulations of diamond etching mechanisms and protein unfolding in atomic force microscopy experiments. The latter demonstrate a correlation between the protein's structural motifs and its potential of mean force. Simulations of these processes by standard molecular dynamics (MD) is typically not possible, because the experimental time scales are very long. However, BXD yields well-converged and physically meaningful results. Compared with other methods of accelerated MD, our BXD approach is very simple; it is easy to implement, and it provides an integrated approach for simultaneously obtaining both thermodynamics and kinetics. It also provides a strategy for obtaining statistically meaningful dynamical results in regions of configuration space that standard MD approaches would visit only very rarely.
Kinematics and abundances of K giants in the nuclear bulge of the Galaxy
NASA Astrophysics Data System (ADS)
Rich, R. Michael
1990-10-01
Radial velocities have been determined for 53 K giants in Baade's window, which belong to the nuclear bulge population and have abundances derived from low resolution spectra. Additional radial velocities for an overlapping sample of 71 bulge K giants show the same dependence of velocity dispersion on abundance; in both samples, the lower velocity dispersion of the metal-rich giants is found to be significant at a level above 90 percent. Extant data support the hypothesis that both M giants and IRAS bulge sources follow steep density laws similar to that which has been predicted for the metal-rick K giants. The abundance distribution of 88 K giants in Baade's window is noted to be notably well fitted by the simple, 'closed box' model of chemical evolution.
Direct writing of metal nanostructures: lithographic tools for nanoplasmonics research.
Leggett, Graham J
2011-03-22
Continued progress in the fast-growing field of nanoplasmonics will require the development of new methods for the fabrication of metal nanostructures. Optical lithography provides a continually expanding tool box. Two-photon processes, as demonstrated by Shukla et al. (doi: 10.1021/nn103015g), enable the fabrication of gold nanostructures encapsulated in dielectric material in a simple, direct process and offer the prospect of three-dimensional fabrication. At higher resolution, scanning probe techniques enable nanoparticle particle placement by localized oxidation, and near-field sintering of nanoparticulate films enables direct writing of nanowires. Direct laser "printing" of single gold nanoparticles offers a remarkable capability for the controlled fabrication of model structures for fundamental studies, particle-by-particle. Optical methods continue to provide a powerful support for research into metamaterials.
Smocks and Jocks outside the Box: The Paradigmatic Evolution of Sport and Exercise Psychology
ERIC Educational Resources Information Center
Vealey, Robin S.
2006-01-01
The objective of this article is to describe the historical development of sport and exercise psychology, with a particular emphasis on the construction and evolution of the "box" through history. The box represents the dominant paradigm that serves as the model for research and application as it evolves through successive historical eras (Kuhn,…
ERIC Educational Resources Information Center
Chiarini, Marc A.
2010-01-01
Traditional methods for system performance analysis have long relied on a mix of queuing theory, detailed system knowledge, intuition, and trial-and-error. These approaches often require construction of incomplete gray-box models that can be costly to build and difficult to scale or generalize. In this thesis, we present a black-box analysis…
Research of intelligent bus coin box
NASA Astrophysics Data System (ADS)
Xin, Shihao
2017-03-01
In the energy-saving emission reduction of the social context, in response to low-carbon travel, buses become the majority of people choose. We have designed this sorting machine for the present situation that the bus company has received a large amount of mixed zero coins and employed a large amount of manpower to sort out and lower the efficiency. Its function is to separate the coins and notes mixed, and the coins sort storage, the display shows the value of the received coins, so that the whole mechanized inventory classification, reduce the cost of clearing up and improve the efficiency of zero cash recycling, use Simple mechanical principles for classification, to be efficient, accurate and practical. Really meet the current city bus companies, commerce and banking and other industries in order to zero notes, zero coins in the actual demand. The size and specification of this machine are designed according to the size of the bus coin box. It is suitable for almost all buses. It can be installed in the coin box directly, real-time sorting and real-time counting. The difficulty of clearing change.
Lo, Kenneth
2011-01-01
Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components. PMID:22125375
Lo, Kenneth; Gottardo, Raphael
2012-01-01
Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components.
Evolution of the F-Box Gene Family in Euarchontoglires: Gene Number Variation and Selection Patterns
Wang, Ailan; Fu, Mingchuan; Jiang, Xiaoqian; Mao, Yuanhui; Li, Xiangchen; Tao, Shiheng
2014-01-01
F-box proteins are substrate adaptors used by the SKP1–CUL1–F-box protein (SCF) complex, a type of E3 ubiquitin ligase complex in the ubiquitin proteasome system (UPS). SCF-mediated ubiquitylation regulates proteolysis of hundreds of cellular proteins involved in key signaling and disease systems. However, our knowledge of the evolution of the F-box gene family in Euarchontoglires is limited. In the present study, 559 F-box genes and nine related pseudogenes were identified in eight genomes. Lineage-specific gene gain and loss events occurred during the evolution of Euarchontoglires, resulting in varying F-box gene numbers ranging from 66 to 81 among the eight species. Both tandem duplication and retrotransposition were found to have contributed to the increase of F-box gene number, whereas mutation in the F-box domain was the main mechanism responsible for reduction in the number of F-box genes, resulting in a balance of expansion and contraction in the F-box gene family. Thus, the Euarchontoglire F-box gene family evolved under a birth-and-death model. Signatures of positive selection were detected in substrate-recognizing domains of multiple F-box proteins, and adaptive changes played a role in evolution of the Euarchontoglire F-box gene family. In addition, single nucleotide polymorphism (SNP) distributions were found to be highly non-random among different regions of F-box genes in 1092 human individuals, with domain regions having a significantly lower number of non-synonymous SNPs. PMID:24727786
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Juliane
MISO is an optimization framework for solving computationally expensive mixed-integer, black-box, global optimization problems. MISO uses surrogate models to approximate the computationally expensive objective function. Hence, derivative information, which is generally unavailable for black-box simulation objective functions, is not needed. MISO allows the user to choose the initial experimental design strategy, the type of surrogate model, and the sampling strategy.
Why the Particle-in-a-Box Model Works Well for Cyanine Dyes but Not for Conjugated Polyenes
ERIC Educational Resources Information Center
Autschbach, Jochen
2007-01-01
We investigate why the particle-in-a-box (PB) model works well for calculating the absorption wavelengths of cyanine dyes and why it does not work for conjugated polyenes. The PB model is immensely useful in the classroom, but owing to its highly approximate character there is little reason to expect that it can yield quantitative agreement with…
1996-09-16
approaches are: • Adaptive filtering • Single exponential smoothing (Brown, 1963) * The Box-Jenkins methodology ( ARIMA modeling ) - Linear exponential... ARIMA • Linear exponential smoothing: Holt’s two parameter modeling (Box and Jenkins, 1976). However, there are two approach (Holt et al., 1960) very...crucial disadvantages: The most important point in - Winters’ three parameter method (Winters, 1960) ARIMA modeling is model identification. As shown in
Loha, Eskindir; Lindtjørn, Bernt
2010-06-16
Malaria transmission is complex and is believed to be associated with local climate changes. However, simple attempts to extrapolate malaria incidence rates from averaged regional meteorological conditions have proven unsuccessful. Therefore, the objective of this study was to determine if variations in specific meteorological factors are able to consistently predict P. falciparum malaria incidence at different locations in south Ethiopia. Retrospective data from 42 locations were collected including P. falciparum malaria incidence for the period of 1998-2007 and meteorological variables such as monthly rainfall (all locations), temperature (17 locations), and relative humidity (three locations). Thirty-five data sets qualified for the analysis. Ljung-Box Q statistics was used for model diagnosis, and R squared or stationary R squared was taken as goodness of fit measure. Time series modelling was carried out using Transfer Function (TF) models and univariate auto-regressive integrated moving average (ARIMA) when there was no significant predictor meteorological variable. Of 35 models, five were discarded because of the significant value of Ljung-Box Q statistics. Past P. falciparum malaria incidence alone (17 locations) or when coupled with meteorological variables (four locations) was able to predict P. falciparum malaria incidence within statistical significance. All seasonal AIRMA orders were from locations at altitudes above 1742 m. Monthly rainfall, minimum and maximum temperature was able to predict incidence at four, five and two locations, respectively. In contrast, relative humidity was not able to predict P. falciparum malaria incidence. The R squared values for the models ranged from 16% to 97%, with the exception of one model which had a negative value. Models with seasonal ARIMA orders were found to perform better. However, the models for predicting P. falciparum malaria incidence varied from location to location, and among lagged effects, data transformation forms, ARIMA and TF orders. This study describes P. falciparum malaria incidence models linked with meteorological data. Variability in the models was principally attributed to regional differences, and a single model was not found that fits all locations. Past P. falciparum malaria incidence appeared to be a superior predictor than meteorology. Future efforts in malaria modelling may benefit from inclusion of non-meteorological factors.
SH c realization of minimal model CFT: triality, poset and Burge condition
NASA Astrophysics Data System (ADS)
Fukuda, M.; Nakamura, S.; Matsuo, Y.; Zhu, R.-D.
2015-11-01
Recently an orthogonal basis of {{W}}_N -algebra (AFLT basis) labeled by N-tuple Young diagrams was found in the context of 4D/2D duality. Recursion relations among the basis are summarized in the form of an algebra SH c which is universal for any N. We show that it has an {{S}}_3 automorphism which is referred to as triality. We study the level-rank duality between minimal models, which is a special example of the automorphism. It is shown that the nonvanishing states in both systems are described by N or M Young diagrams with the rows of boxes appropriately shuffled. The reshuffling of rows implies there exists partial ordering of the set which labels them. For the simplest example, one can compute the partition functions for the partially ordered set (poset) explicitly, which reproduces the Rogers-Ramanujan identities. We also study the description of minimal models by SH c . Simple analysis reproduces some known properties of minimal models, the structure of singular vectors and the N-Burge condition in the Hilbert space.
Ecology and Economics of Using Native Managed Bees for Almond Pollination.
Koh, Insu; Lonsdorf, Eric V; Artz, Derek R; Pitts-Singer, Theresa L; Ricketts, Taylor H
2018-02-09
Native managed bees can improve crop pollination, but a general framework for evaluating the associated economic costs and benefits has not been developed. We conducted a cost-benefit analysis to assess how managing blue orchard bees (Osmia lignaria Say [Hymenoptera: Megachildae]) alongside honey bees (Apis mellifera Linnaeus [Hymenoptera: Apidae]) can affect profits for almond growers in California. Specifically, we studied how adjusting three strategies can influence profits: (1) number of released O. lignaria bees, (2) density of artificial nest boxes, and (3) number of nest cavities (tubes) per box. We developed an ecological model for the effects of pollinator activity on almond yields, validated the model with published data, and then estimated changes in profits for different management strategies. Our model shows that almond yields increase with O. lignaria foraging density, even where honey bees are already in use. Our cost-benefit analysis shows that profit ranged from -US$1,800 to US$2,800/acre given different combinations of the three strategies. Adding nest boxes had the greatest effect; we predict an increase in profit between low and high nest box density strategies (2.5 and 10 boxes/acre). In fact, the number of released bees and the availability of nest tubes had relatively small effects in the high nest box density strategies. This suggests that growers could improve profits by simply adding more nest boxes with moderate number of tubes in each. Our approach can support grower decisions regarding integrated crop pollination and highlight the importance of a comprehensive ecological economic framework for assessing these decisions. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Barker, Elizabeth I; Ashton, Neil W
2016-03-01
The Physcomitrella pseudochromosomal genome assembly revealed previously invisible synteny enabling realisation of the full potential of shared synteny as a tool for probing evolution of this plant's MADS-box gene family. Assembly of the sequenced genome of Physcomitrella patens into 27 mega-scaffolds (pseudochromosomes) has confirmed the major predictions of our earlier model of expansion of the MADS-box gene family in the Physcomitrella lineage. Additionally, microsynteny has been conserved in the immediate vicinity of some recent duplicates of MADS-box genes. However, comparison of non-syntenic MIKC MADS-box genes and neighbouring genes indicates that chromosomal rearrangements and/or sequence degeneration have destroyed shared synteny over longer distances (macrosynteny) around MADS-box genes despite subsets comprising two or three MIKC genes having remained syntenic. In contrast, half of the type I MADS-box genes have been transposed creating new syntenic relations with MIKC genes. This implies that conservation of ancient ancestral synteny of MIKC genes and of more recently acquired synteny of type I and MIKC genes may be selectively advantageous. Our revised model predicts the birth rate of MIKC genes in Physcomitrella is higher than that of type I genes. However, this difference is attributable to an early tandem duplication and an early segmental duplication of MIKC genes prior to the two polyploidisations that account for most of the expansion of the MADS-box gene family in Physcomitrella. Furthermore, this early segmental duplication spawned two chromosomal lineages: one with a MIKC (C) gene, belonging to the PPM2 clade, in close proximity to one or a pair of MIKC* genes and another with a MIKC (C) gene, belonging to the PpMADS-S clade, characterised by greater separation from syntenic MIKC* genes. Our model has evolutionary implications for the Physcomitrella karyotype.
Tan, Hua-Wei; Song, Xiao-Ming; Duan, Wei-Ke; Wang, Yan; Hou, Xi-Lin
2015-11-01
The SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box gene family contains highly conserved plant-specific transcription factors that play an important role in plant development, especially in flowering. Chinese cabbage (Brassica rapa subsp. pekinensis) is a leafy vegetable grown worldwide and is used as a model crop for research in genome duplication. The present study aimed to characterize the SBP-box transcription factor genes in Chinese cabbage. Twenty-nine SBP-box genes were identified in the Chinese cabbage genome and classified into six groups. We identified 23 orthologous and 5 co-orthologous SBP-box gene pairs between Chinese cabbage and Arabidopsis. An interaction network among these genes was constructed. Sixteen SBP-box genes were expressed more abundantly in flowers than in other tissues, suggesting their involvement in flowering. We show that the MiR156/157 family members may regulate the coding regions or 3'-UTR regions of Chinese cabbage SBP-box genes. As SBP-box genes were found to potentially participate in some plant development pathways, quantitative real-time PCR analysis was performed and showed that Chinese cabbage SBP-box genes were also sensitive to the exogenous hormones methyl jasmonic acid and salicylic acid. The SBP-box genes have undergone gene duplication and loss, evolving a more refined regulation for diverse stimulation in plant tissues. Our comprehensive genome-wide analysis provides insights into the SBP-box gene family of Chinese cabbage.
NASA Astrophysics Data System (ADS)
Yoshino, Akira; Yamauchi, Chisato
2015-02-01
We investigate box/peanut and bar structures in image data of edge-on and face-on nearby galaxies taken from the Sloan Digital Sky Survey (SDSS) to present catalogues containing the surface brightness parameters and the morphology classification. About 1700 edge-on galaxies and 2600 face-on galaxies are selected from SDSS DR7 in the g, r and i-bands. The images of each galaxy are fitted with the model of two-dimensional surface brightness of the Sérsic bulge and exponential disk. After removing some irregular data, the box/peanut, bar and other structures are easily distinguished by eye using residual (observed minus model) images. We find 292 box/peanut structures in the 1329 edge-on samples and 630 bar structures in 1890 face-on samples in the i-band, after removing some irregular data. The fraction of box/peanut galaxies is about 22 per cent against the edge-on samples, and that of bar galaxies is about 33 per cent (about 50 per cent if 629 elliptical galaxies are removed) against the face-on samples. Furthermore the strengths of the box/peanuts and bars are evaluated as strong, standard or weak. We find that the strength increases slightly with increasing B/T (bulge-to-total flux ratio), and that the fraction of box/peanuts is generally about a half of that of bars, irrespective of the strength and B/T. Our result supports the idea that a box/peanut is a bar seen edge-on.
NASA Astrophysics Data System (ADS)
Catharine, D.; Strong, C.; Lin, J. C.; Cherkaev, E.; Mitchell, L.; Stephens, B. B.; Ehleringer, J. R.
2016-12-01
The rising level of atmospheric carbon dioxide (CO2), driven by anthropogenic emissions, is the leading cause of enhanced radiative forcing. Increasing societal interest in reducing anthropogenic greenhouse gas emissions call for a computationally efficient method of evaluating anthropogenic CO2 source emissions, particularly if future mitigation actions are to be developed. A multiple-box atmospheric transport model was constructed in conjunction with a pre-existing fossil fuel CO2 emission inventory to estimate near-surface CO2 mole fractions and the associated anthropogenic CO2 emissions in the Salt Lake Valley (SLV) of northern Utah, a metropolitan area with a population of 1 million. A 15-year multi-site dataset of observed CO2 mole fractions is used in conjunction with the multiple-box model to develop an efficient method to constrain anthropogenic emissions through inverse modeling. Preliminary results of the multiple-box model CO2 inversion indicate that the pre-existing anthropogenic emission inventory may over-estimate CO2 emissions in the SLV. In addition, inversion results displaying a complex spatial and temporal distribution of urban emissions, including the effects of residential development and vehicular traffic will be discussed.
Modeling Hidden Circuits: An Authentic Research Experience in One Lab Period
ERIC Educational Resources Information Center
Moore, J. Christopher; Rubbo, Louis J.
2016-01-01
Two wires exit a black box that has three exposed light bulbs connected together in an unknown configuration. The task for students is to determine the circuit configuration without opening the box. In the activity described in this paper, we navigate students through the process of making models, developing and conducting experiments that can…
Analysis of Time-Series Quasi-Experiments. Final Report.
ERIC Educational Resources Information Center
Glass, Gene V.; Maguire, Thomas O.
The objective of this project was to investigate the adequacy of statistical models developed by G. E. P. Box and G. C. Tiao for the analysis of time-series quasi-experiments: (1) The basic model developed by Box and Tiao is applied to actual time-series experiment data from two separate experiments, one in psychology and one in educational…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qing; Shi, Chaowei; Yu, Lu
Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in amore » defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.« less
A Hair & a Fungus: Showing Kids the Size of a Microbe
ERIC Educational Resources Information Center
Richter, Dana L.
2013-01-01
A simple method is presented to show kids the size of a microbe--a fungus hypha--compared to a human hair. Common household items are used to make sterile medium on a stove or hotplate, which is dispensed in the cells of a weekly plastic pill box. Mold fungi can be easily and safely grown on the medium from the classroom environment. A microscope…
Too Much Stuff?: Simple Organizing Solutions for Even the "Messiest" Classrooms
ERIC Educational Resources Information Center
Trierweiler, Hannah
2006-01-01
You have got boxes filled with glue sticks, 32 calculators, apple juice, Band-Aids and that gallon of blue glitter you know will come in handy someday. It's all stuff you need, but when you are getting ready for the new year, you just wish you could hire a professional organizer to take care of it all for you. Donna Smallin is an organizational…
Navy Additive Manufacturing: Adding Parts, Subtracting Steps
2015-06-01
complex weapon systems within designed specifications requires extensive routine and preventative maintenance as well as expeditious repairs when...failures occur. These repairs are sometimes complex and often unpredictable in both peace and wartime environments. To keep these weapon systems...basis. The solution is not a simple one, but rather one of high complexity that cannot just be adopted from a big-box store such as Walmart, Target
NASA Astrophysics Data System (ADS)
Lea, J.
2017-12-01
The quantification of glacier change is a key variable within glacier monitoring, with the method used potentially being crucial to ensuring that data can be appropriately compared with environmental data. The topic and timescales of study (e.g. land/marine terminating environments; sub-annual/decadal/centennial/millennial timescales) often mean that different methods are more suitable for different problems. However, depending on the GIS/coding expertise of the user, some methods can potentially be time consuming to undertake, making large-scale studies problematic. In addition, examples exist where different users have nominally applied the same methods in different studies, though with minor methodological inconsistencies in their approach. In turn, this will have implications for data homogeneity where regional/global datasets may be constructed. Here, I present a simple toolbox scripted in a Matlab® environment that requires only glacier margin and glacier centreline data to quantify glacier length, glacier change between observations, rate of change, in addition to other metrics. The toolbox includes the option to apply the established centreline or curvilinear box methods, or a new method: the variable box method - designed for tidewater margins where box width is defined as the total width of the individual terminus observation. The toolbox is extremely flexible, and has the option to be applied as either Matlab® functions within user scripts, or via a graphical user interface (GUI) for those unfamiliar with a coding environment. In both instances, there is potential to apply the methods quickly to large datasets (100s-1000s of glaciers, with potentially similar numbers of observations each), thus ensuring large scale methodological consistency (and therefore data homogeneity) and allowing regional/global scale analyses to be achievable for those with limited GIS/coding experience. The toolbox has been evaluated against idealised scenarios demonstrating its accuracy, while feedback from undergraduate students who have trialled the toolbox is that it is intuitive and simple to use. When released, the toolbox will be free and open source allowing users to potentially modify, improve and expand upon the current version.
DEAD-box Helicases as Integrators of RNA, Nucleotide and Protein Binding
Putnam, Andrea A.
2013-01-01
DEAD-box helicases perform diverse cellular functions in virtually all steps of RNA metabolism from Bacteria to Humans. Although DEAD-box helicases share a highly conserved core domain, the enzymes catalyze a wide range of biochemical reactions. In addition to the well established RNA unwinding and corresponding ATPase activities, DEAD-box helicases promote duplex formation and displace proteins from RNA. They can also function as assembly platforms for larger ribonucleoprotein complexes, and as metabolite sensors. This review aims to provide a perspective on the diverse biochemical features of DEAD-box helicases and connections to structural information. We discuss these data in the context of a model that views the enzymes as integrators of RNA, nucleotide, and protein binding. PMID:23416748
NASA Astrophysics Data System (ADS)
Vasconcelos, Francisco; Costa, Alexandre; Gandu, Adilson; Sales, Domingo; Araújo, Luiz
2013-04-01
Regional Climate Simulations were performed with RAMS6.0 to evaluate possible changes in the behaviour of the rainy season over the Amazon region, within the CORDEX domain of the Inter-tropical Americas. We forced the regional model using data from one of the CMIP5 participants (HadGEM2-ES), both for the Historical Experiment (1980-2005) and along the XXI century under RCP 8.5 (heavy-emission scenario). Regarding projections, we analyzed results for three time slices, short (2014-2035), middle (2044-2065) and long term (2078-2099), according to the following steps. First, the spatially averaged precipitation in non-overlapping pentads over 7 sub-regions over northern South America was calculated ("boxes" 1 to 7). Then, we calculated the climatological annual cycle for each one of them. Finally, dates of the onset and demise of the rainy season are found, validating the model results against GPCP observations and checking for projected changes. In general, in the Historical Experiment, the model delays the onset of the rainy season over the northern areas and anticipates it over most inland sub-regions. Over eastern Amazon, the regional model represents it properly, besides a delay in the demise of about one month. In short-term projections, there is a slight increase in precipitation and a modest anticipation of the rainy season onset in the coastal areas. Projected changes in the annual cycle of most sub-regions are relatively modest for the short-term and mid-term periods, but may become very significant by the end of the century. Over Colombia (Box 1), which has a bimodal precipitation annual cycle, the model projects a late century increase in the first precipitation peak. Little change is projected for the two boxes roughly covering Venezuela, the Guianas and the northernmost portion of northern Brazilian states (Boxes 2 and 3). The box covering northern Peru and Ecuador (Box 4) shows increased March-April precipitation, but with no significant changes in the phase of the annual cycle. The most important changes are expected over the three boxes corresponding to Brazilian Amazon. Over the westernmost box of them (Box 5), enhanced precipitation is projected towards the end of the century with a marked development of a bimodal annual distribution in the simulation, with well-defined rainfall peaks in November-January and March-May. Over Box 6 (Eastern Amazon) the most dramatic change is expected, with very large reduction of the springtime precipitation and a shift of about a 5-7 pentads in the onset of the rainy season over that area (in contrast, the later portion and the demise of the rainy season remain essentially unchanged). Finally, over Box 7, which covers the transition between the Amazon rainforest and the semiarid Northeast Brazil, the major projected features are a general increase in the wet season precipitation accompanied by a reduction of the dry season rainfall. Onset and demise dates of the rainy season are expected to remain unchanged over that area.
Vibration and noise characteristics of an elevated box girder paved with different track structures
NASA Astrophysics Data System (ADS)
Li, Xiaozhen; Liang, Lin; Wang, Dangxiong
2018-07-01
The vibration and noise of elevated concrete box girders (ECBGs) are now among the most concerned issues in the field of urban rail transit (URT) systems. The track structure, belonging to critical load-transfer components, directly affects the characteristics of loading transmission into bridge, as well as the noise radiation from such system, which further determines the reduction of vibration and noise in ECBGs significantly. In order to investigate the influence of different track structures on the vibration and structure-borne noise of ECBGs, a frequency-domain theoretical model of vehicle-track coupled system, taking into account the effect of multiple wheels, is firstly established in the present work. The analysis of track structures focuses on embedded sleepers, trapezoidal sleepers, and steel-spring floating slabs (SSFS). Next, a vibration and noise field test was performed, with regard to a 30 m simple supported ECBG (with the embedded-sleeper track structure) of an URT system. Based on the tested results, two numerical models, involving a finite element model for the vibration analysis, as well as a statistical energy analysis (SEA) model for the prediction of the noise radiation, are established and validated. The results of the numerical simulations and the field tests are well matched, which offers opportunities to predict the vibration and structure-borne noise of ECBGs by the proposed modelling methodology. From the comparison between the different types of track structures, the spatial distribution and reduction effect of vibration and noise are lastly studied. The force applied on ECBG is substantially determined by both the wheel-rail force (external factor) and the transmission rate of track structure (internal factor). The SSFS track is the most effective for vibration and noise reduction of ECBGs, followed in descending order by the trapezoidal-sleeper and embedded-sleeper tracks. The above result provides a theoretical basis for the vibration and noise reduction design of urban rail transit systems.
Chiaverano, Luciano M; Holland, Brenden S; Crow, Gerald L; Blair, Landy; Yanagihara, Angel A
2013-01-01
The box jellyfish Alatina moseri forms monthly aggregations at Waikiki Beach 8-12 days after each full moon, posing a recurrent hazard to swimmers due to painful stings. We present an analysis of long-term (14 years: Jan 1998- Dec 2011) changes in box jellyfish abundance at Waikiki Beach. We tested the relationship of beach counts to climate and biogeochemical variables over time in the North Pacific Sub-tropical Gyre (NPSG). Generalized Additive Models (GAM), Change-Point Analysis (CPA), and General Regression Models (GRM) were used to characterize patterns in box jellyfish arrival at Waikiki Beach 8-12 days following 173 consecutive full moons. Variation in box jellyfish abundance lacked seasonality, but exhibited dramatic differences among months and among years, and followed an oscillating pattern with significant periods of increase (1998-2001; 2006-2011) and decrease (2001-2006). Of three climatic and 12 biogeochemical variables examined, box jellyfish showed a strong, positive relationship with primary production, >2 mm zooplankton biomass, and the North Pacific Gyre Oscillation (NPGO) index. It is clear that that the moon cycle plays a key role in synchronizing timing of the arrival of Alatina moseri medusae to shore. We propose that bottom-up processes, likely initiated by inter-annual regional climatic fluctuations influence primary production, secondary production, and ultimately regulate food availability, and are therefore important in controlling the inter-annual changes in box jellyfish abundance observed at Waikiki Beach.
Chiaverano, Luciano M.; Holland, Brenden S.; Crow, Gerald L.; Blair, Landy; Yanagihara, Angel A.
2013-01-01
The box jellyfish Alatina moseri forms monthly aggregations at Waikiki Beach 8–12 days after each full moon, posing a recurrent hazard to swimmers due to painful stings. We present an analysis of long-term (14 years: Jan 1998– Dec 2011) changes in box jellyfish abundance at Waikiki Beach. We tested the relationship of beach counts to climate and biogeochemical variables over time in the North Pacific Sub-tropical Gyre (NPSG). Generalized Additive Models (GAM), Change-Point Analysis (CPA), and General Regression Models (GRM) were used to characterize patterns in box jellyfish arrival at Waikiki Beach 8–12 days following 173 consecutive full moons. Variation in box jellyfish abundance lacked seasonality, but exhibited dramatic differences among months and among years, and followed an oscillating pattern with significant periods of increase (1998–2001; 2006–2011) and decrease (2001–2006). Of three climatic and 12 biogeochemical variables examined, box jellyfish showed a strong, positive relationship with primary production, >2 mm zooplankton biomass, and the North Pacific Gyre Oscillation (NPGO) index. It is clear that that the moon cycle plays a key role in synchronizing timing of the arrival of Alatina moseri medusae to shore. We propose that bottom-up processes, likely initiated by inter-annual regional climatic fluctuations influence primary production, secondary production, and ultimately regulate food availability, and are therefore important in controlling the inter-annual changes in box jellyfish abundance observed at Waikiki Beach. PMID:24194856
Causes of strong ocean heating during glacial periods
NASA Astrophysics Data System (ADS)
Zimov, N.; Zimov, S. A.
2013-12-01
During the last deglaciation period, the strongest climate changes occurred across the North Atlantic regions. Analyses of borehole temperatures from the Greenland ice sheet have yielded air temperature change estimates of 25°C over the deglaciation period (Dahl-Jensen et al. 1998). Such huge temperature changes cannot currently be explained in the frames of modern knowledge about climate. We propose that glacial-interglacial cycles are connected with gradual warming of ocean interior waters over the course of glaciations and quick transport of accumulated heat from ocean to the atmosphere during the deglaciation periods. Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic and filling up the ocean interior with cold and heavy water. However during the glaciation thermal circulation stopped and ocean circulation was driven by 'haline pumps' -Red and Mediterranean seas connected with ocean with only narrow but deep straights acts as evaporative basins, separating ocean water into fresh water which returns to the ocean surface (precipitation) and warm but salty, and therefore heavy, water which flows down to the ocean floor. This haline pump is stratifying the ocean, allowing warmer water locate under the colder water and thus stopping thermal convection in the ocean. Additional ocean interior warming is driven by geothermal heat flux and decomposition of organic rain. To test the hypothesis we present simple ocean box model that describes thermohaline circulation in the World Ocean. The first box is the Red and Mediterranean sea, the second is united high-latitude seas, the third is the ocean surface, and the fourth the ocean interior. The volume of these water masses and straight cross-sections are taken to be close to real values. We have accepted that the exchange of water between boxes is proportional to the difference in water density in these boxes, Sun energy inputs to the ocean and sea surface are taken as constant. Energy income to the interior box from the geothermal heat flux is also taken as constant. Even though energy inputs are taken as constants, the model manages to recreate the glacial-interglacial cycles. In the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior box accumulates heat, while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal convection take place, and the ocean quickly (within 14,600 years) releases the heat. The magnitude and duration of such cycles correspond with magnitudes and durations reconstructed for actual glacial-interglacial cycles. From the proposed mechanism it follows that during the glaciations it is likely that the Arctic Ocean was a big reservoir of isotopically light fresh ice. If in a glacial period, the World Ocean were half filled with warm water from the Red Sea and bioproductivity of the ocean declined because of the slow circulation, then carbon storage within the ocean reservoir would decline by ~2000 Pg (10^15 g) of carbon.
Compensated Box-Jenkins transfer function for short term load forecast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breipohl, A.; Yu, Z.; Lee, F.N.
In the past years, the Box-Jenkins ARIMA method and the Box-Jenkins transfer function method (BJTF) have been among the most commonly used methods for short term electrical load forecasting. But when there exists a sudden change in the temperature, both methods tend to exhibit larger errors in the forecast. This paper demonstrates that the load forecasting errors resulting from either the BJ ARIMA model or the BJTF model are not simply white noise, but rather well-patterned noise, and the patterns in the noise can be used to improve the forecasts. Thus a compensated Box-Jenkins transfer method (CBJTF) is proposed tomore » improve the accuracy of the load prediction. Some case studies have been made which result in about a 14-33% reduction of the root mean square (RMS) errors of the forecasts, depending on the compensation time period as well as the compensation method used.« less
Ikram, Sobia; Durandet, Monique; Vesa, Simona; Pereira, Serge; Guerche, Philippe; Bonhomme, Sandrine
2014-06-01
F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.
Horvath, G; Liszli, P; Kekesi, G; Büki, A; Benedek, G
2017-02-01
The rodent tasks with food rewards are useful methods to evaluate memory functions, including hole-board and corridor tests. The AMBITUS system (a square corridor with several food rewards), as a combination of these tests, was developed for the investigation of a variety of parameters associated with exploration and cognitive performance in rodents. Experiments were performed to characterize these behaviors in healthy rats and a new "schizophrenia-like" rat substrain with impaired learning ability to reveal the reliability in tests related to these functions. A square corridor was constructed with equally spaced sites along each wall (4 inside and 4 outside) resulting in 16 side-boxes for food rewards. Photocells at each box recorded the visits into the side-boxes (as exploratory activity), while the eating parameters were obtained from video records. The animals were exposed to two types of tasks repeatedly in two series: all (16) or only the inside (8) boxes (Task 1 or Task 2, respectively) were baited. Most of the rats acquired Task 1, and their performance improved by repetition, but the new substrain showed decreased exploration and learning capacity. The introduction of Task 2 caused prompt preference of the baited inner side-boxes, and gradually improved working and reference memory during the trials. The manual and automated scoring of the visits into the side-boxes showed significant (r=0.97) correlation. The results proved that healthy animals could perform the simple tasks in the square corridor after a few repetitions. The semi-automated AMBITUS system might be appropriate to detect cognitive flexibility after different manipulations, and it provides immediate, online assessment of exploratory behavior of a large number of animals within a short period of time, and it reduces the possibility of experimenter bias. Copyright © 2016 Elsevier Inc. All rights reserved.
The Visible Signature Modelling and Evaluation ToolBox
2008-12-01
Technology Organisation DSTO–TR–2212 ABSTRACT A new software suite, the Visible Signature ToolBox ( VST ), has been developed to model and evaluate the...visible signatures of maritime platforms. The VST is a collection of commercial, off-the-shelf software and DSTO developed pro- grams and procedures. The...suite. The VST can be utilised to model and assess visible signatures of maritime platforms. A number of examples are presented to demonstrate the
The impact performance of headguards for combat sports.
McIntosh, Andrew S; Patton, Declan A
2015-09-01
To assess the impact energy attenuation performance of a range of headguards for combat sports. Seven headguards worn during combat sport training or competition, including two Association Internationale de Boxe Amateur (AIBA)-approved boxing models, were tested using drop tests. An International Organization for Standardization (ISO) rigid headform was used with a 5.6 kg drop assembly mass. Tests were conducted against a flat rigid anvil both with and without a boxing glove section. The centre forehead and lateral headguard areas were tested. Peak headform acceleration was measured. Tests from a selection of drop heights and repeated tests on the same headguard were conducted. Headguard performance varied by test condition. For the 0.4 m rigid anvil tests, the best model headguard was the thickest producing an average peak headform acceleration over 5 tests of 48 g compared with 456 g for the worst model. The mean peak acceleration for the 0.4, 0.5 and 0.6 frontal and lateral rigid anvil impact tests was between 32% and 40% lower for the Top Ten boxing model compared with the Adidas boxing model. The headguard performance deterioration observed with repeat impact against the flat anvil was reduced for impacts against the glove section. The overall reduction in acceleration for the combination of glove and headguard in comparison to the headguard condition was in the range of 72-93% for 0.6 and 0.8 m drop tests. The impact tests show the benefits of performance testing in identifying differences between headguard models. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
2007-06-01
4.2 Creating the Skybox and Terrain Model .........................................................................7 4.3 Creating New Textures... Skybox and Terrain Model The next step was to build a sky box. Since it already resided in Raven Shield, the creation of the sky box was limited to
Thinking inside the Tool Box: Creativity, Constraints, and the Colossal Portraits of Chuck Close
ERIC Educational Resources Information Center
Stokes, Patricia D.
2014-01-01
This article presents a problem-solving model to examine the often problematic relationship between expertise and creativity. The model has two premises, each the opposite of a common cliché. The first cliché asserts that creativity requires thinking outside-the-box. The first premise argues that experts can only think and problem solve inside the…
NASA Astrophysics Data System (ADS)
Liu, Qiang; Chattopadhyay, Aditi
2000-06-01
Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.
Preliminary Analysis of SiC BWR Channel Box Performance under Normal Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Brian; Singh, Gyanender P.; Gorton, Jacob
SiC-SiC composites are being considered for applications in the core components, including BWR channel box and fuel rod cladding, of light water reactors to improve accident tolerance. In the extreme nuclear reactor environment, core components like the BWR channel box will be exposed to neutron damage and a corrosive environment. To ensure reliable and safe operation of a SiC channel box, it is important to assess its deformation behavior under in-reactor conditions including the expected neutron flux and temperature distributions. In particular, this work has evaluated the effect of non-uniform dimensional changes caused by spatially varying neutron flux and temperaturesmore » on the deformation behavior of the channel box over the course of one cycle of irradiation. These analyses have been performed using the fuel performance modeling code BISON and the commercial finite element analysis code Abaqus, based on fast flux and temperature boundary conditions have been calculated using the neutronics and thermal-hydraulics codes Serpent2 and COBRA-TF, respectively. The dependence of dimensions and thermophysical properties on fast flux and temperature has been incorporated into the material models. These initial results indicate significant bowing of the channel box with a lateral displacement greater than 6.5mm. The channel box bowing behavior is time dependent, and driven by the temperature dependence of the SiC irradiation-induced swelling and the neutron flux/fluence gradients. The bowing behavior gradually recovers during the course of the operating cycle as the swelling of the SiC-SiC material saturates. However, the bending relaxation due to temperature gradients does not fully recover and residual bending remains after the swelling saturates in the entire channel box.« less
Object instance recognition using motion cues and instance specific appearance models
NASA Astrophysics Data System (ADS)
Schumann, Arne
2014-03-01
In this paper we present an object instance retrieval approach. The baseline approach consists of a pool of image features which are computed on the bounding boxes of a query object track and compared to a database of tracks in order to find additional appearances of the same object instance. We improve over this simple baseline approach in multiple ways: 1) we include motion cues to achieve improved robustness to viewpoint and rotation changes, 2) we include operator feedback to iteratively re-rank the resulting retrieval lists and 3) we use operator feedback and location constraints to train classifiers and learn an instance specific appearance model. We use these classifiers to further improve the retrieval results. The approach is evaluated on two popular public datasets for two different applications. We evaluate person re-identification on the CAVIAR shopping mall surveillance dataset and vehicle instance recognition on the VIVID aerial dataset and achieve significant improvements over our baseline results.
Zelovich, Tamar; Hansen, Thorsten; Liu, Zhen-Fei; ...
2017-03-02
A parameter-free version of the recently developed driven Liouville-von Neumann equation [T. Zelovich et al., J. Chem. Theory Comput. 10(8), 2927-2941 (2014)] for electronic transport calculations in molecular junctions is presented. The single driving rate, appearing as a fitting parameter in the original methodology, is replaced by a set of state-dependent broadening factors applied to the different single-particle lead levels. These broadening factors are extracted explicitly from the self-energy of the corresponding electronic reservoir and are fully transferable to any junction incorporating the same lead model. Furthermore, the performance of the method is demonstrated via tight-binding and extended Hückel calculationsmore » of simple junction models. Our analytic considerations and numerical results indicate that the developed methodology constitutes a rigorous framework for the design of "black-box" algorithms to simulate electron dynamics in open quantum systems out of equilibrium.« less
Vortex with fourfold defect lines in a simple model of self-propelled particles
NASA Astrophysics Data System (ADS)
Seyed-Allaei, Hamid; Ejtehadi, Mohammad Reza
2016-03-01
We study the formation of a vortex with fourfold symmetry in a minimal model of self-propelled particles, confined inside a squared box, using computer simulations and also theoretical analysis. In addition to the vortex pattern, we observe five other regimes in the system: a homogeneous gaseous phase, band structures, moving clumps, moving clusters, and vibrating rings. All six regimes emerge from controlling the strength of noise and from the contribution of repulsion and alignment interactions. We study the shape of the vortex and its symmetry in detail. The pattern shows exponential defect lines where incoming and outgoing flows of particles collide. We show that alignment and repulsion interactions between particles are necessary to form such patterns. We derive hydrodynamical equations with an introduction of the "small deviation" technique to describe the vortex phase. The method is applicable to other systems as well. Finally, we compare the theory with the results of both computer simulations and an experiment using Quincke rotors. A good agreement between the three is observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelovich, Tamar; Hansen, Thorsten; Liu, Zhen-Fei
A parameter-free version of the recently developed driven Liouville-von Neumann equation [T. Zelovich et al., J. Chem. Theory Comput. 10(8), 2927-2941 (2014)] for electronic transport calculations in molecular junctions is presented. The single driving rate, appearing as a fitting parameter in the original methodology, is replaced by a set of state-dependent broadening factors applied to the different single-particle lead levels. These broadening factors are extracted explicitly from the self-energy of the corresponding electronic reservoir and are fully transferable to any junction incorporating the same lead model. Furthermore, the performance of the method is demonstrated via tight-binding and extended Hückel calculationsmore » of simple junction models. Our analytic considerations and numerical results indicate that the developed methodology constitutes a rigorous framework for the design of "black-box" algorithms to simulate electron dynamics in open quantum systems out of equilibrium.« less
ExTzBox: A Glowing Cyclophane for Live-Cell Imaging.
Roy, Indranil; Bobbala, Sharan; Zhou, Jiawang; Nguyen, Minh T; Nalluri, Siva Krishna Mohan; Wu, Yilei; Ferris, Daniel P; Scott, Evan Alexander; Wasielewski, Michael R; Stoddart, J Fraser
2018-06-13
The ideal fluorescent probe for live-cell imaging is bright and non-cytotoxic and can be delivered easily into the living cells in an efficient manner. The design of synthetic fluorophores having all three of these properties, however, has proved to be challenging. Here, we introduce a simple, yet effective, strategy based on well-established chemistry for designing a new class of fluorescent probes for live-cell imaging. A box-like hybrid cyclophane, namely ExTzBox·4X (6·4X, X = PF 6 - , Cl - ), has been synthesized by connecting an extended viologen (ExBIPY) and a dipyridyl thiazolothiazole (TzBIPY) unit in an end-to-end fashion with two p-xylylene linkers. Photophysical studies show that 6·4Cl has a quantum yield Φ F = 1.00. Furthermore, unlike its ExBIPY 2+ and TzBIPY 2+ building units, 6·4Cl is non-cytotoxic to RAW 264.7 macrophages, even with a loading concentration as high as 100 μM, presumably on account of its rigid box-like structure which prevents its intercalation into DNA and may inhibit other interactions with it. After gaining an understanding of the toxicity profile of 6·4Cl, we employed it in live-cell imaging. Confocal microscopy has demonstrated that 6 4+ is taken up by the RAW 264.7 macrophages, allowing the cells to glow brightly with blue laser excitation, without any hint of photobleaching or disruption of normal cell behavior under the imaging conditions. By contrast, the acyclic reference compound Me 2 TzBIPY·2Cl (4·2Cl) shows very little fluorescence inside the cells, which is quenched completely under the same imaging conditions. In vitro cell investigations underscore the significance of using highly fluorescent box-like rigid cyclophanes for live-cell imaging.
Pal, Suvra; Balakrishnan, Narayanaswamy
2018-05-01
In this paper, we develop likelihood inference based on the expectation maximization algorithm for the Box-Cox transformation cure rate model assuming the lifetimes to follow a Weibull distribution. A simulation study is carried out to demonstrate the performance of the proposed estimation method. Through Monte Carlo simulations, we also study the effect of model misspecification on the estimate of cure rate. Finally, we analyze a well-known data on melanoma with the model and the inferential method developed here.
Evaluation of subgrid-scale turbulence models using a fully simulated turbulent flow
NASA Technical Reports Server (NTRS)
Clark, R. A.; Ferziger, J. H.; Reynolds, W. C.
1977-01-01
An exact turbulent flow field was calculated on a three-dimensional grid with 64 points on a side. The flow simulates grid-generated turbulence from wind tunnel experiments. In this simulation, the grid spacing is small enough to include essentially all of the viscous energy dissipation, and the box is large enough to contain the largest eddy in the flow. The method is limited to low-turbulence Reynolds numbers, in our case R sub lambda = 36.6. To complete the calculation using a reasonable amount of computer time with reasonable accuracy, a third-order time-integration scheme was developed which runs at about the same speed as a simple first-order scheme. It obtains this accuracy by saving the velocity field and its first-time derivative at each time step. Fourth-order accurate space-differencing is used.
The continuous end-state comfort effect: weighted integration of multiple biases.
Herbort, Oliver; Butz, Martin V
2012-05-01
The grasp orientation when grasping an object is frequently aligned in anticipation of the intended rotation of the object (end-state comfort effect). We analyzed grasp orientation selection in a continuous task to determine the mechanisms underlying the end-state comfort effect. Participants had to grasp a box by a circular handle-which allowed for arbitrary grasp orientations-and then had to rotate the box by various angles. Experiments 1 and 2 revealed both that the rotation's direction considerably determined grasp orientations and that end-postures varied considerably. Experiments 3 and 4 further showed that visual stimuli and initial arm postures biased grasp orientations if the intended rotation could be easily achieved. The data show that end-state comfort but also other factors determine grasp orientation selection. A simple mechanism that integrates multiple weighted biases can account for the data.
Seamless presentation capture, indexing, and management
NASA Astrophysics Data System (ADS)
Hilbert, David M.; Cooper, Matthew; Denoue, Laurent; Adcock, John; Billsus, Daniel
2005-10-01
Technology abounds for capturing presentations. However, no simple solution exists that is completely automatic. ProjectorBox is a "zero user interaction" appliance that automatically captures, indexes, and manages presentation multimedia. It operates continuously to record the RGB information sent from presentation devices, such as a presenter's laptop, to display devices, such as a projector. It seamlessly captures high-resolution slide images, text and audio. It requires no operator, specialized software, or changes to current presentation practice. Automatic media analysis is used to detect presentation content and segment presentations. The analysis substantially enhances the web-based user interface for browsing, searching, and exporting captured presentations. ProjectorBox has been in use for over a year in our corporate conference room, and has been deployed in two universities. Our goal is to develop automatic capture services that address both corporate and educational needs.
Quantum Monte Carlo calculations of two neutrons in finite volume
Klos, P.; Lynn, J. E.; Tews, I.; ...
2016-11-18
Ab initio calculations provide direct access to the properties of pure neutron systems that are challenging to study experimentally. In addition to their importance for fundamental physics, their properties are required as input for effective field theories of the strong interaction. In this work, we perform auxiliary-field diffusion Monte Carlo calculations of the ground state and first excited state of two neutrons in a finite box, considering a simple contact potential as well as chiral effective field theory interactions. We compare the results against exact diagonalizations and present a detailed analysis of the finite-volume effects, whose understanding is crucial formore » determining observables from the calculated energies. Finally, using the Lüscher formula, we extract the low-energy S-wave scattering parameters from ground- and excited-state energies for different box sizes.« less
Flutter analysis of composite box beams
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Greenman, Matthew
1995-01-01
The dynamic aeroelastic instability of flutter is an important factor in the design of modern high-speed, flexible aircraft. The current trend is toward the creative use of composites to delay flutter. To obtain an optimum design, we need an accurate as well as efficient model. As a first step towards this goal, flutter analysis is carried out for an unswept composite box beam using a linear structural model and Theodorsen's unsteady aerodynamic theory. Structurally, the wing was modeled as a thin-walled box-beam of rectangular cross section. Theodorsen's theory was used to get 2-D unsteady aerodynamic forces, which were integrated over the span. A free-vibration analysis is carried out. These fundamental modes are used to get the flutter solution using the V-g method. Future work is intended to build on this foundation.
Autocorrelated process control: Geometric Brownian Motion approach versus Box-Jenkins approach
NASA Astrophysics Data System (ADS)
Salleh, R. M.; Zawawi, N. I.; Gan, Z. F.; Nor, M. E.
2018-04-01
Existing of autocorrelation will bring a significant effect on the performance and accuracy of process control if the problem does not handle carefully. When dealing with autocorrelated process, Box-Jenkins method will be preferred because of the popularity. However, the computation of Box-Jenkins method is too complicated and challenging which cause of time-consuming. Therefore, an alternative method which known as Geometric Brownian Motion (GBM) is introduced to monitor the autocorrelated process. One real case of furnace temperature data is conducted to compare the performance of Box-Jenkins and GBM methods in monitoring autocorrelation process. Both methods give the same results in terms of model accuracy and monitoring process control. Yet, GBM is superior compared to Box-Jenkins method due to its simplicity and practically with shorter computational time.
Efficient multidimensional regularization for Volterra series estimation
NASA Astrophysics Data System (ADS)
Birpoutsoukis, Georgios; Csurcsia, Péter Zoltán; Schoukens, Johan
2018-05-01
This paper presents an efficient nonparametric time domain nonlinear system identification method. It is shown how truncated Volterra series models can be efficiently estimated without the need of long, transient-free measurements. The method is a novel extension of the regularization methods that have been developed for impulse response estimates of linear time invariant systems. To avoid the excessive memory needs in case of long measurements or large number of estimated parameters, a practical gradient-based estimation method is also provided, leading to the same numerical results as the proposed Volterra estimation method. Moreover, the transient effects in the simulated output are removed by a special regularization method based on the novel ideas of transient removal for Linear Time-Varying (LTV) systems. Combining the proposed methodologies, the nonparametric Volterra models of the cascaded water tanks benchmark are presented in this paper. The results for different scenarios varying from a simple Finite Impulse Response (FIR) model to a 3rd degree Volterra series with and without transient removal are compared and studied. It is clear that the obtained models capture the system dynamics when tested on a validation dataset, and their performance is comparable with the white-box (physical) models.
Static and Vibration Analyses of General Wing Structures Using Equivalent Plate Models
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Liu, Youhua
1999-01-01
An efficient method, using equivalent plate model, is developed for studying the static and vibration analyses of general built-up wing structures composed of skins, spars, and ribs. The model includes the transverse shear effects by treating the built-up wing as a plate following the Reissner-Mindlin theory, the so-called First-order Shear Deformation Theory (FSDT). The Ritz method is used with the Legendre polynomials being employed as the trial functions. This is in contrast to previous equivalent plate model methods which have used simple polynomials, known to be prone to numerical ill-conditioning, as the trial functions. The present developments are evaluated by comparing the results with those obtained using MSC/NASTRAN, for a set of examples. These examples are: (i) free-vibration analysis of a clamped trapezoidal plate with (a) uniform thickness, and (b) non-uniform thickness varying as an airfoil, (ii) free-vibration and static analyses (including skin stress distribution) of a general built-up wing, and (iii) free-vibration and static analyses of a swept-back box wing. The results obtained by the present equivalent plate model are in good agreement with those obtained by the finite element method.
Performance of the multi-model SREPS precipitation probabilistic forecast over Mediterranean area
NASA Astrophysics Data System (ADS)
Callado, A.; Escribà, P.; Santos, C.; Santos-Muñoz, D.; Simarro, J.; García-Moya, J. A.
2009-09-01
The performance of the Short-Range Ensemble Prediction system (SREPS) probabilistic precipitation forecast over the Mediterranean area has been evaluated comparing with both, an Atlantic-European area excluding the first one, and a more general area including the two previous ones. The main aim is to assess whether the performance of the system due to its meso-alpha horizontal resolution of 25 kilometres is affected over the Mediterranean area, where the meteorological mesoscale events play a more important role than in an Atlantic-European area, more related to synoptic scale with an Atlantic influence. Furthermore, two different verification methods have been applied and compared for the three areas in order to assess its performance. The SREPS is a daily experimental LAM EPS focused on the short range (up to 72 hours) which has been developed at the Spanish Meteorological Agency (AEMET). To take into account implicitly the model errors, five purely independent different limited area models are used (COSMO (COSMO), HIRLAM (HIRLAM Consortium), HRM (DWD), MM5 (NOAA) and UM-NAE (UKMO)), and in order to sample the initial and boundary condition uncertainties each model is integrated using data from four different global deterministic models (GFS (NCEP), GME (DWD), IFS (ECMWF) and UM (UKMO)). As a result, crossing models and initial conditions the EPS is composed by 20 members. The underlying idea is that the ensemble performance has to improve as far as each member has itself the better possible performance, i.e. the better operational configuration limited area models are combined with the better global deterministic model configurations initialized with the best analysis. Because of this neither global EPS as initial conditions nor different model settings as multi-parameterizations or multi-parameters are used to generate SREPS. The performance over the three areas has been assessed focusing on 24 hour accumulation precipitation with four different usual forecasting thresholds: 1, 5 , 10 and 20 mm. A standard probabilistic verification exercise (following ECMWF recommendations) has been carried out, assessing quality with well known properties like reliability, resolution and discrimination, using usual performance measures: Reliability (Attributes) Diagram, Brier and Brier Skill Score Decomposition, Relative Operating Characteristic (ROC) and ROC area. The value of the forecasts w.r.t. sample climatology is shown with Relative value envelopes. This exercise has been carried out for a one year period (May 2007 to May 2008). Observed precipitation data from High Resolution (HR) networks over Europe have been used as reference. To avoid the potential lack of statistical significance due to spatial dependence between close observations, up-scaling processed observations have been used, provided by ECMWF, who collects the raw data from different member and cooperating states over Europe. This advanced up-scaling methodology has the feature to be more independent of the density of precipitation observations than the more classical simple methodology of interpolate the model outputs to the observation station points. In particular, the observations have been up-scaled to a 0.25ºx0.25º box taking each box as representative only when more than five observations are available in it. In the first one verifying method the box-average is taken, and for the second one a set of quantiles is considered, specifically 10, 25, 50 , 75 and 90 quantiles. The difference between both methods is that the first one takes over each box a single value as representative of precipitation. Whereas the second one takes a probability density function as representation of precipitation over the box, thus introducing uncertainty (related with spatial distribution) in the observations. The results are consistent, and show that in general SREPS is a reliable probabilistic forecasting system for the three selected areas. Concerning performance over different regions, the SREPS probabilistic precipitation forecasts over the selected Mediterranean area have a little less reliability and resolution than over the North Europe area, specially with the higher thresholds 10 and 20 mm. The latter results suggests that in SREPS the representation of the mesoscale meteorological events around the Mediterranean basin has to be improved, and probably also the orographic-related processes as the orographic enhancement of the precipitation. So it is suggested that the predictability skill of SREPS system around the Mediterranean could be expected to improve if the horizontal and vertical resolution of each limited area model of the system is increased in order to take into account the meso-beta scale. When comparing the two verification methods, one using up-scaled box average and the other using an up-scaled set of quantiles (i.e. a box PDF), it is shown that the validation of the probabilistic forecast is quite more consistent in the latter method when uncertainties in the observations are introduced and probably gives a more realistic idea of performance.
Box truss analysis and technology development. Task 1: Mesh analysis and control
NASA Technical Reports Server (NTRS)
Bachtell, E. E.; Bettadapur, S. S.; Coyner, J. V.
1985-01-01
An analytical tool was developed to model, analyze and predict RF performance of box truss antennas with reflective mesh surfaces. The analysis system is unique in that it integrates custom written programs for cord tied mesh surfaces, thereby drastically reducing the cost of analysis. The analysis system is capable of determining the RF performance of antennas under any type of manufacturing or operating environment by integrating together the various disciplines of design, finite element analysis, surface best fit analysis and RF analysis. The Integrated Mesh Analysis System consists of six separate programs: The Mesh Tie System Model Generator, The Loadcase Generator, The Model Optimizer, The Model Solver, The Surface Topography Solver and The RF Performance Solver. Additionally, a study using the mesh analysis system was performed to determine the effect of on orbit calibration, i.e., surface adjustment, on a typical box truss antenna.
Alarms about structural alerts.
Alves, Vinicius; Muratov, Eugene; Capuzzi, Stephen; Politi, Regina; Low, Yen; Braga, Rodolpho; Zakharov, Alexey V; Sedykh, Alexander; Mokshyna, Elena; Farag, Sherif; Andrade, Carolina; Kuz'min, Victor; Fourches, Denis; Tropsha, Alexander
2016-08-21
Structural alerts are widely accepted in chemical toxicology and regulatory decision support as a simple and transparent means to flag potential chemical hazards or group compounds into categories for read-across. However, there has been a growing concern that alerts disproportionally flag too many chemicals as toxic, which questions their reliability as toxicity markers. Conversely, the rigorously developed and properly validated statistical QSAR models can accurately and reliably predict the toxicity of a chemical; however, their use in regulatory toxicology has been hampered by the lack of transparency and interpretability. We demonstrate that contrary to the common perception of QSAR models as "black boxes" they can be used to identify statistically significant chemical substructures (QSAR-based alerts) that influence toxicity. We show through several case studies, however, that the mere presence of structural alerts in a chemical, irrespective of the derivation method (expert-based or QSAR-based), should be perceived only as hypotheses of possible toxicological effect. We propose a new approach that synergistically integrates structural alerts and rigorously validated QSAR models for a more transparent and accurate safety assessment of new chemicals.
Mendyk, Aleksander; Güres, Sinan; Szlęk, Jakub; Wiśniowska, Barbara; Kleinebudde, Peter
2015-01-01
The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies. PMID:26101544
Mendyk, Aleksander; Güres, Sinan; Jachowicz, Renata; Szlęk, Jakub; Polak, Sebastian; Wiśniowska, Barbara; Kleinebudde, Peter
2015-01-01
The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies.
Simulated Carbon Cycling in a Model Microbial Mat.
NASA Astrophysics Data System (ADS)
Decker, K. L.; Potter, C. S.
2006-12-01
We present here the novel addition of detailed organic carbon cycling to our model of a hypersaline microbial mat ecosystem. This ecosystem model, MBGC (Microbial BioGeoChemistry), simulates carbon fixation through oxygenic and anoxygenic photosynthesis, and the release of C and electrons for microbial heterotrophs via cyanobacterial exudates and also via a pool of dead cells. Previously in MBGC, the organic portion of the carbon cycle was simplified into a black-box rate of accumulation of simple and complex organic compounds based on photosynthesis and mortality rates. We will discuss the novel inclusion of fermentation as a source of carbon and electrons for use in methanogenesis and sulfate reduction, and the influence of photorespiration on labile carbon exudation rates in cyanobacteria. We will also discuss the modeling of decomposition of dead cells and the ultimate release of inorganic carbon. The detailed modeling of organic carbon cycling is important to the accurate representation of inorganic carbon flux through the mat, as well as to accurate representation of growth models of the heterotrophs under different environmental conditions. Because the model ecosystem is an analog of ancient microbial mats that had huge impacts on the atmosphere of early earth, this MBGC can be useful as a biological component to either early earth models or models of other planets that potentially harbor life.
Field performance of timber bridges. 9, Big Erick`s stress-laminated deck bridge
J. A. Kainz; J. P. Wacker; M. Nelson
The Big Erickas bridge was constructed during September 1992 in Baraga County, Michigan. The bridge is 72 ft long, 16 ft wide, and consists of three simple spans: two stress-laminated deck approach spans and a stress-laminated box center span. The bridge is unique in that it is one of the first known stress-laminated timber bridge applications to use Eastern Hemlock...
Individual Differences in Planning-Related Activities for Simple Digital Circuit Design
1994-01-01
Learning Technology Center Vanderbilt University 94-1 Box 45, Peabody Nashville, TN 37203 g. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10...they learned in class, rather than first constructing a deeper understanding of what role each component played in the problem-solving process. One of...Pezdek, & W. P. Banks (Eds.), Application of cognitive psychology: Problen, suiving, education and computing (pp. 123-137). Hillsdale, NJ: Erlbaum. Chase
Estimating on-orbit optical properties for GNSS satellites
NASA Astrophysics Data System (ADS)
Rodriguez Solano, M. Sc. Carlos Javier; Hugentobler, Urs; Steigenberger, Peter
One of the major uncertainty sources affecting GNSS satellite orbits is the direct solar radiation pressure. Other important though smaller effects are caused by deviations of the satellite from nominal attitude, Earth radiation pressure and thermal re-radiation forces. To compensate such effects, the IGS Analysis Centers usually estimate empirical parameters which fit best the tracking data obtained from a global network of GNSS ground stations to compute orbits at an accuracy level of 2.5 cm for GPS and of 5 cm for GLONASS. On the other hand, there are also accurate physical models for the above mentioned non-conservative forces affecting the GNSS satellites such as the ROCK models for GPS satellites. However, current models fail to predict the real orbit behaviour with sufficient accuracy, mainly due to deviations from nominal attitude, from inaccurately known optical properties, or from aging of the satellite surfaces. In this context an analytical box-wing model has been derived based on the physical interaction between the direct solar radiation and a satellite consisting of a bus (box shape) and solar panels. Furthermore some of the parameters of the box-wing model can be adjusted to fit the GNSS tracking data, namely the fraction of reflected photons of the corresponding satellite surfaces. For this study GNSS orbits are generated based on one year of tracking data from the global IGS network and involving the box-wing model implemented into the Bernese GPS Software. The processing scheme was derived from the one used at the Center for Orbit Determination in Europe (CODE). The resulting satellite orbits are compared with CODE Final Orbits and validated using SLR (Satellite Laser Ranging) tracking data. Additionally, in the case of GPS satellites, the box-wing model and the obtained optical properties are compared directly with a priori models (e.g. ROCK), which deal with the direct solar radiation impacting the satellites.
The technological obsolescence of the Brazilian eletronic ballot box.
Camargo, Carlos Rogério; Faust, Richard; Merino, Eugênio; Stefani, Clarissa
2012-01-01
The electronic ballot box has played a significant role in the consolidation of Brazilian political process. It has enabled paper ballots extinction as a support for the elector's vote as well as for voting counting processes. It is also widely known that election automation has decisively collaborated to the legitimization of Brazilian democracy, getting rid of doubts about the winning candidates. In 1995, when the project was conceived, it represented a compromise solution, balancing technical efficiency and costs trade-offs. However, this architecture currently limits the ergonomic enhancements to the device operation, transportation, maintenance and storage. Nowadays are available in the market devices of reduced dimensions, based on novel computational architecture, namely tablet computers, which emphasizes usability, autonomy, portability, security and low power consumption. Therefore, the proposal under discussion is the replacement of the current electronic ballot boxes for tablet-based devices to improve the ergonomics aspects of the Brazilian voting process. These devices offer a plethora of integrated features (e.g., capacitive touchscreen, speakers, microphone) that enable highly usable and simple user interfaces, in addition to enhancing the voting process security mechanisms. Finally, their operational systems features allow for the development of highly secure applications, suitable to the requirements of a voting process.
ERIC Educational Resources Information Center
Science Teacher, 1988
1988-01-01
Reviews two computer software packages for use in physical science, physics, and chemistry classes. Includes "Physics of Model Rocketry" for Apple II, and "Black Box" for Apple II and IBM compatible computers. "Black Box" is designed to help students understand the concept of indirect evidence. (CW)
A Statistical Framework for Analyzing Cyber Threats
defender cares most about the attacks against certain ports or services). The grey-box statistical framework formulates a new methodology of Cybersecurity ...the design of prediction models. Our research showed that the grey-box framework is effective in predicting cybersecurity situational awareness.
Probability of Decompression Sickness in No-Stop Air Diving
2004-12-01
21 Figure 10. VVal-1 8 and StandAir Models .......................................... 22 Figure 11. Comparisons for...recommendations appear in heavy boxes. Information outside the heavy boxes allows comparisons between models. The recommendations are essentially arbitrary and...N2-0 2 Saturation Dives in Humans: DCS Risk and Evidence of a Threshold," Undersea Hyperbaric Medicine, In Press. 15. S. S. Survanshi, E. D. Parker, E
Okada, Kazuma; Moriya, Shigeki; Haji, Takashi; Abe, Kazuyuki
2013-06-01
Using 11 consensus primer pairs designed from S-linked F-box genes of apple and Japanese pear, 10 new F-box genes (MdFBX21 to 30) were isolated from the apple cultivar 'Spartan' (S(9)S(10)). MdFBX21 to 23 and MdFBX24 to 30 were completely linked to the S(9) -RNase and S(10-)RNase, respectively, and showed pollen-specific expression and S-haplotype-specific polymorphisms. Therefore, these 10 F-box genes are good candidates for the pollen determinant of self-incompatibility in apple. Phylogenetic analysis and comparison of deduced amino acid sequences of MdFBX21 to 30 with those of 25 S-linked F-box genes previously isolated from apple showed that a deduced amino acid identity of greater than 88.0 % can be used as the tentative criterion to classify F-box genes into one type. Using this criterion, 31 of 35 F-box genes of apple were classified into 11 types (SFBB1-11). All types included F-box genes derived from S(3-) and S(9-)haplotypes, and seven types included F-box genes derived from S(3-), S(9-), and S(10-)haplotypes. Moreover, comparison of nucleotide sequences of S-RNases and multiple F-box genes among S(3-), S(9-), and S(10-)haplotypes suggested that F-box genes within each type showed high nucleotide identity regardless of the identity of the S-RNase. The large number of F-box genes as candidates for the pollen determinant and the high degree of conservation within each type are consistent with the collaborative non-self-recognition model reported for Petunia. These findings support that the collaborative non-self-recognition system also exists in apple.
3D Thermo-Mechanical Models of Plume-Lithosphere Interactions: Implications for the Kenya rift
NASA Astrophysics Data System (ADS)
Scheck-Wenderoth, M.; Koptev, A.; Sippel, J.
2017-12-01
We present three-dimensional (3D) thermo-mechanical models aiming to explore the interaction of an active mantle plume with heterogeneous pre-stressed lithosphere in the Kenya rift region. As shown by the recent data-driven 3D gravity and thermal modeling (Sippel et al., 2017), the integrated strength of the lithosphere for the region of Kenya and northern Tanzania appears to be strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localization and propagation of rifting. In order to test this hypothesis, we have performed a series of ultra-high resolution 3D numerical experiments that include a coupled mantle/lithosphere system in a dynamically and rheologically consistent framework. In contrast to our previous studies assuming a simple and quasi-symmetrical initial condition (Koptev et al., 2015, 2016, 2017), the complex 3D distribution of rock physical properties inferred from geological and geophysical observations (Sippel et al., 2017) has been incorporated into the model setup that comprises a stratified three-layer continental lithosphere composed of an upper and lower crust and lithospheric mantle overlaying the upper mantle. Following the evidence of the presence of a broad low-velocity seismic anomaly under the central parts of the East African Rift system (e.g. Nyblade et al, 2000; Chang et al., 2015), a 200-km radius mantle plume has been seeded at the bottom of a 635 km-depth model box representing a thermal anomaly of 300°C temperature excess. In all model runs, results show that the spatial distribution of surface deformation is indeed strongly controlled by crustal structure: within the southern part of the model box, a localized narrow zone stretched in NS direction (i.e. perpendicularly to applied far-field extension) is aligned along a structural boundary within the lower crust, whereas in the northern part of the model domain, deformation is more diffused and its eastern limit coincides with the eastern side of a weaker unit within the upper crustal layer. This northward transition from more localized to more distributed strain bears some general similarity to the distribution of major faults within the studied area (Chorowicz, 2005).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saurav, Kumar; Chandan, Vikas
District-heating-and-cooling (DHC) systems are a proven energy solution that has been deployed for many years in a growing number of urban areas worldwide. They comprise a variety of technologies that seek to develop synergies between the production and supply of heat, cooling, domestic hot water and electricity. Although the benefits of DHC systems are significant and have been widely acclaimed, yet the full potential of modern DHC systems remains largely untapped. There are several opportunities for development of energy efficient DHC systems, which will enable the effective exploitation of alternative renewable resources, waste heat recovery, etc., in order to increasemore » the overall efficiency and facilitate the transition towards the next generation of DHC systems. This motivated the need for modelling these complex systems. Large-scale modelling of DHC-networks is challenging, as it has several components such as buildings, pipes, valves, heating source, etc., interacting with each other. In this paper, we focus on building modelling. In particular, we present a gray-box methodology for thermal modelling of buildings. Gray-box modelling is a hybrid of data driven and physics based models where, coefficients of the equations from physics based models are learned using data. This approach allows us to capture the dynamics of the buildings more effectively as compared to pure data driven approach. Additionally, this approach results in a simpler models as compared to pure physics based models. We first develop the individual components of the building such as temperature evolution, flow controller, etc. These individual models are then integrated in to the complete gray-box model for the building. The model is validated using data collected from one of the buildings at Lule{\\aa}, a city on the coast of northern Sweden.« less
Assimilating Ferry Box data into the Aegean Sea model
NASA Astrophysics Data System (ADS)
Korres, G.; Ntoumas, M.; Potiris, M.; Petihakis, G.
2014-12-01
Operational monitoring and forecasting of marine environmental conditions is a necessary tool for the effective management and protection of the marine ecosystem. It requires the use of multi-variable real-time measurements combined with advanced physical and ecological numerical models. Towards this, a FerryBox system was originally installed and operated in the route Piraeus-Heraklion in 2003 for one year. Early 2012 the system was upgraded and moved to a new high-speed ferry traveling daily in the same route as before. This route is by large traversing the Cretan Sea being the largest and deepest basin (2500 m) in the south Aegean Sea. The HCMR Ferry Box is today the only one in the Mediterranean and thus it can be considered as a pilot case. The analysis of FerryBox SST and SSS in situ data revealed the presence of important regional and sub-basin scale physical phenomena, such as wind-driven coastal upwelling and the presence of a mesoscale cyclone to the north of Crete. In order to assess the impact of the FerryBox SST data in constraining the Aegean Sea hydrodynamic model which is part of the POSEIDON forecasting system, the in situ data were assimilated using an advanced multivariate assimilation scheme based on the Singular Evolutive Extended Kalman (SEEK) filter, a simplified square-root extended Kalman filter that operates with low-rank error covariance matrices as a way to reduce the computational burden. Thus during the period mid-August 2012-mid January 2013 in addition to the standard assimilating parameters, daily SST data along the ferryboat route from Piraeus to Heraklion were assimilated into the model. Inter-comparisons between the control run of the system (model run that uses only the standard data set of observations) and the experiment where the observational data set is augmented with the FerryBox SST data produce interesting results. Apart from the improvement of the SST error, the additional assimilation of daily of FerryBox SST observations is found to have a significant impact on the correct representation of the dynamical dipole in the central Cretan Sea and other dynamic features of the South Aegean Sea, which is then depicted in the decrease of the basin wide SSH RMS error.
Compound Heterozygosity for Y Box Proteins Causes Sterility Due to Loss of Translational Repression
Sharma, Manju; Dearth, Andrea; Smith, Benjamin; Braun, Robert E.
2015-01-01
The Y-box proteins YBX2 and YBX3 bind RNA and DNA and are required for metazoan development and fertility. However, possible functional redundancy between YBX2 and YBX3 has prevented elucidation of their molecular function as RNA masking proteins and identification of their target RNAs. To investigate possible functional redundancy between YBX2 and YBX3, we attempted to construct Ybx2 -/- ;Ybx3 -/- double mutants using a previously reported Ybx2 -/- model and a newly generated global Ybx3 -/- model. Loss of YBX3 resulted in reduced male fertility and defects in spermatid differentiation. However, homozygous double mutants could not be generated as haploinsufficiency of both Ybx2 and Ybx3 caused sterility characterized by extensive defects in spermatid differentiation. RNA sequence analysis of mRNP and polysome occupancy in single and compound Ybx2/3 heterozygotes revealed loss of translational repression almost exclusively in the compound Ybx2/3 heterozygotes. RNAseq analysis also demonstrated that Y-box protein dose-dependent loss of translational regulation was inversely correlated with the presence of a Y box recognition target sequence, suggesting that Y box proteins bind RNA hierarchically to modulate translation in a range of targets. PMID:26646932
Three-dimensional Model of Tissue and Heavy Ions Effects
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Sundaresan, Alamelu; Huff, Janice L.; Cucinotta, Francis A.
2007-01-01
A three-dimensional tissue model was incorporated into a new Monte Carlo algorithm that simulates passage of heavy ions in a tissue box . The tissue box was given as a realistic model of tissue based on confocal microscopy images. The action of heavy ions on the cellular matrix for 2- or 3-dimensional cases was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix), and as a multi-layer obtained from confocal microscopy (3-d case). Image segmentation was used to identify cells with precise areas/volumes in an irradiated cell culture monolayer, and slices of tissue with many cell layers. The cells were then inserted into the model box of the simulated physical space pixel by pixel. In the case of modeled tissues (3-d), the tissue box had periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. For the real tissue (3-d), specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated from current experimental data. A spatial correlation function indicating a higher spatial concentration of damaged cells from heavy ions relative to the low-LET radiation cell damage pattern is presented. The spatial correlation effects among necrotic cells can help studying microlesions in organs, and probable effects of directionality of heavy ion radiation on epithelium and endothelium.
Automatic load forecasting. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, D.J.; Vemuri, S.
A method which lends itself to on-line forecasting of hourly electric loads is presented and the results of its use are compared to models developed using the Box-Jenkins method. The method consists of processing the historical hourly loads with a sequential least-squares estimator to identify a finite order autoregressive model which in turn is used to obtain a parsimonious autoregressive-moving average model. A procedure is also defined for incorporating temperature as a variable to improve forecasts where loads are temperature dependent. The method presented has several advantages in comparison to the Box-Jenkins method including much less human intervention and improvedmore » model identification. The method has been tested using three-hourly data from the Lincoln Electric System, Lincoln, Nebraska. In the exhaustive analyses performed on this data base this method produced significantly better results than the Box-Jenkins method. The method also proved to be more robust in that greater confidence could be placed in the accuracy of models based upon the various measures available at the identification stage.« less
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Molthan, Andrew; Zavodsky, Bradley T.; Case, Jonathan L.; LaFontaine, Frank J.; Srikishen, Jayanthi
2010-01-01
The NASA Short-term Prediction Research and Transition Center (SPoRT)'s new "Weather in a Box" resources will provide weather research and forecast modeling capabilities for real-time application. Model output will provide additional forecast guidance and research into the impacts of new NASA satellite data sets and software capabilities. By combining several research tools and satellite products, SPoRT can generate model guidance that is strongly influenced by unique NASA contributions.
Exposure to sub-concussive head injury in boxing and other sports.
Erlanger, David M
2015-01-01
Current characterizations of chronic traumatic brain injury (CTBI) in boxing, football and other sports are reviewed in the context of the history of research on sub-concussive brain trauma in athletes. The utility of exposure models for understanding CTBI in boxers is examined and concerns regarding the paucity of findings supportive of an exposure model for CTBI in football players are discussed. Recommendations for development of exposure models for sport-specific phenotypic characterizations of CTBI are presented.
Humber-in-a-Box : Gamification to Communicate Coastal Flood Risk in the Face of Rising Seas
NASA Astrophysics Data System (ADS)
Skinner, C. J.; van Rij, J. D.
2015-12-01
Humber-in-a-Box is an immersive visualisation of the Humber Estuary (on the east coast of the UK), designed to communicate coastal flood risk in the face of rising seas. It is designed for use in a busy festival-like setting. The user views the environment via an Oculus Rift Virtual Reality (VR) headset and is able to explore using an XBOX controller. A live simulation of tidal flows on a modelled version of the estuary can be viewed on a box in the centre of a virtual room. Using the controller, the user is able to raise sea levels and see what happens as the tide levels adjust. Humber-in-a-Box uses a numerical model built with data used for published research. The hydraulic component of the CAESAR-Lisflood model code was incorporated into the UNITY-3D gaming engine, and the model uses recorded tidal stage data, bathymetry and elevations to build the virtual environment and drive the simulation. Present day flood defences are incorporated into the model, and in conjunction with modelling tidal flows, this provides a better representation of future flood risk than simpler linear models. The user is able to raise and lower sea levels between -10 m and 100 m, in 1m increments, and can reset the simulation to present day levels with one button click. Humber-in-a-Box has been showcased at several outreach events and has proven to be very popular and effective in an environment where time with each user is pressured, and information needs to exchange quickly. It has also been used in teaching at Undergraduate level, although the full potential of this is yet to be explored. A non-interactive version of the application is available on YouTube which is designed for use with Google Cardboard and similar kit.
1986-06-01
P.O. Box 2007 3101 E. Alejo Rd. Palm Springs, CA 92262 Telephone: (619) 327-1571 Date Evaluated June 1979 Summary The BABYbird Ventilator, Model 5900...air. Procurement Manufacturer 15 Product and Manufacturer Infant AIRbird Resuscitator Medical Products Oivision/3M P.O. Box 2007 3101 E. Alejo Rd. Palm...Silicone Bag Medical Products Division/3M P.O. Box 20073101 E. Alejo Rd Palm Springs, CA 92262 Telephone: (619) 327-1571 Date Evaluated July 1978 Sumary
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-03
... numbers of the crew oxygen mask stowage box units; and replacement of the crew oxygen mask stowage box unit with a new crew oxygen mask stowage unit, if necessary. This proposed AD results [[Page 67638
Simulating living organisms with populations of point vortices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmieder, R.W.
1995-07-01
The author has found that time-averaged images of small populations of point vortices can exhibit motions suggestive of the behavior of individual organisms. As an example, the author shows that collections of point vortices confined in a box and subjected to heating can generate patterns that are broadly similar to interspecies defense in certain sea anemones. It is speculated that other simple dynamical systems can be found to produce similar complex organism-like behavior.
NASA Astrophysics Data System (ADS)
2010-07-01
WE RECOMMEND Good Practice in Science Teaching: What Research Has to Say Book explores and summarizes the research Steady State Bottle Kit Another gem from SEP Sciencescope Datalogging Balance Balance suits everyday use Sciencescope Spectrophotometer Device displays clear spectrum WORTH A LOOK The Babylonian Theorem Text explains ancient Egyptian mathematics BrainBox360 (Physics Edition) Video game tests your knowledge Teaching and Learning Science: Towards a Personalized Approach Book reveals how useful physics teachers really are PAPERSHOW Gadget kit is useful but has limitations Robotic Arm Kit with USB PC Interface Robot arm teaches programming WEB WATCH Simple applets teach complex topics
Wang, Bao-Zhen; Chen, Zhi
2013-01-01
This article presents a GIS-based multi-source and multi-box modeling approach (GMSMB) to predict the spatial concentration distributions of airborne pollutant on local and regional scales. In this method, an extended multi-box model combined with a multi-source and multi-grid Gaussian model are developed within the GIS framework to examine the contributions from both point- and area-source emissions. By using GIS, a large amount of data including emission sources, air quality monitoring, meteorological data, and spatial location information required for air quality modeling are brought into an integrated modeling environment. It helps more details of spatial variation in source distribution and meteorological condition to be quantitatively analyzed. The developed modeling approach has been examined to predict the spatial concentration distribution of four air pollutants (CO, NO(2), SO(2) and PM(2.5)) for the State of California. The modeling results are compared with the monitoring data. Good agreement is acquired which demonstrated that the developed modeling approach could deliver an effective air pollution assessment on both regional and local scales to support air pollution control and management planning.
Short-term forecasts gain in accuracy. [Regression technique using ''Box-Jenkins'' analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Box-Jenkins time-series models offer accuracy for short-term forecasts that compare with large-scale macroeconomic forecasts. Utilities need to be able to forecast peak demand in order to plan their generating, transmitting, and distribution systems. This new method differs from conventional models by not assuming specific data patterns, but by fitting available data into a tentative pattern on the basis of auto-correlations. Three types of models (autoregressive, moving average, or mixed autoregressive/moving average) can be used according to which provides the most appropriate combination of autocorrelations and related derivatives. Major steps in choosing a model are identifying potential models, estimating the parametersmore » of the problem, and running a diagnostic check to see if the model fits the parameters. The Box-Jenkins technique is well suited for seasonal patterns, which makes it possible to have as short as hourly forecasts of load demand. With accuracy up to two years, the method will allow electricity price-elasticity forecasting that can be applied to facility planning and rate design. (DCK)« less
2010-01-01
Background Malaria transmission is complex and is believed to be associated with local climate changes. However, simple attempts to extrapolate malaria incidence rates from averaged regional meteorological conditions have proven unsuccessful. Therefore, the objective of this study was to determine if variations in specific meteorological factors are able to consistently predict P. falciparum malaria incidence at different locations in south Ethiopia. Methods Retrospective data from 42 locations were collected including P. falciparum malaria incidence for the period of 1998-2007 and meteorological variables such as monthly rainfall (all locations), temperature (17 locations), and relative humidity (three locations). Thirty-five data sets qualified for the analysis. Ljung-Box Q statistics was used for model diagnosis, and R squared or stationary R squared was taken as goodness of fit measure. Time series modelling was carried out using Transfer Function (TF) models and univariate auto-regressive integrated moving average (ARIMA) when there was no significant predictor meteorological variable. Results Of 35 models, five were discarded because of the significant value of Ljung-Box Q statistics. Past P. falciparum malaria incidence alone (17 locations) or when coupled with meteorological variables (four locations) was able to predict P. falciparum malaria incidence within statistical significance. All seasonal AIRMA orders were from locations at altitudes above 1742 m. Monthly rainfall, minimum and maximum temperature was able to predict incidence at four, five and two locations, respectively. In contrast, relative humidity was not able to predict P. falciparum malaria incidence. The R squared values for the models ranged from 16% to 97%, with the exception of one model which had a negative value. Models with seasonal ARIMA orders were found to perform better. However, the models for predicting P. falciparum malaria incidence varied from location to location, and among lagged effects, data transformation forms, ARIMA and TF orders. Conclusions This study describes P. falciparum malaria incidence models linked with meteorological data. Variability in the models was principally attributed to regional differences, and a single model was not found that fits all locations. Past P. falciparum malaria incidence appeared to be a superior predictor than meteorology. Future efforts in malaria modelling may benefit from inclusion of non-meteorological factors. PMID:20553590
Bridges for Pedestrians with Random Parameters using the Stochastic Finite Elements Analysis
NASA Astrophysics Data System (ADS)
Szafran, J.; Kamiński, M.
2017-02-01
The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.
Familiarizing Students with the Basics of a Smartphone's Internal Sensors
NASA Astrophysics Data System (ADS)
Countryman, Colleen Lanz
2014-12-01
The Physics Teacher's "iPhysicsLabs" column has been dedicated to the implementation of smartphones in instructional physics labs as data collection devices. In order to understand any data set, however, one should first understand how it is obtained. This concern regarding the inclusion of smartphones in lab activities has arisen in response to the creation of this column1 as well as to a paper in a recent issue of Physics Today.2 The majority of the labs featured in the "iPhysicsLabs" column to date make use of the internal accelerometer, common to nearly all smartphones on the market today. In order to glean meaningful conclusions from their data, students should first understand how the sensor works, as was pointed out in the first article to be featured in that column.3 We attempt to elucidate this "iBlackBox" using a simple ball-and-spring model.
Schenk, Emily R; Nau, Frederic; Fernandez-Lima, Francisco
2015-06-01
The ability to correlate experimental ion mobility data with candidate structures from theoretical modeling provides a powerful analytical and structural tool for the characterization of biomolecules. In the present paper, a theoretical workflow is described to generate and assign candidate structures for experimental trapped ion mobility and H/D exchange (HDX-TIMS-MS) data following molecular dynamics simulations and statistical filtering. The applicability of the theoretical predictor is illustrated for a peptide and protein example with multiple conformations and kinetic intermediates. The described methodology yields a low computational cost and a simple workflow by incorporating statistical filtering and molecular dynamics simulations. The workflow can be adapted to different IMS scenarios and CCS calculators for a more accurate description of the IMS experimental conditions. For the case of the HDX-TIMS-MS experiments, molecular dynamics in the "TIMS box" accounts for a better sampling of the molecular intermediates and local energy minima.
System dynamics of subcellular transport.
Chen, Vivien Y; Khersonsky, Sonya M; Shedden, Kerby; Chang, Young Tae; Rosania, Gus R
2004-01-01
In pharmacokinetic experiments, interpretations often hinge on treating cells as a "black box": a single, lumped compartment or boundary. Here, a combinatorial library of fluorescent small molecules was used to visualize subcellular transport pathways in living cells, using a kinetic, high content imaging system to monitor spatiotemporal variations of intracellular probe distribution. Most probes accumulate in cytoplasmic vesicles and probe kinetics conform to a nested, two-compartment dynamical system. At steady state, probes preferentially partition from the extracellular medium to the cytosol, and from the cytosol to cytoplasmic vesicles, with hydrophobic molecules favoring sequestration. Altogether, these results point to a general organizing principle underlying the system dynamics of subcellular, small molecule transport. In addition to plasma membrane permeability, subcellular transport phenomena can determine the active concentration of small molecules in the cytosol and the efflux of small molecules from cells. Fundamentally, direct observation of intracellular probe distribution challenges the simple boundary model of classical pharmacokinetics, which considers cells as static permeability barriers.
Angular Momentum Transport in Convectively Unstable Shear Flows
NASA Astrophysics Data System (ADS)
Käpylä, Petri J.; Brandenburg, Axel; Korpi, Maarit J.; Snellman, Jan E.; Narayan, Ramesh
2010-08-01
Angular momentum transport due to hydrodynamic turbulent convection is studied using local three-dimensional numerical simulations employing the shearing box approximation. We determine the turbulent viscosity from non-rotating runs over a range of values of the shear parameter and use a simple analytical model in order to extract the non-diffusive contribution (Λ-effect) to the stress in runs where rotation is included. Our results suggest that the turbulent viscosity is on the order of the mixing length estimate and weakly affected by rotation. The Λ-effect is non-zero and a factor of 2-4 smaller than the turbulent viscosity in the slow rotation regime. We demonstrate that for Keplerian shear, the angular momentum transport can change sign and be outward when the rotation period is greater than the turnover time, i.e., when the Coriolis number is below unity. This result seems to be relatively independent of the value of the Rayleigh number.
The DEAD-box helicase eIF4A: paradigm or the odd one out?
Andreou, Alexandra Z; Klostermeier, Dagmar
2013-01-01
DEAD-box helicases catalyze the ATP-dependent unwinding of RNA duplexes. They share a helicase core formed by two RecA-like domains that carries a set of conserved motifs contributing to ATP binding and hydrolysis, RNA binding and duplex unwinding. The translation initiation factor eIF4A is the founding member of the DEAD-box protein family, and one of the few examples of DEAD-box proteins that consist of a helicase core only. It is an RNA-stimulated ATPase and a non-processive helicase that unwinds short RNA duplexes. In the catalytic cycle, a series of conformational changes couples the nucleotide cycle to RNA unwinding. eIF4A has been considered a paradigm for DEAD-box proteins, and studies of its function have revealed the governing principles underlying the DEAD-box helicase mechanism. However, as an isolated helicase core, eIF4A is rather the exception, not the rule. Most helicase modules in other DEAD-box proteins are modified, some by insertions into the RecA-like domains, and the majority by N- and C-terminal appendages. While the basic catalytic function resides within the helicase core, its modulation by insertions, additional domains or a network of interaction partners generates the diversity of DEAD-box protein functions in the cell. This review summarizes the current knowledge on eIF4A and its regulation, and discusses to what extent eIF4A serves as a model DEAD-box protein.
Forkhead box transcription factors in embryonic heart development and congenital heart disease.
Zhu, Hong
2016-01-01
Embryonic heart development is a very complicated process regulated precisely by a network composed of many genes and signaling pathways in time and space. Forkhead box (Fox, FOX) proteins are a family of transcription factors characterized by the presence of an evolutionary conserved "forkhead"or "winged-helix" DNA-binding domain and able to organize temporal and spatial gene expression during development. They are involved in a wide variety of cellular processes, such as cell cycle progression, proliferation, differentiation, migration, metabolism and DNA damage response. An abundance of studies in model organisms and systems has established that Foxa2, Foxc1/c2, Foxh1 and Foxm1, Foxos and Foxps are important components of the signaling pathways that instruct cardiogenesis and embryonic heart development, playing paramount roles in heart development. The previous studies also have demonstrated that mutations in some of the forkhead box genes and the aberrant expression of forkhead box gene are heavily implicated in the congenital heart disease (CHD) of humans. This review primarily focuses on the current understanding of heart development regulated by forkhead box transcription factors and molecular genetic mechanisms by which forkhead box factors modulate heart development during embryogenesis and organogenesis. This review also summarizes human CHD related mutations in forkhead box genes as well as the abnormal expression of forkhead box gene, and discusses additional possible regulatory mechanisms of the forkhead box genes during embryonic heart development that warrant further investigation. Copyright © 2015 Elsevier Inc. All rights reserved.
On the biomechanical analysis of the calories expended in a straight boxing jab
2017-01-01
Boxing and related sports activities have become a standard workout regime at many fitness studios worldwide. Oftentimes, people are interested in the calories expended during these workouts. This note focuses on determining the calories in a boxer's jab, using kinematic vector-loop relations and basic work–energy principles. Numerical simulations are undertaken to illustrate the basic model. Multi-limb extensions of the model are also discussed. PMID:28404871
Application of Interface Technology in Nonlinear Analysis of a Stitched/RFI Composite Wing Stub Box
NASA Technical Reports Server (NTRS)
Wang, John T.; Ransom, Jonathan B.
1997-01-01
A recently developed interface technology was successfully employed in the geometrically nonlinear analysis of a full-scale stitched/RFI composite wing box loaded in bending. The technology allows mismatched finite element models to be joined in a variationally consistent manner and reduces the modeling complexity by eliminating transition meshing. In the analysis, local finite element models of nonlinearly deformed wide bays of the wing box are refined without the need for transition meshing to the surrounding coarse mesh. The COMET-AR finite element code, which has the interface technology capability, was used to perform the analyses. The COMET-AR analysis is compared to both a NASTRAN analysis and to experimental data. The interface technology solution is shown to be in good agreement with both. The viability of interface technology for coupled global/local analysis of large scale aircraft structures is demonstrated.
Box Tomography: An efficient tomographic method for imaging localized structures in the deep Earth
NASA Astrophysics Data System (ADS)
Masson, Yder; Romanowicz, Barbara
2017-04-01
The accurate imaging of localized geological structures inside the deep Earth is key to understand our planet and its history. Since the introduction of the Preliminary Reference Earth Model, many generations of global tomographic models have been developed and give us access to the 3D structure of the Earth's interior. The latest generation of global tomographic models has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits [1] extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features requires further efforts to obtain higher resolution images. In recent years, we developed a theoretical framework [2][3] for the tomographic imaging of localised geological structures buried inside the Earth, where no seismic sources nor receivers are necessarily present. We call this "box tomography" [4]. The essential difference between box-tomography and standard tomographic methods is that the numerical modeling (i.e. the raytracing in travel time tomography and the wave propagation in waveform tomography or full waveform inversion) is completely confined within the small box-region imaged. Thus, box tomography is a lot more efficient than global tomography (i.e. where we invert for the velocity in the larger volume that encompasses all the sources and receivers), for imaging localised objects. We present 2D and 3D examples showing that box tomography can be employed for imaging structures present within the D'' region at the base of the mantle. Further, we show that box-tomography performs well even in the difficult situation where the velocity distribution in the mantle above the target structure is not known a-priori. REFERENCES [1] French, S. W. and B. Romanowicz (2015) Broad Plumes at the base of the mantle beneath major hotspots, Nature, 525, 95-99 [2] Masson, Y., Cupillard, P., Capdeville, Y., & Romanowicz, B. (2013). On the numerical implementation of time-reversal mirrors for tomographic imaging. Geophysical Journal International, ggt459. [3] Masson, Y., & Romanowicz, B. (2017). Fast computation of synthetic seismograms within a medium containing remote localized perturbations: a numerical solution to the scattering problem. Geophysical Journal International, 208(2), 674-692. [4] Masson, Y., & Romanowicz, B. (2017). Box Tomography: Localised imaging of remote targets buried in an unknown medium, a step forward for understanding key structures in the deep Earth. Geophysical Journal International, (under review).
Application of a Three-Layer Photochemical Box Model in an Athens Street Canyon.
Proyou, Athena G; Ziomas, Loannis C; Stathopoulos, Antony
1998-05-01
The aim of this paper is to show that a photochemical box model could describe the air pollution diurnal profiles within a typical street canyon in the city of Athens. As sophisticated three-dimensional dispersion models are computationally expensive and they cannot serve to simulate pollution levels in the scale of an urban street canyon, a suitably modified three-layer photochemical box model was applied. A street canyon of Athens with heavy traffic was chosen to apply the aforementioned model. The model was used to calculate pollutant concentrations during two days with meteorological conditions favoring pollutant accumulation. Road traffic emissions were calculated based on existing traffic load measurements. Meteorological data, as well as various pollutant concentrations, in order to compare with the model results, were provided by available measurements. The calculated concentrations were found to be in good agreement with measured concentration levels and show that, when traffic load and traffic composition data are available, this model can be used to predict pollution episodes. It is noteworthy that high concentrations persisted, even after additional traffic restriction measures were taken on the second day because of the high pollution levels.
Experiences in Automated Calibration of a Nickel Equation of State
NASA Astrophysics Data System (ADS)
Carpenter, John H.
2017-06-01
Wide availability of large computers has led to increasing incorporation of computational data, such as from density functional theory molecular dynamics, in the development of equation of state (EOS) models. Once a grid of computational data is available, it is usually left to an expert modeler to model the EOS using traditional techniques. One can envision the possibility of using the increasing computing resources to perform black-box calibration of EOS models, with the goal of reducing the workload on the modeler or enabling non-experts to generate good EOSs with such a tool. Progress towards building such a black-box calibration tool will be explored in the context of developing a new, wide-range EOS for nickel. While some details of the model and data will be shared, the focus will be on what was learned by automatically calibrating the model in a black-box method. Model choices and ensuring physicality will also be discussed. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Explaining electric conductivity using the particle-in-a-box model: quantum superposition is the key
NASA Astrophysics Data System (ADS)
Sivanesan, Umaseh; Tsang, Kin; Izmaylov, Artur F.
2017-12-01
Most of the textbooks explaining electric conductivity in the context of quantum mechanics provide either incomplete or semi-classical explanations that are not connected with the elementary concepts of quantum mechanics. We illustrate the conduction phenomena using the simplest model system in quantum dynamics, a particle in a box (PIB). To induce the particle dynamics, a linear potential tilting the bottom of the box is introduced, which is equivalent to imposing a constant electric field for a charged particle. Although the PIB model represents a closed system that cannot have a flow of electrons through the system, we consider the oscillatory dynamics of the particle probability density as the analogue of the electric current. Relating the amplitude and other parameters of the particle oscillatory dynamics with the gap between the ground and excited states of the PIB model allows us to demonstrate one of the most basic dependencies of electric conductivity on the valence-conduction band gap of the material.
Steam-load-forecasting technique for central-heating plants. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, M.C.; Carnahan, J.V.
Because boilers generally are most efficient at full loads, the Army could achieve significant savings by running fewer boilers at high loads rather than more boilers at low loads. A reliable load prediction technique could help ensure that only those boilers required to meet demand are on line. This report presents the results of an investigation into the feasibility of forecasting heat plant steam loads from historical patterns and weather information. Using steam flow data collected at Fort Benjamin Harrison, IN, a Box-Jenkins transfer function model with an acceptably small prediction error was initially identified. Initial investigation of forecast modelmore » development appeared successful. Dynamic regression methods using actual ambient temperatures yielded the best results. Box-Jenkins univariate models' results appeared slightly less accurate. Since temperature information was not needed for model building and forecasting, however, it is recommended that Box-Jenkins models be considered prime candidates for load forecasting due to their simpler mathematics.« less
NASA Astrophysics Data System (ADS)
Johnson, Michael; Lam, Nick; Brant, Simone; Gray, Christen; Pennise, David
2011-06-01
A simple Monte Carlo single-box model is presented as a first approach toward examining the relationship between emissions of pollutants from fuel/cookstove combinations and the resulting indoor air pollution (IAP) concentrations. The model combines stove emission rates with expected distributions of kitchen volumes and air exchange rates in the developing country context to produce a distribution of IAP concentration estimates. The resulting distribution can be used to predict the likelihood that IAP concentrations will meet air quality guidelines, including those recommended by the World Health Organization (WHO) for fine particulate matter (PM2.5) and carbon monoxide (CO). The model can also be used in reverse to estimate the probability that specific emission factors will result in meeting air quality guidelines. The modeled distributions of indoor PM2.5 concentration estimated that only 4% of homes using fuelwood in a rocket-style cookstove, even under idealized conditions, would meet the WHO Interim-1 annual PM2.5 guideline of 35 μg m-3. According to the model, the PM2.5 emissions that would be required for even 50% of homes to meet this guideline (0.055 g MJ-delivered-1) are lower than those for an advanced gasifier fan stove, while emissions levels similar to liquefied petroleum gas (0.018 g MJ-delivered-1) would be required for 90% of homes to meet the guideline. Although the predicted distribution of PM concentrations (median = 1320 μg m-3) from inputs for traditional wood stoves was within the range of reported values for India (108-3522 μg m-3), the model likely overestimates IAP concentrations. Direct comparison with simultaneously measured emissions rates and indoor concentrations of CO indicated the model overestimated IAP concentrations resulting from charcoal and kerosene emissions in Kenyan kitchens by 3 and 8 times respectively, although it underestimated the CO concentrations resulting from wood-burning cookstoves in India by approximately one half. The potential overestimation of IAP concentrations is thought to stem from the model's assumption that all stove emissions enter the room and are completely mixed. Future versions of the model may be improved by incorporating these factors into the model, as well as more comprehensive and representative data on stove emissions performance, daily cooking energy requirements, and kitchen characteristics.
NASA Astrophysics Data System (ADS)
Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris
2018-02-01
We investigate the predictability of monthly temperature and precipitation by applying automatic univariate time series forecasting methods to a sample of 985 40-year-long monthly temperature and 1552 40-year-long monthly precipitation time series. The methods include a naïve one based on the monthly values of the last year, as well as the random walk (with drift), AutoRegressive Fractionally Integrated Moving Average (ARFIMA), exponential smoothing state-space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components (BATS), simple exponential smoothing, Theta and Prophet methods. Prophet is a recently introduced model inspired by the nature of time series forecasted at Facebook and has not been applied to hydrometeorological time series before, while the use of random walk, BATS, simple exponential smoothing and Theta is rare in hydrology. The methods are tested in performing multi-step ahead forecasts for the last 48 months of the data. We further investigate how different choices of handling the seasonality and non-normality affect the performance of the models. The results indicate that: (a) all the examined methods apart from the naïve and random walk ones are accurate enough to be used in long-term applications; (b) monthly temperature and precipitation can be forecasted to a level of accuracy which can barely be improved using other methods; (c) the externally applied classical seasonal decomposition results mostly in better forecasts compared to the automatic seasonal decomposition used by the BATS and Prophet methods; and (d) Prophet is competitive, especially when it is combined with externally applied classical seasonal decomposition.
Han, Cong; Kronmal, Richard
2004-12-15
Box-Cox transformation is investigated for regression models for left-censored data. Examples are provided using coronary calcification data from the Multi-Ethnic Study of Atherosclerosis and pharmacokinetic data of a nicotine nasal spray. Copyright 2004 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
The compelling elegance of using genome-wide scans to detect the signature of selection is difficult to resist, but is countered by the low demonstrated efficacy of pinpointing the actual genes and traits that are the targets of selection in non-model species. While the difficulty of going from a s...
A Short-Term Forecasting Procedure for Institution Enrollments.
ERIC Educational Resources Information Center
Pfitzner, Charles Barry
1987-01-01
Applies the Box-Jenkins time series methodology to enrollment data for the Virginia community college system. Describes the enrollment data set, the Box-Jenkins approach, and the forecasting results. Discusses the value of one-quarter ahead enrollment forecasts and implications for practice. Provides a technical discussion of the model. (DMM)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
.... Farina Lima, 2170, Sao Jose dos Campos--SP, CEP: 12227-901--PO Box: 38/2, BRASIL, telephone: ++55 12 3927... Campos--SP, CEP: 12227-901--PO Box: 38/2, BRASIL, telephone: ++55 12 3927-5383; fax: ++55 12 3927-2610; E...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-08
..., Sao Jose dos Campos--SP, CEP: 12227-901--PO Box: 36/2, BRASIL; telephone: ++55 12 3927-5383; fax: ++55... Campos--SP, CEP: 12227-901--PO Box: 36/2, BRASIL; telephone: ++55 12 3927-5383; fax: ++55 12 3927-2619; E...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
..., Sao Jose dos Campos--SP, CEP: 12227-901--P.O. Box: 38/2, BRASIL, telephone: ++55 12 3927-5383; fax... Support, Av. Brig. Farina Lima, 2170, Sao Jose dos Campos--SP, CEP: 12227-901--P.O. Box: 38/2, BRASIL...
Combat Identification Modeling Using Neural Networks Techniques
2009-03-01
Ybarvector SSpe ANOVA Xhatp; clear Yhatp U Z xi xerror yerror Tcrit BoxCoxusedlamda BoxCoxusedlog; clear leveragepoints Cooks DFFITS Cooksinfluence...counter lofFo e; clear lofFpvalue SSlof SSpe StdErr To Tstat Tpvalue Bhat Rstud I VIF; clear invR Tcrit X LofFit ALLREG BOXCOX GRAPHS globalp Warnng
Combat Identification Modeling Using Robust Optimization Techniques
2008-03-01
ePRESS Si2 Rstud t nvector groupnum Ybarvector SSpe ANOVA Xhatp; clear Yhatp U Z xi xerror yerror Tcrit BoxCoxusedlamda BoxCoxusedlog; clear...dfsslof; clear nvector ttlvector Ybarvector m j N groupnum counter lofFo e; clear lofFpvalue SSlof SSpe StdErr To Tstat Tpvalue Bhat Rstud I VIF
NASA Astrophysics Data System (ADS)
Campo, Lorenzo; Castelli, Fabio; Caparrini, Francesca
2010-05-01
The modern distributed hydrological models allow the representation of the different surface and subsurface phenomena with great accuracy and high spatial and temporal resolution. Such complexity requires, in general, an equally accurate parametrization. A number of approaches have been followed in this respect, from simple local search method (like Nelder-Mead algorithm), that minimize a cost function representing some distance between model's output and available measures, to more complex approaches like dynamic filters (such as the Ensemble Kalman Filter) that carry on an assimilation of the observations. In this work the first approach was followed in order to compare the performances of three different direct search algorithms on the calibration of a distributed hydrological balance model. The direct search family can be defined as that category of algorithms that make no use of derivatives of the cost function (that is, in general, a black box) and comprehend a large number of possible approaches. The main benefit of this class of methods is that they don't require changes in the implementation of the numerical codes to be calibrated. The first algorithm is the classical Nelder-Mead, often used in many applications and utilized as reference. The second algorithm is a GSS (Generating Set Search) algorithm, built in order to guarantee the conditions of global convergence and suitable for a parallel and multi-start implementation, here presented. The third one is the EGO algorithm (Efficient Global Optimization), that is particularly suitable to calibrate black box cost functions that require expensive computational resource (like an hydrological simulation). EGO minimizes the number of evaluations of the cost function balancing the need to minimize a response surface that approximates the problem and the need to improve the approximation sampling where prediction error may be high. The hydrological model to be calibrated was MOBIDIC, a complete balance distributed model developed at the Department of Civil and Environmental Engineering of the University of Florence. Discussion on the comparisons between the effectiveness of the different algorithms on different cases of study on Central Italy basins is provided.
Three-dimensional Monte Carlo calculation of atmospheric thermal heating rates
NASA Astrophysics Data System (ADS)
Klinger, Carolin; Mayer, Bernhard
2014-09-01
We present a fast Monte Carlo method for thermal heating and cooling rates in three-dimensional atmospheres. These heating/cooling rates are relevant particularly in broken cloud fields. We compare forward and backward photon tracing methods and present new variance reduction methods to speed up the calculations. For this application it turns out that backward tracing is in most cases superior to forward tracing. Since heating rates may be either calculated as the difference between emitted and absorbed power per volume or alternatively from the divergence of the net flux, both approaches have been tested. We found that the absorption/emission method is superior (with respect to computational time for a given uncertainty) if the optical thickness of the grid box under consideration is smaller than about 5 while the net flux divergence may be considerably faster for larger optical thickness. In particular, we describe the following three backward tracing methods: the first and most simple method (EMABS) is based on a random emission of photons in the grid box of interest and a simple backward tracing. Since only those photons which cross the grid box boundaries contribute to the heating rate, this approach behaves poorly for large optical thicknesses which are common in the thermal spectral range. For this reason, the second method (EMABS_OPT) uses a variance reduction technique to improve the distribution of the photons in a way that more photons are started close to the grid box edges and thus contribute to the result which reduces the uncertainty. The third method (DENET) uses the flux divergence approach where - in backward Monte Carlo - all photons contribute to the result, but in particular for small optical thickness the noise becomes large. The three methods have been implemented in MYSTIC (Monte Carlo code for the phYSically correct Tracing of photons In Cloudy atmospheres). All methods are shown to agree within the photon noise with each other and with a discrete ordinate code for a one-dimensional case. Finally a hybrid method is built using a combination of EMABS_OPT and DENET, and application examples are shown. It should be noted that for this application, only little improvement is gained by EMABS_OPT compared to EMABS.
Li, Jing; Pan, Qunwan; Zhu, Zaiman; Li, Min; Bai, Yu; Yu, Ran
2015-05-01
To investigate the changes of telemetry electrical activity in the infralimbic cortex (IL) of morphine-dependent rats with extinguished drug-seeking behavior. SD rats were randomly divided into model group and control group and received operations of brain stereotaxic electrode embedding in the IL. The rats in the model group were induced to acquire morphine dependence and then received subsequent extinction training, and the changes of electrical activity in the IL were recorded with a physical wireless telemetry system. In rats with morphine dependence, the time staying in the white box was significantly longer on days 1 and 2 after withdrawal than that before morphine injection and that of the control rats, but was obviously reduced on days 1 and 2 after extinction training to the control level. Compared with the control group, the morphine-dependent rats on day 2 following withdrawal showed significantly increased β wave and decreased δ wave when they stayed in the white box but significantly increased δ wave and decreased α wave and β wave when they shuttled from the black to the white box. On day 2 of extinction, the model rats, when staying in the white box, showed significantly decreased θ wave compared with that of the control rats group but decreased β wave and θ wave and increased δ wave compared with those in the withdrawal period. When they shuttled from black to white box, the model rats showed decreased δ wave and increased α wave and β wave compared with those in the withdrawal period. Morphine-dependent rats have abnormal changes of electrical activity in the IL in drug-seeking extinction to affect their drug-seeking motive and inhibit the expression and maintenance of drug-seeking behaviors.
Assessing household health expenditure with Box-Cox censoring models.
Chaze, Jean-Paul
2005-09-01
In order to assess the combined presence of zero expenditures and a heavily skewed distribution of positive expenditures, the Box-Cox transformation with location parameter is used to define a set of models generalising the standard Tobit, Heckman selection and double-hurdle models. Extended flexibility with respect to previous specifications is introduced, notably regarding negative transformation parameters, which may prove necessary for medical expenditures, and corner-solution outcomes. An illustration is provided by the analysis of household health expenditure in Switzerland. Copyright (c) 2005 John Wiley & Sons, Ltd.
Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors
Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios
2017-01-01
Abstract Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. PMID:28973457
Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors.
Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios; Zhang, Jinwei; Stathopoulos, Constantinos
2017-09-29
Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs
Yip, W. S. Vincent; Shigematsu, Hideki; Taylor, David W.; Baserga, Susan J.
2016-01-01
Ribosomal RNA (rRNA) modifications are essential for ribosome function in all cellular organisms. Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze 2′-O-methylation, one rRNA modification type in Eukarya and Archaea. Negatively stained electron microscopy (EM) models of archaeal box C/D sRNPs have demonstrated the dimeric sRNP (di-sRNP) architecture, which has been corroborated by nuclear magnetic resonance (NMR) studies. Due to limitations of the structural techniques, the orientation of the box C/D sRNAs has remained unclear. Here, we have used cryo-EM to elucidate the sRNA orientation in a M. jannaschii box C/D di-sRNP. The cryo-EM reconstruction suggests a parallel orientation of the two sRNAs. Biochemical and structural analyses of sRNPs assembled with mutant sRNAs indicate a potential interaction between the sRNA stem ends. Our results suggest that the parallel arrangement of the sRNAs juxtaposes their stem ends into close proximity to allow for a stabilizing interaction that helps maintain the di-sRNP architecture. PMID:27342279
A fast ellipse extended target PHD filter using box-particle implementation
NASA Astrophysics Data System (ADS)
Zhang, Yongquan; Ji, Hongbing; Hu, Qi
2018-01-01
This paper presents a box-particle implementation of the ellipse extended target probability hypothesis density (ET-PHD) filter, called the ellipse extended target box particle PHD (EET-BP-PHD) filter, where the extended targets are described as a Poisson model developed by Gilholm et al. and the term "box" is here equivalent to the term "interval" used in interval analysis. The proposed EET-BP-PHD filter is capable of dynamically tracking multiple ellipse extended targets and estimating the target states and the number of targets, in the presence of clutter measurements, false alarms and missed detections. To derive the PHD recursion of the EET-BP-PHD filter, a suitable measurement likelihood is defined for a given partitioning cell, and the main implementation steps are presented along with the necessary box approximations and manipulations. The limitations and capabilities of the proposed EET-BP-PHD filter are illustrated by simulation examples. The simulation results show that a box-particle implementation of the ET-PHD filter can avoid the high number of particles and reduce computational burden, compared to a particle implementation of that for extended target tracking.
NASA Technical Reports Server (NTRS)
York, P.; Labell, R. W.
1980-01-01
An aircraft wing weight estimating method based on a component buildup technique is described. A simplified analytically derived beam model, modified by a regression analysis, is used to estimate the wing box weight, utilizing a data base of 50 actual airplane wing weights. Factors representing materials and methods of construction were derived and incorporated into the basic wing box equations. Weight penalties to the wing box for fuel, engines, landing gear, stores and fold or pivot are also included. Methods for estimating the weight of additional items (secondary structure, control surfaces) have the option of using details available at the design stage (i.e., wing box area, flap area) or default values based on actual aircraft from the data base.
NASA Technical Reports Server (NTRS)
Van Dyke, Michael B.
2014-01-01
During random vibration testing of electronic boxes there is often a desire to know the dynamic response of certain internal printed wiring boards (PWBs) for the purpose of monitoring the response of sensitive hardware or for post-test forensic analysis in support of anomaly investigation. Due to restrictions on internally mounted accelerometers for most flight hardware there is usually no means to empirically observe the internal dynamics of the unit, so one must resort to crude and highly uncertain approximations. One common practice is to apply Miles Equation, which does not account for the coupled response of the board in the chassis, resulting in significant over- or under-prediction. This paper explores the application of simple multiple-degree-of-freedom lumped parameter modeling to predict the coupled random vibration response of the PWBs in their fundamental modes of vibration. A simple tool using this approach could be used during or following a random vibration test to interpret vibration test data from a single external chassis measurement to deduce internal board dynamics by means of a rapid correlation analysis. Such a tool might also be useful in early design stages as a supplemental analysis to a more detailed finite element analysis to quickly prototype and analyze the dynamics of various design iterations. After developing the theoretical basis, a lumped parameter modeling approach is applied to an electronic unit for which both external and internal test vibration response measurements are available for direct comparison. Reasonable correlation of the results demonstrates the potential viability of such an approach. Further development of the preliminary approach presented in this paper will involve correlation with detailed finite element models and additional relevant test data.
A photosynthesis-based two-leaf canopy stomatal ...
A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorology and air quality modeling system—WRF/CMAQ (Weather Research and Forecast model and Community Multiscale Air Quality model). The photosynthesis-based model for PX LSM (PX PSN) is evaluated at a FLUXNET site for implementation against different parameterizations and the current PX LSM approach with a simple Jarvis function (PX Jarvis). Latent heat flux (LH) from PX PSN is further evaluated at five FLUXNET sites with different vegetation types and landscape characteristics. Simulated ozone deposition and flux from PX PSN are evaluated at one of the sites with ozone flux measurements. Overall, the PX PSN simulates LH as well as the PX Jarvis approach. The PX PSN, however, shows distinct advantages over the PX Jarvis approach for grassland that likely result from its treatment of C3 and C4 plants for CO2 assimilation. Simulations using Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) rather than LAI measured at each site assess how the model would perform with grid averaged data used in WRF/CMAQ. MODIS LAI estimates degrade model performance at all sites but one site having exceptionally old and tall trees. Ozone deposition velocity and ozone flux along with LH
On-line estimation of error covariance parameters for atmospheric data assimilation
NASA Technical Reports Server (NTRS)
Dee, Dick P.
1995-01-01
A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including uniformly distributed model error and time-dependent model error statistics.
BEATBOX v1.0: Background Error Analysis Testbed with Box Models
NASA Astrophysics Data System (ADS)
Knote, Christoph; Barré, Jérôme; Eckl, Max
2018-02-01
The Background Error Analysis Testbed (BEATBOX) is a new data assimilation framework for box models. Based on the BOX Model eXtension (BOXMOX) to the Kinetic Pre-Processor (KPP), this framework allows users to conduct performance evaluations of data assimilation experiments, sensitivity analyses, and detailed chemical scheme diagnostics from an observation simulation system experiment (OSSE) point of view. The BEATBOX framework incorporates an observation simulator and a data assimilation system with the possibility of choosing ensemble, adjoint, or combined sensitivities. A user-friendly, Python-based interface allows for the tuning of many parameters for atmospheric chemistry and data assimilation research as well as for educational purposes, for example observation error, model covariances, ensemble size, perturbation distribution in the initial conditions, and so on. In this work, the testbed is described and two case studies are presented to illustrate the design of a typical OSSE experiment, data assimilation experiments, a sensitivity analysis, and a method for diagnosing model errors. BEATBOX is released as an open source tool for the atmospheric chemistry and data assimilation communities.
Finite element cochlea box model - Mechanical and electrical analysis of the cochlea
NASA Astrophysics Data System (ADS)
Nikolic, Milica; Teal, Paul D.; Isailovic, Velibor; Filipović, Nenad
2015-12-01
The primary role of the cochlea is to transform external sound stimuli into mechanical vibrations and then to neural impulses which are sent to the brain. A simplified cochlea box model was developed using the finite element method. Firstly, a mechanical model of the cochlea was analyzed. The box model consists of the basilar membrane and two fluid chambers - the scala vestibuli and scala tympani. The third chamber, the scala media, was neglected in the mechanical analysis. The best agreement with currently available analytical and experimental results was obtained when behavior of the fluid in the chambers was described using the wave acoustic equation and behavior of the basilar membrane was modeled with Newtonian dynamics. The obtained results show good frequency mapping. The second approach was to use an active model of the cochlea in which the Organ of Corti was included. The operation of the Organ of Corti involves the generation of current, caused by mechanical vibration. This current in turn causes a force applied to the basilar membrane, creating in this way an active feedback mechanism. A state space representation of the electro-mechanical model from existing literature was implemented and a first comparison with the finite element method is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loveday, D.L.; Craggs, C.
Box-Jenkins-based multivariate stochastic modeling is carried out using data recorded from a domestic heating system. The system comprises an air-source heat pump sited in the roof space of a house, solar assistance being provided by the conventional tile roof acting as a radiation absorber. Multivariate models are presented which illustrate the time-dependent relationships between three air temperatures - at external ambient, at entry to, and at exit from, the heat pump evaporator. Using a deterministic modeling approach, physical interpretations are placed on the results of the multivariate technique. It is concluded that the multivariate Box-Jenkins approach is a suitable techniquemore » for building thermal analysis. Application to multivariate Box-Jenkins approach is a suitable technique for building thermal analysis. Application to multivariate model-based control is discussed, with particular reference to building energy management systems. It is further concluded that stochastic modeling of data drawn from a short monitoring period offers a means of retrofitting an advanced model-based control system in existing buildings, which could be used to optimize energy savings. An approach to system simulation is suggested.« less
Alton Ochsner's Card File: A Profile of Medical History
Trotter, Michael C.
2010-01-01
Alton Ochsner was a giant of American surgery. His career encompassed patient care, teaching, and research as symbolized on the original seal of the Ochsner Clinic. His ideas were innovative and groundbreaking on many fronts, making him and the Ochsner Clinic nationally and internationally known. Examination of his card file, a simple metal box with 3 × 5 index cards and subject dividers, gives extraordinary insight into the professional interests of this remarkable physician and surgeon. PMID:21603382
StormReady in a Box: Enhancing NOAA's Presence in Schools
NASA Astrophysics Data System (ADS)
Grondin, N. S.; Franks, C.
2015-12-01
The National Weather Service StormReady Supporter program exists to give schools, companies, TV stations, and other facilities the opportunity to earn recognition for their weather preparedness and awareness. Requirements to earn StormReady Supporter status include having a facility warning point, use of NOAA Weather Radios, and weather hazard Emergency Operation Plans. Despite the increasing importance of weather preparedness in schools, only 1.2% of Minnesota schools are deemed StormReady by the National Weather Service. It was determined that the major impedance for schools becoming StormReady Supporters is the lack of time for administrators to engage in anything "extra" beyond their listed duties. As part of a 2015 Hollings Scholar project, the StormReady in a Box concept was developed to remedy this, by empowering teachers and students to take charge and complete the StormReady Supporter application for their school. StormReady in a Box is a project developed for Junior High School students to learn about weather preparedness and to help their school acquire StormReady status. The project was designed to be relevant to the Minnesota State Education Standards in Science, be simple for teachers to do with their students, and most importantly, to be enjoyable for Junior High School age students to do. The project was also designed to enhance critical thinking skills and logical reasoning abilities, as they relate to the StormReady Supporter application. This presentation will present the overall rationale for the undertaking of this project, the creation of, and the logical next steps for the StormReady in a Box project.
Shannon, Robin; Glowacki, David R
2018-02-15
The chemical master equation is a powerful theoretical tool for analyzing the kinetics of complex multiwell potential energy surfaces in a wide range of different domains of chemical kinetics spanning combustion, atmospheric chemistry, gas-surface chemistry, solution phase chemistry, and biochemistry. There are two well-established methodologies for solving the chemical master equation: a stochastic "kinetic Monte Carlo" approach and a matrix-based approach. In principle, the results yielded by both approaches are identical; the decision of which approach is better suited to a particular study depends on the details of the specific system under investigation. In this Article, we present a rigorous method for accelerating stochastic approaches by several orders of magnitude, along with a method for unbiasing the accelerated results to recover the "true" value. The approach we take in this paper is inspired by the so-called "boxed molecular dynamics" (BXD) method, which has previously only been applied to accelerate rare events in molecular dynamics simulations. Here we extend BXD to design a simple algorithmic strategy for accelerating rare events in stochastic kinetic simulations. Tests on a number of systems show that the results obtained using the BXD rare event strategy are in good agreement with unbiased results. To carry out these tests, we have implemented a kinetic Monte Carlo approach in MESMER, which is a cross-platform, open-source, and freely available master equation solver.
Particle-in-a-box model of exciton absorption and electroabsorption in conjugated polymers
NASA Astrophysics Data System (ADS)
Pedersen, Thomas G.
2000-12-01
The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces a line shape characterized by a square-root singularity in agreement with experimental spectra near the absorption edge. The effects of finite conjugation length on both absorption and electroabsorption spectra are analyzed.
On the biomechanical analysis of the calories expended in a straight boxing jab.
Zohdi, T I
2017-04-01
Boxing and related sports activities have become a standard workout regime at many fitness studios worldwide. Oftentimes, people are interested in the calories expended during these workouts. This note focuses on determining the calories in a boxer's jab, using kinematic vector-loop relations and basic work-energy principles. Numerical simulations are undertaken to illustrate the basic model. Multi-limb extensions of the model are also discussed. © 2017 The Author(s).
Ensemble of Chaotic and Naive Approaches for Performance Enhancement in Video Encryption.
Chandrasekaran, Jeyamala; Thiruvengadam, S J
2015-01-01
Owing to the growth of high performance network technologies, multimedia applications over the Internet are increasing exponentially. Applications like video conferencing, video-on-demand, and pay-per-view depend upon encryption algorithms for providing confidentiality. Video communication is characterized by distinct features such as large volume, high redundancy between adjacent frames, video codec compliance, syntax compliance, and application specific requirements. Naive approaches for video encryption encrypt the entire video stream with conventional text based cryptographic algorithms. Although naive approaches are the most secure for video encryption, the computational cost associated with them is very high. This research work aims at enhancing the speed of naive approaches through chaos based S-box design. Chaotic equations are popularly known for randomness, extreme sensitivity to initial conditions, and ergodicity. The proposed methodology employs two-dimensional discrete Henon map for (i) generation of dynamic and key-dependent S-box that could be integrated with symmetric algorithms like Blowfish and Data Encryption Standard (DES) and (ii) generation of one-time keys for simple substitution ciphers. The proposed design is tested for randomness, nonlinearity, avalanche effect, bit independence criterion, and key sensitivity. Experimental results confirm that chaos based S-box design and key generation significantly reduce the computational cost of video encryption with no compromise in security.
What Box: A task for assessing language lateralization in young children.
Badcock, Nicholas A; Spooner, Rachael; Hofmann, Jessica; Flitton, Atlanta; Elliott, Scott; Kurylowicz, Lisa; Lavrencic, Louise M; Payne, Heather M; Holt, Georgina K; Holden, Anneka; Churches, Owen F; Kohler, Mark J; Keage, Hannah A D
2018-07-01
The assessment of active language lateralization in infants and toddlers is challenging. It requires an imaging tool that is unintimidating, quick to setup, and robust to movement, in addition to an engaging and cognitively simple language processing task. Functional Transcranial Doppler Ultrasound (fTCD) offers a suitable technique and here we report on a suitable method to elicit active language production in young children. The 34-second "What Box" trial presents an animated face "searching" for an object. The face "finds" a box that opens to reveal a to-be-labelled object. In a sample of 95 children (1 to 5 years of age), 81% completed the task-32% with ≥10 trials. The task was validated (ρ = 0.4) against the gold standard Word Generation task in a group of older adults (n = 65, 60-85 years of age), though was less likely to categorize lateralization as left or right, indicative of greater measurement variability. Existing methods for active language production have been used with 2-year-old children while passive listening has been conducted with sleeping 6-month-olds. This is the first active method to be successfully employed with infants through to pre-schoolers, forming a useful tool for populations in which complex instructions are problematic.
Application of fully stressed design procedures to redundant and non-isotropic structures
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.; Tsach, U.
1980-01-01
An evaluation is presented of fully stressed design procedures for sizing highly redundant structures including structures made of composite materials. The evaluation is carried out by sizing three structures: a simple box beam of either composite or metal construction; a low aspect ratio titanium wing; and a titanium arrow wing for a conceptual supersonic cruise aircraft. All three structures are sized by ordinary fully-stressed design (FSD) and thermal fully stressed design (TFSD) for combined mechanical and thermal loads. Where possible, designs are checked by applying rigorous mathematical programming techniques to the structures. It is found that FSD and TFSD produce optimum designs for the metal box beam, but produce highly non-optimum designs for the composite box beam. Results from the delta wing and arrow wing indicate that FSD and TFSD exhibits slow convergence for highly redundant metal structures. Further, TFSD exhibits slow oscillatory convergence behavior for the arrow wing for very high temperatures. In all cases where FSD and TFSD perform poorly either in obtaining nonoptimum designs or in converging slowly, the assumptions on which the algorithms are based are grossly violated. The use of scaling, however, is found to be very effective in obtaining fast convergence and efficiently produces safe designs even for those cases when FSD and TFSD alone are ineffective.
Ensemble of Chaotic and Naive Approaches for Performance Enhancement in Video Encryption
Chandrasekaran, Jeyamala; Thiruvengadam, S. J.
2015-01-01
Owing to the growth of high performance network technologies, multimedia applications over the Internet are increasing exponentially. Applications like video conferencing, video-on-demand, and pay-per-view depend upon encryption algorithms for providing confidentiality. Video communication is characterized by distinct features such as large volume, high redundancy between adjacent frames, video codec compliance, syntax compliance, and application specific requirements. Naive approaches for video encryption encrypt the entire video stream with conventional text based cryptographic algorithms. Although naive approaches are the most secure for video encryption, the computational cost associated with them is very high. This research work aims at enhancing the speed of naive approaches through chaos based S-box design. Chaotic equations are popularly known for randomness, extreme sensitivity to initial conditions, and ergodicity. The proposed methodology employs two-dimensional discrete Henon map for (i) generation of dynamic and key-dependent S-box that could be integrated with symmetric algorithms like Blowfish and Data Encryption Standard (DES) and (ii) generation of one-time keys for simple substitution ciphers. The proposed design is tested for randomness, nonlinearity, avalanche effect, bit independence criterion, and key sensitivity. Experimental results confirm that chaos based S-box design and key generation significantly reduce the computational cost of video encryption with no compromise in security. PMID:26550603
The morphology and classification of α ganglion cells in the rat retinae: a fractal analysis study.
Jelinek, Herbert F; Ristanović, Dušan; Milošević, Nebojša T
2011-09-30
Rat retinal ganglion cells have been proposed to consist of a varying number of subtypes. Dendritic morphology is an essential aspect of classification and a necessary step toward understanding structure-function relationships of retinal ganglion cells. This study aimed at using a heuristic classification procedure in combination with the box-counting analysis to classify the alpha ganglion cells in the rat retinae based on the dendritic branching pattern and to investigate morphological changes with retinal eccentricity. The cells could be divided into two groups: cells with simple dendritic pattern (box dimension lower than 1.390) and cells with complex dendritic pattern (box dimension higher than 1.390) according to their dendritic branching pattern complexity. Both were further divided into two subtypes due to the stratification within the inner plexiform layer. In the present study we have shown that the alpha rat RCGs can be classified further by their dendritic branching complexity and thus extend those of previous reports that fractal analysis can be successfully used in neuronal classification, particularly that the fractal dimension represents a robust and sensitive tool for the classification of retinal ganglion cells. A hypothesis of possible functional significance of our classification scheme is also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Black-hole universe: time evolution.
Yoo, Chul-Moon; Okawa, Hirotada; Nakao, Ken-ichi
2013-10-18
Time evolution of a black hole lattice toy model universe is simulated. The vacuum Einstein equations in a cubic box with a black hole at the origin are numerically solved with periodic boundary conditions on all pairs of faces opposite to each other. Defining effective scale factors by using the area of a surface and the length of an edge of the cubic box, we compare them with that in the Einstein-de Sitter universe. It is found that the behavior of the effective scale factors is well approximated by that in the Einstein-de Sitter universe. In our model, if the box size is sufficiently larger than the horizon radius, local inhomogeneities do not significantly affect the global expansion law of the Universe even though the inhomogeneity is extremely nonlinear.
NASA Astrophysics Data System (ADS)
Stone, Daniel; Sherwen, Tomás; Evans, Mathew J.; Vaughan, Stewart; Ingham, Trevor; Whalley, Lisa K.; Edwards, Peter M.; Read, Katie A.; Lee, James D.; Moller, Sarah J.; Carpenter, Lucy J.; Lewis, Alastair C.; Heard, Dwayne E.
2018-03-01
The chemistry of the halogen species bromine and iodine has a range of impacts on tropospheric composition, and can affect oxidising capacity in a number of ways. However, recent studies disagree on the overall sign of the impacts of halogens on the oxidising capacity of the troposphere. We present simulations of OH and HO2 radicals for comparison with observations made in the remote tropical ocean boundary layer during the Seasonal Oxidant Study at the Cape Verde Atmospheric Observatory in 2009. We use both a constrained box model, using detailed chemistry derived from the Master Chemical Mechanism (v3.2), and the three-dimensional global chemistry transport model GEOS-Chem. Both model approaches reproduce the diurnal trends in OH and HO2. Absolute observed concentrations are well reproduced by the box model but are overpredicted by the global model, potentially owing to incomplete consideration of oceanic sourced radical sinks. The two models, however, differ in the impacts of halogen chemistry. In the box model, halogen chemistry acts to increase OH concentrations (by 9.8 % at midday at the Cape Verde Atmospheric Observatory), while the global model exhibits a small increase in OH at the Cape Verde Atmospheric Observatory (by 0.6 % at midday) but overall shows a decrease in the global annual mass-weighted mean OH of 4.5 %. These differences reflect the variety of timescales through which the halogens impact the chemical system. On short timescales, photolysis of HOBr and HOI, produced by reactions of HO2 with BrO and IO, respectively, increases the OH concentration. On longer timescales, halogen-catalysed ozone destruction cycles lead to lower primary production of OH radicals through ozone photolysis, and thus to lower OH concentrations. The global model includes more of the longer timescale responses than the constrained box model, and overall the global impact of the longer timescale response (reduced primary production due to lower O3 concentrations) overwhelms the shorter timescale response (enhanced cycling from HO2 to OH), and thus the global OH concentration decreases. The Earth system contains many such responses on a large range of timescales. This work highlights the care that needs to be taken to understand the full impact of any one process on the system as a whole.
Lui, Lauren M; Uzilov, Andrew V; Bernick, David L; Corredor, Andrea; Lowe, Todd M; Dennis, Patrick P
2018-05-16
Archaeal homologs of eukaryotic C/D box small nucleolar RNAs (C/D box sRNAs) guide precise 2'-O-methyl modification of ribosomal and transfer RNAs. Although C/D box sRNA genes constitute one of the largest RNA gene families in archaeal thermophiles, most genomes have incomplete sRNA gene annotation because reliable, fully automated detection methods are not available. We expanded and curated a comprehensive gene set across six species of the crenarchaeal genus Pyrobaculum, particularly rich in C/D box sRNA genes. Using high-throughput small RNA sequencing, specialized computational searches and comparative genomics, we analyzed 526 Pyrobaculum C/D box sRNAs, organizing them into 110 families based on synteny and conservation of guide sequences which determine methylation targets. We examined gene duplications and rearrangements, including one family that has expanded in a pattern similar to retrotransposed repetitive elements in eukaryotes. New training data and inclusion of kink-turn secondary structural features enabled creation of an improved search model. Our analyses provide the most comprehensive, dynamic view of C/D box sRNA evolutionary history within a genus, in terms of modification function, feature plasticity, and gene mobility.
Does the Budyko curve reflect a maximum power state of hydrological systems? A backward analysis
NASA Astrophysics Data System (ADS)
Westhoff, Martijn; Zehe, Erwin; Archambeau, Pierre; Dewals, Benjamin
2016-04-01
Almost all catchments plot within a small envelope around the Budyko curve. This apparent behaviour suggests that organizing principles may play a role in the evolution of catchments. In this paper we applied the thermodynamic principle of maximum power as the organizing principle. In a top-down approach we derived mathematical formulations of the relation between relative wetness and gradients driving runoff and evaporation for a simple one-box model. We did this in an inverse manner such that when the conductances are optimized with the maximum power principle, the steady state behaviour of the model leads exactly to a point on the asymptotes of the Budyko curve. Subsequently, we added dynamics in forcing and actual evaporations, causing the Budyko curve to deviate from the asymptotes. Despite the simplicity of the model, catchment observations compare reasonably well with the Budyko curves subject to observed dynamics in rainfall and actual evaporation. Thus by constraining the - with the maximum power principle optimized - model with the asymptotes of the Budyko curve we were able to derive more realistic values of the aridity and evaporation index without any parameter calibration. Future work should focus on better representing the boundary conditions of real catchments and eventually adding more complexity to the model.
Does the Budyko curve reflect a maximum-power state of hydrological systems? A backward analysis
NASA Astrophysics Data System (ADS)
Westhoff, M.; Zehe, E.; Archambeau, P.; Dewals, B.
2016-01-01
Almost all catchments plot within a small envelope around the Budyko curve. This apparent behaviour suggests that organizing principles may play a role in the evolution of catchments. In this paper we applied the thermodynamic principle of maximum power as the organizing principle. In a top-down approach we derived mathematical formulations of the relation between relative wetness and gradients driving run-off and evaporation for a simple one-box model. We did this in an inverse manner such that, when the conductances are optimized with the maximum-power principle, the steady-state behaviour of the model leads exactly to a point on the asymptotes of the Budyko curve. Subsequently, we added dynamics in forcing and actual evaporation, causing the Budyko curve to deviate from the asymptotes. Despite the simplicity of the model, catchment observations compare reasonably well with the Budyko curves subject to observed dynamics in rainfall and actual evaporation. Thus by constraining the model that has been optimized with the maximum-power principle with the asymptotes of the Budyko curve, we were able to derive more realistic values of the aridity and evaporation index without any parameter calibration. Future work should focus on better representing the boundary conditions of real catchments and eventually adding more complexity to the model.
One-Dimensional Oscillator in a Box
ERIC Educational Resources Information Center
Amore, Paolo; Fernandez, Francisco M.
2010-01-01
We discuss a quantum-mechanical model of two particles that interact by means of a harmonic potential and are confined to a one-dimensional box with impenetrable walls. We apply perturbation theory to the cases of different and equal masses and analyse the symmetry of the states in the latter case. We compare the approximate perturbation results…
Modeling Wind Wave Evolution from Deep to Shallow Water
2013-09-30
Janssen Theiss Research, PO Box 1533, El Granada , CA 94018 t: 415 609 5359 e: ttjanssen@gmail.com Thomas H. C. Herbers Department of Oceanography...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Theiss Research,PO Box 1533,El Granada ,CA,94018 8
The Use of Computer-Assisted Identification of ARIMA Time-Series.
ERIC Educational Resources Information Center
Brown, Roger L.
This study was conducted to determine the effects of using various levels of tutorial statistical software for the tentative identification of nonseasonal ARIMA models, a statistical technique proposed by Box and Jenkins for the interpretation of time-series data. The Box-Jenkins approach is an iterative process encompassing several stages of…
Fault detection method for railway wheel flat using an adaptive multiscale morphological filter
NASA Astrophysics Data System (ADS)
Li, Yifan; Zuo, Ming J.; Lin, Jianhui; Liu, Jianxin
2017-02-01
This study explores the capacity of the morphology analysis for railway wheel flat fault detection. A dynamic model of vehicle systems with 56 degrees of freedom was set up along with a wheel flat model to calculate the dynamic responses of axle box. The vehicle axle box vibration signal is complicated because it not only contains the information of wheel defect, but also includes track condition information. Thus, how to extract the influential features of wheels from strong background noise effectively is a typical key issue for railway wheel fault detection. In this paper, an algorithm for adaptive multiscale morphological filtering (AMMF) was proposed, and its effect was evaluated by a simulated signal. And then this algorithm was employed to study the axle box vibration caused by wheel flats, as well as the influence of track irregularity and vehicle running speed on diagnosis results. Finally, the effectiveness of the proposed method was verified by bench testing. Research results demonstrate that the AMMF extracts the influential characteristic of axle box vibration signals effectively and can diagnose wheel flat faults in real time.
Fraccaro, Paolo; Nicolo, Massimo; Bonetto, Monica; Giacomini, Mauro; Weller, Peter; Traverso, Carlo Enrico; Prosperi, Mattia; OSullivan, Dympna
2015-01-27
To investigate machine learning methods, ranging from simpler interpretable techniques to complex (non-linear) "black-box" approaches, for automated diagnosis of Age-related Macular Degeneration (AMD). Data from healthy subjects and patients diagnosed with AMD or other retinal diseases were collected during routine visits via an Electronic Health Record (EHR) system. Patients' attributes included demographics and, for each eye, presence/absence of major AMD-related clinical signs (soft drusen, retinal pigment epitelium, defects/pigment mottling, depigmentation area, subretinal haemorrhage, subretinal fluid, macula thickness, macular scar, subretinal fibrosis). Interpretable techniques known as white box methods including logistic regression and decision trees as well as less interpreitable techniques known as black box methods, such as support vector machines (SVM), random forests and AdaBoost, were used to develop models (trained and validated on unseen data) to diagnose AMD. The gold standard was confirmed diagnosis of AMD by physicians. Sensitivity, specificity and area under the receiver operating characteristic (AUC) were used to assess performance. Study population included 487 patients (912 eyes). In terms of AUC, random forests, logistic regression and adaboost showed a mean performance of (0.92), followed by SVM and decision trees (0.90). All machine learning models identified soft drusen and age as the most discriminating variables in clinicians' decision pathways to diagnose AMD. Both black-box and white box methods performed well in identifying diagnoses of AMD and their decision pathways. Machine learning models developed through the proposed approach, relying on clinical signs identified by retinal specialists, could be embedded into EHR to provide physicians with real time (interpretable) support.
Mortality of riparian box elder from sediment mobilization and extended inundation
Friedman, Jonathan M.; Auble, Gregor T.
1999-01-01
To explore how high flows limit the streamward extent of riparian vegetation we quantified the effects of sediment mobilization and extended inundation on box elder (Acer negundo) saplings along the cobble-bed Gunnison River in Black Canyon of the Gunnison National Monument, Colorado, USA. We counted and aged box elders in 144 plots of 37.2 m2, and combined a hydraulic model with the hydrologic record to determine the maximum shear stress and number of growing-season days inundated for each plot in each year of the record. We quantified the effects of the two mortality factors by calculating the extreme values survived during the lifetime of trees sampled in 1994 and by recounting box elders in the plots following a high flow in 1995. Both mortality factors can be modeled as threshold functions; box elders are killed either by inundation for more than 85 days during the growing season or by shear stress that exceeds the critical value for mobilization of the underlying sediment particles. Construction of upstream reservoirs in the 1960s and 1970s reduced the proportion of the canyon bottom annually cleared of box elders by high flows. Furthermore, because the dams decreased the magnitude of high flows more than their duration, flow regulation has decreased the importance of sediment mobilization relative to extended inundation. We use the threshold functions and cross-section data to develop a response surface predicting the proportion of the canyon bottom cleared at any combination of flow magnitude and duration. This response surface allows vegetation removal to be incorporated into quantitative multi-objective water management decisions.
A novel health indicator for on-line lithium-ion batteries remaining useful life prediction
NASA Astrophysics Data System (ADS)
Zhou, Yapeng; Huang, Miaohua; Chen, Yupu; Tao, Ye
2016-07-01
Prediction of lithium-ion batteries remaining useful life (RUL) plays an important role in an intelligent battery management system. The capacity and internal resistance are often used as the batteries health indicator (HI) for quantifying degradation and predicting RUL. However, on-line measurement of capacity and internal resistance are hardly realizable due to the not fully charged and discharged condition and the extremely expensive cost, respectively. Therefore, there is a great need to find an optional way to deal with this plight. In this work, a novel HI is extracted from the operating parameters of lithium-ion batteries for degradation modeling and RUL prediction. Moreover, Box-Cox transformation is employed to improve HI performance. Then Pearson and Spearman correlation analyses are utilized to evaluate the similarity between real capacity and the estimated capacity derived from the HI. Next, both simple statistical regression technique and optimized relevance vector machine are employed to predict the RUL based on the presented HI. The correlation analyses and prediction results show the efficiency and effectiveness of the proposed HI for battery degradation modeling and RUL prediction.
Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)
NASA Technical Reports Server (NTRS)
Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.
2005-01-01
The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.
Prediction of AL and Dst Indices from ACE Measurements Using Hybrid Physics/Black-Box Techniques
NASA Astrophysics Data System (ADS)
Spencer, E.; Rao, A.; Horton, W.; Mays, L.
2008-12-01
ACE measurements of the solar wind velocity, IMF and proton density is used to drive a hybrid Physics/Black- Box model of the nightside magnetosphere. The core physics is contained in a low order nonlinear dynamical model of the nightside magnetosphere called WINDMI. The model is augmented by wavelet based nonlinear mappings between the solar wind quantities and the input into the physics model, followed by further wavelet based mappings of the model output field aligned currents onto the ground based magnetometer measurements of the AL index and Dst index. The black box mappings are introduced at the input stage to account for uncertainties in the way the solar wind quantities are transported from the ACE spacecraft at L1 to the magnetopause. Similar mappings are introduced at the output stage to account for a spatially and temporally varying westward auroral electrojet geometry. The parameters of the model are tuned using a genetic algorithm, and trained using the large geomagnetic storm dataset of October 3-7 2000. It's predictive performance is then evaluated on subsequent storm datasets, in particular the April 15-24 2002 storm. This work is supported by grant NSF 7020201
NASA Astrophysics Data System (ADS)
Liu, Qiang; Chattopadhyay, Aditi; Gu, Haozhong; Liu, Qiang; Chattopadhyay, Aditi; Zhou, Xu
2000-08-01
The use of a special type of smart material, known as segmented constrained layer (SCL) damping, is investigated for improved rotor aeromechanical stability. The rotor blade load-carrying member is modeled using a composite box beam with arbitrary wall thickness. The SCLs are bonded to the upper and lower surfaces of the box beam to provide passive damping. A finite-element model based on a hybrid displacement theory is used to accurately capture the transverse shear effects in the composite primary structure and the viscoelastic and the piezoelectric layers within the SCL. Detailed numerical studies are presented to assess the influence of the number of actuators and their locations for improved aeromechanical stability. Ground and air resonance analysis models are implemented in the rotor blade built around the composite box beam with segmented SCLs. A classic ground resonance model and an air resonance model are used in the rotor-body coupled stability analysis. The Pitt dynamic inflow model is used in the air resonance analysis under hover condition. Results indicate that the surface bonded SCLs significantly increase rotor lead-lag regressive modal damping in the coupled rotor-body system.
NASA Astrophysics Data System (ADS)
Shamberger, Patrick J.; Garcia, Michael O.
2007-02-01
Geochemical modeling of magma mixing allows for evaluation of volumes of magma storage reservoirs and magma plumbing configurations. A new analytical expression is derived for a simple two-component box-mixing model describing the proportions of mixing components in erupted lavas as a function of time. Four versions of this model are applied to a mixing trend spanning episodes 3 31 of Kilauea Volcano’s Puu Oo eruption, each testing different constraints on magma reservoir input and output fluxes. Unknown parameters (e.g., magma reservoir influx rate, initial reservoir volume) are optimized for each model using a non-linear least squares technique to fit model trends to geochemical time-series data. The modeled mixing trend closely reproduces the observed compositional trend. The two models that match measured lava effusion rates have constant magma input and output fluxes and suggest a large pre-mixing magma reservoir (46±2 and 49±1 million m3), with little or no volume change over time. This volume is much larger than a previous estimate for the shallow, dike-shaped magma reservoir under the Puu Oo vent, which grew from ˜3 to ˜10 12 million m3. These volumetric differences are interpreted as indicating that mixing occurred first in a larger, deeper reservoir before the magma was injected into the overlying smaller reservoir.
Filling box stratification fed by a gravity current
NASA Astrophysics Data System (ADS)
Hogg, Charlie; Huppert, Herbert; Imberger, Jorg
2012-11-01
Fluids in confined basins can be stratified by the filling box mechanism. The source of dense fluid in geophysical applications, such as a cold river entering a warmer lake, can be a gravity current running over a shallow slope. Filling box models are often, however, based on the dynamics of vertically falling, unconfined, plumes which entrain fluid by a different mechanism to gravity currents on shallow slopes. Laboratory tank experiments of a filling box fed by a gravity current running over a shallow slope were carried out using a dye attenuation technique to investigate the development of the stratification of the ambient. These results demonstrate the differences in the stratification generated by a gravity current compared to that generated by a plume and demonstrate the nature of entrainment into gravity currents on shallow slopes.
An Experimental Study of an Ultra-Mobile Vehicle for Off-Road Transportation.
1984-09-01
commenced with the * aluminum plate from which the links will be fabricated having been cut out. Welding of the leg links is-in progress. The leg boxes , which...Control forkoulh-Ternain Locomotion i Multilegged Robot Vehicle, TEX di s~s- rt o n, March, 1984.- 28. Ozguner, F. and Kao, M.L., "A Multimicroprocessor...efficient structure. 3.3.1 Body Model The body is modelled as a hexahedral box with the top plane wider than the bottom plane, which allows the abduction
Lower Bound on the Mean Square Displacement of Particles in the Hard Disk Model
NASA Astrophysics Data System (ADS)
Richthammer, Thomas
2016-08-01
The hard disk model is a 2D Gibbsian process of particles interacting via pure hard core repulsion. At high particle density the model is believed to show orientational order, however, it is known not to exhibit positional order. Here we investigate to what extent particle positions may fluctuate. We consider a finite volume version of the model in a box of dimensions 2 n × 2 n with arbitrary boundary configuration, and we show that the mean square displacement of particles near the center of the box is bounded from below by c log n. The result generalizes to a large class of models with fairly arbitrary interaction.
da Costa, Renata Souza; Bicca-Marques, Júlio César
2014-01-01
Foraging at night imposes different challenges from those faced during daylight, including the reliability of sensory cues. Owl monkeys (Aotus spp.) are ideal models among anthropoids to study the information used during foraging at low light levels because they are unique by having a nocturnal lifestyle. Six Aotus nigriceps and four A. infulatus individuals distributed into five enclosures were studied for testing their ability to rely on olfactory, visual, auditory, or spatial and quantitative information for locating food rewards and for evaluating the use of routes to navigate among five visually similar artificial feeding boxes mounted in each enclosure. During most experiments only a single box was baited with a food reward in each session. The baited box changed randomly throughout the experiment. In the spatial and quantitative information experiment there were two baited boxes varying in the amount of food provided. These baited boxes remained the same throughout the experiment. A total of 45 sessions (three sessions per night during 15 consecutive nights) per enclosure was conducted in each experiment. Only one female showed a performance suggestive of learning of the usefulness of sight to locate the food reward in the visual information experiment. Subjects showed a chance performance in the remaining experiments. All owl monkeys showed a preference for one box or a subset of boxes to inspect upon the beginning of each experimental session and consistently followed individual routes among feeding boxes. PMID:25517894
da Costa, Renata Souza; Bicca-Marques, Júlio César
2014-01-01
Foraging at night imposes different challenges from those faced during daylight, including the reliability of sensory cues. Owl monkeys (Aotus spp.) are ideal models among anthropoids to study the information used during foraging at low light levels because they are unique by having a nocturnal lifestyle. Six Aotus nigriceps and four A. infulatus individuals distributed into five enclosures were studied for testing their ability to rely on olfactory, visual, auditory, or spatial and quantitative information for locating food rewards and for evaluating the use of routes to navigate among five visually similar artificial feeding boxes mounted in each enclosure. During most experiments only a single box was baited with a food reward in each session. The baited box changed randomly throughout the experiment. In the spatial and quantitative information experiment there were two baited boxes varying in the amount of food provided. These baited boxes remained the same throughout the experiment. A total of 45 sessions (three sessions per night during 15 consecutive nights) per enclosure was conducted in each experiment. Only one female showed a performance suggestive of learning of the usefulness of sight to locate the food reward in the visual information experiment. Subjects showed a chance performance in the remaining experiments. All owl monkeys showed a preference for one box or a subset of boxes to inspect upon the beginning of each experimental session and consistently followed individual routes among feeding boxes.
Hong, Xia
2006-07-01
In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.
An improved portmanteau test for autocorrelated errors in interrupted time-series regression models.
Huitema, Bradley E; McKean, Joseph W
2007-08-01
A new portmanteau test for autocorrelation among the errors of interrupted time-series regression models is proposed. Simulation results demonstrate that the inferential properties of the proposed Q(H-M) test statistic are considerably more satisfactory than those of the well known Ljung-Box test and moderately better than those of the Box-Pierce test. These conclusions generally hold for a wide variety of autoregressive (AR), moving averages (MA), and ARMA error processes that are associated with time-series regression models of the form described in Huitema and McKean (2000a, 2000b).
Assessment of environmental impacts part one. Intervention analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hipel, Keith William; Lettenmaier, Dennis P.; McLeod, A. Ian
The use of intervention analysis as a statistical method of gauging the effects of environmental changes is discussed. The Box-Jenkins model, serves as the basis for the intervention analysis methodology. Environmental studies of the Aswan Dam, the South Saskatchewan River, and a forest fire near the Pipers Hole River, Canada, are included as case studies in which intervention analysis was employed. Methods of data collection for intervention analysis are found to have a significant impact on model reliability; effective data collection processes for the Box-Jenkins model are provided. (15 graphs, 27 references, 2 tables)
NASA Technical Reports Server (NTRS)
Leavitt, L. D.; Burley, J. R., II
1985-01-01
An investigation has been conducted at wind-off conditions in the stati-test facility of the Langley 16-Foot Transonic Tunnel. The tests were conducted on a single-engine reverser configuration with partial and full reverse-thrust modulation capabilities. The reverser design had four ports with equal areas. These ports were angled outboard 30 deg from the vertical impart of a splay angle to the reverse exhaust flow. This splaying of reverser flow was intended to prevent impingement of exhaust flow on empennage surfaces and to help avoid inlet reingestion of exhaust gas when the reverser is integrated into an actual airplane configuration. External vane boxes were located directly over each of the four ports to provide variation of reverser efflux angle from 140 deg to 26 deg (measured forward from the horizontal reference axis). The reverser model was tested with both a butterfly-type inner door and an internal slider door to provide area control for each individual port. In addition, main nozzle throat area and vector angle were varied to examine various methods of modulating thrust levels. Other model variables included vane box configuration (four or six vanes per box), orientation of external vane boxes with respect to internal port walls (splay angle shims), and vane box sideplates. Nozzle pressure ratio was varied from 2.0 approximately 7.0.
It May Be Simple, But It's Not Easy: Conscious Case Management.
Treiger, Teresa M; Powell, Suzanne K
As in everything, case management has an evolutionary trajectory. Perhaps, the latest in case management is Conscious Case Management. In today's harried health care environment and with multiple "productivity" criteria to measure usefulness, case managers should not move to just finishing your daily responsibilities or trying to close the most cases; rather, a mindful approach, whether in listening or doing, will yield the best outcome. Instead of mindlessly completing tasks and checking off boxes, practice in-the-moment-and do so consciously.
Pioneering centre goes beyond gender labelling.
Scott, Graham
2015-02-10
We have all filled in forms that ask for our gender. Often the question seems irrelevant, but most people tick the box, reveal their age along with a few other personal details, and move on. However, for some the enquiry may be simple but the answer more complicated. Am I male, female, neither or both? The answer may not matter much to those asking the question - which makes you wonder why it is considered relevant - but for trans people it strikes to the core of their identity.
Advanced solar box and flat plate collector cookers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grupp, M.; Bergler, H.
Several new solar cooker systems have been developed at Synopsis during the last years: advanced box type cookers, featuring an optimized heat transfer from the absorber into the cooking vessel; flat plate cookers, based on a particular two-way collector with air as transfer fluid; flat plate cookers with heat-pipe transfer; specialized cookers for the baking of bread and flat bread. The working principle of these cookers is described, the structure of a thermal simulation model and results of thermal tests are presented. The results of the first year of local production and use of advanced boxes in India are reported.
Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs.
Yip, W S Vincent; Shigematsu, Hideki; Taylor, David W; Baserga, Susan J
2016-10-14
Ribosomal RNA (rRNA) modifications are essential for ribosome function in all cellular organisms. Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze 2'-O-methylation, one rRNA modification type in Eukarya and Archaea. Negatively stained electron microscopy (EM) models of archaeal box C/D sRNPs have demonstrated the dimeric sRNP (di-sRNP) architecture, which has been corroborated by nuclear magnetic resonance (NMR) studies. Due to limitations of the structural techniques, the orientation of the box C/D sRNAs has remained unclear. Here, we have used cryo-EM to elucidate the sRNA orientation in a M. jannaschii box C/D di-sRNP. The cryo-EM reconstruction suggests a parallel orientation of the two sRNAs. Biochemical and structural analyses of sRNPs assembled with mutant sRNAs indicate a potential interaction between the sRNA stem ends. Our results suggest that the parallel arrangement of the sRNAs juxtaposes their stem ends into close proximity to allow for a stabilizing interaction that helps maintain the di-sRNP architecture. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Vibration signature analysis of multistage gear transmission
NASA Technical Reports Server (NTRS)
Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.
1989-01-01
An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.
NASA Astrophysics Data System (ADS)
Guven, A.; Hassan, M.; Sabir, Shahin
2013-09-01
This study investigates the hydraulic characteristics of simultaneous flow over broad crested weir and through box (square) culverts experimentally. The variation of discharge coefficient (Cd) of the combined structure with various affective parameters such as upstream head, length of culvert, culvert inlet shape, culvert internal dimension, weir crest height, weir side slope angle, and weir width was analyzed. For this purpose 12 glass models of combined broad crested weirs and box culverts were manufactured and tested in a laboratory flume of 12 m. Discharge coefficient predicting equations were developed as a function of the dimensionless terms. The overall results showed that Cd increases as the ratio of the total head of water above the weir crest to the height of the weir crest H/P increases for all the models and for each flow state (weir and combined). Cd values increased as the head increased for all the models tested as culvert flow only, and also with decreasing of the angle between crest of the weir with the sides.
The five-box method: The "four-box method" for the Catholic physician.
Marugg, Lindsey; Atkinson, Marie-Noelle; Fernandes, Ashley
2014-11-01
The traditional ethical model of the "Four-Box Method" can be adapted to integrate the perspective of a Catholic physician. In an increasingly secularist environment, medical students and physicians are often asked to "leave religious beliefs at the door" and not consider the care and stewardship of our own morality and involvement as a provider. We reject this view. A patient's own religious and moral beliefs should be respected to the extent that they do not destroy our own; for us, the Catholic viewpoint can shine a light into dark corners and aid us in translating true things to patients of any religion. We analyzed a sample case in five different categories: medical indications, patient preferences, quality of life, contextual features, and the Catholic context. We explored how to methodically integrate the perspective of a Catholic physician into the analysis of this case to make the best decision for the patients. We felt that we were successfully able to integrate this perspective and create a "fifth box" based on the principles of Catholic social teaching. There were also points during the analysis that the perspective of the Catholic physician was integrated into the discussion of medical indications, proving to us that the "Catholic perspective" cannot be just put in one box either. The traditional ethical model of the "four-box method" can be adapted to integrate the perspective of a Catholic physician. In an increasingly secularist environment, medical students and physicians are often asked to "leave religious beliefs at the door" and not consider the care and stewardship of our own morality and involvement as a provider. We reject this view. A patient's own religious and moral beliefs should be respected to the extent that they do not destroy our own; for us, the Catholic viewpoint can shine a light into dark corners and aid us in translating true things to patients of any religion. By expanding to a "fifth box" of Catholic social teaching, the Catholic physician finds a way to methodically analyze an ethical scenario. This case study is an example of this type of "five-box" analysis.
W. Mark Ford; Andrew M. Evans; Richard H. Odom; Jane L. Rodrigue; Christine A. Kelly; Nicole Abaid; Corinne A. Diggins; Douglas Newcomb
2015-01-01
In the southern Appalachians, artificial nest-boxes are used to survey for the endangered Carolina northern flying squirrel (CNFS; Glaucomys sabrinus coloratus), a disjunct subspecies associated with high elevation (>1385 m) forests. Using environmental parameters diagnostic of squirrel habitat, we created 35 a priori occupancy...
Tables View the latest hourly text summary CLICK ON UNDERLINED HOUR / SHADED BOX FOR THE LATEST CYCLE 00z Dump Tables View the latest rap text summary CLICK ON UNDERLINED HOUR / SHADED BOX FOR THE LATEST CYCLE Data Dump Tables View the latest model data text summary NAM GFS GDS CLICK ON UNDERLINED HOUR / SHADED
2012-03-22
Fabric 3.85% Polypropylene (PP) (Class 5 plastics, soda cups, yogurt boxes, syrup bottles, prescription bottles) 1.32% Yard waste 5.67% PVC (Class 3...plastics, milk jugs) 1.23% Cardboard 31.33% Polypropylene (PP) (Class 5 plastics, soda cups, yogurt boxes, syrup bottles, prescription bottles) 0.62
Looking for radio waves with a simple radio wave detector
NASA Astrophysics Data System (ADS)
Sugimoto (Stray Cats), Norihiro
2011-11-01
I created a simple device that can detect radio waves in a classroom. In physics classes I tell students that we live in a sea of radio waves. They come from TV, radio, and cell phone signals as well as other sources. Students don't realize this because those electromagnetic waves are invisible. So, I wondered if I could come up with a way to detect the waves and help students to understand them better. Electromagnetic wave meters, which measure intensity of radio waves quantitatively, are commercially available. However, to students most of these are black boxes, and at the introductory level it is more effective to detect radio waves in a simpler way. This paper describes my device and how I have used it in my classes.
A random effects meta-analysis model with Box-Cox transformation.
Yamaguchi, Yusuke; Maruo, Kazushi; Partlett, Christopher; Riley, Richard D
2017-07-19
In a random effects meta-analysis model, true treatment effects for each study are routinely assumed to follow a normal distribution. However, normality is a restrictive assumption and the misspecification of the random effects distribution may result in a misleading estimate of overall mean for the treatment effect, an inappropriate quantification of heterogeneity across studies and a wrongly symmetric prediction interval. We focus on problems caused by an inappropriate normality assumption of the random effects distribution, and propose a novel random effects meta-analysis model where a Box-Cox transformation is applied to the observed treatment effect estimates. The proposed model aims to normalise an overall distribution of observed treatment effect estimates, which is sum of the within-study sampling distributions and the random effects distribution. When sampling distributions are approximately normal, non-normality in the overall distribution will be mainly due to the random effects distribution, especially when the between-study variation is large relative to the within-study variation. The Box-Cox transformation addresses this flexibly according to the observed departure from normality. We use a Bayesian approach for estimating parameters in the proposed model, and suggest summarising the meta-analysis results by an overall median, an interquartile range and a prediction interval. The model can be applied for any kind of variables once the treatment effect estimate is defined from the variable. A simulation study suggested that when the overall distribution of treatment effect estimates are skewed, the overall mean and conventional I 2 from the normal random effects model could be inappropriate summaries, and the proposed model helped reduce this issue. We illustrated the proposed model using two examples, which revealed some important differences on summary results, heterogeneity measures and prediction intervals from the normal random effects model. The random effects meta-analysis with the Box-Cox transformation may be an important tool for examining robustness of traditional meta-analysis results against skewness on the observed treatment effect estimates. Further critical evaluation of the method is needed.
NASA Astrophysics Data System (ADS)
Davis, L.; Weatherley, J.; Bhushan, S.; Khan, H.; de La Chica, S.; Deardorff, R.
2004-12-01
An exciting pilot program took place this summer, pioneering the development of Digital Library for Earth System Education (DLESE) Teaching Boxes with the Univ. of CA. Berkeley Museum of Paleontology, SF State Univ., USGS and 7 middle/high school teachers from the San Francisco area. This session will share the DLESE Teaching Box concept, explain the pilot program, and explore the tremendous opportunities for expanding this notion to embrace interdisciplinary approaches to learning about the Earth in the undergraduate science and pre-service teaching arenas. A Teaching Box is a metaphor for an online assembly of interrelated learning concepts, digital resources, and cohesive narration that bridges the gap between discrete resources and understanding. Within a Teaching Box, an instructor or student can pick a topic and see the concepts that build an understanding of that topic, explore online resources that support learning of those concepts, and benefit from the narration (the glue) that weaves concepts, activities, and background information together into a complete teaching/learning story. In this session, we will demonstrate the emerging Teaching Box prototypes and explore how this platform may promote STEM learning by utilizing DLESE tools and services in ways that begin to blur traditional disciplinary boundaries, overcome limitations of discipline-specific vocabularies, and foster collaboration. We will show ways in which new DLESE Web Services could support learning in this highly contextualized environment. We will see glimpses of how learners and educators will be able to modify or create their own Teaching Boxes specific to a unit of study or course, and perhaps share them with the Earth Science Education community. We will see ways to stay abreast of current Earth events, emerging research, and real-time data and incorporate such dynamic information into one learning environment. Services will be described and demonstrated in the context of Teaching Boxes: - DLESE Web Services provide a programmatic interface that allows the Teaching Box (or any web page) to have the same DLESE search, bookmarking features, and data management that are found at the DLESE web site. - DLESE Smart Links are hyperlinks that can be created by anyone and implemented as easily as defining a specific query. Clicking a Smart Link displays a list of resources that corresponds to the specific query. We'll talk about how this service can help to bridge the gap between vocabularies and disciplines and the interesting possibilities it presents for contextualizing searches and building custom topical menus. - The Really Simple Syndication (RSS) service delivers online information immediately, and allows end-users to subscribe to receive regular news, events, and data on a given Teaching Box topic. This opens the door to event-based learning. - Strand Maps, developed by the AAAS, are diagrams of interconnected learning concepts across a range of science, technology, engineering, and mathematics disciplines. The University of Colorado and its project partners are developing the Strand Map Service (SMS) to provide an interactive interface to interrelated learning goals, content knowledge, (including student misconceptions) and educational resources in the National Science Digital Library and DLESE.
NASA Astrophysics Data System (ADS)
Tenerani, Anna; Velli, Marco
2017-07-01
Alfvénic fluctuations in the solar wind display many properties reflecting an ongoing nonlinear cascade, e.g., a well-defined spectrum in frequency, together with some characteristics more commonly associated with the linear propagation of waves from the Sun, such as the variation of fluctuation amplitude with distance, dominated by solar wind expansion effects. Therefore, both nonlinearities and expansion must be included simultaneously in any successful model of solar wind turbulence evolution. Because of the disparate spatial scales involved, direct numerical simulations of turbulence in the solar wind represent an arduous task, especially if one wants to go beyond the incompressible approximation. Indeed, most simulations neglect solar wind expansion effects entirely. Here we develop a numerical model to simulate turbulent fluctuations from the outer corona to 1 au and beyond, including the sub-Alfvénic corona. The accelerating expanding box (AEB) extends the validity of previous expanding box models by taking into account both the acceleration of the solar wind and the inhomogeneity of background density and magnetic field. Our method incorporates a background accelerating wind within a magnetic field that naturally follows the Parker spiral evolution using a two-scale analysis in which the macroscopic spatial effect coupling fluctuations with background gradients becomes a time-dependent coupling term in a homogeneous box. In this paper we describe the AEB model in detail and discuss its main properties, illustrating its validity by studying Alfvén wave propagation across the Alfvén critical point.
NASA Technical Reports Server (NTRS)
Seybert, A. F.; Wu, X. F.; Oswald, Fred B.
1992-01-01
Analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise radiated from the box. The FEM was used to predict the vibration, and the surface vibration was used as input to the BEM to predict the sound intensity and sound power. Vibration predicted by the FEM model was validated by experimental modal analysis. Noise predicted by the BEM was validated by sound intensity measurements. Three types of results are presented for the total radiated sound power: (1) sound power predicted by the BEM modeling using vibration data measured on the surface of the box; (2) sound power predicted by the FEM/BEM model; and (3) sound power measured by a sound intensity scan. The sound power predicted from the BEM model using measured vibration data yields an excellent prediction of radiated noise. The sound power predicted by the combined FEM/BEM model also gives a good prediction of radiated noise except for a shift of the natural frequencies that are due to limitations in the FEM model.
Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L.; Salt, Jennifer N.; Goring, Daphne R.
2004-01-01
The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis. PMID:14657406
Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L; Salt, Jennifer N; Goring, Daphne R
2004-01-01
The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.
NASA Astrophysics Data System (ADS)
Sakhr, Jamal; Nieminen, John M.
2018-03-01
Two decades ago, Wang and Ong, [Phys. Rev. A 55, 1522 (1997)], 10.1103/PhysRevA.55.1522 hypothesized that the local box-counting dimension of a discrete quantum spectrum should depend exclusively on the nearest-neighbor spacing distribution (NNSD) of the spectrum. In this Rapid Communication, we validate their hypothesis by deriving an explicit formula for the local box-counting dimension of a countably-infinite discrete quantum spectrum. This formula expresses the local box-counting dimension of a spectrum in terms of single and double integrals of the NNSD of the spectrum. As applications, we derive an analytical formula for Poisson spectra and closed-form approximations to the local box-counting dimension for spectra having Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE), and Gaussian symplectic ensemble (GSE) spacing statistics. In the Poisson and GOE cases, we compare our theoretical formulas with the published numerical data of Wang and Ong and observe excellent agreement between their data and our theory. We also study numerically the local box-counting dimensions of the Riemann zeta function zeros and the alternate levels of GOE spectra, which are often used as numerical models of spectra possessing GUE and GSE spacing statistics, respectively. In each case, the corresponding theoretical formula is found to accurately describe the numerically computed local box-counting dimension.
Nakako, Tomokazu; Murai, Takeshi; Ikejiri, Masaru; Hashimoto, Takashi; Kotani, Manato; Matsumoto, Kenji; Manabe, Shoji; Ogi, Yuji; Konoike, Naho; Nakamura, Katsuki; Ikeda, Kazuhito
2014-11-01
Infants with autism have difficulties performing joint visual attention (JVA), defined as following another person's pointing gesture and gaze. Some non-human primates (NHPs) can also perform JVA. Most preclinical research on autism spectrum disorders (ASD) has used rodents as animal models of this social interaction disorder. However, models using rodents fail to capture the complexity of social interactions that are disrupted in ASD. Therefore, JVA impairment in NHPs might be a more useful model of ASD. The aim of this study was to develop an appropriate and convenient ASD model with common marmosets. We first tested whether marmosets were capable of performing JVA. Subsequently, we administered ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, to induce JVA impairment and investigated the effects of lurasidone, a newer antipsychotic agent, on the JVA impairments. An apparatus was constructed using 4 white boxes, which were attached to the corners of a frame. All boxes had a hinged door, and marmosets could easily obtain a reward by pushing the door. An experimenter pointed and gazed at the boxes to inform the marmosets which box contained the reward. Their behavior was scored according to the number of incorrect choices. The JVA score was significantly higher in the cued vs. uncued tasks. Ketamine significantly decreased the JVA score, but lurasidone significantly reversed this effect. These findings suggest that this experimental system could be a useful animal model of neuropsychiatric disorders characterized by NMDA-receptor signaling, including ASD, and that lurasidone might be effective for some aspects of ASD. Copyright © 2014 Elsevier B.V. All rights reserved.
Axisymmetric Shearing Box Models of Magnetized Disks
NASA Astrophysics Data System (ADS)
Guan, Xiaoyue; Gammie, Charles F.
2008-01-01
The local model, or shearing box, has proven a useful model for studying the dynamics of astrophysical disks. Here we consider the evolution of magnetohydrodynamic (MHD) turbulence in an axisymmetric local model in order to evaluate the limitations of global axisymmetric models. An exploration of the model parameter space shows the following: (1) The magnetic energy and α-decay approximately exponentially after an initial burst of turbulence. For our code, HAM, the decay time τ propto Res , where Res/2 is the number of zones per scale height. (2) In the initial burst of turbulence the magnetic energy is amplified by a factor proportional to Res3/4λR, where λR is the radial scale of the initial field. This scaling applies only if the most unstable wavelength of the magnetorotational instability is resolved and the final field is subthermal. (3) The shearing box is a resonant cavity and in linear theory exhibits a discrete set of compressive modes. These modes are excited by the MHD turbulence and are visible as quasi-periodic oscillations (QPOs) in temporal power spectra of fluid variables at low spatial resolution. At high resolution the QPOs are hidden by a noise continuum. (4) In axisymmetry disk turbulence is local. The correlation function of the turbulence is limited in radial extent, and the peak magnetic energy density is independent of the radial extent of the box LR for LR > 2H. (5) Similar results are obtained for the HAM, ZEUS, and ATHENA codes; ATHENA has an effective resolution that is nearly double that of HAM and ZEUS. (6) Similar results are obtained for 2D and 3D runs at similar resolution, but only for particular choices of the initial field strength and radial scale of the initial magnetic field.
A class of Box-Cox transformation models for recurrent event data.
Sun, Liuquan; Tong, Xingwei; Zhou, Xian
2011-04-01
In this article, we propose a class of Box-Cox transformation models for recurrent event data, which includes the proportional means models as special cases. The new model offers great flexibility in formulating the effects of covariates on the mean functions of counting processes while leaving the stochastic structure completely unspecified. For the inference on the proposed models, we apply a profile pseudo-partial likelihood method to estimate the model parameters via estimating equation approaches and establish large sample properties of the estimators and examine its performance in moderate-sized samples through simulation studies. In addition, some graphical and numerical procedures are presented for model checking. An example of application on a set of multiple-infection data taken from a clinic study on chronic granulomatous disease (CGD) is also illustrated.
11. RW Meyer Sugar Mill: 18761889. Locomotive=type, firetube, portable boiler, ...
11. RW Meyer Sugar Mill: 1876-1889. Locomotive=type, fire-tube, portable boiler, model No. 1, Manufactured by Ames Iron Works, Oswego, New York, 1879. 120 lbs./sq. in. working pressure, 66 sq. ft. heating surface in tubes. View: the boiler provided steam for steam engine which in turn powered the centrifugals. View shows front fire box, end of boiler. Below fire-box,used for removing ashes, is a door. Circular openings at the rear of the fire-box are where fire-tubes connected with furnace. Column to right of fire-box carried pressure and water level gauges. Fluted chimney-type structure is steam-port, safety valve, and whistle. Weights originally sat on the arm extending from the top of the port and controlled the boiler pressure. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Does the Budyko curve reflect a maximum power state of hydrological systems? A backward analysis
NASA Astrophysics Data System (ADS)
Westhoff, M.; Zehe, E.; Archambeau, P.; Dewals, B.
2015-08-01
Almost all catchments plot within a small envelope around the Budyko curve. This apparent behaviour suggests that organizing principles may play a role in the evolution of catchments. In this paper we applied the thermodynamic principle of maximum power as the organizing principle. In a top-down approach we derived mathematical formulations of the relation between relative wetness and gradients driving runoff and evaporation for a simple one-box model. We did this in such a way that when the conductances are optimized with the maximum power principle, the steady state behaviour of the model leads exactly to a point on the Budyko curve. Subsequently we derived gradients that, under constant forcing, resulted in a Budyko curve following the asymptotes closely. With these gradients we explored the sensitivity of dry spells and dynamics in actual evaporation. Despite the simplicity of the model, catchment observations compare reasonably well with the Budyko curves derived with dynamics in rainfall and evaporation. This indicates that the maximum power principle may be used (i) to derive the Budyko curve and (ii) to move away from the empiricism in free parameters present in many Budyko functions. Future work should focus on better representing the boundary conditions of real catchments and eventually adding more complexity to the model.
NASA Astrophysics Data System (ADS)
Sadegh, M.; Vrugt, J. A.
2011-12-01
In the past few years, several contributions have begun to appear in the hydrologic literature that introduced and analyzed the benefits of using a signature based approach to watershed analysis. This signature-based approach abandons the standard single criteria model-data fitting paradigm in favor of a diagnostic approach that better extracts the available information from the available data. Despite the prospects of this new viewpoint, rather ad-hoc criteria have hitherto been proposed to improve watershed modeling. Here, we aim to provide a proper mathematical foundation to signature based analysis. We analyze the information content of different data transformation by analyzing their convergence speed with Markov Chain Monte Carlo (MCMC) simulation using the Generalized Likelihood function of Schousp and Vrugt (2010). We compare the information content of the original discharge data against a simple square root and Box-Cox transformation of the streamflow data. We benchmark these results against wavelet and flow duration curve transformations that temporally disaggregate the discharge data. Our results conclusive demonstrate that wavelet transformations and flow duration curves significantly reduce the information content of the streamflow data and consequently unnecessarily increase the uncertainty of the HYMOD model parameters. Hydrologic signatures thus need to be found in the original data, without temporal disaggregation.
A framework for expanding aqueous chemistry in the ...
This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM − KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used to generate a Rosenbrock solver (Rodas3) to integrate the stiff system of ordinary differential equations (ODEs) that describe the mass transfer, chemical kinetics, and scavenging processes of CMAQ clouds. CMAQ's standard cloud chemistry module (AQCHEM) is structurally limited to the treatment of a simple chemical mechanism. This work advances our ability to test and implement more sophisticated aqueous chemical mechanisms in CMAQ and further investigate the impacts of microphysical parameters on cloud chemistry. Box model cloud chemistry simulations were performed to choose efficient solver and tolerance settings, evaluate the implementation of the KPP solver, and assess the direct impacts of alternative solver and kinetic mass transfer on predicted concentrations for a range of scenarios. Month-long CMAQ simulations for winter and summer periods over the US reveal the changes in model predictions due to these cloud module updates within the full chemical transport model. While monthly average CMAQ predictions are not drastically altered between AQCHEM and AQCHEM − KMT, hourly concentration differences can be significant. With added in-cloud secondary organic aerosol (SOA) formation from bio
NASA Astrophysics Data System (ADS)
Shi, Ji-Ming; Stone, James M.; Huang, Chelsea X.
2016-03-01
Previous studies of the non-linear regime of the magnetorotational instability in one particular type of shearing box model - unstratified with no net magnetic flux - find that without explicit dissipation (viscosity and resistivity) the saturation amplitude decreases with increasing numerical resolution. We show that this result is strongly dependent on the vertical aspect ratio of the computational domain Lz/Lx. When Lz/Lx ≲ 1, we recover previous results. However, when the vertical domain is extended Lz/Lx ≳ 2.5, we find the saturation level of the stress is greatly increased (giving a ratio of stress to pressure α ≳ 0.1), and moreover the results are independent of numerical resolution. Consistent with previous results, we find that saturation of the magnetorotational (MRI) in this regime is controlled by a cyclic dynamo which generates patches of strong toroidal field that switches sign on scales of Lx in the vertical direction. We speculate that when Lz/Lx ≲ 1, the dynamo is inhibited by the small size of the vertical domain, leading to the puzzling dependence of saturation amplitude on resolution. We show that previous toy models developed to explain the MRI dynamo are consistent with our results, and that the cyclic pattern of toroidal fields observed in stratified shearing box simulations (leading to the so-called butterfly diagram) may also be related. In tall boxes the saturation amplitude is insensitive to whether or not explicit dissipation is included in the calculations, at least for large magnetic Reynolds and Prandtl number. Finally, we show MRI turbulence in tall domains has a smaller critical Pmc, and an extended lifetime compared to Lz/Lx ≲ 1 boxes.
Ruminski, Dana J; Watson, Peter Y; Mahen, Elisabeth M; Fedor, Martha J
2016-03-01
RNAs must assemble into specific structures in order to carry out their biological functions, but in vitro RNA folding reactions produce multiple misfolded structures that fail to exchange with functional structures on biological time scales. We used carefully designed self-cleaving mRNAs that assemble through well-defined folding pathways to identify factors that differentiate intracellular and in vitro folding reactions. Our previous work showed that simple base-paired RNA helices form and dissociate with the same rate and equilibrium constants in vivo and in vitro. However, exchange between adjacent secondary structures occurs much faster in vivo, enabling RNAs to quickly adopt structures with the lowest free energy. We have now used this approach to probe the effects of an extensively characterized DEAD-box RNA helicase, Mss116p, on a series of well-defined RNA folding steps in yeast. Mss116p overexpression had no detectable effect on helix formation or dissociation kinetics or on the stability of interdomain tertiary interactions, consistent with previous evidence that intracellular factors do not affect these folding parameters. However, Mss116p overexpression did accelerate exchange between adjacent helices. The nonprocessive nature of RNA duplex unwinding by DEAD-box RNA helicases is consistent with a branch migration mechanism in which Mss116p lowers barriers to exchange between otherwise stable helices by the melting and annealing of one or two base pairs at interhelical junctions. These results suggest that the helicase activity of DEAD-box proteins like Mss116p distinguish intracellular RNA folding pathways from nonproductive RNA folding reactions in vitro and allow RNA structures to overcome kinetic barriers to thermodynamic equilibration in vivo. © 2016 Ruminski et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Santamaría, Alfonso; Langdon, Cristóbal; López-Chacon, Mauricio; Cordero, Arturo; Enseñat, Joaquim; Carrau, Ricardo; Bernal-Sprekelsen, Manuel; Alobid, Isam
2017-11-01
To evaluate the versatility of the pericranial flap (PCF) to reconstruct the ventral skull base, using the frontal sinus as a gate for its passage into the sinonasal corridor "money box approach." Anatomic-radiological study and case series. Various approaches and their respective defects (cribriform, transtuberculum, clival, and craniovertebral junction) were completed in 10 injected specimens. The PCF was introduced into the nose through the uppermost portion of the frontal sinus (money box approach). Computed tomography (CT) scans (n = 50) were used to measure the dimensions of the PCF and the skull base defects. The vertical projection of the external ear canal was used as the reference point to standardize the incisions for the PCF. The surface area and maximum length of the PCF were 121.5 ± 19.4 cm 2 and 18.3 ± 1.3 cm, respectively. Using CT scans, we determined that to reconstruct defects secondary to transcribriform, transtuberculum, clival, and craniovertebral approaches, the PCF distal incision must be placed respectively at -3.7 ± 2.0 cm (angle -17.4 ± 8.5°), -0.2 ± 2.0 cm (angle -1.0 ± 9.3°), +5.5 ± 2.3 cm (angle +24.4 ± 9.7°), +8.4 ± 2.4 cm (angle +36.6 ± 11.5°), as related to the reference point. Skull base defects in our clinical cohort (n = 6) were completely reconstructed uneventfully with the PCF. The PCF renders enough surface area to reconstruct all possible defects in the ventral and median skull base. Using the uppermost frontal sinus as a gateway into the nose (money box approach) is feasible and simple. NA. Laryngoscope, 127:2482-2489, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Eng, Thomas; Guacci, Vincent; Koshland, Doug
2014-01-01
Cohesin helps orchestrate higher-order chromosome structure, thereby promoting sister chromatid cohesion, chromosome condensation, DNA repair, and transcriptional regulation. To elucidate how cohesin facilitates these diverse processes, we mutagenized Mcd1p, the kleisin regulatory subunit of budding yeast cohesin. In the linker region of Mcd1p, we identified a novel evolutionarily conserved 10–amino acid cluster, termed the regulation of cohesion and condensation (ROCC) box. We show that ROCC promotes cohesion maintenance by protecting a second activity of cohesin that is distinct from its stable binding to chromosomes. The existence of this second activity is incompatible with the simple embrace mechanism of cohesion. In addition, we show that the ROCC box is required for the establishment of condensation. We provide evidence that ROCC controls cohesion maintenance and condensation establishment through differential functional interactions with Pds5p and Wpl1p. PMID:24966169
NASA Astrophysics Data System (ADS)
Xu, Li-Jie; Duan, Zhu
2018-04-01
This paper proposes a differentially fed metal frame antenna for biomedical smartband applications. It occupies a planar area of 40 × 20 mm, operating at 2.45-GHz industrial, scientific, and medical band. The proposed antenna is composed of an external metal frame and an internal metal box acting as ground for electronics. Through a differential feeding to two copper strips located between the metal frame and the metal box, a rectangular ring slot is excited with common mode suppression capability. The antenna prototype is designed in free space, and then adapted to on-body scenario for both repeater and transmitter cases. Additionally, the proposed differential feeding is modified to the traditional single port, demonstrating the half-size miniaturization technique. Finally, the simulated results are verified by measurement. The proposed antenna's simple structure and satisfactory performance makes it a perfect candidate for future medical smartband applications, monitoring the physiological parameters of humans for health-care purposes.
`Relativistic' corrections to the mass of a plucked guitar string
NASA Astrophysics Data System (ADS)
Kolodrubetz, Michael; Polkovnikov, Anatoli
Quantum systems respond non-adiabaticity when parameters controlling them are ramped at a finite rate. If the parameters themselves are dynamical - for instance the position of a box that defines the boundary of a quantum field - the feedback of these excitations gives rise to effective Newtonian equations of motion for the parameter. For the age old problem of photons in a box, this correction gives rise to a mass proportional to the energy of the photons. We show that a similar correction arises for a classical guitar string plucked with energy E; moving clamps at the ends of the string requires inertial mass m = 2 E /cs2 , where cs is the speed of sound. This quasi-relativistic effect should be observable in freshman physics level experiments. We then comment on how these simple methods have been readily extended to treat problems such as ramps and quenches of strongly-interacting superconductors and dynamical trapping near a quantum critical point.
Deconvolution single shot multibox detector for supermarket commodity detection and classification
NASA Astrophysics Data System (ADS)
Li, Dejian; Li, Jian; Nie, Binling; Sun, Shouqian
2017-07-01
This paper proposes an image detection model to detect and classify supermarkets shelves' commodity. Based on the principle of the features directly affects the accuracy of the final classification, feature maps are performed to combine high level features with bottom level features. Then set some fixed anchors on those feature maps, finally the label and the position of commodity is generated by doing a box regression and classification. In this work, we proposed a model named Deconvolutiuon Single Shot MultiBox Detector, we evaluated the model using 300 images photographed from real supermarket shelves. Followed the same protocol in other recent methods, the results showed that our model outperformed other baseline methods.
NASA Astrophysics Data System (ADS)
He, Hong-di; Lu, Wei-Zhen; Xue, Yu
2009-12-01
At urban traffic intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly during the green-light period. The changes of driving patterns (i.e., idle, acceleration, deceleration and cruising patterns) generally produce uncertain emission. Additionally, the movement of pedestrians and the influence of wind further result in the random dispersion of pollutants. It is, therefore, too complex to simulate the effects of such dynamics on the resulting emission using conventional deterministic causal models. For this reason, a modified semi-empirical box model for predicting the PM 10 concentrations on roadsides is proposed in this paper. The model constitutes three parts, i.e., traffic, emission and dispersion components. The traffic component is developed using a generalized force traffic model to obtain the instantaneous velocity and acceleration when vehicles move through intersections. Hence the distribution of vehicle emission in street canyon during the green-light period is calculated. Then the dispersion component is investigated using a semi-empirical box model combining average wind speed, box height and background concentrations. With these considerations, the proposed model is applied and evaluated using measured data at a busy traffic intersection in Mong Kok, Hong Kong. In order to test the performance of the model, two situations, i.e., the data sets within a sunny day and between two sunny days, were selected to examine the model performance. The predicted values are generally well coincident with the observed data during different time slots except several values are overestimated or underestimated. Moreover, two types of vehicles, i.e., buses and petrol cars, are separately taken into account in the study. Buses are verified to contribute most to the emission in street canyons, which may be useful in evaluating the impact of vehicle emissions on the ambient air quality when there is a significant change in a specific vehicular population.
On-line algorithms for forecasting hourly loads of an electric utility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vemuri, S.; Huang, W.L.; Nelson, D.J.
A method that lends itself to on-line forecasting of hourly electric loads is presented, and the results of its use are compared to models developed using the Box-Jenkins method. The method consits of processing the historical hourly loads with a sequential least-squares estimator to identify a finite-order autoregressive model which, in turn, is used to obtain a parsimonious autoregressive-moving average model. The method presented has several advantages in comparison with the Box-Jenkins method including much-less human intervention, improved model identification, and better results. The method is also more robust in that greater confidence can be placed in the accuracy ofmore » models based upon the various measures available at the identification stage.« less
Box-wing model approach for solar radiation pressure modelling in a multi-GNSS scenario
NASA Astrophysics Data System (ADS)
Tobias, Guillermo; Jesús García, Adrián
2016-04-01
The solar radiation pressure force is the largest orbital perturbation after the gravitational effects and the major error source affecting GNSS satellites. A wide range of approaches have been developed over the years for the modelling of this non gravitational effect as part of the orbit determination process. These approaches are commonly divided into empirical, semi-analytical and analytical, where their main difference relies on the amount of knowledge of a-priori physical information about the properties of the satellites (materials and geometry) and their attitude. It has been shown in the past that the pre-launch analytical models fail to achieve the desired accuracy mainly due to difficulties in the extrapolation of the in-orbit optical and thermic properties, the perturbations in the nominal attitude law and the aging of the satellite's surfaces, whereas empirical models' accuracies strongly depend on the amount of tracking data used for deriving the models, and whose performances are reduced as the area to mass ratio of the GNSS satellites increases, as it happens for the upcoming constellations such as BeiDou and Galileo. This paper proposes to use basic box-wing model for Galileo complemented with empirical parameters, based on the limited available information about the Galileo satellite's geometry. The satellite is modelled as a box, representing the satellite bus, and a wing representing the solar panel. The performance of the model will be assessed for GPS, GLONASS and Galileo constellations. The results of the proposed approach have been analyzed over a one year period. In order to assess the results two different SRP models have been used. Firstly, the proposed box-wing model and secondly, the new CODE empirical model, ECOM2. The orbit performances of both models are assessed using Satellite Laser Ranging (SLR) measurements, together with the evaluation of the orbit prediction accuracy. This comparison shows the advantages and disadvantages of taking the physical interactions between satellite and solar radiation into account in an empirical model with respect to a pure empirical model.
The Box and the Circle--Two Systems of Life: A Model for Understanding Native-Non-Native Issues.
ERIC Educational Resources Information Center
Derrick, Jann
Working as a family systems therapist with Native and non-Native families, the author observed two opposing social systems. Non-native families systems typify "The Box System," whereas native family systems portray "The Circle System." A few characteristics of the Circle System are: (1) a focus on life and peacefulness; (2) females and children…
Linguistic Mediation of Children's Performance in a New Symbolic Understanding Task
ERIC Educational Resources Information Center
Homer, Bruce D.; Petroff, Natalya; Hayward, Elizabeth O.
2013-01-01
The effects of language on symbolic functioning were examined using the "boxes task," a new symbolic understanding task based on DeLoache's model task. Children ("N" = 32; ages 2;4--3;8) observed an object being hidden in a stack of four boxes and were then asked to retrieve a similar object in the same location from a set of…
Box compression analysis of world-wide data spanning 46 years
Thomas J. Urbanik; Benjamin Frank
2006-01-01
The state of the art among most industry citations of box compression estimation is the equation by McKee developed in 1963. Because of limitations in computing tools at the time the McKee equation was developed, the equation is a simplification, with many constraints, of a more general relationship. By applying the results of sophisticated finite element modeling, in...
WHITE BOX: LOW COST BOX FOR LAPAROSCOPIC TRAINING
MARTINS, João Maximiliano Pedron; RIBEIRO, Roberto Vanin Pinto; CAVAZZOLA, Leandro Totti
2015-01-01
Background: Laparoscopic surgery is a reality in almost all surgical centers. Although with initial greater technical difficulty for surgeons, the rapid return to activities, less postoperative pain and higher quality aesthetic stimulates surgeons to evolve technically in this area. However, unlike open surgery where learning opportunities are more accessible, the laparoscopic training represents a challenge in surgeon formation. Aim: To present a low cost model for laparoscopic training box. Methods: This model is based in easily accessible materials; the equipment can be easily found based on chrome mini jet and passes rubber thread and a webcam attached to an aluminum handle. Results: It can be finalized in two days costing R$ 280,00 (US$ 90). Conclusion: It is possible to stimulate a larger number of surgeons to have self training in laparoscopy at low cost seeking to improve their surgical skills outside the operating room. PMID:26537148
Structural dynamic and thermal stress analysis of nuclear reactor vessel support system
NASA Technical Reports Server (NTRS)
Chi-Diango, J.
1972-01-01
A nuclear reactor vessel is supported by a Z-ring and a box ring girder. The two proposed structural configurations to transmit the loads from the Z-ring and the box ring girder to the foundation are shown. The cantilever concrete ledge transmitting the load from the Z-ring and the box girder via the cavity wall to the foundation is shown, along with the loads being transmitted through one of the six steel columns. Both of these two supporting systems were analyzed by using rigid format 9 of NASTRAN for dynamic loads, and the thermal stresses were analyzed by AXISOL. The six column configuration was modeled by a combination of plate and bar elements, and the concrete cantilever ledge configuration was modeled by plate elements. Both configurations were found structurally satisfactory; however, nonstructural considerations favored the concrete cantilever ledge.
NASA Technical Reports Server (NTRS)
ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.
2005-01-01
The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.
NASA Technical Reports Server (NTRS)
Boer, M.; Hurley, K.; Pizzichini, G.; Gottardi, M.
1991-01-01
Exosat observations are presented for 3 gamma-ray-burst error boxes, one of which may be associated with an optical flash. No point sources were detected at the 3-sigma level. A comparison with Einstein data (Pizzichini et al., 1986) is made for the March 5b, 1979 source. The data are interpreted in the framework of neutron star models and derive upper limits for the neutron star surface temperatures, accretion rates, and surface densities of an accretion disk. Apart from the March 5b, 1979 source, consistency is found with each model.
3D visualization of two-phase flow in the micro-tube by a simple but effective method
NASA Astrophysics Data System (ADS)
Fu, X.; Zhang, P.; Hu, H.; Huang, C. J.; Huang, Y.; Wang, R. Z.
2009-08-01
The present study provides a simple but effective method for 3D visualization of the two-phase flow in the micro-tube. An isosceles right-angle prism combined with a mirror located 45° bevel to the prism is employed to synchronously obtain the front and side views of the flow patterns with a single camera, where the locations of the prism and the micro-tube for clear imaging should satisfy a fixed relationship which is specified in the present study. The optical design is proven successfully by the tough visualization work at the cryogenic temperature range. The image deformation due to the refraction and geometrical configuration of the test section is quantitatively investigated. It is calculated that the image is enlarged by about 20% in inner diameter compared to the real object, which is validated by the experimental results. Meanwhile, the image deformation by adding a rectangular optical correction box outside the circular tube is comparatively investigated. It is calculated that the image is reduced by about 20% in inner diameter with a rectangular optical correction box compared to the real object. The 3D re-construction process based on the two views is conducted through three steps, which shows that the 3D visualization method can easily be applied for two-phase flow research in micro-scale channels and improves the measurement accuracy of some important parameters of the two-phase flow such as void fraction, spatial distribution of bubbles, etc.
Pancreatic cancer planning: Complex conformal vs modulated therapies.
Chapman, Katherine L; Witek, Matthew E; Chen, Hongyu; Showalter, Timothy N; Bar-Ad, Voichita; Harrison, Amy S
2016-01-01
To compare the roles of intensity-modulated radiation therapy (IMRT) and volumetric- modulated arc therapy (VMAT) therapy as compared to simple and complex 3-dimensional chemoradiotherpy (3DCRT) planning for resectable and borderline resectable pancreatic cancer. In all, 12 patients who received postoperative radiotherapy (8) or neoadjuvant concurrent chemoradiotherapy (4) were evaluated retrospectively. Radiotherapy planning was performed for 4 treatment techniques: simple 4-field box, complex 5-field 3DCRT, 5 to 6-field IMRT, and single-arc VMAT. All volumes were approved by a single observer in accordance with Radiation Therapy Oncology Group (RTOG) Pancreas Contouring Atlas. Plans included tumor/tumor bed and regional lymph nodes to 45Gy; with tumor/tumor bed boosted to 50.4Gy, at least 95% of planning target volume (PTV) received the prescription dose. Dose-volume histograms (DVH) for multiple end points, treatment planning, and delivery time were assessed. Complex 3DCRT, IMRT, and VMAT plans significantly (p < 0.05) decreased mean kidney dose, mean liver dose, liver (V30, V35), stomach (D10%), stomach (V45), mean right kidney dose, and right kidney (V15) as compared with the simple 4-field plans that are most commonly reported in the literature. IMRT plans resulted in decreased mean liver dose, liver (V35), and left kidney (V15, V18, V20). VMAT plans decreased small bowel (D10%, D15%), small bowel (V35, V45), stomach (D10%, D15%), stomach (V35, V45), mean liver dose, liver (V35), left kidney (V15, V18, V20), and right kidney (V18, V20). VMAT plans significantly decreased small bowel (D10%, D15%), left kidney (V20), and stomach (V45) as compared with IMRT plans. Treatment planning and delivery times were most efficient for simple 4-field box and VMAT. Excluding patient setup and imaging, average treatment delivery was within 10minutes for simple and complex 3DCRT, IMRT, and VMAT treatments. This article shows significant improvements in 3D plan performance with complex planning over the more frequently compared 3- or 4-field simple 3D planning techniques. VMAT plans continue to demonstrate potential for the most organ sparing. However, further studies are required to identify if dosimetric benefits associated with inverse optimized planning can be translated into clinical benefits and if these treatment techniques are value-added therapies for this group of patients with cancer. Published by Elsevier Inc.
Modeling radiation forces acting on TOPEX/Poseidon for precision orbit determination
NASA Technical Reports Server (NTRS)
Marshall, J. A.; Luthcke, S. B.; Antreasian, P. G.; Rosborough, G. W.
1992-01-01
Geodetic satellites such as GEOSAT, SPOT, ERS-1, and TOPEX/Poseidon require accurate orbital computations to support the scientific data they collect. Until recently, gravity field mismodeling was the major source of error in precise orbit definition. However, albedo and infrared re-radiation, and spacecraft thermal imbalances produce in combination no more than a 6-cm radial root-mean-square (RMS) error over a 10-day period. This requires the development of nonconservative force models that take the satellite's complex geometry, attitude, and surface properties into account. For TOPEX/Poseidon, a 'box-wing' satellite form was investigated that models the satellite as a combination of flat plates arranged in a box shape with a connected solar array. The nonconservative forces acting on each of the eight surfaces are computed independently, yielding vector accelerations which are summed to compute the total aggregate effect on the satellite center-of-mass. In order to test the validity of this concept, 'micro-models' based on finite element analysis of TOPEX/Poseidon were used to generate acceleration histories in a wide variety of orbit orientations. These profiles are then compared to the box-wing model. The results of these simulations and their implication on the ability to precisely model the TOPEX/Poseidon orbit are discussed.
NASA Astrophysics Data System (ADS)
Byrne, Michael P.; O'Gorman, Paul A.
2016-12-01
Climate models simulate a strong land-ocean contrast in the response of near-surface relative humidity to global warming: relative humidity tends to increase slightly over oceans but decrease substantially over land. Surface energy balance arguments have been used to understand the response over ocean but are difficult to apply over more complex land surfaces. Here, a conceptual box model is introduced, involving moisture transport between the land and ocean boundary layers and evapotranspiration, to investigate the decreases in land relative humidity as the climate warms. The box model is applied to idealized and full-complexity (CMIP5) general circulation model simulations, and it is found to capture many of the features of the simulated changes in land relative humidity. The box model suggests there is a strong link between fractional changes in specific humidity over land and ocean, and the greater warming over land than ocean then implies a decrease in land relative humidity. Evapotranspiration is of secondary importance for the increase in specific humidity over land, but it matters more for the decrease in relative humidity. Further analysis shows there is a strong feedback between changes in surface-air temperature and relative humidity, and this can amplify the influence on relative humidity of factors such as stomatal conductance and soil moisture.
NASA Technical Reports Server (NTRS)
Taff, L. G.
1998-01-01
Since the announcement of the discovery of sources of bursts of gamma-ray radiation in 1973, hundreds more reports of such bursts have now been published. Numerous artificial satellites have been equipped with gamma-ray detectors including the very successful Compton Gamma Ray Observatory BATSE instrument. Unfortunately, we have made no progress in identifying the source(s) of this high energy radiation. We suspected that this was a consequence of the method used to define gamma-ray burst source "error boxes." An alternative procedure to compute gamma-ray burst source positions, with a purely physical underpinning, was proposed in 1988 by Taff. Since then we have also made significant progress in understanding the analytical nature of the triangulation problem and in computing actual gamma-ray burst positions and their corresponding error boxes. For the former, we can now mathematically illustrate the crucial role of the area occupied by the detectors, while for the latter, the Atteia et al. (1987) catalog has been completely re-reduced. There are very few discrepancies in locations between our results and those of the customary "time difference of arrival" procedure. Thus, we have numerically demonstrated that the end result, for the positions, of these two very different-looking procedures is the same. Finally, for the first time, we provide a sample of realistic "error boxes" whose non-simple shapes vividly portray the difficulty of burst source localization.
Orac, Crina M; Zhou, Shu; Means, John A; Boehm, David; Bergmeier, Stephen C; Hines, Jennifer V
2011-10-13
The enantiomers and the cis isomers of two previously studied 4,5-disubstituted oxazolidinones have been synthesized, and their binding to the T-box riboswitch antiterminator model RNA has been investigated in detail. Characterization of ligand affinities and binding site localization indicates that there is little stereospecific discrimination for binding antiterminator RNA alone. This binding similarity between enantiomers is likely due to surface binding, which accommodates ligand conformations that result in comparable ligand-antiterminator contacts. These results have significant implications for T-box antiterminator-targeted drug discovery and, in general, for targeting other medicinally relevant RNA that do not present deep binding pockets.
Orac, Crina M.; Zhou, Shu; Means, John A.; Boehm, David; Bergmeier, Stephen C.; Hines, Jennifer V.
2012-01-01
The enantiomers and the cis isomers of two previously studied 4,5-disubstituted oxazolidinones have been synthesized and their binding to the T-box riboswitch antiterminator model RNA investigated in detail. Characterization of ligand affinities and binding site localization indicate that there is little stereospecific discrimination for binding antiterminator RNA alone. This binding similarity between enantiomers is likely due to surface binding, which accommodates ligand conformations that result in comparable ligand-antiterminator contacts. These results have significant implications for T-box antiterminator-targeted drug discovery and, in general, for targeting other medicinally relevant RNA that do not present deep binding pockets. PMID:21812425
Hollenbeak, Christopher S
2005-10-15
While risk-adjusted outcomes are often used to compare the performance of hospitals and physicians, the most appropriate functional form for the risk adjustment process is not always obvious for continuous outcomes such as costs. Semi-log models are used most often to correct skewness in cost data, but there has been limited research to determine whether the log transformation is sufficient or whether another transformation is more appropriate. This study explores the most appropriate functional form for risk-adjusting the cost of coronary artery bypass graft (CABG) surgery. Data included patients undergoing CABG surgery at four hospitals in the midwest and were fit to a Box-Cox model with random coefficients (BCRC) using Markov chain Monte Carlo methods. Marginal likelihoods and Bayes factors were computed to perform model comparison of alternative model specifications. Rankings of hospital performance were created from the simulation output and the rankings produced by Bayesian estimates were compared to rankings produced by standard models fit using classical methods. Results suggest that, for these data, the most appropriate functional form is not logarithmic, but corresponds to a Box-Cox transformation of -1. Furthermore, Bayes factors overwhelmingly rejected the natural log transformation. However, the hospital ranking induced by the BCRC model was not different from the ranking produced by maximum likelihood estimates of either the linear or semi-log model. Copyright (c) 2005 John Wiley & Sons, Ltd.
An artificial intelligence tool for complex age-depth models
NASA Astrophysics Data System (ADS)
Bradley, E.; Anderson, K. A.; de Vesine, L. R.; Lai, V.; Thomas, M.; Nelson, T. H.; Weiss, I.; White, J. W. C.
2017-12-01
CSciBox is an integrated software system for age modeling of paleoenvironmental records. It incorporates an array of data-processing and visualization facilities, ranging from 14C calibrations to sophisticated interpolation tools. Using CSciBox's GUI, a scientist can build custom analysis pipelines by composing these built-in components or adding new ones. Alternatively, she can employ CSciBox's automated reasoning engine, Hobbes, which uses AI techniques to perform an in-depth, autonomous exploration of the space of possible age-depth models and presents the results—both the models and the reasoning that was used in constructing and evaluating them—to the user for her inspection. Hobbes accomplishes this using a rulebase that captures the knowledge of expert geoscientists, which was collected over the course of more than 100 hours of interviews. It works by using these rules to generate arguments for and against different age-depth model choices for a given core. Given a marine-sediment record containing uncalibrated 14C dates, for instance, Hobbes tries CALIB-style calibrations using a choice of IntCal curves, with reservoir age correction values chosen from the 14CHRONO database using the lat/long information provided with the core, and finally composes the resulting age points into a full age model using different interpolation methods. It evaluates each model—e.g., looking for outliers or reversals—and uses that information to guide the next steps of its exploration, and presents the results to the user in human-readable form. The most powerful of CSciBox's built-in interpolation methods is BACON, a Bayesian sedimentation-rate algorithm—a powerful but complex tool that can be difficult to use. Hobbes adjusts BACON's many parameters autonomously to match the age model to the expectations of expert geoscientists, as captured in its rulebase. It then checks the model against the data and iteratively re-calculates until it is a good fit to the data.
Deflection monitoring for a box girder based on a modified conjugate beam method
NASA Astrophysics Data System (ADS)
Chen, Shi-Zhi; Wu, Gang; Xing, Tuo
2017-08-01
After several years of operation, a box girder bridge would commonly experience excessive deflection, which endangers the bridge’s life span as well as the safety of vehicles travelling on it. In order to avoid potential risks, it is essential to constantly monitor the defection of box girders. However, currently, the direct deflection monitoring methods are limited by the complicated environments beneath the bridges, such as rivers or other traffic lanes, which severely impede the layouts of the sensors. The other indirect deflection monitoring methods mostly do not thoroughly consider the inherent shear lag effect and shear deformation in the box girder, resulting in a rather large error. Under these circumstances, a deflection monitoring method suiting box girders is proposed in this article, based on the conjugate beam method and distributed long-gauge fibre Bragg grating (FBG) sensor. A lab experiment was conducted to verify the reliability and feasibility of this method under practical application. Further, the serviceability under different span-depth ratios and web thicknesses was examined through a finite element model.
Forecasts of non-Gaussian parameter spaces using Box-Cox transformations
NASA Astrophysics Data System (ADS)
Joachimi, B.; Taylor, A. N.
2011-09-01
Forecasts of statistical constraints on model parameters using the Fisher matrix abound in many fields of astrophysics. The Fisher matrix formalism involves the assumption of Gaussianity in parameter space and hence fails to predict complex features of posterior probability distributions. Combining the standard Fisher matrix with Box-Cox transformations, we propose a novel method that accurately predicts arbitrary posterior shapes. The Box-Cox transformations are applied to parameter space to render it approximately multivariate Gaussian, performing the Fisher matrix calculation on the transformed parameters. We demonstrate that, after the Box-Cox parameters have been determined from an initial likelihood evaluation, the method correctly predicts changes in the posterior when varying various parameters of the experimental setup and the data analysis, with marginally higher computational cost than a standard Fisher matrix calculation. We apply the Box-Cox-Fisher formalism to forecast cosmological parameter constraints by future weak gravitational lensing surveys. The characteristic non-linear degeneracy between matter density parameter and normalization of matter density fluctuations is reproduced for several cases, and the capabilities of breaking this degeneracy by weak-lensing three-point statistics is investigated. Possible applications of Box-Cox transformations of posterior distributions are discussed, including the prospects for performing statistical data analysis steps in the transformed Gaussianized parameter space.
Simplified method for the transverse bending analysis of twin celled concrete box girder bridges
NASA Astrophysics Data System (ADS)
Chithra, J.; Nagarajan, Praveen; S, Sajith A.
2018-03-01
Box girder bridges are one of the best options for bridges with span more than 25 m. For the study of these bridges, three-dimensional finite element analysis is the best suited method. However, performing three-dimensional analysis for routine design is difficult as well as time consuming. Also, software used for the three-dimensional analysis are very expensive. Hence designers resort to simplified analysis for predicting longitudinal and transverse bending moments. Among the many analytical methods used to find the transverse bending moments, SFA is the simplest and widely used in design offices. Results from simplified frame analysis can be used for the preliminary analysis of the concrete box girder bridges.From the review of literatures, it is found that majority of the work done using SFA is restricted to the analysis of single cell box girder bridges. Not much work has been done on the analysis multi-cell concrete box girder bridges. In this present study, a double cell concrete box girder bridge is chosen. The bridge is modelled using three- dimensional finite element software and the results are then compared with the simplified frame analysis. The study mainly focuses on establishing correction factors for transverse bending moment values obtained from SFA.
Zonal Flows and Long-lived Axisymmetric Pressure Bumps in Magnetorotational Turbulence
NASA Astrophysics Data System (ADS)
Johansen, A.; Youdin, A.; Klahr, H.
2009-06-01
We study the behavior of magnetorotational turbulence in shearing box simulations with a radial and azimuthal extent up to 10 scale heights. Maxwell and Reynolds stresses are found to increase by more than a factor of 2 when increasing the box size beyond two scale heights in the radial direction. Further increase of the box size has little or no effect on the statistical properties of the turbulence. An inverse cascade excites magnetic field structures at the largest scales of the box. The corresponding 10% variation in the Maxwell stress launches a zonal flow of alternating sub- and super-Keplerian velocity. This, in turn, generates a banded density structure in geostrophic balance between pressure and Coriolis forces. We present a simplified model for the appearance of zonal flows, in which stochastic forcing by the magnetic tension on short timescales creates zonal flow structures with lifetimes of several tens of orbits. We experiment with various improved shearing box algorithms to reduce the numerical diffusivity introduced by the supersonic shear flow. While a standard finite difference advection scheme shows signs of a suppression of turbulent activity near the edges of the box, this problem is eliminated by a new method where the Keplerian shear advection is advanced in time by interpolation in Fourier space.