ON-LINE CALCULATOR: FORWARD CALCULATION JOHNSON ETTINGER MODEL
On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...
ON-LINE CALCULATOR: JOHNSON ETTINGER VAPOR INTRUSION MODEL
On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...
On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...
Larsen, Ross E.
2016-04-12
In this study, we introduce two simple tight-binding models, which we call fragment frontier orbital extrapolations (FFOE), to extrapolate important electronic properties to the polymer limit using electronic structure calculations on only a few small oligomers. In particular, we demonstrate by comparison to explicit density functional theory calculations that for long oligomers the energies of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and of the first electronic excited state are accurately described as a function of number of repeat units by a simple effective Hamiltonian parameterized from electronic structure calculations on monomers, dimers and, optionally,more » tetramers. For the alternating copolymer materials that currently comprise some of the most efficient polymer organic photovoltaic devices one can use these simple but rigorous models to extrapolate computed properties to the polymer limit based on calculations on a small number of low-molecular-weight oligomers.« less
A Simple Sensor Model for THUNDER Actuators
NASA Technical Reports Server (NTRS)
Campbell, Joel F.; Bryant, Robert G.
2009-01-01
A quasi-static (low frequency) model is developed for THUNDER actuators configured as displacement sensors based on a simple Raleigh-Ritz technique. This model is used to calculate charge as a function of displacement. Using this and the calculated capacitance, voltage vs. displacement and voltage vs. electrical load curves are generated and compared with measurements. It is shown this model gives acceptable results and is useful for determining rough estimates of sensor output for various loads, laminate configurations and thicknesses.
NASA Astrophysics Data System (ADS)
Lisienko, V. G.; Malikov, G. K.; Titaev, A. A.
2014-12-01
The paper presents a new simple-to-use expression to calculate the total emissivity of a mixture of gases CO2 and H2O used for modeling heat transfer by radiation in industrial furnaces. The accuracy of this expression is evaluated using the exponential wide band model. It is found that the time taken to calculate the total emissivity in this expression is 1.5 times less than in other approximation methods.
Modelling the complete operation of a free-piston shock tunnel for a low enthalpy condition
NASA Astrophysics Data System (ADS)
McGilvray, M.; Dann, A. G.; Jacobs, P. A.
2013-07-01
Only a limited number of free-stream flow properties can be measured in hypersonic impulse facilities at the nozzle exit. This poses challenges for experimenters when subsequently analysing experimental data obtained from these facilities. Typically in a reflected shock tunnel, a simple analysis that requires small amounts of computational resources is used to calculate quasi-steady gas properties. This simple analysis requires initial fill conditions and experimental measurements in analytical calculations of each major flow process, using forward coupling with minor corrections to include processes that are not directly modeled. However, this simplistic approach leads to an unknown level of discrepancy to the true flow properties. To explore the simple modelling techniques accuracy, this paper details the use of transient one and two-dimensional numerical simulations of a complete facility to obtain more refined free-stream flow properties from a free-piston reflected shock tunnel operating at low-enthalpy conditions. These calculations were verified by comparison to experimental data obtained from the facility. For the condition and facility investigated, the test conditions at nozzle exit produced with the simple modelling technique agree with the time and space averaged results from the complete facility calculations to within the accuracy of the experimental measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, G.A.; Pack, R.T
1978-02-15
A simple, direct derivation of the rotational infinite order sudden (IOS) approximation in molecular scattering theory is given. Connections between simple scattering amplitude formulas, choice of average partial wave parameter, and magnetic transitions are reviewed. Simple procedures for calculating cross sections for specific transitions are discussed and many older model formulas are given clear derivations. Total (summed over rotation) differential, integral, and transport cross sections, useful in the analysis of many experiments involving nonspherical molecules, are shown to be exceedingly simple: They are just averages over the potential angle of cross sections calculated using simple structureless spherical particle formulas andmore » programs. In the case of vibrationally inelastic scattering, the IOSA, without further approximation, provides a well-defined way to get fully three dimensional cross sections from calculations no more difficult than collinear calculations. Integral, differential, viscosity, and diffusion cross sections for He-CO/sub 2/ obtained from the IOSA and a realistic intermolecular potential are calculated as an example and compared with experiment. Agreement is good for the complete potential but poor when only its spherical part is used, so that one should never attempt to treat this system with a spherical model. The simplicity and accuracy of the IOSA make it a viable method for routine analysis of experiments involving collisions of nonspherical molecules.« less
NASA Astrophysics Data System (ADS)
Donahue, William; Newhauser, Wayne D.; Ziegler, James F.
2016-09-01
Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u-1 to 450 MeV u-1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.
Donahue, William; Newhauser, Wayne D; Ziegler, James F
2016-09-07
Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.
NASA Astrophysics Data System (ADS)
Kuzenov, V. V.; Ryzhkov, S. V.
2017-02-01
The paper formulated engineering and physical mathematical model for aerothermodynamics hypersonic flight vehicle (HFV) in laminar and turbulent boundary layers (model designed for an approximate estimate of the convective heat flow in the range of speeds M = 6-28, and height H = 20-80 km). 2D versions of calculations of convective heat flows for bodies of simple geometric forms (individual elements of the design HFV) are presented.
Numerical study of centrifugal compressor stage vaneless diffusers
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Soldatova, K.; Solovieva, O.
2015-08-01
The authors analyzed CFD calculations of flow in vaneless diffusers with relative width in range from 0.014 to 0.100 at inlet flow angles in range from 100 to 450 with different inlet velocity coefficients, Reynolds numbers and surface roughness. The aim is to simulate calculated performances by simple algebraic equations. The friction coefficient that represents head losses as friction losses is proposed for simulation. The friction coefficient and loss coefficient are directly connected by simple equation. The advantage is that friction coefficient changes comparatively little in range of studied parameters. Simple equations for this coefficient are proposed by the authors. The simulation accuracy is sufficient for practical calculations. To create the complete algebraic model of the vaneless diffuser the authors plan to widen this method of modeling to diffusers with different relative length and for wider range of Reynolds numbers.
Calculating the surface tension of binary solutions of simple fluids of comparable size
NASA Astrophysics Data System (ADS)
Zaitseva, E. S.; Tovbin, Yu. K.
2017-11-01
A molecular theory based on the lattice gas model (LGM) is used to calculate the surface tension of one- and two-component planar vapor-liquid interfaces of simple fluids. Interaction between nearest neighbors is considered in the calculations. LGM is applied as a tool of interpolation: the parameters of the model are corrected using experimental surface tension data. It is found that the average accuracy of describing the surface tension of pure substances (Ar, N2, O2, CH4) and their mixtures (Ar-O2, Ar-N2, Ar-CH4, N2-CH4) does not exceed 2%.
Comparison of different objective functions for parameterization of simple respiration models
M.T. van Wijk; B. van Putten; D.Y. Hollinger; A.D. Richardson
2008-01-01
The eddy covariance measurements of carbon dioxide fluxes collected around the world offer a rich source for detailed data analysis. Simple, aggregated models are attractive tools for gap filling, budget calculation, and upscaling in space and time. Key in the application of these models is their parameterization and a robust estimate of the uncertainty and reliability...
A simple kinetic model of a Ne-H2 Penning-plasma laser
NASA Astrophysics Data System (ADS)
Petrov, G. M.; Stefanova, M. S.; Pramatarov, P. M.
1995-09-01
A simple kinetic model of the Ne-H2 Penning-Plasma Laser (PPL) (NeI 585.3 nm) is proposed. The negative glow of a hollow cathode discharge at intermediate pressures is considered as the active medium. The balance equations for the upper and lower laser levels, electrons, ions and electron energy are solved. The dependences of the laser gain on the discharge conditions (Ne and H2 partial pressures, discharge current) are calculated and measured. The calculated values are in a good agreement with the experimental data.
Yuan, Ying; He, Xiao-Song; Xi, Bei-Dou; Wei, Zi-Min; Tan, Wen-Bing; Gao, Ru-Tai
2016-11-01
Vulnerability assessment of simple landfills was conducted using the multimedia, multipathway and multireceptor risk assessment (3MRA) model for the first time in China. The minimum safe threshold of six contaminants (benzene, arsenic (As), cadmium (Cd), hexavalent chromium [Cr(VI)], divalent mercury [Hg(II)] and divalent nickel [Ni(II)]) in landfill and waste pile models were calculated by the 3MRA model. Furthermore, the vulnerability indexes of the six contaminants were predicted based on the model calculation. The results showed that the order of health risk vulnerability index was As > Hg(II) > Cr(VI) > benzene > Cd > Ni(II) in the landfill model, whereas the ecology risk vulnerability index was in the order of As > Hg(II) > Cr(VI) > Cd > benzene > Ni(II). In the waste pile model, the order of health risk vulnerability index was benzene > Hg(II) > Cr(VI) > As > Cd and Ni(II), whereas the ecology risk vulnerability index was in the order of Hg(II) > Cd > Cr(VI) > As > benzene > Ni(II). These results indicated that As, Hg(II) and Cr(VI) were the high risk contaminants for the case of a simple landfill in China; the concentration of these in soil and groundwater around the simple landfill should be strictly monitored, and proper mediation is also recommended for simple landfills with a high concentration of contaminants. © The Author(s) 2016.
National Stormwater Calculator User's Guide – VERSION 1.1
This document is the user's guide for running EPA's National Stormwater Calculator (http://www.epa.gov/nrmrl/wswrd/wq/models/swc/). The National Stormwater Calculator is a simple to use tool for computing small site hydrology for any location within the US.
Interaction of Simple Ions with Water: Theoretical Models for the Study of Ion Hydration
ERIC Educational Resources Information Center
Gancheff, Jorge S.; Kremer, Carlos; Ventura, Oscar N.
2009-01-01
A computational experiment aimed to create and systematically analyze models of simple cation hydrates is presented. The changes in the structure (bond distances and angles) and the electronic density distribution of the solvent and the thermodynamic parameters of the hydration process are calculated and compared with the experimental data. The…
Elastic and viscoelastic calculations of stresses in sedimentary basins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
This study presents a method for estimating the stress state within reservoirs at depth using a time-history approach for both elastic and viscoelastic rock behavior. Two features of this model are particularly significant for stress calculations. The first is the time-history approach, where we assume that the present in situ stress is a result of the entire history of the rock mass, rather than due only to the present conditions. The model can incorporate: (1) changes in pore pressure due to gas generation; (2) temperature gradients and local thermal episodes; (3) consolidation and diagenesis through time-varying material properties; and (4)more » varying tectonic episodes. The second feature is the use of a new viscoelastic model. Rather than assume a form of the relaxation function, a complete viscoelastic solution is obtained from the elastic solution through the viscoelastic correspondence principal. Simple rate models are then applied to obtain the final rock behavior. Example calculations for some simple cases are presented that show the contribution of individual stress or strain components. Finally, a complete example of the stress history of rocks in the Piceance basin is attempted. This calculation compares favorably with present-day stress data in this location. This model serves as a predictor for natural fracture genesis and expected rock fracturing from the model is compared with actual fractures observed in this region. These results show that most current estimates of in situ stress at depth do not incorporate all of the important mechanisms and a more complete formulation, such as this study, is required for acceptable stress calculations. The method presented here is general and is applicable to any basin having a relatively simple geologic history. 25 refs., 18 figs.« less
Test of the efficiency of three storm water quality models with a rich set of data.
Ahyerre, M; Henry, F O; Gogien, F; Chabanel, M; Zug, M; Renaudet, D
2005-01-01
The objective of this article is to test the efficiency of three different Storm Water Quality Model (SWQM) on the same data set (34 rain events, SS measurements) sampled on a 42 ha watershed in the center of Paris. The models have been calibrated at the scale of the rain event. Considering the mass of pollution calculated per event, the results on the models are satisfactory but that they are in the same order of magnitude as the simple hydraulic approach associated to a constant concentration. In a second time, the mass of pollutant at the outlet of the catchment at the global scale of the 34 events has been calculated. This approach shows that the simple hydraulic calculations gives better results than SWQM. Finally, the pollutographs are analysed, showing that storm water quality models are interesting tools to represent the shape of the pollutographs, and the dynamics of the phenomenon which can be useful in some projects for managers.
The induced electric field due to a current transient
NASA Astrophysics Data System (ADS)
Beck, Y.; Braunstein, A.; Frankental, S.
2007-05-01
Calculations and measurements of the electric fields, induced by a lightning strike, are important for understanding the phenomenon and developing effective protection systems. In this paper, a novel approach to the calculation of the electric fields due to lightning strikes, using a relativistic approach, is presented. This approach is based on a known current wave-pair model, representing the lightning current wave. The model presented is one that describes the lightning current wave, either at the first stage of the descending charge wave from the cloud or at the later stage of the return stroke. The electric fields computed are cylindrically symmetric. A simplified method for the calculation of the electric field is achieved by using special relativity theory and relativistic considerations. The proposed approach, described in this paper, is based on simple expressions (by applying Coulomb's law) compared with much more complicated partial differential equations based on Maxwell's equations. A straight forward method of calculating the electric field due to a lightning strike, modelled as a negative-positive (NP) wave-pair, is determined by using the special relativity theory in order to calculate the 'velocity field' and relativistic concepts for calculating the 'acceleration field'. These fields are the basic elements required for calculating the total field resulting from the current wave-pair model. Moreover, a modified simpler method using sub models is represented. The sub-models are filaments of either static charges or charges at constant velocity only. Combining these simple sub-models yields the total wave-pair model. The results fully agree with that obtained by solving Maxwell's equations for the discussed problem.
A simple reaction-rate model for turbulent diffusion flames
NASA Technical Reports Server (NTRS)
Bangert, L. H.
1975-01-01
A simple reaction rate model is proposed for turbulent diffusion flames in which the reaction rate is proportional to the turbulence mixing rate. The reaction rate is also dependent on the mean mass fraction and the mean square fluctuation of mass fraction of each reactant. Calculations are compared with experimental data and are generally successful in predicting the measured quantities.
Sarma, Manabendra; Adhikari, S; Mishra, Manoj K
2007-01-28
Vibrational excitation (nu(f)<--nu(i)) cross-sections sigma(nu(f)<--nu(i) )(E) in resonant e-N(2) and e-H(2) scattering are calculated from transition matrix elements T(nu(f),nu(i) )(E) obtained using Fourier transform of the cross correlation function
Investigating decoherence in a simple system
NASA Technical Reports Server (NTRS)
Albrecht, Andreas
1991-01-01
The results of some simple calculations designed to study quantum decoherence are presented. The physics of quantum decoherence are briefly reviewed, and a very simple 'toy' model is analyzed. Exact solutions are found using numerical techniques. The type of incoherence exhibited by the model can be changed by varying a coupling strength. The author explains why the conventional approach to studying decoherence by checking the diagonality of the density matrix is not always adequate. Two other approaches, the decoherence functional and the Schmidt paths approach, are applied to the toy model and contrasted to each other. Possible problems with each are discussed.
NASA Technical Reports Server (NTRS)
Carder, K. L.; Lee, Z. P.; Marra, John; Steward, R. G.; Perry, M. J.
1995-01-01
The quantum yield of photosynthesis (mol C/mol photons) was calculated at six depths for the waters of the Marine Light-Mixed Layer (MLML) cruise of May 1991. As there were photosynthetically available radiation (PAR) but no spectral irradiance measurements for the primary production incubations, three ways are presented here for the calculation of the absorbed photons (AP) by phytoplankton for the purpose of calculating phi. The first is based on a simple, nonspectral model; the second is based on a nonlinear regression using measured PAR values with depth; and the third is derived through remote sensing measurements. We show that the results of phi calculated using the nonlinear regreesion method and those using remote sensing are in good agreement with each other, and are consistent with the reported values of other studies. In deep waters, however, the simple nonspectral model may cause quantum yield values much higher than theoretically possible.
Hirarchical emotion calculation model for virtual human modellin - biomed 2010.
Zhao, Yue; Wright, David
2010-01-01
This paper introduces a new emotion generation method for virtual human modelling. The method includes a novel hierarchical emotion structure, a group of emotion calculation equations and a simple heuristics decision making mechanism, which enables virtual humans to perform emotionally in real-time according to their internal and external factors. Emotion calculation equations used in this research were derived from psychologic emotion measurements. Virtual humans can utilise the information in virtual memory and emotion calculation equations to generate their own numerical emotion states within the hierarchical emotion structure. Those emotion states are important internal references for virtual humans to adopt appropriate behaviours and also key cues for their decision making. A simple heuristics theory is introduced and integrated into decision making process in order to make the virtual humans decision making more like a real human. A data interface which connects the emotion calculation and the decision making structure together has also been designed and simulated to test the method in Virtools environment.
Coherent Anomaly Method Calculation on the Cluster Variation Method. II.
NASA Astrophysics Data System (ADS)
Wada, Koh; Watanabe, Naotosi; Uchida, Tetsuya
The critical exponents of the bond percolation model are calculated in the D(= 2,3,…)-dimensional simple cubic lattice on the basis of Suzuki's coherent anomaly method (CAM) by making use of a series of the pair, the square-cactus and the square approximations of the cluster variation method (CVM) in the s-state Potts model. These simple approximations give reasonable values of critical exponents α, β, γ and ν in comparison with ones estimated by other methods. It is also shown that the results of the pair and the square-cactus approximations can be derived as exact results of the bond percolation model on the Bethe and the square-cactus lattice, respectively, in the presence of ghost field without recourse to the s→1 limit of the s-state Potts model.
Cosmic microwave background radiation anisotropies in brane worlds.
Koyama, Kazuya
2003-11-28
We propose a new formulation to calculate the cosmic microwave background (CMB) spectrum in the Randall-Sundrum two-brane model based on recent progress in solving the bulk geometry using a low energy approximation. The evolution of the anisotropic stress imprinted on the brane by the 5D Weyl tensor is calculated. An impact of the dark radiation perturbation on the CMB spectrum is investigated in a simple model assuming an initially scale-invariant adiabatic perturbation. The dark radiation perturbation induces isocurvature perturbations, but the resultant spectrum can be quite different from the prediction of simple mixtures of adiabatic and isocurvature perturbations due to Weyl anisotropic stress.
A conceptually and computationally simple method for the definition, display, quantification, and comparison of the shapes of three-dimensional mathematical molecular models is presented. Molecular or solvent-accessible volume and surface area can also be calculated. Algorithms, ...
A simple rain attenuation model for earth-space radio links operating at 10-35 GHz
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Yon, K. M.
1986-01-01
The simple attenuation model has been improved from an earlier version and now includes the effect of wave polarization. The model is for the prediction of rain attenuation statistics on earth-space communication links operating in the 10-35 GHz band. Simple calculations produce attenuation values as a function of average rain rate. These together with rain rate statistics (either measured or predicted) can be used to predict annual rain attenuation statistics. In this paper model predictions are compared to measured data from a data base of 62 experiments performed in the U.S., Europe, and Japan. Comparisons are also made to predictions from other models.
Electrostatics of cysteine residues in proteins: Parameterization and validation of a simple model
Salsbury, Freddie R.; Poole, Leslie B.; Fetrow, Jacquelyn S.
2013-01-01
One of the most popular and simple models for the calculation of pKas from a protein structure is the semi-macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pKas. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pKas; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pKas. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pKa values (where the calculation should reproduce the pKa within experimental error). Both the general behavior of cysteines in proteins and the perturbed pKa in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pKa should be shifted, and validation of force field parameters for cysteine residues. PMID:22777874
pyhector: A Python interface for the simple climate model Hector
Willner, Sven N.; Hartin, Corinne; Gieseke, Robert
2017-04-01
Here, pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary productionmore » and respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system. The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2.« less
NASA Astrophysics Data System (ADS)
Wada, Koh; Watanabe, Naotosi; Uchida, Tetsuya
1991-10-01
The critical exponents of the bond percolation model are calculated in the D(=2, 3, \\cdots)-dimensional simple cubic lattice on the basis of Suzuki’s coherent anomaly method (CAM) by making use of a series of the pair, the square-cactus and the square approximations of the cluster variation method (CVM) in the s-state Potts model. These simple approximations give reasonable values of critical exponents α, β, γ and ν in comparison with ones estimated by other methods. It is also shown that the results of the pair and the square-cactus approximations can be derived as exact results of the bond percolation model on the Bethe and the square-cactus lattice, respectively, in the presence of ghost field without recourse to the s→1 limit of the s-state Potts model.
Point kernel calculations of skyshine exposure rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roseberry, M.L.; Shultis, J.K.
1982-02-01
A simple point kernel model is presented for the calculation of skyshine exposure rates arising from the atmospheric reflection of gamma radiation produced by a vertically collimated or a shielded point source. This model is shown to be in good agreement with benchmark experimental data from a /sup 60/Co source for distances out to 700 m.
The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghumman, S. S.
The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models.
Simple Forest Canopy Thermal Exitance Model
NASA Technical Reports Server (NTRS)
Smith J. A.; Goltz, S. M.
1999-01-01
We describe a model to calculate brightness temperature and surface energy balance for a forest canopy system. The model is an extension of an earlier vegetation only model by inclusion of a simple soil layer. The root mean square error in brightness temperature for a dense forest canopy was 2.5 C. Surface energy balance predictions were also in good agreement. The corresponding root mean square errors for net radiation, latent, and sensible heat were 38.9, 30.7, and 41.4 W/sq m respectively.
Estimation of surface temperature in remote pollution measurement experiments
NASA Technical Reports Server (NTRS)
Gupta, S. K.; Tiwari, S. N.
1978-01-01
A simple algorithm has been developed for estimating the actual surface temperature by applying corrections to the effective brightness temperature measured by radiometers mounted on remote sensing platforms. Corrections to effective brightness temperature are computed using an accurate radiative transfer model for the 'basic atmosphere' and several modifications of this caused by deviations of the various atmospheric and surface parameters from their base model values. Model calculations are employed to establish simple analytical relations between the deviations of these parameters and the additional temperature corrections required to compensate for them. Effects of simultaneous variation of two parameters are also examined. Use of these analytical relations instead of detailed radiative transfer calculations for routine data analysis results in a severalfold reduction in computation costs.
A simple nonlocal damage model for predicting failure of notched laminates
NASA Technical Reports Server (NTRS)
Kennedy, T. C.; Nahan, M. F.
1995-01-01
The ability to predict failure loads in notched composite laminates is a requirement in a variety of structural design circumstances. A complicating factor is the development of a zone of damaged material around the notch tip. The objective of this study was to develop a computational technique that simulates progressive damage growth around a notch in a manner that allows the prediction of failure over a wide range of notch sizes. This was accomplished through the use of a relatively simple, nonlocal damage model that incorporates strain-softening. This model was implemented in a two-dimensional finite element program. Calculations were performed for two different laminates with various notch sizes under tensile loading, and the calculations were found to correlate well with experimental results.
Modeling of air pollution from the power plant ash dumps
NASA Astrophysics Data System (ADS)
Aleksic, Nenad M.; Balać, Nedeljko
A simple model of air pollution from power plant ash dumps is presented, with emission rates calculated from the Bagnold formula and transport simulated by the ATDL type model. Moisture effects are accounted for by assumption that there is no pollution on rain days. Annual mean daily sedimentation rates, calculated for the area around the 'Nikola Tesla' power plants near Belgrade for 1987, show reasonably good agreement with observations.
Comparison of ACCENT 2000 Shuttle Plume Data with SIMPLE Model Predictions
NASA Astrophysics Data System (ADS)
Swaminathan, P. K.; Taylor, J. C.; Ross, M. N.; Zittel, P. F.; Lloyd, S. A.
2001-12-01
The JHU/APL Stratospheric IMpact of PLume Effluents (SIMPLE)model was employed to analyze the trace species in situ composition data collected during the ACCENT 2000 intercepts of the space shuttle Space Transportation Launch System (STS) rocket plume as a function of time and radial location within the cold plume. The SIMPLE model is initialized using predictions for species depositions calculated using an afterburning model based on standard TDK/SPP nozzle and SPF plume flowfield codes with an expanded chemical kinetic scheme. The time dependent ambient stratospheric chemistry is fully coupled to the plume species evolution whose transport is based on empirically derived diffusion. Model/data comparisons are encouraging through capturing observed local ozone recovery times as well as overall morphology of chlorine chemistry.
A simple model of low-scale direct gauge mediation
NASA Astrophysics Data System (ADS)
Csáki, Csaba; Shirman, Yuri; Terning, John
2007-05-01
We construct a calculable model of low-energy direct gauge mediation making use of the metastable supersymmetry breaking vacua recently discovered by Intriligator, Seiberg and Shih. The standard model gauge group is a subgroup of the global symmetries of the SUSY breaking sector and messengers play an essential role in dynamical SUSY breaking: they are composites of a confining gauge theory, and the holomorphic scalar messenger mass appears as a consequence of the confining dynamics. The SUSY breaking scale is around 100 TeV nevertheless the model is calculable. The minimal non-renormalizable coupling of the Higgs to the DSB sector leads in a simple way to a μ-term, while the B-term arises at two-loop order resulting in a moderately large tan β. A novel feature of this class of models is that some particles from the dynamical SUSY breaking sector may be accessible at the LHC.
Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass
NASA Astrophysics Data System (ADS)
Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard
2013-06-01
The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant CQ ∝ |Vzz| and the asymmetry parameter ηQ that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.
Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass.
Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard
2013-06-26
The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant C(Q) is proportional to |V(zz)| and the asymmetry parameter η(Q) that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.
Dense simple plasmas as high-temperature liquid simple metals
NASA Technical Reports Server (NTRS)
Perrot, F.
1990-01-01
The thermodynamic properties of dense plasmas considered as high-temperature liquid metals are studied. An attempt is made to show that the neutral pseudoatom picture of liquid simple metals may be extended for describing plasmas in ranges of densities and temperatures where their electronic structure remains 'simple'. The primary features of the model when applied to plasmas include the temperature-dependent self-consistent calculation of the electron charge density and the determination of a density and temperature-dependent ionization state.
Jet engine performance enhancement through use of a wave-rotor topping cycle
NASA Technical Reports Server (NTRS)
Wilson, Jack; Paxson, Daniel E.
1993-01-01
A simple model is used to calculate the thermal efficiency and specific power of simple jet engines and jet engines with a wave-rotor topping cycle. The performance of the wave rotor is based on measurements from a previous experiment. Applied to the case of an aircraft flying at Mach 0.8, the calculations show that an engine with a wave rotor topping cycle may have gains in thermal efficiency of approximately 1 to 2 percent and gains in specific power of approximately 10 to 16 percent over a simple jet engine with the same overall compression ratio. Even greater gains are possible if the wave rotor's performance can be improved.
Electrostatics of cysteine residues in proteins: parameterization and validation of a simple model.
Salsbury, Freddie R; Poole, Leslie B; Fetrow, Jacquelyn S
2012-11-01
One of the most popular and simple models for the calculation of pK(a) s from a protein structure is the semi-macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pK(a) s. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pK(a) s; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pK(a) s. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pK(a) values (where the calculation should reproduce the pK(a) within experimental error). Both the general behavior of cysteines in proteins and the perturbed pK(a) in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pK(a) should be shifted, and validation of force field parameters for cysteine residues. Copyright © 2012 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Palusinski, O. A.; Allgyer, T. T.
1979-01-01
The elimination of Ampholine from the system by establishing the pH gradient with simple ampholytes is proposed. A mathematical model was exercised at the level of the two-component system by using values for mobilities, diffusion coefficients, and dissociation constants representative of glutamic acid and histidine. The constants assumed in the calculations are reported. The predictions of the model and computer simulation of isoelectric focusing experiments are in direct importance to obtain Ampholine-free, stable pH gradients.
Nomogram for sample size calculation on a straightforward basis for the kappa statistic.
Hong, Hyunsook; Choi, Yunhee; Hahn, Seokyung; Park, Sue Kyung; Park, Byung-Joo
2014-09-01
Kappa is a widely used measure of agreement. However, it may not be straightforward in some situation such as sample size calculation due to the kappa paradox: high agreement but low kappa. Hence, it seems reasonable in sample size calculation that the level of agreement under a certain marginal prevalence is considered in terms of a simple proportion of agreement rather than a kappa value. Therefore, sample size formulae and nomograms using a simple proportion of agreement rather than a kappa under certain marginal prevalences are proposed. A sample size formula was derived using the kappa statistic under the common correlation model and goodness-of-fit statistic. The nomogram for the sample size formula was developed using SAS 9.3. The sample size formulae using a simple proportion of agreement instead of a kappa statistic and nomograms to eliminate the inconvenience of using a mathematical formula were produced. A nomogram for sample size calculation with a simple proportion of agreement should be useful in the planning stages when the focus of interest is on testing the hypothesis of interobserver agreement involving two raters and nominal outcome measures. Copyright © 2014 Elsevier Inc. All rights reserved.
Cranking Calculation in the sdg Interacting Boson Model
NASA Astrophysics Data System (ADS)
Wang, Baolin
1998-10-01
A self-consistent cranking calculation of the intrinsic states of the sdg interacting boson model is performed. The formulae of the moment of inertia are given in a general sdg IBM multipole Hamiltonian with one- and two-body terms. In the quadrupole interaction, the intrinsic states, the quadrupole and hexadecapole deformation and the moment of inertia are investigated in the large N limit. Using a simple Hamiltonian, the results of numerical calculations for 152, 154Sm and 154-160 Gd satisfactorily reproduce the experimental data.
NASA Astrophysics Data System (ADS)
Kupka, Teobald
1997-12-01
IR studies were preformed to determine possible transition metal ion binding sites of penicillin. the observed changes in spectral position and shape of characteristic IR bands of cloxacillin in the presence of transition metal ions (both in solutions and in the solid state) indicate formation of M-L complexes with engagement of -COO - and/or -CONH- functional groups. The small shift of νCO towards higher frequencies rules out direct M-L interaction via β-lactam carbonyl. PM3 calculations on simple model compounds (substituted formamide, cyclic ketones, lactams and substituted monocyclic β-lactams) have been performed. All structures were fully optimized and the calculated bond lengths, angles, heats of formation and CO stretching frequencies were discussed to determine the β-lactam binding sites and to explain its susceptibility towards nucleophilic attack (hydrolysis in vitro) and biological activity. The relative changes of calculated values were critically compared with available experimental data and same correlation between structural parameters and in vivo activity was shown.
Hyperheat: a thermal signature model for super- and hypersonic missiles
NASA Astrophysics Data System (ADS)
van Binsbergen, S. A.; van Zelderen, B.; Veraar, R. G.; Bouquet, F.; Halswijk, W. H. C.; Schleijpen, H. M. A.
2017-10-01
In performance prediction of IR sensor systems for missile detection, apart from the sensor specifications, target signatures are essential variables. Very often, for velocities up to Mach 2-2.5, a simple model based on the aerodynamic heating of a perfect gas was used to calculate the temperatures of missile targets. This typically results in an overestimate of the target temperature with correspondingly large infrared signatures and detection ranges. Especially for even higher velocities, this approach is no longer accurate. Alternatives like CFD calculations typically require more complex sets of inputs and significantly more computing power. The MATLAB code Hyperheat was developed to calculate the time-resolved skin temperature of axisymmetric high speed missiles during flight, taking into account the behaviour of non-perfect gas and proper heat transfer to the missile surface. Allowing for variations in parameters like missile shape, altitude, atmospheric profile, angle of attack, flight duration and super- and hypersonic velocities up to Mach 30 enables more accurate calculations of the actual target temperature. The model calculates a map of the skin temperature of the missile, which is updated over the flight time of the missile. The sets of skin temperature maps are calculated within minutes, even for >100 km trajectories, and can be easily converted in thermal infrared signatures for further processing. This paper discusses the approach taken in Hyperheat. Then, the thermal signature of a set of typical missile threats is calculated using both the simple aerodynamic heating model and the Hyperheat code. The respective infrared signatures are compared, as well as the difference in the corresponding calculated detection ranges.
A comparison of three algebraic stress closures for combustor flow calculations
NASA Technical Reports Server (NTRS)
Nikjooy, M.; So, R. M. C.; Hwang, B. C.
1985-01-01
A comparison is made of the performance of two locally nonequilibrium and one equilibrium algebraic stress closures in calculating combustor flows. Effects of four different pressure-strain models on these closure models are also analyzed. The results show that the pressure-strain models have a much greater influence on the calculated mean velocity and turbulence field than the algebraic stress closures, and that the best mean strain model for the pressure-strain terms is that proposed by Launder, Reece and Rodi (1975). However, the equilibrium algebraic stress closure with the Rotta return-to-isotropy model (1951) for the pressure-strain terms gives as good a correlation with measurements as when the Launder et al. mean strain model is included in the pressure-strain model. Finally, comparison of the calculations with the standard k-epsilon closure results show that the algebraic stress closures are better suited for simple turbulent flow calculations.
NASA Astrophysics Data System (ADS)
Perez, R. J.; Shevalier, M.; Hutcheon, I.
2004-05-01
Gas solubility is of considerable interest, not only for the theoretical understanding of vapor-liquid equilibria, but also due to extensive applications in combined geochemical, engineering, and environmental problems, such as greenhouse gas sequestration. Reliable models for gas solubility calculations in salt waters and hydrocarbons are also valuable when evaluating fluid inclusions saturated with gas components. We have modeled the solubility of methane, ethane, hydrogen, carbon dioxide, hydrogen sulfide, and five other gases in a water-brine-hydrocarbon system by solving a non-linear system of equations composed by modified Henry's Law Constants (HLC), gas fugacities, and assuming binary mixtures. HLCs are a function of pressure, temperature, brine salinity, and hydrocarbon density. Experimental data of vapor pressures and mutual solubilities of binary mixtures provide the basis for the calibration of the proposed model. It is demonstrated that, by using the Setchenow equation, only a relatively simple modification of the pure water model is required to assess the solubility of gases in brine solutions. Henry's Law constants for gases in hydrocarbons are derived using regular solution theory and Ostwald coefficients available from the literature. We present a set of two-parameter polynomial expressions, which allow simple computation and formulation of the model. Our calculations show that solubility predictions using modified HLCs are acceptable within 0 to 250 C, 1 to 150 bars, salinity up to 5 molar, and gas concentrations up to 4 molar. Our model is currently being used in the IEA Weyburn CO2 monitoring and storage project.
Review of Thawing Time Prediction Models Depending on Process Conditions and Product Characteristics
Kluza, Franciszek; Spiess, Walter E. L.; Kozłowicz, Katarzyna
2016-01-01
Summary Determining thawing times of frozen foods is a challenging problem as the thermophysical properties of the product change during thawing. A number of calculation models and solutions have been developed. The proposed solutions range from relatively simple analytical equations based on a number of assumptions to a group of empirical approaches that sometimes require complex calculations. In this paper analytical, empirical and graphical models are presented and critically reviewed. The conditions of solution, limitations and possible applications of the models are discussed. The graphical and semi--graphical models are derived from numerical methods. Using the numerical methods is not always possible as running calculations takes time, whereas the specialized software and equipment are not always cheap. For these reasons, the application of analytical-empirical models is more useful for engineering. It is demonstrated that there is no simple, accurate and feasible analytical method for thawing time prediction. Consequently, simplified methods are needed for thawing time estimation of agricultural and food products. The review reveals the need for further improvement of the existing solutions or development of new ones that will enable accurate determination of thawing time within a wide range of practical conditions of heat transfer during processing. PMID:27904387
Spectral Simulations and Abundance Determinations in the Interstellar Medium of Active Galaxies
NASA Astrophysics Data System (ADS)
Ferguson, Jason W.
The narrow emission line spectra of gas illuminated by the nuclear region of active galaxies cannot be described by models involving simple photoionization calculations. In this project we develop the numerical tools necessary to accurately simulate observed spectra from such regions. We begin by developing a compact model hydrogen atom, and show that a moderate number of atomic levels can reproduce the emission of much larger, definitive calculations. We discuss the excitation mechanism of the gas, that is, whether the emission we see is a result of either local shock excitation or direct photoionization by the central source. We show that photoionization plus continuum fluorescence can mimic excitation by shocks, and we suggest an observational test to distinguish between photoionization due to shocks and the central source. We extend to the narrow line region of active galaxies the 'locally optimally-emitting cloud' (LOC) model, wherein the observed spectra are predominantly determined by a simple, yet powerful selection effect. Namely, nature provides the emitting line region with clouds of a vast ensemble of properties, and we observe emission lines from those clouds that are most efficient at emitting them. We have calculated large grids of photoionization models of narrow line clouds for a wide range of gas density and distances from the ionizing source. We show that when coupled to a simple Keplerian velocity field, the LOC naturally reproduces the line width - critical density correlation observed in many narrow line objects. In addition, we calculate classical diagnostic line ratios and use simple LOC integrations over gas density to simulate the radial emission of the narrow lines and compare with observations. The effects of including dust in the simulations is discussed and we show that the more neutral gas is likely to be dusty, while the more highly ionized gas is dust-free. This implies a variety of cloud origins.
A Simple Model of Nitrogen Concentration, Throughput, and Denitrification in Estuaries
The Estuary Nitrogen Model (ENM) is a mass balance model that includes calculation of nitrogen losses within bays and estuaries using system flushing time. The model has been used to demonstrate the dependence of throughput and denitrification of nitrogen in bays and estuaries on...
NASA Technical Reports Server (NTRS)
Stutzman, Warren L.
1989-01-01
This paper reviews the effects of precipitation on earth-space communication links operating the 10 to 35 GHz frequency range. Emphasis is on the quantitative prediction of rain attenuation and depolarization. Discussions center on the models developed at Virginia Tech. Comments on other models are included as well as literature references to key works. Also included is the system level modeling for dual polarized communication systems with techniques for calculating antenna and propagation medium effects. Simple models for the calculation of average annual attenuation and cross-polarization discrimination (XPD) are presented. Calculation of worst month statistics are also presented.
Models for Models: An Introduction to Polymer Models Employing Simple Analogies
NASA Astrophysics Data System (ADS)
Tarazona, M. Pilar; Saiz, Enrique
1998-11-01
An introduction to the most common models used in the calculations of conformational properties of polymers, ranging from the freely jointed chain approximation to Monte Carlo or molecular dynamics methods, is presented. Mathematical formalism is avoided and simple analogies, such as human chains, gases, opinion polls, or marketing strategies, are used to explain the different models presented. A second goal of the paper is to teach students how models required for the interpretation of a system can be elaborated, starting with the simplest model and introducing successive improvements until the refinements become so sophisticated that it is much better to use an alternative approach.
A simple model of hysteresis behavior using spreadsheet analysis
NASA Astrophysics Data System (ADS)
Ehrmann, A.; Blachowicz, T.
2015-01-01
Hysteresis loops occur in many scientific and technical problems, especially as field dependent magnetization of ferromagnetic materials, but also as stress-strain-curves of materials measured by tensile tests including thermal effects, liquid-solid phase transitions, in cell biology or economics. While several mathematical models exist which aim to calculate hysteresis energies and other parameters, here we offer a simple model for a general hysteretic system, showing different hysteresis loops depending on the defined parameters. The calculation which is based on basic spreadsheet analysis plus an easy macro code can be used by students to understand how these systems work and how the parameters influence the reactions of the system on an external field. Importantly, in the step-by-step mode, each change of the system state, compared to the last step, becomes visible. The simple program can be developed further by several changes and additions, enabling the building of a tool which is capable of answering real physical questions in the broad field of magnetism as well as in other scientific areas, in which similar hysteresis loops occur.
1981-06-01
TI - 59 programmable calculator to aid...training. The Texas Instruments TI - 59 Programmable Calculator has only ten lettered registers that would be simple for clerical personnel to use (A...SASSY Management Units. Appendix C is a set of user instructions written for the Texas Instrument TI - 59 Programmable Calculator . The TI-59 was
An Urban Diffusion Simulation Model for Carbon Monoxide
ERIC Educational Resources Information Center
Johnson, W. B.; And Others
1973-01-01
A relatively simple Gaussian-type diffusion simulation model for calculating urban carbon (CO) concentrations as a function of local meteorology and the distribution of traffic is described. The model can be used in two ways: in the synoptic mode and in the climatological mode. (Author/BL)
Rubber friction and tire dynamics.
Persson, B N J
2011-01-12
We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.
Modification of the Simons model for calculation of nonradial expansion plumes
NASA Technical Reports Server (NTRS)
Boyd, I. D.; Stark, J. P. W.
1989-01-01
The Simons model is a simple model for calculating the expansion plumes of rockets and thrusters and is a widely used engineering tool for the determination of spacecraft impingement effects. The model assumes that the density of the plume decreases radially from the nozzle exit. Although a high degree of success has been achieved in modeling plumes with moderate Mach numbers, the accuracy obtained under certain conditions is unsatisfactory. A modification made to the model that allows effective description of nonradial behavior in plumes is presented, and the conditions under which its use is preferred are prescribed.
Galactic chemical evolution and nucleocosmochronology - Standard model with terminated infall
NASA Technical Reports Server (NTRS)
Clayton, D. D.
1984-01-01
Some exactly soluble families of models for the chemical evolution of the Galaxy are presented. The parameters considered include gas mass, the age-metallicity relation, the star mass vs. metallicity, the age distribution, and the mean age of dwarfs. A short BASIC program for calculating these parameters is given. The calculation of metallicity gradients, nuclear cosmochronology, and extinct radioactivities is addressed. An especially simple, mathematically linear model is recommended as a standard model of galaxies with truncated infall due to its internal consistency and compact display of the physical effects of the parameters.
Batterham, Philip J; Bunce, David; Mackinnon, Andrew J; Christensen, Helen
2014-01-01
very few studies have examined the association between intra-individual reaction time variability and subsequent mortality. Furthermore, the ability of simple measures of variability to predict mortality has not been compared with more complex measures. a prospective cohort study of 896 community-based Australian adults aged 70+ were interviewed up to four times from 1990 to 2002, with vital status assessed until June 2007. From this cohort, 770-790 participants were included in Cox proportional hazards regression models of survival. Vital status and time in study were used to conduct survival analyses. The mean reaction time and three measures of intra-individual reaction time variability were calculated separately across 20 trials of simple and choice reaction time tasks. Models were adjusted for a range of demographic, physical health and mental health measures. greater intra-individual simple reaction time variability, as assessed by the raw standard deviation (raw SD), coefficient of variation (CV) or the intra-individual standard deviation (ISD), was strongly associated with an increased hazard of all-cause mortality in adjusted Cox regression models. The mean reaction time had no significant association with mortality. intra-individual variability in simple reaction time appears to have a robust association with mortality over 17 years. Health professionals such as neuropsychologists may benefit in their detection of neuropathology by supplementing neuropsychiatric testing with the straightforward process of testing simple reaction time and calculating raw SD or CV.
Dosimetry in x-ray-based breast imaging
Dance, David R; Sechopoulos, Ioannis
2016-01-01
The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (DBCT). Almost all of the methodology used employs Monte Carlo calculated conversion factors to relate the measurable quantity, generally the incident air kerma, to the MGD. After a review of the size and composition of the female breast, the various mathematical models used are discussed, with particular emphasis on models for mammography. These range from simple geometrical shapes, to the more recent complex models based on patient DBCT examinations. The possibility of patient-specific dose estimates is considered as well as special diagnostic views and the effect of breast implants. Calculations using the complex models show that the MGD for mammography is overestimated by about 30% when the simple models are used. The design and uses of breast-simulating test phantoms for measuring incident air kerma are outlined and comparisons made between patient and phantom-based dose estimates. The most widely used national and international dosimetry protocols for mammography are based on different simple geometrical models of the breast, and harmonisation of these protocols using more complex breast models is desirable. PMID:27617767
Dosimetry in x-ray-based breast imaging
NASA Astrophysics Data System (ADS)
Dance, David R.; Sechopoulos, Ioannis
2016-10-01
The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (DBCT). Almost all of the methodology used employs Monte Carlo calculated conversion factors to relate the measurable quantity, generally the incident air kerma, to the MGD. After a review of the size and composition of the female breast, the various mathematical models used are discussed, with particular emphasis on models for mammography. These range from simple geometrical shapes, to the more recent complex models based on patient DBCT examinations. The possibility of patient-specific dose estimates is considered as well as special diagnostic views and the effect of breast implants. Calculations using the complex models show that the MGD for mammography is overestimated by about 30% when the simple models are used. The design and uses of breast-simulating test phantoms for measuring incident air kerma are outlined and comparisons made between patient and phantom-based dose estimates. The most widely used national and international dosimetry protocols for mammography are based on different simple geometrical models of the breast, and harmonisation of these protocols using more complex breast models is desirable.
Parsons, T.; Blakely, R.J.; Brocher, T.M.
2001-01-01
The geologic structure of the Earth's upper crust can be revealed by modeling variation in seismic arrival times and in potential field measurements. We demonstrate a simple method for sequentially satisfying seismic traveltime and observed gravity residuals in an iterative 3-D inversion. The algorithm is portable to any seismic analysis method that uses a gridded representation of velocity structure. Our technique calculates the gravity anomaly resulting from a velocity model by converting to density with Gardner's rule. The residual between calculated and observed gravity is minimized by weighted adjustments to the model velocity-depth gradient where the gradient is steepest and where seismic coverage is least. The adjustments are scaled by the sign and magnitude of the gravity residuals, and a smoothing step is performed to minimize vertical streaking. The adjusted model is then used as a starting model in the next seismic traveltime iteration. The process is repeated until one velocity model can simultaneously satisfy both the gravity anomaly and seismic traveltime observations within acceptable misfits. We test our algorithm with data gathered in the Puget Lowland of Washington state, USA (Seismic Hazards Investigation in Puget Sound [SHIPS] experiment). We perform resolution tests with synthetic traveltime and gravity observations calculated with a checkerboard velocity model using the SHIPS experiment geometry, and show that the addition of gravity significantly enhances resolution. We calculate a new velocity model for the region using SHIPS traveltimes and observed gravity, and show examples where correlation between surface geology and modeled subsurface velocity structure is enhanced.
A Global Climate Model for Instruction.
ERIC Educational Resources Information Center
Burt, James E.
This paper describes a simple global climate model useful in a freshman or sophomore level course in climatology. There are three parts to the paper. The first part describes the model, which is a global model of surface air temperature averaged over latitude and longitude. Samples of the types of calculations performed in the model are provided.…
Kanematsu, Nobuyuki
2009-03-07
Dose calculation for radiotherapy with protons and heavier ions deals with a large volume of path integrals involving a scattering power of body tissue. This work provides a simple model for such demanding applications. There is an approximate linearity between RMS end-point displacement and range of incident particles in water, empirically found in measurements and detailed calculations. This fact was translated into a simple linear formula, from which the scattering power that is only inversely proportional to the residual range was derived. The simplicity enabled the analytical formulation for ions stopping in water, which was designed to be equivalent with the extended Highland model and agreed with measurements within 2% or 0.02 cm in RMS displacement. The simplicity will also improve the efficiency of numerical path integrals in the presence of heterogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willner, Sven N.; Hartin, Corinne; Gieseke, Robert
Here, pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary productionmore » and respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system. The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2.« less
Validation of DNA-based identification software by computation of pedigree likelihood ratios.
Slooten, K
2011-08-01
Disaster victim identification (DVI) can be aided by DNA-evidence, by comparing the DNA-profiles of unidentified individuals with those of surviving relatives. The DNA-evidence is used optimally when such a comparison is done by calculating the appropriate likelihood ratios. Though conceptually simple, the calculations can be quite involved, especially with large pedigrees, precise mutation models etc. In this article we describe a series of test cases designed to check if software designed to calculate such likelihood ratios computes them correctly. The cases include both simple and more complicated pedigrees, among which inbred ones. We show how to calculate the likelihood ratio numerically and algebraically, including a general mutation model and possibility of allelic dropout. In Appendix A we show how to derive such algebraic expressions mathematically. We have set up these cases to validate new software, called Bonaparte, which performs pedigree likelihood ratio calculations in a DVI context. Bonaparte has been developed by SNN Nijmegen (The Netherlands) for the Netherlands Forensic Institute (NFI). It is available free of charge for non-commercial purposes (see www.dnadvi.nl for details). Commercial licenses can also be obtained. The software uses Bayesian networks and the junction tree algorithm to perform its calculations. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Pesnell, W. Dean
2016-01-01
Dropping objects into a tunnel bored through Earth has been used to visualize simple harmonic motion for many years, and even imagined for use as rapid transport systems. Unlike previous studies that assumed a constant density Earth, here we calculate the fall-through time of polytropes, models of Earth's interior where the pressure varies as a power of the density. This means the fall-through time can be calculated as the central condensation varies from one to large within the family of polytropes. Having a family of models, rather than a single model, helps to explore the properties of planets and stars. Comparing the family of phase space solutions shows that the fall-through time and velocity approach the limit of radial free-fall onto a point mass as the central condensation increases. More condensed models give higher maximum velocities but do not have the right global properties for Earth. The angular distance one can travel along the surface is calculated as a brachistochrone (path of least time) tunnel that is a function of the depth to which the tunnel is bored. We also show that completely degenerate objects, simple models of white dwarf stars supported by completely degenerate electrons, have sizes similar to Earth but their much higher masses mean a much larger gravitational strength and a shorter fall-through time. Numerical integrations of the equations describing polytropes and completely degenerate objects are used to generate the initial models. Analytic solutions and numerical integration of the equations of motion are used to calculate the fall-through time for each model, and numerical integrations with analytic approximations at the boundaries are used to calculate the brachistochrones in the polytropes. Scaling relationships are provided to help use these results in other planets and stars.
Gas flow calculation method of a ramjet engine
NASA Astrophysics Data System (ADS)
Kostyushin, Kirill; Kagenov, Anuar; Eremin, Ivan; Zhiltsov, Konstantin; Shuvarikov, Vladimir
2017-11-01
At the present study calculation methodology of gas dynamics equations in ramjet engine is presented. The algorithm is based on Godunov`s scheme. For realization of calculation algorithm, the system of data storage is offered, the system does not depend on mesh topology, and it allows using the computational meshes with arbitrary number of cell faces. The algorithm of building a block-structured grid is given. Calculation algorithm in the software package "FlashFlow" is implemented. Software package is verified on the calculations of simple configurations of air intakes and scramjet models.
Rocket exhaust ground cloud/atmospheric interactions
NASA Technical Reports Server (NTRS)
Hwang, B.; Gould, R. K.
1978-01-01
An attempt to identify and minimize the uncertainties and potential inaccuracies of the NASA Multilayer Diffusion Model (MDM) is performed using data from selected Titan 3 launches. The study is based on detailed parametric calculations using the MDM code and a comparative study of several other diffusion models, the NASA measurements, and the MDM. The results are discussed and evaluated. In addition, the physical/chemical processes taking place during the rocket cloud rise are analyzed. The exhaust properties and the deluge water effects are evaluated. A time-dependent model for two aerosol coagulations is developed and documented. Calculations using this model for dry deposition during cloud rise are made. A simple model for calculating physical properties such as temperature and air mass entrainment during cloud rise is also developed and incorporated with the aerosol model.
Modelling of backscatter from vegetation layers
NASA Technical Reports Server (NTRS)
Van Zyl, J. J.; Engheta, N.; Papas, C. H.; Elachi, C.; Zebker, H.
1985-01-01
A simple way to build up a library of models which may be used to distinguish between the different types of vegetation and ground surfaces by means of their backscatter properties is presented. The curve of constant power received by the antenna (Gamma sphere) is calculated for the given Stokes Scattering Operator, and model parameters are adopted of the most similar library model Gamma sphere. Results calculated for a single scattering model resembling coniferous trees are compared with the Gamma spheres of a model resembling tropical region trees. The polarization which would minimize the effect of either the ground surface or the vegetation layer can be calculated and used to analyze the backscatter from the ground surface/vegetation layer combination, and enhance the power received from the desired part of the combination.
Simple formula for the surface area of the body and a simple model for anthropometry.
Reading, Bruce D; Freeman, Brian
2005-03-01
The body surface area (BSA) of any adult, when derived from the arithmetic mean of the different values calculated from four independent accepted formulae, can be expressed accurately in Systeme International d'Unites (SI) units by the simple equation BSA = 1/6(WH)0.5, where W is body weight in kg, H is body height in m, and BSA is in m2. This formula, which is derived in part by modeling the body as a simple solid of revolution or a prolate spheroid (i.e., a stretched ellipsoid of revolution) gives students, teachers, and clinicians a simple rule for the rapid estimation of surface area using rational units. The formula was tested independently for human subjects by using it to predict body volume and then comparing this prediction against the actual volume measured by Archimedes' principle. Copyright 2005 Wiley-Liss, Inc.
Calculation of tip clearance effects in a transonic compressor rotor
NASA Technical Reports Server (NTRS)
Chima, R. V.
1996-01-01
The flow through the tip clearance region of a transonic compressor rotor (NASA rotor 37) was computed and compared to aerodynamic probe and laser anemometer data. Tip clearance effects were modeled both by gridding the clearance gap and by using a simple periodicity model across the ungridded gap. The simple model was run with both the full gap height, and with half the gap height to simulate a vena-contracta effect. Comparisons between computed and measured performance maps and downstream profiles were used to validate the models and to assess the effects of gap height on the simple clearance model. Recommendations were made concerning the use of the simple clearance model. Detailed comparisons were made between the gridded clearance gap solution and the laser anemometer data near the tip at two operating points. The computer results agreed fairly well with the data but overpredicted the extent of the casing separation and underpredicted the wake decay rate. The computations were then used to describe the interaction of the tip vortex, the passage shock, and the casing boundary layer.
Two-band analysis of hole mobility and Hall factor for heavily carbon-doped p-type GaAs
NASA Astrophysics Data System (ADS)
Kim, B. W.; Majerfeld, A.
1996-02-01
We solve a pair of Boltzmann transport equations based on an interacting two-isotropic-band model in a general way first to get transport parameters corresponding to the relaxation time. We present a simple method to calculate effective relaxation times, separately for each band, which compensate for the inherent deficiencies in using the relaxation time concept for polar optical-phonon scattering. Formulas for calculating momentum relaxation times in the two-band model are presented for all the major scattering mechanisms of p-type GaAs for simple, practical mobility calculations. In the newly proposed theoretical framework, first-principles calculations for the Hall mobility and Hall factor of p-type GaAs at room temperature are carried out with no adjustable parameters in order to obtain direct comparisons between the theory and recently available experimental results. In the calculations, the light-hole-band nonparabolicity is taken into account on the average by the use of energy-dependent effective mass obtained from the kṡp method and valence-band anisotropy is taken partly into account by the use the Wiley's overlap function.. The calculated Hall mobilities show a good agreement with our experimental data for carbon-doped p-GaAs samples in the range of degenerate hole densities. The calculated Hall factors show rH=1.25-1.75 over hole densities of 2×1017-1×1020 cm-3.
PVWatts Version 1 Technical Reference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobos, A. P.
2013-10-01
The NREL PVWatts(TM) calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes several hidden assumptions about performance parameters. This technical reference details the individual sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimation.
NASA Astrophysics Data System (ADS)
De Lucas, Javier
2015-03-01
A simple geometrical model for calculating the effective emissivity in blackbody cylindrical cavities has been developed. The back ray tracing technique and the Monte Carlo method have been employed, making use of a suitable set of coordinates and auxiliary planes. In these planes, the trajectories of individual photons in the successive reflections between the cavity points are followed in detail. The theoretical model is implemented by using simple numerical tools, programmed in Microsoft Visual Basic for Application and Excel. The algorithm is applied to isothermal and non-isothermal diffuse cylindrical cavities with a lid; however, the basic geometrical structure can be generalized to a cylindro-conical shape and specular reflection. Additionally, the numerical algorithm and the program source code can be used, with minor changes, for determining the distribution of the cavity points, where photon absorption takes place. This distribution could be applied to the study of the influence of thermal gradients on the effective emissivity profiles, for example. Validation is performed by analyzing the convergence of the Monte Carlo method as a function of the number of trials and by comparison with published results of different authors.
Nonthermal model for ultrafast laser-induced plasma generation around a plasmonic nanorod
NASA Astrophysics Data System (ADS)
Labouret, Timothée; Palpant, Bruno
2016-12-01
The excitation of plasmonic gold nanoparticles by ultrashort laser pulses can trigger interesting electron-based effects in biological media such as production of reactive oxygen species or cell membrane optoporation. In order to better understand the optical and thermal processes at play, we modeled the interaction of a subpicosecond, near-infrared laser pulse with a gold nanorod in water. A nonthermal model is used and compared to a simple two-temperature thermal approach. For both models, the computation of the transient optical response reveals strong plasmon damping. Electron emission from the metal into the water is also calculated in a specific way for each model. The dynamics of the resulting local plasma in water is assessed by a rate equation model. While both approaches provide similar results for the transient optical properties, the simple thermal one is unable to properly describe electron emission and plasma generation. The latter is shown to mostly originate from electron-electron thermionic emission and photoemission from the metal. Taking into account the transient optical response is mandatory to properly calculate both electron emission and local plasma dynamics in water.
Simple Levelized Cost of Energy (LCOE) Calculator Documentation | Energy
Analysis | NREL Simple Levelized Cost of Energy (LCOE) Calculator Documentation Simple Levelized Cost of Energy (LCOE) Calculator Documentation Transparent Cost Database Button This is a simple : 1). Cost and Performance Adjust the sliders to suitable values for each of the cost and performance
NASA Technical Reports Server (NTRS)
Gorski, Krzysztof M.
1993-01-01
Simple and easy to implement elementary function approximations are introduced to the spectral window functions needed in calculations of model predictions of the cosmic microwave backgrond (CMB) anisotropy. These approximations allow the investigator to obtain model delta T/T predictions in terms of single integrals over the power spectrum of cosmological perturbations and to avoid the necessity of performing the additional integrations. The high accuracy of these approximations is demonstrated here for the CDM theory-based calculations of the expected delta T/T signal in several experiments searching for the CMB anisotropy.
Wilson, Lydia J; Newhauser, Wayne D
2015-01-01
State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 minutes. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models. PMID:26040833
Jagetic, Lydia J; Newhauser, Wayne D
2015-06-21
State-of-the-art radiotherapy treatment planning systems provide reliable estimates of the therapeutic radiation but are known to underestimate or neglect the stray radiation exposures. Most commonly, stray radiation exposures are reconstructed using empirical formulas or lookup tables. The purpose of this study was to develop the basic physics of a model capable of calculating the total absorbed dose both inside and outside of the therapeutic radiation beam for external beam photon therapy. The model was developed using measurements of total absorbed dose in a water-box phantom from a 6 MV medical linear accelerator to calculate dose profiles in both the in-plane and cross-plane direction for a variety of square field sizes and depths in water. The water-box phantom facilitated development of the basic physical aspects of the model. RMS discrepancies between measured and calculated total absorbed dose values in water were less than 9.3% for all fields studied. Computation times for 10 million dose points within a homogeneous phantom were approximately 4 min. These results suggest that the basic physics of the model are sufficiently simple, fast, and accurate to serve as a foundation for a variety of clinical and research applications, some of which may require that the model be extended or simplified based on the needs of the user. A potentially important advantage of a physics-based approach is that the model is more readily adaptable to a wide variety of treatment units and treatment techniques than with empirical models.
Uncertainty analysis on simple mass balance model to calculate critical loads for soil acidity
Harbin Li; Steven G. McNulty
2007-01-01
Simple mass balance equations (SMBE) of critical acid loads (CAL) in forest soil were developed to assess potential risks of air pollutants to ecosystems. However, to apply SMBE reliably at large scales, SMBE must be tested for adequacy and uncertainty. Our goal was to provide a detailed analysis of uncertainty in SMBE so that sound strategies for scaling up CAL...
Design and implementation of a simple nuclear power plant simulator
NASA Astrophysics Data System (ADS)
Miller, William H.
1983-02-01
A simple PWR nuclear power plant simulator has been designed and implemented on a minicomputer system. The system is intended for students use in understanding the power operation of a nuclear power plant. A PDP-11 minicomputer calculates reactor parameters in real time, uses a graphics terminal to display the results and a keyboard and joystick for control functions. Plant parameters calculated by the model include the core reactivity (based upon control rod positions, soluble boron concentration and reactivity feedback effects), the total core power, the axial core power distribution, the temperature and pressure in the primary and secondary coolant loops, etc.
The viscosity of magmatic silicate liquids: A model for calculation
NASA Technical Reports Server (NTRS)
Bottinga, Y.; Weill, D. F.
1971-01-01
A simple model has been designed to allow reasonably accurate calculations of viscosity as a function of temperature and composition. The problem of predicting viscosities of anhydrous silicate liquids has been investigated since such viscosity numbers are applicable to many extrusive melts and to nearly dry magmatic liquids in general. The fluidizing action of water dissolved in silicate melts is well recognized and it is now possible to predict the effect of water content on viscosity in a semiquantitative way. Water was not incorporated directly into the model. Viscosities of anhydrous compositions were calculated, and, where necessary, the effect of added water and estimated. The model can be easily modified to incorporate the effect of water whenever sufficient additional data are accumulated.
The Diffusion Simulator - Teaching Geomorphic and Geologic Problems Visually.
ERIC Educational Resources Information Center
Gilbert, R.
1979-01-01
Describes a simple hydraulic simulator based on more complex models long used by engineers to develop approximate solutions. It allows students to visualize non-steady transfer, to apply a model to solve a problem, and to compare experimentally simulated information with calculated values. (Author/MA)
The application of sensitivity analysis to models of large scale physiological systems
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1974-01-01
A survey of the literature of sensitivity analysis as it applies to biological systems is reported as well as a brief development of sensitivity theory. A simple population model and a more complex thermoregulatory model illustrate the investigatory techniques and interpretation of parameter sensitivity analysis. The role of sensitivity analysis in validating and verifying models, and in identifying relative parameter influence in estimating errors in model behavior due to uncertainty in input data is presented. This analysis is valuable to the simulationist and the experimentalist in allocating resources for data collection. A method for reducing highly complex, nonlinear models to simple linear algebraic models that could be useful for making rapid, first order calculations of system behavior is presented.
Fast modeling of flux trapping cascaded explosively driven magnetic flux compression generators.
Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Liu, Chebo
2013-01-01
To predict the performance of flux trapping cascaded flux compression generators, a calculation model based on an equivalent circuit is investigated. The system circuit is analyzed according to its operation characteristics in different steps. Flux conservation coefficients are added to the driving terms of circuit differential equations to account for intrinsic flux losses. To calculate the currents in the circuit by solving the circuit equations, a simple zero-dimensional model is used to calculate the time-varying inductance and dc resistance of the generator. Then a fast computer code is programmed based on this calculation model. As an example, a two-staged flux trapping generator is simulated by using this computer code. Good agreements are achieved by comparing the simulation results with the measurements. Furthermore, it is obvious that this fast calculation model can be easily applied to predict performances of other flux trapping cascaded flux compression generators with complex structures such as conical stator or conical armature sections and so on for design purpose.
Drewniak, Elizabeth I.; Jay, Gregory D.; Fleming, Braden C.; Crisco, Joseph J.
2009-01-01
In attempts to better understand the etiology of osteoarthritis, a debilitating joint disease that results in the degeneration of articular cartilage in synovial joints, researchers have focused on joint tribology, the study of joint friction, lubrication, and wear. Several different approaches have been used to investigate the frictional properties of articular cartilage. In this study, we examined two analysis methods for calculating the coefficient of friction (μ) using a simple pendulum system and BL6 murine knee joints (n=10) as the fulcrum. A Stanton linear decay model (Lin μ) and an exponential model that accounts for viscous damping (Exp μ) were fit to the decaying pendulum oscillations. Root mean square error (RMSE), asymptotic standard error (ASE), and coefficient of variation (CV) were calculated to evaluate the fit and measurement precision of each model. This investigation demonstrated that while Lin μ was more repeatable, based on CV (5.0% for Lin μ; 18% for Exp μ), Exp μ provided a better fitting model, based on RMSE (0.165° for Exp μ; 0.391° for Lin μ) and ASE (0.033 for Exp μ; 0.185 for Lin μ), and had a significantly lower coefficient of friction value (0.022±0.007 for Exp μ; 0.042±0.016 for Lin μ) (p=0.001). This study details the use of a simple pendulum for examining cartilage properties in situ that will have applications investigating cartilage mechanics in a variety of species. The Exp μ model provided a more accurate fit to the experimental data for predicting the frictional properties of intact joints in pendulum systems. PMID:19632680
Elastic and viscoelastic model of the stress history of sedimentary rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
A model has been developed to calculate the elastic and viscoelastic stresses which develop in rocks at depth due to burial, uplift and diagenesis. This model includes the effect of the overburden load, tectonic or geometric strains, thermal strains, varying material properties, pore pressure variations, and viscoeleastic relaxation. Calculations for some simple examples are given to show the contributions of the individual stress components due to gravity, tectonics, thermal effects and pore pressure. A complete stress history for Mesaverde rocks in the Piceance basin is calculated based on available burial history, thermal history and expected pore pressure, material property andmore » tectonic strain variations through time. These calculations show the importance of including material property changes and viscoelastic effects. 15 refs., 48 figs.« less
Simple calculation of ab initio melting curves: Application to aluminum.
Robert, Grégory; Legrand, Philippe; Arnault, Philippe; Desbiens, Nicolas; Clérouin, Jean
2015-03-01
We present a simple, fast, and promising method to compute the melting curves of materials with ab initio molecular dynamics. It is based on the two-phase thermodynamic model of Lin et al [J. Chem. Phys. 119, 11792 (2003)] and its improved version given by Desjarlais [Phys. Rev. E 88, 062145 (2013)]. In this model, the velocity autocorrelation function is utilized to calculate the contribution of the nuclei motion to the entropy of the solid and liquid phases. It is then possible to find the thermodynamic conditions of equal Gibbs free energy between these phases, defining the melting curve. The first benchmark on the face-centered cubic melting curve of aluminum from 0 to 300 GPa demonstrates how to obtain an accuracy of 5%-10%, comparable to the most sophisticated methods, for a much lower computational cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utsunomiya, S; Kushima, N; Katsura, K
Purpose: To establish a simple relation of backscatter dose enhancement around a high-Z dental alloy in head and neck radiation therapy to its average atomic number based on Monte Carlo calculations. Methods: The PHITS Monte Carlo code was used to calculate dose enhancement, which is quantified by the backscatter dose factor (BSDF). The accuracy of the beam modeling with PHITS was verified by comparing with basic measured data namely PDDs and dose profiles. In the simulation, a high-Z alloy of 1 cm cube was embedded into a tough water phantom irradiated by a 6-MV (nominal) X-ray beam of 10 cmmore » × 10 cm field size of Novalis TX (Brainlab). The ten different materials of high-Z alloys (Al, Ti, Cu, Ag, Au-Pd-Ag, I, Ba, W, Au, Pb) were considered. The accuracy of calculated BSDF was verified by comparing with measured data by Gafchromic EBT3 films placed at from 0 to 10 mm away from a high-Z alloy (Au-Pd-Ag). We derived an approximate equation to determine the relation of BSDF and range of backscatter to average atomic number of high-Z alloy. Results: The calculated BSDF showed excellent agreement with measured one by Gafchromic EBT3 films at from 0 to 10 mm away from the high-Z alloy. We found the simple linear relation of BSDF and range of backscatter to average atomic number of dental alloys. The latter relation was proven by the fact that energy spectrum of backscatter electrons strongly depend on average atomic number. Conclusion: We found a simple relation of backscatter dose enhancement around high-Z alloys to its average atomic number based on Monte Carlo calculations. This work provides a simple and useful method to estimate backscatter dose enhancement from dental alloys and corresponding optimal thickness of dental spacer to prevent mucositis effectively.« less
Calculations of proton-binding thermodynamics in proteins.
Beroza, P; Case, D A
1998-01-01
Computational models of proton binding can range from the chemically complex and statistically simple (as in the quantum calculations) to the chemically simple and statistically complex. Much progress has been made in the multiple-site titration problem. Calculations have improved with the inclusion of more flexibility in regard to both the geometry of the proton binding and the larger scale protein motions associated with titration. This article concentrated on the principles of current calculations, but did not attempt to survey their quantitative performance. This is (1) because such comparisons are given in the cited papers and (2) because continued developments in understanding conformational flexibility and interaction energies will be needed to develop robust methods with strong predictive power. Nevertheless, the advances achieved over the past few years should not be underestimated: serious calculations of protonation behavior and its coupling to conformational change can now be confidently pursued against a backdrop of increasing understanding of the strengths and limitations of such models. It is hoped that such theoretical advances will also spur renewed experimental interest in measuring both overall titration curves and individual pKa values or pKa shifts. Exploration of the shapes of individual titration curves (as measured by Hill coefficients and other parameters) would also be useful in assessing the accuracy of computations and in drawing connections to functional behavior.
A Simple Method to Estimate Photosynthetic Radiation Use Efficiency of Canopies
ROSATI, A.; METCALF, S. G.; LAMPINEN, B. D.
2004-01-01
• Background and Aims Photosynthetic radiation use efficiency (PhRUE) over the course of a day has been shown to be constant for leaves throughout a general canopy where nitrogen content (and thus photosynthetic properties) of leaves is distributed in relation to the light gradient. It has been suggested that this daily PhRUE can be calculated simply from the photosynthetic properties of a leaf at the top of the canopy and from the PAR incident on the canopy, which can be obtained from weather‐station data. The objective of this study was to investigate whether this simple method allows estimation of PhRUE of different crops and with different daily incident PAR, and also during the growing season. • Methods The PhRUE calculated with this simple method was compared with that calculated with a more detailed model, for different days in May, June and July in California, on almond (Prunus dulcis) and walnut (Juglans regia) trees. Daily net photosynthesis of 50 individual leaves was calculated as the daylight integral of the instantaneous photosynthesis. The latter was estimated for each leaf from its photosynthetic response to PAR and from the PAR incident on the leaf during the day. • Key Results Daily photosynthesis of individual leaves of both species was linearly related to the daily PAR incident on the leaves (which implies constant PhRUE throughout the canopy), but the slope (i.e. the PhRUE) differed between the species, over the growing season due to changes in photosynthetic properties of the leaves, and with differences in daily incident PAR. When PhRUE was estimated from the photosynthetic light response curve of a leaf at the top of the canopy and from the incident radiation above the canopy, obtained from weather‐station data, the values were within 5 % of those calculated with the more detailed model, except in five out of 34 cases. • Conclusions The simple method of estimating PhRUE is valuable as it simplifies calculation of canopy photosynthesis to a multiplication between the PAR intercepted by the canopy, which can be obtained with remote sensing, and the PhRUE calculated from incident PAR, obtained from standard weather‐station data, and from the photosynthetic properties of leaves at the top of the canopy. The latter properties are the sole crop parameters needed. While being simple, this method describes the differences in PhRUE related to crop, season, nutrient status and daily incident PAR. PMID:15044212
Abe, Eiji; Abe, Mari
2011-08-01
With the spread of total intravenous anesthesia, clinical pharmacology has become more important. We report Microsoft Excel file applying three compartment model and response surface model to clinical anesthesia. On the Microsoft Excel sheet, propofol, remifentanil and fentanyl effect-site concentrations are predicted (three compartment model), and probabilities of no response to prodding, shaking, surrogates of painful stimuli and laryngoscopy are calculated using predicted effect-site drug concentration. Time-dependent changes in these calculated values are shown graphically. Recent development in anesthetic drug interaction studies are remarkable, and its application to clinical anesthesia with this Excel file is simple and helpful for clinical anesthesia.
Trent Wickman; Ann Acheson
2005-01-01
The Smoke Impact Spreadsheet (SIS) is a simple-to-use planning model for calculating particulate matter (PM) emissions and concentrations downwind of wildland fires. This fact sheet identifies the intended users and uses, required inputs, what the model does and does not do, and tells the user how to obtain the model.
Rajaraman, Gopalan; Caneschi, Andrea; Gatteschi, Dante; Totti, Federico
2011-03-07
Here we present DFT calculations based on a periodic mixed gaussians/plane waves approach to study the energetics, structure, bonding of SAMs of simple thiols on Au(111). Several open issues such as structure, bonding and the nature of adsorbate are taken into account. We started with methyl thiols (MeSH) on Au(111) to establish the nature of the adsorbate. We have considered several structural models embracing the reconstructed surface scenario along with the MeS˙-Au(ad)-MeS˙ type motif put forward in recent years. Our calculations suggest a clear preference for the homolytic cleavage of the S-H bond leading to a stable MeS˙ on a gold surface. In agreement with the recent literature studies, the reconstructed models of the MeS˙ species are found to be energetically preferred over unreconstructed models. Besides, our calculations reveal that the model with 1:2 Au(ad)/thiols ratio, i.e. MeS˙-Au(ad)-MeS˙, is energetically preferred compared to the clean and 1:1 ratio models, in agreement with the experimental and theoretical evidences. We have also performed Molecular Orbital/Natural Bond Orbital, MO/NBO, analysis to understand the electronic structure and bonding in different structural motifs and many useful insights have been gained. Finally, the studies have then been extended to alkyl thiols of the RSR' (R, R' = Me, Et and Ph) type and here our calculations again reveal a preference for the RS˙ type species adsorption for clean as well as for reconstructed 1:2 Au(ad)/thiols ratio models.
Pressure-Temperature Simulation at Brady Hot Springs
Feigl, Kurt (ORCID:0000000220596708)
2017-07-11
These files contain the output of a model calculation to simulate the pressure and temperature of fluid at Brady Hot Springs, Nevada, USA. The calculation couples the hydrologic flow (Darcy's Law) with simple thermodynamics. The epoch of validity is 24 March 2015. Coordinates are UTM Easting, Northing, and Elevation in meters. Temperature is specified in degrees Celsius. Pressure is specified in Pascal.
General formulation of characteristic time for persistent chemicals in a multimedia environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, D.H.; McKone, T.E.; Kastenberg, W.E.
1999-02-01
A simple yet representative method for determining the characteristic time a persistent organic pollutant remains in a multimedia environment is presented. The characteristic time is an important attribute for assessing long-term health and ecological impacts of a chemical. Calculating the characteristic time requires information on decay rates in multiple environmental media as well as the proportion of mass in each environmental medium. The authors explore the premise that using a steady-state distribution of the mass in the environment provides a means to calculate a representative estimate of the characteristic time while maintaining a simple formulation. Calculating the steady-state mass distributionmore » incorporates the effect of advective transport and nonequilibrium effects resulting from the source terms. Using several chemicals, they calculate and compare the characteristic time in a representative multimedia environment for dynamic, steady-state, and equilibrium multimedia models, and also for a single medium model. They demonstrate that formulating the characteristic time based on the steady-state mass distribution in the environment closely approximates the dynamic characteristic time for a range of chemicals and thus can be used in decisions regarding chemical use in the environment.« less
A simple model for the falling cat problem
NASA Astrophysics Data System (ADS)
Essén, Hanno; Nordmark, Arne
2018-05-01
We introduce a specific four-particle, four degree-of-freedom model and calculate the rotation that can be achieved by purely internal torques and forces, keeping the total angular momentum zero. We argue that the model qualitatively explains much of the ability of a cat to land on its feet even though released from rest upside down.
A large-signal dynamic simulation for the series resonant converter
NASA Technical Reports Server (NTRS)
King, R. J.; Stuart, T. A.
1983-01-01
A simple nonlinear discrete-time dynamic model for the series resonant dc-dc converter is derived using approximations appropriate to most power converters. This model is useful for the dynamic simulation of a series resonant converter using only a desktop calculator. The model is compared with a laboratory converter for a large transient event.
Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; ...
2015-04-01
Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganicmore » carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO 2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.« less
Caffrey, Emily A; Johansen, Mathew P; Higley, Kathryn A
2015-10-01
Radiological dosimetry for nonhuman biota typically relies on calculations that utilize the Monte Carlo simulations of simple, ellipsoidal geometries with internal radioactivity distributed homogeneously throughout. In this manner it is quick and easy to estimate whole-body dose rates to biota. Voxel models are detailed anatomical phantoms that were first used for calculating radiation dose to humans, which are now being extended to nonhuman biota dose calculations. However, if simple ellipsoidal models provide conservative dose-rate estimates, then the additional labor involved in creating voxel models may be unnecessary for most scenarios. Here we show that the ellipsoidal method provides conservative estimates of organ dose rates to small mammals. Organ dose rates were calculated for environmental source terms from Maralinga, the Nevada Test Site, Hanford and Fukushima using both the ellipsoidal and voxel techniques, and in all cases the ellipsoidal method yielded more conservative dose rates by factors of 1.2-1.4 for photons and 5.3 for beta particles. Dose rates for alpha-emitting radionuclides are identical for each method as full energy absorption in source tissue is assumed. The voxel procedure includes contributions to dose from organ-to-organ irradiation (shown here to comprise 2-50% of total dose from photons and 0-93% of total dose from beta particles) that is not specifically quantified in the ellipsoidal approach. Overall, the voxel models provide robust dosimetry for the nonhuman mammals considered in this study, and though the level of detail is likely extraneous to demonstrating regulatory compliance today, voxel models may nevertheless be advantageous in resolving ongoing questions regarding the effects of ionizing radiation on wildlife.
Electromagnetic braking: A simple quantitative model
NASA Astrophysics Data System (ADS)
Levin, Yan; da Silveira, Fernando L.; Rizzato, Felipe B.
2006-09-01
A calculation is presented that quantitatively accounts for the terminal velocity of a cylindrical magnet falling through a long copper or aluminum pipe. The experiment and the theory are a dramatic illustration of Faraday's and Lenz's laws.
Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment
NASA Astrophysics Data System (ADS)
Nigg, D. W.; Wheeler, F. J.
1981-01-01
A calculational model is presented to estimate the radiation dose, due to the skyshine effect, in the control room and at the site boundary of the Poloidal Diverter Experiment (PDX) facility at Princeton University which requires substantial radiation shielding. The required composition and thickness of a water-filled roof shield that would reduce this effect to an acceptable level is computed, using an efficient one-dimensional model with an Sn calculation in slab geometry. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab Sn calculation, and the capture gamma dose is computed using a simple point-kernel single-scatter method. It is maintained that the slab model provides the exact probability of leakage out the top surface of the roof and that it is nearly as accurate as and much less costly than multi-dimensional techniques.
Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigg, D.W.; Wheeler, F.J.
1981-01-01
A calculational model is presented to estimate the radiation dose, due to the skyshine effect, in the control room and at the site boundary of the Poloidal Diverter Experiment (PDX) facility at Princeton University which requires substantial radiation shielding. The required composition and thickness of a water-filled roof shield that would reduce this effect to an acceptable level is computed, using an efficient one-dimensional model with an Sn calculation in slab geometry. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab Sn calculation, and themore » capture gamma dose is computed using a simple point-kernel single-scatter method. It is maintained that the slab model provides the exact probability of leakage out the top surface of the roof and that it is nearly as accurate as and much less costly than multi-dimensional techniques.« less
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cottam, Joseph A.; Blaha, Leslie M.
Systems have biases. Their interfaces naturally guide a user toward specific patterns of action. For example, modern word-processors and spreadsheets are both capable of taking word wrapping, checking spelling, storing tables, and calculating formulas. You could write a paper in a spreadsheet or could do simple business modeling in a word-processor. However, their interfaces naturally communicate which function they are designed for. Visual analytic interfaces also have biases. In this paper, we outline why simple Markov models are a plausible tool for investigating that bias and how they might be applied. We also discuss some anticipated difficulties in such modelingmore » and touch briefly on what some Markov model extensions might provide.« less
Calculated wind noise for an infrasonic wind noise enclosure.
Abbott, JohnPaul; Raspet, Richard
2015-07-01
A simple calculation of the wind noise measured at the center of a large porous wind fence enclosure is developed. The calculation provides a good model of the measured wind noise, with a good agreement within ±5 dB, and is derived by combining the wind noise contributions from (a) the turbulence-turbulence and turbulence-shear interactions inside the enclosure, (b) the turbulence interactions on the surface of the enclosure, and (c) the turbulence-shear interactions outside of the enclosure. Each wind noise contribution is calculated from the appropriate measured turbulence spectra, velocity profiles, correlation lengths, and the mean velocity at the center, surface, and outside of the enclosure. The model is verified by comparisons of the measured wind noise to the calculated estimates of the differing noise contributions and their sum.
Palmer, David S; Frolov, Andrey I; Ratkova, Ekaterina L; Fedorov, Maxim V
2010-12-15
We report a simple universal method to systematically improve the accuracy of hydration free energies calculated using an integral equation theory of molecular liquids, the 3D reference interaction site model. A strong linear correlation is observed between the difference of the experimental and (uncorrected) calculated hydration free energies and the calculated partial molar volume for a data set of 185 neutral organic molecules from different chemical classes. By using the partial molar volume as a linear empirical correction to the calculated hydration free energy, we obtain predictions of hydration free energies in excellent agreement with experiment (R = 0.94, σ = 0.99 kcal mol (- 1) for a test set of 120 organic molecules).
Simple model to estimate the contribution of atmospheric CO2 to the Earth's greenhouse effect
NASA Astrophysics Data System (ADS)
Wilson, Derrek J.; Gea-Banacloche, Julio
2012-04-01
We show how the CO2 contribution to the Earth's greenhouse effect can be estimated from relatively simple physical considerations and readily available spectroscopic data. In particular, we present a calculation of the "climate sensitivity" (that is, the increase in temperature caused by a doubling of the concentration of CO2) in the absence of feedbacks. Our treatment highlights the important role played by the frequency dependence of the CO2 absorption spectrum. For pedagogical purposes, we provide two simple models to visualize different ways in which the atmosphere might return infrared radiation back to the Earth. The more physically realistic model, based on the Schwarzschild radiative transfer equations, uses as input an approximate form of the atmosphere's temperature profile, and thus includes implicitly the effect of heat transfer mechanisms other than radiation.
NASA Astrophysics Data System (ADS)
Johari, A. H.; Muslim
2018-05-01
Experiential learning model using simple physics kit has been implemented to get a picture of improving attitude toward physics senior high school students on Fluid. This study aims to obtain a description of the increase attitudes toward physics senior high school students. The research method used was quasi experiment with non-equivalent pretest -posttest control group design. Two class of tenth grade were involved in this research 28, 26 students respectively experiment class and control class. Increased Attitude toward physics of senior high school students is calculated using an attitude scale consisting of 18 questions. Based on the experimental class test average of 86.5% with the criteria of almost all students there is an increase and in the control class of 53.75% with the criteria of half students. This result shows that the influence of experiential learning model using simple physics kit can improve attitude toward physics compared to experiential learning without using simple physics kit.
A simple node and conductor data generator for SINDA
NASA Technical Reports Server (NTRS)
Gottula, Ronald R.
1992-01-01
This paper presents a simple, automated method to generate NODE and CONDUCTOR DATA for thermal match modes. The method uses personal computer spreadsheets to create SINDA inputs. It was developed in order to make SINDA modeling less time consuming and serves as an alternative to graphical methods. Anyone having some experience using a personal computer can easily implement this process. The user develops spreadsheets to automatically calculate capacitances and conductances based on material properties and dimensional data. The necessary node and conductor information is then taken from the spreadsheets and automatically arranged into the proper format, ready for insertion directly into the SINDA model. This technique provides a number of benefits to the SINDA user such as a reduction in the number of hand calculations, and an ability to very quickly generate a parametric set of NODE and CONDUCTOR DATA blocks. It also provides advantages over graphical thermal modeling systems by retaining the analyst's complete visibility into the thermal network, and by permitting user comments anywhere within the DATA blocks.
NASA Astrophysics Data System (ADS)
Okuda, Takashi; Horio, Kohji; Ohmura, Yoshihiro; Mizuno, Yukio
2018-06-01
The well-known interacting-electron-gas model of metallic states is modified by replacing the Coulomb interaction by a truncated one to weaken the repulsive force between electrons at short distances. The new model is applied to the so-called simple metals and is found far superior to the old one. Most of the calculations are carried out successfully on the basis of the random-phase-approximation (RPA), which is known much too poor for the old familiar model. In the present paper the numerical value of the new parameter peculiar to the new model is determined systematically with the help of the observed plasmon spectrum for each metal.
Collisional-radiative switching - A powerful technique for converging non-LTE calculations
NASA Technical Reports Server (NTRS)
Hummer, D. G.; Voels, S. A.
1988-01-01
A very simple technique has been developed to converge statistical equilibrium and model atmospheric calculations in extreme non-LTE conditions when the usual iterative methods fail to converge from an LTE starting model. The proposed technique is based on a smooth transition from a collision-dominated LTE situation to the desired non-LTE conditions in which radiation dominates, at least in the most important transitions. The proposed approach was used to successfully compute stellar models with He abundances of 0.20, 0.30, and 0.50; Teff = 30,000 K, and log g = 2.9.
Modeling the surface evapotranspiration over the southern Great Plains
NASA Technical Reports Server (NTRS)
Liljegren, J. C.; Doran, J. C.; Hubbe, J. M.; Shaw, W. J.; Zhong, S.; Collatz, G. J.; Cook, D. R.; Hart, R. L.
1996-01-01
We have developed a method to apply the Simple Biosphere Model of Sellers et al to calculate the surface fluxes of sensible heat and water vapor at high spatial resolution over the domain of the US DOE's Cloud and Radiation Testbed (CART) in Kansas and Oklahoma. The CART, which is within the GCIP area of interest for the Mississippi River Basin, is an extensively instrumented facility operated as part of the DOE's Atmospheric Radiation Measurement (ARM) program. Flux values calculated with our method will be used to provide lower boundary conditions for numerical models to study the atmosphere over the CART domain.
Coma dust scattering concepts applied to the Rosetta mission
NASA Astrophysics Data System (ADS)
Fink, Uwe; Rinaldi, Giovanna
2015-09-01
This paper describes basic concepts, as well as providing a framework, for the interpretation of the light scattered by the dust in a cometary coma as observed by instruments on a spacecraft such as Rosetta. It is shown that the expected optical depths are small enough that single scattering can be applied. Each of the quantities that contribute to the scattered intensity is discussed in detail. Using optical constants of the likely coma dust constituents, olivine, pyroxene and carbon, the scattering properties of the dust are calculated. For the resulting observable scattering intensities several particle size distributions are considered, a simple power law, power laws with a small particle cut off and a log-normal distributions with various parameters. Within the context of a simple outflow model, the standard definition of Afρ for a circular observing aperture is expanded to an equivalent Afρ for an annulus and specific line-of-sight observation. The resulting equivalence between the observed intensity and Afρ is used to predict observable intensities for 67P/Churyumov-Gerasimenko at the spacecraft encounter near 3.3 AU and near perihelion at 1.3 AU. This is done by normalizing particle production rates of various size distributions to agree with observed ground based Afρ values. Various geometries for the column densities in a cometary coma are considered. The calculations for a simple outflow model are compared with more elaborate Direct Simulation Monte Carlo Calculation (DSMC) models to define the limits of applicability of the simpler analytical approach. Thus our analytical approach can be applied to the majority of the Rosetta coma observations, particularly beyond several nuclear radii where the dust is no longer in a collisional environment, without recourse to computer intensive DSMC calculations for specific cases. In addition to a spherically symmetric 1-dimensional approach we investigate column densities for the 2-dimensional DSMC model on the day and night side of the comet. Our calculations are also applied to estimates of the dust particle densities and flux which are useful for the in-situ experiments on Rosetta.
NASA Technical Reports Server (NTRS)
Lim, J. T.; Raper, C. D. Jr; Gold, H. J.; Wilkerson, G. G.; Raper CD, J. r. (Principal Investigator)
1989-01-01
A simple mathematical model for calculating the concentration of mobile carbon skeletons in the shoot of soya bean plants [Glycine max (L.) Merrill cv. Ransom] was built to examine the suitability of measured net photosynthetic rates (PN) for calculation of saccharide flux into the plant. The results suggest that either measurement of instantaneous PN overestimated saccharide influx or respiration rates utilized in the model were underestimated. If neither of these is the case, end-product inhibition of photosynthesis or waste respiration through the alternative pathway should be included in modelling of CH2O influx or efflux; and even if either of these is the case, the model output at a low coefficient of leaf activity indicates that PN still may be controlled by either end-product inhibition or alternative respiration.
Ground temperature measurement by PRT-5 for maps experiment
NASA Technical Reports Server (NTRS)
Gupta, S. K.; Tiwari, S. N.
1978-01-01
A simple algorithm and computer program were developed for determining the actual surface temperature from the effective brightness temperature as measured remotely by a radiation thermometer called PRT-5. This procedure allows the computation of atmospheric correction to the effective brightness temperature without performing detailed radiative transfer calculations. Model radiative transfer calculations were performed to compute atmospheric corrections for several values of the surface and atmospheric parameters individually and in combination. Polynomial regressions were performed between the magnitudes or deviations of these parameters and the corresponding computed corrections to establish simple analytical relations between them. Analytical relations were also developed to represent combined correction for simultaneous variation of parameters in terms of their individual corrections.
Anisn-Dort Neutron-Gamma Flux Intercomparison Exercise for a Simple Testing Model
NASA Astrophysics Data System (ADS)
Boehmer, B.; Konheiser, J.; Borodkin, G.; Brodkin, E.; Egorov, A.; Kozhevnikov, A.; Zaritsky, S.; Manturov, G.; Voloschenko, A.
2003-06-01
The ability of transport codes ANISN, DORT, ROZ-6, MCNP and TRAMO, as well as nuclear data libraries BUGLE-96, ABBN-93, VITAMIN-B6 and ENDF/B-6 to deliver consistent gamma and neutron flux results was tested in the calculation of a one-dimensional cylindrical model consisting of a homogeneous core and an outer zone with a single material. Model variants with H2O, Fe, Cr and Ni in the outer zones were investigated. The results are compared with MCNP-ENDF/B-6 results. Discrepancies are discussed. The specified test model is proposed as a computational benchmark for testing calculation codes and data libraries.
Millimeter wave satellite communication studies. Results of the 1981 propagation modeling effort
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Tsolakis, A.; Dishman, W. K.
1982-01-01
Theoretical modeling associated with rain effects on millimeter wave propagation is detailed. Three areas of work are discussed. A simple model for prediction of rain attenuation is developed and evaluated. A method for computing scattering from single rain drops is presented. A complete multiple scattering model is described which permits accurate calculation of the effects on dual polarized signals passing through rain.
Solubility of KF and NaCl in water by molecular simulation.
Sanz, E; Vega, C
2007-01-07
The solubility of two ionic salts, namely, KF and NaCl, in water has been calculated by Monte Carlo molecular simulation. Water has been modeled with the extended simple point charge model (SPC/E), ions with the Tosi-Fumi model and the interaction between water and ions with the Smith-Dang model. The chemical potential of the solute in the solution has been computed as the derivative of the total free energy with respect to the number of solute particles. The chemical potential of the solute in the solid phase has been calculated by thermodynamic integration to an Einstein crystal. The solubility of the salt has been calculated as the concentration at which the chemical potential of the salt in the solution becomes identical to that of the pure solid. The methodology used in this work has been tested by reproducing the results for the solubility of KF determined previously by Ferrario et al. [J. Chem. Phys. 117, 4947 (2002)]. For KF, it was found that the solubility of the model is only in qualitative agreement with experiment. The variation of the solubility with temperature for KF has also been studied. For NaCl, the potential model used predicts a solubility in good agreement with the experimental value. The same is true for the hydration chemical potential at infinite dilution. Given the practical importance of solutions of NaCl in water the model used in this work, whereas simple, can be of interest for future studies.
Stark width regularities within spectral series of the lithium isoelectronic sequence
NASA Astrophysics Data System (ADS)
Tapalaga, Irinel; Trklja, Nora; Dojčinović, Ivan P.; Purić, Jagoš
2018-03-01
Stark width regularities within spectral series of the lithium isoelectronic sequence have been studied in an approach that includes both neutrals and ions. The influence of environmental conditions and certain atomic parameters on the Stark widths of spectral lines has been investigated. This study gives a simple model for the calculation of Stark broadening data for spectral lines within the lithium isoelectronic sequence. The proposed model requires fewer parameters than any other model. The obtained relations were used for predictions of Stark widths for transitions that have not yet been measured or calculated. In the framework of the present research, three algorithms for fast data processing have been made and they enable quality control and provide verification of the theoretically calculated results.
Baxter, Siyan; Campbell, Sharon; Sanderson, Kristy; Cazaly, Carl; Venn, Alison; Owen, Carole; Palmer, Andrew J
2015-09-18
Workplace health promotion is focussed on improving the health and wellbeing of workers. Although quantifiable effectiveness and economic evidence is variable, workplace health promotion is recognised by both government and business stakeholders as potentially beneficial for worker health and economic advantage. Despite the current debate on whether conclusive positive outcomes exist, governments are investing, and business engagement is necessary for value to be realised. Practical tools are needed to assist decision makers in developing the business case for workplace health promotion programs. Our primary objective was to develop an evidence-based, simple and easy-to-use resource (calculator) for Australian employers interested in workplace health investment figures. Three phases were undertaken to develop the calculator. First, evidence from a literature review located appropriate effectiveness measures. Second, a review of employer-facilitated programs aimed at improving the health and wellbeing of employees was utilised to identify change estimates surrounding these measures, and third, currently available online evaluation tools and models were investigated. We present a simple web-based calculator for use by employers who wish to estimate potential annual savings associated with implementing a successful workplace health promotion program. The calculator uses effectiveness measures (absenteeism and staff turnover rates) and change estimates sourced from 55 case studies to generate the annual savings an employer may potentially gain. Australian wage statistics were used to calculate replacement costs due to staff turnover. The calculator was named the Workplace Health Savings Calculator and adapted and reproduced on the Healthy Workers web portal by the Australian Commonwealth Government Department of Health and Ageing. The Workplace Health Savings Calculator is a simple online business tool that aims to engage employers and to assist participation, development and implementation of workplace health promotion programs.
Learning molecular energies using localized graph kernels.
Ferré, Grégoire; Haut, Terry; Barros, Kipton
2017-03-21
Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.
Learning molecular energies using localized graph kernels
NASA Astrophysics Data System (ADS)
Ferré, Grégoire; Haut, Terry; Barros, Kipton
2017-03-01
Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.
Advancements in dynamic kill calculations for blowout wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouba, G.E.; MacDougall, G.R.; Schumacher, B.W.
1993-09-01
This paper addresses the development, interpretation, and use of dynamic kill equations. To this end, three simple calculation techniques are developed for determining the minimum dynamic kill rate. Two techniques contain only single-phase calculations and are independent of reservoir inflow performance. Despite these limitations, these two methods are useful for bracketing the minimum flow rates necessary to kill a blowing well. For the third technique, a simplified mechanistic multiphase-flow model is used to determine a most-probable minimum kill rate.
A simple model of annual average response of an estuary to mean nitrogen loading rate and freshwater residence time was developed and tested. It uses nitrogen inputs from land, deposition from the atmosphere, and first-order calculations of internal loss rate and export to perfor...
Zare, Yasser; Rhim, Sungsoo; Garmabi, Hamid; Rhee, Kyong Yop
2018-04-01
The networks of nanoparticles in nanocomposites cause solid-like behavior demonstrating a constant storage modulus at low frequencies. This study examines the storage modulus of poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes (CNT) nanocomposites. The experimental data of the storage modulus in the plateau regions are obtained by a frequency sweep test. In addition, a simple model is developed to predict the constant storage modulus assuming the properties of the interphase regions and the CNT networks. The model calculations are compared with the experimental results, and the parametric analyses are applied to validate the predictability of the developed model. The calculations properly agree with the experimental data at all polymer and CNT concentrations. Moreover, all parameters acceptably modulate the constant storage modulus. The percentage of the networked CNT, the modulus of networks, and the thickness and modulus of the interphase regions directly govern the storage modulus of nanocomposites. The outputs reveal the important roles of the interphase properties in the storage modulus. Copyright © 2018 Elsevier Ltd. All rights reserved.
Estimation of Critical Gap Based on Raff's Definition
Guo, Rui-jun; Wang, Xiao-jing; Wang, Wan-xiang
2014-01-01
Critical gap is an important parameter used to calculate the capacity and delay of minor road in gap acceptance theory of unsignalized intersections. At an unsignalized intersection with two one-way traffic flows, it is assumed that two events are independent between vehicles' arrival of major stream and vehicles' arrival of minor stream. The headways of major stream follow M3 distribution. Based on Raff's definition of critical gap, two calculation models are derived, which are named M3 definition model and revised Raff's model. Both models use total rejected coefficient. Different calculation models are compared by simulation and new models are found to be valid. The conclusion reveals that M3 definition model is simple and valid. Revised Raff's model strictly obeys the definition of Raff's critical gap and its application field is more extensive than Raff's model. It can get a more accurate result than the former Raff's model. The M3 definition model and revised Raff's model can derive accordant result. PMID:25574160
Estimation of critical gap based on Raff's definition.
Guo, Rui-jun; Wang, Xiao-jing; Wang, Wan-xiang
2014-01-01
Critical gap is an important parameter used to calculate the capacity and delay of minor road in gap acceptance theory of unsignalized intersections. At an unsignalized intersection with two one-way traffic flows, it is assumed that two events are independent between vehicles' arrival of major stream and vehicles' arrival of minor stream. The headways of major stream follow M3 distribution. Based on Raff's definition of critical gap, two calculation models are derived, which are named M3 definition model and revised Raff's model. Both models use total rejected coefficient. Different calculation models are compared by simulation and new models are found to be valid. The conclusion reveals that M3 definition model is simple and valid. Revised Raff's model strictly obeys the definition of Raff's critical gap and its application field is more extensive than Raff's model. It can get a more accurate result than the former Raff's model. The M3 definition model and revised Raff's model can derive accordant result.
Testing the Simple Biosphere model (SiB) using point micrometeorological and biophysical data
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Dorman, J. L.
1987-01-01
The suitability of the Simple Biosphere (SiB) model of Sellers et al. (1986) for calculation of the surface fluxes for use within general circulation models is assessed. The structure of the SiB model is described, and its performance is evaluated in terms of its ability to realistically and accurately simulate biophysical processes over a number of test sites, including Ruthe (Germany), South Carolina (U.S.), and Central Wales (UK), for which point biophysical and micrometeorological data were available. The model produced simulations of the energy balances of barley, wheat, maize, and Norway Spruce sites over periods ranging from 1 to 40 days. Generally, it was found that the model reproduced time series of latent, sensible, and ground-heat fluxes and surface radiative temperature comparable with the available data.
Simplified aeroelastic modeling of horizontal axis wind turbines
NASA Technical Reports Server (NTRS)
Wendell, J. H.
1982-01-01
Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.
EnviroLand: A Simple Computer Program for Quantitative Stream Assessment.
ERIC Educational Resources Information Center
Dunnivant, Frank; Danowski, Dan; Timmens-Haroldson, Alice; Newman, Meredith
2002-01-01
Introduces the Enviroland computer program which features lab simulations of theoretical calculations for quantitative analysis and environmental chemistry, and fate and transport models. Uses the program to demonstrate the nature of linear and nonlinear equations. (Author/YDS)
Mathematical modelling of risk reduction in reinsurance
NASA Astrophysics Data System (ADS)
Balashov, R. B.; Kryanev, A. V.; Sliva, D. E.
2017-01-01
The paper presents a mathematical model of efficient portfolio formation in the reinsurance markets. The presented approach provides the optimal ratio between the expected value of return and the risk of yield values below a certain level. The uncertainty in the return values is conditioned by use of expert evaluations and preliminary calculations, which result in expected return values and the corresponding risk levels. The proposed method allows for implementation of computationally simple schemes and algorithms for numerical calculation of the numerical structure of the efficient portfolios of reinsurance contracts of a given insurance company.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobos, A. P.
2014-09-01
The NREL PVWatts calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes includes several built-in parameters that are hidden from the user. This technical reference describes the sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimate. This reference is applicable to the significantly revised version of PVWatts released by NREL in 2014.
Prediction of impact force and duration during low velocity impact on circular composite laminates
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Elber, W.; Illg, W.
1983-01-01
Two simple and improved models--energy-balance and spring-mass--were developed to calculate impact force and duration during low velocity impact of circular composite plates. Both models include the contact deformation of the plate and the impactor as well as bending, transverse shear, and membrane deformations of the plate. The plate was transversely isotropic graphite/epoxy composite laminate and the impactor was a steel sphere. Calculated impact forces from the two analyses agreed with each other. The analyses were verified by comparing the results with reported test data.
NASA Astrophysics Data System (ADS)
Saiidi, M.
1982-07-01
The equivalent of a single degree of freedom (SDOF) nonlinear model, the Q-model-13, was examined. The study intended to: (1) determine the seismic response of a torsionally coupled building based on the multidegree of freedom (MDOF) and (SDOF) nonlinear models; and (2) develop a simple SDOF nonlinear model to calculate displacement history of structures with eccentric centers of mass and stiffness. It is shown that planar models are able to yield qualitative estimates of the response of the building. The model is used to estimate the response of a hypothetical six-story frame wall reinforced concrete building with torsional coupling, using two different earthquake intensities. It is shown that the Q-Model-13 can lead to a satisfactory estimate of the response of the structure in both cases.
a Proposed Benchmark Problem for Scatter Calculations in Radiographic Modelling
NASA Astrophysics Data System (ADS)
Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.
2009-03-01
Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.
Accurate calculation and modeling of the adiabatic connection in density functional theory
NASA Astrophysics Data System (ADS)
Teale, A. M.; Coriani, S.; Helgaker, T.
2010-04-01
Using a recently implemented technique for the calculation of the adiabatic connection (AC) of density functional theory (DFT) based on Lieb maximization with respect to the external potential, the AC is studied for atoms and molecules containing up to ten electrons: the helium isoelectronic series, the hydrogen molecule, the beryllium isoelectronic series, the neon atom, and the water molecule. The calculation of AC curves by Lieb maximization at various levels of electronic-structure theory is discussed. For each system, the AC curve is calculated using Hartree-Fock (HF) theory, second-order Møller-Plesset (MP2) theory, coupled-cluster singles-and-doubles (CCSD) theory, and coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] theory, expanding the molecular orbitals and the effective external potential in large Gaussian basis sets. The HF AC curve includes a small correlation-energy contribution in the context of DFT, arising from orbital relaxation as the electron-electron interaction is switched on under the constraint that the wave function is always a single determinant. The MP2 and CCSD AC curves recover the bulk of the dynamical correlation energy and their shapes can be understood in terms of a simple energy model constructed from a consideration of the doubles-energy expression at different interaction strengths. Differentiation of this energy expression with respect to the interaction strength leads to a simple two-parameter doubles model (AC-D) for the AC integrand (and hence the correlation energy of DFT) as a function of the interaction strength. The structure of the triples-energy contribution is considered in a similar fashion, leading to a quadratic model for the triples correction to the AC curve (AC-T). From a consideration of the structure of a two-level configuration-interaction (CI) energy expression of the hydrogen molecule, a simple two-parameter CI model (AC-CI) is proposed to account for the effects of static correlation on the AC. When parametrized in terms of the same input data, the AC-CI model offers improved performance over the corresponding AC-D model, which is shown to be the lowest-order contribution to the AC-CI model. The utility of the accurately calculated AC curves for the analysis of standard density functionals is demonstrated for the BLYP exchange-correlation functional and the interaction-strength-interpolation (ISI) model AC integrand. From the results of this analysis, we investigate the performance of our proposed two-parameter AC-D and AC-CI models when a simple density functional for the AC at infinite interaction strength is employed in place of information at the fully interacting point. The resulting two-parameter correlation functionals offer a qualitatively correct behavior of the AC integrand with much improved accuracy over previous attempts. The AC integrands in the present work are recommended as a basis for further work, generating functionals that avoid spurious error cancellations between exchange and correlation energies and give good accuracy for the range of densities and types of correlation contained in the systems studied here.
Computational modeling of properties
NASA Technical Reports Server (NTRS)
Franz, Judy R.
1994-01-01
A simple model was developed to calculate the electronic transport parameters in disordered semiconductors in strong scattered regime. The calculation is based on a Green function solution to Kubo equation for the energy-dependent conductivity. This solution together with a rigorous calculation of the temperature-dependent chemical potential allows the determination of the dc conductivity and the thermopower. For wise-gap semiconductors with single defect bands, these transport properties are investigated as a function of defect concentration, defect energy, Fermi level, and temperature. Under certain conditions the calculated conductivity is quite similar to the measured conductivity in liquid II-VI semiconductors in that two distinct temperature regimes are found. Under different conditions the conductivity is found to decrease with temperature; this result agrees with measurements in amorphous Si. Finally the calculated thermopower can be positive or negative and may change sign with temperature or defect concentration.
Computational modeling of properties
NASA Technical Reports Server (NTRS)
Franz, Judy R.
1994-01-01
A simple model was developed to calculate the electronic transport parameters in disordered semiconductors in strong scattered regime. The calculation is based on a Green function solution to Kubo equation for the energy-dependent conductivity. This solution together with a rigorous calculation of the temperature-dependent chemical potential allows the determination of the dc conductivity and the thermopower. For wide-gap semiconductors with single defect bands, these transport properties are investigated as a function of defect concentration, defect energy, Fermi level, and temperature. Under certain conditions the calculated conductivity is quite similar to the measured conductivity in liquid 2-6 semiconductors in that two distinct temperature regimes are found. Under different conditions the conductivity is found to decrease with temperature; this result agrees with measurements in amorphous Si. Finally the calculated thermopower can be positive or negative and may change sign with temperature or defect concentration.
Application of thermal model for pan evaporation to the hydrology of a defined medium, the sponge
NASA Technical Reports Server (NTRS)
Trenchard, M. H.; Artley, J. A. (Principal Investigator)
1981-01-01
A technique is presented which estimates pan evaporation from the commonly observed values of daily maximum and minimum air temperatures. These two variables are transformed to saturation vapor pressure equivalents which are used in a simple linear regression model. The model provides reasonably accurate estimates of pan evaporation rates over a large geographic area. The derived evaporation algorithm is combined with precipitation to obtain a simple moisture variable. A hypothetical medium with a capacity of 8 inches of water is initialized at 4 inches. The medium behaves like a sponge: it absorbs all incident precipitation, with runoff or drainage occurring only after it is saturated. Water is lost from this simple system through evaporation just as from a Class A pan, but at a rate proportional to its degree of saturation. The contents of the sponge is a moisture index calculated from only the maximum and minium temperatures and precipitation.
Dynamic modeling of parallel robots for computed-torque control implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Codourey, A.
1998-12-01
In recent years, increased interest in parallel robots has been observed. Their control with modern theory, such as the computed-torque method, has, however, been restrained, essentially due to the difficulty in establishing a simple dynamic model that can be calculated in real time. In this paper, a simple method based on the virtual work principle is proposed for modeling parallel robots. The mass matrix of the robot, needed for decoupling control strategies, does not explicitly appear in the formulation; however, it can be computed separately, based on kinetic energy considerations. The method is applied to the DELTA parallel robot, leadingmore » to a very efficient model that has been implemented in a real-time computed-torque control algorithm.« less
Simple and universal model for electron-impact ionization of complex biomolecules
NASA Astrophysics Data System (ADS)
Tan, Hong Qi; Mi, Zhaohong; Bettiol, Andrew A.
2018-03-01
We present a simple and universal approach to calculate the total ionization cross section (TICS) for electron impact ionization in DNA bases and other biomaterials in the condensed phase. Evaluating the electron impact TICS plays a vital role in ion-beam radiobiology simulation at the cellular level, as secondary electrons are the main cause of DNA damage in particle cancer therapy. Our method is based on extending the dielectric formalism. The calculated results agree well with experimental data and show a good comparison with other theoretical calculations. This method only requires information of the chemical composition and density and an estimate of the mean binding energy to produce reasonably accurate TICS of complex biomolecules. Because of its simplicity and great predictive effectiveness, this method could be helpful in situations where the experimental TICS data are absent or scarce, such as in particle cancer therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vega-Carrillo, Hector Rene; Manzanares-Acuna, Eduardo; Hernandez-Davila, Victor Martin
The use of 131I is widely used in diagnostic and treatment of patients. If the patient is pregnant the 131I presence in the thyroid it becomes a source of constant exposition to other organs and the fetus. In this study the absorbed dose in the uterus of a 3 months pregnant woman with 131I in her thyroid gland has been calculated. The dose was determined using Monte Carlo methods in which a detailed model of the woman has been developed. The dose was also calculated using a simple procedure that was refined including the photons' attenuation in the woman organsmore » and body. To verify these results an experiment was carried out using a neck phantom with 131I. Comparing the results it was found that the simple calculation tend to overestimate the absorbed dose, by doing the corrections due to body and organs photon attenuation the dose is 0.14 times the Monte Carlo estimation.« less
NASA Astrophysics Data System (ADS)
Akasaka, Ryo
This study presents a simple multi-fluid model for Helmholtz energy equations of state. The model contains only three parameters, whereas rigorous multi-fluid models developed for several industrially important mixtures usually have more than 10 parameters and coefficients. Therefore, the model can be applied to mixtures where experimental data is limited. Vapor-liquid equilibrium (VLE) of the following seven mixtures have been successfully correlated with the model: CO2 + difluoromethane (R-32), CO2 + trifluoromethane (R-23), CO2 + fluoromethane (R-41), CO2 + 1,1,1,2- tetrafluoroethane (R-134a), CO2 + pentafluoroethane (R-125), CO2 + 1,1-difluoroethane (R-152a), and CO2 + dimethyl ether (DME). The best currently available equations of state for the pure refrigerants were used for the correlations. For all mixtures, average deviations in calculated bubble-point pressures from experimental values are within 2%. The simple multi-fluid model will be helpful for design and simulations of heat pumps and refrigeration systems using the mixtures as working fluid.
Simple linear and multivariate regression models.
Rodríguez del Águila, M M; Benítez-Parejo, N
2011-01-01
In biomedical research it is common to find problems in which we wish to relate a response variable to one or more variables capable of describing the behaviour of the former variable by means of mathematical models. Regression techniques are used to this effect, in which an equation is determined relating the two variables. While such equations can have different forms, linear equations are the most widely used form and are easy to interpret. The present article describes simple and multiple linear regression models, how they are calculated, and how their applicability assumptions are checked. Illustrative examples are provided, based on the use of the freely accessible R program. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.
Fast Simulation of the Impact Parameter Calculation of Electrons through Pair Production
NASA Astrophysics Data System (ADS)
Bang, Hyesun; Kweon, MinJung; Huh, Kyoung Bum; Pachmayer, Yvonne
2018-05-01
A fast simulation method is introduced that reduces tremendously the time required for the impact parameter calculation, a key observable in physics analyses of high energy physics experiments and detector optimisation studies. The impact parameter of electrons produced through pair production was calculated considering key related processes using the Bethe-Heitler formula, the Tsai formula and a simple geometric model. The calculations were performed at various conditions and the results were compared with those from full GEANT4 simulations. The computation time using this fast simulation method is 104 times shorter than that of the full GEANT4 simulation.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Daily simple interest formula. (1) To calculate daily simple interest the following formula may be used... a payment is due on April 1 and the payment is not made until April 11, a simple interest... equation calculates simple interest on any additional days beyond a monthly increment. (3) For example, if...
Gamma-ray dose from an overhead plume
McNaughton, Michael W.; Gillis, Jessica McDonnel; Ruedig, Elizabeth; ...
2017-05-01
Standard plume models can underestimate the gamma-ray dose when most of the radioactive material is above the heads of the receptors. Typically, a model is used to calculate the air concentration at the height of the receptor, and the dose is calculated by multiplying the air concentration by a concentration-to-dose conversion factor. Models indicate that if the plume is emitted from a stack during stable atmospheric conditions, the lower edges of the plume may not reach the ground, in which case both the ground-level concentration and the dose are usually reported as zero. However, in such cases, the dose frommore » overhead gamma-emitting radionuclides may be substantial. Such underestimates could impact decision making in emergency situations. The Monte Carlo N-Particle code, MCNP, was used to calculate the overhead shine dose and to compare with standard plume models. At long distances and during unstable atmospheric conditions, the MCNP results agree with the standard models. As a result, at short distances, where many models calculate zero, the true dose (as modeled by MCNP) can be estimated with simple equations.« less
Calculation of the octanol-water partition coefficient of armchair polyhex BN nanotubes
NASA Astrophysics Data System (ADS)
Mohammadinasab, E.; Pérez-Sánchez, H.; Goodarzi, M.
2017-12-01
A predictive model for determination partition coefficient (log P) of armchair polyhex BN nanotubes by using simple descriptors was built. The relationship between the octanol-water log P and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory electric moments and physico-chemical properties of those nanotubes are calculated.
Chapela, Gustavo A; Guzmán, Orlando; Díaz-Herrera, Enrique; del Río, Fernando
2015-04-21
A model of a room temperature ionic liquid can be represented as an ion attached to an aliphatic chain mixed with a counter ion. The simple model used in this work is based on a short rigid tangent square well chain with an ion, represented by a hard sphere interacting with a Yukawa potential at the head of the chain, mixed with a counter ion represented as well by a hard sphere interacting with a Yukawa potential of the opposite sign. The length of the chain and the depth of the intermolecular forces are investigated in order to understand which of these factors are responsible for the lowering of the critical temperature. It is the large difference between the ionic and the dispersion potentials which explains this lowering of the critical temperature. Calculation of liquid-vapor equilibrium orthobaric curves is used to estimate the critical points of the model. Vapor pressures are used to obtain an estimate of the triple point of the different models in order to calculate the span of temperatures where they remain a liquid. Surface tensions and interfacial thicknesses are also reported.
NASA Astrophysics Data System (ADS)
Rodrigo-Ilarri, Javier; Rodrigo-Clavero, María-Elena
2017-04-01
Specific studies of the impact of fuel spills on the vadose zone are currently required when trying to obtain the environmental permits for new fuel stations. The development of One-Dimensional mathematical models of fate and transport of BTEX on the vadose zone can therefore be used to understand the behavior of the pollutants under different scenarios. VLEACH - a simple One-Dimensional Finite Different Vadose Zone Leaching Model - uses an numerical approximation of the Millington Equation, a theoretical based model for gaseous diffusion in porous media. This equation has been widely used in the fields of soil physics and hydrology to calculate the gaseous or vapor diffusion in porous media. The model describes the movement of organic contaminants within and between three different phases: (1) as a solute dissolved in water, (2) as a gas in the vapor phase, and (3) as an absorbed compound in the soil phase. Initially, the equilibrium distribution of contaminant mass between liquid, gas and sorbed phases is calculated. Transport processes are then simulated. Liquid advective transport is calculated based on values defined by the user for infiltration and soil water content. The contaminant in the vapor phase migrates into or out of adjacent cells based on the calculated concentration gradients that exist between adjacent cells. After the mass is exchanged between the cells, the total mass in each cell is recalculated and re-equilibrated between the different phases. At the end of the simulation, (1) an overall area-weighted groundwater impact for the entire modeled area and (2) the concentration profile of BTEX on the vadose zone are calculated. This work shows the results obtained when applying VLEACH to analyze the contamination scenario caused by a BTEX spill coming from a set of future underground storage tanks located on a new fuel station in Aldaia (Valencia region - Spain).
Traas, T P; Luttik, R; Jongbloed, R H
1996-08-01
In previous studies, the risk of toxicant accumulation in food chains was used to calculate quality criteria for surface water and soil. A simple algorithm was used to calculate maximum permissable concentrations [MPC = no-observed-effect concentration/bioconcentration factor(NOEC/BCF)]. These studies were limited to simple food chains. This study presents a method to calculate MPCs for more complex food webs of predators. The previous method is expanded. First, toxicity data (NOECs) for several compounds were corrected for differences between laboratory animals and animals in the wild. Second, for each compound, it was assumed these NOECs were a sample of a log-logistic distribution of mammalian and avian NOECs. Third, bioaccumulation factors (BAFs) for major food items of predators were collected and were assumed to derive from different log-logistic distributions of BAFs. Fourth, MPCs for each compound were calculated using Monte Carlo sampling from NOEC and BAF distributions. An uncertainty analysis for cadmium was performed to identify the most uncertain parameters of the model. Model analysis indicated that most of the prediction uncertainty of the model can be ascribed to uncertainty of species sensitivity as expressed by NOECs. A very small proportion of model uncertainty is contributed by BAFs from food webs. Correction factors for the conversion of NOECs from laboratory conditions to the field have some influence on the final value of MPC5, but the total prediction uncertainty of the MPC is quite large. It is concluded that the uncertainty in species sensitivity is quite large. To avoid unethical toxicity testing with mammalian or avian predators, it cannot be avoided to use this uncertainty in the method proposed to calculate MPC distributions. The fifth percentile of the MPC is suggested as a safe value for top predators.
A Simple ab initio Model for the Hydrated Electron that Matches Experiment
Kumar, Anil; Walker, Jonathan A.; Bartels, David M.; Sevilla, Michael D.
2015-01-01
Since its discovery over 50 years ago, the “structure” and properties of the hydrated electron has been a subject for wonderment and also fierce debate. In the present work we seriously explore a minimal model for the aqueous electron, consisting of a small water anion cluster embedded in a polarized continuum, using several levels of ab initio calculation and basis set. The minimum energy zero “Kelvin” structure found for any 4-water (or larger) anion cluster, at any post-Hartree-Fock theory level, is very similar to a recently reported embedded-DFT-in-classical-water-MD simulation (UMJ: Uhlig, Marsalek, and Jungwirth, Journal of Physical Chemistry Letters 2012, 3, 3071-5), with four OH bonds oriented toward the maximum charge density in a small central “void”. The minimum calculation with just four water molecules does a remarkably good job of reproducing the resonance Raman properties, the radius of gyration derived from the optical spectrum, the vertical detachment energy, and the hydration free energy. For the first time we also successfully calculate the EPR g-factor and (low temperature ice) hyperfine couplings. The simple tetrahedral anion cluster model conforms very well to experiment, suggesting it does in fact represent the dominant structural motif of the hydrated electron. PMID:26275103
NASA Astrophysics Data System (ADS)
Almbladh, C.-O.; Morales, A. L.
1989-02-01
Auger CVV spectra of simple metals are generally believed to be well described by one-electron-like theories in the bulk which account for matrix elements and, in some cases, also static core-hole screening effects. We present here detailed calculations on Li, Be, Na, Mg, and Al using self-consistent bulk wave functions and proper matrix elements. The resulting spectra differ markedly from experiment and peak at too low energies. To explain this discrepancy we investigate effects of the surface and dynamical effects of the sudden disappearance of the core hole in the final state. To study core-hole effects we solve Mahan-Nozières-De Dominicis (MND) model numerically over the entire band. The core-hole potential and other parameters in the MND model are determined by self-consistent calculations of the core-hole impurity. The results are compared with simpler approximations based on the final-state rule due to von Barth and Grossmann. To study surface and mean-free-path effects we perform slab calculations for Al but use a simpler infinite-barrier model in the remaining cases. The model reproduces the slab spectra for Al with very good accuracy. In all cases investigated either the effects of the surface or the effects of the core hole give important modifications and a much improved agreement with experiment.
A simple cohesive zone model that generates a mode-mixity dependent toughness
Reedy, Jr., E. D.; Emery, J. M.
2014-07-24
A simple, mode-mixity dependent toughness cohesive zone model (MDG c CZM) is described. This phenomenological cohesive zone model has two elements. Mode I energy dissipation is defined by a traction–separation relationship that depends only on normal separation. Mode II (III) dissipation is generated by shear yielding and slip in the cohesive surface elements that lie in front of the region where mode I separation (softening) occurs. The nature of predictions made by analyses that use the MDG c CZM is illustrated by considering the classic problem of an elastic layer loaded by rigid grips. This geometry, which models a thinmore » adhesive bond with a long interfacial edge crack, is similar to that which has been used to measure the dependence of interfacial toughness on crack-tip mode-mixity. The calculated effective toughness vs. applied mode-mixity relationships all display a strong dependence on applied mode-mixity with the effective toughness increasing rapidly with the magnitude of the mode-mixity. The calculated relationships also show a pronounced asymmetry with respect to the applied mode-mixity. As a result, this dependence is similar to that observed experimentally, and calculated results for a glass/epoxy interface are in good agreement with published data that was generated using a test specimen of the same type as analyzed here.« less
USDA-ARS?s Scientific Manuscript database
This study introduces a simple generic model, the Generic Pest Forecast System (GPFS), for simulatingthe relative populations of non-indigenousarthropod pests in space and time. The model was designed to calculate the population index or relative population using hourly weather dataas influenced by...
Simple way to calculate a UV-finite one-loop quantum energy in the Randall-Sundrum model
NASA Astrophysics Data System (ADS)
Altshuler, Boris L.
2017-04-01
The surprising simplicity of Barvinsky-Nesterov or equivalently Gelfand-Yaglom methods of calculation of quantum determinants permits us to obtain compact expressions for a UV-finite difference of one-loop quantum energies for two arbitrary values of the parameter of the double-trace asymptotic boundary conditions. This result generalizes the Gubser and Mitra calculation for the particular case of difference of "regular" and "irregular" one-loop energies in the one-brane Randall-Sundrum model. The approach developed in the paper also allows us to get "in one line" the one-loop quantum energies in the two-brane Randall-Sundrum model. The relationship between "one-loop" expressions corresponding to the mixed Robin and to double-trace asymptotic boundary conditions is traced.
Microscopic calculations of liquid and solid neutron star matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarty, Sudip; Miller, Michael D.; Chia-Wei, Woo
1974-02-01
As the first step to a microscopic determination of the solidification density of neutron star matter, variational calculations are performed for both liquid and solid phases using a very simple model potential. The potential, containing only the repulsive part of the Reid /sup 1/S/sub o/ interaction, together with Boltzmann statistics defines a homework problem'' which several groups involved in solidification calculations have agreed to solve. The results were to be compared for the purpose of checking calculational techniques. For the solid energy good agreement with Canuto and Chitre was found. Both the liquid and solid energies are much lower thanmore » those of Pandharipande. It is shown that for this oversimplified model, neutron star matter will remain solid down to ordinary nuclear matter density.« less
Insertion device calculations with mathematica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, R.; Lidia, S.
1995-02-01
The design of accelerator insertion devices such as wigglers and undulators has usually been aided by numerical modeling on digital computers, using code in high level languages like Fortran. In the present era, there are higher level programming environments like IDL{reg_sign}, MatLab{reg_sign}, and Mathematica{reg_sign} in which these calculations may be performed by writing much less code, and in which standard mathematical techniques are very easily used. The authors present a suite of standard insertion device modeling routines in Mathematica to illustrate the new techniques. These routines include a simple way to generate magnetic fields using blocks of CSEM materials, trajectorymore » solutions from the Lorentz force equations for given magnetic fields, Bessel function calculations of radiation for wigglers and undulators and general radiation calculations for undulators.« less
Predictions from a flavour GUT model combined with a SUSY breaking sector
NASA Astrophysics Data System (ADS)
Antusch, Stefan; Hohl, Christian
2017-10-01
We discuss how flavour GUT models in the context of supergravity can be completed with a simple SUSY breaking sector, such that the flavour-dependent (non-universal) soft breaking terms can be calculated. As an example, we discuss a model based on an SU(5) GUT symmetry and A 4 family symmetry, plus additional discrete "shaping symmetries" and a ℤ 4 R symmetry. We calculate the soft terms and identify the relevant high scale input parameters, and investigate the resulting predictions for the low scale observables, such as flavour violating processes, the sparticle spectrum and the dark matter relic density.
A simple spectral model of the dynamics of the Venus ionosphere
NASA Technical Reports Server (NTRS)
Singhal, R. P.; Whitten, R. C.
1987-01-01
A two-dimensional model of the ionosphere of Venus has been constructed by expanding pertinent quantities in Legendre polynomials. The model is simplified by including only a single ion species, O(+). Horizontal plasma flow velocity and plasma density have been calculated as a coupled system. The calculated plasma flow velocity is found to be in good agreement with observations and the results of earlier studies. Solar zenith angle dependence of plasma density, particularly on the nightside, shows some features which differ from results of earlier studies and observed values. Effects of raising or lowering the ionopause height and changing the nightside neutral atmosphere have been discussed.
Evolution of cosmic string networks
NASA Technical Reports Server (NTRS)
Albrecht, Andreas; Turok, Neil
1989-01-01
A discussion of the evolution and observable consequences of a network of cosmic strings is given. A simple model for the evolution of the string network is presented, and related to the statistical mechanics of string networks. The model predicts the long string density throughout the history of the universe from a single parameter, which researchers calculate in radiation era simulations. The statistical mechanics arguments indicate a particular thermal form for the spectrum of loops chopped off the network. Detailed numerical simulations of string networks in expanding backgrounds are performed to test the model. Consequences for large scale structure, the microwave and gravity wave backgrounds, nucleosynthesis and gravitational lensing are calculated.
Upgrades to the REA method for producing probabilistic climate change projections
NASA Astrophysics Data System (ADS)
Xu, Ying; Gao, Xuejie; Giorgi, Filippo
2010-05-01
We present an augmented version of the Reliability Ensemble Averaging (REA) method designed to generate probabilistic climate change information from ensembles of climate model simulations. Compared to the original version, the augmented one includes consideration of multiple variables and statistics in the calculation of the performance-based weights. In addition, the model convergence criterion previously employed is removed. The method is applied to the calculation of changes in mean and variability for temperature and precipitation over different sub-regions of East Asia based on the recently completed CMIP3 multi-model ensemble. Comparison of the new and old REA methods, along with the simple averaging procedure, and the use of different combinations of performance metrics shows that at fine sub-regional scales the choice of weighting is relevant. This is mostly because the models show a substantial spread in performance for the simulation of precipitation statistics, a result that supports the use of model weighting as a useful option to account for wide ranges of quality of models. The REA method, and in particular the upgraded one, provides a simple and flexible framework for assessing the uncertainty related to the aggregation of results from ensembles of models in order to produce climate change information at the regional scale. KEY WORDS: REA method, Climate change, CMIP3
A simple model for calculating tsunami flow speed from tsunami deposits
Jaffe, B.E.; Gelfenbuam, G.
2007-01-01
This paper presents a simple model for tsunami sedimentation that can be applied to calculate tsunami flow speed from the thickness and grain size of a tsunami deposit (the inverse problem). For sandy tsunami deposits where grain size and thickness vary gradually in the direction of transport, tsunami sediment transport is modeled as a steady, spatially uniform process. The amount of sediment in suspension is assumed to be in equilibrium with the steady portion of the long period, slowing varying uprush portion of the tsunami. Spatial flow deceleration is assumed to be small and not to contribute significantly to the tsunami deposit. Tsunami deposits are formed from sediment settling from the water column when flow speeds on land go to zero everywhere at the time of maximum tsunami inundation. There is little erosion of the deposit by return flow because it is a slow flow and is concentrated in topographic lows. Variations in grain size of the deposit are found to have more effect on calculated tsunami flow speed than deposit thickness. The model is tested using field data collected at Arop, Papua New Guinea soon after the 1998 tsunami. Speed estimates of 14??m/s at 200??m inland from the shoreline compare favorably with those from a 1-D inundation model and from application of Bernoulli's principle to water levels on buildings left standing after the tsunami. As evidence that the model is applicable to some sandy tsunami deposits, the model reproduces the observed normal grading and vertical variation in sorting and skewness of a deposit formed by the 1998 tsunami.
Predicting solar radiation based on available weather indicators
NASA Astrophysics Data System (ADS)
Sauer, Frank Joseph
Solar radiation prediction models are complex and require software that is not available for the household investor. The processing power within a normal desktop or laptop computer is sufficient to calculate similar models. This barrier to entry for the average consumer can be fixed by a model simple enough to be calculated by hand if necessary. Solar radiation modeling has been historically difficult to predict and accurate models have significant assumptions and restrictions on their use. Previous methods have been limited to linear relationships, location restrictions, or input data limits to one atmospheric condition. This research takes a novel approach by combining two techniques within the computational limits of a household computer; Clustering and Hidden Markov Models (HMMs). Clustering helps limit the large observation space which restricts the use of HMMs. Instead of using continuous data, and requiring significantly increased computations, the cluster can be used as a qualitative descriptor of each observation. HMMs incorporate a level of uncertainty and take into account the indirect relationship between meteorological indicators and solar radiation. This reduces the complexity of the model enough to be simply understood and accessible to the average household investor. The solar radiation is considered to be an unobservable state that each household will be unable to measure. The high temperature and the sky coverage are already available through the local or preferred source of weather information. By using the next day's prediction for high temperature and sky coverage, the model groups the data and then predicts the most likely range of radiation. This model uses simple techniques and calculations to give a broad estimate for the solar radiation when no other universal model exists for the average household.
Hemodynamics model of fluid–solid interaction in internal carotid artery aneurysms
Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju
2010-01-01
The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography. PMID:20812022
Hemodynamics model of fluid-solid interaction in internal carotid artery aneurysms.
Bai-Nan, Xu; Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju
2011-01-01
The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography.
The added mass forces in insect flapping wings.
Liu, Longgui; Sun, Mao
2018-01-21
The added mass forces of three-dimensional (3D) flapping wings of some representative insects, and the accuracy of the often used simple two-dimensional (2D) method, are studied. The added mass force of a flapping wing is calculated by both 3D and 2D methods, and the total aerodynamic force of the wing is calculated by the CFD method. Our findings are as following. The added mass force has a significant contribution to the total aerodynamic force of the flapping wings during and near the stroke reversals, and the shorter the stroke amplitude is, the larger the added mass force becomes. Thus the added mass force could not be neglected when using the simple models to estimate the aerodynamics force, especially for insects with relatively small stroke amplitudes. The accuracy of the often used simple 2D method is reasonably good: when the aspect ratio of the wing is greater than about 3.3, error in the added mass force calculation due to the 2D assumption is less than 9%; even when the aspect ratio is 2.8 (approximately the smallest for an insect), the error is no more than 13%. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Physics-Based Engineering Approach to Predict the Cross Section for Advanced SRAMs
NASA Astrophysics Data System (ADS)
Li, Lei; Zhou, Wanting; Liu, Huihua
2012-12-01
This paper presents a physics-based engineering approach to estimate the heavy ion induced upset cross section for 6T SRAM cells from layout and technology parameters. The new approach calculates the effects of radiation with junction photocurrent, which is derived based on device physics. The new and simple approach handles the problem by using simple SPICE simulations. At first, the approach uses a standard SPICE program on a typical PC to predict the SPICE-simulated curve of the collected charge vs. its affected distance from the drain-body junction with the derived junction photocurrent. And then, the SPICE-simulated curve is used to calculate the heavy ion induced upset cross section with a simple model, which considers that the SEU cross section of a SRAM cell is more related to a “radius of influence” around a heavy ion strike than to the physical size of a diffusion node in the layout for advanced SRAMs in nano-scale process technologies. The calculated upset cross section based on this method is in good agreement with the test results for 6T SRAM cells processed using 90 nm process technology.
Refiners Switch to RFG Complex Model
1998-01-01
On January 1, 1998, domestic and foreign refineries and importers must stop using the "simple" model and begin using the "complex" model to calculate emissions of volatile organic compounds (VOC), toxic air pollutants (TAP), and nitrogen oxides (NOx) from motor gasoline. The primary differences between application of the two models is that some refineries may have to meet stricter standards for the sulfur and olefin content of the reformulated gasoline (RFG) they produce and all refineries will now be held accountable for NOx emissions. Requirements for calculating emissions from conventional gasoline under the anti-dumping rule similarly change for exhaust TAP and NOx. However, the change to the complex model is not expected to result in an increase in the price premium for RFG or constrain supplies.
Hybrid Rocket Performance Prediction with Coupling Method of CFD and Thermal Conduction Calculation
NASA Astrophysics Data System (ADS)
Funami, Yuki; Shimada, Toru
The final purpose of this study is to develop a design tool for hybrid rocket engines. This tool is a computer code which will be used in order to investigate rocket performance characteristics and unsteady phenomena lasting through the burning time, such as fuel regression or combustion oscillation. When phenomena inside a combustion chamber, namely boundary layer combustion, are described, it is difficult to use rigorous models for this target. It is because calculation cost may be too expensive. Therefore simple models are required for this calculation. In this study, quasi-one-dimensional compressible Euler equations for flowfields inside a chamber and the equation for thermal conduction inside a solid fuel are numerically solved. The energy balance equation at the solid fuel surface is solved to estimate fuel regression rate. Heat feedback model is Karabeyoglu's model dependent on total mass flux. Combustion model is global single step reaction model for 4 chemical species or chemical equilibrium model for 9 chemical species. As a first step, steady-state solutions are reported.
Millimeter wave attenuation prediction using a piecewise uniform rain rate model
NASA Technical Reports Server (NTRS)
Persinger, R. R.; Stutzman, W. L.; Bostian, C. W.; Castle, R. E., Jr.
1980-01-01
A piecewise uniform rain rate distribution model is introduced as a quasi-physical model of real rain along earth-space millimeter wave propagation paths. It permits calculation of the total attenuation from specific attenuation in a simple fashion. The model predications are verified by comparison with direct attenuation measurements for several frequencies, elevation angles, and locations. Also, coupled with the Rice-Holmberg rain rate model, attenuation statistics are predicated from rainfall accumulation data.
Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation
Burgess, C. P.; Holman, R.; Tasinato, G.
2016-01-26
Though simple inflationary models describe the CMB well, their corrections are often plagued by infrared effects that obstruct a reliable calculation of late-time behaviour. Here we adapt to cosmology tools designed to address similar issues in other physical systems with the goal of making reliable late-time inflationary predictions. The main such tool is Open EFTs which reduce in the inflationary case to Stochastic Inflation plus calculable corrections. We apply this to a simple inflationary model that is complicated enough to have dangerous IR behaviour yet simple enough to allow the inference of late-time behaviour. We find corrections to standard Stochasticmore » Inflationary predictions for the noise and drift, and we find these corrections ensure the IR finiteness of both these quantities. The late-time probability distribution, P(Φ), for super-Hubble field fluctuations are obtained as functions of the noise and drift and so these too are IR finite. We compare our results to other methods (such as large-N models) and find they agree when these models are reliable. In all cases we can explore in detail we find IR secular effects describe the slow accumulation of small perturbations to give a big effect: a significant distortion of the late-time probability distribution for the field. But the energy density associated with this is only of order H 4 at late times and so does not generate a dramatic gravitational back-reaction.« less
Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, C. P.; Holman, R.; Tasinato, G.
Though simple inflationary models describe the CMB well, their corrections are often plagued by infrared effects that obstruct a reliable calculation of late-time behaviour. Here we adapt to cosmology tools designed to address similar issues in other physical systems with the goal of making reliable late-time inflationary predictions. The main such tool is Open EFTs which reduce in the inflationary case to Stochastic Inflation plus calculable corrections. We apply this to a simple inflationary model that is complicated enough to have dangerous IR behaviour yet simple enough to allow the inference of late-time behaviour. We find corrections to standard Stochasticmore » Inflationary predictions for the noise and drift, and we find these corrections ensure the IR finiteness of both these quantities. The late-time probability distribution, P(Φ), for super-Hubble field fluctuations are obtained as functions of the noise and drift and so these too are IR finite. We compare our results to other methods (such as large-N models) and find they agree when these models are reliable. In all cases we can explore in detail we find IR secular effects describe the slow accumulation of small perturbations to give a big effect: a significant distortion of the late-time probability distribution for the field. But the energy density associated with this is only of order H 4 at late times and so does not generate a dramatic gravitational back-reaction.« less
Evaluating and Improving the SAMA (Segmentation Analysis and Market Assessment) Recruiting Model
2015-06-01
and rewarding me with your love every day. xx THIS PAGE INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION A. THE UNITED STATES ARMY RECRUITING...the relationship between the calculated SAMA potential and the actual 2014 performance. The scatterplot in Figure 8 shows a strong linear... relationship between the SAMA calculated potential and the contracting achievement for 2014, with an R-squared value of 0.871. Simple Linear Regression of
Levelized Cost of Energy Calculator | Energy Analysis | NREL
Levelized Cost of Energy Calculator Levelized Cost of Energy Calculator Transparent Cost Database Button The levelized cost of energy (LCOE) calculator provides a simple calculator for both utility-scale need to be included for a thorough analysis. To estimate simple cost of energy, use the slider controls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders D.; Tonks, Michael R.; Casillas, Luis
2014-10-31
In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations 1, continuum models for diffusion of xenon (Xe), uranium (U) vacancies and U interstitials in UO 2 have been derived for both intrinsic conditions and under irradiation. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model for the interaction between Xe atoms and three different grain boundaries in UO 2 ( Σ5 tilt, Σ5more » twist and a high angle random boundary),as derived from atomistic calculations. All models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as redistribution for a few simple microstructures.« less
Free-free opacity in dense plasmas with an average atom model
Shaffer, Nathaniel R.; Ferris, Natalie G.; Colgan, James Patrick; ...
2017-02-28
A model for the free-free opacity of dense plasmas is presented. The model uses a previously developed average atom model, together with the Kubo-Greenwood model for optical conductivity. This, in turn, is used to calculate the opacity with the Kramers-Kronig dispersion relations. Furthermore, comparisons to other methods for dense deuterium results in excellent agreement with DFT-MD simulations, and reasonable agreement with a simple Yukawa screening model corrected to satisfy the conductivity sum rule.
Free-free opacity in dense plasmas with an average atom model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaffer, Nathaniel R.; Ferris, Natalie G.; Colgan, James Patrick
A model for the free-free opacity of dense plasmas is presented. The model uses a previously developed average atom model, together with the Kubo-Greenwood model for optical conductivity. This, in turn, is used to calculate the opacity with the Kramers-Kronig dispersion relations. Furthermore, comparisons to other methods for dense deuterium results in excellent agreement with DFT-MD simulations, and reasonable agreement with a simple Yukawa screening model corrected to satisfy the conductivity sum rule.
Swain, Eric D.; Wexler, Eliezer J.
1996-01-01
Ground-water and surface-water flow models traditionally have been developed separately, with interaction between subsurface flow and streamflow either not simulated at all or accounted for by simple formulations. In areas with dynamic and hydraulically well-connected ground-water and surface-water systems, stream-aquifer interaction should be simulated using deterministic responses of both systems coupled at the stream-aquifer interface. Accordingly, a new coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH; the interfacing code is referred to as MODBRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference ground-water model, and BRANCH is a one-dimensional numerical model commonly used to simulate unsteady flow in open- channel networks. MODFLOW was originally written with the River package, which calculates leakage between the aquifer and stream, assuming that the stream's stage remains constant during one model stress period. A simple streamflow routing model has been added to MODFLOW, but is limited to steady flow in rectangular, prismatic channels. To overcome these limitations, the BRANCH model, which simulates unsteady, nonuniform flow by solving the St. Venant equations, was restructured and incorporated into MODFLOW. Terms that describe leakage between stream and aquifer as a function of streambed conductance and differences in aquifer and stream stage were added to the continuity equation in BRANCH. Thus, leakage between the aquifer and stream can be calculated separately in each model, or leakages calculated in BRANCH can be used in MODFLOW. Total mass in the coupled models is accounted for and conserved. The BRANCH model calculates new stream stages for each time interval in a transient simulation based on upstream boundary conditions, stream properties, and initial estimates of aquifer heads. Next, aquifer heads are calculated in MODFLOW based on stream stages calculated by BRANCH, aquifer properties, and stresses. This process is repeated until convergence criteria are met for head and stage. Because time steps used in ground-water modeling can be much longer than time intervals used in surface- water simulations, provision has been made for handling multiple BRANCH time intervals within one MODFLOW time step. An option was also added to BRANCH to allow the simulation of channel drying and rewetting. Testing of the coupled model was verified by using data from previous studies; by comparing results with output from a simpler, four-point implicit, open-channel flow model linked with MODFLOW; and by comparison to field studies of L-31N canal in southern Florida.
Simulation of upwind maneuvering of a sailing yacht
NASA Astrophysics Data System (ADS)
Harris, Daniel Hartrick
A time domain maneuvering simulation of an IACC class yacht suitable for the analysis of unsteady upwind sailing including tacking is presented. The simulation considers motions in six degrees of freedom. The hydrodynamic and aerodynamic loads are calculated primarily with unsteady potential theory supplemented by empirical viscous models. The hydrodynamic model includes the effects of incident waves. Control of the rudder is provided by a simple rate feedback autopilot which is augmented with open loop additions to mimic human steering. The hydrodynamic models are based on the superposition of force components. These components fall into two groups, those which the yacht will experience in calm water, and those due to incident waves. The calm water loads are further divided into zero Froude number, or "double body" maneuvering loads, hydrostatic loads, gravitational loads, free surface radiation loads, and viscous/residual loads. The maneuvering loads are calculated with an unsteady panel code which treats the instantaneous geometry of the yacht below the undisturbed free surface. The free surface radiation loads are calculated via convolution of impulse response functions derived from seakeeping strip theory. The viscous/residual loads are based upon empirical estimates. The aerodynamic model consists primarily of a database of steady state sail coefficients. These coefficients treat the individual contributions to the total sail force of a number of chordwise strips on both the main and jib. Dynamic effects are modeled by using the instantaneous incident wind velocity and direction as the independent variables for the sail load contribution of each strip. The sail coefficient database was calculated numerically with potential methods and simple empirical viscous corrections. Additional aerodynamic load calculations are made to determine the parasitic contributions of the rig and hull. Validation studies compare the steady sailing hydro and aerodynamic loads, seaway induced motions, added resistance in waves, and tacking performance with trials data and other sources. Reasonable agreement is found in all cases.
Xu, Chonggang; Gertner, George
2013-01-01
Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements. PMID:24143037
Xu, Chonggang; Gertner, George
2011-01-01
Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyshev, M. Yu., E-mail: mimalysh@yandex.ru; Paston, S. A.; Prokhvatilov, E. V.
The advantage of Pauli-Villars regularization in quantum field theory quantized on the light front is explained. Simple examples of scalar λφ{sup 4} field theory and Yukawa-type model are used. We give also an example of nonperturbative calculation in the theory with Pauli-Villars fields, using for that a model of anharmonic oscillator modified by inclusion of ghost variables playing the role similar to Pauli-Villars fields.
Bayesian model checking: A comparison of tests
NASA Astrophysics Data System (ADS)
Lucy, L. B.
2018-06-01
Two procedures for checking Bayesian models are compared using a simple test problem based on the local Hubble expansion. Over four orders of magnitude, p-values derived from a global goodness-of-fit criterion for posterior probability density functions agree closely with posterior predictive p-values. The former can therefore serve as an effective proxy for the difficult-to-calculate posterior predictive p-values.
NMR signals within the generalized Langevin model for fractional Brownian motion
NASA Astrophysics Data System (ADS)
Lisý, Vladimír; Tóthová, Jana
2018-03-01
The methods of Nuclear Magnetic Resonance belong to the best developed and often used tools for studying random motion of particles in different systems, including soft biological tissues. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard memoryless Langevin description of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spin-bearing particles in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in an exceedingly simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues. The effect of the trap is demonstrated by introducing a simple model for the generalized diffusion coefficient of the particle.
Population Genetics of Three Dimensional Range Expansions
NASA Astrophysics Data System (ADS)
Lavrentovich, Maxim; Nelson, David
2014-03-01
We develop a simple model of genetic diversity in growing spherical cell clusters, where the growth is confined to the cluster surface. This kind of growth occurs in cells growing in soft agar, and can also serve as a simple model of avascular tumors. Mutation-selection balance in these radial expansions is strongly influenced by scaling near a neutral, voter model critical point and by the inflating frontier. We develop a scaling theory to describe how the dynamics of mutation-selection balance is cut off by inflation. Genetic drift, i.e., local fluctuations in the genetic diversity, also plays an important role, and can lead to the extinction even of selectively advantageous strains. We calculate this extinction probability, taking into account the effect of rough population frontiers.
Modelling radiation fluxes in simple and complex environments: basics of the RayMan model.
Matzarakis, Andreas; Rutz, Frank; Mayer, Helmut
2010-03-01
Short- and long-wave radiation flux densities absorbed by people have a significant influence on their energy balance. The heat effect of the absorbed radiation flux densities is parameterised by the mean radiant temperature. This paper presents the physical basis of the RayMan model, which simulates the short- and long-wave radiation flux densities from the three-dimensional surroundings in simple and complex environments. RayMan has the character of a freely available radiation and human-bioclimate model. The aim of the RayMan model is to calculate radiation flux densities, sunshine duration, shadow spaces and thermo-physiologically relevant assessment indices using only a limited number of meteorological and other input data. A comparison between measured and simulated values for global radiation and mean radiant temperature shows that the simulated data closely resemble measured data.
Molecular simulation of simple fluids and polymers in nanoconfinement
NASA Astrophysics Data System (ADS)
Rasmussen, Christopher John
Prediction of phase behavior and transport properties of simple fluids and polymers confined to nanoscale pores is important to a wide range of chemical and biochemical engineering processes. A practical approach to investigate nanoscale systems is molecular simulation, specifically Monte Carlo (MC) methods. One of the most challenging problems is the need to calculate chemical potentials in simulated phases. Through the seminal work of Widom, practitioners have a powerful method for calculating chemical potentials. Yet, this method fails for dense and inhomogeneous systems, as well as for complex molecules such as polymers. In this dissertation, the gauge cell MC method, which had previously been successfully applied to confined simple fluids, was employed and extended to investigate nanoscale fluids in several key areas. Firstly, the process of cavitation (the formation and growth of bubbles) during desorption of fluids from nanopores was investigated. The dependence of cavitation pressure on pore size was determined with gauge cell MC calculations of the nucleation barriers correlated with experimental data. Additional computational studies elucidated the role of surface defects and pore connectivity in the formation of cavitation bubbles. Secondly, the gauge cell method was extended to polymers. The method was verified against the literature results and found significantly more efficient. It was used to examine adsorption of polymers in nanopores. These results were applied to model the dynamics of translocation, the act of a polymer threading through a small opening, which is implicated in drug packaging and delivery, and DNA sequencing. Translocation dynamics was studied as diffusion along the free energy landscape. Thirdly, we show how computer simulation of polymer adsorption could shed light on the specifics of polymer chromatography, which is a key tool for the analysis and purification of polymers. The quality of separation depends on the physico-chemical mechanisms of polymer/pore interaction. We considered liquid chromatography at critical conditions, and calculated the dependence of the partition coefficient on chain length. Finally, solvent-gradient chromatography was modeled using a statistical model of polymer adsorption. A model for predicting separation of complex polymers (with functional groups or copolymers) was developed for practical use in chromatographic separations.
Estimating Lake Volume from Limited Data: A Simple GIS Approach
Lake volume provides key information for estimating residence time or modeling pollutants. Methods for calculating lake volume have relied on dated technologies (e.g. planimeters) or used potentially inaccurate assumptions (e.g. volume of a frustum of a cone). Modern GIS provid...
Learning molecular energies using localized graph kernels
Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos
2017-03-21
We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less
Learning molecular energies using localized graph kernels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos
We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less
Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2005-01-01
The influence of vortex ring state (VRS) on rotorcraft flight dynamics is investigated, specifically the vertical velocity drop of helicopters and the roll-off of tiltrotors encountering VRS. The available wind tunnel and flight test data for rotors in vortex ring state are reviewed. Test data for axial flow, non-axial flow, two rotors, unsteadiness, and vortex ring state boundaries are described and discussed. Based on the available measured data, a VRS model is developed. The VRS model is a parametric extension of momentum theory for calculation of the mean inflow of a rotor, hence suitable for simple calculations and real-time simulations. This inflow model is primarily defined in terms of the stability boundary of the aircraft motion. Calculations of helicopter response during VRS encounter were performed, and good correlation is shown with the vertical velocity drop measured in flight tests. Calculations of tiltrotor response during VRS encounter were performed, showing the roll-off behavior characteristic of tiltrotors. Hence it is possible, using a model of the mean inflow of an isolated rotor, to explain the basic behavior of both helicopters and tiltrotors in vortex ring state.
Environmental and Molecular Science Laboratory Arrow
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-06-24
Arrows is a software package that combines NWChem, SQL and NOSQL databases, email, and social networks (e.g. Twitter, Tumblr) that simplifies molecular and materials modeling and makes these modeling capabilities accessible to all scientists and engineers. EMSL Arrows is very simple to use. The user just emails chemical reactions to arrows@emsl.pnnl.gov and then an email is sent back with thermodynamic, reaction pathway (kinetic), spectroscopy, and other results. EMSL Arrows parses the email and then searches the database for the compounds in the reactions. If a compound isn't there, an NWChem calculation is setup and submitted to calculate it. Once themore » calculation is finished the results are entered into the database and then results are emailed back.« less
Optical model calculations of heavy-ion target fragmentation
NASA Technical Reports Server (NTRS)
Townsend, L. W.; Wilson, J. W.; Cucinotta, F. A.; Norbury, J. W.
1986-01-01
The fragmentation of target nuclei by relativistic protons and heavy ions is described within the context of a simple abrasion-ablation-final-state interaction model. Abrasion is described by a quantum mechanical formalism utilizing an optical model potential approximation. Nuclear charge distributions of the excited prefragments are calculated by both a hypergeometric distribution and a method based upon the zero-point oscillations of the giant dipole resonance. Excitation energies are estimated from the excess surface energy resulting from the abrasion process and the additional energy deposited by frictional spectator interactions of the abraded nucleons. The ablation probabilities are obtained from the EVA-3 computer program. Isotope production cross sections for the spallation of copper targets by relativistic protons and for the fragmenting of carbon targets by relativistic carbon, neon, and iron projectiles are calculated and compared with available experimental data.
Harmonics analysis of the ITER poloidal field converter based on a piecewise method
NASA Astrophysics Data System (ADS)
Xudong, WANG; Liuwei, XU; Peng, FU; Ji, LI; Yanan, WU
2017-12-01
Poloidal field (PF) converters provide controlled DC voltage and current to PF coils. The many harmonics generated by the PF converter flow into the power grid and seriously affect power systems and electric equipment. Due to the complexity of the system, the traditional integral operation in Fourier analysis is complicated and inaccurate. This paper presents a piecewise method to calculate the harmonics of the ITER PF converter. The relationship between the grid input current and the DC output current of the ITER PF converter is deduced. The grid current is decomposed into the sum of some simple functions. By calculating simple function harmonics based on the piecewise method, the harmonics of the PF converter under different operation modes are obtained. In order to examine the validity of the method, a simulation model is established based on Matlab/Simulink and a relevant experiment is implemented in the ITER PF integration test platform. Comparative results are given. The calculated results are found to be consistent with simulation and experiment. The piecewise method is proved correct and valid for calculating the system harmonics.
An approximate methods approach to probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Mcclung, R. C.; Millwater, H. R.; Wu, Y.-T.; Thacker, B. H.; Burnside, O. H.
1989-01-01
A major research and technology program in Probabilistic Structural Analysis Methods (PSAM) is currently being sponsored by the NASA Lewis Research Center with Southwest Research Institute as the prime contractor. This program is motivated by the need to accurately predict structural response in an environment where the loadings, the material properties, and even the structure may be considered random. The heart of PSAM is a software package which combines advanced structural analysis codes with a fast probability integration (FPI) algorithm for the efficient calculation of stochastic structural response. The basic idea of PAAM is simple: make an approximate calculation of system response, including calculation of the associated probabilities, with minimal computation time and cost, based on a simplified representation of the geometry, loads, and material. The deterministic solution resulting should give a reasonable and realistic description of performance-limiting system responses, although some error will be inevitable. If the simple model has correctly captured the basic mechanics of the system, however, including the proper functional dependence of stress, frequency, etc. on design parameters, then the response sensitivities calculated may be of significantly higher accuracy.
Photon migration in non-scattering tissue and the effects on image reconstruction
NASA Astrophysics Data System (ADS)
Dehghani, H.; Delpy, D. T.; Arridge, S. R.
1999-12-01
Photon propagation in tissue can be calculated using the relationship described by the transport equation. For scattering tissue this relationship is often simplified and expressed in terms of the diffusion approximation. This approximation, however, is not valid for non-scattering regions, for example cerebrospinal fluid (CSF) below the skull. This study looks at the effects of a thin clear layer in a simple model representing the head and examines its effect on image reconstruction. Specifically, boundary photon intensities (total number of photons exiting at a point on the boundary due to a source input at another point on the boundary) are calculated using the transport equation and compared with data calculated using the diffusion approximation for both non-scattering and scattering regions. The effect of non-scattering regions on the calculated boundary photon intensities is presented together with the advantages and restrictions of the transport code used. Reconstructed images are then presented where the forward problem is solved using the transport equation for a simple two-dimensional system containing a non-scattering ring and the inverse problem is solved using the diffusion approximation to the transport equation.
Improving the treatment of coarse-grain electrostatics: CVCEL.
Ceres, N; Lavery, R
2015-12-28
We propose an analytic approach for calculating the electrostatic energy of proteins or protein complexes in aqueous solution. This method, termed CVCEL (Circular Variance Continuum ELectrostatics), is fitted to Poisson calculations and is able to reproduce the corresponding energies for different choices of solute dielectric constant. CVCEL thus treats both solute charge interactions and charge self-energies, and it can also deal with salt solutions. Electrostatic damping notably depends on the degree of solvent exposure of the charges, quantified here in terms of circular variance, a measure that reflects the vectorial distribution of the neighbors around a given center. CVCEL energies can be calculated rapidly and have simple analytical derivatives. This approach avoids the need for calculating effective atomic volumes or Born radii. After describing how the method was developed, we present test results for coarse-grain proteins of different shapes and sizes, using different internal dielectric constants and different salt concentrations and also compare the results with those from simple distance-dependent models. We also show that the CVCEL approach can be used successfully to calculate the changes in electrostatic energy associated with changes in protein conformation or with protein-protein binding.
Nonconservative dynamics in long atomic wires
NASA Astrophysics Data System (ADS)
Cunningham, Brian; Todorov, Tchavdar N.; Dundas, Daniel
2014-09-01
The effect of nonconservative current-induced forces on the ions in a defect-free metallic nanowire is investigated using both steady-state calculations and dynamical simulations. Nonconservative forces were found to have a major influence on the ion dynamics in these systems, but their role in increasing the kinetic energy of the ions decreases with increasing system length. The results illustrate the importance of nonconservative effects in short nanowires and the scaling of these effects with system size. The dependence on bias and ion mass can be understood with the help of a simple pen and paper model. This material highlights the benefit of simple preliminary steady-state calculations in anticipating aspects of brute-force dynamical simulations, and provides rule of thumb criteria for the design of stable quantum wires.
Kinetics versus thermodynamics in materials modeling: The case of the di-vacancy in iron
NASA Astrophysics Data System (ADS)
Djurabekova, F.; Malerba, L.; Pasianot, R. C.; Olsson, P.; Nordlund, K.
2010-07-01
Monte Carlo models are widely used for the study of microstructural and microchemical evolution of materials under irradiation. However, they often link explicitly the relevant activation energies to the energy difference between local equilibrium states. We provide a simple example (di-vacancy migration in iron) in which a rigorous activation energy calculation, by means of both empirical interatomic potentials and density functional theory methods, clearly shows that such a link is not granted, revealing a migration mechanism that a thermodynamics-linked activation energy model cannot predict. Such a mechanism is, however, fully consistent with thermodynamics. This example emphasizes the importance of basing Monte Carlo methods on models where the activation energies are rigorously calculated, rather than deduced from widespread heuristic equations.
SU-E-T-226: Correction of a Standard Model-Based Dose Calculator Using Measurement Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, M; Jiang, S; Lu, W
Purpose: To propose a hybrid method that combines advantages of the model-based and measurement-based method for independent dose calculation. Modeled-based dose calculation, such as collapsed-cone-convolution/superposition (CCCS) or the Monte-Carlo method, models dose deposition in the patient body accurately; however, due to lack of detail knowledge about the linear accelerator (LINAC) head, commissioning for an arbitrary machine is tedious and challenging in case of hardware changes. On the contrary, the measurement-based method characterizes the beam property accurately but lacks the capability of dose disposition modeling in heterogeneous media. Methods: We used a standard CCCS calculator, which is commissioned by published data,more » as the standard model calculator. For a given machine, water phantom measurements were acquired. A set of dose distributions were also calculated using the CCCS for the same setup. The difference between the measurements and the CCCS results were tabulated and used as the commissioning data for a measurement based calculator. Here we used a direct-ray-tracing calculator (ΔDRT). The proposed independent dose calculation consists of the following steps: 1. calculate D-model using CCCS. 2. calculate D-ΔDRT using ΔDRT. 3. combine Results: D=D-model+D-ΔDRT. Results: The hybrid dose calculation was tested on digital phantoms and patient CT data for standard fields and IMRT plan. The results were compared to dose calculated by the treatment planning system (TPS). The agreement of the hybrid and the TPS was within 3%, 3 mm for over 98% of the volume for phantom studies and lung patients. Conclusion: The proposed hybrid method uses the same commissioning data as those for the measurement-based method and can be easily extended to any non-standard LINAC. The results met the accuracy, independence, and simple commissioning criteria for an independent dose calculator.« less
SEEPLUS: A SIMPLE ONLINE CLIMATE MODEL
NASA Astrophysics Data System (ADS)
Tsutsui, Junichi
A web application for a simple climate model - SEEPLUS (a Simple climate model to Examine Emission Pathways Leading to Updated Scenarios) - has been developed. SEEPLUS consists of carbon-cycle and climate-change modules, through which it provides the information infrastructure required to perform climate-change experiments, even on a millennial-timescale. The main objective of this application is to share the latest scientific knowledge acquired from climate modeling studies among the different stakeholders involved in climate-change issues. Both the carbon-cycle and climate-change modules employ impulse response functions (IRFs) for their key processes, thereby enabling the model to integrate the outcome from an ensemble of complex climate models. The current IRF parameters and forcing manipulation are basically consistent with, or within an uncertainty range of, the understanding of certain key aspects such as the equivalent climate sensitivity and ocean CO2 uptake data documented in representative literature. The carbon-cycle module enables inverse calculation to determine the emission pathway required in order to attain a given concentration pathway, thereby providing a flexible way to compare the module with more advanced modeling studies. The module also enables analytical evaluation of its equilibrium states, thereby facilitating the long-term planning of global warming mitigation.
A simple biosphere model (SiB) for use within general circulation models
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Mintz, Y.; Sud, Y. C.; Dalcher, A.
1986-01-01
A simple realistic biosphere model for calculating the transfer of energy, mass and momentum between the atmosphere and the vegetated surface of the earth has been developed for use in atmospheric general circulation models. The vegetation in each terrestrial model grid is represented by an upper level, representing the perennial canopy of trees and shrubs, and a lower level, representing the annual cover of grasses and other heraceous species. The vegetation morphology and the physical and physiological properties of the vegetation layers determine such properties as: the reflection, transmission, absorption and emission of direct and diffuse radiation; the infiltration, drainage, and storage of the residual rainfall in the soil; and the control over the stomatal functioning. The model, with prescribed vegetation parameters and soil interactive soil moisture, can be used for prediction of the atmospheric circulation and precipitaion fields for short periods of up to a few weeks.
Generalized Born Models of Macromolecular Solvation Effects
NASA Astrophysics Data System (ADS)
Bashford, Donald; Case, David A.
2000-10-01
It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.
Comparisons of CTH simulations with measured wave profiles for simple flyer plate experiments
Thomas, S. A.; Veeser, L. R.; Turley, W. D.; ...
2016-06-13
We conducted detailed 2-dimensional hydrodynamics calculations to assess the quality of simulations commonly used to design and analyze simple shock compression experiments. Such simple shock experiments also contain data where dynamic properties of materials are integrated together. We wished to assess how well the chosen computer hydrodynamic code could do at capturing both the simple parts of the experiments and the integral parts. We began with very simple shock experiments, in which we examined the effects of the equation of state and the compressional and tensile strength models. We increased complexity to include spallation in copper and iron and amore » solid-solid phase transformation in iron to assess the quality of the damage and phase transformation simulations. For experiments with a window, the response of both the sample and the window are integrated together, providing a good test of the material models. While CTH physics models are not perfect and do not reproduce all experimental details well, we find the models are useful; the simulations are adequate for understanding much of the dynamic process and for planning experiments. However, higher complexity in the simulations, such as adding in spall, led to greater differences between simulation and experiment. Lastly, this comparison of simulation to experiment may help guide future development of hydrodynamics codes so that they better capture the underlying physics.« less
A LFER analysis of the singlet-triplet gap in a series of sixty-six carbenes
NASA Astrophysics Data System (ADS)
Alkorta, Ibon; Elguero, José
2018-01-01
Ab initio G4 calculations have been performed to investigate the singlet-triplet gap in a series of 66 simple carbenes. Energies and geometries were analyzed. An additive model has been explored that include four interaction terms. An abnormal behavior of the cyano group has been found. The 13C absolute shieldings of the carbenic carbon atom were calculated at the GIAO/B3LYP/6-311++G(d, p).
Inversion of Attributes and Full Waveforms of Ground Penetrating Radar Data Using PEST
NASA Astrophysics Data System (ADS)
Jazayeri, S.; Kruse, S.; Esmaeili, S.
2015-12-01
We seek to establish a method, based on freely available software, for inverting GPR signals for the underlying physical properties (electrical permittivity, magnetic permeability, target geometries). Such a procedure should be useful for classroom instruction and for analyzing surface GPR surveys over simple targets. We explore the applicability of the PEST parameter estimation software package for GPR inversion (www.pesthomepage.org). PEST is designed to invert data sets with large numbers of parameters, and offers a variety of inversion methods. Although primarily used in hydrogeology, the code has been applied to a wide variety of physical problems. The PEST code requires forward model input; the forward model of the GPR signal is done with the GPRMax package (www.gprmax.com). The problem of extracting the physical characteristics of a subsurface anomaly from the GPR data is highly nonlinear. For synthetic models of simple targets in homogeneous backgrounds, we find PEST's nonlinear Gauss-Marquardt-Levenberg algorithm is preferred. This method requires an initial model, for which the weighted differences between model-generated data and those of the "true" synthetic model (the objective function) are calculated. In order to do this, the Jacobian matrix and the derivatives of the observation data in respect to the model parameters are computed using a finite differences method. Next, the iterative process of building new models by updating the initial values starts in order to minimize the objective function. Another measure of the goodness of the final acceptable model is the correlation coefficient which is calculated based on the method of Cooley and Naff. An accepted final model satisfies both of these conditions. Models to date show that physical properties of simple isolated targets against homogeneous backgrounds can be obtained from multiple traces from common-offset surface surveys. Ongoing work examines the inversion capabilities with more complex target geometries and heterogeneous soils.
We describe results obtained with a simple model that uses loading rates of total nitrogen (TN), defined as dissolved inorganic nitrogen plus dissolved and particulate organic nitrogen, to calculate annually and spatially averaged concentrations of TN in coastal embayments. We al...
Simple estimate of critical volume
NASA Technical Reports Server (NTRS)
Fedors, R. F.
1980-01-01
Method for estimating critical molar volume of materials is faster and simpler than previous procedures. Formula sums no more than 18 different contributions from components of chemical structure of material, and is as accurate (within 3 percent) as older more complicated models. Method should expedite many thermodynamic design calculations.
Robert R. Ziemer
1979-01-01
For years, the principal objective of evapotranspiration research has been to calculate the loss of water under varying conditions of climate, soil, and vegetation. The early simple empirical methods have generally been replaced by more detailed models which more closely represent the physical and biological processes involved. Monteith's modification of the...
Simulating Freshwater Availability under Future Climate Conditions
NASA Astrophysics Data System (ADS)
Zhao, F.; Zeng, N.; Motesharrei, S.; Gustafson, K. C.; Rivas, J.; Miralles-Wilhelm, F.; Kalnay, E.
2013-12-01
Freshwater availability is a key factor for regional development. Precipitation, evaporation, river inflow and outflow are the major terms in the estimate of regional water supply. In this study, we aim to obtain a realistic estimate for these variables from 1901 to 2100. First we calculated the ensemble mean precipitation using the 2011-2100 RCP4.5 output (re-sampled to half-degree spatial resolution) from 16 General Circulation Models (GCMs) participating the Coupled Model Intercomparison Project Phase 5 (CMIP5). The projections are then combined with the half-degree 1901-2010 Climate Research Unit (CRU) TS3.2 dataset after bias correction. We then used the combined data to drive our UMD Earth System Model (ESM), in order to generate evaporation and runoff. We also developed a River-Routing Scheme based on the idea of Taikan Oki, as part of the ESM. It is capable of calculating river inflow and outflow for any region, driven by the gridded runoff output. River direction and slope information from Global Dominant River Tracing (DRT) dataset are included in our scheme. The effects of reservoirs/dams are parameterized based on a few simple factors such as soil moisture, population density and geographic regions. Simulated river flow is validated with river gauge measurements for the world's major rivers. We have applied our river flow calculation to two data-rich watersheds in the United States: Phoenix AMA watershed and the Potomac River Basin. The results are used in our SImple WAter model (SIWA) to explore water management options.
NASA Astrophysics Data System (ADS)
Li, Dongna; Li, Xudong; Dai, Jianfeng
2018-06-01
In this paper, two kinds of transient models, the viscoelastic model and the linear elastic model, are established to analyze the curing deformation of the thermosetting resin composites, and are calculated by COMSOL Multiphysics software. The two models consider the complicated coupling between physical and chemical changes during curing process of the composites and the time-variant characteristic of material performance parameters. Subsequently, the two proposed models are implemented respectively in a three-dimensional composite laminate structure, and a simple and convenient method of local coordinate system is used to calculate the development of residual stresses, curing shrinkage and curing deformation for the composite laminate. Researches show that the temperature, degree of curing (DOC) and residual stresses during curing process are consistent with the study in literature, so the curing shrinkage and curing deformation obtained on these basis have a certain referential value. Compared the differences between the two numerical results, it indicates that the residual stress and deformation calculated by the viscoelastic model are more close to the reference value than the linear elastic model.
New approach to analyzing soil-building systems
Safak, E.
1998-01-01
A new method of analyzing seismic response of soil-building systems is introduced. The method is based on the discrete-time formulation of wave propagation in layered media for vertically propagating plane shear waves. Buildings are modeled as an extension of the layered soil media by assuming that each story in the building is another layer. The seismic response is expressed in terms of wave travel times between the layers, and the wave reflection and transmission coefficients at layer interfaces. The calculation of the response is reduced to a pair of simple finite-difference equations for each layer, which are solved recursively starting from the bedrock. Compared with commonly used vibration formulation, the wave propagation formulation provides several advantages, including the ability to incorporate soil layers, simplicity of the calculations, improved accuracy in modeling the mass and damping, and better tools for system identification and damage detection.A new method of analyzing seismic response of soil-building systems is introduced. The method is based on the discrete-time formulation of wave propagation in layered media for vertically propagating plane shear waves. Buildings are modeled as an extension of the layered soil media by assuming that each story in the building is another layer. The seismic response is expressed in terms of wave travel times between the layers, and the wave reflection and transmission coefficients at layer interfaces. The calculation of the response is reduced to a pair of simple finite-difference equations for each layer, which are solved recursively starting from the bedrock. Compared with commonly used vibration formulation, the wave propagation formulation provides several advantages, including the ability to incorporate soil layers, simplicity of the calculations, improved accuracy in modeling the mass and damping, and better tools for system identification and damage detection.
Elcock, Adrian H.
2013-01-01
Inclusion of hydrodynamic interactions (HIs) is essential in simulations of biological macromolecules that treat the solvent implicitly if the macromolecules are to exhibit correct translational and rotational diffusion. The present work describes the development and testing of a simple approach aimed at allowing more rapid computation of HIs in coarse-grained Brownian dynamics simulations of systems that contain large numbers of flexible macromolecules. The method combines a complete treatment of intramolecular HIs with an approximate treatment of the intermolecular HIs which assumes that the molecules are effectively spherical; all of the HIs are calculated at the Rotne-Prager-Yamakawa level of theory. When combined with Fixman’s Chebyshev polynomial method for calculating correlated random displacements, the proposed method provides an approach that is simple to program but sufficiently fast that it makes it computationally viable to include HIs in large-scale simulations. Test calculations performed on very coarse-grained models of the pyruvate dehydrogenase (PDH) E2 complex and on oligomers of ParM (ranging in size from 1 to 20 monomers) indicate that the method reproduces the translational diffusion behavior seen in more complete HI simulations surprisingly well; the method performs less well at capturing rotational diffusion but its discrepancies diminish with increasing size of the simulated assembly. Simulations of residue-level models of two tetrameric protein models demonstrate that the method also works well when more structurally detailed models are used in the simulations. Finally, test simulations of systems containing up to 1024 coarse-grained PDH molecules indicate that the proposed method rapidly becomes more efficient than the conventional BD approach in which correlated random displacements are obtained via a Cholesky decomposition of the complete diffusion tensor. PMID:23914146
Boundary condition computational procedures for inviscid, supersonic steady flow field calculations
NASA Technical Reports Server (NTRS)
Abbett, M. J.
1971-01-01
Results are given of a comparative study of numerical procedures for computing solid wall boundary points in supersonic inviscid flow calculatons. Twenty five different calculation procedures were tested on two sample problems: a simple expansion wave and a simple compression (two-dimensional steady flow). A simple calculation procedure was developed. The merits and shortcomings of the various procedures are discussed, along with complications for three-dimensional and time-dependent flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Figueroa, C.; Brizuela, H.; Heluani, S. P.
2014-05-21
The backscattering coefficient is a magnitude whose measurement is fundamental for the characterization of materials with techniques that make use of particle beams and particularly when performing microanalysis. In this work, we report the results of an analytic method to calculate the backscattering and absorption coefficients of electrons in similar conditions to those of electron probe microanalysis. Starting on a five level states ladder model in 3D, we deduced a set of integro-differential coupled equations of the coefficients with a method know as invariant embedding. By means of a procedure proposed by authors, called method of convergence, two types ofmore » approximate solutions for the set of equations, namely complete and simple solutions, can be obtained. Although the simple solutions were initially proposed as auxiliary forms to solve higher rank equations, they turned out to be also useful for the estimation of the aforementioned coefficients. In previous reports, we have presented results obtained with the complete solutions. In this paper, we present results obtained with the simple solutions of the coefficients, which exhibit a good degree of fit with the experimental data. Both the model and the calculation method presented here can be generalized to other techniques that make use of different sorts of particle beams.« less
Three dimensional hair model by means particles using Blender
NASA Astrophysics Data System (ADS)
Alvarez-Cedillo, Jesús Antonio; Almanza-Nieto, Roberto; Herrera-Lozada, Juan Carlos
2010-09-01
The simulation and modeling of human hair is a process whose computational complexity is very large, this due to the large number of factors that must be calculated to give a realistic appearance. Generally, the method used in the film industry to simulate hair is based on particle handling graphics. In this paper we present a simple approximation of how to model human hair using particles in Blender. [Figure not available: see fulltext.
Theoretical model for optical properties of porphyrin
NASA Astrophysics Data System (ADS)
Phan, Anh D.; Nga, Do T.; Phan, The-Long; Thanh, Le T. M.; Anh, Chu T.; Bernad, Sophie; Viet, N. A.
2014-12-01
We propose a simple model to interpret the optical absorption spectra of porphyrin in different solvents. Our model successfully explains the decrease in the intensity of optical absorption at maxima of increased wavelengths. We also prove the dependence of the intensity and peak positions in the absorption spectra on the environment. The nature of the Soret band is supposed to derive from π plasmon. Our theoretical calculations are consistent with previous experimental studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altuhov, V. I., E-mail: altukhovv@mail.ru; Kasyanenko, I. S.; Sankin, A. V.
2016-09-15
A simple but nonlinear model of the defect density at a metal–semiconductor interface, when a Schottky barrier is formed by surface defects states localized at the interface, is developed. It is shown that taking the nonlinear dependence of the Fermi level on the defect density into account leads to a Schottky barrier increase by 15–25%. The calculated barrier heights are used to analyze the current–voltage characteristics of n-M/p-(SiC){sub 1–x}(AlN){sub x} structures. The results of calculations are compared to experimental data.
Icing Branch Current Research Activities in Icing Physics
NASA Technical Reports Server (NTRS)
Vargas, Mario
2009-01-01
Current development: A grid block transformation scheme which allows the input of grids in arbitrary reference frames, the use of mirror planes, and grids with relative velocities has been developed. A simple ice crystal and sand particle bouncing scheme has been included. Added an SLD splashing model based on that developed by William Wright for the LEWICE 3.2.2 software. A new area based collection efficiency algorithm will be incorporated which calculates trajectories from inflow block boundaries to outflow block boundaries. This method will be used for calculating and passing collection efficiency data between blade rows for turbo-machinery calculations.
75 FR 57719 - Federal Acquisition Regulation; TINA Interest Calculations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-22
... the term ``simple interest'' as the requirement for calculating interest for TINA cost impacts with.... Revising the date of the clause; and b. Removing from paragraph (e)(1) ``Simple interest'' and adding...) ``Simple interest'' and adding ``Interest compounded daily, as required by 26 U.S.C. 6622,'' in its place...
1989-06-23
Iterations .......................... 86 3.2 Comparison between MACH and POLAR ......................... 90 3.3 Flow Chart for VSTS Algorithm...The most recent changes are: a) development of the VSTS (velocity space topology search) algorithm for calculating particle densities b) extension...with simple analytic models. The largest modification of the MACH code was the implementation of the VSTS procedure, which constituted a complete
The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation
NASA Astrophysics Data System (ADS)
Shuttleworth, J.; Rosolem, R.; Zreda, M.; Franz, T.
2013-08-01
Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX) model is sufficiently accurate but too slow to be practical in the context of data assimilation. Consequently an alternative and efficient model is needed which can be calibrated accurately to reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COsmic-ray Soil Moisture Interaction Code (COSMIC), which is simple, physically based and analytic, and which, because it runs at least 50 000 times faster than MCNPX, is appropriate in data assimilation applications. The model includes simple descriptions of (a) degradation of the incoming high-energy neutron flux with soil depth, (b) creation of fast neutrons at each depth in the soil, and (c) scattering of the resulting fast neutrons before they reach the soil surface, all of which processes may have parameterized dependency on the chemistry and moisture content of the soil. The site-to-site variability in the parameters used in COSMIC is explored for 42 sample sites in the COsmic-ray Soil Moisture Observing System (COSMOS), and the comparative performance of COSMIC relative to MCNPX when applied to represent interactions between cosmic-ray neutrons and moist soil is explored. At an example site in Arizona, fast-neutron counts calculated by COSMIC from the average soil moisture profile given by an independent network of point measurements in the COSMOS probe footprint are similar to the fast-neutron intensity measured by the COSMOS probe. It was demonstrated that, when used within a data assimilation framework to assimilate COSMOS probe counts into the Noah land surface model at the Santa Rita Experimental Range field site, the calibrated COSMIC model provided an effective mechanism for translating model-calculated soil moisture profiles into aboveground fast-neutron count when applied with two radically different approaches used to remove the bias between data and model.
Martins, G B; Büsser, C A; Al-Hassanieh, K A; Anda, E V; Moreo, A; Dagotto, E
2006-02-17
Numerical calculations are shown to reproduce the main results of recent experiments involving nonlocal spin control in quantum dots [Craig, Science 304, 565 (2004).]. In particular, the experimentally reported zero-bias-peak splitting is clearly observed in our studies. To understand these results, a simple "circuit model" is introduced and shown to qualitatively describe the experiments. The main idea is that the splitting originates in a Fano antiresonance, which is caused by having one quantum dot side connected in relation to the current's path. This scenario provides an explanation of the results of Craig et al. that is an alternative to the RKKY proposal, also addressed here.
On Diffusive Climatological Models.
NASA Astrophysics Data System (ADS)
Griffel, D. H.; Drazin, P. G.
1981-11-01
A simple, zonally and annually averaged, energy-balance climatological model with diffusive heat transport and nonlinear albedo feedback is solved numerically. Some parameters of the model are varied, one by one, to find the resultant effects on the steady solution representing the climate. In particular, the outward radiation flux, the insulation distribution and the albedo parameterization are varied. We have found an accurate yet simple analytic expression for the mean annual insolation as a function of latitude and the obliquity of the Earth's rotation axis; this has enabled us to consider the effects of the oscillation of the obliquity. We have used a continuous albedo function which fits the observed values; it considerably reduces the sensitivity of the model. Climatic cycles, calculated by solving the time-dependent equation when parameters change slowly and periodically, are compared qualitatively with paleoclimatic records.
A dynamic model for tumour growth and metastasis formation.
Haustein, Volker; Schumacher, Udo
2012-07-05
A simple and fast computational model to describe the dynamics of tumour growth and metastasis formation is presented. The model is based on the calculation of successive generations of tumour cells and enables one to describe biologically important entities like tumour volume, time point of 1st metastatic growth or number of metastatic colonies at a given time. The model entirely relies on the chronology of these successive events of the metastatic cascade. The simulation calculations were performed for two embedded growth models to describe the Gompertzian like growth behaviour of tumours. The initial training of the models was carried out using an analytical solution for the size distribution of metastases of a hepatocellular carcinoma. We then show the applicability of our models to clinical data from the Munich Cancer Registry. Growth and dissemination characteristics of metastatic cells originating from cells in the primary breast cancer can be modelled thus showing its ability to perform systematic analyses relevant for clinical breast cancer research and treatment. In particular, our calculations show that generally metastases formation has already been initiated before the primary can be detected clinically.
A dynamic model for tumour growth and metastasis formation
2012-01-01
A simple and fast computational model to describe the dynamics of tumour growth and metastasis formation is presented. The model is based on the calculation of successive generations of tumour cells and enables one to describe biologically important entities like tumour volume, time point of 1st metastatic growth or number of metastatic colonies at a given time. The model entirely relies on the chronology of these successive events of the metastatic cascade. The simulation calculations were performed for two embedded growth models to describe the Gompertzian like growth behaviour of tumours. The initial training of the models was carried out using an analytical solution for the size distribution of metastases of a hepatocellular carcinoma. We then show the applicability of our models to clinical data from the Munich Cancer Registry. Growth and dissemination characteristics of metastatic cells originating from cells in the primary breast cancer can be modelled thus showing its ability to perform systematic analyses relevant for clinical breast cancer research and treatment. In particular, our calculations show that generally metastases formation has already been initiated before the primary can be detected clinically. PMID:22548735
NASA Technical Reports Server (NTRS)
Thanedar, B. D.
1972-01-01
A simple repetitive calculation was used to investigate what happens to the field in terms of the signal paths of disturbances originating from the energy source. The computation allowed the field to be reconstructed as a function of space and time on a statistical basis. The suggested Monte Carlo method is in response to the need for a numerical method to supplement analytical methods of solution which are only valid when the boundaries have simple shapes, rather than for a medium that is bounded. For the analysis, a suitable model was created from which was developed an algorithm for the estimation of acoustic pressure variations in the region under investigation. The validity of the technique was demonstrated by analysis of simple physical models with the aid of a digital computer. The Monte Carlo method is applicable to a medium which is homogeneous and is enclosed by either rectangular or curved boundaries.
CAD-based Automatic Modeling Method for Geant4 geometry model Through MCAM
NASA Astrophysics Data System (ADS)
Wang, Dong; Nie, Fanzhi; Wang, Guozhong; Long, Pengcheng; LV, Zhongliang; LV, Zhongliang
2014-06-01
Geant4 is a widely used Monte Carlo transport simulation package. Before calculating using Geant4, the calculation model need be established which could be described by using Geometry Description Markup Language (GDML) or C++ language. However, it is time-consuming and error-prone to manually describe the models by GDML. Automatic modeling methods have been developed recently, but there are some problem existed in most of present modeling programs, specially some of them were not accurate or adapted to specifically CAD format. To convert the GDML format models to CAD format accurately, a Geant4 Computer Aided Design (CAD) based modeling method was developed for automatically converting complex CAD geometry model into GDML geometry model. The essence of this method was dealing with CAD model represented with boundary representation (B-REP) and GDML model represented with constructive solid geometry (CSG). At first, CAD model was decomposed to several simple solids which had only one close shell. And then the simple solid was decomposed to convex shell set. Then corresponding GDML convex basic solids were generated by the boundary surfaces getting from the topological characteristic of a convex shell. After the generation of these solids, GDML model was accomplished with series boolean operations. This method was adopted in CAD/Image-based Automatic Modeling Program for Neutronics & Radiation Transport (MCAM), and tested with several models including the examples in Geant4 install package. The results showed that this method could convert standard CAD model accurately, and can be used for Geant4 automatic modeling.
A simple analytical aerodynamic model of Langley Winged-Cone Aerospace Plane concept
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.
1994-01-01
A simple three DOF analytical aerodynamic model of the Langley Winged-Coned Aerospace Plane concept is presented in a form suitable for simulation, trajectory optimization, and guidance and control studies. The analytical model is especially suitable for methods based on variational calculus. Analytical expressions are presented for lift, drag, and pitching moment coefficients from subsonic to hypersonic Mach numbers and angles of attack up to +/- 20 deg. This analytical model has break points at Mach numbers of 1.0, 1.4, 4.0, and 6.0. Across these Mach number break points, the lift, drag, and pitching moment coefficients are made continuous but their derivatives are not. There are no break points in angle of attack. The effect of control surface deflection is not considered. The present analytical model compares well with the APAS calculations and wind tunnel test data for most angles of attack and Mach numbers.
Adverse health risks from environmental agents are generally related to average (long term) exposures. We used results from a series of controlled human exposure tests and classical first order rate kinetics calculations to estimate how well spot measurements of methyl tertiary ...
Is the Water Heating Curve as Described?
ERIC Educational Resources Information Center
Riveros, H. G.; Oliva, A. I.
2008-01-01
We analysed the heating curve of water which is described in textbooks. An experiment combined with some simple heat transfer calculations is discussed. The theoretical behaviour can be altered by changing the conditions under which the experiment is modelled. By identifying and controlling the different parameters involved during the heating…
Using a Simple Parcel Model to Investigate the Haines Index
Mary Ann Jenkins; Steven K. Krueger; Ruiyu Sun
2003-01-01
The Haines Index (Haines 1988) ia fire-weather index based on stability and moisture conditions of the lower atmosphere that rates the potential for large fire growth or extreme fire behavior. The Hained Index is calculated by adding a temperature term a to a moisture term b.
Generalized Tavis-Cummings models and quantum networks
NASA Astrophysics Data System (ADS)
Gorokhov, A. V.
2018-04-01
The properties of quantum networks based on generalized Tavis-Cummings models are theoretically investigated. We have calculated the information transfer success rate from one node to another in a simple model of a quantum network realized with two-level atoms placed in the cavities and interacting with an external laser field and cavity photons. The method of dynamical group of the Hamiltonian and technique of corresponding coherent states were used for investigation of the temporal dynamics of the two nodes model.
Pyroelectric effect in tryglicyne sulphate single crystals - Differential measurement method
NASA Astrophysics Data System (ADS)
Trybus, M.
2018-06-01
A simple mathematical model of the pyroelectric phenomenon was used to explain the electric response of the TGS (triglycine sulphate) samples in the linear heating process in ferroelectric and paraelectric phases. Experimental verification of mathematical model was realized. TGS single crystals were grown and four electrode samples were fabricated. Differential measurements of the pyroelectric response of two different regions of the samples were performed and the results were compared with data obtained from the model. Experimental results are in good agreement with model calculations.
Unimolecular decomposition reactions at low-pressure: A comparison of competitive methods
NASA Technical Reports Server (NTRS)
Adams, G. F.
1980-01-01
The lack of a simple rate coefficient expression to describe the pressure and temperature dependence hampers chemical modeling of flame systems. Recently developed simplified models to describe unimolecular processes include the calculation of rate constants for thermal unimolecular reactions and recombinations at the low pressure limit, at the high pressure limit and in the intermediate fall-off region. Comparison between two different applications of Troe's simplified model and a comparison between the simplified model and the classic RRKM theory are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasrija, Kanika, E-mail: kanikapasrija@iisermohali.ac.in; Kumar, Sanjeev, E-mail: sanjeev@iisermohali.ac.in
We present a Monte Carlo simulation study of a bilinear-biquadratic Heisenberg model on a two-dimensional square lattice in the presence of an external magnetic field. The study is motivated by the relevance of this simple model to the non-collinear magnetism and the consequent ferroelectric behavior in the recently discovered high-temperature multiferroic, cupric oxide (CuO). We show that an external magnetic field stabilizes a non-coplanar magnetic phase, which is characterized by a finite ferromagnetic moment along the direction of the applied magnetic field and a spiral spin texture if projected in the plane perpendicular to the magnetic field. Real-space analysis highlightsmore » a coexistence of non-collinear regions with ferromagnetic clusters. The results are also supported by simple variational calculations.« less
Two-electron bond-orbital model, 1
NASA Technical Reports Server (NTRS)
Huang, C.; Moriarty, J. A.; Sher, A.; Breckenridge, R. A.
1975-01-01
Harrison's one-electron bond-orbital model of tetrahedrally coordinated solids was generalized to a two-electron model, using an extension of the method of Falicov and Harris for treating the hydrogen molecule. The six eigenvalues and eigenstates of the two-electron anion-cation Hamiltonian entering this theory can be found exactly general. The two-electron formalism is shown to provide a useful basis for calculating both non-magnetic and magnetic properties of semiconductors in perturbation theory. As an example of the former, expressions for the electric susceptibility and the dielectric constant were calculated. As an example of the latter, new expressions for the nuclear exchanges and pseudo-dipolar coefficients were calculated. A simple theoretical relationship between the dielectric constant and the exchange coefficient was also found in the limit of no correlation. These expressions were quantitatively evaluated in the limit of no correlation for twenty semiconductors.
Regression-based model of skin diffuse reflectance for skin color analysis
NASA Astrophysics Data System (ADS)
Tsumura, Norimichi; Kawazoe, Daisuke; Nakaguchi, Toshiya; Ojima, Nobutoshi; Miyake, Yoichi
2008-11-01
A simple regression-based model of skin diffuse reflectance is developed based on reflectance samples calculated by Monte Carlo simulation of light transport in a two-layered skin model. This reflectance model includes the values of spectral reflectance in the visible spectra for Japanese women. The modified Lambert Beer law holds in the proposed model with a modified mean free path length in non-linear density space. The averaged RMS and maximum errors of the proposed model were 1.1 and 3.1%, respectively, in the above range.
Garcia, F; Arruda-Neto, J D; Manso, M V; Helene, O M; Vanin, V R; Rodriguez, O; Mesa, J; Likhachev, V P; Filho, J W; Deppman, A; Perez, G; Guzman, F; de Camargo, S P
1999-10-01
A new and simple statistical procedure (STATFLUX) for the calculation of transfer coefficients of radionuclide transport to animals and plants is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. By using experimentally available curves of radionuclide concentrations versus time, for each animal compartment (organs), flow parameters were estimated by employing a least-squares procedure, whose consistency is tested. Some numerical results are presented in order to compare the STATFLUX transfer coefficients with those from other works and experimental data.
NASA Astrophysics Data System (ADS)
Wiley, E. O.
2010-07-01
Relative motion studies of visual double stars can be investigated using least squares regression techniques and readily accessible programs such as Microsoft Excel and a calculator. Optical pairs differ from physical pairs under most geometries in both their simple scatter plots and their regression models. A step-by-step protocol for estimating the rectilinear elements of an optical pair is presented. The characteristics of physical pairs using these techniques are discussed.
NASA Astrophysics Data System (ADS)
Enders, P.
1988-11-01
A system of three simple rate equations, derived from equations describing the excess heating near the front face of a resonator, is used as a model of the appearance of spontaneous (self-sustained) pulsations of light emitted by injection lasers. The rate equations are considered as an almost conservative system and the limit cycle is calculated for the system. The good agreement with numerical results favors our approximation, compared with other approximate calculations.
NASA Astrophysics Data System (ADS)
McAdams, R.; Bacal, M.
2010-08-01
For the case of negative ions from a cathode entering a plasma, the maximum negative ion flux and the positive ion flux before the formation of a virtual cathode have been calculated for particular plasma conditions. The calculation is based on a simple modification of an analysis of electron emission into a plasma containing negative ions. The results are in good agreement with a 1d3v PIC code model.
Power and sample size for multivariate logistic modeling of unmatched case-control studies.
Gail, Mitchell H; Haneuse, Sebastien
2017-01-01
Sample size calculations are needed to design and assess the feasibility of case-control studies. Although such calculations are readily available for simple case-control designs and univariate analyses, there is limited theory and software for multivariate unconditional logistic analysis of case-control data. Here we outline the theory needed to detect scalar exposure effects or scalar interactions while controlling for other covariates in logistic regression. Both analytical and simulation methods are presented, together with links to the corresponding software.
Hot spots in the microwave sky
NASA Technical Reports Server (NTRS)
Vittorio, Nicola; Juszkiewicz, Roman
1987-01-01
Tha assumption that the cosmic background fluctuations can be approximated as a random Gaussian field implies specific predictions for the radiation temperature pattern. Using this assumption, the abundances and angular sizes are calculated for regions of various levels of brightness expected to appear in the sky. Different observational strategies are assessed in the context of these results. Calculations for both large-angle and small-angle anisotropy generated by scale-invariant fluctuations in a flat universe are presented. Also discussed are simple generalizations to open cosmological models.
Crystal structure refinement of reedmergnerite, the boron analog of albite
Clark, J.R.; Appleman, D.E.
1960-01-01
Ordering of boron in a feldspar crystallographic site T1(0) has been found in reedmergnerite, which has silicon-oxygen and sodium-oxygen distances comparable to those in isostructural low albite. If a simple ionic model is assumed, calculated bond strengths yield a considerable charge imbalance in reedmergnerite, an indication of the inadequacy of the model with respect to these complex structures and of the speculative nature of conclusions based on such a model.
Metastability in the Spin-1 Blume-Emery-Griffiths Model within Constant Coupling Approximation
NASA Astrophysics Data System (ADS)
Ekiz, C.
2017-02-01
In this paper, the equilibrium properties of spin-1 Blume-Emery-Griffiths model are studied by using constant-coupling approximation. The dipolar and quadrupolar order parameters, the stable, metastable and unstable states and free energy of the model are investigated. The states are defined in terms of local minima of the free energy of system. The numerical calculations are presented for several values of exchange interactions on the simple cubic lattice with q = 6.
Westenbroek, Stephen M.; Doherty, John; Walker, John F.; Kelson, Victor A.; Hunt, Randall J.; Cera, Timothy B.
2012-01-01
The TSPROC (Time Series PROCessor) computer software uses a simple scripting language to process and analyze time series. It was developed primarily to assist in the calibration of environmental models. The software is designed to perform calculations on time-series data commonly associated with surface-water models, including calculation of flow volumes, transformation by means of basic arithmetic operations, and generation of seasonal and annual statistics and hydrologic indices. TSPROC can also be used to generate some of the key input files required to perform parameter optimization by means of the PEST (Parameter ESTimation) computer software. Through the use of TSPROC, the objective function for use in the model-calibration process can be focused on specific components of a hydrograph.
A NEW METHOD FOR ENVIRONMENTAL FLOW ASSESSMENT BASED ON BASIN GEOLOGY. APPLICATION TO EBRO BASIN.
2018-02-01
The determination of environmental flows is one of the commonest practical actions implemented on European rivers to promote their good ecological status. In Mediterranean rivers, groundwater inflows are a decisive factor in streamflow maintenance. This work examines the relationship between the lithological composition of the Ebro basin (Spain) and dry season flows in order to establish a model that can assist in the calculation of environmental flow rates.Due to the lack of information on the hydrogeological characteristics of the studied basin, the variable representing groundwater inflows has been estimated in a very simple way. The explanatory variable used in the proposed model is easy to calculate and is sufficiently powerful to take into account all the required characteristics.The model has a high coefficient of determination, indicating that it is accurate for the intended purpose. The advantage of this method compared to other methods is that it requires very little data and provides a simple estimate of environmental flow. It is also independent of the basin area and the river section order.The results of this research also contribute to knowledge of the variables that influence low flow periods and low flow rates on rivers in the Ebro basin.
Lautz, L S; Struijs, J; Nolte, T M; Breure, A M; van der Grinten, E; van de Meent, D; van Zelm, R
2017-02-01
In this study, the removal of pharmaceuticals from wastewater as predicted by SimpleTreat 4.0 was evaluated. Field data obtained from literature of 43 pharmaceuticals, measured in 51 different activated sludge WWTPs were used. Based on reported influent concentrations, the effluent concentrations were calculated with SimpleTreat 4.0 and compared to measured effluent concentrations. The model predicts effluent concentrations mostly within a factor of 10, using the specific WWTP parameters as well as SimpleTreat default parameters, while it systematically underestimates concentrations in secondary sludge. This may be caused by unexpected sorption, resulting from variability in WWTP operating conditions, and/or QSAR applicability domain mismatch and background concentrations prior to measurements. Moreover, variability in detection techniques and sampling methods can cause uncertainty in measured concentration levels. To find possible structural improvements, we also evaluated SimpleTreat 4.0 using several specific datasets with different degrees of uncertainty and variability. This evaluation verified that the most influencing parameters for water effluent predictions were biodegradation and the hydraulic retention time. Results showed that model performance is highly dependent on the nature and quality, i.e. degree of uncertainty, of the data. The default values for reactor settings in SimpleTreat result in realistic predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Monte Carlo Techniques for Nuclear Systems - Theory Lectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. Thesemore » lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations. Beginning MCNP users are encouraged to review LA-UR-09-00380, "Criticality Calculations with MCNP: A Primer (3nd Edition)" (available at http:// mcnp.lanl.gov under "Reference Collection") prior to the class. No Monte Carlo class can be complete without having students write their own simple Monte Carlo routines for basic random sampling, use of the random number generator, and simplified particle transport simulation.« less
The cosmic gamma-ray background from Type Ia supernovae
NASA Technical Reports Server (NTRS)
The, Lih-Sin; Leising, Mark D.; Clayton, Donald D.
1993-01-01
We present an improved calculation of the cumulative gamma-ray spectrum of Type Ia supernovae during the history of the universe. We follow Clayton & Ward (1975) in using a few Friedmann models and two simple histories of the average galaxian nucleosynthesis rate, but we improve their calculation by modeling the gamma-ray scattering in detailed numerical models of SN Ia's. The results confirm that near 1 MeV the SN Ia background may dominate, and that it is potentially observable, with high scientific importance. A very accurate measurement of the cosmic background spectrum between 0.1 and 1.0 MeV may reveal the turn-on time and the evolution of the rate of Type Ia supernova nucleosynthesis in the universe.
Concentrator optical characterization using computer mathematical modelling and point source testing
NASA Technical Reports Server (NTRS)
Dennison, E. W.; John, S. L.; Trentelman, G. F.
1984-01-01
The optical characteristics of a paraboloidal solar concentrator are analyzed using the intercept factor curve (a format for image data) to describe the results of a mathematical model and to represent reduced data from experimental testing. This procedure makes it possible not only to test an assembled concentrator, but also to evaluate single optical panels or to conduct non-solar tests of an assembled concentrator. The use of three-dimensional ray tracing computer programs to calculate the mathematical model is described. These ray tracing programs can include any type of optical configuration from simple paraboloids to array of spherical facets and can be adapted to microcomputers or larger computers, which can graphically display real-time comparison of calculated and measured data.
New statistical scission-point model to predict fission fragment observables
NASA Astrophysics Data System (ADS)
Lemaître, Jean-François; Panebianco, Stefano; Sida, Jean-Luc; Hilaire, Stéphane; Heinrich, Sophie
2015-09-01
The development of high performance computing facilities makes possible a massive production of nuclear data in a full microscopic framework. Taking advantage of the individual potential calculations of more than 7000 nuclei, a new statistical scission-point model, called SPY, has been developed. It gives access to the absolute available energy at the scission point, which allows the use of a parameter-free microcanonical statistical description to calculate the distributions and the mean values of all fission observables. SPY uses the richness of microscopy in a rather simple theoretical framework, without any parameter except the scission-point definition, to draw clear answers based on perfect knowledge of the ingredients involved in the model, with very limited computing cost.
High Temperature Gas Energy Transfer.
1982-08-15
will be made. A theoretical model has been applied to the calculation of energy transfer amounts between molecules as a function of molecular size... theoretical analysis was given of shock tube data for high temperature gas reactions. The data were analyzed to show that colli- sional energy transfer...Systems by I. Oref and B. S. Rabiovitch. In this report a simple theoretical model describing energy transfer probabilities is given. Conservation of
Remote sensing of solar radiation absorbed and reflected by vegetated land surfaces
NASA Technical Reports Server (NTRS)
Myneni, Ranga B.; Asrar, Ghassem; Tanre, Didier; Choudhury, Bhaskar J.
1992-01-01
1D and 3D radiative-transfer models have been used to investigate the problem of remotely sensed determination of vegetated land surface-absorbed and reflected solar radiation. Calculations were conducted for various illumination conditions to determine surface albedo, soil- and canopy-absorbed photosynthetically active and nonactive radiation, and normalized difference vegetation index. Simple predictive models are developed on the basis of the relationships among these parameters.
Ratios of molecular hydrogen line intensities in shocked gas - Evidence for cooling zones
NASA Technical Reports Server (NTRS)
Brand, P. W. J. L.; Moorhouse, A.; Bird, M.; Burton, M. G.; Geballe, T. R.
1988-01-01
Column densities of molecular hydrogen have been calculated from 19 infrared vibration-rotation and pure rotational line intensities measured at peak 1 of the Orion molecular outflow. The run of column density with energy level is similar to a simple coolng zone model of the line-emitting region, but is not well fitted by predictions of C-shock models current in the literature.
Configurational coupled cluster approach with applications to magnetic model systems
NASA Astrophysics Data System (ADS)
Wu, Siyuan; Nooijen, Marcel
2018-05-01
A general exponential, coupled cluster like, approach is discussed to extract an effective Hamiltonian in configurational space, as a sum of 1-body, 2-body up to n-body operators. The simplest two-body approach is illustrated by calculations on simple magnetic model systems. A key feature of the approach is that equations up to a certain rank do not depend on higher body cluster operators.
Zeng, Guang-Ming; Zhang, Shuo-Fu; Qin, Xiao-Sheng; Huang, Guo-He; Li, Jian-Bing
2003-05-01
The paper establishes the relationship between the settling efficiency and the sizes of the sedimentation tank through the process of numerical simulation, which is taken as one of the constraints to set up a simple optimum designing model of sedimentation tank. The feasibility and advantages of this model based on numerical calculation are verified through the application of practical case.
Finitized conformal spectrum of the Ising model on the cylinder and torus
NASA Astrophysics Data System (ADS)
O'Brien, David L.; Pearce, Paul A.; Ole Warnaar, S.
1996-02-01
The spectrum of the critical Ising model on a lattice with cylindrical and toroidal boundary conditions is calculated by commuting transfer matrix methods. Using a simple truncation procedure, we obtain the natural finitizations of the conformal spectra recently proposed by Melzer. These finitizations imply polynomial identities which in the large lattice limit give rise to the Rogers-Ramanujan identities for the c = {1}/{2} Virasoro characters.
Numerical modeling of reverse recovery characteristic in silicon pin diodes
NASA Astrophysics Data System (ADS)
Yamashita, Yusuke; Tadano, Hiroshi
2018-07-01
A new numerical reverse recovery model of silicon pin diode is proposed by the approximation of the reverse recovery waveform as a simple shape. This is the first model to calculate the reverse recovery characteristics using numerical equations without adjusted by fitting equations and fitting parameters. In order to verify the validity and the accuracy of the numerical model, the calculation result from the model is verified through the device simulation result. In 1980, he joined Toyota Central R&D Labs, Inc., where he was involved in the research and development of power devices such as SIT, IGBT, diodes and power MOSFETs. Since 2013 he has been a professor at the Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Japan. His current research interest is high-efficiency power conversion circuits for electric vehicles using advanced power devices.
Model for intensity calculation in electron guns
NASA Astrophysics Data System (ADS)
Doyen, O.; De Conto, J. M.; Garnier, J. P.; Lefort, M.; Richard, N.
2007-04-01
The calculation of the current in an electron gun structure is one of the main investigations involved in the electron gun physics understanding. In particular, various simulation codes exist but often present some important discrepancies with experiments. Moreover, those differences cannot be reduced because of the lack of physical information in these codes. We present a simple physical three-dimensional model, valid for all kinds of gun geometries. This model presents a better precision than all the other simulation codes and models encountered and allows the real understanding of the electron gun physics. It is based only on the calculation of the Laplace electric field at the cathode, the use of the classical Child-Langmuir's current density, and a geometrical correction to this law. Finally, the intensity versus voltage characteristic curve can be precisely described with only a few physical parameters. Indeed, we have showed that only the shape of the electric field at the cathode without beam, and a distance of an equivalent infinite planar diode gap, govern mainly the electron gun current generation.
Detailed modeling analysis for soot formation and radiation in microgravity gas jet diffusion flames
NASA Technical Reports Server (NTRS)
Ku, Jerry C.; Tong, LI; Greenberg, Paul S.
1995-01-01
Radiation heat transfer in combustion systems has been receiving increasing interest. In the case of hydrocarbon fuels, a significant portion of the radiation comes from soot particles, justifying the need for detailed soot formation model and radiation transfer calculations. For laminar gas jet diffusion flames, results from this project (4/1/91 8/22/95) and another NASA study show that flame shape, soot concentration, and radiation heat fluxes are substantially different under microgravity conditions. Our emphasis is on including detailed soot transport models and a detailed solution for radiation heat transfer, and on coupling them with the flame structure calculations. In this paper, we will discuss the following three specific areas: (1) Comparing two existing soot formation models, and identifying possible improvements; (2) A simple yet reasonably accurate approach to calculating total radiative properties and/or fluxes over the spectral range; and (3) Investigating the convergence of iterations between the flame structure solver and the radiation heat transfer solver.
Agent Based Modeling: Fine-Scale Spatio-Temporal Analysis of Pertussis
NASA Astrophysics Data System (ADS)
Mills, D. A.
2017-10-01
In epidemiology, spatial and temporal variables are used to compute vaccination efficacy and effectiveness. The chosen resolution and scale of a spatial or spatio-temporal analysis will affect the results. When calculating vaccination efficacy, for example, a simple environment that offers various ideal outcomes is often modeled using coarse scale data aggregated on an annual basis. In contrast to the inadequacy of this aggregated method, this research uses agent based modeling of fine-scale neighborhood data centered around the interactions of infants in daycare and their families to demonstrate an accurate reflection of vaccination capabilities. Despite being able to prevent major symptoms, recent studies suggest that acellular Pertussis does not prevent the colonization and transmission of Bordetella Pertussis bacteria. After vaccination, a treated individual becomes a potential asymptomatic carrier of the Pertussis bacteria, rather than an immune individual. Agent based modeling enables the measurable depiction of asymptomatic carriers that are otherwise unaccounted for when calculating vaccination efficacy and effectiveness. Using empirical data from a Florida Pertussis outbreak case study, the results of this model demonstrate that asymptomatic carriers bias the calculated vaccination efficacy and reveal a need for reconsidering current methods that are widely used for calculating vaccination efficacy and effectiveness.
Pivovarov, Sergey
2009-04-01
This work presents a simple solution for the diffuse double layer model, applicable to calculation of surface speciation as well as to simulation of ionic adsorption within the diffuse layer of solution in arbitrary salt media. Based on Poisson-Boltzmann equation, the Gaines-Thomas selectivity coefficient for uni-bivalent exchange on clay, K(GT)(Me(2+)/M(+))=(Q(Me)(0.5)/Q(M)){M(+)}/{Me(2+)}(0.5), (Q is the equivalent fraction of cation in the exchange capacity, and {M(+)} and {Me(2+)} are the ionic activities in solution) may be calculated as [surface charge, mueq/m(2)]/0.61. The obtained solution of the Poisson-Boltzmann equation was applied to calculation of ionic exchange on clays and to simulation of the surface charge of ferrihydrite in 0.01-6 M NaCl solutions. In addition, a new model of acid-base properties was developed. This model is based on assumption that the net proton charge is not located on the mathematical surface plane but diffusely distributed within the subsurface layer of the lattice. It is shown that the obtained solution of the Poisson-Boltzmann equation makes such calculations possible, and that this approach is more efficient than the original diffuse double layer model.
NASA Astrophysics Data System (ADS)
Schmidt, Peter; Lund, Björn; Hieronymus, Christoph
2012-03-01
When general-purpose finite element analysis software is used to model glacial isostatic adjustment (GIA), the first-order effect of prestress advection has to be accounted for by the user. We show here that the common use of elastic foundations at boundaries between materials of different densities will produce incorrect displacements, unless the boundary is perpendicular to the direction of gravity. This is due to the foundations always acting perpendicular to the surface to which they are attached, while the body force they represent always acts in the direction of gravity. If prestress advection is instead accounted for by the use of elastic spring elements in the direction of gravity, the representation will be correct. The use of springs adds a computation of the spring constants to the analysis. The spring constant for a particular node is defined by the product of the density contrast at the boundary, the gravitational acceleration, and the area supported by the node. To be consistent with the finite element formulation, the area is evaluated by integration of the nodal shape functions. We outline an algorithm for the calculation and include a Python script that integrates the shape functions over a bilinear quadrilateral element. For linear rectangular and triangular elements, the area supported by each node is equal to the element area divided the number of defining nodes, thereby simplifying the computation. This is, however, not true in the general nonrectangular case, and we demonstrate this with a simple 1-element model. The spring constant calculation is simple and performed in the preprocessing stage of the analysis. The time spent on the calculation is more than compensated for by a shorter analysis time, compared to that for a model with foundations. We illustrate the effects of using springs versus foundations with a simple two-dimensional GIA model of glacial loading, where the Earth model has an inclined boundary between the overlying elastic layer and the lower viscoelastic layer. Our example shows that the error introduced by the use of foundations is large enough to affect an analysis based on high-accuracy geodetic data.
NASA Technical Reports Server (NTRS)
Stordal, Frode; Garcia, Rolando R.
1987-01-01
The 1-1/2-D model of Holton (1986), which is actually a highly truncated two-dimensional model, describes latitudinal variations of tracer mixing ratios in terms of their projections onto second-order Legendre polynomials. The present study extends the work of Holton by including tracers with photochemical production in the stratosphere (O3 and NOy). It also includes latitudinal variations in the photochemical sources and sinks, improving slightly the calculated global mean profiles for the long-lived tracers studied by Holton and improving substantially the latitudinal behavior of ozone. Sensitivity tests of the dynamical parameters in the model are performed, showing that the response of the model to changes in vertical residual meridional winds and horizontal diffusion coefficients is similar to that of a full two-dimensional model. A simple ozone perturbation experiment shows the model's ability to reproduce large-scale latitudinal variations in total ozone column depletions as well as ozone changes in the chemically controlled upper stratosphere.
Applicability of ASHRAE clear-sky model based on solar-radiation measurements in Saudi Arabia
NASA Astrophysics Data System (ADS)
Abouhashish, Mohamed
2017-06-01
The constants of the ASHRAE clear sky model predict high values of the hourly beam radiation and very low values of the hourly diffuse radiation when used for locations in Saudi Arabia. Eight measurement stations in different locations are used to obtain new clearness factors for the model. The procedure depends on the comparison of monthly direct normal radiation (DNI) and diffuse horizontal radiation (DHI) between the measurement and the calculated values. Two factors are obtained CNb, CNd for every month to adjust the calculated clear sky radiation in order to consider the effects of local weather conditions. A simple and practical simulation model for solar geometry is designed using Microsoft Visual Basic platform, the model simulates the solar angles and radiation components according to ASHRAE model. The comparison of the calculated data with the first year of measurements indicate that the attenuation of site clearness is variable across the locations and from month to month, showing the clearest skies in the north and northwestern parts of the Kingdom especially during summer months.
Energetics and Self-Assembly of Amphipathic Peptide Pores in Lipid Membranes
Zemel, Assaf; Fattal, Deborah R.; Ben-Shaul, Avinoam
2003-01-01
We present a theoretical study of the energetics, equilibrium size, and size distribution of membrane pores composed of electrically charged amphipathic peptides. The peptides are modeled as cylinders (mimicking α-helices) carrying different amounts of charge, with the charge being uniformly distributed over a hydrophilic face, defined by the angle subtended by polar amino acid residues. The free energy of a pore of a given radius, R, and a given number of peptides, s, is expressed as a sum of the peptides' electrostatic charging energy (calculated using Poisson-Boltzmann theory), and the lipid-perturbation energy associated with the formation of a membrane rim (which we model as being semitoroidal) in the gap between neighboring peptides. A simple phenomenological model is used to calculate the membrane perturbation energy. The balance between the opposing forces (namely, the radial free energy derivatives) associated with the electrostatic free energy that favors large R, and the membrane perturbation term that favors small R, dictates the equilibrium properties of the pore. Systematic calculations are reported for circular pores composed of various numbers of peptides, carrying different amounts of charge (1–6 elementary, positive charges) and characterized by different polar angles. We find that the optimal R's, for all (except, possibly, very weakly) charged peptides conform to the “toroidal” pore model, whereby a membrane rim larger than ∼1 nm intervenes between neighboring peptides. Only weakly charged peptides are likely to form “barrel-stave” pores where the peptides essentially touch one another. Treating pore formation as a two-dimensional self-assembly phenomenon, a simple statistical thermodynamic model is formulated and used to calculate pore size distributions. We find that the average pore size and size polydispersity increase with peptide charge and with the amphipathic polar angle. We also argue that the transition of peptides from the adsorbed to the inserted (membrane pore) state is cooperative and thus occurs rather abruptly upon a change in ambient conditions. PMID:12668433
Microscale models of partially molten rocks and their macroscale physical properties
NASA Astrophysics Data System (ADS)
Rudge, J. F.
2017-12-01
Any geodynamical model of melt transport in the Earth's mantle requires constitutive laws for the rheology of partially molten rock. These constitutive laws are poorly known, and one way to make progress in our understanding is through the upscaling of microscale models which describe physics at the scale of individual mineral grains. Crucially, many upscaled physical properties (such as permeability) depend not only on how much melt is present, but on how that melt is arranged at the microscale; i.e. on the geometry of the melt network. Here I will present some new calculations of equilibrium melt network geometries around idealised tetrakaidecahedral grains. In contrast to several previous calculations of textural equilibrium, these calculations allow for a both a liquid-phase and a solid-phase topology that can tile 3D space. The calculations are based on a simple minimisation of surface energy using the finite element method. In these simple models just two parameters control the topology of the melt network: the porosity (volume fraction of melt), and the dihedral angle. The consquences of these melt geometries for upscaled properties such as permeability; electrical conductivity; and importantly, effective viscosity will be explored. Recent theoretical work [1,2] has suggested that in diffusion creep a small amount of melt may dramatically reduce the effective shear viscosity of a partially molten rock, with profound consequences for the nature of the asthenosphere. This contribution will show that this reduction in viscosity may have been significantly overestimated, so that the drop in the effective viscosity at onset of melting is more modest. [1] Takei, Y., and B. K. Holtzman (2009), Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model, J. Geophys. Res., 114, B06205.[2] Holtzmann B. K. (2016) Questions on the existence, persistence, and mechanical effects of a very small melt fraction in the asthenosphere, Geophys. Geochem. Geosyst. 17, 470-484.
Simple model of inhibition of chain-branching combustion processes
NASA Astrophysics Data System (ADS)
Babushok, Valeri I.; Gubernov, Vladimir V.; Minaev, Sergei S.; Miroshnichenko, Taisia P.
2017-11-01
A simple kinetic model has been suggested to describe the inhibition and extinction of flame propagation in reaction systems with chain-branching reactions typical for hydrocarbon systems. The model is based on the generalised model of the combustion process with chain-branching reaction combined with the one-stage reaction describing the thermal mode of flame propagation with the addition of inhibition reaction steps. Inhibitor addition suppresses the radical overshoot in flame and leads to the change of reaction mode from the chain-branching reaction to a thermal mode of flame propagation. With the increase of inhibitor the transition of chain-branching mode of reaction to the reaction with straight-chains (non-branching chain reaction) is observed. The inhibition part of the model includes a block of three reactions to describe the influence of the inhibitor. The heat losses are incorporated into the model via Newton cooling. The flame extinction is the result of the decreased heat release of inhibited reaction processes and the suppression of radical overshoot with the further decrease of the reaction rate due to the temperature decrease and mixture dilution. A comparison of the results of modelling laminar premixed methane/air flames inhibited by potassium bicarbonate (gas phase model, detailed kinetic model) with the results obtained using the suggested simple model is presented. The calculations with the detailed kinetic model demonstrate the following modes of combustion process: (1) flame propagation with chain-branching reaction (with radical overshoot, inhibitor addition decreases the radical overshoot down to the equilibrium level); (2) saturation of chemical influence of inhibitor, and (3) transition to thermal mode of flame propagation (non-branching chain mode of reaction). The suggested simple kinetic model qualitatively reproduces the modes of flame propagation with the addition of the inhibitor observed using detailed kinetic models.
A simple model of space radiation damage in GaAs solar cells
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Stith, J. J.; Stock, L. V.
1983-01-01
A simple model is derived for the radiation damage of shallow junction gallium arsenide (GaAs) solar cells. Reasonable agreement is found between the model and specific experimental studies of radiation effects with electron and proton beams. In particular, the extreme sensitivity of the cell to protons stopping near the cell junction is predicted by the model. The equivalent fluence concept is of questionable validity for monoenergetic proton beams. Angular factors are quite important in establishing the cell sensitivity to incident particle types and energies. A fluence of isotropic incidence 1 MeV electrons (assuming infinite backing) is equivalent to four times the fluence of normal incidence 1 MeV electrons. Spectral factors common to the space radiations are considered, and cover glass thickness required to minimize the initial damage for a typical cell configuration is calculated. Rough equivalence between the geosynchronous environment and an equivalent 1 MeV electron fluence (normal incidence) is established.
Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation.
NASA Astrophysics Data System (ADS)
Schwingshackl, Clemens; Petitta, Marcello; Ernst Wagner, Jochen; Belluardo, Giorgio; Moser, David; Castelli, Mariapina; Zebisch, Marc; Tetzlaff, Anke
2013-04-01
In this abstract a study on the influence of wind to model the PV module temperature is presented. This study is carried out in the framework of the PV-Alps INTERREG project in which the potential of different photovoltaic technologies is analysed for alpine regions. The PV module temperature depends on different parameters, such as ambient temperature, irradiance, wind speed and PV technology [1]. In most models, a very simple approach is used, where the PV module temperature is calculated from NOCT (nominal operating cell temperature), ambient temperature and irradiance alone [2]. In this study the influence of wind speed on the PV module temperature was investigated. First, different approaches suggested by various authors were tested [1], [2], [3], [4], [5]. For our analysis, temperature, irradiance and wind data from a PV test facility at the airport Bolzano (South Tyrol, Italy) from the EURAC Institute of Renewable Energies were used. The PV module temperature was calculated with different models and compared to the measured PV module temperature at the single panels. The best results were achieved with the approach suggested by Skoplaki et al. [1]. Preliminary results indicate that for all PV technologies which were tested (monocrystalline, amorphous, microcrystalline and polycrystalline silicon and cadmium telluride), modelled and measured PV module temperatures show a higher agreement (RMSE about 3-4 K) compared to standard approaches in which wind is not considered. For further investigation the in-situ measured wind velocities were replaced with wind data from numerical weather forecast models (ECMWF, reanalysis fields). Our results show that the PV module temperature calculated with wind data from ECMWF is still in very good agreement with the measured one (R² > 0.9 for all technologies). Compared to the previous analysis, we find comparable mean values and an increasing standard deviation. These results open a promising approach for PV module temperature estimation using meteorological parameters. References: [1] Skoplaki, E. et al., 2008: A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting, Solar Energy Materials & Solar Cells 92, 1393-1402 [2] Skoplaki, E. et al., 2008: Operating temperature of photovoltaic modules: A survey of pertinent correlations, Renewable Energy 34, 23-29 [3] Koehl, M. et al., 2011: Modeling of the nominal operating cell temperature based on outdoor weathering, Solar Energy Materials & Solar Cells 95, 1638-1646 [4] Mattei, M. et al., 2005: Calculation of the polycrystalline PV module temperature using a simple method of energy balance, Renewable Energy 31, 553-567 [5] Kurtz, S. et al.: Evaluation of high-temperature exposure of rack-mounted photovoltaic modules
A simple model is presented that uses the annual loading rate of total nitrogen (TN) and the water residence time to calculate: 1) average annual TN concentration and intemalloss rates (e.g. denitrification and incorporation in sediments) in an estuary, and 2) the rate of nitroge...
Predicting charmonium and bottomonium spectra with a quark harmonic oscillator.
Norbury, J W; Badavi, F F; Townsend, L W
1986-11-01
We present a simple application of the three-dimensional harmonic oscillator which should provide a very nice particle physics example to be presented in introductory undergraduate quantum mechanics course. The idea is to use the nonrelativistic quark model to calculate the spin-averaged mass levels of the charmonium and bottomonium spectra.
Developmental Dissociation in the Neural Responses to Simple Multiplication and Subtraction Problems
ERIC Educational Resources Information Center
Prado, Jérôme; Mutreja, Rachna; Booth, James R.
2014-01-01
Mastering single-digit arithmetic during school years is commonly thought to depend upon an increasing reliance on verbally memorized facts. An alternative model, however, posits that fluency in single-digit arithmetic might also be achieved via the increasing use of efficient calculation procedures. To test between these hypotheses, we used a…
NASA Astrophysics Data System (ADS)
Reineker, P.; Kenkre, V. M.; Kühne, R.
1981-08-01
A quantitative comparison of a simple theoretical prediction for the drift mobility of photo-electrons in organic molecular crystals, calculated within the model of the coupled band-like and hopping motion, with experiments in napthalene of Schein et al. and Karl et al. is given.
ERIC Educational Resources Information Center
Shieh, Gwowen
2006-01-01
This paper considers the problem of analysis of correlation coefficients from a multivariate normal population. A unified theorem is derived for the regression model with normally distributed explanatory variables and the general results are employed to provide useful expressions for the distributions of simple, multiple, and partial-multiple…
Difference-Equation/Flow-Graph Circuit Analysis
NASA Technical Reports Server (NTRS)
Mcvey, I. M.
1988-01-01
Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.
NASA Astrophysics Data System (ADS)
Melin, Junia; Ortiz, J. V.; Martín, I.; Velasco, A. M.; Lavín, C.
2005-06-01
Vertical excitation energies of the Rydberg radical H3O are inferred from ab initio electron propagator calculations on the electron affinities of H3O+. The adiabatic ionization energy of H3O is evaluated with coupled-cluster calculations. These predictions provide optimal parameters for the molecular-adapted quantum defect orbital method, which is used to determine oscillator strengths. Given that the experimental spectrum of H3O does not seem to be available, comparisons with previous calculations are discussed. A simple model Hamiltonian, suitable for the study of bound states with arbitrarily high energies is generated by these means.
Simple Ion Channels: From Structure to Electrophysiology and Back
NASA Technical Reports Server (NTRS)
Pohorille, Andrzej
2018-01-01
A reliable way to establish whether our understanding of a channel is satisfactory is to reproduce its measured ionic conductance over a broad range of applied voltages in computer simulations. In molecular dynamics (MD), this can be done by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. Since this approach is computationally very expensive, we have developed a markedly more efficient alternative in which MD is combined with the electrodiffusion (ED) equation. In this approach, the assumptions of the ED equation can be rigorously tested, and the precision and consistency of the calculated conductance can be determined. We have demonstrated that the full current/voltage dependence and the underlying free energy profile for a simple channel can be reliably calculated from equilibrium or non-equilibrium MD simulations at a single voltage. To carry out MD simulations, a structural model of a channel has to be assumed, which is an important constraint, considering that high-resolution structures are available for only very few simple channels. If the comparison of calculated ionic conductance with electrophysiological data is satisfactory, it greatly increases our confidence that the structure and the function are described sufficiently accurately. We examined the validity of the ED for several channels embedded in phospholipid membranes - four naturally occurring channels: trichotoxin, alamethicin, p7 from hepatitis C virus (HCV) and Vpu from the HIV-1 virus, and a synthetic, hexameric channel, formed by a 21-residue peptide that contains only leucine and serine. All these channels mediate transport of potassium and chloride ions. It was found that the ED equation is satisfactory for these systems. In some of them experimental and calculated electrophysiological properties are in good agreement, whereas in others there are strong indications that the structural models are incorrect.
Su, Yewang; Liu, Zhuangjian; Xu, Lizhi
2016-04-20
Recently developed concepts for 3D, organ-mounted electronics for cardiac applications require a universal and easy-to-use mechanical model to calculate the average pressure associated with operation of the device, which is crucial for evaluation of design efficacy and optimization. This work proposes a simple, accurate, easy-to-use, and universal model to quantify the average pressure for arbitrary-shape organs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gauge-independent decoherence models for solids in external fields
NASA Astrophysics Data System (ADS)
Wismer, Michael S.; Yakovlev, Vladislav S.
2018-04-01
We demonstrate gauge-invariant modeling of an open system of electrons in a periodic potential interacting with an optical field. For this purpose, we adapt the covariant derivative to the case of mixed states and put forward a decoherence model that has simple analytical forms in the length and velocity gauges. We demonstrate our methods by calculating harmonic spectra in the strong-field regime and numerically verifying the equivalence of the deterministic master equation to the stochastic Monte Carlo wave-function method.
Influence of different dose calculation algorithms on the estimate of NTCP for lung complications.
Hedin, Emma; Bäck, Anna
2013-09-06
Due to limitations and uncertainties in dose calculation algorithms, different algorithms can predict different dose distributions and dose-volume histograms for the same treatment. This can be a problem when estimating the normal tissue complication probability (NTCP) for patient-specific dose distributions. Published NTCP model parameters are often derived for a different dose calculation algorithm than the one used to calculate the actual dose distribution. The use of algorithm-specific NTCP model parameters can prevent errors caused by differences in dose calculation algorithms. The objective of this work was to determine how to change the NTCP model parameters for lung complications derived for a simple correction-based pencil beam dose calculation algorithm, in order to make them valid for three other common dose calculation algorithms. NTCP was calculated with the relative seriality (RS) and Lyman-Kutcher-Burman (LKB) models. The four dose calculation algorithms used were the pencil beam (PB) and collapsed cone (CC) algorithms employed by Oncentra, and the pencil beam convolution (PBC) and anisotropic analytical algorithm (AAA) employed by Eclipse. Original model parameters for lung complications were taken from four published studies on different grades of pneumonitis, and new algorithm-specific NTCP model parameters were determined. The difference between original and new model parameters was presented in relation to the reported model parameter uncertainties. Three different types of treatments were considered in the study: tangential and locoregional breast cancer treatment and lung cancer treatment. Changing the algorithm without the derivation of new model parameters caused changes in the NTCP value of up to 10 percentage points for the cases studied. Furthermore, the error introduced could be of the same magnitude as the confidence intervals of the calculated NTCP values. The new NTCP model parameters were tabulated as the algorithm was varied from PB to PBC, AAA, or CC. Moving from the PB to the PBC algorithm did not require new model parameters; however, moving from PB to AAA or CC did require a change in the NTCP model parameters, with CC requiring the largest change. It was shown that the new model parameters for a given algorithm are different for the different treatment types.
Bhalla, Kavi; Harrison, James E
2016-04-01
Burden of disease and injury methods can be used to summarise and compare the effects of conditions in terms of disability-adjusted life years (DALYs). Burden estimation methods are not inherently complex. However, as commonly implemented, the methods include complex modelling and estimation. To provide a simple and open-source software tool that allows estimation of incidence-DALYs due to injury, given data on incidence of deaths and non-fatal injuries. The tool includes a default set of estimation parameters, which can be replaced by users. The tool was written in Microsoft Excel. All calculations and values can be seen and altered by users. The parameter sets currently used in the tool are based on published sources. The tool is available without charge online at http://calculator.globalburdenofinjuries.org. To use the tool with the supplied parameter sets, users need to only paste a table of population and injury case data organised by age, sex and external cause of injury into a specified location in the tool. Estimated DALYs can be read or copied from tables and figures in another part of the tool. In some contexts, a simple and user-modifiable burden calculator may be preferable to undertaking a more complex study to estimate the burden of disease. The tool and the parameter sets required for its use can be improved by user innovation, by studies comparing DALYs estimates calculated in this way and in other ways, and by shared experience of its use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Madaras, Eric I.
2003-01-01
Wire integrity has become an area of concern to the aerospace community including DoD, NASA, FAA, and Industry. Over time and changing environmental conditions, wire insulation can become brittle and crack. The cracks expose the wire conductor and can be a source of equipment failure, short circuits, smoke, and fire. The technique of using the ultrasonic phase spectrum to extract material properties of the insulation is being examined. Ultrasonic guided waves will propagate in both the wire conductor and insulation. Assuming the condition of the conductor remains constant then the stiffness of the insulator can be determined by measuring the ultrasonic guided wave velocity. In the phase spectrum method the guided wave velocity is obtained by transforming the time base waveform to the frequency domain and taking the phase difference between two waveforms. The result can then be correlated with a database, derived by numerical model calculations, to extract material properties of the wire insulator. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. For each sample the flexural mode waveform was identified. That waveform was then transformed to the frequency domain and a phase spectrum was calculated from a pair of waveforms. Experimental results on the simple model compared well to numerical calculations. Further tests were conducted on aircraft or mil-spec wire samples, to see if changes in wire insulation stiffness can be extracted using the phase spectrum technique.
Mutual information and the fidelity of response of gene regulatory models
NASA Astrophysics Data System (ADS)
Tabbaa, Omar P.; Jayaprakash, C.
2014-08-01
We investigate cellular response to extracellular signals by using information theory techniques motivated by recent experiments. We present results for the steady state of the following gene regulatory models found in both prokaryotic and eukaryotic cells: a linear transcription-translation model and a positive or negative auto-regulatory model. We calculate both the information capacity and the mutual information exactly for simple models and approximately for the full model. We find that (1) small changes in mutual information can lead to potentially important changes in cellular response and (2) there are diminishing returns in the fidelity of response as the mutual information increases. We calculate the information capacity using Gillespie simulations of a model for the TNF-α-NF-κ B network and find good agreement with the measured value for an experimental realization of this network. Our results provide a quantitative understanding of the differences in cellular response when comparing experimentally measured mutual information values of different gene regulatory models. Our calculations demonstrate that Gillespie simulations can be used to compute the mutual information of more complex gene regulatory models, providing a potentially useful tool in synthetic biology.
Correlation of recent fission product release data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kress, T.S.; Lorenz, R.A.; Nakamura, T.
For the calculation of source terms associated with severe accidents, it is necessary to model the release of fission products from fuel as it heats and melts. Perhaps the most definitive model for fission product release is that of the FASTGRASS computer code developed at Argonne National Laboratory. There is persuasive evidence that these processes, as well as additional chemical and gas phase mass transport processes, are important in the release of fission products from fuel. Nevertheless, it has been found convenient to have simplified fission product release correlations that may not be as definitive as models like FASTGRASS butmore » which attempt in some simple way to capture the essence of the mechanisms. One of the most widely used such correlation is called CORSOR-M which is the present fission product/aerosol release model used in the NRC Source Term Code Package. CORSOR has been criticized as having too much uncertainty in the calculated releases and as not accurately reproducing some experimental data. It is currently believed that these discrepancies between CORSOR and the more recent data have resulted because of the better time resolution of the more recent data compared to the data base that went into the CORSOR correlation. This document discusses a simple correlational model for use in connection with NUREG risk uncertainty exercises. 8 refs., 4 figs., 1 tab.« less
Ghorbani, Maryam; Mohammad-Rafiee, Farshid
2011-01-01
We develop a simple elastic model to study the conformation of DNA in the nucleosome core particle. In this model, the changes in the energy of the covalent bonds that connect the base pairs of each strand of the DNA double helix, as well as the lateral displacements and the rotation of adjacent base pairs are considered. We show that because of the rigidity of the covalent bonds in the sugar-phosphate backbones, the base pair parameters are highly correlated, especially, strong twist-roll-slide correlation in the conformation of the nucleosomal DNA is vividly observed in the calculated results. This simple model succeeds to account for the detailed features of the structure of the nucleosomal DNA, particularly, its more important base pair parameters, roll and slide, in good agreement with the experimental results. PMID:20972223
PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blakeman, Edward D; Peplow, Douglas E.; Wagner, John C
2007-09-01
The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally filesmore » and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts.« less
Zheng, Wangzhi; Cleveland, Zackary I.; Möller, Harald E.; Driehuys, Bastiaan
2010-01-01
When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of 3He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum 3He relaxation rate of 3.83 × 10−3 s−1 (T1 = 4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T1 would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T1 of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. PMID:21134771
Zheng, Wangzhi; Cleveland, Zackary I; Möller, Harald E; Driehuys, Bastiaan
2011-02-01
When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of (3)He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum (3)He relaxation rate of 3.83×10(-3) s(-1) (T(1)=4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T(1) would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T(1) of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient-induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. Copyright © 2010 Elsevier Inc. All rights reserved.
Co-digestion of solid waste: Towards a simple model to predict methane production.
Kouas, Mokhles; Torrijos, Michel; Schmitz, Sabine; Sousbie, Philippe; Sayadi, Sami; Harmand, Jérôme
2018-04-01
Modeling methane production is a key issue for solid waste co-digestion. Here, the effect of a step-wise increase in the organic loading rate (OLR) on reactor performance was investigated, and four new models were evaluated to predict methane yields using data acquired in batch mode. Four co-digestion experiments of mixtures of 2 solid substrates were conducted in semi-continuous mode. Experimental methane yields were always higher than the BMP values of mixtures calculated from the BMP of each substrate, highlighting the importance of endogenous production (methane produced from auto-degradation of microbial community and generated solids). The experimental methane productions under increasing OLRs corresponded well to the modeled data using the model with constant endogenous production and kinetics identified at 80% from total batch time. This model provides a simple and useful tool for technical design consultancies and plant operators to optimize the co-digestion and the choice of the OLRs. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tanimoto, T.
1983-01-01
A simple modification of Gilbert's formula to account for slight lateral heterogeneity of the Earth leads to a convenient formula to calculate synthetic long period seismograms. Partial derivatives are easily calculated, thus the formula is suitable for direct inversion of seismograms for lateral heterogeneity of the Earth.
A hybrid multigroup neutron-pattern model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogosbekyan, L.R.; Lysov, D.A.
In this paper, we use the general approach to construct a multigroup hybrid model for the neutron pattern. The equations are given together with a reasonably economic and simple iterative method of solving them. The algorithm can be used to calculate the pattern and the functionals as well as to correct the constants from the experimental data and to adapt the support over the constants to the engineering programs by reference to precision ones.
Computer modeling of inversion layer MOS solar cells and arrays
NASA Technical Reports Server (NTRS)
Ho, Fat Duen
1991-01-01
A two dimensional numerical model of the inversion layer metal insulator semiconductor (IL/MIS) solar cell is proposed by using the finite element method. The two-dimensional current flow in the device is taken into account in this model. The electrostatic potential distribution, the electron concentration distribution, and the hole concentration distribution for different terminal voltages are simulated. The results of simple calculation are presented. The existing problems for this model are addressed. Future work is proposed. The MIS structures are studied and some of the results are reported.
Sensitivity of Lumped Constraints Using the Adjoint Method
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.; Haftka, Raphael T.; Wu, K. Chauncey; Walsh, Joanne L.
1999-01-01
Adjoint sensitivity calculation of stress, buckling and displacement constraints may be much less expensive than direct sensitivity calculation when the number of load cases is large. Adjoint stress and displacement sensitivities are available in the literature. Expressions for local buckling sensitivity of isotropic plate elements are derived in this study. Computational efficiency of the adjoint method is sensitive to the number of constraints and, therefore, the method benefits from constraint lumping. A continuum version of the Kreisselmeier-Steinhauser (KS) function is chosen to lump constraints. The adjoint and direct methods are compared for three examples: a truss structure, a simple HSCT wing model, and a large HSCT model. These sensitivity derivatives are then used in optimization.
Channel Capacity Calculation at Large SNR and Small Dispersion within Path-Integral Approach
NASA Astrophysics Data System (ADS)
Reznichenko, A. V.; Terekhov, I. S.
2018-04-01
We consider the optical fiber channel modelled by the nonlinear Shrödinger equation with additive white Gaussian noise. Using Feynman path-integral approach for the model with small dispersion we find the first nonzero corrections to the conditional probability density function and the channel capacity estimations at large signal-to-noise ratio. We demonstrate that the correction to the channel capacity in small dimensionless dispersion parameter is quadratic and positive therefore increasing the earlier calculated capacity for a nondispersive nonlinear optical fiber channel in the intermediate power region. Also for small dispersion case we find the analytical expressions for simple correlators of the output signals in our noisy channel.
Electrostatics of electron-hole interactions in van der Waals heterostructures
NASA Astrophysics Data System (ADS)
Cavalcante, L. S. R.; Chaves, A.; Van Duppen, B.; Peeters, F. M.; Reichman, D. R.
2018-03-01
The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically investigated. A comparison between models available in the literature for describing these interactions is made and the limitations of these approaches are discussed. A simple numerical solution of Poisson's equation for a stack of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole interaction potential at very low computational cost and with reasonable accuracy. Using different potential models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory, and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is discussed.
NASA Astrophysics Data System (ADS)
Valencia, Hubert; Kangawa, Yoshihiro; Kakimoto, Koichi
2015-12-01
GaAs(100) c(4×4) surfaces were examined by ab initio calculations, under As2, H2 and N2 gas mixed conditions as a model for GaAs1-xNx vapor-phase epitaxy (VPE) on GaAs(100). Using a simple model consisting of As2 and H2 molecules adsorptions and As/N atom substitutions, it was shown to be possible to examine the crystal growth behavior considering the relative stability of the resulting surfaces against the chemical potential of As2, H2 and N2 gases. Such simple model allows us to draw a picture of the temperature and pressure stability domains for each surfaces that can be linked to specific growth conditions, directly. We found that, using this simple model, it is possible to explain the different N-incorporation regimes observed experimentally at different temperatures, and to predict the transition temperature between these regimes. Additionally, a rational explanation of N-incorporation ratio for each of these regimes is provided. Our model should then lead to a better comprehension and control of the experimental conditions needed to realize a high quality VPE of GaAs1-xNx.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Liang; Abild-Pedersen, Frank
On the basis of an extensive set of density functional theory calculations, it is shown that a simple scheme provides a fundamental understanding of variations in the transition state energies and structures of reaction intermediates on transition metal surfaces across the periodic table. The scheme is built on the bond order conservation principle and requires a limited set of input data, still achieving transition state energies as a function of simple descriptors with an error smaller than those of approaches based on linear fits to a set of calculated transition state energies. Here, we have applied this approach together withmore » linear scaling of adsorption energies to obtain the energetics of the NH 3 decomposition reaction on a series of stepped fcc(211) transition metal surfaces. Moreover, this information is used to establish a microkinetic model for the formation of N 2 and H 2, thus providing insight into the components of the reaction that determines the activity.« less
Computational assignment of redox states to Coulomb blockade diamonds.
Olsen, Stine T; Arcisauskaite, Vaida; Hansen, Thorsten; Kongsted, Jacob; Mikkelsen, Kurt V
2014-09-07
With the advent of molecular transistors, electrochemistry can now be studied at the single-molecule level. Experimentally, the redox chemistry of the molecule manifests itself as features in the observed Coulomb blockade diamonds. We present a simple theoretical method for explicit construction of the Coulomb blockade diamonds of a molecule. A combined quantum mechanical/molecular mechanical method is invoked to calculate redox energies and polarizabilities of the molecules, including the screening effect of the metal leads. This direct approach circumvents the need for explicit modelling of the gate electrode. From the calculated parameters the Coulomb blockade diamonds are constructed using simple theory. We offer a theoretical tool for assignment of Coulomb blockade diamonds to specific redox states in particular, and a study of chemical details in the diamonds in general. With the ongoing experimental developments in molecular transistor experiments, our tool could find use in molecular electronics, electrochemistry, and electrocatalysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warnecke, Sascha; Toennies, J. Peter, E-mail: jtoenni@gwdg.de; Tang, K. T.
The Tang-Toennies potential for the weakly interacting systems H{sub 2} b{sup 3}Σ{sub u}{sup +}, H–He {sup 2}Σ{sup +}, and He{sub 2} {sup 1}Σ{sub g}{sup +} is extended down to the united atom limit of vanishing internuclear distance. A simple analytic expression connects the united atom limiting potential with the Tang-Toennies potential in the well region. The new potential model is compared with the most recent ab initio calculations for all three systems. The agreement is better than 20% (H{sub 2} and He{sub 2}) or comparable with the differences in the available ab initio calculations (H–He) over six orders of magnitudemore » corresponding to the entire range of internuclear distances.« less
Van der Waals model for phase transitions in thermoresponsive surface films.
McCoy, John D; Curro, John G
2009-05-21
Phase transitions in polymeric surface films are studied with a simple model based on the van der Waals equation of state. Each chain is modeled by a single bead attached to the surface by an entropic-Hooke's law spring. The surface coverage is controlled by adjusting the chemical potential, and the equilibrium density profile is calculated with density functional theory. The interesting feature of this model is the multivalued nature of the density profile seen at low temperature. This van der Waals loop behavior is resolved with a Maxwell construction between a high-density phase near the wall and a low-density phase in a "vertical" phase transition. Signatures of the phase transition in experimentally measurable quantities are then found. Numerical calculations are presented for isotherms of surface pressure, for the Poisson ratio, and for the swelling ratio.
NASA Astrophysics Data System (ADS)
Pietrzak, Robert; Konefał, Adam; Sokół, Maria; Orlef, Andrzej
2016-08-01
The success of proton therapy depends strongly on the precision of treatment planning. Dose distribution in biological tissue may be obtained from Monte Carlo simulations using various scientific codes making it possible to perform very accurate calculations. However, there are many factors affecting the accuracy of modeling. One of them is a structure of objects called bins registering a dose. In this work the influence of bin structure on the dose distributions was examined. The MCNPX code calculations of Bragg curve for the 60 MeV proton beam were done in two ways: using simple logical detectors being the volumes determined in water, and using a precise model of ionization chamber used in clinical dosimetry. The results of the simulations were verified experimentally in the water phantom with Marcus ionization chamber. The average local dose difference between the measured relative doses in the water phantom and those calculated by means of the logical detectors was 1.4% at first 25 mm, whereas in the full depth range this difference was 1.6% for the maximum uncertainty in the calculations less than 2.4% and for the maximum measuring error of 1%. In case of the relative doses calculated with the use of the ionization chamber model this average difference was somewhat greater, being 2.3% at depths up to 25 mm and 2.4% in the full range of depths for the maximum uncertainty in the calculations of 3%. In the dose calculations the ionization chamber model does not offer any additional advantages over the logical detectors. The results provided by both models are similar and in good agreement with the measurements, however, the logical detector approach is a more time-effective method.
Kobayashi, Seiji
2002-05-10
A point-spread function (PSF) is commonly used as a model of an optical disk readout channel. However, the model given by the PSF does not contain the quadratic distortion generated by the photo-detection process. We introduce a model for calculating an approximation of the quadratic component of a signal. We show that this model can be further simplified when a read-only-memory (ROM) disk is assumed. We introduce an edge-spread function by which a simple nonlinear model of an optical ROM disk readout channel is created.
Power flows and Mechanical Intensities in structural finite element analysis
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.
1989-01-01
The identification of power flow paths in dynamically loaded structures is an important, but currently unavailable, capability for the finite element analyst. For this reason, methods for calculating power flows and mechanical intensities in finite element models are developed here. Formulations for calculating input and output powers, power flows, mechanical intensities, and power dissipations for beam, plate, and solid element types are derived. NASTRAN is used to calculate the required velocity, force, and stress results of an analysis, which a post-processor then uses to calculate power flow quantities. The SDRC I-deas Supertab module is used to view the final results. Test models include a simple truss and a beam-stiffened cantilever plate. Both test cases showed reasonable power flow fields over low to medium frequencies, with accurate power balances. Future work will include testing with more complex models, developing an interactive graphics program to view easily and efficiently the analysis results, applying shape optimization methods to the problem with power flow variables as design constraints, and adding the power flow capability to NASTRAN.
Sao Paulo potential as a tool for calculating S factors of fusion reactions in dense stellar matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasques, L. R.; Beard, M.; Wiescher, M.
2007-10-15
The goal of this paper is to test and justify the use of the Sao Paulo potential model for calculating astrophysical S factors for reactions involving stable and neutron-rich nuclei. In particular, we focus on the theoretical description of S factors at low energies. This is important for evaluating the reaction rates in dense stellar matter. We calculate the S factors for a number of reactions ({sup 16}O+{sup 16}O, {sup 20}O+{sup 20}O, {sup 20}O+{sup 26}Ne, {sup 20}O+{sup 32}Mg, {sup 26}Ne+{sup 26}Ne, {sup 26}Ne+{sup 32}Mg, {sup 32}Mg+{sup 32}Mg, {sup 22}O+{sup 22}O, {sup 24}O+{sup 24}O) with the Sao Paulo potential in themore » framework of a one-dimensional barrier penetration model. This approach can be easily applied for many other reactions involving different isotopes. To test the consistency of the model predictions, we compare our calculations with those performed within the coupled-channels and fermionic molecular dynamics models. Calculated S factors are parametrized by a simple analytic formula. The main properties and uncertainties of reaction rates (appropriate to dense matter in cores of massive white dwarfs and crusts of accreting neutron stars) are outlined.« less
Dynamic Characteristics of a Simple Brayton Cryocycle
NASA Astrophysics Data System (ADS)
Kutzschbach, A.; Kauschke, M.; Haberstroh, Ch.; Quack, H.
2006-04-01
The goal of the overall program is to develop a dynamic numerical model of helium refrigerators and the associated cooling systems based on commercial simulation software. The aim is to give system designers a tool to search for optimum control strategies during the construction phase of the refrigerator with the help of a plant "simulator". In a first step, a simple Brayton refrigerator has been investigated, which consists of a compressor, an after-cooler, a counter-current heat exchanger, a turboexpander and a heat source. Operating modes are "refrigeration" and "liquefaction". Whereas for the steady state design only component efficiencies are needed and mass and energy balances have to be calculated, for the dynamic calculation one needs also the thermal masses and the helium inventory. Transient mass and energy balances have to be formulated for many small elements and then solved simultaneously for all elements. Starting point of the simulation of the Brayton cycle is the steady state operation at design conditions. The response of the system to step and cyclic changes of the refrigeration or liquefaction rate are calculated and characterized.
The Impact of Different Sources of Fluctuations on Mutual Information in Biochemical Networks
Chevalier, Michael; Venturelli, Ophelia; El-Samad, Hana
2015-01-01
Stochastic fluctuations in signaling and gene expression limit the ability of cells to sense the state of their environment, transfer this information along cellular pathways, and respond to it with high precision. Mutual information is now often used to quantify the fidelity with which information is transmitted along a cellular pathway. Mutual information calculations from experimental data have mostly generated low values, suggesting that cells might have relatively low signal transmission fidelity. In this work, we demonstrate that mutual information calculations might be artificially lowered by cell-to-cell variability in both initial conditions and slowly fluctuating global factors across the population. We carry out our analysis computationally using a simple signaling pathway and demonstrate that in the presence of slow global fluctuations, every cell might have its own high information transmission capacity but that population averaging underestimates this value. We also construct a simple synthetic transcriptional network and demonstrate using experimental measurements coupled to computational modeling that its operation is dominated by slow global variability, and hence that its mutual information is underestimated by a population averaged calculation. PMID:26484538
Control of Solar Power Plants Connected Grid with Simple Calculation Method on Residential Homes
NASA Astrophysics Data System (ADS)
Kananda, Kiki; Nazir, Refdinal
2017-12-01
One of the most compatible renewable energy in all regions to apply is solar energy. Solar power plants can be built connected to existing or stand-alone power grids. In assisting the residential electricity in which there is a power grid, then a small scale solar energy power plants is very appropriate. However, the general constraint of solar energy power plants is still low in terms of efficiency. Therefore, this study will explain how to control the power of solar power plants more optimally, which is expected to reactive power to zero to raise efficiency. This is a continuation of previous research using Newton Rapshon control method. In this study we introduce a simple method by using ordinary mathematical calculations of solar-related equations. In this model, 10 PV modules type of ND T060M1 with a 60 Wp capacity are used. The calculations performed using MATLAB Simulink provide excellent value. For PCC voltage values obtained a stable quantity of approximately 220 V. At a maximum irradiation condition of 1000 W / m2, the reactive power value of Q solar generating system maximum 20.48 Var and maximum active power of 417.5 W. In the condition of lower irradiation, value of reactive power Q almost close to zero 0.77Var. This simple mathematical method can provide excellent quality control power values.
A nonequilibrium model for a moderate pressure hydrogen microwave discharge plasma
NASA Technical Reports Server (NTRS)
Scott, Carl D.
1993-01-01
This document describes a simple nonequilibrium energy exchange and chemical reaction model to be used in a computational fluid dynamics calculation for a hydrogen plasma excited by microwaves. The model takes into account the exchange between the electrons and excited states of molecular and atomic hydrogen. Specifically, electron-translation, electron-vibration, translation-vibration, ionization, and dissociation are included. The model assumes three temperatures, translational/rotational, vibrational, and electron, each describing a Boltzmann distribution for its respective energy mode. The energy from the microwave source is coupled to the energy equation via a source term that depends on an effective electric field which must be calculated outside the present model. This electric field must be found by coupling the results of the fluid dynamics and kinetics solution with a solution to Maxwell's equations that includes the effects of the plasma permittivity. The solution to Maxwell's equations is not within the scope of this present paper.
Stochastic road excitation and control feasibility in a 2D linear tyre model
NASA Astrophysics Data System (ADS)
Rustighi, E.; Elliott, S. J.
2007-03-01
For vehicle under normal driving conditions and speeds above 30-40 km/h the dominating internal and external noise source is the sound generated by the interaction between the tyre and the road. This paper presents a simple model to predict tyre behaviour in the frequency range up to 400 Hz, where the dominant vibration is two dimensional. The tyre is modelled as an elemental system, which permits the analysis of the low-frequency tyre response when excited by distributed stochastic displacements in the contact patch. A linear model has been used to calculate the contact forces from the road roughness and thus calculate the average spectral properties of the resulting radial velocity of the tyre in one step from the spectral properties of the road roughness. Such a model has also been used to provide an estimate of the potential effect of various active control strategies for reducing the tyre vibrations.
Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion
NASA Astrophysics Data System (ADS)
Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.
2011-03-01
A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.
The power to detect linkage in complex disease by means of simple LOD-score analyses.
Greenberg, D A; Abreu, P; Hodge, S E
1998-01-01
Maximum-likelihood analysis (via LOD score) provides the most powerful method for finding linkage when the mode of inheritance (MOI) is known. However, because one must assume an MOI, the application of LOD-score analysis to complex disease has been questioned. Although it is known that one can legitimately maximize the maximum LOD score with respect to genetic parameters, this approach raises three concerns: (1) multiple testing, (2) effect on power to detect linkage, and (3) adequacy of the approximate MOI for the true MOI. We evaluated the power of LOD scores to detect linkage when the true MOI was complex but a LOD score analysis assumed simple models. We simulated data from 14 different genetic models, including dominant and recessive at high (80%) and low (20%) penetrances, intermediate models, and several additive two-locus models. We calculated LOD scores by assuming two simple models, dominant and recessive, each with 50% penetrance, then took the higher of the two LOD scores as the raw test statistic and corrected for multiple tests. We call this test statistic "MMLS-C." We found that the ELODs for MMLS-C are >=80% of the ELOD under the true model when the ELOD for the true model is >=3. Similarly, the power to reach a given LOD score was usually >=80% that of the true model, when the power under the true model was >=60%. These results underscore that a critical factor in LOD-score analysis is the MOI at the linked locus, not that of the disease or trait per se. Thus, a limited set of simple genetic models in LOD-score analysis can work well in testing for linkage. PMID:9718328
The power to detect linkage in complex disease by means of simple LOD-score analyses.
Greenberg, D A; Abreu, P; Hodge, S E
1998-09-01
Maximum-likelihood analysis (via LOD score) provides the most powerful method for finding linkage when the mode of inheritance (MOI) is known. However, because one must assume an MOI, the application of LOD-score analysis to complex disease has been questioned. Although it is known that one can legitimately maximize the maximum LOD score with respect to genetic parameters, this approach raises three concerns: (1) multiple testing, (2) effect on power to detect linkage, and (3) adequacy of the approximate MOI for the true MOI. We evaluated the power of LOD scores to detect linkage when the true MOI was complex but a LOD score analysis assumed simple models. We simulated data from 14 different genetic models, including dominant and recessive at high (80%) and low (20%) penetrances, intermediate models, and several additive two-locus models. We calculated LOD scores by assuming two simple models, dominant and recessive, each with 50% penetrance, then took the higher of the two LOD scores as the raw test statistic and corrected for multiple tests. We call this test statistic "MMLS-C." We found that the ELODs for MMLS-C are >=80% of the ELOD under the true model when the ELOD for the true model is >=3. Similarly, the power to reach a given LOD score was usually >=80% that of the true model, when the power under the true model was >=60%. These results underscore that a critical factor in LOD-score analysis is the MOI at the linked locus, not that of the disease or trait per se. Thus, a limited set of simple genetic models in LOD-score analysis can work well in testing for linkage.
pyhector: A Python interface for the simple climate model Hector
DOE Office of Scientific and Technical Information (OSTI.GOV)
N Willner, Sven; Hartin, Corinne; Gieseke, Robert
2017-04-01
Pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary production andmore » respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system (Hartin et al. 2016). The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2. These were developed to cover the range of baseline and mitigation emissions scenarios and are widely used in climate change research and model intercomparison projects. Using DataFrames from the Python library Pandas (McKinney 2010) as a data structure for the scenarios simplifies generating and adapting scenarios. Other parameters of the Hector model can easily be modified when running the model. Pyhector can be installed using pip from the Python Package Index.3 Source code and issue tracker are available in Pyhector's GitHub repository4. Documentation is provided through Readthedocs5. Usage examples are also contained in the repository as a Jupyter Notebook (Pérez and Granger 2007; Kluyver et al. 2016). Courtesy of the Mybinder project6, the example Notebook can also be executed and modified without installing Pyhector locally.« less
Manufacturing of diamond windows for synchrotron radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schildkamp, W.; Nikitina, L.
2012-09-15
A new diamond window construction is presented and explicit manufacturing details are given. This window will increase the power dissipation by about a factor of 4 over present day state of the art windows to absorb 600 W of power. This power will be generated by in-vacuum undulators with the storage ring ALBA operating at a design current of 400 mA. Extensive finite element (FE) calculations are included to predict the windows behavior accompanied by explanations for the chosen boundary conditions. A simple linear model was used to cross-check the FE calculations.
Small Scale Mass Flow Plug Calibration
NASA Technical Reports Server (NTRS)
Sasson, Jonathan
2015-01-01
A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model in the operating region of the MFP is 0.54%. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. Effects of boundary layer growth and the reduction in cross-sectional flow area are calculated using an in- integral method. A CFD calibration is shown to be of lower accuracy with a maximum error of 1.35%, and slower by a factor of 100. Effects of total pressure distortion are taken into account in the experiment. Distortion creates a loss in flow rate and can be characterized by two different distortion descriptors.
Gravitational microlensing of gamma-ray bursts
NASA Technical Reports Server (NTRS)
Mao, Shude
1993-01-01
A Monte Carlo code is developed to calculate gravitational microlensing in three dimensions when the lensing optical depth is low or moderate (not greater than 0.25). The code calculates positions of microimages and time delays between the microimages. The majority of lensed gamma-ray bursts should show a simple double-burst structure, as predicted by a single point mass lens model. A small fraction should show complicated multiple events due to the collective effects of several point masses (black holes). Cosmological models with a significant fraction of mass density in massive compact objects can be tested by searching for microlensing events in the current BATSE data. Our catalog generated by 10,000 Monte Carlo models is accessible through the computer network. The catalog can be used to take realistic selection effects into account.
Modeling the frequency-dependent detective quantum efficiency of photon-counting x-ray detectors.
Stierstorfer, Karl
2018-01-01
To find a simple model for the frequency-dependent detective quantum efficiency (DQE) of photon-counting detectors in the low flux limit. Formula for the spatial cross-talk, the noise power spectrum and the DQE of a photon-counting detector working at a given threshold are derived. Parameters are probabilities for types of events like single counts in the central pixel, double counts in the central pixel and a neighboring pixel or single count in a neighboring pixel only. These probabilities can be derived in a simple model by extensive use of Monte Carlo techniques: The Monte Carlo x-ray propagation program MOCASSIM is used to simulate the energy deposition from the x-rays in the detector material. A simple charge cloud model using Gaussian clouds of fixed width is used for the propagation of the electric charge generated by the primary interactions. Both stages are combined in a Monte Carlo simulation randomizing the location of impact which finally produces the required probabilities. The parameters of the charge cloud model are fitted to the spectral response to a polychromatic spectrum measured with our prototype detector. Based on the Monte Carlo model, the DQE of photon-counting detectors as a function of spatial frequency is calculated for various pixel sizes, photon energies, and thresholds. The frequency-dependent DQE of a photon-counting detector in the low flux limit can be described with an equation containing only a small set of probabilities as input. Estimates for the probabilities can be derived from a simple model of the detector physics. © 2017 American Association of Physicists in Medicine.
Rethinking Use of the OML Model in Electric Sail Development
NASA Technical Reports Server (NTRS)
Stone, Nobie H.
2016-01-01
In 1924, Irvin Langmuir and H. M. Mott-Smith published a theoretical model for the complex plasma sheath phenomenon in which they identified some very special cases which greatly simplified the sheath and allowed a closed solution to the problem. The most widely used application is for an electrostatic, or "Langmuir," probe in laboratory plasma. Although the Langmuir probe is physically simple (a biased wire) the theory describing its functional behavior and its current-voltage characteristic is extremely complex and, accordingly, a number of assumptions and approximations are used in the LMS model. These simplifications, correspondingly, place limits on the model's range of application. Adapting the LMS model to real-life conditions is the subject of numerous papers and dissertations. The Orbit-Motion Limited (OML) model that is widely used today is one of these adaptions that is a convenient means of calculating sheath effects. Since the Langmuir probe is a simple biased wire immersed in plasma, it is particularly tempting to use the OML equation in calculating the characteristics of the long, highly biased wires of an Electric Sail in the solar wind plasma. However, in order to arrive at the OML equation, a number of additional simplifying assumptions and approximations (beyond those made by Langmuir-Mott-Smith) are necessary. The OML equation is a good approximation when all conditions are met, but it would appear that the Electric Sail problem lies outside of the limits of applicability.
Molecular Dynamics Simulation of the Titration of Polyoxocations in Aqueous Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rustad, James R.
The aqueous complex ion Al30O8(OH)56(H2O)26 18+(Al30) has a variety of bridging and terminal amphoteric surface functional groups which deprotonate over a pH range of 4–7. Their relative degree of protonation is calculated here from a series of molecular dynamics simulations in what appear to be the first molecular dynamics simulations of an acidometric titration. In these simulations, a model M30O8(OH)56(H2O)26 18+ ion is embedded in aqueous solution and titrated with hydroxide ions in the presence of a charge-compensating background of perchlorate ions. Comparison with titration of a model M13O4(OH)24(H2O)12 7+ reveals that the M30 ion is more acidic than themore » M13 ion due to the presence of acidic nH2O functional groups. The higher acidities of the functional groups on the M30 ion appear to result from enhanced hydration. Metal–oxygen bond lengths are calculated for the ion in solution, an isolated ion in the gas phase, and in its crystalline hydrate sulfate salt. Gas-phase and crystalline bond lengths do not correlate well with those calculated in solution. The acidities do not relate in any simple way to the number of metals coordinating the surface functional group or the M-O bond length. Moreover, the calculated acidity in solution does not correlate with proton affinities calculated for the isolated ion in the absence of solvent. It is concluded that the search for simple indicators of structure–reactivity relationships at the level of individual reactive sites faces major limitations, unless specific information on the hydration states of the functional groups is available.« less
A Simple Modeling Tool and Exercises for Incoming Solar Radiation Demonstrations
ERIC Educational Resources Information Center
Werts, Scott; Hinnov, Linda
2011-01-01
We present a MATLAB script INSOLATE.m that calculates insolation at the top of the atmosphere and the total amount of daylight during the year (and other quantities) with respect to geographic latitude and Earth's obliquity (axial tilt). The script output displays insolation values for an entire year on a three-dimensional graph. This tool…
Theoretical Prediction of Magnetism in C-doped TlBr
NASA Astrophysics Data System (ADS)
Zhou, Yuzhi; Haller, E. E.; Chrzan, D. C.
2014-05-01
We predict that C, N, and O dopants in TlBr can display large, localized magnetic moments. Density functional theory based electronic structure calculations show that the moments arise from partial filling of the crystal-field-split localized p states of the dopant atoms. A simple model is introduced to explain the magnitude of the moments.
An alternative method for centrifugal compressor loading factor modelling
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Drozdov, A.; Rekstin, A.; Soldatova, K.
2017-08-01
The loading factor at design point is calculated by one or other empirical formula in classical design methods. Performance modelling as a whole is out of consideration. Test data of compressor stages demonstrates that loading factor versus flow coefficient at the impeller exit has a linear character independent of compressibility. Known Universal Modelling Method exploits this fact. Two points define the function - loading factor at design point and at zero flow rate. The proper formulae include empirical coefficients. A good modelling result is possible if the choice of coefficients is based on experience and close analogs. Earlier Y. Galerkin and K. Soldatova had proposed to define loading factor performance by the angle of its inclination to the ordinate axis and by the loading factor at zero flow rate. Simple and definite equations with four geometry parameters were proposed for loading factor performance calculated for inviscid flow. The authors of this publication have studied the test performance of thirteen stages of different types. The equations are proposed with universal empirical coefficients. The calculation error lies in the range of plus to minus 1,5%. The alternative model of a loading factor performance modelling is included in new versions of the Universal Modelling Method.
Calibrating White Dwarf Asteroseismic Fitting Techniques
NASA Astrophysics Data System (ADS)
Castanheira, B. G.; Romero, A. D.; Bischoff-Kim, A.
2017-03-01
The main goal of looking for intrinsic variability in stars is the unique opportunity to study their internal structure. Once we have extracted independent modes from the data, it appears to be a simple matter of comparing the period spectrum with those from theoretical model grids to learn the inner structure of that star. However, asteroseismology is much more complicated than this simple description. We must account not only for observational uncertainties in period determination, but most importantly for the limitations of the model grids, coming from the uncertainties in the constitutive physics, and of the fitting techniques. In this work, we will discuss results of numerical experiments where we used different independently calculated model grids (white dwarf cooling models WDEC and fully evolutionary LPCODE-PUL) and fitting techniques to fit synthetic stars. The advantage of using synthetic stars is that we know the details of their interior structure so we can assess how well our models and fitting techniques are able to the recover the interior structure, as well as the stellar parameters.
A dynamical stabilizer in the climate system: a mechanism suggested by a simple model
NASA Astrophysics Data System (ADS)
Bates, J. R.
1999-05-01
A simple zonally averaged hemispheric model of the climate system is constructed, based on energy equations for two ocean basins separated at 30° latitude with the surface fluxes calculated explicitly. A combination of empirical input and theoretical calculation is used to determine an annual mean equilibrium climate for the model and to study its stability with respect to small perturbations. The insolation, the mean albedos and the equilibrium temperatures for the two model zones are prescribed from observation. The principal agent of interaction between the zones is the vertically integrated poleward transport of atmospheric angular momentum across their common boundary. This is parameterized using an empirical formula derived from a multiyear atmospheric data set. The surface winds are derived from the angular momentum transport assuming the atmosphere to be in a state of dynamic balance on the climatic timescales of interest. A further assumption that the air sea temperature difference and low level relative humidity remain fixed at their mean observed values then allows the surface fluxes of latent and sensible heat to be calculated. Results from a radiative model, which show a positive lower tropospheric water vapour/infrared radiative feedback on SST perturbations in both zones, are used to calculate the net upward infrared radiative fluxes at the surface. In the model's equilibrium climate, the principal processes balancing the solar radiation absorbed at the surface are evaporation in the tropical zone and net infrared radiation in the extratropical zone. The stability of small perturbations about the equilibrium is studied using a linearized form of the ocean energy equations. Ice-albedo and cloud feedbacks are omitted and attention is focussed on the competing effects of the water vapour/infrared radiative feedback and the turbulent surface flux and oceanic heat transport feedbacks associated with the angular momentum cycle. The perturbation equations involve inter-zone coupling and have coefficients dependent on the values of the equilibrium fluxes and the sensitivity of the angular momentum transport. Analytical solutions for the perturbations are obtained. These provide criteria for the stability of the equilibrium climate. If the evaporative feedback on SST perturbations is omitted, the equilibrium climate is unstable due to the influence of the water vapour/infrared radiative feedback, which dominates over the effects of the sensible heat and ocean heat transport feedbacks. The inclusion of evaporation gives a negative feedback which is of sufficient strength to stabilize the system. The stabilizing mechanism involves wind and humidity factors in the evaporative fluxes that are of comparable magnitude. Both factors involve the angular momentum transport. In including angular momentum and calculating the surface fluxes explicitly, the model presented here differs from the many simple climate models based on the Budyko Sellers formulation. In that formulation, an atmospheric energy balance equation is used to eliminate surface fluxes in favour of top-of-the-atmosphere radiative fluxes and meridional atmospheric energy transports. In the resulting models, infrared radiation appears as a stabilizing influence on SST perturbations and the dynamical stabilizing mechanism found here cannot be identified.
Modeling diffuse phosphorus emissions to assist in best management practice designing
NASA Astrophysics Data System (ADS)
Kovacs, Adam; Zessner, Matthias; Honti, Mark; Clement, Adrienne
2010-05-01
A diffuse emission modeling tool has been developed, which is appropriate to support decision-making in watershed management. The PhosFate (Phosphorus Fate) tool allows planning best management practices (BMPs) in catchments and simulating their possible impacts on the phosphorus (P) loads. PhosFate is a simple fate model to calculate diffuse P emissions and their transport within a catchment. The model is a semi-empirical, catchment scale, distributed parameter and long-term (annual) average model. It has two main parts: (a) the emission and (b) the transport model. The main input data of the model are digital maps (elevation, soil types and landuse categories), statistical data (crop yields, animal numbers, fertilizer amounts and precipitation distribution) and point information (precipitation, meteorology, soil humus content, point source emissions and reservoir data). The emission model calculates the diffuse P emissions at their source. It computes the basic elements of the hydrology as well as the soil loss. The model determines the accumulated P surplus of the topsoil and distinguishes the dissolved and the particulate P forms. Emissions are calculated according to the different pathways (surface runoff, erosion and leaching). The main outputs are the spatial distribution (cell values) of the runoff components, the soil loss and the P emissions within the catchment. The transport model joins the independent cells based on the flow tree and it follows the further fate of emitted P from each cell to the catchment outlets. Surface runoff and P fluxes are accumulated along the tree and the field and in-stream retention of the particulate forms are computed. In case of base flow and subsurface P loads only the channel transport is taken into account due to the less known hydrogeological conditions. During the channel transport, point sources and reservoirs are also considered. Main results of the transport algorithm are the discharge, dissolved and sediment-bounded P load values at any arbitrary point within the catchment. Finally, a simple design procedure has been built up to plan BMPs in the catchments and simulate their possible impacts on diffuse P fluxes as well as calculate their approximately costs. Both source and transport controlling measures have been involved into the planning procedure. The model also allows examining the impacts of alterations of fertilizer application, point source emissions as well as the climate change on the river loads. Besides this, a simple optimization algorithm has been developed to select the most effective source areas (real hot spots), which should be targeted by the interventions. The fate model performed well in Hungarian pilot catchments. Using the calibrated and validated model, different management scenarios were worked out and their effects and costs evaluated and compared to each other. The results show that the approach is suitable to effectively design BMP measures at local scale. Combinative application of the source and transport controlling BMPs can result in high P reduction efficiency. Optimization of the interventions can remarkably reduce the area demand of the necessary BMPs, consequently the establishment costs can be decreased. The model can be coupled with a larger scale catchment model to form a "screening and planning" modeling system.
Allele-sharing models: LOD scores and accurate linkage tests.
Kong, A; Cox, N J
1997-11-01
Starting with a test statistic for linkage analysis based on allele sharing, we propose an associated one-parameter model. Under general missing-data patterns, this model allows exact calculation of likelihood ratios and LOD scores and has been implemented by a simple modification of existing software. Most important, accurate linkage tests can be performed. Using an example, we show that some previously suggested approaches to handling less than perfectly informative data can be unacceptably conservative. Situations in which this model may not perform well are discussed, and an alternative model that requires additional computations is suggested.
Allele-sharing models: LOD scores and accurate linkage tests.
Kong, A; Cox, N J
1997-01-01
Starting with a test statistic for linkage analysis based on allele sharing, we propose an associated one-parameter model. Under general missing-data patterns, this model allows exact calculation of likelihood ratios and LOD scores and has been implemented by a simple modification of existing software. Most important, accurate linkage tests can be performed. Using an example, we show that some previously suggested approaches to handling less than perfectly informative data can be unacceptably conservative. Situations in which this model may not perform well are discussed, and an alternative model that requires additional computations is suggested. PMID:9345087
Semi-analytical model for a slab one-dimensional photonic crystal
NASA Astrophysics Data System (ADS)
Libman, M.; Kondratyev, N. M.; Gorodetsky, M. L.
2018-02-01
In our work we justify the applicability of a dielectric mirror model to the description of a real photonic crystal. We demonstrate that a simple one-dimensional model of a multilayer mirror can be employed for modeling of a slab waveguide with periodically changing width. It is shown that this width change can be recalculated to the effective refraction index modulation. The applicability of transfer matrix method of reflection properties calculation was demonstrated. Finally, our 1-D model was employed to analyze reflection properties of a 2-D structure - a slab photonic crystal with a number of elliptic holes.
Test of a geometric model for the modification stage of simple impact crater development
NASA Technical Reports Server (NTRS)
Grieve, R. A. F.; Coderre, J. M.; Rupert, J.; Garvin, J. B.
1989-01-01
This paper presents a geometric model describing the geometry of the transient cavity of an impact crater and the subsequent collapse of its walls to form a crater filled by an interior breccia lens. The model is tested by comparing the volume of slump material calculated from known dimensional parameters with the volume of the breccia lens estimated on the basis of observational data. Results obtained from the model were found to be consistent with observational data, particularly in view of the highly sensitive nature of the model to input parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnham, Christian J., E-mail: christian.burnham@ucd.ie, E-mail: niall.english@ucd.ie; English, Niall J., E-mail: christian.burnham@ucd.ie, E-mail: niall.english@ucd.ie
Equilibrium molecular-dynamics (MD) simulations have been performed on metastable sI and sII polymorphs of empty hydrate lattices, in addition to liquid water and ice Ih. The non-polarisable TIP4P-2005, simple point charge model (SPC), and polarisable Thole-type models (TTM): TTM2, TTM3, and TTM4 water models were used in order to survey the differences between models and to see what differences can be expected when polarisability is incorporated. Rigid and flexible variants were used of each model to gauge the effects of flexibility. Power spectra are calculated and compared to density-of-states spectra inferred from inelastic neutron scattering (INS) measurements. Thermodynamic properties weremore » also calculated, as well as molecular-dipole distributions. It was concluded that TTM models offer optimal fidelity vis-à-vis INS spectra, together with thermodynamic properties, with the flexible TTM2 model offering optimal placement of vibrational modes.« less
The theoretical relationship between foliage temperature and canopy resistance in sparse crops
NASA Technical Reports Server (NTRS)
Shuttleworth, W. James; Gurney, Robert J.
1990-01-01
One-dimensional, sparse-crop interaction theory is reformulated to allow calculation of the canopy resistance from measurements of foliage temperature. A submodel is introduced to describe eddy diffusion within the canopy which provides a simple, empirical simulation of the reported behavior obtained from a second-order closure model. The sensitivity of the calculated canopy resistance to the parameters and formulas assumed in the model is investigated. The calculation is shown to exhibit a significant but acceptable sensitivity to extreme changes in canopy aerodynamics, and to changes in the surface resistance of the substrate beneath the canopy at high and intermediate values of leaf area index. In very sparse crops changes in the surface resistance of the substrate are shown to contaminate the calculated canopy resistance, tending to amplify the apparent response to changes in water availability. The theory is developed to allow the use of a measurement of substrate temperature as an option to mitigate this contamination.
Coarse-Grained Models for Automated Fragmentation and Parametrization of Molecular Databases.
Fraaije, Johannes G E M; van Male, Jan; Becherer, Paul; Serral Gracià, Rubèn
2016-12-27
We calibrate coarse-grained interaction potentials suitable for screening large data sets in top-down fashion. Three new algorithms are introduced: (i) automated decomposition of molecules into coarse-grained units (fragmentation); (ii) Coarse-Grained Reference Interaction Site Model-Hypernetted Chain (CG RISM-HNC) as an intermediate proxy for dissipative particle dynamics (DPD); and (iii) a simple top-down coarse-grained interaction potential/model based on activity coefficient theories from engineering (using COSMO-RS). We find that the fragment distribution follows Zipf and Heaps scaling laws. The accuracy in Gibbs energy of mixing calculations is a few tenths of a kilocalorie per mole. As a final proof of principle, we use full coarse-grained sampling through DPD thermodynamics integration to calculate log P OW for 4627 compounds with an average error of 0.84 log unit. The computational speeds per calculation are a few seconds for CG RISM-HNC and a few minutes for DPD thermodynamic integration.
Energy Weighted Angular Correlations Between Hadrons Produced in Electron-Positron Annihilation.
NASA Astrophysics Data System (ADS)
Strharsky, Roger Joseph
Electron-positron annihilation at large center of mass energy produces many hadronic particles. Experimentalists then measure the energies of these particles in calorimeters. This study investigated correlations between the angular locations of one or two such calorimeters and the angular orientation of the electron beam in the laboratory frame of reference. The calculation of these correlations includes weighting by the fraction of the total center of mass energy which the calorimeter measures. Starting with the assumption that the reaction proceeeds through the intermediate production of a single quark/anti-quark pair, a simple statistical model was developed to provide a phenomenological description of the distribution of final state hadrons. The model distributions were then used to calculate the one- and two-calorimeter correlation functions. Results of these calculations were compared with available data and several predictions were made for those quantities which had not yet been measured. Failure of the model to reproduce all of the data was discussed in terms of quantum chromodynamics, a fundamental theory which includes quark interactions.
Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas
NASA Astrophysics Data System (ADS)
Hu, S. X.
2017-08-01
Continuum lowering is a well known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal- or pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K -edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics calculations based on the all-electron density-functional theory. The resulting K -edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of "single-atom-in-box," developed in this work, accurately predicts K -edge locations as ab initio calculations provide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas
Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying thesemore » methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.« less
Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas; ...
2017-03-06
Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying thesemore » methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.« less
Thermodynamic Modeling of Ag-Ni System Combining Experiments and Molecular Dynamic Simulation
NASA Astrophysics Data System (ADS)
Rajkumar, V. B.; Chen, Sinn-wen
2017-04-01
Ag-Ni is a simple and important system with immiscible liquids and (Ag,Ni) phases. Previously, this system has been thermodynamically modeled utilizing certain thermochemical and phase equilibria information based on conjecture. An attempt is made in this study to determine the missing information which are difficult to measure experimentally. The boundaries of the liquid miscibility gap at high temperatures are determined using a pyrometer. The temperature of the liquid ⇌ (Ag) + (Ni) eutectic reaction is measured using differential thermal analysis. Tie-lines of the Ag-Ni system at 1023 K and 1473 K are measured using a conventional metallurgical method. The enthalpy of mixing of the liquid at 1773 K and the (Ag,Ni) at 973 K is calculated by molecular dynamics simulation using a large-scale atomic/molecular massively parallel simulator. These results along with literature information are used to model the Gibbs energy of the liquid and (Ag,Ni) by a calculation of phase diagrams approach, and the Ag-Ni phase diagram is then calculated.
Urban Land Cover Mapping Accuracy Assessment - A Cost-benefit Analysis Approach
NASA Astrophysics Data System (ADS)
Xiao, T.
2012-12-01
One of the most important components in urban land cover mapping is mapping accuracy assessment. Many statistical models have been developed to help design simple schemes based on both accuracy and confidence levels. It is intuitive that an increased number of samples increases the accuracy as well as the cost of an assessment. Understanding cost and sampling size is crucial in implementing efficient and effective of field data collection. Few studies have included a cost calculation component as part of the assessment. In this study, a cost-benefit sampling analysis model was created by combining sample size design and sampling cost calculation. The sampling cost included transportation cost, field data collection cost, and laboratory data analysis cost. Simple Random Sampling (SRS) and Modified Systematic Sampling (MSS) methods were used to design sample locations and to extract land cover data in ArcGIS. High resolution land cover data layers of Denver, CO and Sacramento, CA, street networks, and parcel GIS data layers were used in this study to test and verify the model. The relationship between the cost and accuracy was used to determine the effectiveness of each sample method. The results of this study can be applied to other environmental studies that require spatial sampling.
Perrichon, Prescilla; Grosell, Martin; Burggren, Warren W.
2017-01-01
Understanding cardiac function in developing larval fishes is crucial for assessing their physiological condition and overall health. Cardiac output measurements in transparent fish larvae and other vertebrates have long been made by analyzing videos of the beating heart, and modeling this structure using a conventional simple prolate spheroid shape model. However, the larval fish heart changes shape during early development and subsequent maturation, but no consideration has been made of the effect of different heart geometries on cardiac output estimation. The present study assessed the validity of three different heart models (the “standard” prolate spheroid model as well as a cylinder and cone tip + cylinder model) applied to digital images of complete cardiac cycles in larval mahi-mahi and red drum. The inherent error of each model was determined to allow for more precise calculation of stroke volume and cardiac output. The conventional prolate spheroid and cone tip + cylinder models yielded significantly different stroke volume values at 56 hpf in red drum and from 56 to 104 hpf in mahi. End-diastolic and stroke volumes modeled by just a simple cylinder shape were 30–50% higher compared to the conventional prolate spheroid. However, when these values of stroke volume multiplied by heart rate to calculate cardiac output, no significant differences between models emerged because of considerable variability in heart rate. Essentially, the conventional prolate spheroid shape model provides the simplest measurement with lowest variability of stroke volume and cardiac output. However, assessment of heart function—especially if stroke volume is the focus of the study—should consider larval heart shape, with different models being applied on a species-by-species and developmental stage-by-stage basis for best estimation of cardiac output. PMID:28725199
The application of muscle wrapping to voxel-based finite element models of skeletal structures.
Liu, Jia; Shi, Junfen; Fitton, Laura C; Phillips, Roger; O'Higgins, Paul; Fagan, Michael J
2012-01-01
Finite elements analysis (FEA) is now used routinely to interpret skeletal form in terms of function in both medical and biological applications. To produce accurate predictions from FEA models, it is essential that the loading due to muscle action is applied in a physiologically reasonable manner. However, it is common for muscle forces to be represented as simple force vectors applied at a few nodes on the model's surface. It is certainly rare for any wrapping of the muscles to be considered, and yet wrapping not only alters the directions of muscle forces but also applies an additional compressive load from the muscle belly directly to the underlying bone surface. This paper presents a method of applying muscle wrapping to high-resolution voxel-based finite element (FE) models. Such voxel-based models have a number of advantages over standard (geometry-based) FE models, but the increased resolution with which the load can be distributed over a model's surface is particularly advantageous, reflecting more closely how muscle fibre attachments are distributed. In this paper, the development, application and validation of a muscle wrapping method is illustrated using a simple cylinder. The algorithm: (1) calculates the shortest path over the surface of a bone given the points of origin and ultimate attachment of the muscle fibres; (2) fits a Non-Uniform Rational B-Spline (NURBS) curve from the shortest path and calculates its tangent, normal vectors and curvatures so that normal and tangential components of the muscle force can be calculated and applied along the fibre; and (3) automatically distributes the loads between adjacent fibres to cover the bone surface with a fully distributed muscle force, as is observed in vivo. Finally, we present a practical application of this approach to the wrapping of the temporalis muscle around the cranium of a macaque skull.
NASA Astrophysics Data System (ADS)
Pan, Kok-Kwei
We have generalized the linked cluster expansion method to solve more many-body quantum systems, such as quantum spin systems with crystal-field potentials and the Hubbard model. The technique sums up all connected diagrams to a certain order of the perturbative Hamiltonian. The modified multiple-site Wick reduction theorem and the simple tau dependence of the standard basis operators have been used to facilitate the evaluation of the integration procedures in the perturbation expansion. Computational methods are developed to calculate all terms in the series expansion. As a first example, the perturbation series expansion of thermodynamic quantities of the single-band Hubbard model has been obtained using a linked cluster series expansion technique. We have made corrections to all previous results of several papers (up to fourth order). The behaviors of the three dimensional simple cubic and body-centered cubic systems have been discussed from the qualitative analysis of the perturbation series up to fourth order. We have also calculated the sixth-order perturbation series of this model. As a second example, we present the magnetic properties of spin-one Heisenberg model with arbitrary crystal-field potential using a linked cluster series expansion. The calculation of the thermodynamic properties using this method covers the whole range of temperature, in both magnetically ordered and disordered phases. The series for the susceptibility and magnetization have been obtained up to fourth order for this model. The method sums up all perturbation terms to certain order and estimates the result using a well -developed and highly successful extrapolation method (the standard ratio method). The dependence of critical temperature on the crystal-field potential and the magnetization as a function of temperature and crystal-field potential are shown. The critical behaviors at zero temperature are also shown. The range of the crystal-field potential for Ni(2+) compounds is roughly estimated based on this model using known experimental results.
Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment
NASA Astrophysics Data System (ADS)
Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.
2017-10-01
In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.
Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment.
Diao, Y L; Sun, W N; He, Y Q; Leung, S W; Siu, Y M
2017-09-21
In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort-the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.
NASA Technical Reports Server (NTRS)
Lennartsson, W.
1977-01-01
A simple model of a static electric field with a component parallel to the magnetic field is proposed for calculating the electric field and current distributions at various altitudes when the horizontal distribution of the convection electric field is given at a certain altitude above the auroral ionosphere. The model is shown to be compatible with satellite observations of inverted-V electron precipitation structures and associated irregularities in the convection electric field.
NASA Astrophysics Data System (ADS)
Radenković, Lazar; Nešić, Ljubiša
2018-05-01
The main contribution of this paper is didactic adaptation of the biomechanical analysis of the three main lifts in powerlifting (squat, bench press, deadlift). We used simple models that can easily be understood by undergraduate college students to estimate the values of various physical quantities during powerlifting. Specifically, we showed how plate choice affects the bench press and estimated spine loads and torques at hip and knee during lifting. Theoretical calculations showed good agreement with experimental data, proving that the models are valid.
Calculation of density of states for modeling photoemission using method of moments
NASA Astrophysics Data System (ADS)
Finkenstadt, Daniel; Lambrakos, Samuel G.; Jensen, Kevin L.; Shabaev, Andrew; Moody, Nathan A.
2017-09-01
Modeling photoemission using the Moments Approach (akin to Spicer's "Three Step Model") is often presumed to follow simple models for the prediction of two critical properties of photocathodes: the yield or "Quantum Efficiency" (QE), and the intrinsic spreading of the beam or "emittance" ɛnrms. The simple models, however, tend to obscure properties of electrons in materials, the understanding of which is necessary for a proper prediction of a semiconductor or metal's QE and ɛnrms. This structure is characterized by localized resonance features as well as a universal trend at high energy. Presented in this study is a prototype analysis concerning the density of states (DOS) factor D(E) for Copper in bulk to replace the simple three-dimensional form of D(E) = (m/π2 h3)p2mE currently used in the Moments approach. This analysis demonstrates that excited state spectra of atoms, molecules and solids based on density-functional theory can be adapted as useful information for practical applications, as well as providing theoretical interpretation of density-of-states structure, e.g., qualitatively good descriptions of optical transitions in matter, in addition to DFT's utility in providing the optical constants and material parameters also required in the Moments Approach.
Ouyang, Ying; Grace, Johnny M; Zipperer, Wayne C; Hatten, Jeff; Dewey, Janet
2018-05-22
Loads of naturally occurring total organic carbons (TOC), refractory organic carbon (ROC), and labile organic carbon (LOC) in streams control the availability of nutrients and the solubility and toxicity of contaminants and affect biological activities through absorption of light and complex metals with production of carcinogenic compounds. Although computer models have become increasingly popular in understanding and management of TOC, ROC, and LOC loads in streams, the usefulness of these models hinges on the availability of daily data for model calibration and validation. Unfortunately, these daily data are usually insufficient and/or unavailable for most watersheds due to a variety of reasons, such as budget and time constraints. A simple approach was developed here to calculate daily loads of TOC, ROC, and LOC in streams based on their seasonal loads. We concluded that the predictions from our approach adequately match field measurements based on statistical comparisons between model calculations and field measurements. Our approach demonstrates that an increase in stream discharge results in increased stream TOC, ROC, and LOC concentrations and loads, although high peak discharge did not necessarily result in high peaks of TOC, ROC, and LOC concentrations and loads. The approach developed herein is a useful tool to convert seasonal loads of TOC, ROC, and LOC into daily loads in the absence of measured daily load data.
Computing local edge probability in natural scenes from a population of oriented simple cells
Ramachandra, Chaithanya A.; Mel, Bartlett W.
2013-01-01
A key computation in visual cortex is the extraction of object contours, where the first stage of processing is commonly attributed to V1 simple cells. The standard model of a simple cell—an oriented linear filter followed by a divisive normalization—fits a wide variety of physiological data, but is a poor performing local edge detector when applied to natural images. The brain's ability to finely discriminate edges from nonedges therefore likely depends on information encoded by local simple cell populations. To gain insight into the corresponding decoding problem, we used Bayes's rule to calculate edge probability at a given location/orientation in an image based on a surrounding filter population. Beginning with a set of ∼ 100 filters, we culled out a subset that were maximally informative about edges, and minimally correlated to allow factorization of the joint on- and off-edge likelihood functions. Key features of our approach include a new, efficient method for ground-truth edge labeling, an emphasis on achieving filter independence, including a focus on filters in the region orthogonal rather than tangential to an edge, and the use of a customized parametric model to represent the individual filter likelihood functions. The resulting population-based edge detector has zero parameters, calculates edge probability based on a sum of surrounding filter influences, is much more sharply tuned than the underlying linear filters, and effectively captures fine-scale edge structure in natural scenes. Our findings predict nonmonotonic interactions between cells in visual cortex, wherein a cell may for certain stimuli excite and for other stimuli inhibit the same neighboring cell, depending on the two cells' relative offsets in position and orientation, and their relative activation levels. PMID:24381295
Seth, Ajay; Delp, Scott L.
2015-01-01
Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody. One quantity of interest to biomechanical researchers and clinicians is “muscle moment arm,” a measure of the effectiveness of a muscle at contributing to a particular motion over a range of configurations. OpenSim can automatically calculate these quantities for any muscle once a model has been built. For simple cases, this calculation is the same as the conventional moment arm calculation in mechanical engineering. But a muscle may span several joints (e.g., wrist, neck, back) and may follow a convoluted path over various curved surfaces. A biological joint may require several bodies or even a mechanism to accurately represent in the multibody model (e.g., knee, shoulder). In these situations we need a careful definition of muscle moment arm that is analogous to the mechanical engineering concept, yet generalized to be of use to biomedical researchers. Here we present some biomechanical modeling challenges and how they are resolved in OpenSim and Simbody to yield biologically meaningful muscle moment arms. PMID:25905111
Sherman, Michael A; Seth, Ajay; Delp, Scott L
2013-08-01
Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody. One quantity of interest to biomechanical researchers and clinicians is "muscle moment arm," a measure of the effectiveness of a muscle at contributing to a particular motion over a range of configurations. OpenSim can automatically calculate these quantities for any muscle once a model has been built. For simple cases, this calculation is the same as the conventional moment arm calculation in mechanical engineering. But a muscle may span several joints (e.g., wrist, neck, back) and may follow a convoluted path over various curved surfaces. A biological joint may require several bodies or even a mechanism to accurately represent in the multibody model (e.g., knee, shoulder). In these situations we need a careful definition of muscle moment arm that is analogous to the mechanical engineering concept, yet generalized to be of use to biomedical researchers. Here we present some biomechanical modeling challenges and how they are resolved in OpenSim and Simbody to yield biologically meaningful muscle moment arms.
Large deviation analysis of a simple information engine
NASA Astrophysics Data System (ADS)
Maitland, Michael; Grosskinsky, Stefan; Harris, Rosemary J.
2015-11-01
Information thermodynamics provides a framework for studying the effect of feedback loops on entropy production. It has enabled the understanding of novel thermodynamic systems such as the information engine, which can be seen as a modern version of "Maxwell's Dæmon," whereby a feedback controller processes information gained by measurements in order to extract work. Here, we analyze a simple model of such an engine that uses feedback control based on measurements to obtain negative entropy production. We focus on the distribution and fluctuations of the information obtained by the feedback controller. Significantly, our model allows an analytic treatment for a two-state system with exact calculation of the large deviation rate function. These results suggest an approximate technique for larger systems, which is corroborated by simulation data.
Simple analytical model for low-frequency frequency-modulation noise of monolithic tunable lasers.
Huynh, Tam N; Ó Dúill, Seán P; Nguyen, Lim; Rusch, Leslie A; Barry, Liam P
2014-02-10
We employ simple analytical models to construct the entire frequency-modulation (FM)-noise spectrum of tunable semiconductor lasers. Many contributions to the laser FM noise can be clearly identified from the FM-noise spectrum, such as standard Weiner FM noise incorporating laser relaxation oscillation, excess FM noise due to thermal fluctuations, and carrier-induced refractive index fluctuations from stochastic carrier generation in the passive tuning sections. The contribution of the latter effect is identified by noting a correlation between part of the FM-noise spectrum with the FM-modulation response of the passive sections. We pay particular attention to the case of widely tunable lasers with three independent tuning sections, mainly the sampled-grating distributed Bragg reflector laser, and compare with that of a distributed feedback laser. The theoretical model is confirmed with experimental measurements, with the calculations of the important phase-error variance demonstrating excellent agreement.
A study of stiffness, residual strength and fatigue life relationships for composite laminates
NASA Technical Reports Server (NTRS)
Ryder, J. T.; Crossman, F. W.
1983-01-01
Qualitative and quantitative exploration of the relationship between stiffness, strength, fatigue life, residual strength, and damage of unnotched, graphite/epoxy laminates subjected to tension loading. Clarification of the mechanics of the tension loading is intended to explain previous contradictory observations and hypotheses; to develop a simple procedure to anticipate strength, fatigue life, and stiffness changes; and to provide reasons for the study of more complex cases of compression, notches, and spectrum fatigue loading. Mathematical models are developed based upon analysis of the damage states. Mathematical models were based on laminate analysis, free body type modeling or a strain energy release rate. Enough understanding of the tension loaded case is developed to allow development of a proposed, simple procedure for calculating strain to failure, stiffness, strength, data scatter, and shape of the stress-life curve for unnotched laminates subjected to tension load.
Changing skewness: an early warning signal of regime shifts in ecosystems.
Guttal, Vishwesha; Jayaprakash, Ciriyam
2008-05-01
Empirical evidence for large-scale abrupt changes in ecosystems such as lakes and vegetation of semi-arid regions is growing. Such changes, called regime shifts, can lead to degradation of ecological services. We study simple ecological models that show a catastrophic transition as a control parameter is varied and propose a novel early warning signal that exploits two ubiquitous features of ecological systems: nonlinearity and large external fluctuations. Either reduced resilience or increased external fluctuations can tip ecosystems to an alternative stable state. It is shown that changes in asymmetry in the distribution of time series data, quantified by changing skewness, is a model-independent and reliable early warning signal for both routes to regime shifts. Furthermore, using model simulations that mimic field measurements and a simple analysis of real data from abrupt climate change in the Sahara, we study the feasibility of skewness calculations using data available from routine monitoring.
Quantitative Modeling of Earth Surface Processes
NASA Astrophysics Data System (ADS)
Pelletier, Jon D.
This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes.
GW/Bethe-Salpeter calculations for charged and model systems from real-space DFT
NASA Astrophysics Data System (ADS)
Strubbe, David A.
GW and Bethe-Salpeter (GW/BSE) calculations use mean-field input from density-functional theory (DFT) calculations to compute excited states of a condensed-matter system. Many parts of a GW/BSE calculation are efficiently performed in a plane-wave basis, and extensive effort has gone into optimizing and parallelizing plane-wave GW/BSE codes for large-scale computations. Most straightforwardly, plane-wave DFT can be used as a starting point, but real-space DFT is also an attractive starting point: it is systematically convergeable like plane waves, can take advantage of efficient domain parallelization for large systems, and is well suited physically for finite and especially charged systems. The flexibility of a real-space grid also allows convenient calculations on non-atomic model systems. I will discuss the interfacing of a real-space (TD)DFT code (Octopus, www.tddft.org/programs/octopus) with a plane-wave GW/BSE code (BerkeleyGW, www.berkeleygw.org), consider performance issues and accuracy, and present some applications to simple and paradigmatic systems that illuminate fundamental properties of these approximations in many-body perturbation theory.
Poludniowski, Gavin G; Evans, Philip M
2007-06-01
The penetration characteristics of electron beams into x-ray targets are investigated for incident electron kinetic energies in the range 50-150 keV. The frequency densities of electrons penetrating to a depth x in a target, with a fraction of initial kinetic energy, u, are calculated using Monte Carlo methods for beam energies of 50, 80, 100, 120 and 150 keV in a tungsten target. The frequency densities for 100 keV electrons in Al, Mo and Re targets are also calculated. A mixture of simple modeling with equations and interpolation from data is used to generalize the calculations in tungsten. Where possible, parameters derived from the Monte Carlo data are compared to experimental measurements. Previous electron transport approximations in the semiempirical models of other authors are discussed and related to this work. In particular, the crudity of the use of the Thomson-Whiddington law to describe electron penetration and energy loss is highlighted. The results presented here may be used towards calculating the target self-attenuation correction for bremsstrahlung photons emitted within a tungsten target.
A simple method for calculating the characteristics of the Dutch roll motion of an airplane
NASA Technical Reports Server (NTRS)
Klawans, Bernard B
1956-01-01
A simple method for calculating the characteristics of the Dutch roll motion of an airplane is obtained by arranging the lateral equations of motion in such form and order that an iterative process is quickly convergent.
Electric Quadrupole E2- Transitions of 170-174 Yb Isotopes
NASA Astrophysics Data System (ADS)
Abu El Sheikh, Mohd Kh. M.; Okhunov, Abdurahim A.; Usmanov, Ph. N.; Hassan, Torla HJ
2017-12-01
The non-adiabatic effects which is manifested in the electric properties of low-lying states of even-even deformed nuclei are studied. A simple phenomenological model which takes into account the Coriolis mixing of {K}π ={0}n+,{2}n+ and {K}π ={1}ν + state bands. The Calculations for isotopes 170-174 Yb, are carried out. The reduced probability of electric quadrupole transitions from the states {0}ν + and {2}ν + - bands to the ground (gr) state band is calculated and non adiabatic effect is discussed. The ratio of E2- transitions RIK from {0}2+, {0}3+, {2}1+, and {2}2+ bands are calculated and compared with the experimental data.
Activation Energies of Fragmentations of Disaccharides by Tandem Mass Spectrometry
NASA Astrophysics Data System (ADS)
Kuki, Ákos; Nagy, Lajos; Szabó, Katalin E.; Antal, Borbála; Zsuga, Miklós; Kéki, Sándor
2014-03-01
A simple multiple collision model for collision induced dissociation (CID) in quadrupole was applied for the estimation of the activation energy (Eo) of the fragmentation processes for lithiated and trifluoroacetated disaccharides, such as maltose, cellobiose, isomaltose, gentiobiose, and trehalose. The internal energy-dependent rate constants k(Eint) were calculated using the Rice-Ramsperger-Kassel-Marcus (RRKM) or the Rice-Ramsperger-Kassel (RRK) theory. The Eo values were estimated by fitting the calculated survival yield (SY) curves to the experimental ones. The calculated Eo values of the fragmentation processes for lithiated disaccharides were in the range of 1.4-1.7 eV, and were found to increase in the order trehalose < maltose < isomaltose < cellobiose < gentiobiose.
Characterization of protein folding by a Φ-value calculation with a statistical-mechanical model.
Wako, Hiroshi; Abe, Haruo
2016-01-01
The Φ-value analysis approach provides information about transition-state structures along the folding pathway of a protein by measuring the effects of an amino acid mutation on folding kinetics. Here we compared the theoretically calculated Φ values of 27 proteins with their experimentally observed Φ values; the theoretical values were calculated using a simple statistical-mechanical model of protein folding. The theoretically calculated Φ values reflected the corresponding experimentally observed Φ values with reasonable accuracy for many of the proteins, but not for all. The correlation between the theoretically calculated and experimentally observed Φ values strongly depends on whether the protein-folding mechanism assumed in the model holds true in real proteins. In other words, the correlation coefficient can be expected to illuminate the folding mechanisms of proteins, providing the answer to the question of which model more accurately describes protein folding: the framework model or the nucleation-condensation model. In addition, we tried to characterize protein folding with respect to various properties of each protein apart from the size and fold class, such as the free-energy profile, contact-order profile, and sensitivity to the parameters used in the Φ-value calculation. The results showed that any one of these properties alone was not enough to explain protein folding, although each one played a significant role in it. We have confirmed the importance of characterizing protein folding from various perspectives. Our findings have also highlighted that protein folding is highly variable and unique across different proteins, and this should be considered while pursuing a unified theory of protein folding.
Characterization of protein folding by a Φ-value calculation with a statistical-mechanical model
Wako, Hiroshi; Abe, Haruo
2016-01-01
The Φ-value analysis approach provides information about transition-state structures along the folding pathway of a protein by measuring the effects of an amino acid mutation on folding kinetics. Here we compared the theoretically calculated Φ values of 27 proteins with their experimentally observed Φ values; the theoretical values were calculated using a simple statistical-mechanical model of protein folding. The theoretically calculated Φ values reflected the corresponding experimentally observed Φ values with reasonable accuracy for many of the proteins, but not for all. The correlation between the theoretically calculated and experimentally observed Φ values strongly depends on whether the protein-folding mechanism assumed in the model holds true in real proteins. In other words, the correlation coefficient can be expected to illuminate the folding mechanisms of proteins, providing the answer to the question of which model more accurately describes protein folding: the framework model or the nucleation-condensation model. In addition, we tried to characterize protein folding with respect to various properties of each protein apart from the size and fold class, such as the free-energy profile, contact-order profile, and sensitivity to the parameters used in the Φ-value calculation. The results showed that any one of these properties alone was not enough to explain protein folding, although each one played a significant role in it. We have confirmed the importance of characterizing protein folding from various perspectives. Our findings have also highlighted that protein folding is highly variable and unique across different proteins, and this should be considered while pursuing a unified theory of protein folding. PMID:28409079
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Vincent K., E-mail: vincent.shen@nist.gov; Siderius, Daniel W.
2014-06-28
Using flat-histogram Monte Carlo methods, we investigate the adsorptive behavior of the square-well fluid in two simple slit-pore-like models intended to capture fundamental characteristics of flexible adsorbent materials. Both models require as input thermodynamic information about the flexible adsorbent material itself. An important component of this work involves formulating the flexible pore models in the appropriate thermodynamic (statistical mechanical) ensembles, namely, the osmotic ensemble and a variant of the grand-canonical ensemble. Two-dimensional probability distributions, which are calculated using flat-histogram methods, provide the information necessary to determine adsorption thermodynamics. For example, we are able to determine precisely adsorption isotherms, (equilibrium) phasemore » transition conditions, limits of stability, and free energies for a number of different flexible adsorbent materials, distinguishable as different inputs into the models. While the models used in this work are relatively simple from a geometric perspective, they yield non-trivial adsorptive behavior, including adsorption-desorption hysteresis solely due to material flexibility and so-called “breathing” of the adsorbent. The observed effects can in turn be tied to the inherent properties of the bare adsorbent. Some of the effects are expected on physical grounds while others arise from a subtle balance of thermodynamic and mechanical driving forces. In addition, the computational strategy presented here can be easily applied to more complex models for flexible adsorbents.« less
NASA Astrophysics Data System (ADS)
Shen, Vincent K.; Siderius, Daniel W.
2014-06-01
Using flat-histogram Monte Carlo methods, we investigate the adsorptive behavior of the square-well fluid in two simple slit-pore-like models intended to capture fundamental characteristics of flexible adsorbent materials. Both models require as input thermodynamic information about the flexible adsorbent material itself. An important component of this work involves formulating the flexible pore models in the appropriate thermodynamic (statistical mechanical) ensembles, namely, the osmotic ensemble and a variant of the grand-canonical ensemble. Two-dimensional probability distributions, which are calculated using flat-histogram methods, provide the information necessary to determine adsorption thermodynamics. For example, we are able to determine precisely adsorption isotherms, (equilibrium) phase transition conditions, limits of stability, and free energies for a number of different flexible adsorbent materials, distinguishable as different inputs into the models. While the models used in this work are relatively simple from a geometric perspective, they yield non-trivial adsorptive behavior, including adsorption-desorption hysteresis solely due to material flexibility and so-called "breathing" of the adsorbent. The observed effects can in turn be tied to the inherent properties of the bare adsorbent. Some of the effects are expected on physical grounds while others arise from a subtle balance of thermodynamic and mechanical driving forces. In addition, the computational strategy presented here can be easily applied to more complex models for flexible adsorbents.
Modelling melting in crustal environments, with links to natural systems in the Nepal Himalayas
NASA Astrophysics Data System (ADS)
Isherwood, C.; Holland, T.; Bickle, M.; Harris, N.
2003-04-01
Melt bodies of broadly granitic character occur frequently in mountain belts such as the Himalayan chain which exposes leucogranitic intrusions along its entire length (e.g. Le Fort, 1975). The genesis and disposition of these bodies have considerable implications for the development of tectonic evolution models for such mountain belts. However, melting processes and melt migration behaviour are influenced by many factors (Hess, 1995; Wolf &McMillan, 1995) which are as yet poorly understood. Recent improvements in internally consistent thermodynamic datasets have allowed the modelling of simple granitic melt systems (Holland &Powell, 2001) at pressures below 10 kbar, of which Himalayan leucogranites provide a good natural example. Model calculations such as these have been extended to include an asymmetrical melt-mixing model based on the Van Laar approach, which uses volumes (or pseudovolumes) for the different end-members in a mixture to control the asymmetry of non-ideal mixing. This asymmetrical formalism has been used in conjunction with several different entropy of mixing assumptions in an attempt to find the closest fit to available experimental data for melting in simple binary and ternary haplogranite systems. The extracted mixing data are extended to more complex systems and allow the construction of phase relations in NKASH necessary to model simple haplogranitic melts involving albite, K-feldspar, quartz, sillimanite and {H}2{O}. The models have been applied to real bulk composition data from Himalayan leucogranites.
Equilibrium properties of simple metal thin films in the self-compressed stabilized jellium model.
Mahmoodi, T; Payami, M
2009-07-01
In this work, we have applied the self-compressed stabilized jellium model to predict the equilibrium properties of isolated thin Al, Na and Cs slabs. To make a direct correspondence to atomic slabs, we have considered only those L values that correspond to n-layered atomic slabs with 2≤n≤20, for surface indices (100), (110), and (111). The calculations are based on the density functional theory and self-consistent solution of the Kohn-Sham equations in the local density approximation. Our results show that firstly, the quantum size effects are significant for slabs with sizes smaller than or near to the Fermi wavelength of the valence electrons λ(F), and secondly, some slabs expand while others contract with respect to the bulk spacings. Based on the results, we propose a criterion for realization of significant quantum size effects that lead to expansion of some thin slabs. For more justification of the criterion, we have tested it on Li slabs for 2≤n≤6. We have compared our Al results with those obtained from using all-electron or pseudo-potential first-principles calculations. This comparison shows excellent agreements for Al(100) work functions, and qualitatively good agreements for the other work functions and surface energies. These agreements justify the way we have used the self-compressed stabilized jellium model for the correct description of the properties of simple metal slab systems. On the other hand, our results for the work functions and surface energies of large- n slabs are in good agreement with those obtained from applying the stabilized jellium model for semi-infinite systems. In addition, we have performed the slab calculations in the presence of surface corrugation for selected Al slabs and have shown that the results are worsened.
The SAMPL4 host-guest blind prediction challenge: an overview.
Muddana, Hari S; Fenley, Andrew T; Mobley, David L; Gilson, Michael K
2014-04-01
Prospective validation of methods for computing binding affinities can help assess their predictive power and thus set reasonable expectations for their performance in drug design applications. Supramolecular host-guest systems are excellent model systems for testing such affinity prediction methods, because their small size and limited conformational flexibility, relative to proteins, allows higher throughput and better numerical convergence. The SAMPL4 prediction challenge therefore included a series of host-guest systems, based on two hosts, cucurbit[7]uril and octa-acid. Binding affinities in aqueous solution were measured experimentally for a total of 23 guest molecules. Participants submitted 35 sets of computational predictions for these host-guest systems, based on methods ranging from simple docking, to extensive free energy simulations, to quantum mechanical calculations. Over half of the predictions provided better correlations with experiment than two simple null models, but most methods underperformed the null models in terms of root mean squared error and linear regression slope. Interestingly, the overall performance across all SAMPL4 submissions was similar to that for the prior SAMPL3 host-guest challenge, although the experimentalists took steps to simplify the current challenge. While some methods performed fairly consistently across both hosts, no single approach emerged as consistent top performer, and the nonsystematic nature of the various submissions made it impossible to draw definitive conclusions regarding the best choices of energy models or sampling algorithms. Salt effects emerged as an issue in the calculation of absolute binding affinities of cucurbit[7]uril-guest systems, but were not expected to affect the relative affinities significantly. Useful directions for future rounds of the challenge might involve encouraging participants to carry out some calculations that replicate each others' studies, and to systematically explore parameter options.
Simplified Calculation Model and Experimental Study of Latticed Concrete-Gypsum Composite Panels
Jiang, Nan; Ma, Shaochun
2015-01-01
In order to address the performance complexity of the various constituent materials of (dense-column) latticed concrete-gypsum composite panels and the difficulty in the determination of the various elastic constants, this paper presented a detailed structural analysis of the (dense-column) latticed concrete-gypsum composite panel and proposed a feasible technical solution to simplified calculation. In conformity with mechanical rules, a typical panel element was selected and divided into two homogenous composite sub-elements and a secondary homogenous element, respectively for solution, thus establishing an equivalence of the composite panel to a simple homogenous panel and obtaining the effective formulas for calculating the various elastic constants. Finally, the calculation results and the experimental results were compared, which revealed that the calculation method was correct and reliable and could meet the calculation needs of practical engineering and provide a theoretical basis for simplified calculation for studies on composite panel elements and structures as well as a reference for calculations of other panels. PMID:28793631
Simplified Calculation Model and Experimental Study of Latticed Concrete-Gypsum Composite Panels.
Jiang, Nan; Ma, Shaochun
2015-10-27
In order to address the performance complexity of the various constituent materials of (dense-column) latticed concrete-gypsum composite panels and the difficulty in the determination of the various elastic constants, this paper presented a detailed structural analysis of the (dense-column) latticed concrete-gypsum composite panel and proposed a feasible technical solution to simplified calculation. In conformity with mechanical rules, a typical panel element was selected and divided into two homogenous composite sub-elements and a secondary homogenous element, respectively for solution, thus establishing an equivalence of the composite panel to a simple homogenous panel and obtaining the effective formulas for calculating the various elastic constants. Finally, the calculation results and the experimental results were compared, which revealed that the calculation method was correct and reliable and could meet the calculation needs of practical engineering and provide a theoretical basis for simplified calculation for studies on composite panel elements and structures as well as a reference for calculations of other panels.
NASA Technical Reports Server (NTRS)
Tanimoto, T.
1984-01-01
A simple modification of Gilbert's formula to account for slight lateral heterogeneity of the earth leads to a convenient formula to calculate synthetic long period seismograms. Partial derivatives are easily calculated, thus the formula is suitable for direct inversion of seismograms for lateral heterogeneity of the earth. Previously announced in STAR as N83-29893
Douillard, Jean-Marc; Salles, Fabrice; Henry, Marc; Malandrini, Harold; Clauss, Frédéric
2007-01-15
The surface energies of talc and chlorite is computed using a simple model, which uses the calculation of the electrostatic energy of the crystal. It is necessary to calculate the atomic charges. We have chosen to follow Henry's model of determination of partial charges using scales of electronegativity and hardness. The results are in correct agreement with a determination of the surface energy obtained from an analysis of the heat of immersion data. Both results indicate that the surface energy of talc is lower than the surface energy of chlorite, in agreement with observed behavior of wettability. The influence of Al and Fe on this phenomenon is discussed. Surface energy of this type of solids seems to depend more strongly on the geometry of the crystal than on the type of atoms pointing out of the surface; i.e., the surface energy depends more on the physics of the system than on its chemistry.
Anharmonic Vibrational Spectroscopy on Metal Transition Complexes
NASA Astrophysics Data System (ADS)
Latouche, Camille; Bloino, Julien; Barone, Vincenzo
2014-06-01
Advances in hardware performance and the availability of efficient and reliable computational models have made possible the application of computational spectroscopy to ever larger molecular systems. The systematic interpretation of experimental data and the full characterization of complex molecules can then be facilitated. Focusing on vibrational spectroscopy, several approaches have been proposed to simulate spectra beyond the double harmonic approximation, so that more details become available. However, a routine use of such tools requires the preliminary definition of a valid protocol with the most appropriate combination of electronic structure and nuclear calculation models. Several benchmark of anharmonic calculations frequency have been realized on organic molecules. Nevertheless, benchmarks of organometallics or inorganic metal complexes at this level are strongly lacking despite the interest of these systems due to their strong emission and vibrational properties. Herein we report the benchmark study realized with anharmonic calculations on simple metal complexes, along with some pilot applications on systems of direct technological or biological interest.
NASA Astrophysics Data System (ADS)
Yu, Jin; van Veen, Edo; Katsnelson, Mikhail I.; Yuan, Shengjun
2018-06-01
The electronic properties of monolayer tin dilsulfide (ML -Sn S2 ), a recently synthesized metal dichalcogenide, are studied by a combination of first-principles calculations and tight-binding (TB) approximation. An effective lattice Hamiltonian based on six hybrid s p -like orbitals with trigonal rotation symmetry are proposed to calculate the band structure and density of states for ML -Sn S2 , which demonstrates good quantitative agreement with relativistic density-functional-theory calculations in a wide energy range. We show that the proposed TB model can be easily applied to the case of an external electric field, yielding results consistent with those obtained from full Hamiltonian results. In the presence of a perpendicular magnetic field, highly degenerate equidistant Landau levels are obtained, showing typical two-dimensional electron gas behavior. Thus, the proposed TB model provides a simple way in describing properties in ML -Sn S2 .
NASA Astrophysics Data System (ADS)
Gualda, Guilherme A. R.; Ghiorso, Mark S.
2015-01-01
thermodynamic modeling software MELTS is a powerful tool for investigating crystallization and melting in natural magmatic systems. Rhyolite-MELTS is a recalibration of MELTS that better captures the evolution of silicic magmas in the upper crust. The current interface of rhyolite-MELTS, while flexible, can be somewhat cumbersome for the novice. We present a new interface that uses web services consumed by a VBA backend in Microsoft Excel©. The interface is contained within a macro-enabled workbook, where the user can insert the model input information and initiate computations that are executed on a central server at OFM Research. Results of simple calculations are shown immediately within the interface itself. It is also possible to combine a sequence of calculations into an evolutionary path; the user can input starting and ending temperatures and pressures, temperature and pressure steps, and the prevailing oxidation conditions. The program shows partial updates at every step of the computations; at the conclusion of the calculations, a series of data sheets and diagrams are created in a separate workbook, which can be saved independently of the interface. Additionally, the user can specify a grid of temperatures and pressures and calculate a phase diagram showing the conditions at which different phases are present. The interface can be used to apply the rhyolite-MELTS geobarometer. We demonstrate applications of the interface using an example early-erupted Bishop Tuff composition. The interface is simple to use and flexible, but it requires an internet connection. The interface is distributed for free from http://melts.ofm-research.org.
Oda, Hitomi; Miyauchi, Akira; Ito, Yasuhiro; Sasai, Hisanori; Masuoka, Hiroo; Yabuta, Tomonori; Fukushima, Mitsuhiro; Higashiyama, Takuya; Kihara, Minoru; Kobayashi, Kaoru; Miya, Akihiro
2017-01-30
The incidence of thyroid cancer is increasing rapidly in many countries, resulting in rising societal costs of the care of thyroid cancer. We reported that the active surveillance of low-risk papillary microcarcinoma had less unfavorable events than immediate surgery, while the oncological outcomes of these managements were similarly excellent. Here we calculated the medical costs of these two managements. We created a model of the flow of these managements, based on our previous study. The flow and costs include the step of diagnosis, surgery, prescription of medicine, recurrence, salvage surgery for recurrence, and care for 10 years after the diagnosis. The costs were calculated according to the typical clinical practices at Kuma Hospital performed under the Japanese Health Care Insurance System. If conversion surgeries were not considered, the 'simple cost' of active surveillance for 10 years was 167,780 yen/patient. If there were no recurrences, the 'simple cost' of immediate surgery was calculated as 794,770 yen/patient to 1,086,070 yen/patient, depending on the type of surgery and postoperative medication. The 'simple cost' of surgery was 4.7 to 6.5 times the 'simple cost' of surveillance. When conversion surgeries and recurrence were considered, the 'total cost' of active surveillance for 10 years became 225,695 yen/patient. When recurrence were considered, the 'total cost' of immediate surgery was 928,094 yen/patient, which was 4.1 times the 'total cost' of the active surveillance. At Kuma Hospital in Japan, the 10-year total cost of immediate surgery was 4.1 times expensive than active surveillance.
A simple method for measurement of maximal downstroke power on friction-loaded cycle ergometer.
Morin, Jean-Benoît; Belli, Alain
2004-01-01
The aim of this study was to propose and validate a post-hoc correction method to obtain maximal power values taking into account inertia of the flywheel during sprints on friction-loaded cycle ergometers. This correction method was obtained from a basic postulate of linear deceleration-time evolution during the initial phase (until maximal power) of a sprint and included simple parameters as flywheel inertia, maximal velocity, time to reach maximal velocity and friction force. The validity of this model was tested by comparing measured and calculated maximal power values for 19 sprint bouts performed by five subjects against 0.6-1 N kg(-1) friction loads. Non-significant differences between measured and calculated maximal power (1151+/-169 vs. 1148+/-170 W) and a mean error index of 1.31+/-1.20% (ranging from 0.09% to 4.20%) showed the validity of this method. Furthermore, the differences between measured maximal power and power neglecting inertia (20.4+/-7.6%, ranging from 9.5% to 33.2%) emphasized the usefulness of power correcting in studies about anaerobic power which do not include inertia, and also the interest of this simple post-hoc method.
Simpkin, D J
1989-02-01
A Monte Carlo calculation has been performed to determine the transmission of broad constant-potential x-ray beams through Pb, concrete, gypsum wallboard, steel and plate glass. The EGS4 code system was used with a simple broad-beam geometric model to generate exposure transmission curves for published 70, 100, 120 and 140-kVcp x-ray spectra. These curves are compared to measured three-phase generated x-ray transmission data in the literature and found to be reasonable. For calculation ease the data are fit to an equation previously shown to describe such curves quite well. These calculated transmission data are then used to create three-phase shielding tables for Pb and concrete, as well as other materials not available in Report No. 49 of the NCRP.
Rare-gas impurities in alkali metals: Relation to optical absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meltzer, D.E.; Pinski, F.J.; Stocks, G.M.
1988-04-15
An investigation of the nature of rare-gas impurity potentials in alkali metals is performed. Results of calculations based on simple models are presented, which suggest the possibility of resonance phenomena. These could lead to widely varying values for the exponents which describe the shape of the optical-absorption spectrum at threshold in the Mahan--Nozieres--de Dominicis theory. Detailed numerical calculations are then performed with the Korringa-Kohn-Rostoker coherent-potential-approximation method. The results of these highly realistic calculations show no evidence for the resonance phenomena, and lead to predictions for the shape of the spectra which are in contradiction to observations. Absorption and emission spectramore » are calculated for two of the systems studied, and their relation to experimental data is discussed.« less
Douillard, J M; Henry, M
2003-07-15
A very simple route to calculation of the surface energy of solids is proposed because this value is very difficult to determine experimentally. The first step is the calculation of the attractive part of the electrostatic energy of crystals. The partial charges used in this calculation are obtained by using electronegativity equalization and scales of electronegativity and hardness deduced from physical characteristics of the atom. The lattice energies of the infinite crystal and of semi-infinite layers are then compared. The difference is related to the energy of cohesion and then to the surface energy. Very good results are obtained with ice, if one compares with the surface energy of liquid water, which is generally considered a good approximation of the surface energy of ice.
On a thermal analysis of a second stripper for rare isotope accelerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momozaki, Y.; Nolen, J.; Nuclear Engineering Division
2008-08-04
This memo summarizes simple calculations and results of the thermal analysis on the second stripper to be used in the driver linac of Rare Isotope Accelerator (RIA). Both liquid (Sodium) and solid (Titanium and Vanadium) stripper concepts were considered. These calculations were intended to provide basic information to evaluate the feasibility of liquid (thick film) and solid (rotating wheel) second strippers. Nuclear physics calculations to estimate the volumetric heat generation in the stripper material were performed by 'LISE for Excel'. In the thermal calculations, the strippers were modeled as a thin 2D plate with uniform heat generation within the beammore » spot. Then, temperature distributions were computed by assuming that the heat spreads conductively in the plate in radial direction without radiative heat losses to surroundings.« less
A statistical method to estimate low-energy hadronic cross sections
NASA Astrophysics Data System (ADS)
Balassa, Gábor; Kovács, Péter; Wolf, György
2018-02-01
In this article we propose a model based on the Statistical Bootstrap approach to estimate the cross sections of different hadronic reactions up to a few GeV in c.m.s. energy. The method is based on the idea, when two particles collide a so-called fireball is formed, which after a short time period decays statistically into a specific final state. To calculate the probabilities we use a phase space description extended with quark combinatorial factors and the possibility of more than one fireball formation. In a few simple cases the probability of a specific final state can be calculated analytically, where we show that the model is able to reproduce the ratios of the considered cross sections. We also show that the model is able to describe proton-antiproton annihilation at rest. In the latter case we used a numerical method to calculate the more complicated final state probabilities. Additionally, we examined the formation of strange and charmed mesons as well, where we used existing data to fit the relevant model parameters.
A new method to optimize natural convection heat sinks
NASA Astrophysics Data System (ADS)
Lampio, K.; Karvinen, R.
2017-08-01
The performance of a heat sink cooled by natural convection is strongly affected by its geometry, because buoyancy creates flow. Our model utilizes analytical results of forced flow and convection, and only conduction in a solid, i.e., the base plate and fins, is solved numerically. Sufficient accuracy for calculating maximum temperatures in practical applications is proved by comparing the results of our model with some simple analytical and computational fluid dynamics (CFD) solutions. An essential advantage of our model is that it cuts down on calculation CPU time by many orders of magnitude compared with CFD. The shorter calculation time makes our model well suited for multi-objective optimization, which is the best choice for improving heat sink geometry, because many geometrical parameters with opposite effects influence the thermal behavior. In multi-objective optimization, optimal locations of components and optimal dimensions of the fin array can be found by simultaneously minimizing the heat sink maximum temperature, size, and mass. This paper presents the principles of the particle swarm optimization (PSO) algorithm and applies it as a basis for optimizing existing heat sinks.
Borges, Itamar; Aquino, Adélia J A; Köhn, Andreas; Nieman, Reed; Hase, William L; Chen, Lin X; Lischka, Hans
2013-12-11
A detailed quantum chemical simulation of the excitonic and charge-transfer (CT) states of a bulk heterojunction model containing poly(thieno[3,4-b]thiophene benzodithiophene) (PTB1)/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) is reported. The largest molecular model contains two stacked PTB1 trimer chains interacting with C60 positioned on top of and lateral to the (PTB1)3 stack. The calculations were performed using the algebraic diagrammatic construction method to second order (ADC(2)). One main result of the calculations is that the CT states are located below the bright inter-chain excitonic state, directly accessible via internal conversion processes. The other important aspects of the calculations are the formation of discrete bands of CT states originating from the lateral C60's and the importance of inter-chain charge delocalization for the stability of the CT states. A simple model for the charge separation step is also given, revealing the energetic feasibility of the overall photovoltaic process.
Improving deep convolutional neural networks with mixed maxout units.
Zhao, Hui-Zhen; Liu, Fu-Xian; Li, Long-Yue
2017-01-01
Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN) that "non-maximal features are unable to deliver" and "feature mapping subspace pooling is insufficient," we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifically, we do so by calculating the exponential probabilities of feature mappings gained by applying different convolutional transformations over the same input and then calculating the expected values according to their exponential probabilities. Moreover, we introduce the Bernoulli distribution to balance the maximum values with the expected values of the feature mappings subspace. Finally, we design a simple model to verify the pooling ability of mixout units and a Mixout-units-based Network-in-Network (NiN) model to analyze the feature learning ability of the mixout models. We argue that our proposed units improve the pooling ability and that mixout models can achieve better feature learning and classification performance.
Li, Jing; Wang, Min-Yan; Zhang, Jian; He, Wan-Qing; Nie, Lei; Shao, Xia
2013-12-01
VOCs emission from petrochemical storage tanks is one of the important emission sources in the petrochemical industry. In order to find out the VOCs emission amount of petrochemical storage tanks, Tanks 4.0.9d model is utilized to calculate the VOCs emission from different kinds of storage tanks. VOCs emissions from a horizontal tank, a vertical fixed roof tank, an internal floating roof tank and an external floating roof tank were calculated as an example. The consideration of the site meteorological information, the sealing information, the tank content information and unit conversion by using Tanks 4.0.9d model in China was also discussed. Tanks 4.0.9d model can be used to estimate VOCs emissions from petrochemical storage tanks in China as a simple and highly accurate method.
NASA Technical Reports Server (NTRS)
Henderson, Robert A.; Schrag, Robert L.
1987-01-01
A method of modelling a system consisting of a cylindrical coil with its axis perpendicular to a metal plate of finite thickness, and a simple electrical circuit for producing a transient current in the coil, is discussed in the context of using such a system for de-icing aircraft surfaces. A transmission line model of the coil and metal plate is developed as the heart of the system model. It is shown that this transmission model is central to calculation of the coil impedance, the coil current, the magnetic fields established on the surfaces of the metal plate, and the resultant total force between the coil and the plate. FORTRAN algorithms were developed for numerical calculation of each of these quantities, and the algorithms were applied to an experimental prototype system in which these quantities had been measured. Good agreement is seen to exist between the predicted and measured results.
Simulations of Xe and U diffusion in UO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders D.; Vyas, Shyam; Tonks, Michael R.
2012-09-10
Diffusion of xenon (Xe) and uranium (U) in UO{sub 2} is controlled by vacancy mechanisms and under irradiation the formation of mobile vacancy clusters is important. Based on the vacancy and cluster diffusion mechanisms established from density functional theory (DFT) calculations, we derive continuum thermodynamic and diffusion models for Xe and U in UO{sub 2}. In order to capture the effects of irradiation, vacancies (Va) are explicitly coupled to the Xe and U dynamics. Segregation of defects to grain boundaries in UO{sub 2} is described by combining the bulk diffusion model with models of the interaction between Xe atoms andmore » vacancies with grain boundaries, which were derived from atomistic calculations. The diffusion and segregation models were implemented in the MOOSE-Bison-Marmot (MBM) finite element (FEM) framework and the Xe/U redistribution was simulated for a few simple microstructures.« less
Optical and biometric relationships of the isolated pig crystalline lens.
Vilupuru, A S; Glasser, A
2001-07-01
To investigate the interrelationships between optical and biometric properties of the porcine crystalline lens, to compare these findings with similar relationships found for the human lens and to attempt to fit this data to a geometric model of the optical and biometric properties of the pig lens. Weight, focal length, spherical aberration, surface curvatures, thickness and diameters of 20 isolated pig lenses were measured and equivalent refractive index was calculated. These parameters were compared and used to geometrically model the pig lens. Linear relationships were identified between many of the lens biometric and optical properties. The existence of these relationships allowed a simple geometrical model of the pig lens to be calculated which offers predictions of the optical properties. The linear relationships found and the agreement observed between measured and modeled results suggest that the pig lens confirms to a predictable, preset developmental pattern and that the optical and biometric properties are predictably interrelated.
NASA Astrophysics Data System (ADS)
Haque, Ghousia Nasreen
The absorption of electromagnetic radiation by positive ions is one of the fundamental processes of nature which occurs in every intensely hot environment. Due to the difficulties in producing sufficient densities of ions in a laboratory, there are very few measurements of ionic photoabsorption parameters. On the theoretical side, some calculations have been made of a few major photoionization parameters, but generally speaking, most of the work done so far has employed rather simple single particle models and any theoretical work which has adequately taken into account intricate atomic many-body and relativistic effects is only scanty. In the present work, several complex aspects of atomic/ionic photoabsorption parameters have been studied. Non -resonant photoionization in neon and argon isonuclear as well as isoelectronic sequences has been studied using a very sophisticated technique, namely the relativistic random phase approximation (RRPA). This technique takes into account relativistic effects as well as an important class of major many-body effects on the same footing. The present calculations confirmed that gross features of photoionization parameters calculated using simpler models were not an artifact of the simple model. Also, the present RRPA calculations on K^+ ion and neutral Ar brought out the relative importance of various many-body effects such the inter-channel coupling. Inter-channel coupling between discrete bound state photoexcitation channels from an inner atomic/ionic level and photoionization continuum channels from an outer atomic/ionic level leads to the phenomena of autoionization resonances in the photoionization process. These resonances lead to very complex effects in the atomic/ionic photoabsorption spectra. These resonances have been calculated and studied in the present work in the neon and magnesium isoelectronic sequences using the relativistic multi-channel quantum defect theory (RMQDT) within the framework of the RRPA. The character of the autoionization resonances studied was determined in the present work and the effect of series perturbations in the Rydberg series due to interference between various multichannel processes was quantitatively determined. Furthermore, results of the present calculations also serve as important pointer to measure the relative strengths of radiative (fluorescence) decay modes and non -radiative (autoionization/auger) decay modes in an isoelectronic sequence.
Depletion of interstitial oxygen in silicon and the thermal donor model
NASA Technical Reports Server (NTRS)
Borenstein, Jeffrey T.; Singh, Vijay A.; Corbett, James W.
1987-01-01
It is shown here that the experimental results of Newman (1985) and Tan et al. (1986) regarding the loss of oxygen interstitials during 450 C annealing of Czochralski silicon are consistent with the recently proposed model of Borenstein, Peak, and Corbett (1986) for thermal donor formation. Calculations were carried out for TD cores corresponding to O2, O3, O4, and/or O5 clusters. A simple model which attempts to capture the essential physics of the interstitial depletion has been constructed, and is briefly described.
Calculation of TIR Canopy Hot Spot and Implications for Earth Radiation Budget
NASA Technical Reports Server (NTRS)
Smith, J. A.; Ballard, J. R., Jr.
2000-01-01
Using a 3-D model for thermal infrared exitance and the Lowtran 7 atmospheric radiative transfer model, we compute the variation in brightness temperature with view direction and, in particular, the canopy thermal hot spot. We then perform a sensitivity analysis of surface energy balance components for a nominal case using a simple SVAT model given the uncertainty in canopy temperature arising from the thermal hot spot effect. Canopy thermal hot spot variations of two degrees C lead to differences of plus or minus 24% in the midday available energy.
A Simple Model of Pulsed Ejector Thrust Augmentation
NASA Technical Reports Server (NTRS)
Wilson, Jack; Deloof, Richard L. (Technical Monitor)
2003-01-01
A simple model of thrust augmentation from a pulsed source is described. In the model it is assumed that the flow into the ejector is quasi-steady, and can be calculated using potential flow techniques. The velocity of the flow is related to the speed of the starting vortex ring formed by the jet. The vortex ring properties are obtained from the slug model, knowing the jet diameter, speed and slug length. The model, when combined with experimental results, predicts an optimum ejector radius for thrust augmentation. Data on pulsed ejector performance for comparison with the model was obtained using a shrouded Hartmann-Sprenger tube as the pulsed jet source. A statistical experiment, in which ejector length, diameter, and nose radius were independent parameters, was performed at four different frequencies. These frequencies corresponded to four different slug length to diameter ratios, two below cut-off, and two above. Comparison of the model with the experimental data showed reasonable agreement. Maximum pulsed thrust augmentation is shown to occur for a pulsed source with slug length to diameter ratio equal to the cut-off value.
Tanaka, Yoshihisa; Nakamura, Shinichiro; Kuriyama, Shinichi; Ito, Hiromu; Furu, Moritoshi; Komistek, Richard D; Matsuda, Shuichi
2016-11-01
It is unknown whether a computer simulation with simple models can estimate individual in vivo knee kinematics, although some complex models have predicted the knee kinematics. The purposes of this study are first, to validate the accuracy of the computer simulation with our developed model during a squatting activity in a weight-bearing deep knee bend and then, to analyze the contact area and the contact stress of the tri-condylar implants for individual patients. We compared the anteroposterior (AP) contact positions of medial and lateral condyles calculated by the computer simulation program with the positions measured from the fluoroscopic analysis for three implanted knees. Then the contact area and the stress including the third condyle were calculated individually using finite element (FE) analysis. The motion patterns were similar in the simulation program and the fluoroscopic surveillance. Our developed model could nearly estimate the individual in vivo knee kinematics. The mean and maximum differences of the AP contact positions were 1.0mm and 2.5mm, respectively. At 120° of knee flexion, the contact area at the third condyle was wider than the both condyles. The mean maximum contact stress at the third condyle was lower than the both condyles at 90° and 120° of knee flexion. Individual bone models are required to estimate in vivo knee kinematics in our simple model. The tri-condylar implant seems to be safe for deep flexion activities due to the wide contact area and low contact stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bayesian Analysis of Evolutionary Divergence with Genomic Data under Diverse Demographic Models.
Chung, Yujin; Hey, Jody
2017-06-01
We present a new Bayesian method for estimating demographic and phylogenetic history using population genomic data. Several key innovations are introduced that allow the study of diverse models within an Isolation-with-Migration framework. The new method implements a 2-step analysis, with an initial Markov chain Monte Carlo (MCMC) phase that samples simple coalescent trees, followed by the calculation of the joint posterior density for the parameters of a demographic model. In step 1, the MCMC sampling phase, the method uses a reduced state space, consisting of coalescent trees without migration paths, and a simple importance sampling distribution without the demography of interest. Once obtained, a single sample of trees can be used in step 2 to calculate the joint posterior density for model parameters under multiple diverse demographic models, without having to repeat MCMC runs. Because migration paths are not included in the state space of the MCMC phase, but rather are handled by analytic integration in step 2 of the analysis, the method is scalable to a large number of loci with excellent MCMC mixing properties. With an implementation of the new method in the computer program MIST, we demonstrate the method's accuracy, scalability, and other advantages using simulated data and DNA sequences of two common chimpanzee subspecies: Pan troglodytes (P. t.) troglodytes and P. t. verus. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Trunina, Natalia; Derbov, Vladimir; Tuchin, Valery; Altshuler, Gregory
2008-06-01
Dentinal permeation is of interest in a wide context of tooth care and treatment, in particular, tooth color improvement using combination of chemical whitening agents and light activation. A simple model of dentinal permeation accounting for the morphology of human tooth dentine and including dentinal tubules, more dense and homogeneous peritubular dentine, and less dense and less homogeneous intertubular dentin is proposed. Calculation of permeability of dentine layer is carried out for H IIO and H IIO II versus the tubule diameter and tubule density taken from the microphotograph analysis. This opens the possibility to calculate the distribution of permeability over the tooth surface taking into account the variations of tubule diameter and density as well as those of the diffusion coefficients and layer thickness
Distributed Parameter Analysis of Pressure and Flow Disturbances in Rocket Propellant Feed Systems
NASA Technical Reports Server (NTRS)
Dorsch, Robert G.; Wood, Don J.; Lightner, Charlene
1966-01-01
A digital distributed parameter model for computing the dynamic response of propellant feed systems is formulated. The analytical approach used is an application of the wave-plan method of analyzing unsteady flow. Nonlinear effects are included. The model takes into account locally high compliances at the pump inlet and at the injector dome region. Examples of the calculated transient and steady-state periodic responses of a simple hypothetical propellant feed system to several types of disturbances are presented. Included are flow disturbances originating from longitudinal structural motion, gimbaling, throttling, and combustion-chamber coupling. The analytical method can be employed for analyzing developmental hardware and offers a flexible tool for the calculation of unsteady flow in these systems.
Influence of different dose calculation algorithms on the estimate of NTCP for lung complications
Bäck, Anna
2013-01-01
Due to limitations and uncertainties in dose calculation algorithms, different algorithms can predict different dose distributions and dose‐volume histograms for the same treatment. This can be a problem when estimating the normal tissue complication probability (NTCP) for patient‐specific dose distributions. Published NTCP model parameters are often derived for a different dose calculation algorithm than the one used to calculate the actual dose distribution. The use of algorithm‐specific NTCP model parameters can prevent errors caused by differences in dose calculation algorithms. The objective of this work was to determine how to change the NTCP model parameters for lung complications derived for a simple correction‐based pencil beam dose calculation algorithm, in order to make them valid for three other common dose calculation algorithms. NTCP was calculated with the relative seriality (RS) and Lyman‐Kutcher‐Burman (LKB) models. The four dose calculation algorithms used were the pencil beam (PB) and collapsed cone (CC) algorithms employed by Oncentra, and the pencil beam convolution (PBC) and anisotropic analytical algorithm (AAA) employed by Eclipse. Original model parameters for lung complications were taken from four published studies on different grades of pneumonitis, and new algorithm‐specific NTCP model parameters were determined. The difference between original and new model parameters was presented in relation to the reported model parameter uncertainties. Three different types of treatments were considered in the study: tangential and locoregional breast cancer treatment and lung cancer treatment. Changing the algorithm without the derivation of new model parameters caused changes in the NTCP value of up to 10 percentage points for the cases studied. Furthermore, the error introduced could be of the same magnitude as the confidence intervals of the calculated NTCP values. The new NTCP model parameters were tabulated as the algorithm was varied from PB to PBC, AAA, or CC. Moving from the PB to the PBC algorithm did not require new model parameters; however, moving from PB to AAA or CC did require a change in the NTCP model parameters, with CC requiring the largest change. It was shown that the new model parameters for a given algorithm are different for the different treatment types. PACS numbers: 87.53.‐j, 87.53.Kn, 87.55.‐x, 87.55.dh, 87.55.kd PMID:24036865
Li, Zhengqiang; Li, Kaitao; Li, Donghui; Yang, Jiuchun; Xu, Hua; Goloub, Philippe; Victori, Stephane
2016-09-20
The Cimel new technologies allow both daytime and nighttime aerosol optical depth (AOD) measurements. Although the daytime AOD calibration protocols are well established, accurate and simple nighttime calibration is still a challenging task. Standard lunar-Langley and intercomparison calibration methods both require specific conditions in terms of atmospheric stability and site condition. Additionally, the lunar irradiance model also has some known limits on its uncertainty. This paper presents a simple calibration method that transfers the direct-Sun calibration constant, V0,Sun, to the lunar irradiance calibration coefficient, CMoon. Our approach is a pure calculation method, independent of site limits, e.g., Moon phase. The method is also not affected by the lunar irradiance model limitations, which is the largest error source of traditional calibration methods. Besides, this new transfer calibration approach is easy to use in the field since CMoon can be obtained directly once V0,Sun is known. Error analysis suggests that the average uncertainty of CMoon over the 440-1640 nm bands obtained with the transfer method is 2.4%-2.8%, depending on the V0,Sun approach (Langley or intercomparison), which is comparable with that of lunar-Langley approach, theoretically. In this paper, the Sun-Moon transfer and the Langley methods are compared based on site measurements in Beijing, and the day-night measurement continuity and performance are analyzed.
NASA Astrophysics Data System (ADS)
Hinton, Courtney; Punjabi, Alkesh; Ali, Halima
2008-11-01
The simple map is the simplest map that has topology of divertor tokamaks [1]. Recently, the action-angle coordinates for simple map are analytically calculated, and simple map is constructed in action-angle coordinates [2]. Action-angle coordinates for simple map can not be inverted to real space coordinates (R,Z). Because there is logarithmic singularity on the ideal separatrix, trajectories can not cross separatrix [2]. Simple map in action-angle coordinates is applied to calculate stochastic broadening due to magnetic noise and field errors. Mode numbers for noise + field errors from the DIII-D tokamak are used. Mode numbers are (m,n)=(3,1), (4,1), (6,2), (7,2), (8,2), (9,3), (10,3), (11,3), (12,3) [3]. The common amplitude δ is varied from 0.8X10-5 to 2.0X10-5. For this noise and field errors, the width of stochastic layer in simple map is calculated. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793 1. A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Let. A 364, 140--145 (2007). 2. O. Kerwin, A. Punjabi, and H. Ali, to appear in Physics of Plasmas. 3. A. Punjabi and H. Ali, P1.012, 35^th EPS Conference on Plasma Physics, June 9-13, 2008, Hersonissos, Crete, Greece.
NASA Astrophysics Data System (ADS)
Peleshko, V. A.
2016-06-01
The deviator constitutive relation of the proposed theory of plasticity has a three-term form (the stress, stress rate, and strain rate vectors formed from the deviators are collinear) and, in the specialized (applied) version, in addition to the simple loading function, contains four dimensionless constants of the material determined from experiments along a two-link strain trajectory with an orthogonal break. The proposed simple mechanism is used to calculate the constants of themodel for four metallic materials that significantly differ in the composition and in the mechanical properties; the obtained constants do not deviate much from their average values (over the four materials). The latter are taken as universal constants in the engineering version of the model, which thus requires only one basic experiment, i. e., a simple loading test. If the material exhibits the strengthening property in cyclic circular deformation, then the model contains an additional constant determined from the experiment along a strain trajectory of this type. (In the engineering version of the model, the cyclic strengthening effect is not taken into account, which imposes a certain upper bound on the difference between the length of the strain trajectory arc and the module of the strain vector.) We present the results of model verification using the experimental data available in the literature about the combined loading along two- and multi-link strain trajectories with various lengths of links and angles of breaks, with plane curvilinear segments of various constant and variable curvature, and with three-dimensional helical segments of various curvature and twist. (All in all, we use more than 80 strain programs; the materials are low- andmedium-carbon steels, brass, and stainless steel.) These results prove that the model can be used to describe the process of arbitrary active (in the sense of nonnegative capacity of the shear) combine loading and final unloading of originally quasi-isotropic elastoplastic materials. In practical calculations, in the absence of experimental data about the properties of a material under combined loading, the use of the engineering version of the model is quite acceptable. The simple identification, wide verifiability, and the availability of a software implementation of the method for solving initial-boundary value problems permit treating the proposed theory as an applied theory.
Experimental Verification of Same Simple Equilibrium Models of Masonry Shear Walls
NASA Astrophysics Data System (ADS)
Radosław, Jasiński
2017-10-01
This paper contains theoretical fundamentals of strut and tie models, used in unreinforced horizontal shear walls. Depending on support conditions and wall loading, we can distinguish models with discrete bars when point load is applied to the wall (type I model) or with continuous bars (type II model) when load is uniformly distributed at the wall boundary. The main part of this paper compares calculated results with the own tests on horizontal shear walls made of solid brick, silicate elements and autoclaved aerated concrete. The tests were performed in Poland. The model required some modifications due to specific load and static diagram.
Analytic expressions for the black-sky and white-sky albedos of the cosine lobe model.
Goodin, Christopher
2013-05-01
The cosine lobe model is a bidirectional reflectance distribution function (BRDF) that is commonly used in computer graphics to model specular reflections. The model is both simple and physically plausible, but physical quantities such as albedo have not been related to the parameterization of the model. In this paper, analytic expressions for calculating the black-sky and white-sky albedos from the cosine lobe BRDF model with integer exponents will be derived, to the author's knowledge for the first time. These expressions for albedo can be used to place constraints on physics-based simulations of radiative transfer such as high-fidelity ray-tracing simulations.
Surrogates for numerical simulations; optimization of eddy-promoter heat exchangers
NASA Technical Reports Server (NTRS)
Patera, Anthony T.; Patera, Anthony
1993-01-01
Although the advent of fast and inexpensive parallel computers has rendered numerous previously intractable calculations feasible, many numerical simulations remain too resource-intensive to be directly inserted in engineering optimization efforts. An attractive alternative to direct insertion considers models for computational systems: the expensive simulation is evoked only to construct and validate a simplified, input-output model; this simplified input-output model then serves as a simulation surrogate in subsequent engineering optimization studies. A simple 'Bayesian-validated' statistical framework for the construction, validation, and purposive application of static computer simulation surrogates is presented. As an example, dissipation-transport optimization of laminar-flow eddy-promoter heat exchangers are considered: parallel spectral element Navier-Stokes calculations serve to construct and validate surrogates for the flowrate and Nusselt number; these surrogates then represent the originating Navier-Stokes equations in the ensuing design process.
Dense matter theory: A simple classical approach
NASA Astrophysics Data System (ADS)
Savić, P.; Čelebonović, V.
1994-07-01
In the sixties, the first author and by P. Savić and R. Kašanin started developing a mean-field theory of dense matter. It is based on the Coulomb interaction, supplemented by a microscopic selection rule and a set of experimentally founded postulates. Applications of the theory range from the calculation of models of planetary internal structure to DAC experiments.
Approximate solution for the electronic density profile at the surface of jellium
NASA Astrophysics Data System (ADS)
Schmickler, Wolfgang; Henderson, Douglas
1984-09-01
A simple family of trial functions for the electronic density at the surface of jellium, which accounts for Friedel oscillations and incorporates the Budd-Vannimenus theorem, is proposed. The free parameters are determined by energy minimization. Model calculations give good results for the work function and for the induced surface charge in the presence of an external field.
Rendering the "Not-So-Simple" Pendulum Experimentally Accessible.
ERIC Educational Resources Information Center
Jackson, David P.
1996-01-01
Presents three methods for obtaining experimental data related to acceleration of a simple pendulum. Two of the methods involve angular position measurements and the subsequent calculation of the acceleration while the third method involves a direct measurement of the acceleration. Compares these results with theoretical calculations and…
Molecular Dynamics Simulations of Grain Boundary and Bulk Diffusion in Metals.
NASA Astrophysics Data System (ADS)
Plimpton, Steven James
Diffusion is a microscopic mass transport mechanism that underlies many important macroscopic phenomena affecting the structural, electrical, and mechanical properties of metals. This thesis presents results from atomistic simulation studies of diffusion both in bulk and in the fast diffusion paths known as grain boundaries. Using the principles of molecular dynamics single boundaries are studied and their structure and dynamic properties characterized. In particular, tilt boundary bicrystal and bulk models of fcc Al and bcc alpha-Fe are simulated. Diffusion coefficients and activation energies for atomic motion are calculated for both models and compared to experimental data. The influence of the interatomic pair potential on the diffusion is studied in detail. A universal relation between the melting temperature that a pair potential induces in a simulated bulk model and the potential energy barrier height for atomic hopping is derived and used to correlate results for a wide variety of pair potentials. Using these techniques grain boundary and bulk diffusion coefficients for any fcc material can be estimated from simple static calculations without the need to perform more time-consuming dynamic simulations. The influences of two other factors on grain boundary diffusion are also studied because of the interest of the microelectronics industry in the diffusion related reliability problem known as electromigration. The first factor, known to affect the self diffusion rate of Al, is the presence of Cu impurity atoms in Al tilt boundaries. The bicrystal model for Al is seeded randomly with Cu atoms and a simple hybrid Morse potential used to model the Al-Cu interaction. While some effect due to the Cu is noted, it is concluded that pair potentials are likely an inadequate approximation for the alloy system. The second factor studied is the effect of the boundary orientation angle on the diffusion rate. Symmetric bcc Fe boundaries are relaxed to find optimal structures and their diffusion coefficients calculated. Good agreement is found with the dislocation pipe model for tilt boundary diffusion.
Collapse limit states of reinforced earth retaining walls
NASA Astrophysics Data System (ADS)
Bolton, M. D.; Pang, P. L. R.
The use of systems of earth reinforcement or anchorage is gaining in popularity. It therefore becomes important to assess whether the methods of design which were adopted for such constructions represent valid predictions of realistic limit states. Confidence can only be gained with regard to the effectiveness of limit state criteria if a wide variety of representative limit states were observed. Over 80 centrifugal model tests of simple reinforced earth retaining walls were carried out, with the main purpose of clarifying the nature of appropriate collapse criteria. Collapses due to an insufficiency of friction were shown to be repeatable and therefore subject to fairly simple limit state calculations.
NASA Astrophysics Data System (ADS)
Iwasawa, Masaki; Tanikawa, Ataru; Hosono, Natsuki; Nitadori, Keigo; Muranushi, Takayuki; Makino, Junichiro
2016-08-01
We present the basic idea, implementation, measured performance, and performance model of FDPS (Framework for Developing Particle Simulators). FDPS is an application-development framework which helps researchers to develop simulation programs using particle methods for large-scale distributed-memory parallel supercomputers. A particle-based simulation program for distributed-memory parallel computers needs to perform domain decomposition, exchange of particles which are not in the domain of each computing node, and gathering of the particle information in other nodes which are necessary for interaction calculation. Also, even if distributed-memory parallel computers are not used, in order to reduce the amount of computation, algorithms such as the Barnes-Hut tree algorithm or the Fast Multipole Method should be used in the case of long-range interactions. For short-range interactions, some methods to limit the calculation to neighbor particles are required. FDPS provides all of these functions which are necessary for efficient parallel execution of particle-based simulations as "templates," which are independent of the actual data structure of particles and the functional form of the particle-particle interaction. By using FDPS, researchers can write their programs with the amount of work necessary to write a simple, sequential and unoptimized program of O(N2) calculation cost, and yet the program, once compiled with FDPS, will run efficiently on large-scale parallel supercomputers. A simple gravitational N-body program can be written in around 120 lines. We report the actual performance of these programs and the performance model. The weak scaling performance is very good, and almost linear speed-up was obtained for up to the full system of the K computer. The minimum calculation time per timestep is in the range of 30 ms (N = 107) to 300 ms (N = 109). These are currently limited by the time for the calculation of the domain decomposition and communication necessary for the interaction calculation. We discuss how we can overcome these bottlenecks.
Rakowski, Andrzej Z; Nakamura, Toshio; Pazdur, Anna
2008-10-01
Radiocarbon concentration in the atmosphere is significantly lower in areas where man-made emissions of carbon dioxide occur. This phenomenon is known as Suess effect, and is caused by the contamination of clean air with non-radioactive carbon from fossil fuel combustion. The effect is more strongly observed in industrial and densely populated urban areas. Measurements of carbon isotope concentrations in a study area can be compared to those from areas of clear air in order to estimate the amount of carbon dioxide emission from fossil fuel combustion by using a simple mathematical model. This can be calculated using the simple mathematical model. The result of the mathematical model followed in this study suggests that the use of annual rings of trees to obtain the secular variations of 14C concentration of atmospheric CO2 can be useful and efficient for environmental monitoring and modeling of the carbon distribution in local scale.
NASA Astrophysics Data System (ADS)
Ahmed, Chaara El Mouez
Nous avons etudie les relations de dispersion et la diffusion des glueballs et des mesons dans le modele U(1)_{2+1} compact. Ce modele a ete souvent utilise comme un simple modele de la chromodynamique quantique (QCD), parce qu'il possede le confinement ainsi que les etats de glueballs. Par contre, sa structure mathematique est beaucoup plus simple que la QCD. Notre methode consiste a diagonaliser l'Hamiltonien de ce modele dans une base appropriee de graphes et sur reseau impulsion, afin de generer les relations de dispersion des glueballs et des mesons. Pour la diffusion, nous avons utilise la methode dependante du temps pour calculer la matrice S et la section efficace de diffusion des glueballs et des mesons. Les divers resultats obtenus semblent etre en accord avec les travaux anterieurs de Hakim, Alessandrini et al., Irving et al., qui eux, utilisent plutot la theorie des perturbations en couplage fort, et travaillent sur un reseau espace-temps.
Simple Model for Identifying Critical Regions in Atrial Fibrillation
NASA Astrophysics Data System (ADS)
Christensen, Kim; Manani, Kishan A.; Peters, Nicholas S.
2015-01-01
Atrial fibrillation (AF) is the most common abnormal heart rhythm and the single biggest cause of stroke. Ablation, destroying regions of the atria, is applied largely empirically and can be curative but with a disappointing clinical success rate. We design a simple model of activation wave front propagation on an anisotropic structure mimicking the branching network of heart muscle cells. This integration of phenomenological dynamics and pertinent structure shows how AF emerges spontaneously when the transverse cell-to-cell coupling decreases, as occurs with age, beyond a threshold value. We identify critical regions responsible for the initiation and maintenance of AF, the ablation of which terminates AF. The simplicity of the model allows us to calculate analytically the risk of arrhythmia and express the threshold value of transversal cell-to-cell coupling as a function of the model parameters. This threshold value decreases with increasing refractory period by reducing the number of critical regions which can initiate and sustain microreentrant circuits. These biologically testable predictions might inform ablation therapies and arrhythmic risk assessment.
NASA Technical Reports Server (NTRS)
Defacio, B.; Vannevel, Alan; Brander, O.
1993-01-01
A formulation is given for a collection of phonons (sound) in a fluid at a non-zero temperature which uses the simple harmonic oscillator twice; one to give a stochastic thermal 'noise' process and the other which generates a coherent Glauber state of phonons. Simple thermodynamic observables are calculated and the acoustic two point function, 'contrast' is presented. The role of 'coherence' in an equilibrium system is clarified by these results and the simple harmonic oscillator is a key structure in both the formulation and the calculations.
Millimeter wave radiative transfer studies for precipitation measurements
NASA Technical Reports Server (NTRS)
Vivekanandan, J.; Evans, Frank
1989-01-01
Scattering calculations using the discrete dipole approximation and vector radiative transfer calculations were performed to model multiparameter radar return and passive microwave emission for a simple model of a winter storm. The issue of dendrite riming was addressed by computing scattering properties of thin ice disks with varying bulk density. It was shown that C-band multiparameter radar contains information about particle density and the number concentration of the ice particles. The radiative transfer modeling indicated that polarized multifrequency passive microwave emission may be used to infer some properties of ice hydrometers. Detailed radar modeling and vector radiative transfer modeling is in progress to enhance the understanding of simultaneous radar and radiometer measurements, as in the case of the proposed TRMM field program. A one-dimensional cloud model will be used to simulate the storm structure in detail and study the microphysics, such as size and density. Multifrequency polarized radiometer measurements from the SSMI satellite instrument will be analyzed in relation to dual-frequency and dual-polarization radar measurements.
DNA nanosensor surface grafting and salt dependence
NASA Astrophysics Data System (ADS)
Carvalho, B. G.; Fagundes, J.; Martin, A. A.; Raniero, L.; Favero, P. P.
2013-02-01
In this paper we investigated the Paracoccidoides brasiliensis fungus nanosensor by simulations of simple strand DNA grafting on gold nanoparticle. In order to improve the knowledge of nanoparticle environment, the addiction of salt solution was studied at the models proposed by us. Nanoparticle and DNA are represented by economic models validated by us in this paper. In addition, the DNA grafting and salt influences are evaluated by adsorption and bond energies calculations. This theoretical evaluation gives support to experimental diagnostics techniques of diseases.
A nanojet: propulsion of a molecular machine by an asymmetric distribution of reaction--products
NASA Astrophysics Data System (ADS)
Liverpool, Tanniemola; Golestanian, Ramin; Ajdari, Armand
2006-03-01
A simple model for the reaction-driven propulsion of a small device is proposed as a model for (part of) a molecular machine in aqueous media. Motion of the device is driven by an asymmetric distribution of reaction products. We calculate the propulsive velocity of the device as well as the scale of the velocity fluctuations. We also consider the effects of hydrodynamic flow as well as a number of different scenarios for the kinetics of the reaction.
Propulsion of a Molecular Machine by Asymmetric Distribution of Reaction Products
NASA Astrophysics Data System (ADS)
Golestanian, Ramin; Liverpool, Tanniemola B.; Ajdari, Armand
2005-06-01
A simple model for the reaction-driven propulsion of a small device is proposed as a model for (part of) a molecular machine in aqueous media. The motion of the device is driven by an asymmetric distribution of reaction products. The propulsive velocity of the device is calculated as well as the scale of the velocity fluctuations. The effects of hydrodynamic flow as well as a number of different scenarios for the kinetics of the reaction are addressed.
Propulsion of a molecular machine by asymmetric distribution of reaction products.
Golestanian, Ramin; Liverpool, Tanniemola B; Ajdari, Armand
2005-06-10
A simple model for the reaction-driven propulsion of a small device is proposed as a model for (part of) a molecular machine in aqueous media. The motion of the device is driven by an asymmetric distribution of reaction products. The propulsive velocity of the device is calculated as well as the scale of the velocity fluctuations. The effects of hydrodynamic flow as well as a number of different scenarios for the kinetics of the reaction are addressed.
An object oriented implementation of the Yeadon human inertia model
Dembia, Christopher; Moore, Jason K.; Hubbard, Mont
2015-01-01
We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input. PMID:25717365
Some queuing network models of computer systems
NASA Technical Reports Server (NTRS)
Herndon, E. S.
1980-01-01
Queuing network models of a computer system operating with a single workload type are presented. Program algorithms are adapted for use on the Texas Instruments SR-52 programmable calculator. By slightly altering the algorithm to process the G and H matrices row by row instead of column by column, six devices and an unlimited job/terminal population could be handled on the SR-52. Techniques are also introduced for handling a simple load dependent server and for studying interactive systems with fixed multiprogramming limits.
An object oriented implementation of the Yeadon human inertia model.
Dembia, Christopher; Moore, Jason K; Hubbard, Mont
2014-01-01
We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input.
Relativistic Few-Body Hadronic Physics Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyzou, Wayne
2016-06-20
The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computationsmore » push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In addition to computing bound state properties and scattering cross section, we also computed electron scattering cross sections in few-nucleon and few-quark systems, which are sensitive to the electric currents in these systems. We produced the definitive review on article on relativistic quantum mechanics, which and been used by many groups. In addition we developed and tested many computational techniques are used by other groups. Many of these techniques have applications in other areas of physics. The research benefited by collaborations with physicists from many different institutions and countries. It also involved working with seventeen undergraduate and graduate students.« less
Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C; Joyce, Kevin P; Kovalenko, Andriy
2016-11-01
Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.
NASA Astrophysics Data System (ADS)
Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C.; Joyce, Kevin P.; Kovalenko, Andriy
2016-11-01
Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing (R=0.98 for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining R=0.73 compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to R=0.93. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple pK_{ {a}} correction improved agreement with experiment from R=0.54 to R=0.66, despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.
An assessment on convective and radiative heat transfer modelling in tubular solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Sánchez, D.; Muñoz, A.; Sánchez, T.
Four models of convective and radiative heat transfer inside tubular solid oxide fuel cells are presented in this paper, all of them applicable to multidimensional simulations. The work is aimed at assessing if it is necessary to use a very detailed and complicated model to simulate heat transfer inside this kind of device and, for those cases when simple models can be used, the errors are estimated and compared to those of the more complex models. For the convective heat transfer, two models are presented. One of them accounts for the variation of film coefficient as a function of local temperature and composition. This model gives a local value for the heat transfer coefficients and establishes the thermal entry length. The second model employs an average value of the transfer coefficient, which is applied to the whole length of the duct being studied. It is concluded that, unless there is a need to calculate local temperatures, a simple model can be used to evaluate the global performance of the cell with satisfactory accuracy. For the radiation heat transfer, two models are presented again. One of them considers radial radiation exclusively and, thus, radiative exchange between adjacent cells is neglected. On the other hand, the second model accounts for radiation in all directions but increases substantially the complexity of the problem. For this case, it is concluded that deviations between both models are higher than for convection. Actually, using a simple model can lead to a not negligible underestimation of the temperature of the cell.
UDATE1: A computer program for the calculation of uranium-series isotopic ages
Rosenbauer, R.J.
1991-01-01
UDATE1 is a FORTRAN-77 program with an interface for an Apple Macintosh computer that calculates isotope activities from measured count rates to date geologic materials by uranium-series disequilibria. Dates on pure samples can be determined directly by the accumulation of 230Th from 234U and of 231Pa from 235U. Dates for samples contaminated by clays containing abundant natural thorium can be corrected by the program using various mixing models. Input to the program and file management are made simple and user friendly by a series of Macintosh modal dialog boxes. ?? 1991.
NASA Technical Reports Server (NTRS)
Lorenz-Meyer, W.
1977-01-01
In connection with the question on the applicability of test results obtained from cryogenic wind tunnels to the large-scale model the similarity parameter is referred to. A simple method is given for calculating the similarity parameter. From the numerical values obtained it can be deduced that nitrogen behaves practically like an ideal gas when it is close to the saturation point and in a pressure range up to 4 bar. The influence of this parameter on the pressure distribution of a supercritical profile confirms this finding.
Are artificial opals non-close-packed fcc structures?
NASA Astrophysics Data System (ADS)
García-Santamaría, F.; Braun, P. V.
2007-06-01
The authors report a simple experimental method to accurately measure the volume fraction of artificial opals. The results are modeled using several methods, and they find that some of the most common yield very inaccurate results. Both finite size and substrate effects play an important role in calculations of the volume fraction. The experimental results show that the interstitial pore volume is 4%-15% larger than expected for close-packed structures. Consequently, calculations performed in previous work relating the amount of material synthesized in the opal interstices with the optical properties may need revision, especially in the case of high refractive index materials.
A Simple Method for Calculating Clebsch-Gordan Coefficients
ERIC Educational Resources Information Center
Klink, W. H.; Wickramasekara, S.
2010-01-01
This paper presents a simple method for calculating Clebsch-Gordan coefficients for the tensor product of two unitary irreducible representations (UIRs) of the rotation group. The method also works for multiplicity-free irreducible representations appearing in the tensor product of any number of UIRs of the rotation group. The generalization to…
Dependence of surface tension on curvature obtained from a diffuse-interface approach
NASA Astrophysics Data System (ADS)
Badillo, Arnoldo; Lafferty, Nathan; Matar, Omar K.
2017-11-01
From a sharp-interface viewpoint, the surface tension force is f = σκδ (x -xi) n , where σ is the surface tension, κ the local interface curvature, δ the delta function, and n the unit normal vector. The numerical implementation of this force on discrete domains poses challenges that arise from the calculation of the curvature. The continuous surface tension force model, proposed by Brackbill et al. (1992), is an alternative, used commonly in two-phase computational models. In this model, δ is replaced by the gradient of a phase indicator field, whose integral across a diffuse-interface equals unity. An alternative to the Brackbill model are Phase-Field models, which do not require an explicit calculation of the curvature. However, and just as in Brackbill's approach, there are numerical errors that depend on the thickness of the diffuse interface, the grid spacing, and the curvature. We use differential geometry to calculate the leading errors in this force when obtained from a diffuse-interface approach, and outline possible routes to eliminate them. Our results also provide a simple geometrical explanation to the dependence of surface tension on curvature, and to the problem of line tension.
Multiscale simulation of xenon diffusion and grain boundary segregation in UO₂
Andersson, David A.; Tonks, Michael R.; Casillas, Luis; ...
2015-07-01
In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. The segregation rate is controlled by diffusion of fission gas atoms through the grains and interaction with the boundaries. Based on the mechanisms established from earlier density functional theory (DFT) and empirical potential calculations, diffusion models for xenon (Xe), uranium (U) vacancies and U interstitials in UO₂ have been derived for both intrinsic (no irradiation) and irradiation conditions. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model formore » the interaction between Xe atoms and three different grain boundaries in UO₂ (Σ5 tilt, Σ5 twist and a high angle random boundary), as derived from atomistic calculations. The present model does not attempt to capture nucleation or growth of fission gas bubbles at the grain boundaries. The point defect and Xe diffusion and segregation models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as to simulate Xe redistribution for a few simple microstructures.« less
An accurate model for the computation of the dose of protons in water.
Embriaco, A; Bellinzona, V E; Fontana, A; Rotondi, A
2017-06-01
The accurate and fast calculation of the dose in proton radiation therapy is an essential ingredient for successful treatments. We propose a novel approach with a minimal number of parameters. The approach is based on the exact calculation of the electromagnetic part of the interaction, namely the Molière theory of the multiple Coulomb scattering for the transversal 1D projection and the Bethe-Bloch formula for the longitudinal stopping power profile, including a gaussian energy straggling. To this e.m. contribution the nuclear proton-nucleus interaction is added with a simple two-parameter model. Then, the non gaussian lateral profile is used to calculate the radial dose distribution with a method that assumes the cylindrical symmetry of the distribution. The results, obtained with a fast C++ based computational code called MONET (MOdel of ioN dosE for Therapy), are in very good agreement with the FLUKA MC code, within a few percent in the worst case. This study provides a new tool for fast dose calculation or verification, possibly for clinical use. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Search for ternary fission of chromium-48
NASA Astrophysics Data System (ADS)
Dummer, Andrew K.
1999-07-01
Both alpha cluster model calculations and macroscopic energy calculations that allow for a double-neck shape of the compound nucleus suggest the possibility of a novel three 16O, chain-like configuration in 48 Cr. Such a configuration might lead to an enhanced cross section for three-16O breakup. To explore this possibility, the three-body exit channels for the 36Ar + 12C reaction at a beam energy of 210 MeV have been studied. The cross section for 16O + 16O + 16O breakup has been deduced and has been found to be in excess of what would be expected to result from a sequential binary fission process. However, the observation of a similarly enhanced 12C + 16O + 20Ne breakup cross section suggests that the observed 16O + 16O + 16O yields might still be associated with a statistical fission process. The results are discussed in the context of the fission of light nuclear systems and a simple cluster model calculation. This latter, ``Harvey model'' calculation suggests a possible inhibition of the formation of a three- 16O chain configuration from the 36Ar + 12C entrance channel. A further measurement using the 20Ne + 28Si-entrance channel is suggested.
Ahadian, Samad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki
2010-12-15
A molecular dynamics (MD) approach was employed to simulate the imbibition of a designed nanopore by a simple fluid (i.e., a Lennard-Jones (LJ) fluid). The length of imbibition as a function of time for various interactions between the LJ fluid and the pore wall was recorded for this system (i.e., the LJ fluid and the nanopore). By and large, the kinetics of imbibition was successfully described by the Lucas-Washburn (LW) equation, although deviation from it was observed in some cases. This lack of agreement is due to the neglect of the dynamic contact angle (DCA) in the LW equation. Two commonly used models (i.e., hydrodynamic and molecular-kinetic (MK) models) were thus employed to calculate the DCA. It is demonstrated that the MK model is able to justify the simulation results in which are not in good agreement with the simple LW equation. However, the hydrodynamic model is not capable of doing that. Further investigation of the MD simulation data revealed an interesting fact that there is a direct relationship between the wall-fluid interaction and the speed of the capillary imbibition. More evidence to support this claim is presented. Copyright © 2010 Elsevier Inc. All rights reserved.
Hansen, Ulf-Peter; Rauh, Oliver; Schroeder, Indra
2016-01-01
The calculation of flux equations or current-voltage relationships in reaction kinetic models with a high number of states can be very cumbersome. Here, a recipe based on an arrow scheme is presented, which yields a straightforward access to the minimum form of the flux equations and the occupation probability of the involved states in cyclic and linear reaction schemes. This is extremely simple for cyclic schemes without branches. If branches are involved, the effort of setting up the equations is a little bit higher. However, also here a straightforward recipe making use of so-called reserve factors is provided for implementing the branches into the cyclic scheme, thus enabling also a simple treatment of such cases.
Hansen, Ulf-Peter; Rauh, Oliver; Schroeder, Indra
2016-01-01
abstract The calculation of flux equations or current-voltage relationships in reaction kinetic models with a high number of states can be very cumbersome. Here, a recipe based on an arrow scheme is presented, which yields a straightforward access to the minimum form of the flux equations and the occupation probability of the involved states in cyclic and linear reaction schemes. This is extremely simple for cyclic schemes without branches. If branches are involved, the effort of setting up the equations is a little bit higher. However, also here a straightforward recipe making use of so-called reserve factors is provided for implementing the branches into the cyclic scheme, thus enabling also a simple treatment of such cases. PMID:26646356
Relationships between chromosome structure and chromosomal aberrations
NASA Astrophysics Data System (ADS)
Eidelman, Yuri; Andreev, Sergey
An interphase nucleus of human lymphocyte was simulated by the novel Monte Carlo tech-nique. The main features of interphase chromosome structure and packaging were taken into account: different levels of chromatin organisation; nonrandom localisation of chromosomes within a nucleus; chromosome loci dynamics. All chromosomes in a nucleus were modelled as polymer globules. A dynamic pattern of intra/interchromosomal contacts was simulated. The detailed information about chromosomal contacts, such as distribution of intrachromoso-mal contacts over the length of each chromosome and dependence of contact probability on genomic separation between chromosome loci, were calculated and compared to the new exper-imental data obtained by the Hi-C technique. Types and frequencies of simple and complex radiation-induced chromosomal exchange aberrations (CA) induced by X-rays were predicted with taking formation and decay of chromosomal contacts into account. Distance dependence of exchange formation probability was calculated directly. mFISH data for human lymphocytes were analysed. The calculated frequencies of simple CA agreed with the experimental data. Complex CA were underestimated despite the dense packaging of chromosome territories within a nucleus. Possible influence of chromosome-nucleus structural organisation on the frequency and spectrum of radiation-induced chromosome aberrations is discussed.
Model of Pressure Distribution in Vortex Flow Controls
NASA Astrophysics Data System (ADS)
Mielczarek, Szymon; Sawicki, Jerzy M.
2015-06-01
Vortex valves belong to the category of hydrodynamic flow controls. They are important and theoretically interesting devices, so complex from hydraulic point of view, that probably for this reason none rational concept of their operation has been proposed so far. In consequence, functioning of vortex valves is described by CFD-methods (computer-aided simulation of technical objects) or by means of simple empirical relations (using discharge coefficient or hydraulic loss coefficient). Such rational model of the considered device is proposed in the paper. It has a simple algebraic form, but is well grounded physically. The basic quantitative relationship, which describes the valve operation, i.e. dependence between the flow discharge and the circumferential pressure head, caused by the rotation, has been verified empirically. Conformity between calculated and measured parameters of the device allows for acceptation of the proposed concept.
Gurien, Lori A; Wyrick, Deidre L; Smith, Samuel D; Maxson, R Todd
2016-05-01
Although this issue remains unexamined, pediatric surgeons commonly use simple interrupted suture for bowel anastomosis, as it is thought to improve intestinal growth postoperatively compared to continuous running suture. However, effects on intestinal growth are unclear. We compared intestinal growth using different anastomotic techniques during the postoperative period in young rats. Young, growing rats underwent small bowel transection and anastomosis using either simple interrupted or continuous running technique. At 7-weeks postoperatively after a four-fold growth, the anastomotic site was resected. Diameters and burst pressures were measured. Thirteen rats underwent anastomosis with simple interrupted technique and sixteen with continuous running method. No differences were found in body weight at first (102.46 vs 109.75g) or second operations (413.85 vs 430.63g). Neither the diameters (0.69 vs 0.79cm) nor burst pressures were statistically different, although the calculated circumference was smaller in the simple interrupted group (2.18 vs 2.59cm; p=0.03). No ruptures occurred at the anastomotic line. This pilot study is the first to compare continuous running to simple interrupted intestinal anastomosis in a pediatric model and showed no difference in growth. Adopting continuous running techniques for bowel anastomosis in young children may lead to faster operative time without affecting intestinal growth. Copyright © 2016 Elsevier Inc. All rights reserved.
Sahni, Ekneet K; Pikal, Michael J
2017-03-01
Although several mathematical models of primary drying have been developed over the years, with significant impact on the efficiency of process design, models of secondary drying have been confined to highly complex models. The simple-to-use Excel-based model developed here is, in essence, a series of steady state calculations of heat and mass transfer in the 2 halves of the dry layer where drying time is divided into a large number of time steps, where in each time step steady state conditions prevail. Water desorption isotherm and mass transfer coefficient data are required. We use the Excel "Solver" to estimate the parameters that define the mass transfer coefficient by minimizing the deviations in water content between calculation and a calibration drying experiment. This tool allows the user to input the parameters specific to the product, process, container, and equipment. Temporal variations in average moisture contents and product temperatures are outputs and are compared with experiment. We observe good agreement between experiments and calculations, generally well within experimental error, for sucrose at various concentrations, temperatures, and ice nucleation temperatures. We conclude that this model can serve as an important process development tool for process design and manufacturing problem-solving. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Wenjing; Qiu, Rui; Ren, Li; Liu, Huan; Wu, Zhen; Li, Chunyan; Li, Junli
2017-09-01
Mean glandular dose (MGD) is not only determined by the compressed breast thickness (CBT) and the glandular content, but also by the distribution of glandular tissues in breast. Depth dose inside the breast in mammography has been widely concerned as glandular dose decreases rapidly with increasing depth. In this study, an experiment using thermo luminescent dosimeters (TLDs) was carried out to validate Monte Carlo simulations of mammography. Percent depth doses (PDDs) at different depth values were measured inside simple breast phantoms of different thicknesses. The experimental values were well consistent with the values calculated by Geant4. Then a detailed breast model with a CBT of 4 cm and a glandular content of 50%, which has been constructed in previous work, was used to study the effects of the distribution of glandular tissues in breast with Geant4. The breast model was reversed in direction of compression to get a reverse model with a different distribution of glandular tissues. Depth dose distributions and glandular tissue dose conversion coefficients were calculated. It revealed that the conversion coefficients were about 10% larger when the breast model was reversed, for glandular tissues in the reverse model are concentrated in the upper part of the model.
Vaeth, Michael; Skovlund, Eva
2004-06-15
For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.
Aerodynamic heating and surface temperatures on vehicles for computer-aided design studies
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.; Kania, L. A.; Chitty, A.
1983-01-01
A computer subprogram has been developed to calculate aerodynamic and radiative heating rates and to determine surface temperatures by integrating the heating rates along the trajectory of a vehicle. Convective heating rates are calculated by applying the axisymmetric analogue to inviscid surface streamlines and using relatively simple techniques to calculate laminar, transitional, or turbulent heating rates. Options are provided for the selection of gas model, transition criterion, turbulent heating method, Reynolds Analogy factor, and entropy-layer swallowing effects. Heating rates are compared to experimental data, and the time history of surface temperatures are given for a high-speed trajectory. The computer subprogram is developed for preliminary design and mission analysis where parametric studies are needed at all speeds.
Developing a reversible rapid coordinate transformation model for the cylindrical projection
NASA Astrophysics Data System (ADS)
Ye, Si-jing; Yan, Tai-lai; Yue, Yan-li; Lin, Wei-yan; Li, Lin; Yao, Xiao-chuang; Mu, Qin-yun; Li, Yong-qin; Zhu, De-hai
2016-04-01
Numerical models are widely used for coordinate transformations. However, in most numerical models, polynomials are generated to approximate "true" geographic coordinates or plane coordinates, and one polynomial is hard to make simultaneously appropriate for both forward and inverse transformations. As there is a transformation rule between geographic coordinates and plane coordinates, how accurate and efficient is the calculation of the coordinate transformation if we construct polynomials to approximate the transformation rule instead of "true" coordinates? In addition, is it preferable to compare models using such polynomials with traditional numerical models with even higher exponents? Focusing on cylindrical projection, this paper reports on a grid-based rapid numerical transformation model - a linear rule approximation model (LRA-model) that constructs linear polynomials to approximate the transformation rule and uses a graticule to alleviate error propagation. Our experiments on cylindrical projection transformation between the WGS 84 Geographic Coordinate System (EPSG 4326) and the WGS 84 UTM ZONE 50N Plane Coordinate System (EPSG 32650) with simulated data demonstrate that the LRA-model exhibits high efficiency, high accuracy, and high stability; is simple and easy to use for both forward and inverse transformations; and can be applied to the transformation of a large amount of data with a requirement of high calculation efficiency. Furthermore, the LRA-model exhibits advantages in terms of calculation efficiency, accuracy and stability for coordinate transformations, compared to the widely used hyperbolic transformation model.
Bond Order Conservation Strategies in Catalysis Applied to the NH 3 Decomposition Reaction
Yu, Liang; Abild-Pedersen, Frank
2016-12-14
On the basis of an extensive set of density functional theory calculations, it is shown that a simple scheme provides a fundamental understanding of variations in the transition state energies and structures of reaction intermediates on transition metal surfaces across the periodic table. The scheme is built on the bond order conservation principle and requires a limited set of input data, still achieving transition state energies as a function of simple descriptors with an error smaller than those of approaches based on linear fits to a set of calculated transition state energies. Here, we have applied this approach together withmore » linear scaling of adsorption energies to obtain the energetics of the NH 3 decomposition reaction on a series of stepped fcc(211) transition metal surfaces. Moreover, this information is used to establish a microkinetic model for the formation of N 2 and H 2, thus providing insight into the components of the reaction that determines the activity.« less
ecode - Electron Transport Algorithm Testing v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian C.; Olson, Aaron J.; Bruss, Donald Eugene
2016-10-05
ecode is a Monte Carlo code used for testing algorithms related to electron transport. The code can read basic physics parameters, such as energy-dependent stopping powers and screening parameters. The code permits simple planar geometries of slabs or cubes. Parallelization consists of domain replication, with work distributed at the start of the calculation and statistical results gathered at the end of the calculation. Some basic routines (such as input parsing, random number generation, and statistics processing) are shared with the Integrated Tiger Series codes. A variety of algorithms for uncertainty propagation are incorporated based on the stochastic collocation and stochasticmore » Galerkin methods. These permit uncertainty only in the total and angular scattering cross sections. The code contains algorithms for simulating stochastic mixtures of two materials. The physics is approximate, ranging from mono-energetic and isotropic scattering to screened Rutherford angular scattering and Rutherford energy-loss scattering (simple electron transport models). No production of secondary particles is implemented, and no photon physics is implemented.« less
NASA Astrophysics Data System (ADS)
Kitao, Akio; Harada, Ryuhei; Nishihara, Yasutaka; Tran, Duy Phuoc
2016-12-01
Parallel Cascade Selection Molecular Dynamics (PaCS-MD) was proposed as an efficient conformational sampling method to investigate conformational transition pathway of proteins. In PaCS-MD, cycles of (i) selection of initial structures for multiple independent MD simulations and (ii) conformational sampling by independent MD simulations are repeated until the convergence of the sampling. The selection is conducted so that protein conformation gradually approaches a target. The selection of snapshots is a key to enhance conformational changes by increasing the probability of rare event occurrence. Since the procedure of PaCS-MD is simple, no modification of MD programs is required; the selections of initial structures and the restart of the next cycle in the MD simulations can be handled with relatively simple scripts with straightforward implementation. Trajectories generated by PaCS-MD were further analyzed by the Markov state model (MSM), which enables calculation of free energy landscape. The combination of PaCS-MD and MSM is reported in this work.
NASA Astrophysics Data System (ADS)
Dinh, Thanh Vu; Cabon, Béatrice; Daoud, Nahla; Chilo, Jean
1992-11-01
This paper presents a simple and efficient method for calculating the propagating line parameters (actually, a microstrip one) and its magnetic fields, by simulating an original equivalent circuit with an electrical nodal simulator (SPICE). The losses in the normal conducting line (due to DC losses and to skin effect losses) and also in the superconducting one can be investigated. This allows us to integrate the electromagnetic solutions to the CAD softwares. Dans ce papier, une méthode simple et efficace pour calculer les paramètres de propagation d'une ligne microruban et les champs magnétiques qu'elle engendre est présentée; pour cela, nous simulons un circuit original équivalent à l'aide du simulateur nodal SPICE. Les pertes dans une ligne conductrice (pertes continues et par effet de peau) ainsi que dans une ligne supraconductrice peuvent être considérées. Les solutions électromagnétiques peuvent être intégrées dans les simulateurs de CAO.
(abstract) Simple Spreadsheet Thermal Models for Cryogenic Applications
NASA Technical Reports Server (NTRS)
Nash, A. E.
1994-01-01
Self consistent circuit analog thermal models, that can be run in commercial spreadsheet programs on personal computers, have been created to calculate the cooldown and steady state performance of cryogen cooled Dewars. The models include temperature dependent conduction and radiation effects. The outputs of the models provide temperature distribution and Dewar performance information. These models have been used to analyze the Cryogenic Telescope Test Facility (CTTF). The facility will be on line in early 1995 for its first user, the Infrared Telescope Technology Testbed (ITTT), for the Space Infrared Telescope Facility (SIRTF) at JPL. The model algorithm as well as a comparison of the model predictions and actual performance of this facility will be presented.
Simple Spreadsheet Thermal Models for Cryogenic Applications
NASA Technical Reports Server (NTRS)
Nash, Alfred
1995-01-01
Self consistent circuit analog thermal models that can be run in commercial spreadsheet programs on personal computers have been created to calculate the cooldown and steady state performance of cryogen cooled Dewars. The models include temperature dependent conduction and radiation effects. The outputs of the models provide temperature distribution and Dewar performance information. these models have been used to analyze the SIRTF Telescope Test Facility (STTF). The facility has been brought on line for its first user, the Infrared Telescope Technology Testbed (ITTT), for the Space Infrared Telescope Facility (SIRTF) at JPL. The model algorithm as well as a comparison between the models' predictions and actual performance of this facility will be presented.
Canonical Representations of the Simple Map
NASA Astrophysics Data System (ADS)
Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima; Boozer, Allen
2007-11-01
The simple map is the simplest map that has the topology of a divertor tokamak. The simple map has three canonical representations: (i) toroidal flux and poloidal angle (ψ,θ) as canonical coordinates, (ii) the physical variables (R,Z) or (X,Y) as canonical coordinates, and (iii) the action-angle (J,ζ) or magnetic variables (ψ,θ) as canonical coordinates. We give the derivation of the simple map in the (X,Y) representation. The simple map in this representation has been studied extensively (Ref. 1 and references therein). We calculate the magnetic coordinates for the simple map, construct the simple map in magnetic coordinates, and calculate generic topological effects of magnetic perturbations in divertor tokamaks using the map. We also construct the simple map in (ψ,θ) representation. Preliminary results of these studies will be presented. This work is supported by US DOE OFES DE-FG02-01ER54624 and DE-FG02-04ER54793. [1] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A 364 140--145 (2007).
CALCULATION OF NONLINEAR CONFIDENCE AND PREDICTION INTERVALS FOR GROUND-WATER FLOW MODELS.
Cooley, Richard L.; Vecchia, Aldo V.
1987-01-01
A method is derived to efficiently compute nonlinear confidence and prediction intervals on any function of parameters derived as output from a mathematical model of a physical system. The method is applied to the problem of obtaining confidence and prediction intervals for manually-calibrated ground-water flow models. To obtain confidence and prediction intervals resulting from uncertainties in parameters, the calibrated model and information on extreme ranges and ordering of the model parameters within one or more independent groups are required. If random errors in the dependent variable are present in addition to uncertainties in parameters, then calculation of prediction intervals also requires information on the extreme range of error expected. A simple Monte Carlo method is used to compute the quantiles necessary to establish probability levels for the confidence and prediction intervals. Application of the method to a hypothetical example showed that inclusion of random errors in the dependent variable in addition to uncertainties in parameters can considerably widen the prediction intervals.
MARMOT simulations of Xe segregation to grain boundaries in UO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders D.; Tonks, Michael; Casillas, Luis
2012-06-20
Diffusion of Xe and U in UO{sub 2} is controlled by vacancy mechanisms and under irradiation the formation of mobile vacancy clusters is important. We derive continuum thermodynamic and diffusion models for Xe and U in UO{sub 2} based on the vacancy and cluster diffusion mechanisms established from recent density functional theory (DFT) calculations. Segregation of defects to grain boundaries in UO{sub 2} is described by combining the diffusion model with models of the interaction between Xe atoms and vacancies with grain boundaries derived from separate atomistic calculations. The diffusion and segregation models are implemented in the MOOSE/MARMOT (MBM) finitemore » element (FEM) framework and we simulate Xe redistribution for a few simple microstructures. In this report we focus on segregation to grain boundaries. The U or vacancy diffusion model as well as the coupled diffusion of vacancies and Xe have also been implemented, but results are not included in this report.« less
Interactions of molecules and the properties of crystals
NASA Astrophysics Data System (ADS)
McConnell, Thomas Daniel Leigh
In this thesis the basic theory of the lattice dynamics of molecular crystals is considered, with particular reference to the specific case of linear molecules. The objective is to carry out a critical investigation of a number of empirical potentials as models for real systems. Suitable coordinates are introduced, in particular vibrational coordinates which are used to describe the translational and rotational modes of the free molecule. The Taylor expansion of the intermolecular potential is introduced and its terms considered, in particular the (first-order) equilibrium conditions for such a system and the (second-order) lattice vibrations. The elastic properties are also considered, in particular with reference to the specific case of rhombohedral crystals. The compressibility and a number of conditions for elastic stability are introduced. The total intermolecular interaction potential is divided into three components using perturbation methods, the electrostatic energy, the repulsion energy and the dispersion energy. A number of models are introduced for these various components. The induction energy is neglected. The electrostatic interaction is represented by atomic multipole and molecular multipole models. The repulsion and dispersion energies are modelled together in a central interaction potential, either the Lennard-Jones atom-atom potential or the anisotropic Berne-Pechukas molecule-molecule potential. In each case, the Taylor expansion coefficients, used to calculate the various molecular properties, are determined. An algorithm is described which provides a relatively simple method for calculating cartesian tensors, which are found in the Taylor expansion coefficients of the multipolar potentials. This proves to be particularly useful from a computational viewpoint, both in terms of programming and calculating efficiency. The model system carbonyl sulphide is introduced and its lattice properties are described. Suitable parameters for potentials used to model the system are discussed and the simplifications to the Taylor expansion coefficients due to crystal symmetry are detailed. Four potential parameters are chosen to be fitted to four lattice properties, representing zero, first and second order Taylor expansion coefficients. The supplementary tests of a given fitted potential are detailed. A number of forms for the electrostatic interaction of carbonyl sulphide are considered, each combined with a standard atom-atom potential. The success of the molecular octupole model is considered and the inability of more complex electrostatic potentials to improve on this simple model is noted. The anisotropic Berne-Pechukas potential, which provides an increased estimate of the compressibility is considered as being an improvement on the various atom-atom potentials. The effect of varying the exponents in the atom-atom (or molecule-molecule) potential, representing a systematic variation of the repulsion and dispersion energy models, is examined and a potential which is able to reproduce all of the given lattice properties for carbonyl sulphide is obtained. The molecular crystal of cyanogen iodide is investigated. Superficially it is similar to the crystal of carbonyl sulphide and the potentials used with success for the latter are applied to cyanogen iodide to determine whether they are equally as effective models for this molecule. These potentials are found to be far less successful, in all cases yielding a number of unrealistic results. Reasons for the failure of the model are considered, in particular the 3 differences between the electrostatic properties of the two molecules are discussed. It is concluded that some of the simplifications which proved satisfactory for carbonyl sulphide are invalid for simple extension to the case of cyanogen iodide. A first estimate of the differences in the electrostatic properties is attempted, calculating the induction energies of the two molecules. The assumption that the induction energy may be neglected is justified for the case of carbonyl sulphide but found to be far less satisfactory for cyanogen iodide. Finally details of ab initio calculations are outlined. The amount of experimental data available for the electrostatic properties of the two molecules under consideration is relatively small and the experimental data which is available is supplemented by values obtained from these calculations.
Pfeiffer, Valentin; Barbeau, Benoit
2014-02-01
Despite its shortcomings, the T10 method introduced by the United States Environmental Protection Agency (USEPA) in 1989 is currently the method most frequently used in North America to calculate disinfection performance. Other methods (e.g., the Integrated Disinfection Design Framework, IDDF) have been advanced as replacements, and more recently, the USEPA suggested the Extended T10 and Extended CSTR (Continuous Stirred-Tank Reactor) methods to improve the inactivation calculations within ozone contactors. To develop a method that fully considers the hydraulic behavior of the contactor, two models (Plug Flow with Dispersion and N-CSTR) were successfully fitted with five tracer tests results derived from four Water Treatment Plants and a pilot-scale contactor. A new method based on the N-CSTR model was defined as the Partially Segregated (Pseg) method. The predictions from all the methods mentioned were compared under conditions of poor and good hydraulic performance, low and high disinfectant decay, and different levels of inactivation. These methods were also compared with experimental results from a chlorine pilot-scale contactor used for Escherichia coli inactivation. The T10 and Extended T10 methods led to large over- and under-estimations. The Segregated Flow Analysis (used in the IDDF) also considerably overestimated the inactivation under high disinfectant decay. Only the Extended CSTR and Pseg methods produced realistic and conservative predictions in all cases. Finally, a simple implementation procedure of the Pseg method was suggested for calculation of disinfection performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigg, D.W.; Wheeler, F.J.
1981-01-01
The Poloidal Diverter Experiment (PDX) facility at Princeton University is the first operating tokamak to require substantial radiation shielding. A calculational model has been developed to estimate the radiation dose in the PDX control room and at the site boundary due to the skyshine effect. An efficient one-dimensional method is used to compute the neutron and capture gamma leakage currents at the top surface of the PDX roof shield. This method employs an S /SUB n/ calculation in slab geometry and, for the PDX, is superior to spherical models found in the literature. If certain conditions are met, the slabmore » model provides the exact probability of leakage out the top surface of the roof for fusion source neutrons and for capture gamma rays produced in the PDX floor and roof shield. The model also provides the correct neutron and capture gamma leakage current spectra and angular distributions, averaged over the top roof shield surface. For the PDX, this method is nearly as accurate as multidimensional techniques for computing the roof leakage and is much less costly. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab S /SUB n/ calculation. The capture gamma dose is computed using a simple point-kernel single-scatter method.« less
Taboo Search: An Approach to the Multiple Minima Problem
NASA Astrophysics Data System (ADS)
Cvijovic, Djurdje; Klinowski, Jacek
1995-02-01
Described here is a method, based on Glover's taboo search for discrete functions, of solving the multiple minima problem for continuous functions. As demonstrated by model calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimization, this procedure is generally applicable, easy to implement, derivative-free, and conceptually simple.
Computing Mass Properties From AutoCAD
NASA Technical Reports Server (NTRS)
Jones, A.
1990-01-01
Mass properties of structures computed from data in drawings. AutoCAD to Mass Properties (ACTOMP) computer program developed to facilitate quick calculations of mass properties of structures containing many simple elements in such complex configurations as trusses or sheet-metal containers. Mathematically modeled in AutoCAD or compatible computer-aided design (CAD) system in minutes by use of three-dimensional elements. Written in Microsoft Quick-Basic (Version 2.0).
Antiparticle cloud temperatures for antihydrogen experiments
NASA Astrophysics Data System (ADS)
Bianconi, A.; Charlton, M.; Lodi Rizzini, E.; Mascagna, V.; Venturelli, L.
2017-07-01
A simple rate-equation description of the heating and cooling of antiparticle clouds under conditions typical of those found in antihydrogen formation experiments is developed and analyzed. We include single-particle collisional, radiative, and cloud expansion effects and, from the modeling calculations, identify typical cooling phenomena and trends and relate these to the underlying physics. Some general rules of thumb of use to experimenters are derived.
Update on matter radii of O-2417
NASA Astrophysics Data System (ADS)
Fortune, H. T.
2018-05-01
The appearance of new theoretical papers concerning matter radii of neutron-rich oxygen nuclei has prompted a return to this problem. New results provide no better agreement with experimental values than did previous calculations with a simple model. I maintain that there is no reason to adjust the 22O core in the 24O nucleus, and the case of 24O should be reexamined experimentally.
Entropy of mixing calculations for compound forming liquid alloys in the hard sphere system
NASA Astrophysics Data System (ADS)
Singh, P.; Khanna, K. N.
1984-06-01
It is shown that the semi-empirical model proposed in a previous paper for the evaluation of the entropy of mixing of simple liquid metals alloys leads to accurate results for compound forming liquid alloys. The procedure is similar to that described for a regular solution. Numerical applications are made to NaGa, KPb and KT1 alloys.
ERIC Educational Resources Information Center
Miller, Jason W.; Stromeyer, William R.; Schwieterman, Matthew A.
2013-01-01
The past decade has witnessed renewed interest in the use of the Johnson-Neyman (J-N) technique for calculating the regions of significance for the simple slope of a focal predictor on an outcome variable across the range of a second, continuous independent variable. Although tools have been developed to apply this technique to probe 2- and 3-way…
Sriyudthsak, Kansuporn; Iwata, Michio; Hirai, Masami Yokota; Shiraishi, Fumihide
2014-06-01
The availability of large-scale datasets has led to more effort being made to understand characteristics of metabolic reaction networks. However, because the large-scale data are semi-quantitative, and may contain biological variations and/or analytical errors, it remains a challenge to construct a mathematical model with precise parameters using only these data. The present work proposes a simple method, referred to as PENDISC (Parameter Estimation in a N on- DImensionalized S-system with Constraints), to assist the complex process of parameter estimation in the construction of a mathematical model for a given metabolic reaction system. The PENDISC method was evaluated using two simple mathematical models: a linear metabolic pathway model with inhibition and a branched metabolic pathway model with inhibition and activation. The results indicate that a smaller number of data points and rate constant parameters enhances the agreement between calculated values and time-series data of metabolite concentrations, and leads to faster convergence when the same initial estimates are used for the fitting. This method is also shown to be applicable to noisy time-series data and to unmeasurable metabolite concentrations in a network, and to have a potential to handle metabolome data of a relatively large-scale metabolic reaction system. Furthermore, it was applied to aspartate-derived amino acid biosynthesis in Arabidopsis thaliana plant. The result provides confirmation that the mathematical model constructed satisfactorily agrees with the time-series datasets of seven metabolite concentrations.
Bieri, Michael; d'Auvergne, Edward J; Gooley, Paul R
2011-06-01
Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.
McCoy, Alene T; Bartels, Michael J; Rick, David L; Saghir, Shakil A
2012-07-01
TK Modeler 1.0 is a Microsoft® Excel®-based pharmacokinetic (PK) modeling program created to aid in the design of toxicokinetic (TK) studies. TK Modeler 1.0 predicts the diurnal blood/plasma concentrations of a test material after single, multiple bolus or dietary dosing using known PK information. Fluctuations in blood/plasma concentrations based on test material kinetics are calculated using one- or two-compartment PK model equations and the principle of superposition. This information can be utilized for the determination of appropriate dosing regimens based on reaching a specific desired C(max), maintaining steady-state blood/plasma concentrations, or other exposure target. This program can also aid in the selection of sampling times for accurate calculation of AUC(24h) (diurnal area under the blood concentration time curve) using sparse-sampling methodologies (one, two or three samples). This paper describes the construction, use and validation of TK Modeler. TK Modeler accurately predicted blood/plasma concentrations of test materials and provided optimal sampling times for the calculation of AUC(24h) with improved accuracy using sparse-sampling methods. TK Modeler is therefore a validated, unique and simple modeling program that can aid in the design of toxicokinetic studies. Copyright © 2012 Elsevier Inc. All rights reserved.
Development of a near-wall Reynolds-stress closure based on the SSG model for the pressure strain
NASA Technical Reports Server (NTRS)
So, R. M. C.; Aksoy, H.; Sommer, T. P.; Yuan, S. P.
1994-01-01
In this research, a near-wall second-order closure based on the Speziable et al.(1991) or SSG model for the pressure-strain term is proposed. Unlike the LRR model, the SSG model is quasi-nonlinear and yields better results when applied to calculate rotating homogeneous turbulent flows. An asymptotic analysis near the wall is applied to both the exact and modeled, equations so that appropriate near-wall corrections to the SSG model and the modeled dissipation-rate equation can be derived to satisfy the physical wall boundary conditions as well as the asymptotic near-wall behavior of the exact equations. Two additional model constants are introduced and they are determined by calibrating against one set of near-wall channel flow data. Once determined, their values are found to remain constant irrespective of the type of flow examined. The resultant model is used to calculate simple turbulent flows, near separating turbulent flows, complex turbulent flows and compressible turbulent flows with a freestream Mach number as high as 10. In all the flow cases investigated, the calculated results are in good agreement with data. This new near-wall model is less ad hoc, physically and mathematically more sound and eliminates the empiricism introduced by Zhang. Therefore, it is quite general, as demonstrated by the good agreement achieved with measurements covering a wide range of Reynolds numbers and Mach numbers.
Doubly self-consistent field theory of grafted polymers under simple shear in steady state.
Suo, Tongchuan; Whitmore, Mark D
2014-03-21
We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.
NASA Astrophysics Data System (ADS)
Regenauer-Lieb, Klaus; Weinberg, Roberto F.; Rosenbaum, Gideon
2012-04-01
The traditional definition of lithospheric strength is derived from the differential stresses required to form brittle and ductile structures at a constant strain rate. This definition is based on dissipative brittle and ductile deformation and does not take into account the ability of the lithosphere to store elastic strain. Here we show the important role of elasticity in controlling the long-term behaviour of the lithosphere. This is particularly evident when describing deformation in a thermodynamic framework, which differentiates between stored (Helmholtz free energy) and dissipative (entropy) energy potentials. In our model calculations we stretch a continental lithosphere with a wide range of crustal thickness (30-60 km) and heat flow (50-80 mW/m2) at a constant velocity. We show that the Helmholtz free energy, which in our simple calculation describes the energy stored elastically, converges for all models within a 25% range, while the dissipated energy varies over an order of magnitude. This variation stems from complex patterns in the local strain distributions of the different models, which together operate to minimize the Helmholtz free energy. This energy minimization is a fundamental material behaviour of the lithosphere, which in our simple case is defined by its elastic properties. We conclude from this result that elasticity (more generally Helmholtz free energy) is an important regulator of the long-term geological strength of the lithosphere.
Net Efficacy Adjusted for Risk (NEAR): A Simple Procedure for Measuring Risk:Benefit Balance
Boada, José N.; Boada, Carlos; García-Sáiz, Mar; García, Marcelino; Fernández, Eduardo; Gómez, Eugenio
2008-01-01
Background Although several mathematical models have been proposed to assess the risk:benefit of drugs in one measure, their use in practice has been rather limited. Our objective was to design a simple, easily applicable model. In this respect, measuring the proportion of patients who respond favorably to treatment without being affected by adverse drug reactions (ADR) could be a suitable endpoint. However, remarkably few published clinical trials report the data required to calculate this proportion. As an approach to the problem, we calculated the expected proportion of this type of patients. Methodology/Principal Findings Theoretically, responders without ADR may be obtained by multiplying the total number of responders by the total number of subjects that did not suffer ADR, and dividing the product by the total number of subjects studied. When two drugs are studied, the same calculation may be repeated for the second drug. Then, by constructing a 2×2 table with the expected frequencies of responders with and without ADR, and non-responders with and without ADR, the odds ratio and relative risk with their confidence intervals may be easily calculated and graphically represented on a logarithmic scale. Such measures represent “net efficacy adjusted for risk” (NEAR). We assayed the model with results extracted from several published clinical trials or meta-analyses. On comparing our results with those originally reported by the authors, marked differences were found in some cases, with ADR arising as a relevant factor to balance the clinical benefit obtained. The particular features of the adverse reaction that must be weighed against benefit is discussed in the paper. Conclusion NEAR representing overall risk-benefit may contribute to improving knowledge of drug clinical usefulness. As most published clinical trials tend to overestimate benefits and underestimate toxicity, our measure represents an effort to change this trend. PMID:18974868
Calculation of local skin doses with ICRP adult mesh-type reference computational phantoms
NASA Astrophysics Data System (ADS)
Yeom, Yeon Soo; Han, Haegin; Choi, Chansoo; Nguyen, Thang Tat; Lee, Hanjin; Shin, Bangho; Kim, Chan Hyeong; Han, Min Cheol
2018-01-01
Recently, Task Group 103 of the International Commission on Radiological Protection (ICRP) developed new mesh-type reference computational phantoms (MRCPs) for adult males and females in order to address the limitations of the current voxel-type reference phantoms described in ICRP Publication 110 due to their limited voxel resolutions and the nature of the voxel geometry. One of the substantial advantages of the MRCPs over the ICRP-110 reference phantoms is the inclusion of a 50-μm-thick radiosensitive skin basal-cell layer; however, a methodology for calculating the local skin dose (LSD), i.e., the maximum dose to the basal layer averaged over a 1-cm2 area, has yet to be developed. In the present study, a dedicated program for the LSD calculation with the MRCPs was developed based on the mean shift algorithm and the Geant4 Monte Carlo code. The developed program was used to calculate local skin dose coefficients (LSDCs) for electrons and alpha particles, which were then compared with the values given in ICRP Publication 116 that were produced with a simple tissue-equivalent cube model. The results of the present study show that the LSDCs of the MRCPs are generally in good agreement with the ICRP-116 values for alpha particles, but for electrons, significant differences are found at energies higher than 0.15 MeV. The LSDCs of the MRCPs are greater than the ICRP-116 values by as much as 2.7 times at 10 MeV, which is due mainly to the different curvature between realistic MRCPs ( i.e., curved) and the simple cube model ( i.e., flat).
Statistical mechanics of simple models of protein folding and design.
Pande, V S; Grosberg, A Y; Tanaka, T
1997-01-01
It is now believed that the primary equilibrium aspects of simple models of protein folding are understood theoretically. However, current theories often resort to rather heavy mathematics to overcome some technical difficulties inherent in the problem or start from a phenomenological model. To this end, we take a new approach in this pedagogical review of the statistical mechanics of protein folding. The benefit of our approach is a drastic mathematical simplification of the theory, without resort to any new approximations or phenomenological prescriptions. Indeed, the results we obtain agree precisely with previous calculations. Because of this simplification, we are able to present here a thorough and self contained treatment of the problem. Topics discussed include the statistical mechanics of the random energy model (REM), tests of the validity of REM as a model for heteropolymer freezing, freezing transition of random sequences, phase diagram of designed ("minimally frustrated") sequences, and the degree to which errors in the interactions employed in simulations of either folding and design can still lead to correct folding behavior. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 6 PMID:9414231
Prospects for Alpha Particle Heating in JET in the Hot Ion Regime
NASA Astrophysics Data System (ADS)
Cordey, J. G.; Keilhacker, M.; Watkins, M. L.
1987-01-01
The prospects for alpha particle heating in JET are discussed. A computational model is developed to represent adequately the neutron yield from JET plasmas heated by neutral beam injection. This neutral beam model, augmented by a simple plasma model, is then used to determine the neutron yields and fusion Q-values anticipated for different heating schemes in future operation of JET with tritium. The relative importance of beam-thermal and thermal-thermal reactions is pointed out and the dependence of the results on, for example, plasma density, temperature, energy confinement and purity is shown. Full 1½-D transport code calculations, based on models developed for ohmic, ICRF and NBI heated JET discharges, are used also to provide a power scan for JET operation in tritium in the low density, high ion temperature regime. The results are shown to be in good agreement with the estimates made using the simple plasma model and indicate that, based on present knowledge, a fusion Q-value in the plasma centre above unity should be achieved in JET.
Spatial scaling of net primary productivity using subpixel landcover information
NASA Astrophysics Data System (ADS)
Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.
2008-10-01
Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.
Steady flow model user's guide
NASA Astrophysics Data System (ADS)
Doughty, C.; Hellstrom, G.; Tsang, C. F.; Claesson, J.
1984-07-01
Sophisticated numerical models that solve the coupled mass and energy transport equations for nonisothermal fluid flow in a porous medium were used to match analytical results and field data for aquifer thermal energy storage (ATES) systems. As an alternative to the ATES problem the Steady Flow Model (SFM), a simplified but fast numerical model was developed. A steady purely radial flow field is prescribed in the aquifer, and incorporated into the heat transport equation which is then solved numerically. While the radial flow assumption limits the range of ATES systems that can be studied using the SFM, it greatly simplifies use of this code. The preparation of input is quite simple compared to that for a sophisticated coupled mass and energy model, and the cost of running the SFM is far cheaper. The simple flow field allows use of a special calculational mesh that eliminates the numerical dispersion usually associated with the numerical solution of convection problems. The problem is defined, the algorithm used to solve it are outllined, and the input and output for the SFM is described.
Electrical conductivity of metal powders under pressure
NASA Astrophysics Data System (ADS)
Montes, J. M.; Cuevas, F. G.; Cintas, J.; Urban, P.
2011-12-01
A model for calculating the electrical conductivity of a compressed powder mass consisting of oxide-coated metal particles has been derived. A theoretical tool previously developed by the authors, the so-called `equivalent simple cubic system', was used in the model deduction. This tool is based on relating the actual powder system to an equivalent one consisting of deforming spheres packed in a simple cubic lattice, which is much easier to examine. The proposed model relates the effective electrical conductivity of the powder mass under compression to its level of porosity. Other physically measurable parameters in the model are the conductivities of the metal and oxide constituting the powder particles, their radii, the mean thickness of the oxide layer and the tap porosity of the powder. Two additional parameters controlling the effect of the descaling of the particle oxide layer were empirically introduced. The proposed model was experimentally verified by measurements of the electrical conductivity of aluminium, bronze, iron, nickel and titanium powders under pressure. The consistency between theoretical predictions and experimental results was reasonably good in all cases.
A simple, mass balance model of carbon flow in a controlled ecological life support system
NASA Technical Reports Server (NTRS)
Garland, Jay L.
1989-01-01
Internal cycling of chemical elements is a fundamental aspect of a Controlled Ecological Life Support System (CELSS). Mathematical models are useful tools for evaluating fluxes and reservoirs of elements associated with potential CELSS configurations. A simple mass balance model of carbon flow in CELSS was developed based on data from the CELSS Breadboard project at Kennedy Space Center. All carbon reservoirs and fluxes were calculated based on steady state conditions and modelled using linear, donor-controlled transfer coefficients. The linear expression of photosynthetic flux was replaced with Michaelis-Menten kinetics based on dynamical analysis of the model which found that the latter produced more adequate model output. Sensitivity analysis of the model indicated that accurate determination of the maximum rate of gross primary production is critical to the development of an accurate model of carbon flow. Atmospheric carbon dioxide was particularly sensitive to changes in photosynthetic rate. The small reservoir of CO2 relative to large CO2 fluxes increases the potential for volatility in CO2 concentration. Feedback control mechanisms regulating CO2 concentration will probably be necessary in a CELSS to reduce this system instability.
MadDM: Computation of dark matter relic abundance
NASA Astrophysics Data System (ADS)
Backović, Mihailo; Kong, Kyoungchul; McCaskey, Mathew
2017-12-01
MadDM computes dark matter relic abundance and dark matter nucleus scattering rates in a generic model. The code is based on the existing MadGraph 5 architecture and as such is easily integrable into any MadGraph collider study. A simple Python interface offers a level of user-friendliness characteristic of MadGraph 5 without sacrificing functionality. MadDM is able to calculate the dark matter relic abundance in models which include a multi-component dark sector, resonance annihilation channels and co-annihilations. The direct detection module of MadDM calculates spin independent / spin dependent dark matter-nucleon cross sections and differential recoil rates as a function of recoil energy, angle and time. The code provides a simplified simulation of detector effects for a wide range of target materials and volumes.
Mechanics and statistics of the worm-like chain
NASA Astrophysics Data System (ADS)
Marantan, Andrew; Mahadevan, L.
2018-02-01
The worm-like chain model is a simple continuum model for the statistical mechanics of a flexible polymer subject to an external force. We offer a tutorial introduction to it using three approaches. First, we use a mesoscopic view, treating a long polymer (in two dimensions) as though it were made of many groups of correlated links or "clinks," allowing us to calculate its average extension as a function of the external force via scaling arguments. We then provide a standard statistical mechanics approach, obtaining the average extension by two different means: the equipartition theorem and the partition function. Finally, we work in a probabilistic framework, taking advantage of the Gaussian properties of the chain in the large-force limit to improve upon the previous calculations of the average extension.
Fourier transform infrared spectroscopy of 2'-deoxycytidine aggregates in CDCl3 solutions
NASA Astrophysics Data System (ADS)
Biemann, Lars; Häber, Thomas; Maydt, Daniela; Schaper, Klaus; Kleinermanns, Karl
2011-03-01
We investigated the self-aggregation of 2'-deoxy-3',5'-bis(tert-butyldimethylsilyl)-cytidine dC(TBDMS)2 in CDCl3 solutions by Fourier transform infrared (FT-IR) spectroscopy and report the formation of larger aggregates than dimers in this solvent for the first time. The hydrogen bonding patterns in these complexes, which occur with increasing concentration may serve as a model for DNA super-structures such as triplexes. From the IR spectra, wavelength dependent absolute extinction coefficients of the monomer, dimer as well as a contribution from larger clusters which are supposedly trimers are deduced on the basis of a simple deconvolution method. Our results are supported by RI-B3LYP/TZVP calculations within the conductorlike screening model framework, to account for solvent effects in the ab initio calculations.
Improved Multi-Axial, Temperature and Time Dependent (MATT) Failure Model
NASA Technical Reports Server (NTRS)
Richardson, D. E.; Anderson, G. L.; Macon, D. J.
2002-01-01
An extensive effort has recently been completed by the Space Shuttle's Reusable Solid Rocket Motor (RSRM) nozzle program to completely characterize the effects of multi-axial loading, temperature and time on the failure characteristics of three filled epoxy adhesives (TIGA 321, EA913NA, EA946). As part of this effort, a single general failure criterion was developed that accounted for these effects simultaneously. This model was named the Multi- Axial, Temperature, and Time Dependent or MATT failure criterion. Due to the intricate nature of the failure criterion, some parameters were required to be calculated using complex equations or numerical methods. This paper documents some simple but accurate modifications to the failure criterion to allow for calculations of failure conditions without complex equations or numerical techniques.
NASA Astrophysics Data System (ADS)
Brandelik, Andreas
2009-07-01
CALCMIN, an open source Visual Basic program, was implemented in EXCEL™. The program was primarily developed to support geoscientists in their routine task of calculating structural formulae of minerals on the basis of chemical analysis mainly obtained by electron microprobe (EMP) techniques. Calculation programs for various minerals are already included in the form of sub-routines. These routines are arranged in separate modules containing a minimum of code. The architecture of CALCMIN allows the user to easily develop new calculation routines or modify existing routines with little knowledge of programming techniques. By means of a simple mouse-click, the program automatically generates a rudimentary framework of code using the object model of the Visual Basic Editor (VBE). Within this framework simple commands and functions, which are provided by the program, can be used, for example, to perform various normalization procedures or to output the results of the computations. For the clarity of the code, element symbols are used as variables initialized by the program automatically. CALCMIN does not set any boundaries in complexity of the code used, resulting in a wide range of possible applications. Thus, matrix and optimization methods can be included, for instance, to determine end member contents for subsequent thermodynamic calculations. Diverse input procedures are provided, such as the automated read-in of output files created by the EMP. Furthermore, a subsequent filter routine enables the user to extract specific analyses in order to use them for a corresponding calculation routine. An event-driven, interactive operating mode was selected for easy application of the program. CALCMIN leads the user from the beginning to the end of the calculation process.
Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode
NASA Astrophysics Data System (ADS)
Seibert, P.; Frank, A.
2004-01-01
The possibility to calculate linear-source receptor relationships for the transport of atmospheric trace substances with a Lagrangian particle dispersion model (LPDM) running in backward mode is shown and presented with many tests and examples. This mode requires only minor modifications of the forward LPDM. The derivation includes the action of sources and of any first-order processes (transformation with prescribed rates, dry and wet deposition, radioactive decay, etc.). The backward mode is computationally advantageous if the number of receptors is less than the number of sources considered. The combination of an LPDM with the backward (adjoint) methodology is especially attractive for the application to point measurements, which can be handled without artificial numerical diffusion. Practical hints are provided for source-receptor calculations with different settings, both in forward and backward mode. The equivalence of forward and backward calculations is shown in simple tests for release and sampling of particles, pure wet deposition, pure convective redistribution and realistic transport over a short distance. Furthermore, an application example explaining measurements of Cs-137 in Stockholm as transport from areas contaminated heavily in the Chernobyl disaster is included.
Determination of equivalent sound speed profiles for ray tracing in near-ground sound propagation.
Prospathopoulos, John M; Voutsinas, Spyros G
2007-09-01
The determination of appropriate sound speed profiles in the modeling of near-ground propagation using a ray tracing method is investigated using a ray tracing model which is capable of performing axisymmetric calculations of the sound field around an isolated source. Eigenrays are traced using an iterative procedure which integrates the trajectory equations for each ray launched from the source at a specific direction. The calculation of sound energy losses is made by introducing appropriate coefficients to the equations representing the effect of ground and atmospheric absorption and the interaction with the atmospheric turbulence. The model is validated against analytical and numerical predictions of other methodologies for simple cases, as well as against measurements for nonrefractive atmospheric environments. A systematic investigation for near-ground propagation in downward and upward refractive atmosphere is made using experimental data. Guidelines for the suitable simulation of the wind velocity profile are derived by correlating predictions with measurements.
Prediction of crosslink density of solid propellant binders. [curing of elastomers
NASA Technical Reports Server (NTRS)
Marsh, H. E., Jr.
1976-01-01
A quantitative theory is outlined which allows calculation of crosslink density of solid propellant binders from a small number of predetermined parameters such as the binder composition, the functionality distributions of the ingredients, and the extent of the curing reaction. The parameter which is partly dependent on process conditions is the extent of reaction. The proposed theoretical model is verified by independent measurement of effective chain concentration and sol and gel fractions in simple compositions prepared from model compounds. The model is shown to correlate tensile data with composition in the case of urethane-cured polyether and certain solid propellants. A formula for the branching coefficient is provided according to which if one knows the functionality distributions of the ingredients and the corresponding equivalent weights and can measure or predict the extent of reaction, he can calculate the branching coefficient of such a system for any desired composition.
Calculated and measured fields in superferric wiggler magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, E.B.; Solomon, L.
1995-02-01
Although Klaus Halbach is widely known and appreciated as the originator of the computer program POISSON for electromagnetic field calculation, Klaus has always believed that analytical methods can give much more insight into the performance of a magnet than numerical simulation. Analytical approximations readily show how the different aspects of a magnet`s design such as pole dimensions, current, and coil configuration contribute to the performance. These methods yield accuracies of better than 10%. Analytical methods should therefore be used when conceptualizing a magnet design. Computer analysis can then be used for refinement. A simple model is presented for the peakmore » on-axis field of an electro-magnetic wiggler with iron poles and superconducting coils. The model is applied to the radiator section of the superconducting wiggler for the BNL Harmonic Generation Free Electron Laser. The predictions of the model are compared to the measured field and the results from POISSON.« less
Thermodynamic properties derived from the free volume model of liquids
NASA Technical Reports Server (NTRS)
Miller, R. I.
1974-01-01
An equation of state and expressions for the isothermal compressibility, thermal expansion coefficient, heat capacity, and entropy of liquids have been derived from the free volume model partition function suggested by Turnbull. The simple definition of the free volume is used, and it is assumed that the specific volume is directly related to the cube of the intermolecular separation by a proportionality factor which is found to be a function of temperature and pressure as well as specific volume. When values of the proportionality factor are calculated from experimental data for real liquids, it is found to be approximately constant over ranges of temperature and pressure which correspond to the dense liquid phase. This result provides a single-parameter method for calculating dense liquid thermodynamic properties and is consistent with the fact that the free volume model is designed to describe liquids near the solidification point.
Lee, Mi Kyung; Coker, David F
2016-08-18
An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.
Quantum interference on electron scattering in graphene by carbon impurities in underlying h -BN
NASA Astrophysics Data System (ADS)
Kaneko, Tomoaki; Koshino, Mikito; Saito, Riichiro
2017-03-01
Electronic structures and transport properties of graphene on h -BN with carbon impurities are investigated by first-principles calculation and the tight-binding model. We show that the coupling between the impurity level and the graphene's Dirac cone sensitively depends on the impurity position, and in particular, it nearly vanishes when the impurity is located right below the center of the six membered ring of graphene. The Bloch phase factor at the Brillouin zone edge plays a decisive role in the cancellation of the hopping integrals. The impurity position dependence on the electronic structures of graphene on h -BN is investigated by the first-principles calculation, and its qualitative feature is well explained by a tight-binding model with graphene and a single impurity site. We also propose a simple one-dimensional chain-impurity model to analytically describe the role of the quantum interference in the position-dependent coupling.