Sample records for simple closed-form solution

  1. Closed-form solutions for linear regulator-design of mechanical systems including optimal weighting matrix selection

    NASA Technical Reports Server (NTRS)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.

  2. Lorentz Trial Function for the Hydrogen Atom: A Simple, Elegant Exercise

    ERIC Educational Resources Information Center

    Sommerfeld, Thomas

    2011-01-01

    The quantum semester of a typical two-semester physical chemistry course is divided into two parts. The initial focus is on quantum mechanics and simple model systems for which the Schrodinger equation can be solved in closed form, but it then shifts in the second half to atoms and molecules, for which no closed solutions exist. The underlying…

  3. A simple closed-form solution for assessing concentration uncertainty

    NASA Astrophysics Data System (ADS)

    de Barros, F. P. J.; Fiori, Aldo; Bellin, Alberto

    2011-12-01

    We propose closed-form approximate solutions for the moments of a nonreactive tracer that can be used in applications, such as risk analysis. This is in line with the tenet that analytical solutions provide useful information, with minimum cost, during initial site characterization efforts and can serve as a preliminary screening tool when used with prior knowledge. We show that with the help of a few assumptions, the first-order solutions of the concentration moments proposed by Fiori and Dagan (2000) can be further simplified to assume a form similar to well-known deterministic solutions, therefore facilitating their use in applications. A highly anisotropic formation is assumed, and we neglect the transverse components of the two-particle correlation trajectory. The proposed solution compares well with the work of Fiori and Dagan while presenting the same simplicity of use of existing solutions for homogeneous porous media.

  4. Simple Elasticity Modeling and Failure Prediction for Composite Flexbeams

    NASA Technical Reports Server (NTRS)

    Makeev, Andrew; Armanios, Erian; OBrien, T. Kevin (Technical Monitor)

    2001-01-01

    A simple 2D boundary element analysis, suitable for developing cost effective models for tapered composite laminates, is presented. Constant stress and displacement elements are used. Closed-form fundamental solutions are derived. Numerical results are provided for several configurations to illustrate the accuracy of the model.

  5. Exact Fourier expansion in cylindrical coordinates for the three-dimensional Helmholtz Green function

    NASA Astrophysics Data System (ADS)

    Conway, John T.; Cohl, Howard S.

    2010-06-01

    A new method is presented for Fourier decomposition of the Helmholtz Green function in cylindrical coordinates, which is equivalent to obtaining the solution of the Helmholtz equation for a general ring source. The Fourier coefficients of the Green function are split into their half advanced + half retarded and half advanced-half retarded components, and closed form solutions for these components are then obtained in terms of a Horn function and a Kampé de Fériet function respectively. Series solutions for the Fourier coefficients are given in terms of associated Legendre functions, Bessel and Hankel functions and a hypergeometric function. These series are derived either from the closed form 2-dimensional hypergeometric solutions or from an integral representation, or from both. A simple closed form far-field solution for the general Fourier coefficient is derived from the Hankel series. Numerical calculations comparing different methods of calculating the Fourier coefficients are presented. Fourth order ordinary differential equations for the Fourier coefficients are also given and discussed briefly.

  6. Application of the probabilistic approximate analysis method to a turbopump blade analysis. [for Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Thacker, B. H.; Mcclung, R. C.; Millwater, H. R.

    1990-01-01

    An eigenvalue analysis of a typical space propulsion system turbopump blade is presented using an approximate probabilistic analysis methodology. The methodology was developed originally to investigate the feasibility of computing probabilistic structural response using closed-form approximate models. This paper extends the methodology to structures for which simple closed-form solutions do not exist. The finite element method will be used for this demonstration, but the concepts apply to any numerical method. The results agree with detailed analysis results and indicate the usefulness of using a probabilistic approximate analysis in determining efficient solution strategies.

  7. Delay chemical master equation: direct and closed-form solutions

    PubMed Central

    Leier, Andre; Marquez-Lago, Tatiana T.

    2015-01-01

    The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived. PMID:26345616

  8. Delay chemical master equation: direct and closed-form solutions.

    PubMed

    Leier, Andre; Marquez-Lago, Tatiana T

    2015-07-08

    The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived.

  9. Use of the reciprocity theorem for a closed form solution of scattering of the lowest axially symmetric torsional wave mode by a defect in a pipe.

    PubMed

    Lee, Jaesun; Achenbach, Jan D; Cho, Younho

    2018-03-01

    Guided waves can effectively be used for inspection of large scale structures. Surface corrosion is often found as major defect type in large scale structures such as pipelines. Guided wave interaction with surface corrosion can provide useful information for sizing and classification. In this paper, the elastodynamic reciprocity theorem is used to formulate and solve complicated scattering problems in a simple manner. The approach has already been applied to scattering of Rayleigh and Lamb waves by defects to produce closed form solutions of amplitude of scattered waves. In this paper, the scattering of the lowest axially symmetric torsional mode, which is widely used in commercial applications, is analyzed by the reciprocity theorem. In the present paper, the theorem is used to determine the scattering of the lowest torsional mode by a tapered defect that was earlier considered experimentally and numerically by the finite element method. It is shown that by the presented method it is simple to obtain the ratio of amplitudes of scattered torsional modes for a tapered notch. The results show a good agreement with earlier numerical results. The wave field superposition technique in conjunction with the reciprocity theorem simplifies the solution of the scattering problem to yield a closed form solution which can play a significant role in quantitative signal interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROTECTION

    EPA Science Inventory

    A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...

  11. Verification assessment of piston boundary conditions for Lagrangian simulation of compressible flow similarity solutions

    DOE PAGES

    Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.

    2015-12-10

    This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less

  12. Verification assessment of piston boundary conditions for Lagrangian simulation of compressible flow similarity solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.

    This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less

  13. DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROJECTION - PROJECT SUMMARY

    EPA Science Inventory

    A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...

  14. WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL (EPA/600/SR-94/210)

    EPA Science Inventory

    A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a groundwater flo...

  15. A recursive solution for a fading memory filter derived from Kalman filter theory

    NASA Technical Reports Server (NTRS)

    Statman, J. I.

    1986-01-01

    A simple recursive solution for a class of fading memory tracking filters is presented. A fading memory filter provides estimates of filter states based on past measurements, similar to a traditional Kalman filter. Unlike a Kalman filter, an exponentially decaying weight is applied to older measurements, discounting their effect on present state estimates. It is shown that Kalman filters and fading memory filters are closely related solutions to a general least squares estimator problem. Closed form filter transfer functions are derived for a time invariant, steady state, fading memory filter. These can be applied in loop filter implementation of the Deep Space Network (DSN) Advanced Receiver carrier phase locked loop (PLL).

  16. Efficient Jacobian inversion for the control of simple robot manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1988-01-01

    Symbolic inversion of the Jacobian matrix for spherical wrist arms is investigated. It is shown that, taking advantage of the simple geometry of these arms, the closed-form solution of the system Q = J-1X, representing a transformation from task space to joint space, can be obtained very efficiently. The solutions for PUMA, Stanford, and a six-revolute-joint coplanar arm, along with all singular points, are presented. The solution for each joint variable is found as an explicit function of the singular points which provides a better insight into the effect of different singular points on the motion and force exertion of each individual joint. For the above arms, the computation cost of the solution is on the same order as the cost of forward kinematic solution and it is significantly reduced if forward kinematic solution is already obtained. A comparison with previous methods shows that this method is the most efficient to date.

  17. Pendulum Motion and Differential Equations

    ERIC Educational Resources Information Center

    Reid, Thomas F.; King, Stephen C.

    2009-01-01

    A common example of real-world motion that can be modeled by a differential equation, and one easily understood by the student, is the simple pendulum. Simplifying assumptions are necessary for closed-form solutions to exist, and frequently there is little discussion of the impact if those assumptions are not met. This article presents a…

  18. A note on the solutions of some nonlinear equations arising in third-grade fluid flows: an exact approach.

    PubMed

    Aziz, Taha; Mahomed, F M

    2014-01-01

    In this communication, we utilize some basic symmetry reductions to transform the governing nonlinear partial differential equations arising in the study of third-grade fluid flows into ordinary differential equations. We obtain some simple closed-form steady-state solutions of these reduced equations. Our solutions are valid for the whole domain [0,∞) and also satisfy the physical boundary conditions. We also present the numerical solutions for some of the underlying equations. The graphs corresponding to the essential physical parameters of the flow are presented and discussed.

  19. A Note on the Solutions of Some Nonlinear Equations Arising in Third-Grade Fluid Flows: An Exact Approach

    PubMed Central

    Mahomed, F. M.

    2014-01-01

    In this communication, we utilize some basic symmetry reductions to transform the governing nonlinear partial differential equations arising in the study of third-grade fluid flows into ordinary differential equations. We obtain some simple closed-form steady-state solutions of these reduced equations. Our solutions are valid for the whole domain [0,∞) and also satisfy the physical boundary conditions. We also present the numerical solutions for some of the underlying equations. The graphs corresponding to the essential physical parameters of the flow are presented and discussed. PMID:25143962

  20. Induced drag ideal efficiency factor of arbitrary lateral-vertical wing forms

    NASA Technical Reports Server (NTRS)

    Deyoung, J.

    1980-01-01

    A relatively simple equation is presented for estimating the induced drag ideal efficiency factor e for arbitrary cross sectional wing forms. This equation is based on eight basic but varied wing configurations which have exact solutions. The e function which relates the basic wings is developed statistically and is a continuous function of configuration geometry. The basic wing configurations include boxwings shaped as a rectangle, ellipse, and diamond; the V-wing; end-plate wing; 90 degree cruciform; circle dumbbell; and biplane. Example applications of the e equations are made to many wing forms such as wings with struts which form partial span rectangle dumbbell wings; bowtie, cruciform, winglet, and fan wings; and multiwings. Derivations are presented in the appendices of exact closed form solutions found of e for the V-wing and 90 degree cruciform wing and for an asymptotic solution for multiwings.

  1. A forecast for extinction debt in the presence of speciation.

    PubMed

    Sgardeli, Vasiliki; Iwasa, Yoh; Varvoglis, Harry; Halley, John M

    2017-02-21

    Predicting biodiversity relaxation following a disturbance is of great importance to conservation biology. Recently-developed models of stochastic community assembly allow us to predict the evolution of communities on the basis of mechanistic processes at the level of individuals. The neutral model of biodiversity, in particular, has provided closed-form solutions for the relaxation of biodiversity in isolated communities (no immigration or speciation). Here, we extend these results by deriving a relaxation curve for a neutral community in which new species are introduced through the mechanism of random fission speciation (RFS). The solution provides simple closed-form expressions for the equilibrium species richness, the relaxation time and the species-individual curve, which are good approximation to the more complicated formulas existing for the same model. The derivation of the relaxation curve is based on the assumption of a broken-stick species-abundance distribution (SAD) as an initial community configuration; yet for commonly observed SADs, the maximum deviation from the curve does not exceed 10%. Importantly, the solution confirms theoretical results and observations showing that the relaxation time increases with community size and thus habitat area. Such simple and analytically tractable models can help crystallize our ideas on the leading factors affecting biodiversity loss. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Inversion Of Jacobian Matrix For Robot Manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1989-01-01

    Report discusses inversion of Jacobian matrix for class of six-degree-of-freedom arms with spherical wrist, i.e., with last three joints intersecting. Shows by taking advantage of simple geometry of such arms, closed-form solution of Q=J-1X, which represents linear transformation from task space to joint space, obtained efficiently. Presents solutions for PUMA arm, JPL/Stanford arm, and six-revolute-joint coplanar arm along with all singular points. Main contribution of paper shows simple geometry of this type of arms exploited in performing inverse transformation without any need to compute Jacobian or its inverse explicitly. Implication of this computational efficiency advanced task-space control schemes for spherical-wrist arms implemented more efficiently.

  3. Analysis of cavitation bubble dynamics in a liquid

    NASA Technical Reports Server (NTRS)

    Fontenot, L. L.; Lee, Y. C.

    1971-01-01

    General differential equations governing the dynamics of the cavitation bubbles in a liquid were derived. With the assumption of spherical symmetry the governing equations were simplified. Closed form solutions were obtained for simple cases, and numerical solutions were calculated for complicated ones. The growth and the collapse of the bubble were analyzed, oscillations of the bubbles were studied, and the stability of the cavitation bubbles were investigated. The results show that the cavitation bubbles are unstable, and the oscillation is not sinusoidal.

  4. Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness

    NASA Technical Reports Server (NTRS)

    Townsend, John S.

    1987-01-01

    A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. Using a perturbation expansion technique the free vibration solution is obtained in a closed-form, and the effects of system parameters on beam response are explored. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.

  5. Polar decomposition for attitude determination from vector observations

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.

    1993-01-01

    This work treats the problem of weighted least squares fitting of a 3D Euclidean-coordinate transformation matrix to a set of unit vectors measured in the reference and transformed coordinates. A closed-form analytic solution to the problem is re-derived. The fact that the solution is the closest orthogonal matrix to some matrix defined on the measured vectors and their weights is clearly demonstrated. Several known algorithms for computing the analytic closed form solution are considered. An algorithm is discussed which is based on the polar decomposition of matrices into the closest unitary matrix to the decomposed matrix and a Hermitian matrix. A somewhat longer improved algorithm is suggested too. A comparison of several algorithms is carried out using simulated data as well as real data from the Upper Atmosphere Research Satellite. The comparison is based on accuracy and time consumption. It is concluded that the algorithms based on polar decomposition yield a simple although somewhat less accurate solution. The precision of the latter algorithms increase with the number of the measured vectors and with the accuracy of their measurement.

  6. Closed-form analytical solutions for assessing the consequences of sea-level rise on unconfined sloping island aquifers

    NASA Astrophysics Data System (ADS)

    Chesnaux, R.

    2016-04-01

    Closed-form analytical solutions for assessing the consequences of sea-level rise on fresh groundwater oceanic island lenses are provided for the cases of both strip and circular islands. Solutions are proposed for directly calculating the change in the thickness of the lens, the changes in volume and the changes in travel time of fresh groundwater within island aquifers. The solutions apply for homogenous aquifers recharged by surface infiltration and discharged by a down-gradient, fixed-head boundary. They also take into account the inland shift of the ocean due to land surface inundation, this shift being determined by the coastal slope of inland aquifers. The solutions are given for two simple island geometries: circular islands and strip islands. Base case examples are presented to illustrate, on one hand, the amplitude of the change of the fresh groundwater lens thickness and the volume depletion of the lens in oceanic island with sea-level rise, and on the other hand, the shortening of time required for groundwater to discharge into the ocean. These consequences can now be quantified and may help decision-makers to anticipate the effects of sea-level rise on fresh groundwater availability in oceanic island aquifers.

  7. A General Closed-Form Solution for the Lunar Reconnaissance Orbiter (LRO) Antenna Pointing System

    NASA Technical Reports Server (NTRS)

    Shah, Neerav; Chen, J. Roger; Hashmall, Joseph A.

    2010-01-01

    The National Aeronautics and Space Administration s (NASA) Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle into a direct insertion trajectory to the Moon LRO, designed, built, and operated by the NASA Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. During the mission s nominal life of one year its six instruments and one technology demonstrator will find safe landing site, locate potential resources, characterize the radiation environment and test new technology. To date, LRO has been operating well within the bounds of its requirements and has been collecting excellent science data images taken from the LRO Camera Narrow Angle Camera (LROC NAC) of the Apollo landing sites have appeared on cable news networks. A significant amount of information on LRO s science instruments is provided at the LRO mission webpage. LRO s Attitude Control System (ACS), in addition to controlling the orientation of the spacecraft is also responsible for pointing the High Gain Antenna (HGA). A dual-axis (or double-gimbaled) antenna, deployed on a meter-long boom, is required to point at a selected Earth ground station. Due to signal loss over the distance from the Moon to Earth, pointing precision for the antenna system is very tight. Since the HGA has to be deployed in spaceflight, its exact geometry relative to the spacecraft body is uncertain. In addition, thermal distortions and mechanical errors/tolerances must be characterized and removed to realize the greatest gain from the antenna system. These reasons necessitate the need for an in-flight calibration. Once in orbit around the moon, a series of attitude maneuvers was conducted to provide data needed to determine optimal parameters to load onboard, which would account for the environmental and mechanical errors at any antenna orientation. The nominal geometry for the HGA involves an outer gimbal axis that is exactly perpendicular to the inner gimbal axis, and a target direction that is exactly perpendicular to the outer gimbal axis. For this nominal geometry, closed-form solutions of the desired gimbal angles are simple to get for a desired target direction specified in the spacecraft body fame. If the gimbal axes and the antenna boresight are slightly misaligned, the nominal closed-form solution is not sufficiently accurate for computing the gimbal angles needed to point at a target. In this situation, either a general closed-form solution has to be developed for a mechanism with general geometries, or a correction scheme has to be applied to the nominal closed-form solutions. The latter has been adopted for Solar Dynamics Observatory (SDO) as can be seen in Reference 1, and the former has been used for LRO. The advantage of the general closed-form solution is the use of a small number of parameters for the correction of nominal solutions, especially in the regions near singularities. Singularities here refer to cases when the nominal closed-form solutions have two or more solutions. Algorithm complexity, however, is the disadvantage of the general closed-form solution.

  8. State-constrained booster trajectory solutions via finite elements and shooting

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.; Seywald, Hans

    1993-01-01

    This paper presents an extension of a FEM formulation based on variational principles. A general formulation for handling internal boundary conditions and discontinuities in the state equations is presented, and the general formulation is modified for optimal control problems subject to state-variable inequality constraints. Solutions which only touch the state constraint and solutions which have a boundary arc of finite length are considered. Suitable shape and test functions are chosen for a FEM discretization. All element quadrature (equivalent to one-point Gaussian quadrature over each element) may be done in closed form. The final form of the algebraic equations is then derived. A simple state-constrained problem is solved. Then, for a practical application of the use of the FEM formulation, a launch vehicle subject to a dynamic pressure constraint (a first-order state inequality constraint) is solved. The results presented for the launch-vehicle trajectory have some interesting features, including a touch-point solution.

  9. Spectral edge: gradient-preserving spectral mapping for image fusion.

    PubMed

    Connah, David; Drew, Mark S; Finlayson, Graham D

    2015-12-01

    This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.

  10. Utopian Kinetic Structures and Their Impact on the Contemporary Architecture

    NASA Astrophysics Data System (ADS)

    Cudzik, Jan; Nyka, Lucyna

    2017-10-01

    This paper delves into relationships between twentieth century utopian concepts of movable structures and the kinematic solutions implemented in contemporary architectural projects. The reason for conducting this study is to determine the impact of early architectural conceptions on today’s solutions. This paper points out close links that stem from the imagination of artists and architects working in 1960s and 70s and the solutions implemented by contemporary architects of that era. The research method of this paper is based on comparative analyses of architectural forms with adopted kinematic solutions. It is based on archive drawings’ studies and the examination of theoretical concepts. The research pertains to different forms of such mobility that evolved in 1960s and 70s. Many of them, usually based on the simple forms of movement were realized. The more complicated ones remained in the sphere of utopian visionary architecture. In this case, projects often exceed technical limitations and capabilities of design tools. Finally, after some decades, with the development of innovative architectural design tools and new building technologies many early visions materialized into architectural forms. In conclusion, this research indicates that modern kinematic design solutions are often based on conceptual designs formed from the beginning of the second half of the twentieth century.

  11. Clairvoyant fusion: a new methodology for designing robust detection algorithms

    NASA Astrophysics Data System (ADS)

    Schaum, Alan

    2016-10-01

    Many realistic detection problems cannot be solved with simple statistical tests for known alternative probability models. Uncontrollable environmental conditions, imperfect sensors, and other uncertainties transform simple detection problems with likelihood ratio solutions into composite hypothesis (CH) testing problems. Recently many multi- and hyperspectral sensing CH problems have been addressed with a new approach. Clairvoyant fusion (CF) integrates the optimal detectors ("clairvoyants") associated with every unspecified value of the parameters appearing in a detection model. For problems with discrete parameter values, logical rules emerge for combining the decisions of the associated clairvoyants. For many problems with continuous parameters, analytic methods of CF have been found that produce closed-form solutions-or approximations for intractable problems. Here the principals of CF are reviewed and mathematical insights are described that have proven useful in the derivation of solutions. It is also shown how a second-stage fusion procedure can be used to create theoretically superior detection algorithms for ALL discrete parameter problems.

  12. On the structure of the turbulent vortex

    NASA Technical Reports Server (NTRS)

    Roberts, L.

    1985-01-01

    The trailing vortex generated by a lifting surface, the structure of its turbulent core and the influence of axial flow within the vortex on its initial persistence and on its subsequent decay are described. Similarity solutions of the turbulent diffusion equation are given in closed form and results are expressed in sufficiently simple terms that the influence of the lifting surface parameters on the length of persistence and the rate of decay of the vortex can be evaluated.

  13. Sample distribution in peak mode isotachophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, Shimon; Schwartz, Ortal; Bercovici, Moran, E-mail: mberco@technion.ac.il

    We present an analytical study of peak mode isotachophoresis (ITP), and provide closed form solutions for sample distribution and electric field, as well as for leading-, trailing-, and counter-ion concentration profiles. Importantly, the solution we present is valid not only for the case of fully ionized species, but also for systems of weak electrolytes which better represent real buffer systems and for multivalent analytes such as proteins and DNA. The model reveals two major scales which govern the electric field and buffer distributions, and an additional length scale governing analyte distribution. Using well-controlled experiments, and numerical simulations, we verify andmore » validate the model and highlight its key merits as well as its limitations. We demonstrate the use of the model for determining the peak concentration of focused sample based on known buffer and analyte properties, and show it differs significantly from commonly used approximations based on the interface width alone. We further apply our model for studying reactions between multiple species having different effective mobilities yet co-focused at a single ITP interface. We find a closed form expression for an effective-on rate which depends on reactants distributions, and derive the conditions for optimizing such reactions. Interestingly, the model reveals that maximum reaction rate is not necessarily obtained when the concentration profiles of the reacting species perfectly overlap. In addition to the exact solutions, we derive throughout several closed form engineering approximations which are based on elementary functions and are simple to implement, yet maintain the interplay between the important scales. Both the exact and approximate solutions provide insight into sample focusing and can be used to design and optimize ITP-based assays.« less

  14. Gödel universes in string theory

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Dabrowski, Mariusz P.

    1998-11-01

    We show that homogeneous Gödel spacetimes need not contain closed timelike curves in low-energy-effective string theories. We find exact solutions for the Gödel metric in string theory for the full O(α') action including both dilaton and axion fields. The results are valid for bosonic, heterotic and super-strings. To first order in the inverse string tension α', these solutions display a simple relation between the angular velocity of the Gödel universe, Ω, and the inverse string tension of the form α'=1/Ω2 in the absence of the axion field. The generalization of this relationship is also found when the axion field is present.

  15. Capture zones for simple aquifers

    USGS Publications Warehouse

    McElwee, Carl D.

    1991-01-01

    Capture zones showing the area influenced by a well within a certain time are useful for both aquifer protection and cleanup. If hydrodynamic dispersion is neglected, a deterministic curve defines the capture zone. Analytical expressions for the capture zones can be derived for simple aquifers. However, the capture zone equations are transcendental and cannot be explicitly solved for the coordinates of the capture zone boundary. Fortunately, an iterative scheme allows the solution to proceed quickly and efficiently even on a modest personal computer. Three forms of the analytical solution must be used in an iterative scheme to cover the entire region of interest, after the extreme values of the x coordinate are determined by an iterative solution. The resulting solution is a discrete one, and usually 100-1000 intervals along the x-axis are necessary for a smooth definition of the capture zone. The presented program is written in FORTRAN and has been used in a variety of computing environments. No graphics capability is included with the program; it is assumed the user has access to a commercial package. The superposition of capture zones for multiple wells is expected to be satisfactory if the spacing is not too close. Because this program deals with simple aquifers, the results rarely will be the final word in a real application.

  16. Response of a Rotating Propeller to Aerodynamic Excitation

    NASA Technical Reports Server (NTRS)

    Arnoldi, Walter E.

    1949-01-01

    The flexural vibration of a rotating propeller blade with clamped shank is analyzed with the object of presenting, in matrix form, equations for the elastic bending moments in forced vibration resulting from aerodynamic forces applied at a fixed multiple of rotational speed. Matrix equations are also derived which define the critical speeds end mode shapes for any excitation order and the relation between critical speed and blade angle. Reference is given to standard works on the numerical solution of matrix equations of the forms derived. The use of a segmented blade as an approximation to a continuous blade provides a simple means for obtaining the matrix solution from the integral equation of equilibrium, so that, in the numerical application of the method presented, the several matrix arrays of the basic physical characteristics of the propeller blade are of simple form, end their simplicity is preserved until, with the solution in sight, numerical manipulations well-known in matrix algebra yield the desired critical speeds and mode shapes frame which the vibration at any operating condition may be synthesized. A close correspondence between the familiar Stodola method and the matrix method is pointed out, indicating that any features of novelty are characteristic not of the analytical procedure but only of the abbreviation, condensation, and efficient organization of the numerical procedure made possible by the use of classical matrix theory.

  17. Machining Chatter Analysis for High Speed Milling Operations

    NASA Astrophysics Data System (ADS)

    Sekar, M.; Kantharaj, I.; Amit Siddhappa, Savale

    2017-10-01

    Chatter in high speed milling is characterized by time delay differential equations (DDE). Since closed form solution exists only for simple cases, the governing non-linear DDEs of chatter problems are solved by various numerical methods. Custom codes to solve DDEs are tedious to build, implement and not error free and robust. On the other hand, software packages provide solution to DDEs, however they are not straight forward to implement. In this paper an easy way to solve DDE of chatter in milling is proposed and implemented with MATLAB. Time domain solution permits the study and model of non-linear effects of chatter vibration with ease. Time domain results are presented for various stable and unstable conditions of cut and compared with stability lobe diagrams.

  18. Vacillations induced by interference of stationary and traveling planetary waves

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.; Garcia, Rolando R.

    1987-01-01

    The interference pattern produced when a traveling planetary wave propagates over a stationary forced wave is explored, examining the interference signature in a variety of diagnostics. The wave field is first restricted to a diatomic spectrum consisting of two components: a single stationary wave and a single monochromatic traveling wave. A simple barotropic normal mode propagating over a simple stationary plane wave is considered, and closed form solutions are obtained. The wave fields are then restricted spatially, providing more realistic structures without sacrificing the advantages of an analytical solution. Both stationary and traveling wave fields are calculated numerically with the linearized Primitive Equations in a realistic basic state. The mean flow reaction to the fluctuating eddy forcing which results from interference is derived. Synoptic geopotential behavior corresponding to the combined wave and mean flow fields is presented, and the synoptic signature in potential vorticity on isentropic surfaces is examined.

  19. Kinematics and dynamics of robotic systems with multiple closed loops

    NASA Astrophysics Data System (ADS)

    Zhang, Chang-De

    The kinematics and dynamics of robotic systems with multiple closed loops, such as Stewart platforms, walking machines, and hybrid manipulators, are studied. In the study of kinematics, focus is on the closed-form solutions of the forward position analysis of different parallel systems. A closed-form solution means that the solution is expressed as a polynomial in one variable. If the order of the polynomial is less than or equal to four, the solution has analytical closed-form. First, the conditions of obtaining analytical closed-form solutions are studied. For a Stewart platform, the condition is found to be that one rotational degree of freedom of the output link is decoupled from the other five. Based on this condition, a class of Stewart platforms which has analytical closed-form solution is formulated. Conditions of analytical closed-form solution for other parallel systems are also studied. Closed-form solutions of forward kinematics for walking machines and multi-fingered grippers are then studied. For a parallel system with three three-degree-of-freedom subchains, there are 84 possible ways to select six independent joints among nine joints. These 84 ways can be classified into three categories: Category 3:3:0, Category 3:2:1, and Category 2:2:2. It is shown that the first category has no solutions; the solutions of the second category have analytical closed-form; and the solutions of the last category are higher order polynomials. The study is then extended to a nearly general Stewart platform. The solution is a 20th order polynomial and the Stewart platform has a maximum of 40 possible configurations. Also, the study is extended to a new class of hybrid manipulators which consists of two serially connected parallel mechanisms. In the study of dynamics, a computationally efficient method for inverse dynamics of manipulators based on the virtual work principle is developed. Although this method is comparable with the recursive Newton-Euler method for serial manipulators, its advantage is more noteworthy when applied to parallel systems. An approach of inverse dynamics of a walking machine is also developed, which includes inverse dynamic modeling, foot force distribution, and joint force/torque allocation.

  20. Approximate analytical solution for induction heating of solid cylinders

    DOE PAGES

    Jankowski, Todd Andrew; Pawley, Norma Helen; Gonzales, Lindsey Michal; ...

    2015-10-20

    An approximate solution to the mathematical model for induction heating of a solid cylinder in a cylindrical induction coil is presented here. The coupled multiphysics model includes equations describing the electromagnetic field in the heated object, a heat transfer simulation to determine temperature of the heated object, and an AC circuit simulation of the induction heating power supply. A multiple-scale perturbation method is used to solve the multiphysics model. The approximate analytical solution yields simple closed-form expressions for the electromagnetic field and heat generation rate in the solid cylinder, for the equivalent impedance of the associated tank circuit, and formore » the frequency response of a variable frequency power supply driving the tank circuit. The solution developed here is validated by comparing predicted power supply frequency to both experimental measurements and calculated values from finite element analysis for heating of graphite cylinders in an induction furnace. The simple expressions from the analytical solution clearly show the functional dependence of the power supply frequency on the material properties of the load and the geometrical characteristics of the furnace installation. In conclusion, the expressions developed here provide physical insight into observations made during load signature analysis of induction heating.« less

  1. Aeroacoustic theory for noncompact wing-gust interaction

    NASA Technical Reports Server (NTRS)

    Martinez, R.; Widnall, S. E.

    1981-01-01

    Three aeroacoustic models for noncompact wing-gust interaction were developed for subsonic flow. The first is that for a two dimensional (infinite span) wing passing through an oblique gust. The unsteady pressure field was obtained by the Wiener-Hopf technique; the airfoil loading and the associated acoustic field were calculated, respectively, by allowing the field point down on the airfoil surface, or by letting it go to infinity. The second model is a simple spanwise superposition of two dimensional solutions to account for three dimensional acoustic effects of wing rotation (for a helicopter blade, or some other rotating planform) and of finiteness of wing span. A three dimensional theory for a single gust was applied to calculate the acoustic signature in closed form due to blade vortex interaction in helicopters. The third model is that of a quarter infinite plate with side edge through a gust at high subsonic speed. An approximate solution for the three dimensional loading and the associated three dimensional acoustic field in closed form was obtained. The results reflected the acoustic effect of satisfying the correct loading condition at the side edge.

  2. The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations

    NASA Technical Reports Server (NTRS)

    Osher, Stanley

    1989-01-01

    Simple inequalities for the Riemann problem for a Hamilton-Jacobi equation in N space dimension when neither the initial data nor the Hamiltonian need be convex (or concave) are presented. The initial data is globally continuous, affine in each orthant, with a possible jump in normal derivative across each coordinate plane, x sub i = 0. The inequalities become equalities wherever a maxmin equals a minmax and thus an exact closed form solution to this problem is then obtained.

  3. Statistics of Sxy estimates

    NASA Technical Reports Server (NTRS)

    Freilich, M. H.; Pawka, S. S.

    1987-01-01

    The statistics of Sxy estimates derived from orthogonal-component measurements are examined. Based on results of Goodman (1957), the probability density function (pdf) for Sxy(f) estimates is derived, and a closed-form solution for arbitrary moments of the distribution is obtained. Characteristic functions are used to derive the exact pdf of Sxy(tot). In practice, a simple Gaussian approximation is found to be highly accurate even for relatively few degrees of freedom. Implications for experiment design are discussed, and a maximum-likelihood estimator for a posterior estimation is outlined.

  4. An approximate closed-form solution for lead lag damping of rotor blades in hover

    NASA Technical Reports Server (NTRS)

    Peters, D. A.

    1975-01-01

    Simple stability methods are used to derive an approximate, closed-form expression for the lead-lag damping of rotor blades in hover. Destabilizing terms are shown to be a result of two dynamic mechanisms. First, the destabilizing aerodynamic forces that can occur when blade lift is higher than a critical value are maximized when the blade motion is in a straight line equidistant from the blade chord and the average direction of the air flow velocity. This condition occurs when the Coriolis terms vanish and when the elastic coupling terms align the blade motion with this least stable direction. Second, the nonconservative stiffness terms that result from pitch-flap or pitch-lag coupling can add or subtract energy from the system depending upon whether the motion of the blade tip is clockwise or counterclockwise.

  5. A new approach to impulsive rendezvous near circular orbit

    NASA Astrophysics Data System (ADS)

    Carter, Thomas; Humi, Mayer

    2012-04-01

    A new approach is presented for the problem of planar optimal impulsive rendezvous of a spacecraft in an inertial frame near a circular orbit in a Newtonian gravitational field. The total characteristic velocity to be minimized is replaced by a related characteristic-value function and this related optimization problem can be solved in closed form. The solution of this problem is shown to approach the solution of the original problem in the limit as the boundary conditions approach those of a circular orbit. Using a form of primer-vector theory the problem is formulated in a way that leads to relatively easy calculation of the optimal velocity increments. A certain vector that can easily be calculated from the boundary conditions determines the number of impulses required for solution of the optimization problem and also is useful in the computation of these velocity increments. Necessary and sufficient conditions for boundary conditions to require exactly three nonsingular non-degenerate impulses for solution of the related optimal rendezvous problem, and a means of calculating these velocity increments are presented. A simple example of a three-impulse rendezvous problem is solved and the resulting trajectory is depicted. Optimal non-degenerate nonsingular two-impulse rendezvous for the related problem is found to consist of four categories of solutions depending on the four ways the primer vector locus intersects the unit circle. Necessary and sufficient conditions for each category of solutions are presented. The region of the boundary values that admit each category of solutions of the related problem are found, and in each case a closed-form solution of the optimal velocity increments is presented. Similar results are presented for the simpler optimal rendezvous that require only one-impulse. For brevity degenerate and singular solutions are not discussed in detail, but should be presented in a following study. Although this approach is thought to provide simpler computations than existing methods, its main contribution may be in establishing a new approach to the more general problem.

  6. Deformations of the Almheiri-Polchinski model

    NASA Astrophysics Data System (ADS)

    Kyono, Hideki; Okumura, Suguru; Yoshida, Kentaroh

    2017-03-01

    We study deformations of the Almheiri-Polchinski (AP) model by employing the Yang-Baxter deformation technique. The general deformed AdS2 metric becomes a solution of a deformed AP model. In particular, the dilaton potential is deformed from a simple quadratic form to a hyperbolic function-type potential similarly to integrable deformations. A specific solution is a deformed black hole solution. Because the deformation makes the spacetime structure around the boundary change drastically and a new naked singularity appears, the holographic interpretation is far from trivial. The Hawking temperature is the same as the undeformed case but the Bekenstein-Hawking entropy is modified due to the deformation. This entropy can also be reproduced by evaluating the renormalized stress tensor with an appropriate counter-term on the regularized screen close to the singularity.

  7. Closed-form solutions for a class of optimal quadratic regulator problems with terminal constraints

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Turner, J. D.; Chun, H. M.

    1984-01-01

    Closed-form solutions are derived for coupled Riccati-like matrix differential equations describing the solution of a class of optimal finite time quadratic regulator problems with terminal constraints. Analytical solutions are obtained for the feedback gains and the closed-loop response trajectory. A computational procedure is presented which introduces new variables for efficient computation of the terminal control law. Two examples are given to illustrate the validity and usefulness of the theory.

  8. An exact closed form solution for constant area compressible flow with friction and heat transfer

    NASA Technical Reports Server (NTRS)

    Sturas, J. I.

    1971-01-01

    The well-known differential equation for the one-dimensional flow of a compressible fluid with heat transfer and wall friction has no known solution in closed form for the general case. This report presents a closed form solution for the special case of constant heat flux per unit length and constant specific heat. The solution was obtained by choosing the square of a dimensionless flow parameter as one of the independent variables to describe the flow. From this exact solution, an approximate simplified form is derived that is applicable for predicting subsonic flow performance characteristics for many types of constant area passages in internal flow. The data included in this report are considered sufficiently accurate for use as a guide in analyzing and designing internal gas flow systems.

  9. Heat Transfer to Surfaces of Finite Catalytic Activity in Frozen Dissociated Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Chung, Paul M.; Anderson, Aemer D.

    1961-01-01

    The heat transfer due to catalytic recombination of a partially dissociated diatomic gas along the surfaces of two-dimensional and axisymmetric bodies with finite catalytic efficiencies is studied analytically. An integral method is employed resulting in simple yet relatively complete solutions for the particular configurations considered. A closed form solution is derived which enables one to calculate atom mass-fraction distribution, therefore catalytic heat transfer distribution, along the surface of a flat plate in frozen compressible flow with and without transpiration. Numerical calculations are made to determine the atom mass-fraction distribution along an axisymmetric conical body with spherical nose in frozen hypersonic compressible flow. A simple solution based on a local similarity concept is found to be in good agreement with these numerical calculations. The conditions are given for which the local similarity solution is expected to be satisfactory. The limitations on the practical application of the analysis to the flight of the blunt bodies in the atmosphere are discussed. The use of boundary-layer theory and the assumption of frozen flow restrict application of the analysis to altitudes between about 150,000 and 250,000 feet.

  10. An efficient closed-form solution for acoustic emission source location in three-dimensional structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xibing; Dong, Longjun, E-mail: csudlj@163.com; Australian Centre for Geomechanics, The University of Western Australia, Crawley, 6009

    This paper presents an efficient closed-form solution (ECS) for acoustic emission(AE) source location in three-dimensional structures using time difference of arrival (TDOA) measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.

  11. Closed-form solutions of performability. [in computer systems

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1982-01-01

    It is noted that if computing system performance is degradable then system evaluation must deal simultaneously with aspects of both performance and reliability. One approach is the evaluation of a system's performability which, relative to a specified performance variable Y, generally requires solution of the probability distribution function of Y. The feasibility of closed-form solutions of performability when Y is continuous are examined. In particular, the modeling of a degradable buffer/multiprocessor system is considered whose performance Y is the (normalized) average throughput rate realized during a bounded interval of time. Employing an approximate decomposition of the model, it is shown that a closed-form solution can indeed be obtained.

  12. Assessment of ALEGRA Computation for Magnetostatic Configurations

    DOE PAGES

    Grinfeld, Michael; Niederhaus, John Henry; Porwitzky, Andrew

    2016-03-01

    Here, a closed-form solution is described here for the equilibrium configurations of the magnetic field in a simple heterogeneous domain. This problem and its solution are used for rigorous assessment of the accuracy of the ALEGRA code in the quasistatic limit. By the equilibrium configuration we understand the static condition, or the stationary states without macroscopic current. The analysis includes quite a general class of 2D solutions for which a linear isotropic metallic matrix is placed inside a stationary magnetic field approaching a constant value H i° at infinity. The process of evolution of the magnetic fields inside and outsidemore » the inclusion and the parameters for which the quasi-static approach provides for self-consistent results is also explored. Lastly, it is demonstrated that under spatial mesh refinement, ALEGRA converges to the analytic solution for the interior of the inclusion at the expected rate, for both body-fitted and regular rectangular meshes.« less

  13. Deflection of a flexural cantilever beam

    NASA Astrophysics Data System (ADS)

    Sherbourne, A. N.; Lu, F.

    The behavior of a flexural elastoplastic cantilever beam is investigated in which geometric nonlinearities are considered. The result of an elastica analysis by Frisch-Fay (1962) is extended to include postyield behavior. Although a closed-form solution is not possible, as in the elastic case, simple algebraic equations are derived involving only one unknown variable, which can also be expressed in the standard form of elliptic integrals if so desired. The results, in comparison with those of the small deflection analyses, indicate that large deflection analyses are necessary when the relative depth of the beam is very small over the length. The present exact solution can be used as a reference by those who resort to a finite element method for more complicated problems. It can also serve as a building block to other beam problems such as a simply supported beam or a beam with multiple loads.

  14. Analytical and finite element simulation of a three-bar torsion spring

    NASA Astrophysics Data System (ADS)

    Rădoi, M.; Cicone, T.

    2016-08-01

    The present study is dedicated to the innovative 3-bar torsion spring used as suspension solution for the first time at Lunokhod-1, the first autonomous vehicle sent for the exploration of the Moon in the early 70-ies by the former USSR. The paper describes a simple analytical model for calculation of spring static characteristics, taking into account both torsion and bending effects. Closed form solutions of this model allows quick and elegant parametric analysis. A comparison with a single torsion bar with the same stiffness reveal an increase of the maximum stress with more than 50%. A 3D finite element (FE) simulation is proposed to evaluate the accuracy of the analytical model. The model was meshed in an automated pattern (sweep for hubs and tetrahedrons for bars) with mesh morphing. Very close results between analytical and numerical solutions have been found, concluding that the analytical model is accurate. The 3-D finite element simulation was used to evaluate the effects of design details like fillet radius of the bars or contact stresses in the hex hub.

  15. Effect of Boundary Conditions on the Axial Compression Buckling of Homogeneous Orthotropic Composite Cylinders in the Long Column Range

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Nemeth, Michael P.; Oremont, Leonard; Jegley, Dawn C.

    2011-01-01

    Buckling loads for long isotropic and laminated cylinders are calculated based on Euler, Fluegge and Donnell's equations. Results from these methods are presented using simple parameters useful for fundamental design work. Buckling loads for two types of simply supported boundary conditions are calculated using finite element methods for comparison to select cases of the closed form solution. Results indicate that relying on Donnell theory can result in an over-prediction of buckling loads by as much as 40% in isotropic materials.

  16. Strong stabilization servo controller with optimization of performance criteria.

    PubMed

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2011-07-01

    Synthesis of a simple robust controller with a pole placement technique and a H(∞) metrics is the method used for control of a servo mechanism with BLDC and BDC electric motors. The method includes solving a polynomial equation on the basis of the chosen characteristic polynomial using the Manabe standard polynomial form and parametric solutions. Parametric solutions are introduced directly into the structure of the servo controller. On the basis of the chosen parametric solutions the robustness of a closed-loop system is assessed through uncertainty models and assessment of the norm ‖•‖(∞). The design procedure and the optimization are performed with a genetic algorithm differential evolution - DE. The DE optimization method determines a suboptimal solution throughout the optimization on the basis of a spectrally square polynomial and Šiljak's absolute stability test. The stability of the designed controller during the optimization is being checked with Lipatov's stability condition. Both utilized approaches: Šiljak's test and Lipatov's condition, check the robustness and stability characteristics on the basis of the polynomial's coefficients, and are very convenient for automated design of closed-loop control and for application in optimization algorithms such as DE. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Symmetry, stability, and computation of degenerate lasing modes

    NASA Astrophysics Data System (ADS)

    Liu, David; Zhen, Bo; Ge, Li; Hernandez, Felipe; Pick, Adi; Burkhardt, Stephan; Liertzer, Matthias; Rotter, Stefan; Johnson, Steven G.

    2017-02-01

    We present a general method to obtain the stable lasing solutions for the steady-state ab initio lasing theory (SALT) for the case of a degenerate symmetric laser in two dimensions (2D). We find that under most regimes (with one pathological exception), the stable solutions are clockwise and counterclockwise circulating modes, generalizing previously known results of ring lasers to all 2D rotational symmetry groups. Our method uses a combination of semianalytical solutions close to lasing threshold and numerical solvers to track the lasing modes far above threshold. Near threshold, we find closed-form expressions for both circulating modes and other types of lasing solutions as well as for their linearized Maxwell-Bloch eigenvalues, providing a simple way to determine their stability without having to do a full nonlinear numerical calculation. Above threshold, we show that a key feature of the circulating mode is its "chiral" intensity pattern, which arises from spontaneous symmetry breaking of mirror symmetry, and whose symmetry group requires that the degeneracy persists even when nonlinear effects become important. Finally, we introduce a numerical technique to solve the degenerate SALT equations far above threshold even when spatial discretization artificially breaks the degeneracy.

  18. Freeze the Moment: High Speed Capturing of Weakly Bonded Dynamic Nanoparticle Assemblies in Solution by Ag Ion Soldering.

    PubMed

    Wang, Yueliang; Fang, Lingling; Chen, Gaoli; Song, Lei; Deng, Zhaoxiang

    2018-02-01

    Despite the versatile forms of colloidal aggregates, these spontaneously formed structures are often hard to find a suitable application in nanotechnology and materials science. A determinate reason is the lack of a suitable method to capture the transiently formed and quickly evolving colloidal structures in solution. To address this challenge, a simple but highly efficient strategy is herein reported to capture the dynamic and metastable colloidal assemblies formed in an aqueous or nonaqueous solution. This process takes advantage of a recently developed Ag ion soldering reaction to realize a rapid fixation of as-formed metastable assemblies. This method works efficiently for both solid (3D) nanoparticle aggregates and weakly bonded fractal nanoparticle chains (1D). In both cases, very high capturing speed and close to 100% efficiency are achieved to fully retain a quickly growing structure. The soldered nanochains further enable a fabrication of discrete, uniform, and functionalizable nanoparticle clusters with enriched linear conformation by mechanical shearing, which would otherwise be difficult to make. The captured products are water dispersible and mechanically robust, favoring an exploration of their properties toward possible applications. The work paves a way to previously untouched aspects of colloidal science and thus would create new chances in nanotechnology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Numerical Algorithm for Delta of Asian Option

    PubMed Central

    Zhang, Boxiang; Yu, Yang; Wang, Weiguo

    2015-01-01

    We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options. PMID:26266271

  20. Dirac delta representation by exact parametric equations.. Application to impulsive vibration systems

    NASA Astrophysics Data System (ADS)

    Chicurel-Uziel, Enrique

    2007-08-01

    A pair of closed parametric equations are proposed to represent the Heaviside unit step function. Differentiating the step equations results in two additional parametric equations, that are also hereby proposed, to represent the Dirac delta function. These equations are expressed in algebraic terms and are handled by means of elementary algebra and elementary calculus. The proposed delta representation complies exactly with the values of the definition. It complies also with the sifting property and the requisite unit area and its Laplace transform coincides with the most general form given in the tables. Furthermore, it leads to a very simple method of solution of impulsive vibrating systems either linear or belonging to a large class of nonlinear problems. Two example solutions are presented.

  1. Closed-form solutions of performability. [modeling of a degradable buffer/multiprocessor system

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1981-01-01

    Methods which yield closed form performability solutions for continuous valued variables are developed. The models are similar to those employed in performance modeling (i.e., Markovian queueing models) but are extended so as to account for variations in structure due to faults. In particular, the modeling of a degradable buffer/multiprocessor system is considered whose performance Y is the (normalized) average throughput rate realized during a bounded interval of time. To avoid known difficulties associated with exact transient solutions, an approximate decomposition of the model is employed permitting certain submodels to be solved in equilibrium. These solutions are then incorporated in a model with fewer transient states and by solving the latter, a closed form solution of the system's performability is obtained. In conclusion, some applications of this solution are discussed and illustrated, including an example of design optimization.

  2. Simplified multiple scattering model for radiative transfer in turbid water

    NASA Technical Reports Server (NTRS)

    Ghovanlou, A. H.; Gupta, G. N.

    1978-01-01

    Quantitative analytical procedures for relating selected water quality parameters to the characteristics of the backscattered signals, measured by remote sensors, require the solution of the radiative transport equation in turbid media. Presented is an approximate closed form solution of this equation and based on this solution, the remote sensing of sediments is discussed. The results are compared with other standard closed form solutions such as quasi-single scattering approximations.

  3. Comments on "A Closed-Form Solution to Tensor Voting: Theory and Applications".

    PubMed

    Maggiori, Emmanuel; Lotito, Pablo; Manterola, Hugo Luis; del Fresno, Mariana

    2014-12-01

    We comment on a paper that describes a closed-form formulation to Tensor Voting, a technique to perceptually group clouds of points, usually applied to infer features in images. The authors proved an analytic solution to the technique, a highly relevant contribution considering that the original formulation required numerical integration, a time-consuming task. Their work constitutes the first closed-form expression for the Tensor Voting framework. In this work we first observe that the proposed formulation leads to unexpected results which do not satisfy the constraints for a Tensor Voting output, hence they cannot be interpreted. Given that the closed-form expression is said to be an analytic equivalent solution, unexpected outputs should not be encountered unless there are flaws in the proof. We analyzed the underlying math to find which were the causes of these unexpected results. In this commentary we show that their proposal does not in fact provide a proper analytic solution to Tensor Voting and we indicate the flaws in the proof.

  4. Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions

    NASA Astrophysics Data System (ADS)

    Fang, Tiegang

    2014-05-01

    In this paper, the magnetohydrodynamic (MHD) flow over a nonlinearly (power-law velocity) moving surface is investigated analytically and solutions are presented for a few special conditions. The solutions are obtained in closed forms with hyperbolic functions. The effects of the magnetic, the wall moving, and the mass transpiration parameters are discussed. These solutions are important to show the flow physics as well as to be used as bench mark problems for numerical validation and development of new solution schemes.

  5. Analytical solution for the transient wave propagation of a buried cylindrical P-wave line source in a semi-infinite elastic medium with a fluid surface layer

    NASA Astrophysics Data System (ADS)

    Shan, Zhendong; Ling, Daosheng

    2018-02-01

    This article develops an analytical solution for the transient wave propagation of a cylindrical P-wave line source in a semi-infinite elastic solid with a fluid layer. The analytical solution is presented in a simple closed form in which each term represents a transient physical wave. The Scholte equation is derived, through which the Scholte wave velocity can be determined. The Scholte wave is the wave that propagates along the interface between the fluid and solid. To develop the analytical solution, the wave fields in the fluid and solid are defined, their analytical solutions in the Laplace domain are derived using the boundary and interface conditions, and the solutions are then decomposed into series form according to the power series expansion method. Each item of the series solution has a clear physical meaning and represents a transient wave path. Finally, by applying Cagniard's method and the convolution theorem, the analytical solutions are transformed into the time domain. Numerical examples are provided to illustrate some interesting features in the fluid layer, the interface and the semi-infinite solid. When the P-wave velocity in the fluid is higher than that in the solid, two head waves in the solid, one head wave in the fluid and a Scholte wave at the interface are observed for the cylindrical P-wave line source.

  6. Analytical Phase Equilibrium Function for Mixtures Obeying Raoult's and Henry's Laws

    NASA Astrophysics Data System (ADS)

    Hayes, Robert

    When a mixture of two substances exists in both the liquid and gas phase at equilibrium, Raoults and Henry's laws (ideal solution and ideal dilute solution approximations) can be used to estimate the gas and liquid mole fractions at the extremes of either very little solute or solvent. By assuming that a cubic polynomial can reasonably approximate the intermediate values to these extremes as a function of mole fraction, the cubic polynomial is solved and presented. A closed form equation approximating the pressure dependence on mole fraction of the constituents is thereby obtained. As a first approximation, this is a very simple and potentially useful means to estimate gas and liquid mole fractions of equilibrium mixtures. Mixtures with an azeotrope require additional attention if this type of approach is to be utilized. This work supported in part by federal Grant NRC-HQ-84-14-G-0059.

  7. The Transient Dermal Exposure II: Post-Exposure Absorption and Evaporation of Volatile Compounds

    PubMed Central

    FRASCH, H. FREDERICK; BUNGE, ANNETTE L.

    2016-01-01

    The transient dermal exposure is one where the skin is exposed to chemical for a finite duration, after which the chemical is removed and no residue remains on the skin’s surface. Chemical within the skin at the end of the exposure period can still enter the systemic circulation. If it has some volatility, a portion of it will evaporate from the surface before it has a chance to be absorbed by the body. The fate of this post-exposure “skin depot” is the focus of this theoretical study. Laplace domain solutions for concentration distribution, flux, and cumulative mass absorption and evaporation are presented, and time domain results are obtained through numerical inversion. The Final Value Theorem is applied to obtain the analytical solutions for the total fractional absorption by the body and evaporation from skin at infinite time following a transient exposure. The solutions depend on two dimensionless variables: χ, the ratio of evaporation rate to steady-state dermal permeation rate; and the ratio of exposure time to membrane lag time. Simple closed form algebraic equations are presented that closely approximate the complete analytical solutions. Applications of the theory to the dermal risk assessment of pharmaceutical, occupational, and environmental exposures are presented for four example chemicals. PMID:25611182

  8. Closed, analytic, boson realizations for Sp(4)

    NASA Astrophysics Data System (ADS)

    Klein, Abraham; Zhang, Qing-Ying

    1986-08-01

    The problem of determing a boson realization for an arbitrary irrep of the unitary simplectic algebra Sp(2d) [or of the corresponding discrete unitary irreps of the unbounded algebra Sp(2d,R)] has been solved completely in recent papers by Deenen and Quesne [J. Deenen and C. Quesne, J. Math. Phys. 23, 878, 2004 (1982); 25, 1638 (1984); 26, 2705 (1985)] and by Moshinsky and co-workers [O. Castaños, E. Chacón, M. Moshinsky, and C. Quesne, J. Math. Phys. 26, 2107 (1985); M. Moshinsky, ``Boson realization of symplectic algebras,'' to be published]. This solution is not known in closed analytic form except for d=1 and for special classes of irreps for d>1. A different method of obtaining a boson realization that solves the full problem for Sp(4) is described. The method utilizes the chain Sp(2d)⊇SU(2)×SU(2) ×ṡṡṡ×SU(2) (d times), which, for d≥4, does not provide a complete set of quantum numbers. Though a simple solution of the missing label problem can be given, this solution does not help in the construction of a mapping algorithm for general d.

  9. Role of partial miscibility on pressure buildup due to constant rate injection of CO2 into closed and open brine aquifers

    NASA Astrophysics Data System (ADS)

    Mathias, Simon A.; Gluyas, Jon G.; GonzáLez MartíNez de Miguel, Gerardo J.; Hosseini, Seyyed A.

    2011-12-01

    This work extends an existing analytical solution for pressure buildup because of CO2 injection in brine aquifers by incorporating effects associated with partial miscibility. These include evaporation of water into the CO2 rich phase and dissolution of CO2 into brine and salt precipitation. The resulting equations are closed-form, including the locations of the associated leading and trailing shock fronts. Derivation of the analytical solution involves making a number of simplifying assumptions including: vertical pressure equilibrium, negligible capillary pressure, and constant fluid properties. The analytical solution is compared to results from TOUGH2 and found to accurately approximate the extent of the dry-out zone around the well, the resulting permeability enhancement due to residual brine evaporation, the volumetric saturation of precipitated salt, and the vertically averaged pressure distribution in both space and time for the four scenarios studied. While brine evaporation is found to have a considerable effect on pressure, the effect of CO2 dissolution is found to be small. The resulting equations remain simple to evaluate in spreadsheet software and represent a significant improvement on current methods for estimating pressure-limited CO2 storage capacity.

  10. Chromotomography for a rotating-prism instrument using backprojection, then filtering.

    PubMed

    Deming, Ross W

    2006-08-01

    A simple closed-form solution is derived for reconstructing a 3D spatial-chromatic image cube from a set of chromatically dispersed 2D image frames. The algorithm is tailored for a particular instrument in which the dispersion element is a matching set of mechanically rotated direct vision prisms positioned between a lens and a focal plane array. By using a linear operator formalism to derive the Tikhonov-regularized pseudoinverse operator, it is found that the unique minimum-norm solution is obtained by applying the adjoint operator, followed by 1D filtering with respect to the chromatic variable. Thus the filtering and backprojection (adjoint) steps are applied in reverse order relative to an existing method. Computational efficiency is provided by use of the fast Fourier transform in the filtering step.

  11. Closed-form solution of the Ogden-Hill's compressible hyperelastic model for ramp loading

    NASA Astrophysics Data System (ADS)

    Berezvai, Szabolcs; Kossa, Attila

    2017-05-01

    This article deals with the visco-hyperelastic modelling approach for compressible polymer foam materials. Polymer foams can exhibit large elastic strains and displacements in case of volumetric compression. In addition, they often show significant rate-dependent properties. This material behaviour can be accurately modelled using the visco-hyperelastic approach, in which the large strain viscoelastic description is combined with the rate-independent hyperelastic material model. In case of polymer foams, the most widely used compressible hyperelastic material model, the so-called Ogden-Hill's model, was applied, which is implemented in the commercial finite element (FE) software Abaqus. The visco-hyperelastic model is defined in hereditary integral form, therefore, obtaining a closed-form solution for the stress is not a trivial task. However, the parameter-fitting procedure could be much faster and accurate if closed-form solution exists. In this contribution, exact stress solutions are derived in case of uniaxial, biaxial and volumetric compression loading cases using ramp-loading history. The analytical stress solutions are compared with the stress results in Abaqus using FE analysis. In order to highlight the benefits of the analytical closed-form solution during the parameter-fitting process experimental work has been carried out on a particular open-cell memory foam material. The results of the material identification process shows significant accuracy improvement in the fitting procedure by applying the derived analytical solutions compared to the so-called separated approach applied in the engineering practice.

  12. A simple finite element method for non-divergence form elliptic equation

    DOE PAGES

    Mu, Lin; Ye, Xiu

    2017-03-01

    Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.

  13. A simple finite element method for non-divergence form elliptic equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Ye, Xiu

    Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.

  14. Attitude Determination Using Two Vector Measurements

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1998-01-01

    Many spacecraft attitude determination methods use exactly two vector measurements. The two vectors are typically the unit vector to the Sun and the Earth's magnetic field vector for coarse "sun-mag" attitude determination or unit vectors to two stars tracked by two star trackers for fine attitude determination. TRIAD, the earliest published algorithm for determining spacecraft attitude from two vector measurements, has been widely used in both ground-based and onboard attitude determination. Later attitude determination methods have been based on Wahba's optimality criterion for n arbitrarily weighted observations. The solution of Wahba's problem is somewhat difficult in the general case, but there is a simple closed-form solution in the two-observation case. This solution reduces to the TRIAD solution for certain choices of measurement weights. This paper presents and compares these algorithms as well as sub-optimal algorithms proposed by Bar-Itzhack, Harman, and Reynolds. Some new results will be presented, but the paper is primarily a review and tutorial.

  15. Exact Closed-form Solutions for Lamb's Problem

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Zhang, Haiming

    2018-04-01

    In this article, we report on an exact closed-form solution for the displacement at the surface of an elastic half-space elicited by a buried point source that acts at some point underneath that surface. This is commonly referred to as the 3-D Lamb's problem, for which previous solutions were restricted to sources and receivers placed at the free surface. By means of the reciprocity theorem, our solution should also be valid as a means to obtain the displacements at interior points when the source is placed at the free surface. We manage to obtain explicit results by expressing the solution in terms of elementary algebraic expression as well as elliptic integrals. We anchor our developments on Poisson's ratio 0.25 starting from Johnson's (1974) integral solutions which must be computed numerically. In the end, our closed-form results agree perfectly with the numerical results of Johnson (1974), which strongly confirms the correctness of our explicit formulas. It is hoped that in due time, these formulas may constitute a valuable canonical solution that will serve as a yardstick against which other numerical solutions can be compared and measured.

  16. Exact closed-form solutions for Lamb's problem

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Zhang, Haiming

    2018-07-01

    In this paper, we report on an exact closed-form solution for the displacement at the surface of an elastic half-space elicited by a buried point source that acts at some point underneath that surface. This is commonly referred to as the 3-D Lamb's problem for which previous solutions were restricted to sources and receivers placed at the free surface. By means of the reciprocity theorem, our solution should also be valid as a means to obtain the displacements at interior points when the source is placed at the free surface. We manage to obtain explicit results by expressing the solution in terms of elementary algebraic expression as well as elliptic integrals. We anchor our developments on Poisson's ratio 0.25 starting from Johnson's integral solutions which must be computed numerically. In the end, our closed-form results agree perfectly with the numerical results of Johnson, which strongly confirms the correctness of our explicit formulae. It is hoped that in due time, these formulae may constitute a valuable canonical solution that will serve as a yardstick against which other numerical solutions can be compared and measured.

  17. Some solutions of the general three body problem in form space

    NASA Astrophysics Data System (ADS)

    Titov, Vladimir

    2018-05-01

    Some solutions of three body problem with equal masses are first considered in form space. The solutions in usual euclidean space may be restored from these form space solutions. If constant energy h < 0, the trajectories are located inside of Hill's surface. Without loss of generality due to scale symmetry we can set h = -1. Such surface has a simple form in form space. Solutions of isosceles and rectilinear three body problems lie within Hill's curve; periodic solutions of free fall three body problem start in one point of this curve, and finish in another. The solutions are illustrated by number of figures.

  18. Axially grooved heat pipe study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A technology evaluation study on axially grooved heat pipes is presented. The state-of-the-art is reviewed and present and future requirements are identified. Analytical models, the Groove Analysis Program (GAP) and a closed form solution, were developed to facilitate parametric performance evaluations. GAP provides a numerical solution of the differential equations which govern the hydrodynamic flow. The model accounts for liquid recession, liquid/vapor shear interaction, puddle flow as well as laminar and turbulent vapor flow conditions. The closed form solution was developed to reduce computation time and complexity in parametric evaluations. It is applicable to laminar and ideal charge conditions, liquid/vapor shear interaction, and an empirical liquid flow factor which accounts for groove geometry and liquid recession effects. The validity of the closed form solution is verified by comparison with GAP predictions and measured data.

  19. Finding Dantzig Selectors with a Proximity Operator based Fixed-point Algorithm

    DTIC Science & Technology

    2014-11-01

    experiments showed that this method usually outperforms the method in [2] in terms of CPU time while producing solutions of comparable quality. The... method proposed in [19]. To alleviate the difficulty caused by the subprob- lem without a closed form solution , a linearized ADM was proposed for the...a closed form solution , but the β-related subproblem does not and is solved approximately by using the nonmonotone gradient method in [18]. The

  20. Abundant closed form solutions of the conformable time fractional Sawada-Kotera-Ito equation using (G‧ / G) -expansion method

    NASA Astrophysics Data System (ADS)

    Al-Shawba, Altaf Abdulkarem; Gepreel, K. A.; Abdullah, F. A.; Azmi, A.

    2018-06-01

    In current study, we use the (G‧ / G) -expansion method to construct the closed form solutions of the seventh order time fractional Sawada-Kotera-Ito (TFSKI) equation based on conformable fractional derivative. As a result, trigonometric, hyperbolic and rational functions solutions with arbitrary constants are obtained. When the arbitrary constants are taken some special values, the periodic and soliton solutions are obtained from the travelling wave solutions. The obtained solutions are new and not found elsewhere. The effect of the fractional order on some of these solutions are represented graphically to illustrate the behavior of the exact solutions when the parameter take some special choose.

  1. Closed-form solutions and scaling laws for Kerr frequency combs

    PubMed Central

    Renninger, William H.; Rakich, Peter T.

    2016-01-01

    A single closed-form analytical solution of the driven nonlinear Schrödinger equation is developed, reproducing a large class of the behaviors in Kerr-comb systems, including bright-solitons, dark-solitons, and a large class of periodic wavetrains. From this analytical framework, a Kerr-comb area theorem and a pump-detuning relation are developed, providing new insights into soliton- and wavetrain-based combs along with concrete design guidelines for both. This new area theorem reveals significant deviation from the conventional soliton area theorem, which is crucial to understanding cavity solitons in certain limits. Moreover, these closed-form solutions represent the first step towards an analytical framework for wavetrain formation, and reveal new parameter regimes for enhanced Kerr-comb performance. PMID:27108810

  2. Efficient Approaches for Evaluating the Planar Microstrip Green's Function and its Applications to the Analysis of Microstrip Antennas.

    NASA Astrophysics Data System (ADS)

    Barkeshli, Sina

    A relatively simple and efficient closed form asymptotic representation of the microstrip dyadic surface Green's function is developed. The large parameter in this asymptotic development is proportional to the lateral separation between the source and field points along the planar microstrip configuration. Surprisingly, this asymptotic solution remains accurate even for very small (almost two tenths of a wavelength) lateral separation of the source and field points. The present asymptotic Green's function will thus allow a very efficient calculation of the currents excited on microstrip antenna patches/feed lines and monolithic millimeter and microwave integrated circuit (MIMIC) elements based on a moment method (MM) solution of an integral equation for these currents. The kernal of the latter integral equation is the present asymptotic form of the microstrip Green's function. It is noted that the conventional Sommerfeld integral representation of the microstrip surface Green's function is very poorly convergent when used in this MM formulation. In addition, an efficient exact steepest descent path integral form employing a radially propagating representation of the microstrip dyadic Green's function is also derived which exhibits a relatively faster convergence when compared to the conventional Sommerfeld integral representation. The same steepest descent form could also be obtained by deforming the integration contour of the conventional Sommerfeld representation; however, the radially propagating integral representation exhibits better convergence properties for laterally separated source and field points even before the steepest descent path of integration is used. Numerical results based on the efficient closed form asymptotic solution for the microstrip surface Green's function developed in this work are presented for the mutual coupling between a pair of dipoles on a single layer grounded dielectric slab. The accuracy of the latter calculations is confirmed by comparison with results based on an exact integral representation for that Green's function.

  3. Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes

    NASA Astrophysics Data System (ADS)

    Pan, E.

    2004-03-01

    This paper presents an exact closed-form solution for the Eshelby problem of polygonal inclusion in anisotropic piezoelectric full- and half-planes. Based on the equivalent body-force concept of eigenstrain, the induced elastic and piezoelectric fields are first expressed in terms of line integral on the boundary of the inclusion with the integrand being the Green's function. Using the recently derived exact closed-form line-source Green's function, the line integral is then carried out analytically, with the final expression involving only elementary functions. The exact closed-form solution is applied to a square-shaped quantum wire within semiconductor GaAs full- and half-planes, with results clearly showing the importance of material orientation and piezoelectric coupling. While the elastic and piezoelectric fields within the square-shaped quantum wire could serve as benchmarks to other numerical methods, the exact closed-form solution should be useful to the analysis of nanoscale quantum-wire structures where large strain and electric fields could be induced by the misfit strain.

  4. Theory and Simulation of Multicomponent Osmotic Systems

    PubMed Central

    Karunaweera, Sadish; Gee, Moon Bae; Weerasinghe, Samantha; Smith, Paul E.

    2012-01-01

    Most cellular processes occur in systems containing a variety of components many of which are open to material exchange. However, computer simulations of biological systems are almost exclusively performed in systems closed to material exchange. In principle, the behavior of biomolecules in open and closed systems will be different. Here, we provide a rigorous framework for the analysis of experimental and simulation data concerning open and closed multicomponent systems using the Kirkwood-Buff (KB) theory of solutions. The results are illustrated using computer simulations for various concentrations of the solutes Gly, Gly2 and Gly3 in both open and closed systems, and in the absence or presence of NaCl as a cosolvent. In addition, KB theory is used to help rationalize the aggregation properties of the solutes. Here one observes that the picture of solute association described by the KB integrals, which are directly related to the solution thermodynamics, and that provided by more physical clustering approaches are different. It is argued that the combination of KB theory and simulation data provides a simple and powerful tool for the analysis of complex multicomponent open and closed systems. PMID:23329894

  5. Perturbation solutions of combustion instability problems

    NASA Technical Reports Server (NTRS)

    Googerdy, A.; Peddieson, J., Jr.; Ventrice, M.

    1979-01-01

    A method involving approximate modal analysis using the Galerkin method followed by an approximate solution of the resulting modal-amplitude equations by the two-variable perturbation method (method of multiple scales) is applied to two problems of pressure-sensitive nonlinear combustion instability in liquid-fuel rocket motors. One problem exhibits self-coupled instability while the other exhibits mode-coupled instability. In both cases it is possible to carry out the entire linear stability analysis and significant portions of the nonlinear stability analysis in closed form. In the problem of self-coupled instability the nonlinear stability boundary and approximate forms of the limit-cycle amplitudes and growth and decay rates are determined in closed form while the exact limit-cycle amplitudes and growth and decay rates are found numerically. In the problem of mode-coupled instability the limit-cycle amplitudes are found in closed form while the growth and decay rates are found numerically. The behavior of the solutions found by the perturbation method are in agreement with solutions obtained using complex numerical methods.

  6. Propagation of sound waves through a linear shear layer: A closed form solution

    NASA Technical Reports Server (NTRS)

    Scott, J. N.

    1978-01-01

    Closed form solutions are presented for sound propagation from a line source in or near a shear layer. The analysis was exact for all frequencies and was developed assuming a linear velocity profile in the shear layer. This assumption allowed the solution to be expressed in terms of parabolic cyclinder functions. The solution is presented for a line monopole source first embedded in the uniform flow and then in the shear layer. Solutions are also discussed for certain types of dipole and quadrupole sources. Asymptotic expansions of the exact solutions for small and large values of Strouhal number gave expressions which correspond to solutions previously obtained for these limiting cases.

  7. Microwave absorption in substances that form hydration layers with water

    NASA Astrophysics Data System (ADS)

    Garner, H. R.; Ohkawa, T.; Tuason, O.; Lee, R. L.

    1990-12-01

    The microwave absorption of certain water soluble polymers (polyethylene glycol, polyvinyl pyrrolidone, proteins, and DNA) in solution is composed of three parts: absorption in the free water, absorption in the substance, and absorption in the hydration layer. Ethanol, sucrose, glycerol, and sodium acetate, which form weak hydrogen bonds or have an ionic nature in aqueous solutions, also have microwave absorption signatures similar to polymers that form hydration layers. The frequency-dependent absorption of the free water and of the hydration layer water is described by a simple Debye relaxation model. The absorption per unit sample volume attributable to the hydration layer is solute concentration dependent, and a simple model is used to describe the dependence. The hydration-layer relaxation time was found to vary from substance to substance and with solute concentration. The relaxation time was also found to be independent of solute length.

  8. Exact closed-form solutions of a fully nonlinear asymptotic two-fluid model

    NASA Astrophysics Data System (ADS)

    Cheviakov, Alexei F.

    2018-05-01

    A fully nonlinear model of Choi and Camassa (1999) describing one-dimensional incompressible dynamics of two non-mixing fluids in a horizontal channel, under a shallow water approximation, is considered. An equivalence transformation is presented, leading to a special dimensionless form of the system, involving a single dimensionless constant physical parameter, as opposed to five parameters present in the original model. A first-order dimensionless ordinary differential equation describing traveling wave solutions is analyzed. Several multi-parameter families of physically meaningful exact closed-form solutions of the two-fluid model are derived, corresponding to periodic, solitary, and kink-type bidirectional traveling waves; specific examples are given, and properties of the exact solutions are analyzed.

  9. A Closed Form Solution for an Unorthodox Trigonometric Integral

    ERIC Educational Resources Information Center

    Wu, Yan

    2009-01-01

    A closed form solution for the trigonometric integral [integral]sec[superscript 2k+1]xdx, k=0,1,2,..., is presented in this article. The result will fill the gap in another trigonometric integral [integral]sec[superscript 2m+1] x tan[superscript 2n]xdx, which is neglected by most of the calculus textbooks due to its foreseeable unorthodox solution…

  10. Electromagnetic pulses, localized and causal

    NASA Astrophysics Data System (ADS)

    Lekner, John

    2018-01-01

    We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.

  11. Some Remarks on Space-Time Decompositions, and Degenerate Metrics, in General Relativity

    NASA Astrophysics Data System (ADS)

    Bengtsson, Ingemar

    Space-time decomposition of the Hilbert-Palatini action, written in a form which admits degenerate metrics, is considered. Simple numerology shows why D = 3 and 4 are singled out as admitting a simple phase space. The canonical structure of the degenerate sector turns out to be awkward. However, the real degenerate metrics obtained as solutions are the same as those that occur in Ashtekar's formulation of complex general relativity. An exact solution of Ashtekar's equations, with degenerate metric, shows that the manifestly four-dimensional form of the action, and its 3 + 1 form, are not quite equivalent.

  12. Parametric study of minimum reactor mass in energy-storage dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.

    1981-01-01

    Closed-form analytical solutions for the design equations of a minimum-mass reactor for a two-winding voltage-or-current step-up converter are derived. A quantitative relationship between the three parameters - minimum total reactor mass, maximum output power, and switching frequency - is extracted from these analytical solutions. The validity of the closed-form solution is verified by a numerical minimization procedure. A computer-aided design procedure using commercially available toroidal cores and magnet wires is also used to examine how the results from practical designs follow the predictions of the analytical solutions.

  13. Closed Form Solutions for Unsteady Free Convection Flow of a Second Grade Fluid over an Oscillating Vertical Plate

    PubMed Central

    Ali, Farhad; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ 0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions. PMID:24551033

  14. Hyperthermia with implanted electrodes.

    PubMed

    Brezovich, I A; Young, J H

    1981-01-01

    A general solution is given for the steady state form of the heat conduction equation applied to a simple tumor model which is imagined as being heated by means of electrical currents flowing between metallic electrodes. The model assumes a homogeneous tumor with no bloodflow. The solution for the special case of constant temperature and potential at the surface of the heated volume is examined in detail. The solution shows that there exists, independent of the particular tumor and electrode geometry, a close relationship between the steady state temperature distribution and the electrical potential. Among the more important implications of this relationship are that equipotential surfaces within the heated volume are also isothermal surfaces and that no areas of excessive heat at or near any sharp edges or corners of the electrodes should develop, despite the high electric field intensity. Based on the theory, a procedure is outlined which might greatly facilitate the determination of temperature distributions in phantoms. Finally, the usefulness and the limitations of the theoretical models in clinical hyperthermia are discussed.

  15. Localized solutions of Lugiato-Lefever equations with focused pump.

    PubMed

    Cardoso, Wesley B; Salasnich, Luca; Malomed, Boris A

    2017-12-04

    Lugiato-Lefever (LL) equations in one and two dimensions (1D and 2D) accurately describe the dynamics of optical fields in pumped lossy cavities with the intrinsic Kerr nonlinearity. The external pump is usually assumed to be uniform, but it can be made tightly focused too-in particular, for building small pixels. We obtain solutions of the LL equations, with both the focusing and defocusing intrinsic nonlinearity, for 1D and 2D confined modes supported by the localized pump. In the 1D setting, we first develop a simple perturbation theory, based in the sech ansatz, in the case of weak pump and loss. Then, a family of exact analytical solutions for spatially confined modes is produced for the pump focused in the form of a delta-function, with a nonlinear loss (two-photon absorption) added to the LL model. Numerical findings demonstrate that these exact solutions are stable, both dynamically and structurally (the latter means that stable numerical solutions close to the exact ones are found when a specific condition, necessary for the existence of the analytical solution, does not hold). In 2D, vast families of stable confined modes are produced by means of a variational approximation and full numerical simulations.

  16. Efficient control schemes with limited computation complexity for Tomographic AO systems on VLTs and ELTs

    NASA Astrophysics Data System (ADS)

    Petit, C.; Le Louarn, M.; Fusco, T.; Madec, P.-Y.

    2011-09-01

    Various tomographic control solutions have been proposed during the last decades to ensure efficient or even optimal closed-loop correction to tomographic Adaptive Optics (AO) concepts such as Laser Tomographic AO (LTAO), Multi-Conjugate AO (MCAO). The optimal solution, based on Linear Quadratic Gaussian (LQG) approach, as well as suboptimal but efficient solutions such as Pseudo-Open Loop Control (POLC) require multiple Matrix Vector Multiplications (MVM). Disregarding their respective performance, these efficient control solutions thus exhibit strong increase of on-line complexity and their implementation may become difficult in demanding cases. Among them, two cases are of particular interest. First, the system Real-Time Computer architecture and implementation is derived from past or present solutions and does not support multiple MVM. This is the case of the AO Facility which RTC architecture is derived from the SPARTA platform and inherits its simple MVM architecture, which does not fit with LTAO control solutions for instance. Second, considering future systems such as Extremely Large Telescopes, the number of degrees of freedom is twenty to one hundred times bigger than present systems. In these conditions, tomographic control solutions can hardly be used in their standard form and optimized implementation shall be considered. Single MVM tomographic control solutions represent a potential solution, and straightforward solutions such as Virtual Deformable Mirrors have been already proposed for LTAO but with tuning issues. We investigate in this paper the possibility to derive from tomographic control solutions, such as POLC or LQG, simplified control solutions ensuring simple MVM architecture and that could be thus implemented on nowadays systems or future complex systems. We theoretically derive various solutions and analyze their respective performance on various systems thanks to numerical simulation. We discuss the optimization of their performance and stability issues with respect to classic control solutions. We finally discuss off-line computation and implementation constraints.

  17. Calculation of the detection limit in radiation measurements with systematic uncertainties

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. M.; Russ, W.; Venkataraman, R.; Young, B. M.

    2015-06-01

    The detection limit (LD) or Minimum Detectable Activity (MDA) is an a priori evaluation of assay sensitivity intended to quantify the suitability of an instrument or measurement arrangement for the needs of a given application. Traditional approaches as pioneered by Currie rely on Gaussian approximations to yield simple, closed-form solutions, and neglect the effects of systematic uncertainties in the instrument calibration. These approximations are applicable over a wide range of applications, but are of limited use in low-count applications, when high confidence values are required, or when systematic uncertainties are significant. One proposed modification to the Currie formulation attempts account for systematic uncertainties within a Gaussian framework. We have previously shown that this approach results in an approximation formula that works best only for small values of the relative systematic uncertainty, for which the modification of Currie's method is the least necessary, and that it significantly overestimates the detection limit or gives infinite or otherwise non-physical results for larger systematic uncertainties where such a correction would be the most useful. We have developed an alternative approach for calculating detection limits based on realistic statistical modeling of the counting distributions which accurately represents statistical and systematic uncertainties. Instead of a closed form solution, numerical and iterative methods are used to evaluate the result. Accurate detection limits can be obtained by this method for the general case.

  18. On prototypical wave transmission across a junction of waveguides with honeycomb structure

    NASA Astrophysics Data System (ADS)

    Sharma, Basant Lal

    2018-02-01

    An exact expression for the scattering matrix associated with a junction generated by partial unzipping along the zigzag direction of armchair tubes is presented. The assumed simple, but representative, model, for scalar wave transmission can be interpreted in terms of the transport of the out-of-plane phonons in the ribbon-side vis-a-vis the radial phonons in the tubular-side of junction, based on the nearest-neighbor interactions between lattice sites. The exact solution for the `bondlength' in `broken' versus intact bonds can be constructed via a standard application of the Wiener-Hopf technique. The amplitude distribution of outgoing phonons, far away from the junction on either side of it, is obtained in closed form by the mode-matching method; eventually, this leads to the provision of the scattering matrix. As the main result of the paper, a succinct and closed form expression for the accompanying reflection and transmission coefficients is provided along with a detailed derivation using the Chebyshev polynomials. Applications of the analysis presented in this paper include linear wave transmission in nanotubes, nanoribbons, and monolayers of honeycomb lattices containing carbon-like units.

  19. Reflection on Solutions in the Form of Refutation Texts versus Problem Solving: The Case of 8th Graders Studying Simple Electric Circuits

    ERIC Educational Resources Information Center

    Safadi, Rafi; Safadi, Ekhlass; Meidav, Meir

    2017-01-01

    This study compared students' learning in troubleshooting and problem solving activities. The troubleshooting activities provided students with solutions to conceptual problems in the form of refutation texts; namely, solutions that portray common misconceptions, refute them, and then present the accepted scientific ideas. They required students…

  20. Demonstration of Electrochemical Cell Properties by a Simple, Colorful Oxidation-reduction Experiment.

    ERIC Educational Resources Information Center

    Hendricks, Lloyd J.; And Others

    1982-01-01

    Describes apparatus/methodology and provides background information for an experiment demonstrating electrochemical concepts and properties of electrochemical cells. The color of a solution close to an electrode is changed from that of the bulk solution to either of two contrasting colors depending on whether the reaction is oxidation or…

  1. The Routes of Unity

    ERIC Educational Resources Information Center

    McCartney, Mark; Gibson, Sharon

    2006-01-01

    A model for car following on a closed loop is defined. The stability of the solutions of the model is investigated by considering the evolution of the roots of the corresponding characteristic equation in the complex plane. The solution provides a motivation for investigating the behaviour of the roots of a simple class of algebraic equation.…

  2. State-dependent differential Riccati equation to track control of time-varying systems with state and control nonlinearities.

    PubMed

    Korayem, M H; Nekoo, S R

    2015-07-01

    This work studies an optimal control problem using the state-dependent Riccati equation (SDRE) in differential form to track for time-varying systems with state and control nonlinearities. The trajectory tracking structure provides two nonlinear differential equations: the state-dependent differential Riccati equation (SDDRE) and the feed-forward differential equation. The independence of the governing equations and stability of the controller are proven along the trajectory using the Lyapunov approach. Backward integration (BI) is capable of solving the equations as a numerical solution; however, the forward solution methods require the closed-form solution to fulfill the task. A closed-form solution is introduced for SDDRE, but the feed-forward differential equation has not yet been obtained. Different ways of solving the problem are expressed and analyzed. These include BI, closed-form solution with corrective assumption, approximate solution, and forward integration. Application of the tracking problem is investigated to control robotic manipulators possessing rigid or flexible joints. The intention is to release a general program for automatic implementation of an SDDRE controller for any manipulator that obeys the Denavit-Hartenberg (D-H) principle when only D-H parameters are received as input data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength

    NASA Astrophysics Data System (ADS)

    Zima, A.

    2018-03-01

    Composites consisting of hydroxyapatite (HA) and chitosan (CTS) have recently been intensively studied. In this work, a novel inorganic-organic (I/O) HA/CTS materials in the form of granules were prepared through a simple solution-based chemical method. During the synthesis of these hybrids, the electrostatic complexes between positively charged, protonated amine groups of chitosan and the negative phosphate species (HPO42 - and H2PO4-) were formed. Our biocomposites belong to the class I of hybrids, which was confirmed by FTIR studies. XRD analysis revealed that the obtained materials consisted of hydroxyapatite as the only crystalline phase. Homogeneous dispersion of the components in HA/CTS composites was confirmed. The use of 17 wt% and 23 wt% of chitosan resulted in approximately 12-fold and 16-fold increase in the compressive strength of HA/CTS as compared to the non-modified HA material. During incubation of the studied materials in SBF, pH of the solution remained close to the physiological one. Formation of apatite layer on their surfaces indicated bioactive nature of the developed biomaterials.

  4. Analytical solutions for sequentially coupled one-dimensional reactive transport problems Part I: Mathematical derivations

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Clement, T. P.

    2008-02-01

    Multi-species reactive transport equations coupled through sorption and sequential first-order reactions are commonly used to model sites contaminated with radioactive wastes, chlorinated solvents and nitrogenous species. Although researchers have been attempting to solve various forms of these reactive transport equations for over 50 years, a general closed-form analytical solution to this problem is not available in the published literature. In Part I of this two-part article, we derive a closed-form analytical solution to this problem for spatially-varying initial conditions. The proposed solution procedure employs a combination of Laplace and linear transform methods to uncouple and solve the system of partial differential equations. Two distinct solutions are derived for Dirichlet and Cauchy boundary conditions each with Bateman-type source terms. We organize and present the final solutions in a common format that represents the solutions to both boundary conditions. In addition, we provide the mathematical concepts for deriving the solution within a generic framework that can be used for solving similar transport problems.

  5. Large-angle slewing maneuvers for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Chun, Hon M.; Turner, James D.

    1988-01-01

    A new class of closed-form solutions for finite-time linear-quadratic optimal control problems is presented. The solutions involve Potter's solution for the differential matrix Riccati equation, which assumes the form of a steady-state plus transient term. Illustrative examples are presented which show that the new solutions are more computationally efficient than alternative solutions based on the state transition matrix. As an application of the closed-form solutions, the neighboring extremal path problem is presented for a spacecraft retargeting maneuver where a perturbed plant with off-nominal boundary conditions now follows a neighboring optimal trajectory. The perturbation feedback approach is further applied to three-dimensional slewing maneuvers of large flexible spacecraft. For this problem, the nominal solution is the optimal three-dimensional rigid body slew. The perturbation feedback then limits the deviations from this nominal solution due to the flexible body effects. The use of frequency shaping in both the nominal and perturbation feedback formulations reduces the excitation of high-frequency unmodeled modes. A modified Kalman filter is presented for estimating the plant states.

  6. An approximate JKR solution for a general contact, including rough contacts

    NASA Astrophysics Data System (ADS)

    Ciavarella, M.

    2018-05-01

    In the present note, we suggest a simple closed form approximate solution to the adhesive contact problem under the so-called JKR regime. The derivation is based on generalizing the original JKR energetic derivation assuming calculation of the strain energy in adhesiveless contact, and unloading at constant contact area. The underlying assumption is that the contact area distributions are the same as under adhesiveless conditions (for an appropriately increased normal load), so that in general the stress intensity factors will not be exactly equal at all contact edges. The solution is simply that the indentation is δ =δ1 -√{ 2 wA‧ /P″ } where w is surface energy, δ1 is the adhesiveless indentation, A‧ is the first derivative of contact area and P‧‧ the second derivative of the load with respect to δ1. The solution only requires macroscopic quantities, and not very elaborate local distributions, and is exact in many configurations like axisymmetric contacts, but also sinusoidal waves contact and correctly predicts some features of an ideal asperity model used as a test case and not as a real description of a rough contact problem. The solution permits therefore an estimate of the full solution for elastic rough solids with Gaussian multiple scales of roughness, which so far was lacking, using known adhesiveless simple results. The result turns out to depend only on rms amplitude and slopes of the surface, and as in the fractal limit, slopes would grow without limit, tends to the adhesiveless result - although in this limit the JKR model is inappropriate. The solution would also go to adhesiveless result for large rms amplitude of roughness hrms, irrespective of the small scale details, and in agreement with common sense, well known experiments and previous models by the author.

  7. A partial Hamiltonian approach for current value Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Naz, R.; Mahomed, F. M.; Chaudhry, Azam

    2014-10-01

    We develop a partial Hamiltonian framework to obtain reductions and closed-form solutions via first integrals of current value Hamiltonian systems of ordinary differential equations (ODEs). The approach is algorithmic and applies to many state and costate variables of the current value Hamiltonian. However, we apply the method to models with one control, one state and one costate variable to illustrate its effectiveness. The current value Hamiltonian systems arise in economic growth theory and other economic models. We explain our approach with the help of a simple illustrative example and then apply it to two widely used economic growth models: the Ramsey model with a constant relative risk aversion (CRRA) utility function and Cobb Douglas technology and a one-sector AK model of endogenous growth are considered. We show that our newly developed systematic approach can be used to deduce results given in the literature and also to find new solutions.

  8. Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

    NASA Technical Reports Server (NTRS)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.

  9. Too hot to handle? Analytic solutions for massive neutrino or warm dark matter cosmologies

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Portillo, Stephen K. N.

    2018-05-01

    We obtain novel closed-form solutions to the Friedmann equation for cosmological models containing a component whose equation of state is that of radiation (w = 1/3) at early times and that of cold pressureless matter (w = 0) at late times. The equation of state smoothly transitions from the early to late-time behavior and exactly describes the evolution of a species with a Dirac Delta function distribution in momentum magnitudes |p_0| (i.e. all particles have the same |p_0|). Such a component, here termed "hot matter", is an approximate model for both neutrinos and warm dark matter. We consider it alone and in combination with cold matter and with radiation, also obtaining closed-form solutions for the growth of super-horizon perturbations in each case. The idealized model recovers t(a) to better than 1.5% accuracy for all a relative to a Fermi-Dirac distribution (as describes neutrinos). We conclude by adding the second moment of the distribution to our exact solution and then generalizing to include all moments of an arbitrary momentum distribution in a closed-form solution.

  10. Too hot to handle? Analytic solutions for massive neutrino or warm dark matter cosmologies

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Portillo, Stephen K. N.

    2018-07-01

    We obtain novel closed-form solutions to the Friedmann equation for cosmological models containing a component whose equation of state is that of radiation (w = 1/3) at early times and that of cold pressureless matter (w= 0) at late times. The equation of state smoothly transitions from the early- to late-time behaviour and exactly describes the evolution of a species with a Dirac delta function distribution in momentum magnitudes |{p}_0| (i.e. all particles have the same |{p}_0|). Such a component, here termed `hot matter', is an approximate model for both neutrinos and warm dark matter. We consider it alone and in combination with cold matter and with radiation, also obtaining closed-form solutions for the growth of superhorizon perturbations in each case. The idealized model recovers t(a) to better than 1.5 per cent accuracy for all a relative to a Fermi-Dirac distribution (as describes neutrinos). We conclude by adding the second moment of the distribution to our exact solution and then generalizing to include all moments of an arbitrary momentum distribution in a closed-form solution.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubrovsky, V. G.; Topovsky, A. V.

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums ofmore » special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.« less

  12. Lattice Truss Structural Response Using Energy Methods

    NASA Technical Reports Server (NTRS)

    Kenner, Winfred Scottson

    1996-01-01

    A deterministic methodology is presented for developing closed-form deflection equations for two-dimensional and three-dimensional lattice structures. Four types of lattice structures are studied: beams, plates, shells and soft lattices. Castigliano's second theorem, which entails the total strain energy of a structure, is utilized to generate highly accurate results. Derived deflection equations provide new insight into the bending and shear behavior of the four types of lattices, in contrast to classic solutions of similar structures. Lattice derivations utilizing kinetic energy are also presented, and used to examine the free vibration response of simple lattice structures. Derivations utilizing finite element theory for unique lattice behavior are also presented and validated using the finite element analysis code EAL.

  13. First and second order approximations to stage numbers in multicomponent enrichment cascades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scopatz, A.

    2013-07-01

    This paper describes closed form, Taylor series approximations to the number product stages in a multicomponent enrichment cascade. Such closed form approximations are required when a symbolic, rather than a numeric, algorithm is used to compute the optimal cascade state. Both first and second order approximations were implemented. The first order solution was found to be grossly incorrect, having the wrong functional form over the entire domain. On the other hand, the second order solution shows excellent agreement with the 'true' solution over the domain of interest. An implementation of the symbolic, second order solver is available in the freemore » and open source PyNE library. (authors)« less

  14. Random variable transformation for generalized stochastic radiative transfer in finite participating slab media

    NASA Astrophysics Data System (ADS)

    El-Wakil, S. A.; Sallah, M.; El-Hanbaly, A. M.

    2015-10-01

    The stochastic radiative transfer problem is studied in a participating planar finite continuously fluctuating medium. The problem is considered for specular- and diffusly-reflecting boundaries with linear anisotropic scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions, that are represented by the probability-density function (PDF) of the solution process. In the RVT algorithm, a simple integral transformation to the input stochastic process (the extinction function of the medium) is applied. This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the transport equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity and transmissivity at the medium boundaries. In terms of the average reflectivity and transmissivity, the average of the partial heat fluxes for the generalized problem with internal source of radiation are obtained and represented graphically.

  15. Vertical and pitching resonance of train cars moving over a series of simple beams

    NASA Astrophysics Data System (ADS)

    Yang, Y. B.; Yau, J. D.

    2015-02-01

    The resonant response, including both vertical and pitching motions, of an undamped sprung mass unit moving over a series of simple beams is studied by a semi-analytical approach. For a sprung mass that is very small compared with the beam, we first simplify the sprung mass as a constant moving force and obtain the response of the beam in closed form. With this, we then solve for the response of the sprung mass passing over a series of simple beams, and validate the solution by an independent finite element analysis. To evaluate the pitching resonance, we consider the cases of a two-axle model and a coach model traveling over rough rails supported by a series of simple beams. The resonance of a train car is characterized by the fact that its response continues to build up, as it travels over more and more beams. For train cars with long axle intervals, the vertical acceleration induced by pitching resonance dominates the peak response of the train traveling over a series of simple beams. The present semi-analytical study allows us to grasp the key parameters involved in the primary/sub-resonant responses. Other phenomena of resonance are also discussed in the exemplar study.

  16. A closed-form solution for steady-state coupled phloem/xylem flow using the Lambert-W function.

    PubMed

    Hall, A J; Minchin, P E H

    2013-12-01

    A closed-form solution for steady-state coupled phloem/xylem flow is presented. This incorporates the basic Münch flow model of phloem transport, the cohesion model of xylem flow, and local variation in the xylem water potential and lateral water flow along the transport pathway. Use of the Lambert-W function allows this solution to be obtained under much more general and realistic conditions than has previously been possible. Variation in phloem resistance (i.e. viscosity) with solute concentration, and deviations from the Van't Hoff expression for osmotic potential are included. It is shown that the model predictions match those of the equilibrium solution of a numerical time-dependent model based upon the same mechanistic assumptions. The effect of xylem flow upon phloem flow can readily be calculated, which has not been possible in any previous analytical model. It is also shown how this new analytical solution can handle multiple sources and sinks within a complex architecture, and can describe competition between sinks. The model provides new insights into Münch flow by explicitly including interactions with xylem flow and water potential in the closed-form solution, and is expected to be useful as a component part of larger numerical models of entire plants. © 2013 John Wiley & Sons Ltd.

  17. A simple model for indentation creep

    NASA Astrophysics Data System (ADS)

    Ginder, Ryan S.; Nix, William D.; Pharr, George M.

    2018-03-01

    A simple model for indentation creep is developed that allows one to directly convert creep parameters measured in indentation tests to those observed in uniaxial tests through simple closed-form relationships. The model is based on the expansion of a spherical cavity in a power law creeping material modified to account for indentation loading in a manner similar to that developed by Johnson for elastic-plastic indentation (Johnson, 1970). Although only approximate in nature, the simple mathematical form of the new model makes it useful for general estimation purposes or in the development of other deformation models in which a simple closed-form expression for the indentation creep rate is desirable. Comparison to a more rigorous analysis which uses finite element simulation for numerical evaluation shows that the new model predicts uniaxial creep rates within a factor of 2.5, and usually much better than this, for materials creeping with stress exponents in the range 1 ≤ n ≤ 7. The predictive capabilities of the model are evaluated by comparing it to the more rigorous analysis and several sets of experimental data in which both the indentation and uniaxial creep behavior have been measured independently.

  18. Approximate Solution to the Angular Speeds of a Nearly-Symmetric Mass-Varying Cylindrical Body

    NASA Astrophysics Data System (ADS)

    Nanjangud, Angadh; Eke, Fidelis

    2017-06-01

    This paper examines the rotational motion of a nearly axisymmetric rocket type system with uniform burn of its propellant. The asymmetry comes from a slight difference in the transverse principal moments of inertia of the system, which then results in a set of nonlinear equations of motion even when no external torque is applied to the system. It is often difficult, or even impossible, to generate analytic solutions for such equations; closed form solutions are even more difficult to obtain. In this paper, a perturbation-based approach is employed to linearize the equations of motion and generate analytic solutions. The solutions for the variables of transverse motion are analytic and a closed-form solution to the spin rate is suggested. The solutions are presented in a compact form that permits rapid computation. The approximate solutions are then applied to the torque-free motion of a typical solid rocket system and the results are found to agree with those obtained from the numerical solution of the full non-linear equations of motion of the mass varying system.

  19. 5,10-Methylene-5,6,7,8-tetrahydrofolate conformational transitions upon binding to thymidylate synthase: molecular mechanics and continuum solvent studies

    NASA Astrophysics Data System (ADS)

    Jarmuła, Adam; Cieplak, Piotr; Montfort, William R.

    2005-02-01

    We applied the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach to evaluate relative stability of the extended (flat) and C-shaped (bent) solution conformational forms of the 5,10-methylene-5,6,7,8-tetrahydrofolate (mTHF) molecule in aqueous solution. Calculations indicated that both forms have similar free energies in aqueous solution but detailed energy components are different. The bent solution form has lower intramolecular electrostatic and van der Waals interaction energies. The flat form has more favorable solvation free energy and lower contribution from the bond, angle and torsion angle molecular mechanical internal energies. We exploit these results and combine them with known crystallographic data to provide a model for the progressive binding of the mTHF molecule, a natural cofactor of thymidylate synthase (TS), to the complex forming in the TS-catalyzed reaction. We propose that at the time of initial weak binding in the open enzyme the cofactor molecule remains in a close balance between the flat and bent solution conformations, with neither form clearly favored. Later, thymidylate synthase undergoes conformational change leading to the closure of the active site and the mTHF molecule is withdrawn from the solvent. That effect shifts the thermodynamic equilibrium of the mTHF molecule toward the bent solution form. At the same time, burying the cofactor molecule in the closed active site produces numerous contacts between mTHF and protein that render change in the shape of the mTHF molecule. As a result, the bent solution conformer is converted to more strained L-shaped bent enzyme conformer of the mTHF molecule. The strain in the bent enzyme conformation allows for the tight binding of the cofactor molecule to the productive ternary complex that forms in the closed active site, and facilitates the protonation of the imidazolidine N10 atom, which promotes further reaction.

  20. Closed-form confidence intervals for functions of the normal mean and standard deviation.

    PubMed

    Donner, Allan; Zou, G Y

    2012-08-01

    Confidence interval methods for a normal mean and standard deviation are well known and simple to apply. However, the same cannot be said for important functions of these parameters. These functions include the normal distribution percentiles, the Bland-Altman limits of agreement, the coefficient of variation and Cohen's effect size. We present a simple approach to this problem by using variance estimates recovered from confidence limits computed for the mean and standard deviation separately. All resulting confidence intervals have closed forms. Simulation results demonstrate that this approach performs very well for limits of agreement, coefficients of variation and their differences.

  1. Analytic solution of the Spencer-Lewis angular-spatial moments equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippone, W.L.

    A closed-form solution for the angular-spatial moments of the Spencer-Lewis equation is presented that is valid for infinite homogeneous media. From the moments, the electron density distribution as a function of position and path length (energy) is reconstructed for several sample problems involving plane isotropic sources of electrons in aluminium. The results are in excellent agreement with those determined numerically using the streaming ray method. The primary use of the closed form solution will most likely be to generate accurate electron transport benchmark solutions. In principle, the electron density as a function of space, path length, and direction can bemore » determined for planar sources of arbitrary angular distribution.« less

  2. Closed-channel culture system for efficient and reproducible differentiation of human pluripotent stem cells into islet cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Kunio; Konagaya, Shuhei; Turner, Alexander

    Human pluripotent stem cells (hPSCs) are thought to be a promising cell-source solution for regenerative medicine due to their indefinite proliferative potential and ability to differentiate to functional somatic cells. However, issues remain with regard to achieving reproducible differentiation of cells with the required functionality for realizing human transplantation therapies and with regard to reducing the potential for bacterial or fungal contamination. To meet these needs, we have developed a closed-channel culture device and corresponding control system. Uniformly-sized spheroidal hPSCs aggregates were formed inside wells within a closed-channel and maintained continuously throughout the culture process. Functional islet-like endocrine cell aggregatesmore » were reproducibly induced following a 30-day differentiation protocol. Our system shows an easily scalable, novel method for inducing PSC differentiation with both purity and functionality. - Highlights: • A simple, closed-channel-based, semi-automatic culture system is proposed. • Uniform cell aggregate formation and culture is realized in microwell structure. • Functional islet cells are successfully induced following 30-plus-day protocol. • System requires no daily medium replacement and reduces contamination risk.« less

  3. "DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.

    PubMed

    Walter, Heidi-Kristin; Bauer, Jens; Steinmeyer, Jeannine; Kuzuya, Akinori; Niemeyer, Christof M; Wagenknecht, Hans-Achim

    2017-04-12

    A split aptamer for adenosine triphosphate (ATP) was embedded as a recognition unit into two levers of a nanomechanical DNA origami construct by extension and modification of selected staple strands. An additional optical module in the stem of the split aptamer comprised two different cyanine-styryl dyes that underwent an energy transfer from green (donor) to red (acceptor) emission if two ATP molecules were bound as target molecule to the recognition module and thereby brought the dyes in close proximity. As a result, the ATP as a target triggered the DNA origami shape transition and yielded a fluorescence color change from green to red as readout. Conventional atomic force microscopy (AFM) images confirmed the topology change from the open form of the DNA origami in the absence of ATP into the closed form in the presence of the target molecule. The obtained closed/open ratios in the absence and presence of target molecules tracked well with the fluorescence color ratios and thereby validated the bicolor fluorescence readout. The correct positioning of the split aptamer as the functional unit farthest away from the fulcrum of the DNA origami was crucial for the aptasensing by fluorescence readout. The fluorescence color change allowed additionally to follow the topology change of the DNA origami aptasensor in real time in solution. The concepts of fluorescence energy transfer for bicolor readout in a split aptamer in solution, and AFM on surfaces, were successfully combined in a single DNA origami construct to obtain a bimodal readout. These results are important for future custom DNA devices for chemical-biological and bioanalytical purposes because they are not only working as simple aptamers but are also visible by AFM on the single-molecule level.

  4. a Weighted Closed-Form Solution for Rgb-D Data Registration

    NASA Astrophysics Data System (ADS)

    Vestena, K. M.; Dos Santos, D. R.; Oilveira, E. M., Jr.; Pavan, N. L.; Khoshelham, K.

    2016-06-01

    Existing 3D indoor mapping of RGB-D data are prominently point-based and feature-based methods. In most cases iterative closest point (ICP) and its variants are generally used for pairwise registration process. Considering that the ICP algorithm requires an relatively accurate initial transformation and high overlap a weighted closed-form solution for RGB-D data registration is proposed. In this solution, we weighted and normalized the 3D points based on the theoretical random errors and the dual-number quaternions are used to represent the 3D rigid body motion. Basically, dual-number quaternions provide a closed-form solution by minimizing a cost function. The most important advantage of the closed-form solution is that it provides the optimal transformation in one-step, it does not need to calculate good initial estimates and expressively decreases the demand for computer resources in contrast to the iterative method. Basically, first our method exploits RGB information. We employed a scale invariant feature transformation (SIFT) for extracting, detecting, and matching features. It is able to detect and describe local features that are invariant to scaling and rotation. To detect and filter outliers, we used random sample consensus (RANSAC) algorithm, jointly with an statistical dispersion called interquartile range (IQR). After, a new RGB-D loop-closure solution is implemented based on the volumetric information between pair of point clouds and the dispersion of the random errors. The loop-closure consists to recognize when the sensor revisits some region. Finally, a globally consistent map is created to minimize the registration errors via a graph-based optimization. The effectiveness of the proposed method is demonstrated with a Kinect dataset. The experimental results show that the proposed method can properly map the indoor environment with an absolute accuracy around 1.5% of the travel of a trajectory.

  5. A simplified heat transfer model for predicting temperature change inside food package kept in cold room.

    PubMed

    Raval, A H; Solanki, S C; Yadav, Rajvir

    2013-04-01

    A simple analytical heat flow model for a closed rectangular food package containing fruits or vegetables is proposed for predicting time temperature distribution during transient cooling in a controlled environment cold room. It is based on the assumption of only conductive heat transfer inside a closed food package with effective thermal properties, and convective and radiative heat transfer at the outside of the package. The effective thermal conductivity of the food package is determined by evaluating its effective thermal resistance to heat conduction in the packages. Food packages both as an infinite slab and a finite slab have been investigated. The finite slab solution has been obtained as the product of three infinite slab solutions describe in ASHRAE guide and data book. Time temperature variation has been determined and is presented graphically. The cooling rate and the half cooling time were also obtained. These predicted values, are compared with the experimentally measured values for both the finite and infinite closed packages containing oranges. An excellent agreement between them validated the simple proposed model.

  6. Analytical solutions for combined close-contact and natural convection melting in horizontal cylindrical heat storage capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saitoh, T.S.; Hoshi, A.

    1998-07-01

    Melting and solidification of a phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season and carbon dioxide (CO{sub 2}) emissions. Two melting modes are involved in melting of capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid region. Close-contact melting processes for a single enclosure have been solved using several numerical methods (e.g., Saitoh and Kato (1994)). In additionmore » close-contact melting heat transfer characteristics including melt flow in the liquid film under inner wall temperature distribution were analyzed and simple approximate equations were already presented by Saitoh and Hoshi (1997). The effects of Stefan number and variable temperature profile etc. were clarified in detail. And the melting velocity of the solid bulk under various conditions was also studied theoretically. In addition the effects of variable inner wall temperature on molten mass fraction were investigated. The present paper reports analytical solutions for combined close-contact and natural convection melting in horizontal cylindrical capsule. Moreover, natural convection melting in the liquid region were analyzed in this report. The upper interface shape of the solid bulk is approximated by a circular arc throughout the melting process. For the sake of verification, close-contact melting heat-transfer characteristics including natural convection in the liquid region were studied experimentally. Apparent shift of upper solid-liquid interface is good agreement with the experiment. The present simple approximate solutions will be useful to facilitate designing of the practical capsule bed LHTES systems.« less

  7. Solution-Phase Dynamic Assembly of Permanently Interlocked Aryleneethynylene Cages through Alkyne Metathesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qi; Yu, Chao; Long, Hai

    2015-05-08

    Highly stable permanently interlocked aryleneethynylene molecular cages were synthesized from simple triyne monomers using dynamic alkyne metathesis. The interlocked complexes are predominantly formed in the reaction solution in the absence of any recognition motif and were isolated in a pure form using column chromatography. This study is the first example of the thermodynamically controlled solution-phase synthesis of interlocked organic cages with high stability.

  8. Uniform two-dimensional square assemblies from conjugated block copolymers driven by π–π interactions with controllable sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Liang; Wang, Meijing; Jia, Xiangmeng

    Two-dimensional (2-D) micro- and nano- architectures are attractive because of their unique properties caused by their ultrathin and flat morphologies. However, the formation of 2-D supramolecular highly symmetrical structures with considerable control is still a major challenge. Here, we presented a simple approach for the preparation of regular and homogeneous 2-D fluorescent square noncrystallization micelles with conjugated diblock copolymers PPV12-b-P2VPn through a process of dissolving-cooling-aging. The scale of the formed micelles could be controlled by the ratio of PPV/P2VP blocks and the concentration of the solution. The forming process of the platelet square micelles was analyzed by UV-Vis, DLS andmore » SLS, while the molecular arrangement was characterized by GIXD. The results revealed that the micelles of PPV12-b-P2VPn initially form 1-D structures and then grow into 2-D structures in solution, and the growth is driven by intermolecular π-π interactions with the PPV12 blocks. The formation of 2-D square micelles is induced by herringbone arrangement of the molecules, which is closely related to the presence of the branched alkyl chains attached to conjugated PPV12 cores.« less

  9. Rotating states of self-propelling particles in two dimensions.

    PubMed

    Chen, Hsuan-Yi; Leung, Kwan-Tai

    2006-05-01

    We present particle-based simulations and a continuum theory for steady rotating flocks formed by self-propelling particles (SPPs) in two-dimensional space. Our models include realistic but simple rules for the self-propelling, drag, and interparticle interactions. Among other coherent structures, in particle-based simulations we find steady rotating flocks when the velocity of the particles lacks long-range alignment. Physical characteristics of the rotating flock are measured and discussed. We construct a phenomenological continuum model and seek steady-state solutions for a rotating flock. We show that the velocity and density profiles become simple in two limits. In the limit of weak alignment, we find that all particles move with the same speed and the density of particles vanishes near the center of the flock due to the divergence of centripetal force. In the limit of strong body force, the density of particles within the flock is uniform and the velocity of the particles close to the center of the flock becomes small.

  10. Projection-based circular constrained state estimation and fusion over long-haul links

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qiang; Rao, Nageswara S.

    In this paper, we consider a scenario where sensors are deployed over a large geographical area for tracking a target with circular nonlinear constraints on its motion dynamics. The sensor state estimates are sent over long-haul networks to a remote fusion center for fusion. We are interested in different ways to incorporate the constraints into the estimation and fusion process in the presence of communication loss. In particular, we consider closed-form projection-based solutions, including rules for fusing the estimates and for incorporating the constraints, which jointly can guarantee timely fusion often required in realtime systems. We test the performance ofmore » these methods in the long-haul tracking environment using a simple example.« less

  11. Taking Advantage of a Corrosion Problem to Solve a Pollution Problem

    ERIC Educational Resources Information Center

    Palomar-Ramirez, Carlos F.; Bazan-Martinez, Jose A.; Palomar-Pardave, Manuel E.; Romero-Romo, Mario A.; Ramirez-Silva, Maria Teresa

    2011-01-01

    Some simple chemistry is used to demonstrate how Fe(II) ions, formed during iron corrosion in acid aqueous solution, can reduce toxic Cr(VI) species, forming soluble Cr(III) and Fe(III) ions. These ions, in turn, can be precipitated by neutralizing the solution. The procedure provides a treatment for industrial wastewaters commonly found in…

  12. On Browne's Solution for Oblique Procrustes Rotation

    ERIC Educational Resources Information Center

    Cramer, Elliot M.

    1974-01-01

    A form of Browne's (1967) solution of finding a least squares fit to a specified factor structure is given which does not involve solution of an eigenvalue problem. It suggests the possible existence of a singularity, and a simple modification of Browne's computational procedure is proposed. (Author/RC)

  13. The deflection of circular mirrors of linearly varying thickness supported along a central hole and free along the outer edge.

    PubMed

    Prevenslik, T V

    1968-10-01

    Most cassegrainian mirrors supported along the central hole are designed for deflection tolerances using the theory for solid, constant thickness plates. Where tolerances are critical, the mirror is usually made thicker, thereby reducing the deflection, but also increasing the weight of the mirror. Weight can be reduced by using a honeycomb design; however, manufacturing problems result because of the inherent complexity. To circumvent the disadvantages of excessive weight in the solid, constant thickness design and the complexity of the honeycomb design, a lightweight, yet simple design would be desirable. A possible lightweight, yet simple design would be a solid mirror of linearly varying thickness, decreasing in thickness from the center to the outer edge. As mirrors of linearly varying thickness may provide the best solution under combined deflection and weight restraints, a design basis is required and found in small deflection plate theory. The work of H. Conway was extended to account for pressure loading proportional to mirror density for the case when Poisson's ratio is ?. Closed form solutions for the slope of the linearly varying thickness mirrors were obtained for fixed and simply supported boundary conditions along the central hole. Maximum deflections were obtained by numerical integration and compared with the results for comparable constant thickness mirrors.

  14. A simple test for spacetime symmetry

    NASA Astrophysics Data System (ADS)

    Houri, Tsuyoshi; Yasui, Yukinori

    2015-03-01

    This paper presents a simple method for investigating spacetime symmetry for a given metric. The method makes use of the curvature conditions that are obtained from the Killing equations. We use the solutions of the curvature conditions to compute an upper bound on the number of Killing vector fields, as well as Killing-Yano (KY) tensors and closed conformal KY tensors. We also use them in the integration of the Killing equations. By means of the method, we thoroughly investigate KY symmetry of type D vacuum solutions such as the Kerr metric in four dimensions. The method is also applied to a large variety of physical metrics in four and five dimensions.

  15. Elution of Re-188 from W-188/Re-188 generators with salts of weak acids permits efficient concentration to low volumes using a new tandem cation/anion exchange system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guhlke, S.; Beets, A.L.; Knapp, F.F. Jr.

    1997-05-01

    Re-188, available from a W-188/Re-188 generator, is an important therapeutic radioisotope for bone pain palliation, cancer therapy and intravascular brachytherapy, etc. Because of the relatively low specific activity of reactor-produced W-188 (ORNL HFIR, 296-370 MBq mCi/mg W-186 for 2 cycles), methods of concentrating the Re-188 bolus (10-12 mL) from clinical scale (18.5-37 BGq W-188) generators (5-6 gm alumina) are thus very important. We demonstrate for the first time a new strategy of generator elution with salts of weak acids and specific perrhenate anion {open_quotes}trapping{close_quotes} with QMA anion columns. Re-188 perrhenate is efficiently eluted (65-75%) from the alumina-based generator with 0.15-0.3more » M ammonium acetate. An acetic acid solution of Re-188 perrhenic acid is obtained by subsequent on-line passage of the generator eluant through a DOWEX AG 50Wx8 (200-400 mesh, H{sup +} form) column. Since acetic acid is not ionized (< 0.001%) at this pH (< pK{sub a} = 4.76) the perrhenate anion is then specifically trapped on a QMA {open_quotes}Light{close_quotes} anion extraction column. QMA elution with 0.9% NaCl, provides Re-188 perrhenate solution in <1 mL. Concentration of 10-20 mL of Re-188 solution (> 15 BGq) in <1 mL has been demonstrated using this simple new approach, which is also effective for concentration of Tc-99m from low specific activity Mo-99 (n,y) generators. The cation/anion tandem system is inexpensive and disposable and use can be easily automated. The availability of this very simple, efficient system is important for broad use of rhenium-188.« less

  16. Analytical Methods of Decoupling the Automotive Engine Torque Roll Axis

    NASA Astrophysics Data System (ADS)

    JEONG, TAESEOK; SINGH, RAJENDRA

    2000-06-01

    This paper analytically examines the multi-dimensional mounting schemes of an automotive engine-gearbox system when excited by oscillating torques. In particular, the issue of torque roll axis decoupling is analyzed in significant detail since it is poorly understood. New dynamic decoupling axioms are presented an d compared with the conventional elastic axis mounting and focalization methods. A linear time-invariant system assumption is made in addition to a proportionally damped system. Only rigid-body modes of the powertrain are considered and the chassis elements are assumed to be rigid. Several simplified physical systems are considered and new closed-form solutions for symmetric and asymmetric engine-mounting systems are developed. These clearly explain the design concepts for the 4-point mounting scheme. Our analytical solutions match with the existing design formulations that are only applicable to symmetric geometries. Spectra for all six rigid-body motions are predicted using the alternate decoupling methods and the closed-form solutions are verified. Also, our method is validated by comparing modal solutions with prior experimental and analytical studies. Parametric design studies are carried out to illustrate the methodology. Chief contributions of this research include the development of new or refined analytical models and closed-form solutions along with improved design strategies for the torque roll axis decoupling.

  17. Rational solutions of CYBE for simple compact real Lie algebras

    NASA Astrophysics Data System (ADS)

    Pop, Iulia; Stolin, Alexander

    2007-04-01

    In [A.A. Stolin, On rational solutions of Yang-Baxter equation for sl(n), Math. Scand. 69 (1991) 57-80; A.A. Stolin, On rational solutions of Yang-Baxter equation. Maximal orders in loop algebra, Comm. Math. Phys. 141 (1991) 533-548; A. Stolin, A geometrical approach to rational solutions of the classical Yang-Baxter equation. Part I, in: Walter de Gruyter & Co. (Ed.), Symposia Gaussiana, Conf. Alg., Berlin, New York, 1995, pp. 347-357] a theory of rational solutions of the classical Yang-Baxter equation for a simple complex Lie algebra g was presented. We discuss this theory for simple compact real Lie algebras g. We prove that up to gauge equivalence all rational solutions have the form X(u,v)={Ω}/{u-v}+t1∧t2+⋯+t∧t2n, where Ω denotes the quadratic Casimir element of g and {ti} are linearly independent elements in a maximal torus t of g. The quantization of these solutions is also emphasized.

  18. Closed-loop endo-atmospheric ascent guidance for reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Sun, Hongsheng

    This dissertation focuses on the development of a closed-loop endo-atmospheric ascent guidance algorithm for the 2nd generation reusable launch vehicle. Special attention has been given to the issues that impact on viability, complexity and reliability in on-board implementation. The algorithm is called once every guidance update cycle to recalculate the optimal solution based on the current flight condition, taking into account atmospheric effects and path constraints. This is different from traditional ascent guidance algorithms which operate in a simple open-loop mode inside atmosphere, and later switch to a closed-loop vacuum ascent guidance scheme. The classical finite difference method is shown to be well suited for fast solution of the constrained optimal three-dimensional ascent problem. The initial guesses for the solutions are generated using an analytical vacuum optimal ascent guidance algorithm. Homotopy method is employed to gradually introduce the aerodynamic forces to generate the optimal solution from the optimal vacuum solution. The vehicle chosen for this study is the Lockheed Martin X-33 lifting-body reusable launch vehicle. To verify the algorithm presented in this dissertation, a series of open-loop and closed-loop tests are performed for three different missions. Wind effects are also studied in the closed-loop simulations. For comparison, the solutions for the same missions are also obtained by two independent optimization softwares. The results clearly establish the feasibility of closed-loop endo-atmospheric ascent guidance of rocket-powered launch vehicles. ATO cases are also tested to assess the adaptability of the algorithm to autonomously incorporate the abort modes.

  19. A homogenization approach for the effective drained viscoelastic properties of 2D porous media and an application for cortical bone.

    PubMed

    Nguyen, Sy-Tuan; Vu, Mai-Ba; Vu, Minh-Ngoc; To, Quy-Dong

    2018-02-01

    Closed-form solutions for the effective rheological properties of a 2D viscoelastic drained porous medium made of a Generalized Maxwell viscoelastic matrix and pore inclusions are developed and applied for cortical bone. The in-plane (transverse) effective viscoelastic bulk and shear moduli of the Generalized Maxwell rheology of the homogenized medium are expressed as functions of the porosity and the viscoelastic properties of the solid phase. When deriving these functions, the classical inverse Laplace-Carson transformation technique is avoided, due to its complexity, by considering the short and long term approximations. The approximated results are validated against exact solutions obtained from the inverse Laplace-Carson transform for a simple configuration when the later is available. An application for cortical bone with assumption of circular pore in the transverse plane shows that the proposed approximation fit very well with experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Modifying Optical Properties of ZnO Films by Forming Zn[subscript 1-x] Co[subscript x]O Solid Solutions via Spray Pyrolysis

    ERIC Educational Resources Information Center

    Bentley, Anne K.; Weaver, Gabriela C.; Russell, Cianan B.; Fornes, William L.; Choi, Kyoung-Shin; Shih, Susan M.

    2007-01-01

    A simple and cost-effective experiment for the development and characterization of semiconductors using Uv-vis spectroscopy is described. The study shows that the optical properties of ZnO films can be easily modified by forming Zn[subscript 1-x] Co[subscript x]O solid solutions via spray pyrolysis.

  1. Thermal stress in high temperature cylindrical fasteners

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    1988-01-01

    Uninsulated structures fabricated from carbon or silicon-based materials, which are allowed to become hot during flight, are attractive for the design of some components of hypersonic vehicles. They have the potential to reduce weight and increase vehicle efficiency. Because of manufacturing contraints, these structures will consist of parts which must be fastened together. The thermal expansion mismatch between conventional metal fasteners and carbon or silicon-based structural materials may make it difficult to design a structural joint which is tight over the operational temperature range without exceeding allowable stress limits. In this study, algebraic, closed-form solutions for calculating the thermal stresses resulting from radial thermal expansion mismatch around a cylindrical fastener are developed. These solutions permit a designer to quickly evaluate many combinations of materials for the fastener and the structure. Using the algebraic equations developed, material properties and joint geometry were varied to determine their effect on thermal stresses. Finite element analyses were used to verify that the closed-form solutions derived give the correct thermal stress distribution around a cylindrical fastener and to investigate the effect of some of the simplifying assumptions made in developing the closed-form solutions for thermal stresses.

  2. A Bayesian approach to reliability and confidence

    NASA Technical Reports Server (NTRS)

    Barnes, Ron

    1989-01-01

    The historical evolution of NASA's interest in quantitative measures of reliability assessment is outlined. The introduction of some quantitative methodologies into the Vehicle Reliability Branch of the Safety, Reliability and Quality Assurance (SR and QA) Division at Johnson Space Center (JSC) was noted along with the development of the Extended Orbiter Duration--Weakest Link study which will utilize quantitative tools for a Bayesian statistical analysis. Extending the earlier work of NASA sponsor, Richard Heydorn, researchers were able to produce a consistent Bayesian estimate for the reliability of a component and hence by a simple extension for a system of components in some cases where the rate of failure is not constant but varies over time. Mechanical systems in general have this property since the reliability usually decreases markedly as the parts degrade over time. While they have been able to reduce the Bayesian estimator to a simple closed form for a large class of such systems, the form for the most general case needs to be attacked by the computer. Once a table is generated for this form, researchers will have a numerical form for the general solution. With this, the corresponding probability statements about the reliability of a system can be made in the most general setting. Note that the utilization of uniform Bayesian priors represents a worst case scenario in the sense that as researchers incorporate more expert opinion into the model, they will be able to improve the strength of the probability calculations.

  3. Growth of tungsten oxide nanostructures by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Jin, L. H.; Bai, Y.; Li, C. S.; Wang, Y.; Feng, J. Q.; Lei, L.; Zhao, G. Y.; Zhang, P. X.

    2018-05-01

    Tungsten oxide nanostructures were fabricated on LaAlO3 (00l) substrates by a simple chemical solution deposition. The decomposition behavior and phase formation of ammonium tungstate precursor were characterized by thermal analysis and X-ray diffraction. Moreover, the morphology and chemical state of nanostructures were analyzed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectra. The effects of crystallization temperature on the formation of nanodots and nanowires were investigated. The results indicated that the change of nanostructures had close relationship with the crystallization temperature during the chemical solution deposition process. Under higher crystallization temperature, the square-like dots transformed into the dome-like nanodots and nanowires. Moreover high density well-ordered nanodots could be obtained on the substrate with the further increase of crystallization temperature. It also suggested that this simple chemical solution process could be used to adjust the nanostructures of tungsten oxide compounds on substrate.

  4. Quantum Field Theory in Two Dimensions: Light-front Versus Space-like Solutions

    NASA Astrophysics Data System (ADS)

    Martinovic̆, L'ubomír

    2017-07-01

    A few non-perturbative topics of quantum field theory in D=1+1 are studied in both the conventional (SL) and light-front (LF) versions. First, we give a concise review of the recently proposed quantization of the two-dimensional massless LF fields. The LF version of bosonization follows in a simple and natural way including the bosonized form of the Thirring model. As a further application, we demonstrate the closeness of the 2D massless LF quantum fields to conformal field theory (CFT). We calculate several correlation functions including those between the components of the LF energy-momentum tensor and derive the LF version of the Virasoro algebra. Using the Euclidean time variable, we can immediately transform calculated quantities to the (anti)holomorphic form. The results found are in agreement with those from CFT. Finally, we show that the proposed framework provides us with the elements needed for an independent LF study of exactly solvable models. We compute the non-perturbative correlation functions from the exact operator solution of the LF Thirring model and compare it to the analogous results in the SL theory. While the vacuum effects are automatically taken into account in the LF case, the non-trivial vacuum structure has to be incorported by an explicit diagonalization of the SL Hamiltonians, to obtain the equivalently complete solution.

  5. The vesosome-- a multicompartment drug delivery vehicle.

    PubMed

    Kisak, E T; Coldren, B; Evans, C A; Boyer, C; Zasadzinski, J A

    2004-01-01

    Assembling structures to divide space controllably and spontaneously into subunits at the nanometer scale is a significant challenge, although one that biology has solved in two distinct ways: prokaryotes and eukaryotes. Prokaryotes have a single compartment delimited by one or more lipid-protein membranes. Eukaryotes have nested-membrane structures that provide internal compartments--such as the cell nucleus and cell organelles in which specialized functions are carried out. We have developed a simple method of creating nested bilayer compartments in vitro via the "interdigitated" bilayer phase formed by adding ethanol to a variety of saturated phospholipids. At temperatures below the gel-liquid crystalline transition, T(m), the interdigitated lipid-ethanol sheets are rigid and flat; when the temperature is raised above T(m), the sheets become flexible and close on themselves and the surrounding solution to form closed compartments. During this closure, the sheets can entrap other vesicles, biological macromolecules, or colloidal particles. The result is efficient and spontaneous encapsulation without disruption of even fragile materials to form biomimetic nano-environments for possible use in drug delivery, colloidal stabilization, or as microreactors. The vesosome structure can take full advantage of the 40 years of progress in liposome development including steric stabilization, pH loading of drugs, and intrinsic biocompatibility. However, the multiple compartments of the vesosome give better protection to the interior contents in serum, leading to extended release of model compounds in comparison to unilamellar liposomes.

  6. Solutions to a reduced Poisson–Nernst–Planck system and determination of reaction rates

    PubMed Central

    Li, Bo; Lu, Benzhuo; Wang, Zhongming; McCammon, J. Andrew

    2010-01-01

    We study a reduced Poisson–Nernst–Planck (PNP) system for a charged spherical solute immersed in a solvent with multiple ionic or molecular species that are electrostatically neutralized in the far field. Some of these species are assumed to be in equilibrium. The concentrations of such species are described by the Boltzmann distributions that are further linearized. Others are assumed to be reactive, meaning that their concentrations vanish when in contact with the charged solute. We present both semi-analytical solutions and numerical iterative solutions to the underlying reduced PNP system, and calculate the reaction rate for the reactive species. We give a rigorous analysis on the convergence of our simple iteration algorithm. Our numerical results show the strong dependence of the reaction rates of the reactive species on the magnitude of its far field concentration as well as on the ionic strength of all the chemical species. We also find non-monotonicity of electrostatic potential in certain parameter regimes. The results for the reactive system and those for the non-reactive system are compared to show the significant differences between the two cases. Our approach provides a means of solving a PNP system which in general does not have a closed-form solution even with a special geometrical symmetry. Our findings can also be used to test other numerical methods in large-scale computational modeling of electro-diffusion in biological systems. PMID:20228879

  7. Increasing the reliability of solution exchanges by monitoring solenoid valve actuation.

    PubMed

    Auzmendi, Jerónimo Andrés; Moffatt, Luciano

    2010-01-15

    Solenoid valves are a core component of most solution perfusion systems used in neuroscience research. As they open and close, they control the flow of solution through each perfusion line, thereby modulating the timing and sequence of chemical stimulation. The valves feature a ferromagnetic plunger that moves due to the magnetization of the solenoid and returns to its initial position with the aid of a spring. The delays between the time of voltage application or removal and the actual opening or closing of the valve are difficult to predict beforehand and have to be measured experimentally. Here we propose a simple method for monitoring whether and when the solenoid valve opens and closes. The proposed method detects the movement of the plunger as it generates a measurable signal on the solenoid that surrounds it. Using this plunger signal, we detected the opening and closing of diaphragm and pinch solenoid valves with a systematic error of less than 2ms. After this systematic error is subtracted, the trial-to-trial error was below 0.2ms.

  8. The fundamental closed-form solution of control-related states of kth order S3PR system with left-side non-sharing resource places of Petri nets

    NASA Astrophysics Data System (ADS)

    Chao, Daniel Yuh; Yu, Tsung Hsien

    2016-01-01

    Due to the state explosion problem, it has been unimaginable to enumerate reachable states for Petri nets. Chao broke the barrier earlier by developing the very first closed-form solution of the number of reachable and other states for marked graphs and the kth order system. Instead of using first-met bad marking, we propose 'the moment to launch resource allocation' (MLR) as a partial deadlock avoidance policy for a large, real-time dynamic resource allocation system. Presently, we can use the future deadlock ratio of the current state as the indicator of MLR due to which the ratio can be obtained real-time by a closed-form formula. This paper progresses the application of an MLR concept one step further on Gen-Left kth order systems (one non-sharing resource place in any position of the left-side process), which is also the most fundamental asymmetric net structure, by the construction of the system's closed-form solution of the control-related states (reachable, forbidden, live and deadlock states) with a formula depending on the parameters of k and the location of the non-sharing resource. Here, we kick off a new era of real-time, dynamic resource allocation decisions by constructing a generalisation formula of kth order systems (Gen-Left) with r* on the left side but at arbitrary locations.

  9. Analysis of the axisymmetric indentation of a semi-infinite piezoelectric material: The evaluation of the contact stiffness and the effective piezoelectric constant

    NASA Astrophysics Data System (ADS)

    Yang, Fuqian

    2008-04-01

    A general solution of the axisymmetric indentation is obtained in the closed form for a semi-infinite, transverse isotropic piezoelectric material by a rigid-conducting indenter of arbitrary-axisymmetric profile. Explicit relationships are derived for dependences of the indentation depth and the indentation-induced charge on indentation force and applied electrical potential. Simple formulas are obtained for contact stiffness and effective piezoelectric constant, which can be used in indentation test and piezoresponse force microscopy to analyze the elastic and piezoelectric responses of piezoelectric materials. Depending on the direction of electric field (the potential difference), the electric field can either increase or suppress indentation deformation. The corresponding results are given for cylindrical, conical, and paraboloidal indenters.

  10. Conductivity of an inverse lyotropic lamellar phase under shear flow

    NASA Astrophysics Data System (ADS)

    Panizza, P.; Soubiran, L.; Coulon, C.; Roux, D.

    2001-08-01

    We report conductivity measurements on solutions of closed compact monodisperse multilamellar vesicles (the so-called ``onion texture'') formed by shearing an inverse lyotropic lamellar Lα phase. The conductivity measured in different directions as a function of the applied shear rate reveals a small anisotropy of the onion structure due to the existence of free oriented membranes. The results are analyzed in terms of a simple model that allows one to deduce the conductivity tensor of the Lα phase itself and the proportion of free oriented membranes. The variation of these two parameters is measured along a dilution line and discussed. The high value of the conductivity perpendicular to the layers with respect to that of solvent suggests the existence of a mechanism of ionic transport through the insulating solvent.

  11. Point and path performance of light aircraft: A review and analysis

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Summey, D. C.; Johnson, W. D.

    1973-01-01

    The literature on methods for predicting the performance of light aircraft is reviewed. The methods discussed in the review extend from the classical instantaneous maximum or minimum technique to techniques for generating mathematically optimum flight paths. Classical point performance techniques are shown to be adequate in many cases but their accuracies are compromised by the need to use simple lift, drag, and thrust relations in order to get closed form solutions. Also the investigation of the effect of changes in weight, altitude, configuration, etc. involves many essentially repetitive calculations. Accordingly, computer programs are provided which can fit arbitrary drag polars and power curves with very high precision and which can then use the resulting fits to compute the performance under the assumption that the aircraft is not accelerating.

  12. A closed-form solution to tensor voting: theory and applications.

    PubMed

    Wu, Tai-Pang; Yeung, Sai-Kit; Jia, Jiaya; Tang, Chi-Keung; Medioni, Gérard

    2012-08-01

    We prove a closed-form solution to tensor voting (CFTV): Given a point set in any dimensions, our closed-form solution provides an exact, continuous, and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MRFTV, where the structure-aware tensor at each input site reaches a stationary state upon convergence in structure propagation. We then embed structure-aware tensor into expectation maximization (EM) for optimizing a single linear structure to achieve efficient and robust parameter estimation. Specifically, our EMTV algorithm optimizes both the tensor and fitting parameters and does not require random sampling consensus typically used in existing robust statistical techniques. We performed quantitative evaluation on its accuracy and robustness, showing that EMTV performs better than the original TV and other state-of-the-art techniques in fundamental matrix estimation for multiview stereo matching. The extensions of CFTV and EMTV for extracting multiple and nonlinear structures are underway.

  13. Path integral approach to closed-form option pricing formulas with applications to stochastic volatility and interest rate models

    NASA Astrophysics Data System (ADS)

    Lemmens, D.; Wouters, M.; Tempere, J.; Foulon, S.

    2008-07-01

    We present a path integral method to derive closed-form solutions for option prices in a stochastic volatility model. The method is explained in detail for the pricing of a plain vanilla option. The flexibility of our approach is demonstrated by extending the realm of closed-form option price formulas to the case where both the volatility and interest rates are stochastic. This flexibility is promising for the treatment of exotic options. Our analytical formulas are tested with numerical Monte Carlo simulations.

  14. Simple views on critical binary liquid mixtures in porous glass

    NASA Astrophysics Data System (ADS)

    Tremblay, L.; Socol, S. M.; Lacelle, S.

    2000-01-01

    A simple scenario, different from previous attempts, is proposed to resolve the problem of the slow phase separation dynamics of binary liquid mixtures confined in porous Vycor glass. We demonstrate that simply mutual diffusion, renormalized by critical composition fluctuations and geometrical hindrance of the porous glass, accounts for the slow phase separation kinetics. Capillary invasion studies of porous Vycor glass by the critical isobutyric acid-water mixture, close to the consolute solution temperature, corroborate our analysis.

  15. An analogue of the Berry phase for simple harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Suslov, S. K.

    2013-03-01

    We evaluate a variant of Berry's phase for a ‘missing’ family of the square integrable wavefunctions for the linear harmonic oscillator, which cannot be derived by the separation of variables (in a natural way). Instead, it is obtained by the action of the maximal kinematical invariance group on the standard solutions. A simple closed formula for the phase (in terms of elementary functions) is found here by integration with the help of a computer algebra system.

  16. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…

  17. Exact solutions for network rewiring models

    NASA Astrophysics Data System (ADS)

    Evans, T. S.

    2007-03-01

    Evolving networks with a constant number of edges may be modelled using a rewiring process. These models are used to describe many real-world processes including the evolution of cultural artifacts such as family names, the evolution of gene variations, and the popularity of strategies in simple econophysics models such as the minority game. The model is closely related to Urn models used for glasses, quantum gravity and wealth distributions. The full mean field equation for the degree distribution is found and its exact solution and generating solution are given.

  18. Continuous Optimization on Constraint Manifolds

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1988-01-01

    This paper demonstrates continuous optimization on the differentiable manifold formed by continuous constraint functions. The first order tensor geodesic differential equation is solved on the manifold in both numerical and closed analytic form for simple nonlinear programs. Advantages and disadvantages with respect to conventional optimization techniques are discussed.

  19. Analytical solutions for avalanche-breakdown voltages of single-diffused Gaussian junctions

    NASA Astrophysics Data System (ADS)

    Shenai, K.; Lin, H. C.

    1983-03-01

    Closed-form solutions of the potential difference between the two edges of the depletion layer of a single diffused Gaussian p-n junction are obtained by integrating Poisson's equation and equating the magnitudes of the positive and negative charges in the depletion layer. By using the closed form solution of the static Poisson's equation and Fulop's average ionization coefficient, the ionization integral in the depletion layer is computed, which yields the correct values of avalanche breakdown voltage, depletion layer thickness at breakdown, and the peak electric field as a function of junction depth. Newton's method is used for rapid convergence. A flowchart to perform the calculations with a programmable hand-held calculator, such as the TI-59, is shown.

  20. Extending the Constant Coefficient Solution Technique to Variable Coefficient Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Mohammed, Ahmed; Zeleke, Aklilu

    2015-01-01

    We introduce a class of second-order ordinary differential equations (ODEs) with variable coefficients whose closed-form solutions can be obtained by the same method used to solve ODEs with constant coefficients. General solutions for the homogeneous case are discussed.

  1. Analytical and numerical solutions for heat transfer and effective thermal conductivity of cracked media

    NASA Astrophysics Data System (ADS)

    Tran, A. B.; Vu, M. N.; Nguyen, S. T.; Dong, T. Q.; Le-Nguyen, K.

    2018-02-01

    This paper presents analytical solutions to heat transfer problems around a crack and derive an adaptive model for effective thermal conductivity of cracked materials based on singular integral equation approach. Potential solution of heat diffusion through two-dimensional cracked media, where crack filled by air behaves as insulator to heat flow, is obtained in a singular integral equation form. It is demonstrated that the temperature field can be described as a function of temperature and rate of heat flow on the boundary and the temperature jump across the cracks. Numerical resolution of this boundary integral equation allows determining heat conduction and effective thermal conductivity of cracked media. Moreover, writing this boundary integral equation for an infinite medium embedding a single crack under a far-field condition allows deriving the closed-form solution of temperature discontinuity on the crack and particularly the closed-form solution of temperature field around the crack. These formulas are then used to establish analytical effective medium estimates. Finally, the comparison between the developed numerical and analytical solutions allows developing an adaptive model for effective thermal conductivity of cracked media. This model takes into account both the interaction between cracks and the percolation threshold.

  2. [Formulation and special investigations of innovative intraoral solid dosage forms.

    PubMed

    Kristo, K; kATONA, B; Piukovics, P; Olah, I; Sipos, B; Sipos, S E; Sovany, T; Hodi, K; Ifi Regdon, G

    During our work, we summarized the types of solid dosage forms which were in the focus of attention in the last years because of their innovative pharmaceutical technology solution and simple use. The biopharmaceutics of solid dosage forms for intraoral use and the advantages of the use of these dosages forms were presented in general. However, these dosage forms cannot always be prepared with conventional pharmaceutical processes, therefore the special pharmaceutical solutions which can be applied for their preparation were presented. In addition to testing the European Pharmacopoeia dosage forms, the special tests which can be applied for the characterization of innovative solid dosage forms were highlighted.

  3. Surface and allied studies in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1983-01-01

    Two main results are presented. The first deals with a simple method that determines the minority-carrier lifetime and the effective surface recombination velocity of the quasi-neutral base of silicon solar cells. The method requires the observation of only a single transient, and is amenable to automation for in-process monitoring in manufacturing. This method, which is called short-circuit current decay, avoids distortion in the observed transient and consequent inacccuracies that arise from the presence of mobile holes and electrons stored in the p/n junction spacecharge region at the initial instant of the transient. The second main result consists in a formulation of the relevant boundary-value problems that resembles that used in linear two-port network theory. This formulation enables comparisons to be made among various contending methods for measuring material parameters of p/n junction devices, and enables the option of putting the description in the time domain of the transient studies in the form of an infinite series, although closed-form solutions are also possible.

  4. Closed-Form Solutions for a Circular Tunnel in Elastic-Brittle-Plastic Ground with the Original and Generalized Hoek-Brown Failure Criteria

    NASA Astrophysics Data System (ADS)

    Chen, Ran; Tonon, Fulvio

    2011-03-01

    The paper presents a closed-form solution for the convergence curve of a circular tunnel in an elasto-brittle-plastic rock mass with both the Hoek-Brown and generalized Hoek-Brown failure criteria, and a linear flow rule, i.e., the ratio between the minor and major plastic strain increments is constant. The improvement over the original solution of Brown et al. (J Geotech Eng ASCE 109(1):15-39, 1983) consists of taking into account the elastic strain variation in the plastic annulus, which was assumed to be fixed in the original solution by Brown et al. The improvement over Carranza-Torres' solution (Int J Rock Mech Min Sci 41(Suppl 1):629-639, 2004) consists of providing a closed-form solution, rather than resorting to numerical integration of an ordinary differential equation. The presented solution, by rigorously following the theory of plasticity, takes into account that the elastic strain components change with radial and circumferential stress changes within the plastic annulus. For the original Hoek-Brown failure criterion, disregarding the elastic strain change leads to underestimate the convergence by up to 55%. For a rock mass failing according to the generalized Hoek-Brown failure criterion, using the original failure criterion leads to a high probability (97%) of underestimating the convergence by up to 100%. As a consequence, the onset or degree of squeezing may be underestimated, and the loading on the support/reinforcement calculated with the convergence/confinement method may be largely underestimated.

  5. A fast numerical solution of scattering by a cylinder: Spectral method for the boundary integral equations

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1994-01-01

    It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converges slowly for high frequency waves. In this paper, we present a fast number solution for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, we show that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented.

  6. Impact of Compound Hydrate Dynamics on Phase Boundary Changes

    NASA Astrophysics Data System (ADS)

    Osegovic, J. P.; Max, M. D.

    2006-12-01

    Compound hydrate reactions are affected by the local concentration of hydrate forming materials (HFM). The relationship between HFM composition and the phase boundary is as significant as temperature and pressure. Selective uptake and sequestration of preferred hydrate formers (PF) has wide ranging implications for the state and potential use of natural hydrate formation, including impact on climate. Rising mineralizing fluids of hydrate formers (such as those that occur on Earth and are postulated to exist elsewhere in the solar system) will sequester PF before methane, resulting in a positive relationship between depth and BTU content as ethane and propane are removed before methane. In industrial settings the role of preferred formers can separate gases. When depressurizing gas hydrate to release the stored gas, the hydrate initial composition will set the decomposition phase boundary because the supporting solution takes on the composition of the hydrate phase. In other settings where hydrate is formed, transported, and then dissociated, similar effects can control the process. The behavior of compound hydrate systems can primarily fit into three categories: 1) In classically closed systems, all the material that can form hydrate is isolated, such as in a sealed laboratory vessel. In such systems, formation and decomposition are reversible processes with observed hysteresis related to mass or heat transfer limitations, or the order and magnitude in which individual hydrate forming gases are taken up from the mixture and subsequently released. 2) Kinetically closed systems are exposed to a solution mass flow across a hydrate mass. These systems can have multiple P-T phase boundaries based on the local conditions at each face of the hydrate mass. A portion of hydrate that is exposed to fresh mineralizing solution will contain more preferred hydrate formers than another portion that is exposed to a partially depleted solution. Examples of kinetically closed systems include pipeline blockages and natural hydrate concentrations associated with upwelling fluids in marine sediments. 3) In open systems, mass can either flow into or out of a system. In such situations compound hydrate will form or decompose to re-establish chemical equilibrium. This is accomplished by 1) loading/consuming a preferred hydrate former to/from the surroundings, 2) lowering/raising the temperature of the system, and 3) increasing the local pressure. Examples of this type of system include hydrate produced for low pressure transport, depressurized or superheated hydrate settings (pipeline remediation or energy recovery), or in an industrial process where formation of compound hydrates may be used to separate and concentrate gases from a mixture. The relationship between composition and the phase boundary is as important as pressure and temperature effects. Composition is less significant for simple hydrates where the hydrate behaves as a one-component mineral, but for compound hydrate, feedback between pressure, temperature, and composition can result in complex system behavior.

  7. An implicit semianalytic numerical method for the solution of nonequilibrium chemistry problems

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.; Gnoffo, P. A.; Boughner, R. E.

    1974-01-01

    The first order differential equation form systems of equations. They are solved by a simple and relatively accurate implicit semianalytic technique which is derived from a quadrature solution of the governing equation. This method is mathematically simpler than most implicit methods and has the exponential nature of the problem embedded in the solution.

  8. Simulation of Simple Controlled Processes with Dead-Time.

    ERIC Educational Resources Information Center

    Watson, Keith R.; And Others

    1985-01-01

    The determination of closed-loop response of processes containing dead-time is typically not covered in undergraduate process control, possibly because the solution by Laplace transforms requires the use of Pade approximation for dead-time, which makes the procedure lengthy and tedious. A computer-aided method is described which simplifies the…

  9. Analytical solution for the transient response of a fluid/saturated porous medium halfspace system subjected to an impulsive line source

    NASA Astrophysics Data System (ADS)

    Shan, Zhendong; Ling, Daosheng; Jing, Liping; Li, Yongqiang

    2018-05-01

    In this paper, transient wave propagation is investigated within a fluid/saturated porous medium halfspace system with a planar interface that is subjected to a cylindrical P-wave line source. Assuming the permeability coefficient is sufficiently large, analytical solutions for the transient response of the fluid/saturated porous medium halfspace system are developed. Moreover, the analytical solutions are presented in simple closed forms wherein each term represents a transient physical wave, especially the expressions for head waves. The methodology utilised to determine where the head wave can emerge within the system is also given. The wave fields within the fluid and porous medium are first defined considering the behaviour of two compressional waves and one tangential wave in the saturated porous medium and one compressional wave in the fluid. Substituting these wave fields into the interface continuity conditions, the analytical solutions in the Laplace domain are then derived. To transform the solutions into the time domain, a suitable distortion of the contour is provided to change the integration path of the solution, after which the analytical solutions in the Laplace domain are transformed into the time domain by employing Cagniard's method. Numerical examples are provided to illustrate some interesting features of the fluid/saturated porous medium halfspace system. In particular, the interface wave and head waves that propagate along the interface between the fluid and saturated porous medium can be observed.

  10. Deep-down ionization of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Glassgold, A. E.; Lizano, S.; Galli, D.

    2017-12-01

    The possible occurrence of dead zones in protoplanetary discs subject to the magneto-rotational instability highlights the importance of disc ionization. We present a closed-form theory for the deep-down ionization by X-rays at depths below the disc surface dominated by far-ultraviolet radiation. Simple analytic solutions are given for the major ion classes, electrons, atomic ions, molecular ions and negatively charged grains. In addition to the formation of molecular ions by X-ray ionization of H2 and their destruction by dissociative recombination, several key processes that operate in this region are included, e.g. charge exchange of molecular ions and neutral atoms and destruction of ions by grains. Over much of the inner disc, the vertical decrease in ionization with depth into the disc is described by simple power laws, which can easily be included in more detailed modelling of magnetized discs. The new ionization theory is used to illustrate the non-ideal magnetohydrodynamic effects of Ohmic, Hall and Ambipolar diffusion for a magnetic model of a T Tauri star disc using the appropriate Elsasser numbers.

  11. New investigations of technical rhodium and iridium catalysts in homogeneous phase employing para-hydrogen induced polarization.

    PubMed

    Gutmann, Torsten; Ratajczyk, Tomasz; Dillenberger, Sonja; Xu, Yeping; Grünberg, Anna; Breitzke, Hergen; Bommerich, Ute; Trantzschel, Thomas; Bernarding, Johannes; Buntkowsky, Gerd

    2011-09-01

    It is shown that the para-hydrogen induced polarization (PHIP) phenomenon in homogenous solution containing the substrate styrene is also observable employing simple inorganic systems of the form MCl(3)·xH(2)O (M=Rh, Ir) as catalyst. Such observation confirms that already very simple metal complexes enable the creation of PHIP signal enhancement in solution. This opens up new pathways to increase the sensitivity of NMR and MRT by PHIP enhancement using cost-effective catalysts and will be essential for further mechanistic studies of simple transition metal systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Closed-form recursive formula for an optimal tracker with terminal constraints

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Turner, J. D.; Chun, H. M.

    1984-01-01

    Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. Two examples are given to illustrate the validity and usefulness of the formulations.

  13. Distributional and regularized radiation fields of non-uniformly moving straight dislocations, and elastodynamic Tamm problem

    NASA Astrophysics Data System (ADS)

    Lazar, Markus; Pellegrini, Yves-Patrick

    2016-11-01

    This work introduces original explicit solutions for the elastic fields radiated by non-uniformly moving, straight, screw or edge dislocations in an isotropic medium, in the form of time-integral representations in which acceleration-dependent contributions are explicitly separated out. These solutions are obtained by applying an isotropic regularization procedure to distributional expressions of the elastodynamic fields built on the Green tensor of the Navier equation. The obtained regularized field expressions are singularity-free, and depend on the dislocation density rather than on the plastic eigenstrain. They cover non-uniform motion at arbitrary speeds, including faster-than-wave ones. A numerical method of computation is discussed, that rests on discretizing motion along an arbitrary path in the plane transverse to the dislocation, into a succession of time intervals of constant velocity vector over which time-integrated contributions can be obtained in closed form. As a simple illustration, it is applied to the elastodynamic equivalent of the Tamm problem, where fields induced by a dislocation accelerated from rest beyond the longitudinal wave speed, and thereafter put to rest again, are computed. As expected, the proposed expressions produce Mach cones, the dynamic build-up and decay of which is illustrated by means of full-field calculations.

  14. The Parker-Sochacki Method--A Powerful New Method for Solving Systems of Differential Equations

    NASA Astrophysics Data System (ADS)

    Rudmin, Joseph W.

    2001-04-01

    The Parker-Sochacki Method--A Powerful New Method for Solving Systems of Differential Equations Joseph W. Rudmin (Physics Dept, James Madison University) A new system of solving systems of differential equations will be presented, which has been developed by J. Edgar Parker and James Sochacki, of the James Madison University Mathematics Department. The method produces MacClaurin Series solutions to systems of differential equations, with the coefficients in either algebraic or numerical form. The method yields high-degree solutions: 20th degree is easily obtainable. It is conceptually simple, fast, and extremely general. It has been applied to over a hundred systems of differential equations, some of which were previously unsolved, and has yet to fail to solve any system for which the MacClaurin series converges. The method is non-recursive: each coefficient in the series is calculated just once, in closed form, and its accuracy is limited only by the digital accuracy of the computer. Although the original differential equations may include any mathematical functions, the computational method includes ONLY the operations of addition, subtraction, and multiplication. Furthermore, it is perfectly suited to parallel -processing computer languages. Those who learn this system will never use Runge-Kutta or predictor-corrector methods again. Examples will be presented, including the classical many-body problem.

  15. Transport of a decay chain in homogenous porous media: analytical solutions.

    PubMed

    Bauer, P; Attinger, S; Kinzelbach, W

    2001-06-01

    With the aid of integral transforms, analytical solutions for the transport of a decay chain in homogenous porous media are derived. Unidirectional steady-state flow and radial steady-state flow in single and multiple porosity media are considered. At least in Laplace domain, all solutions can be written in closed analytical formulae. Partly, the solutions can also be inverted analytically. If not, analytical calculation of the steady-state concentration distributions, evaluation of temporal moments and numerical inversion are still possible. Formulae for several simple boundary conditions are given and visualized in this paper. The derived novel solutions are widely applicable and are very useful for the validation of numerical transport codes.

  16. Analytical close-form solutions to the elastic fields of solids with dislocations and surface stress

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Paliwal, Bhasker; Ougazzaden, Abdallah; Cherkaoui, Mohammed

    2013-07-01

    The concept of eigenstrain is adopted to derive a general analytical framework to solve the elastic field for 3D anisotropic solids with general defects by considering the surface stress. The formulation shows the elastic constants and geometrical features of the surface play an important role in determining the elastic fields of the solid. As an application, the analytical close-form solutions to the stress fields of an infinite isotropic circular nanowire are obtained. The stress fields are compared with the classical solutions and those of complex variable method. The stress fields from this work demonstrate the impact from the surface stress when the size of the nanowire shrinks but becomes negligible in macroscopic scale. Compared with the power series solutions of complex variable method, the analytical solutions in this work provide a better platform and they are more flexible in various applications. More importantly, the proposed analytical framework profoundly improves the studies of general 3D anisotropic materials with surface effects.

  17. Molecular Simulation Uncovers the Conformational Space of the λ Cro Dimer in Solution

    PubMed Central

    Ahlstrom, Logan S.; Miyashita, Osamu

    2011-01-01

    The significant variation among solved structures of the λ Cro dimer suggests its flexibility. However, contacts in the crystal lattice could have stabilized a conformation which is unrepresentative of its dominant solution form. Here we report on the conformational space of the Cro dimer in solution using replica exchange molecular dynamics in explicit solvent. The simulated ensemble shows remarkable correlation with available x-ray structures. Network analysis and a free energy surface reveal the predominance of closed and semi-open dimers, with a modest barrier separating these two states. The fully open conformation lies higher in free energy, indicating that it requires stabilization by DNA or crystal contacts. Most NMR models are found to be unstable conformations in solution. Intersubunit salt bridging between Arg4 and Glu53 during simulation stabilizes closed conformations. Because a semi-open state is among the low-energy conformations sampled in simulation, we propose that Cro-DNA binding may not entail a large conformational change relative to the dominant dimer forms in solution. PMID:22098751

  18. Exact solutions for postbuckling of a graded porous beam

    NASA Astrophysics Data System (ADS)

    Ma, L. S.; Ou, Z. Y.

    2018-06-01

    An exact, closed-form solution for the postbuckling responses of graded porous beams subjected to axially loading is obtained. It was assumed that the properties of the graded porous materials vary continuously through thickness of the beams, the equations governing the axial and transverse deformations are derived based on the classical beam theory and the physical neutral surface concept. The two equations are reduced to a single nonlinear fourth-order integral-differential equation governing the transverse deformations. The nonlinear equation is directly solved without any use of approximation and a closed-form solution for postbuckled deformation is obtained as a function of the applied load. The exact solutions explicitly describe the nonlinear equilibrium paths of the buckled beam and thus are able to provide insight into deformation problems. Based on the exact solutions obtained herein, the effects of various factors such as porosity distribution pattern, porosity coefficient and boundary conditions on postbuckling behavior of graded porous beams have been investigated.

  19. Steady-state kinetics of solitary batrachotoxin-treated sodium channels. Kinetics on a bounded continuum of polymer conformations.

    PubMed Central

    Rubinson, K A

    1992-01-01

    The underlying principles of the kinetics and equilibrium of a solitary sodium channel in the steady state are examined. Both the open and closed kinetics are postulated to result from round-trip excursions from a transition region that separates the openable and closed forms. Exponential behavior of the kinetics can have origins different from small-molecule systems. These differences suggest that the probability density functions (PDFs) that describe the time dependences of the open and closed forms arise from a distribution of rate constants. The distribution is likely to arise from a thermal modulation of the channel structure, and this provides a physical basis for the following three-variable equation: [formula; see text] Here, A0 is a scaling term, k is the mean rate constant, and sigma quantifies the Gaussian spread for the contributions of a range of effective rate constants. The maximum contribution is made by k, with rates faster and slower contributing less. (When sigma, the standard deviation of the spread, goes to zero, then p(f) = A0 e-kt.) The equation is applied to the single-channel steady-state probability density functions for batrachotoxin-treated sodium channels (1986. Keller et al. J. Gen. Physiol. 88: 1-23). The following characteristics are found: (a) The data for both open and closed forms of the channel are fit well with the above equation, which represents a Gaussian distribution of first-order rate processes. (b) The simple relationship [formula; see text] holds for the mean effective rat constants. Or, equivalently stated, the values of P open calculated from the k values closely agree with the P open values found directly from the PDF data. (c) In agreement with the known behavior of voltage-dependent rate constants, the voltage dependences of the mean effective rate constants for the opening and closing of the channel are equal and opposite over the voltage range studied. That is, [formula; see text] "Bursts" are related to the well-known cage effect of solution chemistry. PMID:1312365

  20. Simple picture for neutrino flavor transformation in supernovae

    NASA Astrophysics Data System (ADS)

    Duan, Huaiyu; Fuller, George M.; Qian, Yong-Zhong

    2007-10-01

    We can understand many recently discovered features of flavor evolution in dense, self-coupled supernova neutrino and antineutrino systems with a simple, physical scheme consisting of two quasistatic solutions. One solution closely resembles the conventional, adiabatic single-neutrino Mikheyev-Smirnov-Wolfenstein (MSW) mechanism, in that neutrinos and antineutrinos remain in mass eigenstates as they evolve in flavor space. The other solution is analogous to the regular precession of a gyroscopic pendulum in flavor space, and has been discussed extensively in recent works. Results of recent numerical studies are best explained with combinations of these solutions in the following general scenario: (1) Near the neutrino sphere, the MSW-like many-body solution obtains. (2) Depending on neutrino vacuum mixing parameters, luminosities, energy spectra, and the matter density profile, collective flavor transformation in the nutation mode develops and drives neutrinos away from the MSW-like evolution and toward regular precession. (3) Neutrino and antineutrino flavors roughly evolve according to the regular precession solution until neutrino densities are low. In the late stage of the precession solution, a stepwise swapping develops in the energy spectra of νe and νμ/ντ. We also discuss some subtle points regarding adiabaticity in flavor transformation in dense-neutrino systems.

  1. Piezoelectrically forced vibrations of electroded doubly rotated quartz plates by state space method

    NASA Technical Reports Server (NTRS)

    Chander, R.

    1990-01-01

    The purpose of this investigation is to develop an analytical method to study the vibration characteristics of piezoelectrically forced quartz plates. The procedure can be summarized as follows. The three dimensional governing equations of piezoelectricity, the constitutive equations and the strain-displacement relationships are used in deriving the final equations. For this purpose, a state vector consisting of stresses and displacements are chosen and the above equations are manipulated to obtain the projection of the derivative of the state vector with respect to the thickness coordinate on to the state vector itself. The solution to the state vector at any plane is then easily obtained in a closed form in terms of the state vector quantities at a reference plane. To simplify the analysis, simple thickness mode and plane strain approximations are used.

  2. Influence of Material Distribution on Impact Resistance of Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Abatan, Ayu; Hu, Hurang

    1998-01-01

    Impact events occur in a wide variety of circumstances. A typical example is a bullet impacting a target made of composite material. These impact events produce time-varying loads on a structure that can result in damage. As a first step to understanding the damage resistance issue in composite laminates, an accurate prediction of the transient response during an impact event is necessary. The analysis of dynamic loadings on laminated composite plates has undergone considerable development recently. Rayleigh-Ritz energy method was used to determine the impact response of laminated plates. The impact response of composite plates using shear deformation plate theory was analyzed. In recent work a closed-form solution was obtained for a rectangular plate with four edges simply supported subjected to a center impact load using classical plate theory. The problem was further investigated and the analysis results compared of both classical plate theory and shear deformation theory, and found that classical plate theory predicts very accurate results for the range of small deformations considered. In this study, the influence of cross sectional material distribution on the comparative impact responses of hybrid metal laminates subjected to low and medium velocity impacts is investigated. A simple linear model to evaluate the magnitude of the impact load is proposed first, and it establishes a relation between the impact velocity and the impact force. Then a closed-form solution for impact problem is presented. The results were compared with the finite element analysis results. For an 11 layer-hybrid laminate, the impact response as a function of material distribution in cross-section is presented. With equal areal weight, the effect of the number of laminate layers on the impact resistance is also investigated. Finally, the significance of the presented results is discussed.

  3. Compressive sensing of signals generated in plastic scintillators in a novel J-PET instrument

    NASA Astrophysics Data System (ADS)

    Raczyński, L.; Moskal, P.; Kowalski, P.; Wiślicki, W.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Kapłon, Ł.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz.; Pałka, M.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Słomski, A.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Zieliński, M.; Zoń, N.

    2015-06-01

    The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The discussed detector offers improvement of the Time of Flight (TOF) resolution due to the use of fast plastic scintillators and dedicated electronics allowing for sampling in the voltage domain of signals with durations of few nanoseconds. In this paper we show that recovery of the whole signal, based on only a few samples, is possible. In order to do that, we incorporate the training signals into the Tikhonov regularization framework and we perform the Principal Component Analysis decomposition, which is well known for its compaction properties. The method yields a simple closed form analytical solution that does not require iterative processing. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This is the key to introduce and prove the formula for calculations of the signal recovery error. In this paper we show that an average recovery error is approximately inversely proportional to the number of acquired samples.

  4. Differentiable McCormick relaxations

    DOE PAGES

    Khan, Kamil A.; Watson, Harry A. J.; Barton, Paul I.

    2016-05-27

    McCormick's classical relaxation technique constructs closed-form convex and concave relaxations of compositions of simple intrinsic functions. These relaxations have several properties which make them useful for lower bounding problems in global optimization: they can be evaluated automatically, accurately, and computationally inexpensively, and they converge rapidly to the relaxed function as the underlying domain is reduced in size. They may also be adapted to yield relaxations of certain implicit functions and differential equation solutions. However, McCormick's relaxations may be nonsmooth, and this nonsmoothness can create theoretical and computational obstacles when relaxations are to be deployed. This article presents a continuously differentiablemore » variant of McCormick's original relaxations in the multivariate McCormick framework of Tsoukalas and Mitsos. Gradients of the new differentiable relaxations may be computed efficiently using the standard forward or reverse modes of automatic differentiation. Furthermore, extensions to differentiable relaxations of implicit functions and solutions of parametric ordinary differential equations are discussed. A C++ implementation based on the library MC++ is described and applied to a case study in nonsmooth nonconvex optimization.« less

  5. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology

    PubMed Central

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J. Jussi; Valden, Mika; Hytönen, Vesa P.

    2016-01-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications. PMID:27381834

  6. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology

    NASA Astrophysics Data System (ADS)

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J. Jussi; Valden, Mika; Hytönen, Vesa P.

    2016-07-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications.

  7. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    NASA Technical Reports Server (NTRS)

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  8. Solution and reasoning reuse in space planning and scheduling applications

    NASA Technical Reports Server (NTRS)

    Verfaillie, Gerard; Schiex, Thomas

    1994-01-01

    In the space domain, as in other domains, the CSP (Constraint Satisfaction Problems) techniques are increasingly used to represent and solve planning and scheduling problems. But these techniques have been developed to solve CSP's which are composed of fixed sets of variables and constraints, whereas many planning and scheduling problems are dynamic. It is therefore important to develop methods which allow a new solution to be rapidly found, as close as possible to the previous one, when some variables or constraints are added or removed. After presenting some existing approaches, this paper proposes a simple and efficient method, which has been developed on the basis of the dynamic backtracking algorithm. This method allows previous solution and reasoning to be reused in the framework of a CSP which is close to the previous one. Some experimental results on general random CSPs and on operation scheduling problems for remote sensing satellites are given.

  9. The formation of stable pH gradients with weak monovalent buffers for isoelectric focusing in free solution

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Thormann, Wolfgang; Graham, Aly; Bier, Milan

    1985-01-01

    Two methods which utilize simple buffers for the generation of stable pH gradients (useful for preparative isoelectric focusing) are compared and contrasted. The first employs preformed gradients comprised of two simple buffers in density-stabilized free solution. The second method utilizes neutral membranes to isolate electrolyte reservoirs of constant composition from the separation column. It is shown by computer simulation that steady-state gradients can be formed at any pH range with any number of components in such a system.

  10. Cylindrical and spherical solitary waves in an electron-acoustic plasma with vortex electron distribution

    NASA Astrophysics Data System (ADS)

    Demiray, Hilmi; El-Zahar, Essam R.

    2018-04-01

    We consider the nonlinear propagation of electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical (spherical) coordinates by employing the reductive perturbation technique. The modified cylindrical (spherical) KdV equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, this evolution equation cannot be reduced to the conventional KdV equation. A new family of closed form analytical approximate solution to the evolution equation and a comparison with numerical solution are presented and the results are depicted in some 2D and 3D figures. The results reveal that both solutions are in good agreement and the method can be used to obtain a new progressive wave solution for such evolution equations. Moreover, the resulting closed form analytical solution allows us to carry out a parametric study to investigate the effect of the physical parameters on the solution behavior of the modified cylindrical (spherical) KdV equation.

  11. Closed-form solution for Eshelby's elliptic inclusion in antiplane elasticity using complex variable

    NASA Astrophysics Data System (ADS)

    Chen, Y. Z.

    2013-12-01

    This paper provides a closed-form solution for the Eshelby's elliptic inclusion in antiplane elasticity. In the formulation, the prescribed eigenstarins are not only for the uniform distribution, but also for the linear form. After using the complex variable and the conformal mapping, the continuation condition for the traction and displacement along the interface in the physical plane can be reduced to a condition along the unit circle. The relevant complex potentials defined in the inclusion and the matrix can be separated from the continuation conditions of the traction and displacement along the interface. The expressions of the real strains and stresses in the inclusion from the assumed eigenstrains are presented. Results for the case of linear distribution of eigenstrain are first obtained in the paper.

  12. [Transportation and transformation of 14C-phenanthrene in closed chamber (nutrient solution-lava-plant-air) system].

    PubMed

    Jiang, X; Ou, Z; Ying, P; Yediler, A; Ketrrup, A

    2001-06-01

    The transportation and transformation of 14C-phenanthrene in a closed 'plant-lava-nutrient solution-air' chamber system was studied by using radioactivity technology. The results showed that in this closed chamber system, phenanthrene was degraded fast. The radioactivity of 14C left at 23d in the nutrient solution was only 25% of applied. At the end of experiment (46d), the distribution sequence of 14C activity in the components of closed chamber system was root (38.55%) > volatile organic compounds (VOCs, 17.68%) > lava (14.35%) > CO2 (11.42%) > stem (2%). 14C-activities in plant tissue were combined with the tissue, and existed in the forms of lava-bound(root 4.68%; stem and leaves 0.68%) and polar metabolites (root 23.14%; stem 0.78%).

  13. Analytical solution for boundary heat fluxes from a radiating rectangular medium

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1991-01-01

    Reference is made to the work of Shah (1979) which demonstrated the possibility of partially integrating the radiative equations analytically to obtain an 'exact' solution. Shah's solution was given as a double integration of the modified Bessel function of order zero. Here, it is shown that the 'exact' solution for a rectangular region radiating to cold black walls can be conveniently derived, and expressed in simple form, by using an integral function, Sn, analogous to the exponential integral function appearing in plane-layer solutions.

  14. Breakdown of Burton Prim Slichter approach and lateral solute segregation in radially converging flows

    NASA Astrophysics Data System (ADS)

    Priede, J.; Gerbeth, G.

    2005-11-01

    A theoretical study is presented of the effect of a radially converging melt flow, which is directed away from the solidification front, on the radial solute segregation in simple solidification models. We show that the classical Burton-Prim-Slichter (BPS) solution describing the effect of a diverging flow on the solute incorporation into the solidifying material breaks down for the flows converging along the solidification front. The breakdown is caused by a divergence of the integral defining the effective boundary layer thickness which is the basic concept of the BPS theory. Although such a divergence can formally be avoided by restricting the axial extension of the melt to a layer of finite height, radially uniform solute distributions are possible only for weak melt flows with an axial velocity away from the solidification front comparable to the growth rate. There is a critical melt velocity for each growth rate at which the solution passes through a singularity and becomes physically inconsistent for stronger melt flows. To resolve these inconsistencies we consider a solidification front presented by a disk of finite radius R0 subject to a strong converging melt flow and obtain an analytic solution showing that the radial solute concentration depends on the radius r as ˜ln(R0/r) and ˜ln(R0/r) close to the rim and at large distances from it. The logarithmic increase of concentration is limited in the vicinity of the symmetry axis by the diffusion becoming effective at a distance comparable to the characteristic thickness of the solute boundary layer. The converging flow causes a solute pile-up forming a logarithmic concentration peak at the symmetry axis which might be an undesirable feature for crystal growth processes.

  15. The general Lie group and similarity solutions for the one-dimensional Vlasov-Maxwell equations

    NASA Technical Reports Server (NTRS)

    Roberts, D.

    1985-01-01

    The general Lie point transformation group and the associated reduced differential equations and similarity forms for the solutions are derived here for the coupled (nonlinear) Vlasov-Maxwell equations in one spatial dimension. The case of one species in a background is shown to admit a larger group than the multispecies case. Previous exact solutions are shown to be special cases of the above solutions, and many of the new solutions are found to constrain the form of the distribution function much more than, for example, the BGK solutions do. The individual generators of the Lie group are used to find the possible subgroups. Finally, a simple physical argument is given to show that the asymptotic solution for a one-species, one-dimensional plasma is one of the general similarity solutions.

  16. Closed-form analytical solutions of high-temperature heat pipe startup and frozen startup limitation

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1992-01-01

    Previous numerical and experimental studies indicate that the high-temperature heat pipe startup process is characterized by a moving hot zone with relatively sharp fronts. Based on the above observation, a flat-front model for an approximate analytical solution is proposed. A closed-form solution related to the temperature distribution in the hot zone and the hot zone length as a function of time are obtained. The analytical results agree well with the corresponding experimental data, and provide a quick prediction method for the heat pipe startup performance. Finally, a heat pipe limitation related to the frozen startup process is identified, and an explicit criterion for the high-temperature heat pipe startup is derived. The frozen startup limit identified in this paper provides a fundamental guidance for high-temperature heat pipe design.

  17. Crystal and Solution Structures of a Prokaryotic M16B Peptidase: an Open and Shut Case

    PubMed Central

    Aleshin, Alexander E.; Gramatikova, Svetlana; Hura, Gregory L.; Bobkov, Andrey; Strongin, Alex Y.; Stec, Boguslaw; Tainer, John A.; Liddington, Robert C.; Smith, Jeffrey W.

    2013-01-01

    SUMMARY The M16 family of zinc peptidases comprises a pair of homologous domains that form two halves of a ‘‘clam-shell’’ surrounding the active site. The M16A and M16C subfamilies form one class (‘‘peptidasomes’’): they degrade 30–70 residue peptides, and adopt both open and closed conformations. The eukaryotic M16B subfamily forms a second class (‘‘processing proteases’’): they adopt a single partly-open conformation that enables them to cleave signal sequences from larger proteins. Here, we report the solution and crystal structures of a prokaryotic M16B peptidase, and demonstrate that it has features of both classes: thus, it forms stable ‘‘open’’ homodimers in solution that resemble the processing proteases; but the clam-shell closes upon binding substrate, a feature of the M16A/C peptidasomes. Moreover, clam-shell closure is required for proteolytic activity. We predict that other prokaryotic M16B family members will form dimeric peptidasomes, and propose a model for the evolution of the M16 family. PMID:19913481

  18. Closed-form recursive formula for an optimal tracker with terminal constraints

    NASA Technical Reports Server (NTRS)

    Juang, J. N.; Turner, J. D.; Chun, H. M.

    1986-01-01

    Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. An example involving the feedback slewing of a flexible spacecraft is given to illustrate the validity and usefulness of the formulations.

  19. The Dirac equation and the normalization of its solutions in a closed Friedmann- Robertson-Walker universe

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Reintjes, Moritz

    2009-05-01

    We set up the Dirac equation in a Friedmann-Robertson-Walker geometry and separate the spatial and time variables. In the case of a closed universe, the spatial dependence is solved explicitly, giving rise to a discrete set of solutions. We compute the probability integral and analyze a spacetime normalization integral. This analysis allows us to introduce the fermionic projector in a closed Friedmann-Robertson-Walker geometry and to specify its global normalization as well as its local form. First author supported in part by the Deutsche Forschungsgemeinschaft.

  20. Analytical expressions for the nonlinear interference in dispersion managed transmission coherent optical systems

    NASA Astrophysics Data System (ADS)

    Qiao, Yaojun; Li, Ming; Yang, Qiuhong; Xu, Yanfei; Ji, Yuefeng

    2015-01-01

    Closed-form expressions of nonlinear interference of dense wavelength-division-multiplexed (WDM) systems with dispersion managed transmission (DMT) are derived. We carry out a simulative validation by addressing an ample and significant set of the Nyquist-WDM systems based on polarization multiplexed quadrature phase-shift keying (PM-QPSK) subcarriers at a baud rate of 32 Gbaud per channel. Simulation results show the simple closed-form analytical expressions can provide an effective tool for the quick and accurate prediction of system performance in DMT coherent optical systems.

  1. Variational discretization of the nonequilibrium thermodynamics of simple systems

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Yoshimura, Hiroaki

    2018-04-01

    In this paper, we develop variational integrators for the nonequilibrium thermodynamics of simple closed systems. These integrators are obtained by a discretization of the Lagrangian variational formulation of nonequilibrium thermodynamics developed in (Gay-Balmaz and Yoshimura 2017a J. Geom. Phys. part I 111 169–93 Gay-Balmaz and Yoshimura 2017b J. Geom. Phys. part II 111 194–212) and thus extend the variational integrators of Lagrangian mechanics, to include irreversible processes. In the continuous setting, we derive the structure preserving property of the flow of such systems. This property is an extension of the symplectic property of the flow of the Euler–Lagrange equations. In the discrete setting, we show that the discrete flow solution of our numerical scheme verifies a discrete version of this property. We also present the regularity conditions which ensure the existence of the discrete flow. We finally illustrate our discrete variational schemes with the implementation of an example of a simple and closed system.

  2. The complete process of large elastic-plastic deflection of a cantilever

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoqiang; Yu, Tongxi

    1986-11-01

    An extension of the Elastica theory is developed to study the large deflection of an elastic-perfectly plastic horizontal cantilever beam subjected to a vertical concentrated force at its tip. The entire process is divided into four stages: I.elastic in the whole cantilever; II.loading and developing of the plastic region; III.unloading in the plastic region; and IV.reverse loading. Solutions for stages I and II are presented in a closed form. A combination of closed-form solution and numerical integration is presented for stage III. Finally, stage IV is qualitatively studied. Computed results are given and compared with those from small-deflection theory and from the Elastica theory.

  3. Analysis of borehole expansion and gallery tests in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.

    1991-01-01

    Closed-form solutions are used to show how rock anisotropy affects the variation of the modulus of deformation around the walls of a hole in which expansion tests are conducted. These tests include dilatometer and NX-jack tests in boreholes and gallery tests in tunnels. The effects of rock anisotropy on the modulus of deformation are shown for transversely isotropic and regularly jointed rock masses with planes of transverse isotropy or joint planes parallel or normal to the hole longitudinal axis for plane strain or plane stress condition. The closed-form solutions can also be used when determining the elastic properties of anisotropic rock masses (intact or regularly jointed) in situ. ?? 1991.

  4. Axisymmetric deformations and stresses of unsymmetrically laminated composite cylinders in axial compression with thermally-induced preloading effects

    NASA Technical Reports Server (NTRS)

    Paraska, Peter J.

    1993-01-01

    This report documents an analytical study of the response of unsymmetrically laminated cylinders subjected to thermally-induced preloading effects and compressive axial load. Closed-form solutions are obtained for the displacements and intralaminar stresses and recursive relations for the interlaminar shear stress were obtained using the closed-form intralaminar stress solutions. For the cylinder geometries and stacking sequence examples analyzed, several important and as yet undocumented effects of including thermally-induced preloading in the analysis are observed. It should be noted that this work is easily extended to include uniform internal and/or external pressure loadings and the application of strain and stress failure theories.

  5. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.

    PubMed

    Goličnik, Marko

    2011-01-01

    The Michaelis-Menten rate equation can be found in most general biochemistry textbooks, where the time derivative of the substrate is a hyperbolic function of two kinetic parameters (the limiting rate V, and the Michaelis constant K(M) ) and the amount of substrate. However, fundamental concepts of enzyme kinetics can be difficult to understand fully, or can even be misunderstood, by students when based only on the differential form of the Michaelis-Menten equation, and the variety of methods available to calculate the kinetic constants from rate versus substrate concentration "textbook data." Consequently, enzyme kinetics can be confusing if an analytical solution of the Michaelis-Menten equation is not available. Therefore, the still rarely known exact solution to the Michaelis-Menten equation is presented here through the explicit closed-form equation in terms of the Lambert W(x) function. Unfortunately, as the W(x) is not available in standard curve-fitting computer programs, the practical use of this direct solution is limited for most life-science students. Thus, the purpose of this article is to provide analytical approximations to the equation for modeling Michaelis-Menten kinetics. The elementary and explicit nature of these approximations can provide students with direct and simple estimations of kinetic parameters from raw experimental time-course data. The Michaelis-Menten kinetics studied in the latter context can provide an ideal alternative to the 100-year-old problems of data transformation, graphical visualization, and data analysis of enzyme-catalyzed reactions. Hence, the content of the course presented here could gradually become an important component of the modern biochemistry curriculum in the 21st century. Copyright © 2011 Wiley Periodicals, Inc.

  6. New integrable models and analytical solutions in f (R ) cosmology with an ideal gas

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, G.; Basilakos, Spyros; Barrow, John D.; Paliathanasis, Andronikos

    2018-01-01

    In the context of f (R ) gravity with a spatially flat FLRW metric containing an ideal fluid, we use the method of invariant transformations to specify families of models which are integrable. We find three families of f (R ) theories for which new analytical solutions are given and closed-form solutions are provided.

  7. Reflection on solutions in the form of refutation texts versus problem solving: the case of 8th graders studying simple electric circuits

    NASA Astrophysics Data System (ADS)

    Safadi, Rafi'; Safadi, Ekhlass; Meidav, Meir

    2017-01-01

    This study compared students’ learning in troubleshooting and problem solving activities. The troubleshooting activities provided students with solutions to conceptual problems in the form of refutation texts; namely, solutions that portray common misconceptions, refute them, and then present the accepted scientific ideas. They required students to individually diagnose these solutions; that is, to identify the erroneous and correct parts of the solutions and explain in what sense they differed, and later share their work in whole class discussions. The problem solving activities required the students to individually solve these same problems, and later share their work in whole class discussions. We compared the impact of the individual work stage in the troubleshooting and problem solving activities on promoting argumentation in the subsequent class discussions, and the effects of these activities on students’ engagement in self-repair processes; namely, in learning processes that allowed the students to self-repair their misconceptions, and by extension on advancing their conceptual knowledge. Two 8th grade classes studying simple electric circuits with the same teacher took part. One class (28 students) carried out four troubleshooting activities and the other (31 students) four problem solving activities. These activities were interwoven into a twelve lesson unit on simple electric circuits that was spread over a period of 2 months. The impact of the troubleshooting activities on students’ conceptual knowledge was significantly higher than that of the problem solving activities. This result is consistent with the finding that the troubleshooting activities engaged students in self-repair processes whereas the problem solving activities did not. The results also indicated that diagnosing solutions to conceptual problems in the form of refutation texts, as opposed to solving these same problems, apparently triggered argumentation in subsequent class discussions, even though the teacher was unfamiliar with the best ways to conduct argumentative classroom discussions. We account for these results and suggest possible directions for future research.

  8. The Pursuit of K: Reflections on the Current State-of-the-Art in Stress Intensity Factor Solutions for Practical Aerospace Applications

    NASA Technical Reports Server (NTRS)

    CraigMcClung, R.; Lee, Yi-Der; Cardinal, Joseph W.; Guo, Yajun

    2012-01-01

    The elastic stress intensity factor (SIF, commonly denoted as K) is the foundation of practical fracture mechanics (FM) analysis for aircraft structures. This single parameter describes the first-order effects of stress magnitude and distribution as well as the geometry of both structure/component and crack. Hence, the calculation of K is often the most significant step in fatigue analysis based on FM. This presentation will provide several reflections on the current state-of-the-art in SIF solution methods used for practical aerospace applications, including a brief historical perspective, descriptions of some recent and ongoing advances, and comments on some remaining challenges. Newman and Raju made significant early contributions to practical structural analysis by developing closed-form SIF equations for surface and corner cracks in simplified geometries, often based on empirical fits of finite element (FE) solutions. Those solutions (and others like them) were sometimes revised as new analyses were conducted or limitations discovered. The foundational solutions have exhibited striking longevity, despite the relatively "coarse" FE models employed many decades ago. However, in recent years, the accumulation of different generations of solutions for the same nominal geometry has led to some confusion (which solution is correct?), and steady increases in computational capabilities have facilitated the discovery of inaccuracies in some (not all!) of the legacy solutions. Some examples of problems and solutions are presented and discussed, including the challenge of maintaining consistency with legacy design applications. As computational power has increased, the prospect of calculating large numbers of SIF solutions for specific complex geometries with advanced numerical methods has grown more attractive. Fawaz and Andersson, for example, have been generating literally millions of new SIF solutions for different combinations of multiple cracks under simplified loading schemes using p-version FE methods. These data are invaluable, but questions remain about their practical use, because the tabular databases of key results needed to support practical life analysis can occupy gigabytes of storage for only a few classes of geometries. The prospect of using such advanced numerical methods to calculate in real time only those K solutions actually needed to support a specific crack growth analysis is also tempting, but the stark reality is that the computational cost is still so high that the approach is not practical except for specific, critical application problems. Some thoughts are offered about alternative paradigms. Compounding approaches are some of the earliest building blocks of SIF development for more complex geometries. These approaches are especially attractive because of their very low computational cost and their conceptual robustness; they are, in some ways, an intriguing contrast and complement to the brute-force numerical methods. In recent years, researchers at NRC-Canada have published remarkable results showing how compounding approaches can be used to generate accurate solutions for very difficult problems. Examples are provided of some successes--and some limitations--using this approach. These closed-form, tabulated numerical, and compounding approaches have typically been used for simple remote loading with simple load paths to the crack. However, many significant cracks occur in complex stress gradient fields. This is a job for weight function (WF) methods, where the arbitrary stress distribution on the crack plane in the corresponding uncracked body (typically determined using FE methods) is used to determine K. Several significant recent advances in WF methods and solutions are highlighted here. Fueled by advanced 3D numerical methods, many new solutions have been generated for classic geometries such as surface and corner cracks with wide ranges of geometrical validity. A new WF formulation has also be developed for part-through cracks considering the arbitrary stress gradients in all directions in the crack plane (so-called bivariant solutions). Basic WF methods have recently been combined with analytical expressions for crack plane stresses to develop a large family of accurate SIF solutions for corner, surface, and through cracks at internal or external notches with very wide ranges of shapes, sizes, acuities, and offsets. Finally, WF solutions are much faster than FE or boundary element solutions, but can still be much slower than simple closed-form solutions, especially for bivariant solutions that can require 2D numerical integration. Novel pre-integration and dynamic tabular methods have been developed that substantially increase the speed of these advanced WF solutions. The practical utility of advanced SIF methods, including both WF and direct numerical methods, is greatly enhanced if the FM life analysis can be directly and efficiently linked with digital models of the actual structure or component (e.g., FE models for stress analysis). Two recent advances of this type will be described. One approach directly interfaces the FM life analysis with the FE model of the uncracked component (including stress results). Through a powerful graphical user interface, simplified FM life models can be constructed (and visualized) directly on the component model, with the computer collecting the geometry and stress gradient information needed for the life calculation. An even more powerful paradigm uses expert logic to automatically build an optimum simple fracture model at any and every desired location in the component model, perform the life calculation, and even generate fatigue crack growth life contour maps, all with minimal user intervention. This paradigm has also been extended to the automatic calculation of fracture risk, considering uncertainty or variability in key input parameters such as initial crack size or location. Another new integrated approach links the engineering life analysis, the component model, and a 3D numerical fracture analysis built with the same component model to generate a table of SIF values at a specific location that can then be employed efficiently to perform the life calculation. Some attention must be given to verification and validation (V&V) issues and challenges: how good are these SIF solutions, how good is good enough, and does anyone believe the life answer? It is important to think critically about the different sources of error or uncertainty and to perform V&V in a hierarchal, building-block manner. Some accuracy issues for SIF solutions, for example, may actually involve independent material behavior issues, such as constraint loss effects for crack fronts near component surfaces, and can be a source of confusion. Recommendations are proposed for improved V&V approaches. This presentation will briefly but critically survey the range of issues and advances mentioned above, with a particular view towards assembling an integrated approach that combines different methods to create practical tools for real-world design and analysis problems. Examples will be selectively drawn from the recent literature, from recent enhancements in the NASGRO and DARWIN computer codes, and from previously unpublished research

  9. Note on the practical significance of the Drazin inverse

    NASA Technical Reports Server (NTRS)

    Wilkinson, J. H.

    1979-01-01

    The solution of the differential system Bx = Ax + f where A and B are n x n matrices, and A - Lambda B is not a singular pencil, may be expressed in terms of the Drazin inverse. It is shown that there is a simple reduced form for the pencil A - Lambda B which is adequate for the determination of the general solution and that although the Drazin inverse could be determined efficiently from this reduced form it is inadvisable to do so.

  10. Exact partition functions for the Ω-deformed {N}={2}^{ast } SU(2) gauge theory

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Macorini, Guido

    2016-07-01

    We study the low energy effective action of the Ω-deformed {N}={2}^{ast } SU(2) gauge theory. It depends on the deformation parameters ɛ 1, ɛ 2, the scalar field expectation value a, and the hypermultiplet mass m. We explore the plane (m/ɛ_1,ɛ_2/ɛ_1) looking for special features in the multi-instanton contributions to the prepotential, motivated by what happens in the Nekrasov-Shatashvili limit ɛ 2 → 0. We propose a simple condition on the structure of poles of the k-instanton prepotential and show that it is admissible at a finite set of points in the above plane. At these special points, the prepotential has poles at fixed positions independent on the instanton number. Besides and remarkably, both the instanton partition function and the full prepotential, including the perturbative contribution, may be given in closed form as functions of the scalar expectation value a and the modular parameter q appearing in special combinations of Eisenstein series and Dedekind η function. As a byproduct, the modular anomaly equation can be tested at all orders at these points. We discuss these special features from the point of view of the AGT correspondence and provide explicit toroidal 1-blocks in non-trivial closed form. The full list of solutions with 1, 2, 3, and 4 poles is determined and described in details.

  11. [Effect of somatostatin-14 in simple mechanical obstruction of the small intestine].

    PubMed

    Jimenez-Garcia, A; Ahmad Araji, O; Balongo Garcia, R; Nogales Munoz, A; Salguero Villadiego, M; Cantillana Martinez, J

    1994-02-01

    In order to investigate the properties of somatostatin-14 we studied an experimental model of simple mechanical and closed loop occlusion. Forty-eight New Zealand rabbits were assigned randomly to three groups of 16: group C (controls) was operated and treated with saline solution (4 cc/Kg/h); group A was operated and initially treated with saline solution and an equal dose of somatostatin-14 (3.5 micrograms/Kg/h; and group B was operated and treated in the same manner as group A, but later, 8 hours after the laparotomy. The animals were sacrificed 24 hours later; intestinal secretion was quantified, blood and intestinal fluid chemistries were performed and specimens of the intestine were prepared for histological examination. Descriptive statistical analysis of the results was performed with the ANOVA, a semi-quantitative test and the covariance test. Somatostatin-14 produced an improvement in the volume of intestinal secretion in the treated groups compared with the control group. The results were statistically significant in group B treated after an 8-hour delay: closed loop (ml): 6.40 +/- 1.12, 2.50 +/- 0.94, 1.85 +/- 0.83 and simple mechanical occlusion (ml): 175 +/- 33.05, 89.50 +/- 9.27, 57.18 +/- 21.23, p < 0.01 for groups C, A and B C, A and B respectively. Net secretion of Cl and Na ions was also improved, p < 0.01.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Half-cell potentials of semiconductive simple binary sulphides in aqueous solution

    USGS Publications Warehouse

    Sato, M.

    1966-01-01

    Theoretical consideration of the charge-transfer mechanism operative in cells with an electrode of a semiconductive binary compound leads to the conclusion that the half-cell potential of such a compound is not only a function of ionic activities in the electrolytic solution, but also a function of the activities of the component elements in the compound phase. The most general form of the electrode equation derived for such a compound with a formula MiXj which dissociates into Mj+ and Xi- ions in aqueous solution is. EMiXj = EMiXj0 + R T 2 ij ln [ (sua Mj+)aqi ?? (suaX)jMiXj/ (suaXi-)aqj ?? (suaM)iMiXj],. where. EMiXj0 = 1 2(EM,Mj+0 + EXi-,X). The equation can be modified to other forms. When applied to semiconductive simple binary sulphides, these equations appear to give better descriptions of the observed electrode potentials of such sulphides than any other proposed equations. ?? 1966.

  13. Precision of Sensitivity in the Design Optimization of Indeterminate Structures

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Pai, Shantaram S.; Hopkins, Dale A.

    2006-01-01

    Design sensitivity is central to most optimization methods. The analytical sensitivity expression for an indeterminate structural design optimization problem can be factored into a simple determinate term and a complicated indeterminate component. Sensitivity can be approximated by retaining only the determinate term and setting the indeterminate factor to zero. The optimum solution is reached with the approximate sensitivity. The central processing unit (CPU) time to solution is substantially reduced. The benefit that accrues from using the approximate sensitivity is quantified by solving a set of problems in a controlled environment. Each problem is solved twice: first using the closed-form sensitivity expression, then using the approximation. The problem solutions use the CometBoards testbed as the optimization tool with the integrated force method as the analyzer. The modification that may be required, to use the stiffener method as the analysis tool in optimization, is discussed. The design optimization problem of an indeterminate structure contains many dependent constraints because of the implicit relationship between stresses, as well as the relationship between the stresses and displacements. The design optimization process can become problematic because the implicit relationship reduces the rank of the sensitivity matrix. The proposed approximation restores the full rank and enhances the robustness of the design optimization method.

  14. Equilibrium theory for braided elastic filaments

    NASA Astrophysics Data System (ADS)

    van der Heijden, Gert

    Motivated by supercoiling of DNA and other filamentous structures, we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. Unlike in previous work no assumption is made on the shape of the contact curve. Rather, this shape is found as part of the solution. The theory is developed in terms of a moving frame of directors attached to one of the strands with one of the directors pointing to the position of the other strand. The constant-distance constraint is automatically satisfied by the introduction of what we call braid strains. The price we pay is that the potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Simple analytical cases are discussed first and used as starting solutions in parameter continuation studies to compute classes of both open and closed (linked or knotted) braid solutions.

  15. Energy, momentum, and angular momentum of sound pulses.

    PubMed

    Lekner, John

    2017-12-01

    Pulse solutions of the wave equation can be expressed as superpositions of scalar monochromatic beam wavefunctions (solutions of the Helmholtz equation). This formulation leads to causal (unidirectional) propagation, in contrast to all currently known closed-form solutions of the wave equation. Application is made to the evaluation of the energy, momentum, and angular momentum of acoustic pulses, as integrals over the beam and pulse weight functions. Equivalence is established between integration over space of the energy, momentum, and angular momentum densities, and integration over the wavevector weight function. The inequality linking the total energy and the total momentum is made explicit in terms of the weight function formulation. It is shown that a general pulse can be viewed as a superposition of phonons, each with energy ℏck, z component of momentum ℏq, and z component of angular momentum ℏm. A closed-form solution of the wave equation is found, which is localized and causal, and its energy and momentum are evaluated explicitly.

  16. Method for making nanoporous hydrophobic coatings

    DOEpatents

    Fan, Hongyou; Sun, Zaicheng

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  17. Capillary Driven Flows Along Differentially Wetted Interior Corners

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L. (Technical Monitor); Nardin, C. L.; Weislogel, M. M.

    2005-01-01

    Closed-form analytic solutions useful for the design of capillary flows in a variety of containers possessing interior corners were recently collected and reviewed. Low-g drop tower and aircraft experiments performed at NASA to date show excellent agreement between theory and experiment for perfectly wetting fluids. The analytical expressions are general in terms of contact angle, but do not account for variations in contact angle between the various surfaces within the system. Such conditions may be desirable for capillary containment or to compute the behavior of capillary corner flows in containers consisting of different materials with widely varying wetting characteristics. A simple coordinate rotation is employed to recast the governing system of equations for flows in containers with interior corners with differing contact angles on the faces of the corner. The result is that a large number of capillary driven corner flows may be predicted with only slightly modified geometric functions dependent on corner angle and the two (or more) contact angles of the system. A numerical solution is employed to verify the new problem formulation. The benchmarked computations support the use of the existing theoretical approach to geometries with variable wettability. Simple experiments to confirm the theoretical findings are recommended. Favorable agreement between such experiments and the present theory may argue well for the extension of the analytic results to predict fluid performance in future large length scale capillary fluid systems for spacecraft as well as for small scale capillary systems on Earth.

  18. Optimal Control Strategies for Constrained Relative Orbits

    DTIC Science & Technology

    2007-09-01

    the chief. The work assumes the Clohessy - Wiltshire closeness assump- tion between the deputy and chief is valid, however, elliptical chief orbits are...133 Appendix G. A Closed-Form Solution of the Linear Clohessy - Wiltshire Equa- tions...Counterspace . . . . . . . . . . . . . . . . . . . 1 CW Clohessy - Wiltshire . . . . . . . . . . . . . . . . . . . . . . 4 DARPA Defense Advanced Research

  19. Water activity in liquid food systems: A molecular scale interpretation.

    PubMed

    Maneffa, Andrew J; Stenner, Richard; Matharu, Avtar S; Clark, James H; Matubayasi, Nobuyuki; Shimizu, Seishi

    2017-12-15

    Water activity has historically been and continues to be recognised as a key concept in the area of food science. Despite its ubiquitous utilisation, it still appears as though there is confusion concerning its molecular basis, even within simple, single component solutions. Here, by close examination of the well-known Norrish equation and subsequent application of a rigorous statistical theory, we are able to shed light on such an origin. Our findings highlight the importance of solute-solute interactions thus questioning traditional, empirically based "free water" and "water structure" hypotheses. Conversely, they support the theory of "solute hydration and clustering" which advocates the interplay of solute-solute and solute-water interactions but crucially, they do so in a manner which is free of any estimations and approximations. Copyright © 2017. Published by Elsevier Ltd.

  20. The determination of transport parameters of minority carriers in n-p junctions by means of an electron microscope - Critique of recent developments

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1980-01-01

    It has recently been shown that amplitude modulated electron beams provide a novel means for the determination of minority carrier lifetimes, diffusion lengths, etc., in n-p junctions. In this paper it is shown that: (1) a recently published analysis based on a cylindrically symmetric configuration is incorrect, (2) the correct approach leads to a system of dual integral equations for which the formal solution is given, (3) in general, the short circuit current can only be determined by means of extensive computer calculations except in the case of large front surface recombination velocities, and (4) the difficulties encountered with cylindrically symmetric configurations (circular ohmic contacts and the like) are completely avoided with a choice of a planar geometry since simple closed form expressions for the short circuit current are readily available in this case.

  1. Analytical expression for Risken-Nummedal-Graham-Haken instability threshold in quantum cascade lasers.

    PubMed

    Vukovic, N; Radovanovic, J; Milanovic, V; Boiko, D L

    2016-11-14

    We have obtained a closed-form expression for the threshold of Risken-Nummedal-Graham-Haken (RNGH) multimode instability in a Fabry-Pérot (FP) cavity quantum cascade laser (QCL). This simple analytical expression is a versatile tool that can easily be applied in practical situations which require analysis of QCL dynamic behavior and estimation of its RNGH multimode instability threshold. Our model for a FP cavity laser accounts for the carrier coherence grating and carrier population grating as well as their relaxation due to carrier diffusion. In the model, the RNGH instability threshold is analyzed using a second-order bi-orthogonal perturbation theory and we confirm our analytical solution by a comparison with the numerical simulations. In particular, the model predicts a low RNGH instability threshold in QCLs. This agrees very well with experimental data available in the literature.

  2. An Analytic Approximation to Very High Specific Impulse and Specific Power Interplanetary Space Mission Analysis

    NASA Technical Reports Server (NTRS)

    Williams, Craig Hamilton

    1995-01-01

    A simple, analytic approximation is derived to calculate trip time and performance for propulsion systems of very high specific impulse (50,000 to 200,000 seconds) and very high specific power (10 to 1000 kW/kg) for human interplanetary space missions. The approach assumed field-free space, constant thrust/constant specific power, and near straight line (radial) trajectories between the planets. Closed form, one dimensional equations of motion for two-burn rendezvous and four-burn round trip missions are derived as a function of specific impulse, specific power, and propellant mass ratio. The equations are coupled to an optimizing parameter that maximizes performance and minimizes trip time. Data generated for hypothetical one-way and round trip human missions to Jupiter were found to be within 1% and 6% accuracy of integrated solutions respectively, verifying that for these systems, credible analysis does not require computationally intensive numerical techniques.

  3. Analytical approach to peel stresses in bonded composite stiffened panels

    NASA Technical Reports Server (NTRS)

    Barkey, Derek A.; Madan, Ram C.; Sutton, Jason O.

    1987-01-01

    A closed-form solution was obtained for the stresses and displacements of two bonded beams. A system of two fourth-order and two second-order differential equations with the associated boundary equations was determined using a variational work approach. A FORTRAN computer program was devised to solve for the eigenvalues and eigenvectors of this system and to calculate the coefficients from the boundary conditions. The results were then compared with NASTRAN finite-element solutions and shown to agree closely.

  4. Closed solutions of singular equations of thermoelasticity of compositions of shells of revolution smoothly connected with each other

    NASA Astrophysics Data System (ADS)

    Belostochny, Grigory; Myltcina, Olga

    2018-05-01

    The paper deals with the main positions of strict continuum model of compositions of shells of revolution smoothly connected with each other. Solutions of singular equations of the membrane conduct thermoelasticity for different species of compositions obtained in a closed form. The ability to eliminate discontinuities of the first kind of one of the tangential force on the lines of the distortion has been proved by using the additional local force impact or temperature.

  5. From Voltage to Absorbance and Chemical Kinetics Using a Homemade Colorimeter

    ERIC Educational Resources Information Center

    Delgado, Jorge; Quintero-Ortega, Iraís A.; Vega-Gonzalez, Arturo

    2014-01-01

    The use of the Beer-Lambert law in spectroscopy is the core of standard methods for determining a chromophore concentration in a solution. Its application requires an understanding about interaction of light with a colored solution and the use of light emission and light detection devices. We build here a simple electronic circuit formed of…

  6. The post-buckling behavior of a beam constrained by springy walls

    NASA Astrophysics Data System (ADS)

    Katz, Shmuel; Givli, Sefi

    2015-05-01

    The post-buckling behavior of a beam subjected to lateral constraints is of practical importance in a variety of applications, such as stent procedures, filopodia growth in living cells, endoscopic examination of internal organs, and deep drilling. Even though in reality the constraining surfaces are often deformable, the literature has focused mainly on rigid and fixed constraints. In this paper, we make a first step to bridge this gap through a theoretical and experimental examination of the post-buckling behavior of a beam constrained by a fixed wall and a springy wall, i.e. one that moves laterally against a spring. The response exhibited by the proposed system is much richer compared to that of the fixed-wall system, and can be tuned by choosing the spring stiffness. Based on small-deformation analysis, we obtained closed-form analytical solutions and quantitative insights. The accuracy of these results was examined by comparison to large-deformation analysis. We concluded that the closed-form solution of the small-deformation analysis provides an excellent approximation, except in the highest attainable mode. There, the system exhibits non-intuitive behavior and non-monotonous force-displacement relations that can only be captured by large-deformation theories. Although closed-form solutions cannot be derived for the large-deformation analysis, we were able to reveal general properties of the solution. In the last part of the paper, we present experimental results that demonstrate various features obtained from the theoretical analysis.

  7. Opti-acoustic stereo imaging: on system calibration and 3-D target reconstruction.

    PubMed

    Negahdaripour, Shahriar; Sekkati, Hicham; Pirsiavash, Hamed

    2009-06-01

    Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of two other closed-form solutions, referred to as the range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm.

  8. An Analytical Study of Prostate-Specific Antigen Dynamics.

    PubMed

    Esteban, Ernesto P; Deliz, Giovanni; Rivera-Rodriguez, Jaileen; Laureano, Stephanie M

    2016-01-01

    The purpose of this research is to carry out a quantitative study of prostate-specific antigen dynamics for patients with prostatic diseases, such as benign prostatic hyperplasia (BPH) and localized prostate cancer (LPC). The proposed PSA mathematical model was implemented using clinical data of 218 Japanese patients with histological proven BPH and 147 Japanese patients with LPC (stages T2a and T2b). For prostatic diseases (BPH and LPC) a nonlinear equation was obtained and solved in a close form to predict PSA progression with patients' age. The general solution describes PSA dynamics for patients with both diseases LPC and BPH. Particular solutions allow studying PSA dynamics for patients with BPH or LPC. Analytical solutions have been obtained and solved in a close form to develop nomograms for a better understanding of PSA dynamics in patients with BPH and LPC. This study may be useful to improve the diagnostic and prognosis of prostatic diseases.

  9. Center of Excellence in Theoretical Geoplasma Research

    DTIC Science & Technology

    1989-11-10

    iii) First results of closed-form solutions of the3 Balescu -Lenard-Poisson equations for collisional plasmas were reported I REPORT November 10, 1989...Basu, "Solutions of the Linearized Balescu -Lenard-Poisson Equations for a Weakly-Collisional Plasma: Some New Results". [511 American Geophysical Union

  10. Bidisperse silica nanoparticles close-packed monolayer on silicon substrate by three step spin method

    NASA Astrophysics Data System (ADS)

    Khanna, Sakshum; Marathey, Priyanka; Utsav, Chaliawala, Harsh; Mukhopadhyay, Indrajit

    2018-05-01

    We present the studies on the structural properties of monolayer Bidisperse silica (SiO2) nanoparticles (BDS) on Silicon (Si-100) substrate using spin coating technique. The Bidisperse silica nanoparticle was synthesised by the modified sol-gel process. Nanoparticles on the substrate are generally assembled in non-close/close-packed monolayer (CPM) form. The CPM form is obtained by depositing the colloidal suspension onto the silicon substrate using complex techniques. Here we report an effective method for forming a monolayer of bidisperse silica nanoparticle by three step spin coating technique. The samples were prepared by mixing the monodisperse solutions of different particles size 40 and 100 nm diameters. The bidisperse silica nanoparticles were self-assembled on the silicon substrate forming a close-packed monolayer film. The scanning electron microscope images of bidisperse films provided in-depth film structure of the film. The maximum surface coverage obtained was around 70-80%.

  11. Closed-form summations of Dowker's and related trigonometric sums

    NASA Astrophysics Data System (ADS)

    Cvijović, Djurdje; Srivastava, H. M.

    2012-09-01

    Through a unified and relatively simple approach which uses complex contour integrals, particularly convenient integration contours and calculus of residues, closed-form summation formulas for 12 very general families of trigonometric sums are deduced. One of them is a family of cosecant sums which was first summed in closed form in a series of papers by Dowker (1987 Phys. Rev. D 36 3095-101 1989 J. Math. Phys. 30 770-3 1992 J. Phys. A: Math. Gen. 25 2641-8), whose method has inspired our work in this area. All of the formulas derived here involve the higher-order Bernoulli polynomials. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  12. Origins and nature of non-Fickian transport through fractures

    NASA Astrophysics Data System (ADS)

    Wang, L.; Cardenas, M. B.

    2014-12-01

    Non-Fickian transport occurs across all scales within fractured and porous geological media. Fundamental understanding and appropriate characterization of non-Fickian transport through fractures is critical for understanding and prediction of the fate of solutes and other scalars. We use both analytical and numerical modeling, including direct numerical simulation and particle tracking random walk, to investigate the origin of non-Fickian transport through both homogeneous and heterogeneous fractures. For the simple homogenous fracture case, i.e., parallel plates, we theoretically derived a formula for dynamic longitudinal dispersion (D) within Poiseuille flow. Using the closed-form expression for the theoretical D, we quantified the time (T) and length (L) scales separating preasymptotic and asymptotic dispersive transport, with T and L proportional to aperture (b) of parallel plates to second and fourth orders, respectively. As for heterogeneous fractures, the fracture roughness and correlation length are closely associated with the T and L, and thus indicate the origin for non-Fickian transport. Modeling solute transport through 2D rough-walled fractures with continuous time random walk with truncated power shows that the degree of deviation from Fickian transport is proportional to fracture roughness. The estimated L for 2D rough-walled fractures is significantly longer than that derived from the formula within Poiseuille flow with equivalent b. Moreover, we artificially generated normally distributed 3D fractures with fixed correlation length but different fracture dimensions. Solute transport through 3D fractures was modeled with a particle tracking random walk algorithm. We found that transport transitions from non-Fickian to Fickian with increasing fracture dimensions, where the estimated L for the studied 3D fractures is related to the correlation length.

  13. Matrix Theory of Small Oscillations

    ERIC Educational Resources Information Center

    Chavda, L. K.

    1978-01-01

    A complete matrix formulation of the theory of small oscillations is presented. Simple analytic solutions involving matrix functions are found which clearly exhibit the transients, the damping factors, the Breit-Wigner form for resonances, etc. (BB)

  14. Nonparaxial wave beams and packets with general astigmatism

    NASA Astrophysics Data System (ADS)

    Kiselev, A. P.; Plachenov, A. B.; Chamorro-Posada, P.

    2012-04-01

    We present exact solutions of the wave equation involving an arbitrary wave form with a phase closely similar to the general astigmatic phase of paraxial wave optics. Special choices of the wave form allow general astigmatic beamlike and pulselike waves with a Gaussian-type unrestricted localization in space and time. These solutions are generalizations of the known Bateman-type waves obtained from the connection existing between beamlike solutions of the paraxial parabolic equation and relatively undistorted wave solutions of the wave equation. As a technical tool, we present a full description of parametrizations of 2×2 symmetric matrices with positive imaginary part, which arise in the theory of Gaussian beams.

  15. Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples

    DOE PAGES

    Canfield, Paul C.; Kong, Tai; Kaluarachchi, Udhara S.; ...

    2016-01-05

    Solution growth of single crystals from high temperature solutions often involves the separation of residual solution from the grown crystals. For many growths of intermetallic compounds, this separation has historically been achieved with the use of plugs of silica wool. Whereas this is generally efficient in a mechanical sense, it leads to a significant contamination of the decanted liquid with silica fibres. In this paper, we present a simple design for frit-disc alumina crucible sets that has made their use in the growth single crystals from high temperature solutions both simple and affordable. An alumina frit-disc allows for the cleanmore » separation of the residual liquid from the solid phase. This allows for the reuse of the decanted liquid, either for further growth of the same phase, or for subsequent growth of other, related phases. In this article, we provide examples of the growth of isotopically substituted TbCd 6 and icosahedral i-RCd quasicrystals, as well as the separation of (i) the closely related Bi 2Rh 3S 2 and Bi 2Rh 3.5S 2 phases and (ii) and PrZn 11 and PrZn 17.« less

  16. "As Simple as Possible, but Not Simpler"--The Case of Dehydroascorbic Acid

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2008-01-01

    Ascorbic acid (vitamin C) is an essential nutrient, whose metabolic roles depend on its function as a reducing agent. Textbooks routinely assign its oxidized form, dehydroascorbic acid, a tricarbonyl structure that is highly improbable in aqueous solution and inconsistent with its colorless appearance. The actual structures of the various forms of…

  17. Stresses in adhesively bonded joints - A closed-form solution

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1981-01-01

    The general plane strain problem of adhesively bonded structures consisting of two different, orthotropic adherends is considered, under the assumption that adherend thicknesses are constant and small in relation to the lateral dimensions of the bonded region, so that they may be treated as plates. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form, with a single lap joint and a stiffened plate under various loading conditions being considered as examples. It is found that the plate theory used in the analysis not only predicts the correct trend for adhesive stresses but gives surprisingly accurate results, the solution being obtained by assuming linear stress-strain relations for the adhesive.

  18. Closed-Form and Numerically-Stable Solutions to Problems Related to the Optimal Two-Impulse Transfer Between Specified Terminal States of Keplerian Orbits

    NASA Technical Reports Server (NTRS)

    Senent, Juan

    2011-01-01

    The first part of the paper presents some closed-form solutions to the optimal two-impulse transfer between fixed position and velocity vectors on Keplerian orbits when some constraints are imposed on the magnitude of the initial and final impulses. Additionally, a numerically-stable gradient-free algorithm with guaranteed convergence is presented for the minimum delta-v two-impulse transfer. In the second part of the paper, cooperative bargaining theory is used to solve some two-impulse transfer problems when the initial and final impulses are carried by different vehicles or when the goal is to minimize the delta-v and the time-of-flight at the same time.

  19. A one-shot-projection method for measurement of specular surfaces.

    PubMed

    Wang, Zhenzhou

    2015-02-09

    In this paper, a method is proposed to measure the shapes of specular surfaces with one-shot-projection of structured laser patterns. By intercepting the reflection of the reflected laser pattern twice with two diffusive planes, the closed form solution is achieved for each reflected ray. The points on the specular surface are reconstructed by computing the intersections of the incident rays and the reflected rays. The proposed method can measure both static and dynamic specular shapes due to its one-shot-projection, which is beyond the capability of most of state of art methods that need multiple projections. To our knowledge, the proposed method is the only method so far that could yield the closed form solutions for the dynamic and specular surfaces.

  20. A point particle model of lightly bound skyrmions

    NASA Astrophysics Data System (ADS)

    Gillard, Mike; Harland, Derek; Kirk, Elliot; Maybee, Ben; Speight, Martin

    2017-04-01

    A simple model of the dynamics of lightly bound skyrmions is developed in which skyrmions are replaced by point particles, each carrying an internal orientation. The model accounts well for the static energy minimizers of baryon number 1 ≤ B ≤ 8 obtained by numerical simulation of the full field theory. For 9 ≤ B ≤ 23, a large number of static solutions of the point particle model are found, all closely resembling size B subsets of a face centred cubic lattice, with the particle orientations dictated by a simple colouring rule. Rigid body quantization of these solutions is performed, and the spin and isospin of the corresponding ground states extracted. As part of the quantization scheme, an algorithm to compute the symmetry group of an oriented point cloud, and to determine its corresponding Finkelstein-Rubinstein constraints, is devised.

  1. Purely cubic action for string field theory

    NASA Technical Reports Server (NTRS)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  2. Aperiodicity Correction for Rotor Tip Vortex Measurements

    DTIC Science & Technology

    2011-05-01

    where α = 1.25643. The Iversen and the transitional models are not closed-form solutions but are formulated as solutions to an ordinary differential ...edition, 1932, pp. 592– 593. [7] Oseen, C. W., “ Uber Wirbelbewegung in Einer Reibenden Flussigkeit,” Ark. J. Mat. Astrom. Fys., Vol. 7, (Nonumber), 1912

  3. Generalized closed form solutions for feasible dimension limit and pull-in characteristics of nanocantilever under the Influences of van der Waals and Casimir forces

    NASA Astrophysics Data System (ADS)

    Mukherjee, Banibrata; Sen, Siddhartha

    2018-04-01

    This paper presents generalized closed form expressions for determining the dimension limit for the basic design parameters as well as the pull-in characteristics of a nanocantilever beam under the influences of van der Waals and Casimir forces. The coupled nonlinear electromechanical problem of electrostatic nanocantilever is formulated in nondimensional form with Galerkin’s approximation considering the effects of these intermolecular forces and fringe field. The resulting integrals and higher order polynomials are solved numerically to derive the closed form expressions for maximum permissible detachment length, minimum feasible gap spacing and critical pull-in limit. The derived expressions are compared and validated as well with several reported literature showing reasonable agreement. The major advantages of the proposed closed form expressions are that, they do not contain any complex mathematical term or operation unlike in reported literature and thus they will serve as convenient tools for the NEMS community in successful design of various electrostatically actuated nanosystems.

  4. A simple technique for transferring excised patches of membrane to different solutions for single channel measurements.

    PubMed

    Quartararo, N; Barry, P H

    1987-12-01

    A technical problem associated with the patch clamp technique has been the changing of solutions bathing the membrane patch. The simple technique described here solves this problem by means of a movable polythene sleeve placed on the shaft of the patch clamp pipette. The sleeve is initially placed so that the tip of the pipette is exposed. A gigaohm seal is formed using standard techniques. The patch is then excised and the sleeve is slipped down a few mm past the end of the tip of the pipette. When the pipette and sleeve is now removed from the solution, a small drop of solution covering the membrane patch is held in place at the end of the sleeve by surface tension. The pipette is then easily transferred to a different solution without passing the membrane patch through the air-water interface. The sleeve is then simply pulled back up the pipette shaft to expose the membrane patch to the new solution.

  5. Gauge-invariant flow equation

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-06-01

    We propose a closed gauge-invariant functional flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations. Deriving this equation from a functional integral we employ the freedom in the precise choice of the macroscopic field and the effective average action in order to realize a closed and simple form of the flow equation.

  6. Creep and stress relaxation induced by interface diffusion in metal matrix composites

    NASA Astrophysics Data System (ADS)

    Li, Yinfeng; Li, Zhonghua

    2013-03-01

    An analytical solution is developed to predict the creep rate induced by interface diffusion in unidirectional fiber-reinforced and particle reinforced composites. The driving force for the interface diffusion is the normal stress acting on the interface, which is obtained from rigorous Eshelby inclusion theory. The closed-form solution is an explicit function of the applied stress, volume fraction and radius of the fiber, as well as the modulus ratio between the fiber and the matrix. It is interesting that the solution is formally similar to that of Coble creep in polycrystalline materials. For the application of the present solution in the realistic composites, the scale effect is taken into account by finite element analysis based on a unit cell. Based on the solution, a closed-form solution is also given as a description of stress relaxation induced by interfacial diffusion under constant strain. In addition, the analytical solution for the interface stress presented in this study gives some insight into the relationship between the interface diffusion and interface slip. This work was supported by the financial support from the Nature Science Foundation of China (No. 10932007), the National Basic Research Program of China (No. 2010CB631003/5), and the Doctoral Program of Higher Education of China (No. 20100073110006).

  7. Elastic field of a spherical inclusion with non-uniform eigenfields in second strain gradient elasticity

    NASA Astrophysics Data System (ADS)

    Delfani, M. R.; Latifi Shahandashti, M.

    2017-09-01

    In this paper, within the complete form of Mindlin's second strain gradient theory, the elastic field of an isolated spherical inclusion embedded in an infinitely extended homogeneous isotropic medium due to a non-uniform distribution of eigenfields is determined. These eigenfields, in addition to eigenstrain, comprise eigen double and eigen triple strains. After the derivation of a closed-form expression for Green's function associated with the problem, two different cases of non-uniform distribution of the eigenfields are considered as follows: (i) radial distribution, i.e. the distributions of the eigenfields are functions of only the radial distance of points from the centre of inclusion, and (ii) polynomial distribution, i.e. the distributions of the eigenfields are polynomial functions in the Cartesian coordinates of points. While the obtained solution for the elastic field of the latter case takes the form of an infinite series, the solution to the former case is represented in a closed form. Moreover, Eshelby's tensors associated with the two mentioned cases are obtained.

  8. Cosmology with decaying cosmological constant—exact solutions and model testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szydłowski, Marek; Stachowski, Aleksander, E-mail: marek.szydlowski@uj.edu.pl, E-mail: aleksander.stachowski@uj.edu.pl

    We study dynamics of Λ(t) cosmological models which are a natural generalization of the standard cosmological model (the ΛCDM model). We consider a class of models: the ones with a prescribed form of Λ(t)=Λ{sub bare}+α{sup 2}/t{sup 2}. This type of a Λ(t) parametrization is motivated by different cosmological approaches. We interpret the model with running Lambda (Λ(t)) as a special model of an interacting cosmology with the interaction term −dΛ(t)/dt in which energy transfer is between dark matter and dark energy sectors. For the Λ(t) cosmology with a prescribed form of Λ(t) we have found the exact solution in themore » form of Bessel functions. Our model shows that fractional density of dark energy Ω{sub e} is constant and close to zero during the early evolution of the universe. We have also constrained the model parameters for this class of models using the astronomical data such as SNIa data, BAO, CMB, measurements of H(z) and the Alcock-Paczyński test. In this context we formulate a simple criterion of variability of Λ with respect to t in terms of variability of the jerk or sign of estimator (1−Ω{sub m},0−Ω{sub Λ,0}). The case study of our model enable us to find an upper limit α{sup 2} < 0.012 (2σ C.L.) describing the variation from the cosmological constant while the LCDM model seems to be consistent with various data.« less

  9. Backscattering and absorption coefficients for electrons: Solutions of invariant embedding transport equations using a method of convergence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, C.; Brizuela, H.; Heluani, S. P.

    2014-05-21

    The backscattering coefficient is a magnitude whose measurement is fundamental for the characterization of materials with techniques that make use of particle beams and particularly when performing microanalysis. In this work, we report the results of an analytic method to calculate the backscattering and absorption coefficients of electrons in similar conditions to those of electron probe microanalysis. Starting on a five level states ladder model in 3D, we deduced a set of integro-differential coupled equations of the coefficients with a method know as invariant embedding. By means of a procedure proposed by authors, called method of convergence, two types ofmore » approximate solutions for the set of equations, namely complete and simple solutions, can be obtained. Although the simple solutions were initially proposed as auxiliary forms to solve higher rank equations, they turned out to be also useful for the estimation of the aforementioned coefficients. In previous reports, we have presented results obtained with the complete solutions. In this paper, we present results obtained with the simple solutions of the coefficients, which exhibit a good degree of fit with the experimental data. Both the model and the calculation method presented here can be generalized to other techniques that make use of different sorts of particle beams.« less

  10. Ellipsoidal terrain correction based on multi-cylindrical equal-area map projection of the reference ellipsoid

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Safari, A.

    2004-09-01

    An operational algorithm for computation of terrain correction (or local gravity field modeling) based on application of closed-form solution of the Newton integral in terms of Cartesian coordinates in multi-cylindrical equal-area map projection of the reference ellipsoid is presented. Multi-cylindrical equal-area map projection of the reference ellipsoid has been derived and is described in detail for the first time. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid are selected and the gravitational potential and vector of gravitational intensity (i.e. gravitational acceleration) of the mass elements are computed via numerical solution of the Newton integral in terms of geodetic coordinates {λ,ϕ,h}. Four base- edge points of the ellipsoidal mass elements are transformed into a multi-cylindrical equal-area map projection surface to build Cartesian mass elements by associating the height of the corresponding ellipsoidal mass elements to the transformed area elements. Using the closed-form solution of the Newton integral in terms of Cartesian coordinates, the gravitational potential and vector of gravitational intensity of the transformed Cartesian mass elements are computed and compared with those of the numerical solution of the Newton integral for the ellipsoidal mass elements in terms of geodetic coordinates. Numerical tests indicate that the difference between the two computations, i.e. numerical solution of the Newton integral for ellipsoidal mass elements in terms of geodetic coordinates and closed-form solution of the Newton integral in terms of Cartesian coordinates, in a multi-cylindrical equal-area map projection, is less than 1.6×10-8 m2/s2 for a mass element with a cross section area of 10×10 m and a height of 10,000 m. For a mass element with a cross section area of 1×1 km and a height of 10,000 m the difference is less than 1.5×10-4m2/s2. Since 1.5× 10-4 m2/s2 is equivalent to 1.5×10-5m in the vertical direction, it can be concluded that a method for terrain correction (or local gravity field modeling) based on closed-form solution of the Newton integral in terms of Cartesian coordinates of a multi-cylindrical equal-area map projection of the reference ellipsoid has been developed which has the accuracy of terrain correction (or local gravity field modeling) based on the Newton integral in terms of ellipsoidal coordinates.

  11. Simulation of Aluminum Micro-mirrors for Space Applications at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Kuhn, J. L.; Dutta, S. B.; Greenhouse, M. A.; Mott, D. B.

    2000-01-01

    Closed form and finite element models are developed to predict the device response of aluminum electrostatic torsion micro-mirrors fabricated on silicon substrate for space applications at operating temperatures of 30K. Initially, closed form expressions for electrostatic pressure arid mechanical restoring torque are used to predict the pull-in and release voltages at room temperature. Subsequently, a detailed mechanical finite element model is developed to predict stresses and vertical beam deflection induced by the electrostatic and thermal loads. An incremental and iterative solution method is used in conjunction with the nonlinear finite element model and closed form electrostatic equations to solve. the coupled electro-thermo-mechanical problem. The simulation results are compared with experimental measurements at room temperature of fabricated micro-mirror devices.

  12. Absolute Lower Bound on the Bounce Action

    NASA Astrophysics Data System (ADS)

    Sato, Ryosuke; Takimoto, Masahiro

    2018-03-01

    The decay rate of a false vacuum is determined by the minimal action solution of the tunneling field: bounce. In this Letter, we focus on models with scalar fields which have a canonical kinetic term in N (>2 ) dimensional Euclidean space, and derive an absolute lower bound on the bounce action. In the case of four-dimensional space, we show the bounce action is generically larger than 24 /λcr, where λcr≡max [-4 V (ϕ )/|ϕ |4] with the false vacuum being at ϕ =0 and V (0 )=0 . We derive this bound on the bounce action without solving the equation of motion explicitly. Our bound is derived by a quite simple discussion, and it provides useful information even if it is difficult to obtain the explicit form of the bounce solution. Our bound offers a sufficient condition for the stability of a false vacuum, and it is useful as a quick check on the vacuum stability for given models. Our bound can be applied to a broad class of scalar potential with any number of scalar fields. We also discuss a necessary condition for the bounce action taking a value close to this lower bound.

  13. Oscillation Amplitude Growth for a Decelerating Object with Constant Pitch Damping

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Queen, Eric M.; Litton, Daniel

    2006-01-01

    The equations governing the deceleration and oscillation of a blunt body moving along a planar trajectory are re-expressed in the form of the Euler-Cauchy equation. An analytic solution of this equation describes the oscillation amplitude growth and frequency dilation with time for a statically stable decelerating body with constant pitch damping. The oscillation histories for several constant pitch damping values, predicted by the solution of the Euler-Cauchy equation are compared to POST six degree-of-freedom (6-DoF) trajectory simulations. The simulations use simplified aerodynamic coefficients matching the Euler-Cauchy approximations. Agreement between the model predictions and simulation results are excellent. Euler-Cauchy curves are also fit through nonlinear 6-DoF simulations and ballistic range data to identify static stability and pitch damping coefficients. The model os shown to closely fit through the data points and capture the behavior of the blunt body observed in simulation and experiment. The extracted coefficients are in reasonable agreement with higher fidelity, nonlinear parameter identification results. Finally, a nondimensional version of the Euler-Cauchy equation is presented and shown to be a simple and effective tool for designing dynamically scaled experiments for decelerating blunt capsule flight.

  14. Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics.

    PubMed

    Alibay, Irfan; Burusco, Kepa K; Bruce, Neil J; Bryce, Richard A

    2018-03-08

    Determining the conformations accessible to carbohydrate ligands in aqueous solution is important for understanding their biological action. In this work, we evaluate the conformational free-energy surfaces of Lewis oligosaccharides in explicit aqueous solvent using a multidimensional variant of the swarm-enhanced sampling molecular dynamics (msesMD) method; we compare with multi-microsecond unbiased MD simulations, umbrella sampling, and accelerated MD approaches. For the sialyl Lewis A tetrasaccharide, msesMD simulations in aqueous solution predict conformer landscapes in general agreement with the other biased methods and with triplicate unbiased 10 μs trajectories; these simulations find a predominance of closed conformer and a range of low-occupancy open forms. The msesMD simulations also suggest closed-to-open transitions in the tetrasaccharide are facilitated by changes in ring puckering of its GlcNAc residue away from the 4 C 1 form, in line with previous work. For sialyl Lewis X tetrasaccharide, msesMD simulations predict a minor population of an open form in solution corresponding to a rare lectin-bound pose observed crystallographically. Overall, from comparison with biased MD calculations, we find that triplicate 10 μs unbiased MD simulations may not be enough to fully sample glycan conformations in aqueous solution. However, the computational efficiency and intuitive approach of the msesMD method suggest potential for its application in glycomics as a tool for analysis of oligosaccharide conformation.

  15. An analytical investigation of transient effects on rewetting of heated thin flat plates

    NASA Technical Reports Server (NTRS)

    Platt, J. A.

    1993-01-01

    The rewetting of a hot surface is a problem of prime importance in the microgravity application of heat pipe technology, where rewetting controls the time before operations can be re-established following depriming of a heat pipe. Rewetting is also important in the nuclear industry (in predicting behavior during loss-of-coolant accidents), as well as in the chemical and petrochemical industries. Recently Chan and Zhang have presented a closed-form solution for the determination of the rewetting speed of a liquid film flowing over a finite (but long) hot plate subject to uniform heating. Unfortunately, their physically unreasonable initial conditions preclude a meaningful analysis of start-up transient behavior. A new nondimensionalization and closed-form solution for an infinitely-long, uniformly-heated plate is presented. Realistic initial conditions (step change in temperature across the wetting front) and boundary conditions (no spatial temperature gradients infinitely far from the wetting front) are employed. The effects of parametric variation on the resulting simpler closed-form solution are presented and compared with the predictions of a 'quasi-steady' model. The time to reach steady-state rewetting is found to be a strong function of the initial dry-region plate temperature. For heated plates it is found that in most cases the effect of the transient response terms cannot be neglected, even for large times.

  16. A stationary bulk planar ideal flow solution for the double shearing model

    NASA Astrophysics Data System (ADS)

    Lyamina, E. A.; Kalenova, N. V.; Date, P. P.

    2018-04-01

    This paper provides a general ideal flow solution for the double shearing model of pressure-dependent plasticity. This new solution is restricted to a special class of stationary planar flows. A distinguished feature of this class of solutions is that one family of characteristic lines is straight. The solution is analytic. The mapping between Cartesian and principal lines based coordinate systems is given in parametric form with characteristic coordinates being the parameters. A simple relation that connects the scale factor for one family of coordinate curves of the principal lines based coordinate system and the magnitude of velocity is derived. The original ideal flow theory is widely used as the basis for inverse methods for the preliminary design of metal forming processes driven by minimum plastic work. The new theory extends this area of application to granular materials.

  17. Injectable CMC/PEI gel as an in vivo scaffold for demineralized bone matrix.

    PubMed

    Kim, Kyung Sook; Kang, Yun Mi; Lee, Ju Young; Kim, E Sle; Kim, Chun Ho; Min, Byoung Hyun; Lee, Hai Bang; Kim, Jae Ho; Kim, Moon Suk

    2009-01-01

    A number of materials have been considered as sources of grafts to repair bone defects. Here, we examined the possibility of creating in situ-forming gels from sodium carboxymethylcellulose (CMC) and poly(ethyleneimine) (PEI) for use as an in vivo carrier of demineralized bone matrix (DBM). The interaction between anionic CMC and cationic PEI was examined by evaluating phase transition behavior and viscosity of CMC solutions containing 0-30 wt% PEI. CMC solutions containing 10 wt% PEI exhibited a sol-to-gel phase transition at temperatures greater than 35 degrees C. The phase transition is caused by electrostatic crosslinking of the CMC/PEI solution to form a gel with a three-dimensional network structure. In situ-formed gel implants were successfully fabricated in vivo by simple subcutaneous injection of the CMC/PEI (90/10) solution (with and without DBM) into Fisher rats. The resulting in situ-formed implant maintained its shape for 28 days in vitro and in vivo. Our results show that in situ-forming CMC/PEI gels can serve as a DBM carrier that can be delivered with a minimally invasive procedure.

  18. Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium.

    PubMed

    Yura, H T; Thrane, L; Andersen, P E

    2000-12-01

    Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.

  19. Theory for solubility in static systems

    NASA Astrophysics Data System (ADS)

    Gusev, Andrei A.; Suter, Ulrich W.

    1991-06-01

    A theory for the solubility of small particles in static structures has been developed. The distribution function of the solute in a frozen solid has been derived in analytical form for the quantum and the quasiclassical cases. The solubility at infinitesimal gas pressure (Henry's constant) as well as the pressure dependence of the solute concentration at elevated pressures has been found from the statistical equilibrium between the solute in the static matrix and the ideal-gas phase. The distribution function of a solute containing different particles has been evaluated in closed form. An application of the theory to the sorption of methane in the computed structures of glassy polycarbonate has resulted in a satisfactory agreement with experimental data.

  20. The Boundary Identity of Exact Opposites: A Simple Solution to the Age- Old Philosophical Problem of Change

    DTIC Science & Technology

    1975-10-08

    Aristotle Parmenides Philosophy Union of opposites...the union of opposites. Even in Heraclitus’s day, however, opinion on the problem of change was sharply divided; e.g., Parmenides regarded change...challenge. Also, if one closely examines the reasoning of Parmenides , one can advance it one step further. It is perfectly logical to state that

  1. The double universal joint wrist on a manipulator: Solution of inverse position kinematics and singularity analysis

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., III

    1992-01-01

    This paper presents three methods to solve the inverse position kinematics position problem of the double universal joint attached to a manipulator: (1) an analytical solution for two specific cases; (2) an approximate closed form solution based on ignoring the wrist offset; and (3) an iterative method which repeats closed form position and orientation calculations until the solution is achieved. Several manipulators are used to demonstrate the solution methods: cartesian, cylindrical, spherical, and an anthropomorphic articulated arm, based on the Flight Telerobotic Servicer (FTS) arm. A singularity analysis is presented for the double universal joint wrist attached to the above manipulator arms. While the double universal joint wrist standing alone is singularity-free in orientation, the singularity analysis indicates the presence of coupled position/orientation singularities of the spherical and articulated manipulators with the wrist. The cartesian and cylindrical manipulators with the double universal joint wrist were found to be singularity-free. The methods of this paper can be implemented in a real-time controller for manipulators with the double universal joint wrist. Such mechanically dextrous systems could be used in telerobotic and industrial applications, but further work is required to avoid the singularities.

  2. Photochemical method for generating superoxide radicals (O.sub.2.sup.-) in aqueous solutions

    DOEpatents

    Holroyd, Richard A.; Bielski, Benon H. J.

    1980-01-01

    A photochemical method and apparatus for generating superoxide radicals (ub.2.sup.-) in an aqueous solution by means of a vacuum-ultraviolet lamp of simple design. The lamp is a microwave powered rare gas device that emits far-ultraviolet light. The lamp includes an inner loop of high purity quartz tubing through which flows an oxygen-saturated sodium formate solution. The inner loop is designed so that the solution is subjected to an intense flux of far-ultraviolet light. This causes the solution to photodecompose and form the product radical (O.sub.2.sup.-).

  3. Characterisation of columnar inertial modes in rapidly rotating spheres and spheroids

    NASA Astrophysics Data System (ADS)

    Maffei, S.; Jackson, A.; Livermore, P. W.

    2017-12-01

    We consider fluid-filled spheres and spheroidal containers of eccentricity ɛ in rapid rotation, as a proxy for the interior dynamics of stars and planets. The fluid motion is assumed to be quasi-geostrophic (QG): horizontal motions are invariant parallel to the rotation axis z, a characteristic which is handled by use of a stream function formulation which additionally enforces mass conservation and non-penetration at the boundary. By linearising about a quiescent background state, we investigate a variety of methods to study the QG inviscid inertial wave modes which are compared with fully 3-D calculations. We consider the recently-proposed weak formulation of the inviscid system valid in spheroids of arbitrary eccentricity, to which we present novel closed-form polynomial solutions. Our modal solutions accurately represent, in both spatial structure and frequency, the most z-invariant of the inertial wave modes in a spheroid, and constitute a simple basis set for the analysis of rotationally- dominated fluids. We further show that these new solutions are more accurate than those of the classical axial-vorticity equation, which is independent of ɛ and thus fails to properly encode the container geometry. We also consider the effects of viscosity for the cases of both no-slip and stress-free boundary conditions for a spherical container. Calculations performed under the columnar approximation are compared with 3-D solutions and excellent agreement has been found despite fundamental differences in the two formulations.

  4. Electro-osmotic flow of semidilute polyelectrolyte solutions.

    PubMed

    Uematsu, Yuki; Araki, Takeaki

    2013-09-07

    We investigate electro-osmosis in aqueous solutions of polyelectrolytes using mean-field equations. A solution of positively charged polyelectrolytes is confined between two negatively charged planar surfaces, and an electric field is applied parallel to the surfaces. When electrostatic attraction between the polymer and the surface is strong, the polymers adhere to the surface, forming a highly viscous adsorption layer that greatly suppresses the electro-osmosis. Conversely, electro-osmosis is enhanced by depleting the polymers from the surfaces. We also found that the electro-osmotic flow is invertible when the electrostatic potential decays to its bulk value with the opposite sign. These behaviors are well explained by a simple mathematical form of the electro-osmotic coefficient.

  5. Sinusoidal Siemens star spatial frequency response measurement errors due to misidentified target centers

    DOE PAGES

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-07-23

    Numerous methods are available to measure the spatial frequency response (SFR) of an optical system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a closed-form solution for the radial profile intensity measurement given an incorrectly determined center and describe how this error reduces the measured SFR of the system. As a result, using the closed-form solution, we proposemore » a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal, correctly centered values.« less

  6. Series expansions of rotating two and three dimensional sound fields.

    PubMed

    Poletti, M A

    2010-12-01

    The cylindrical and spherical harmonic expansions of oscillating sound fields rotating at a constant rate are derived. These expansions are a generalized form of the stationary sound field expansions. The derivations are based on the representation of interior and exterior sound fields using the simple source approach and determination of the simple source solutions with uniform rotation. Numerical simulations of rotating sound fields are presented to verify the theory.

  7. Geological entropy and solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Bianchi, Marco; Pedretti, Daniele

    2017-06-01

    We propose a novel approach to link solute transport behavior to the physical heterogeneity of the aquifer, which we fully characterize with two measurable parameters: the variance of the log K values (σY2), and a new indicator (HR) that integrates multiple properties of the K field into a global measure of spatial disorder or geological entropy. From the results of a detailed numerical experiment considering solute transport in K fields representing realistic distributions of hydrofacies in alluvial aquifers, we identify empirical relationship between the two parameters and the first three central moments of the distributions of arrival times of solute particles at a selected control plane. The analysis of experimental data indicates that the mean and the variance of the solutes arrival times tend to increase with spatial disorder (i.e., HR increasing), while highly skewed distributions are observed in more orderly structures (i.e., HR decreasing) or at higher σY2. We found that simple closed-form empirical expressions of the bivariate dependency of skewness on HR and σY2 can be used to predict the emergence of non-Fickian transport in K fields considering a range of structures and heterogeneity levels, some of which based on documented real aquifers. The accuracy of these predictions and in general the results from this study indicate that a description of the global variability and structure of the K field in terms of variance and geological entropy offers a valid and broadly applicable approach for the interpretation and prediction of transport in heterogeneous porous media.

  8. Optimal Mortgage Refinancing: A Closed Form Solution.

    PubMed

    Agarwal, Sumit; Driscoll, John C; Laibson, David I

    2013-06-01

    We derive the first closed-form optimal refinancing rule: Refinance when the current mortgage interest rate falls below the original rate by at least [Formula: see text] In this formula W (.) is the Lambert W -function, [Formula: see text] ρ is the real discount rate, λ is the expected real rate of exogenous mortgage repayment, σ is the standard deviation of the mortgage rate, κ/M is the ratio of the tax-adjusted refinancing cost and the remaining mortgage value, and τ is the marginal tax rate. This expression is derived by solving a tractable class of refinancing problems. Our quantitative results closely match those reported by researchers using numerical methods.

  9. Development of an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yoojin

    In this study, we have developed an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs where fluid flow through the fracture is radial. The dimensionless forms of the governing equations and the initial and boundary conditions in the radial flow system can be written in a form identical to those in the linear flow system developed by Jung and Pruess [Jung, Y., and K. Pruess (2012), A Closed-Form Analytical Solution for Thermal Single-Well Injection-Withdrawal Tests, Water Resour. Res., 48, W03504, doi:10.1029/2011WR010979], and therefore the analytical solutions developed in Jung and Pruess (2012) can be applied to computemore » the time dependence of temperature recovery at the injection/withdrawal well in a horizontally oriented fracture with radial flow.« less

  10. Removal of uranium from aqueous HF solutions

    DOEpatents

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  11. An Overview of Advanced Concepts for Space Access (Preprint)

    DTIC Science & Technology

    2008-06-19

    One such technology is the pulsed detonation engine ( PDE ). PDEs are conceptually simple devices. Fuel and air are mixed in the closed end of a...to form air detonations that propel the vehicle. Two types of lightcraft engines have been examined using either simple laser-thermal or more complex... detonation waves to propel the vehicle has the advantage of not having to store fuel on-board the vehicle. However as the vehicle ascends, the air

  12. Eyes Closed for Learning

    ERIC Educational Resources Information Center

    Statham, Mick

    2016-01-01

    A constructivist philosophy underpinning science teaching and learning for over 100 years in United Kingdom (UK) classrooms places "conceptual change" at the heart of classroom work in which children's scientific ideas form, strengthen and change. In this article, the author explains how the simple, effective method of "eyes…

  13. Method for the simulation of blood platelet shape and its evolution during activation

    PubMed Central

    Muliukov, Artem R.; Litvinenko, Alena L.; Nekrasov, Vyacheslav M.; Chernyshev, Andrei V.; Maltsev, Valeri P.

    2018-01-01

    We present a simple physically based quantitative model of blood platelet shape and its evolution during agonist-induced activation. The model is based on the consideration of two major cytoskeletal elements: the marginal band of microtubules and the submembrane cortex. Mathematically, we consider the problem of minimization of surface area constrained to confine the marginal band and a certain cellular volume. For resting platelets, the marginal band appears as a peripheral ring, allowing for the analytical solution of the minimization problem. Upon activation, the marginal band coils out of plane and forms 3D convoluted structure. We show that its shape is well approximated by an overcurved circle, a mathematical concept of closed curve with constant excessive curvature. Possible mechanisms leading to such marginal band coiling are discussed, resulting in simple parametric expression for the marginal band shape during platelet activation. The excessive curvature of marginal band is a convenient state variable which tracks the progress of activation. The cell surface is determined using numerical optimization. The shapes are strictly mathematically defined by only three parameters and show good agreement with literature data. They can be utilized in simulation of platelets interaction with different physical fields, e.g. for the description of hydrodynamic and mechanical properties of platelets, leading to better understanding of platelets margination and adhesion and thrombus formation in blood flow. It would also facilitate precise characterization of platelets in clinical diagnosis, where a novel optical model is needed for the correct solution of inverse light-scattering problem. PMID:29518073

  14. The Copper-nicotinamide complex: sustainable applications in coupling and cycloaddition reactions

    EPA Science Inventory

    Crystalline copper (II)-nicotinamide complex, synthesized via simple mixing of copper chloride and nicotinamide solution at room temperature, catalyzes the C-S, C-N bond forming and cycloaddition reactions under a variety of sustainable reaction conditions.

  15. The Effective Resistance of the -Cycle Graph with Four Nearest Neighbors

    NASA Astrophysics Data System (ADS)

    Chair, Noureddine

    2014-02-01

    The exact expression for the effective resistance between any two vertices of the -cycle graph with four nearest neighbors , is given. It turns out that this expression is written in terms of the effective resistance of the -cycle graph , the square of the Fibonacci numbers, and the bisected Fibonacci numbers. As a consequence closed form formulas for the total effective resistance, the first passage time, and the mean first passage time for the simple random walk on the the -cycle graph with four nearest neighbors are obtained. Finally, a closed form formula for the effective resistance of with all first neighbors removed is obtained.

  16. A New Closed Form Approximation for BER for Optical Wireless Systems in Weak Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Kaushik, Rahul; Khandelwal, Vineet; Jain, R. C.

    2018-04-01

    Weak atmospheric turbulence condition in an optical wireless communication (OWC) is captured by log-normal distribution. The analytical evaluation of average bit error rate (BER) of an OWC system under weak turbulence is intractable as it involves the statistical averaging of Gaussian Q-function over log-normal distribution. In this paper, a simple closed form approximation for BER of OWC system under weak turbulence is given. Computation of BER for various modulation schemes is carried out using proposed expression. The results obtained using proposed expression compare favorably with those obtained using Gauss-Hermite quadrature approximation and Monte Carlo Simulations.

  17. Group Hexavalent Actinide Separations: A New Approach to Used Nuclear Fuel Recycling

    DOE PAGES

    Burns, Jonathan D.; Moyer, Bruce A.

    2016-08-17

    Hexavalent Np, Pu, and Am individually, and as a group, have all been cocrystallized with UO 2(NO 3) 2∙ 6H 2O, constituting the first demonstration of an An(VI) group cocrystalliza- tion. The hexavalent dioxo cations of Np, Pu, and Am cocrystallize with UO 2(NO 3) 2∙ 6H 2O in near proportion with a simple reduction in temperature, while the lower valence states, An(III) and An(IV), are only slightly removed from solution. A separation of An(VI) species from An(III) ions by crystallization has been demonstrated, with an observed separation factor of 14. Separation of An(VI) species from key fission products, 95Zr,more » 95Nb, 137Cs, and 144Ce, has also been demonstrated by crystallization, with separation factors ranging from 6.5 to 71 in the absence of Am(VI), while in the presence of Am(VI), the separation factors were reduced to 0.99 7.7. One interesting observation is that Am(VI) shows increased stability in the cocrystallized form, with no reduction observed after 13 days, as opposed to in solution, in which >50% is reduced after only 10 days. The ability to cocrystallize and stabilize hexavalent actinides from solution, especially Am(VI), introduces a new separations approach that can be applied to closing the nuclear fuel cycle.« less

  18. Group Hexavalent Actinide Separations: A New Approach to Used Nuclear Fuel Recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Jonathan D.; Moyer, Bruce A.

    Hexavalent Np, Pu, and Am individually, and as a group, have all been cocrystallized with UO 2(NO 3) 2∙ 6H 2O, constituting the first demonstration of an An(VI) group cocrystalliza- tion. The hexavalent dioxo cations of Np, Pu, and Am cocrystallize with UO 2(NO 3) 2∙ 6H 2O in near proportion with a simple reduction in temperature, while the lower valence states, An(III) and An(IV), are only slightly removed from solution. A separation of An(VI) species from An(III) ions by crystallization has been demonstrated, with an observed separation factor of 14. Separation of An(VI) species from key fission products, 95Zr,more » 95Nb, 137Cs, and 144Ce, has also been demonstrated by crystallization, with separation factors ranging from 6.5 to 71 in the absence of Am(VI), while in the presence of Am(VI), the separation factors were reduced to 0.99 7.7. One interesting observation is that Am(VI) shows increased stability in the cocrystallized form, with no reduction observed after 13 days, as opposed to in solution, in which >50% is reduced after only 10 days. The ability to cocrystallize and stabilize hexavalent actinides from solution, especially Am(VI), introduces a new separations approach that can be applied to closing the nuclear fuel cycle.« less

  19. Beamforming Based Full-Duplex for Millimeter-Wave Communication

    PubMed Central

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-01-01

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors. PMID:27455256

  20. Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-density memory application

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Zeng, Fei; Li, Fan; Wang, Minjuan; Mao, Haijun; Wang, Guangyue; Song, Cheng; Pan, Feng

    2015-03-01

    The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications.The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06406b

  1. "In Situ" Observation of a Soap-Film Catenoid--A Simple Educational Physics Experiment

    ERIC Educational Resources Information Center

    Ito, Masato; Sato, Taku

    2010-01-01

    The solution to the Euler-Lagrange equation is an extremal functional. To understand that the functional is stationary at local extrema (maxima or minima), we propose a physics experiment that involves using a soap film to form a catenoid. A catenoid is a surface that is formed between two coaxial circular rings and is classified mathematically as…

  2. Closed form solutions of two time fractional nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Roy, Ripan

    2018-06-01

    In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G‧ / G) -expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics.

  3. Closed-form Static Analysis with Inertia Relief and Displacement-Dependent Loads Using a MSC/NASTRAN DMAP Alter

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.

    1995-01-01

    Solving for the displacements of free-free coupled systems acted upon by static loads is commonly performed throughout the aerospace industry. Many times, these problems are solved using static analysis with inertia relief. This solution technique allows for a free-free static analysis by balancing the applied loads with inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus displacement-dependent loads. Solving for the final displacements of such systems is commonly performed using iterative solution techniques. Unfortunately, these techniques can be time-consuming and labor-intensive. Since the coupled system equations for free-free systems with displacement-dependent loads can be written in closed-form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. Using a MSC/NASTRAN DMAP Alter, displacement-dependent loads have been included in static analysis with inertia relief. Such an Alter has been used successfully to solve efficiently a common aerospace problem typically solved using an iterative technique.

  4. Simple radiative transfer model for relationships between canopy biomass and reflectance

    NASA Technical Reports Server (NTRS)

    Park, J. K.; Deering, D. W.

    1982-01-01

    A modified Kubelka-Munk model has been utilized to derive useful equations for the analysis of apparent canopy reflectance. Based on the solution to the model simple working equations were formulated by employing reflectance characteristic parameters. The relationships derived show the asymptotic nature of reflectance data that is typically observed in remote sensing studies of plant biomass. They also establish the range of expected apparent canopy reflectance values for specific plant canopy types. The usefulness of the simplified equations was demonstrated by the exceptionally close fit of the theoretical curves to two separately acquired data sets for alfalfa and shortgrass prairie canopies.

  5. Phase Transformation Induced Self-Healing Behavior of Al-Ag Alloy.

    PubMed

    Michalcová, Alena; Marek, Ivo; Knaislová, Anna; Sofer, Zdeněk; Vojtěch, Dalibor

    2018-01-27

    Self-healing alloys are promising materials that can decrease the consequences of accidents. To detect crack formation in a material is simple task that can be performed by e.g., sonic or ultrasound detection, but it is not always possible to immediately replace the damaged parts. In this situation, it is very advantageous to have the chance to heal the crack during operation, which can be done e.g., by annealing. In this paper, self-healing behavior was proven by TEM (Transmission electron microscope) observation of crack healing after annealing. The crack was observed in the rapidly solidified Al-30Ag alloy with non-equilibrium phase composition formed by a minor amount of Ag₂Al and a supersaturated solid solution of Ag in an fcc-Al matrix (fcc = face centered cubic). After annealing at 450 °C, equilibrium phase composition was obtained by forming a higher amount of Ag₂Al. This phase transformation did not allow the crack to be healed. Subsequent annealing at 550 °C caused recrystallization to a supersaturated solid solution of Ag in fcc-Al, followed by a return to the mixture of fcc-Al and Ag₂Al by cooling, and this process was accompanied by the closing of the crack. This observation proved the self-healing possibilities of the Ag₂Al phase. Practical application of this self-healing behavior could be achieved through the dispersion of fine Ag₂Al particles in a structural material, which will enrich the material with self-healing properties.

  6. Electromagnetic fields radiated from a lightning return stroke - Application of an exact solution to Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Meneghini, R.

    1978-01-01

    A solution is presented for the electromagnetic fields radiated by an arbitrarily oriented current filament over a conducting ground plane in the case where the current propagates along the filament at the speed of light, and this solution is interpreted in terms of radiation from lightning return strokes. The solution is exact in the fullest sense; no mathematical approximations are made, and the governing differential equations and boundary conditions are satisfied. The solution has the additional attribute of being specified in closed form in terms of elementary functions. This solution is discussed from the point of view of deducing lightning current wave forms from measurements of the electromagnetic fields and understanding the effects of channel tortuosity on the radiated fields. In addition, it is compared with two approximate solutions, the traditional moment approximation and the Fraunhofer approximation, and a set of criteria describing their applicability are presented and interpreted.

  7. Self-dual monopoles and toda molecules

    NASA Astrophysics Data System (ADS)

    Ganoulis, N.; Goddard, P.; Olive, D.

    1982-07-01

    Stable static solutions to a gauge field theory with a Higgs field in the adjoint representation and with vanishing self-coupling are self-dual in the sense of Bogomolny. Leznov and Saveliev showed that a specific form of spherical symmetry reduces these equations to a modified form of the Toda molecule equations associated with the overall gauge symmetry G. Values of the constants of integration are found in terms of the distant Higgs field, guaranteeing regularity of the solution at the origin. The expressions hold for any simple Lie group G, depending on G via its root system.

  8. On isochronous derivatives of the first and second order in space dynamics tasks

    NASA Technical Reports Server (NTRS)

    Bakshiyan, B. T.; Sukhanov, A. A.

    1979-01-01

    The first and second isochronous derivatives are calculated from the vector of state of dynamic system using its initial value. Use is made of the method of finding a fundamental solution of conjugate variational equations. This solution and the corresponding universal relationship for isochronous derivatives are found for the two-body problem in a form which is simple and suitable for computer programming. The form of these relationships was obtained for motion which differs from parabolic motion. Formulas are given for isochronous derivatives using the gravitational parameter in the two-body problem.

  9. A combinatorial model of malware diffusion via bluetooth connections.

    PubMed

    Merler, Stefano; Jurman, Giuseppe

    2013-01-01

    We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression.

  10. Steady-state groundwater recharge in trapezoidal-shaped aquifers: A semi-analytical approach based on variational calculus

    NASA Astrophysics Data System (ADS)

    Mahdavi, Ali; Seyyedian, Hamid

    2014-05-01

    This study presents a semi-analytical solution for steady groundwater flow in trapezoidal-shaped aquifers in response to an areal diffusive recharge. The aquifer is homogeneous, anisotropic and interacts with four surrounding streams of constant-head. Flow field in this laterally bounded aquifer-system is efficiently constructed by means of variational calculus. This is accomplished by minimizing a properly defined penalty function for the associated boundary value problem. Simple yet demonstrative scenarios are defined to investigate anisotropy effects on the water table variation. Qualitative examination of the resulting equipotential contour maps and velocity vector field illustrates the validity of the method, especially in the vicinity of boundary lines. Extension to the case of triangular-shaped aquifer with or without an impervious boundary line is also demonstrated through a hypothetical example problem. The present solution benefits from an extremely simple mathematical expression and exhibits strictly close agreement with the numerical results obtained from Modflow. Overall, the solution may be used to conduct sensitivity analysis on various hydrogeological parameters that affect water table variation in aquifers defined in trapezoidal or triangular-shaped domains.

  11. Development of Ultra-Super Sensitive Immunohistochemistry and Its Application to the Etiological Study of Adult T-Cell Leukemia/Lymphoma

    PubMed Central

    Hasui, Kazuhisa; Wang, Jia; Tanaka, Yuetsu; Izumo, Shuji; Eizuru, Yoshito; Matsuyama, Takami

    2012-01-01

    Antigen retrieval (AR) and ultra-super sensitive immunohistochemistry (ultra-IHC) have been established for application to archival human pathology specimens. The original ultra-IHC was the ImmunoMax method or the catalyzed signal amplification system (ImmunoMax/CSA method), comprising the streptavidin-biotin complex (sABC) method and catalyzed reporter deposition (CARD) reaction with visualization of its deposition. By introducing procedures to diminish non-specific staining in the original ultra-IHC method, we developed the modified ImmunoMax/CSA method with AR heating sections in an AR solution (heating-AR). The heating-AR and modified ImmunoMax/CSA method visualized expression of the predominantly simple present form of HTLV-1 proviral DNA pX region p40Tax protein (Tax) in adult T-cell leukemia/lymphoma (ATLL) cells in archival pathology specimens in approximately 75% of cases. The simple present form of Tax detected exhibited a close relation with ATLL cell proliferation. We also established a new simplified CSA (nsCSA) system by replacing the sABC method with the secondary antibody- and horse radish peroxidase-labeled polymer reagent method, introducing the pretreatments blocking non-specific binding of secondary antibody reagent, and diminishing the diffusion of deposition in the CARD reaction. Combined with AR treating sections with proteinase K solution (enzymatic-AR), the nsCSA system visualized granular immunostaining of the complex present form of Tax in a small number of ATLL cells in most cases, presenting the possibility of etiological pathological diagnosis of ATLL and suggesting that the complex present form of Tax-positive ATLL cells were young cells derived from ATLL stem cells. The heating-AR and ultra-IHC detected physiological expression of the p53 protein and its probable phosphorylation by Tax in peripheral blood mononuclear cells of peripheral blood tissue specimens from HTLV-1 carriers, as well as physiological and pathological expression of the molecules involved with G1 phase progression and G1–S phase transition (E2F-1, E2F-4, DP-1, and cyclin E) in ATLL and peripheral T-cell lymphoma cells. The ultra-IHC with AR is useful for etiological pathological diagnosis of ATLL since HTLV-1 pathogenicity depends on that of Tax, and can be a useful tool for studies translating advanced molecular biology and pathology to human pathology. PMID:22685351

  12. The influence of strain rate and the effect of friction on the forging load in simple upsetting and closed die forging

    NASA Astrophysics Data System (ADS)

    Klemz, Francis B.

    Forging provides an elegant solution to the problem of producing complicated shapes from heated metal. This study attempts to relate some of the important parameters involved when considering, simple upsetting, closed die forging and extrusion forging.A literature survey showed some of the empirical graphical and statistical methods of load prediction together with analytical methods of estimating load and energy. Investigations of the effects of high strain rate and temperature on the stress-strain properties of materials are also evident.In the present study special equipment including an experimental drop hammer and various die-sets have been designed and manufactured. Instrumentation to measure load/time and displacement/time behaviour, of the deformed metal, has been incorporated and calibrated. A high speed camera was used to record the behaviour mode of test pieces used in the simple upsetting tests.Dynamic and quasi-static material properties for the test materials, lead and aluminium alloy, were measured using the drop-hammer and a compression-test machine.Analytically two separate mathematical solutions have been developed: A numerical technique using a lumped-massmodel for the analysis of simple upsetting and closed-die forging and, for extrusion forging, an analysis which equates the shear and compression energy requirements tothe work done by the forging load.Cylindrical test pieces were used for all the experiments and both dry and lubricated test conditions were investigated. The static and dynamic tests provide data on Load, Energy and the Profile of the deformed billet. In addition for the Extrusion Forging, both single ended and double ended tests were conducted. Material dependency was also examined by a further series of tests on aluminium and copper.Comparison of the experimental and theoretical results was made which shows clearly the effects of friction and high strain rate on load and energy requirements and the deformation mode of the billet. For the axisymmetric shapes considered, it was found that the load, energy requirement and profile could be predicted with reasonable accuracy.

  13. Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings

    NASA Astrophysics Data System (ADS)

    Vines, Justin

    2018-04-01

    We demonstrate equivalences, under simple mappings, between the dynamics of three distinct systems—(i) an arbitrary-mass-ratio two-spinning-black-hole system, (ii) a spinning test black hole in a background Kerr spacetime, and (iii) geodesic motion in Kerr—when each is considered in the first post-Minkowskian (1PM) approximation to general relativity, i.e. to linear order G but to all orders in 1/c, and to all orders in the black holes’ spins, with all orders in the multipole expansions of their linearized gravitational fields. This is accomplished via computations of the net results of weak gravitational scattering encounters between two spinning black holes, namely the net O(G) changes in the holes’ momenta and spins as functions of the incoming state. The results are given in remarkably simple closed forms, found by solving effective Mathisson–Papapetrou–Dixon-type equations of motion for a spinning black hole in conjunction with the linearized Einstein equation, with appropriate matching to the Kerr solution. The scattering results fully encode the gauge-invariant content of a canonical Hamiltonian governing binary-black-hole dynamics at 1PM order, for generic (unbound and bound) orbits and spin orientations. We deduce one such Hamiltonian, which reproduces and resums the 1PM parts of all such previous post-Newtonian results, and which directly manifests the equivalences with the test-body limits via simple effective-one-body mappings.

  14. Holographic superconductors in Einstein-æther gravity

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Wu, Yumei

    2017-11-01

    In this paper, we apply Anti-de Sitter (AdS) black hole solution of the Einstein-æther theory to the study of the holographic superconductor and show that the AdS black hole solution can be rewritten in some very simple forms, from which it is easy to identify the locations of various killing horizons. Then, we investigate the different effects of these horizons on the holographic superconductor.

  15. Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pK.sub.a of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C. Judson; Tung, Lisa A.

    1992-01-01

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH.sub.a into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. the acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carobxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia.

  16. Neutron Multiplicity: LANL W Covariance Matrix for Curve Fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, James G.

    2016-12-08

    In neutron multiplicity counting one may fit a curve by minimizing an objective function, χmore » $$2\\atop{n}$$. The objective function includes the inverse of an n by n matrix of covariances, W. The inverse of the W matrix has a closed form solution. In addition W -1 is a tri-diagonal matrix. The closed form and tridiagonal nature allows for a simpler expression of the objective function χ$$2\\atop{n}$$. Minimization of this simpler expression will provide the optimal parameters for the fitted curve.« less

  17. Vector fields in a tight laser focus: comparison of models.

    PubMed

    Peatross, Justin; Berrondo, Manuel; Smith, Dallas; Ware, Michael

    2017-06-26

    We assess several widely used vector models of a Gaussian laser beam in the context of more accurate vector diffraction integration. For the analysis, we present a streamlined derivation of the vector fields of a uniformly polarized beam reflected from an ideal parabolic mirror, both inside and outside of the resulting focus. This exact solution to Maxwell's equations, first developed in 1920 by V. S. Ignatovsky, is highly relevant to high-intensity laser experiments since the boundary conditions at a focusing optic dictate the form of the focus in a manner analogous to a physical experiment. In contrast, many models simply assume a field profile near the focus and develop the surrounding vector fields consistent with Maxwell's equations. In comparing the Ignatovsky result with popular closed-form analytic vector models of a Gaussian beam, we find that the relatively simple model developed by Erikson and Singh in 1994 provides good agreement in the paraxial limit. Models involving a Lax expansion introduce a divergences outside of the focus while providing little if any improvement in the focal region. Extremely tight focusing produces a somewhat complicated structure in the focus, and requires the Ignatovsky model for accurate representation.

  18. Collapse of composite tubes under end moments

    NASA Technical Reports Server (NTRS)

    Stockwell, Alan E.; Cooper, Paul A.

    1992-01-01

    Cylindrical tubes of moderate wall thickness such as those proposed for the original space station truss, may fail due to the gradual collapse of the tube cross section as it distorts under load. Sometimes referred to as the Brazier instability, it is a nonlinear phenomenon. This paper presents an extension of an approximate closed form solution of the collapse of isotropic tubes subject to end moments developed by Reissner in 1959 to include specially orthotropic material. The closed form solution was verified by an extensive nonlinear finite element analysis of the collapse of long tubes under applied end moments for radius to thickness ratios and composite layups in the range proposed for recent space station truss framework designs. The finite element analysis validated the assumption of inextensional deformation of the cylindrical cross section and the approximation of the material as specially orthotropic.

  19. Hamiltonian modelling of relative motion.

    PubMed

    Kasdin, N Jeremy; Gurfil, Pini

    2004-05-01

    This paper presents a Hamiltonian approach to modelling relative spacecraft motion based on derivation of canonical coordinates for the relative state-space dynamics. The Hamiltonian formulation facilitates the modelling of high-order terms and orbital perturbations while allowing us to obtain closed-form solutions to the relative motion problem. First, the Hamiltonian is partitioned into a linear term and a high-order term. The Hamilton-Jacobi equations are solved for the linear part by separation, and new constants for the relative motions are obtained, they are called epicyclic elements. The influence of higher order terms and perturbations, such as the oblateness of the Earth, are incorporated into the analysis by a variation of parameters procedure. Closed-form solutions for J(2-) and J(4-)invariant orbits and for periodic high-order unperturbed relative motion, in terms of the relative motion elements only, are obtained.

  20. Integration of the Rotation of an Earth-like Body as a Perturbed Spherical Rotor

    NASA Astrophysics Data System (ADS)

    Ferrer, Sebastián; Lara, Martin

    2010-05-01

    For rigid bodies close to a sphere, we propose an analytical solution that is free from elliptic integrals and functions, and can be fundamental for application to perturbed problems. After reordering the Hamiltonian as a perturbed spherical rotor, the Lie-series solution is generated up to an arbitrary order. Using the inertia parameters of different solar system bodies, the comparison of the approximate series solution with the exact analytical one shows that the precision reached with relatively low orders is at the same level of the observational accuracy for the Earth and Mars. Thus, for instance, the periodic errors of the mathematical solution are confined to the microarcsecond level with a simple second-order truncation for the Earth. On the contrary, higher orders are required for the mathematical solution to reach a precision at the expected level of accuracy of proposed new theories for the rotational dynamics of the Moon.

  1. A premier analysis of supersymmetric closed string tachyon cosmology

    NASA Astrophysics Data System (ADS)

    Vázquez-Báez, V.; Ramírez, C.

    2018-04-01

    From a previously found worldline supersymmetric formulation for the effective action of the closed string tachyon in a FRW background, the Hamiltonian of the theory is constructed, by means of the Dirac procedure, and written in a quantum version. Using the supersymmetry algebra we are able to find solutions to the Wheeler-DeWitt equation via a more simple set of first order differential equations. Finally, for the k = 0 case, we compute the expectation value of the scale factor with a suitably potential also favored in the present literature. We give some interpretations of the results and state future work lines on this matter.

  2. Effect of damage on elastically tailored composite laminates

    NASA Technical Reports Server (NTRS)

    Armanios, Erian; Badir, Ashraf; Berdichevsky, Victor

    1991-01-01

    A variationally consistent theory is derived in order to predict the response of anisotropic thin-walled closed sections subjected to axial load, torsion and bending. The theory is valid for arbitrary cross-sections made of laminated composite materials with variable thickness and stiffness. Closed form expressions for the stiffness coefficients are provided as integrals in terms of lay-ups parameters and cross-sectional geometry. A comparison of stiffness coefficients and response with finite element predictions and a closed form solution is performed. The theory is applied to the investigation of the effect of damage on the extension-twist coupling in a thin-walled closed section beam. The damage is simulated as a progressive ply-by-ply failure. Results show that damage can have a significant effect on the extension-twist coupling.

  3. A Combinatorial Model of Malware Diffusion via Bluetooth Connections

    PubMed Central

    Merler, Stefano; Jurman, Giuseppe

    2013-01-01

    We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression. PMID:23555677

  4. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor); Huang, Cunping (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  5. Cohomogeneity-one solutions in Einstein-Maxwell-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Lim, Yen-Kheng

    2017-05-01

    The field equations for Einstein-Maxwell-dilaton gravity in D dimensions are reduced to an effective one-dimensional system under the influence of exponential potentials. Various cases where exact solutions can be found are explored. With this procedure, we present interesting solutions such as a one-parameter generalization of the dilaton-Melvin spacetime and a three-parameter solution that interpolates between the Reissner-Nordström and Bertotti-Robinson solutions. This procedure also allows simple, alternative derivations of known solutions such as the Lifshitz spacetime and the planar anti-de Sitter naked singularity. In the latter case, the metric is cast in a simpler form which reveals the presence of an additional curvature singularity.

  6. Optoelectronics of organic nanofibers formed by co-assembly of porphyrin and perylenediimide.

    PubMed

    Li, Yuangang; Wang, Weina; Leow, Wan Ru; Zhu, Bowen; Meng, Fanben; Zheng, Liyan; Zhu, Jia; Chen, Xiaodong

    2014-07-23

    Organic nanofibers are formed by simple ionic co-assembly of positively charged porphyrin (electron donor) and negatively charged perylenediimide (electron acceptor) derivatives in aqueous solution. Two kinds of electron transfer routes between electron donor and electron acceptor under light excitation in nanofibers are confirmed by DFT calculations and experimental data. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Lithium Enolates of Simple Ketones: Structure Determination Using the Method of Continuous Variation

    PubMed Central

    Liou, Lara R.; McNeil, Anne J.; Ramirez, Antonio; Toombes, Gilman E. S.; Gruver, Jocelyn M.

    2009-01-01

    The method of continuous variation in conjunction with 6Li NMR spectroscopy was used to characterize lithium enolates derived from 1-indanone, cyclohexanone, and cyclopentanone in solution. The strategy relies on forming ensembles of homo- and heteroaggregated enolates. The enolates form exclusively chelated dimers in N,N,N’,N’-tetramethylethylenediamine and cubic tetramers in tetrahydrofuran and 1,2-dimethoxyethane. PMID:18336025

  8. Entropy of mixing calculations for compound forming liquid alloys in the hard sphere system

    NASA Astrophysics Data System (ADS)

    Singh, P.; Khanna, K. N.

    1984-06-01

    It is shown that the semi-empirical model proposed in a previous paper for the evaluation of the entropy of mixing of simple liquid metals alloys leads to accurate results for compound forming liquid alloys. The procedure is similar to that described for a regular solution. Numerical applications are made to NaGa, KPb and KT1 alloys.

  9. Combined structures-controls optimization of lattice trusses

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1991-01-01

    The role that distributed parameter model can play in CSI is demonstrated, in particular in combined structures controls optimization problems of importance in preliminary design. Closed form solutions can be obtained for performance criteria such as rms attitude error, making possible analytical solutions of the optimization problem. This is in contrast to the need for numerical computer solution involving the inversion of large matrices in traditional finite element model (FEM) use. Another advantage of the analytic solution is that it can provide much needed insight into phenomena that can otherwise be obscured or difficult to discern from numerical computer results. As a compromise in level of complexity between a toy lab model and a real space structure, the lattice truss used in the EPS (Earth Pointing Satellite) was chosen. The optimization problem chosen is a generic one: of minimizing the structure mass subject to a specified stability margin and to a specified upper bond on the rms attitude error, using a co-located controller and sensors. Standard FEM treating each bar as a truss element is used, while the continuum model is anisotropic Timoshenko beam model. Performance criteria are derived for each model, except that for the distributed parameter model, explicit closed form solutions was obtained. Numerical results obtained by the two model show complete agreement.

  10. The quotient of normal random variables and application to asset price fat tails

    NASA Astrophysics Data System (ADS)

    Caginalp, Carey; Caginalp, Gunduz

    2018-06-01

    The quotient of random variables with normal distributions is examined and proven to have power law decay, with density f(x) ≃f0x-2, with the coefficient depending on the means and variances of the numerator and denominator and their correlation. We also obtain the conditional probability densities for each of the four quadrants given by the signs of the numerator and denominator for arbitrary correlation ρ ∈ [ - 1 , 1) . For ρ = - 1 we obtain a particularly simple closed form solution for all x ∈ R. The results are applied to a basic issue in economics and finance, namely the density of relative price changes. Classical finance stipulates a normal distribution of relative price changes, though empirical studies suggest a power law at the tail end. By considering the supply and demand in a basic price change model, we prove that the relative price change has density that decays with an x-2 power law. Various parameter limits are established.

  11. Spread spectrum image watermarking based on perceptual quality metric.

    PubMed

    Zhang, Fan; Liu, Wenyu; Lin, Weisi; Ngan, King Ngi

    2011-11-01

    Efficient image watermarking calls for full exploitation of the perceptual distortion constraint. Second-order statistics of visual stimuli are regarded as critical features for perception. This paper proposes a second-order statistics (SOS)-based image quality metric, which considers the texture masking effect and the contrast sensitivity in Karhunen-Loève transform domain. Compared with the state-of-the-art metrics, the quality prediction by SOS better correlates with several subjectively rated image databases, in which the images are impaired by the typical coding and watermarking artifacts. With the explicit metric definition, spread spectrum watermarking is posed as an optimization problem: we search for a watermark to minimize the distortion of the watermarked image and to maximize the correlation between the watermark pattern and the spread spectrum carrier. The simple metric guarantees the optimal watermark a closed-form solution and a fast implementation. The experiments show that the proposed watermarking scheme can take full advantage of the distortion constraint and improve the robustness in return.

  12. Solute rejection by porous glass membranes. I - Hyperfiltration of sodium chloride and urea feed solutions.

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Wydeven, T.; Leban, M. I.

    1971-01-01

    Hyperfiltration of sodium chloride and urea was studied with porous glass membranes in closed-end capillary form, to determine the effect of pressure, temperature, and concentration variations, and lifetime rejection and flux characteristics. Rejection data for sodium chloride were consistent with the functioning of the porous glass as a low-capacity ion-exchange membrane.

  13. QCD triple Pomeron coupling from string amplitudes

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Navelet, H.; Peschanski, R.

    1998-06-01

    Using the recent solution of the triple Pomeron coupling in the QCD dipole picture as a closed string amplitude with six legs, its analytical form in terms of hypergeometric functions and numerical value are derived.

  14. Organic single-crystal arrays from solution-phase growth using micropattern with nucleation control region.

    PubMed

    Goto, Osamu; Tomiya, Shigetaka; Murakami, Yosuke; Shinozaki, Akira; Toda, Akira; Kasahara, Jiro; Hobara, Daisuke

    2012-02-21

    A method for forming organic single-crystal arrays from solution is demonstrated using an organic semiconductor, 3,9-bis(4-ethylphenyl)-peri-xanthenoxanthene (C(2) Ph-PXX). Supersaturation of C(2) Ph-PXX/tetralin solution is spatially changed by making a large difference in solvent evaporation to generate nuclei at the designated location. The method is simple to implement since it employs only a micropattern and control of the solvent vapor pressure during growth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. ROCOPT: A user friendly interactive code to optimize rocket structural components

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1989-01-01

    ROCOPT is a user-friendly, graphically-interfaced, microcomputer-based computer program (IBM compatible) that optimizes rocket components by minimizing the structural weight. The rocket components considered are ring stiffened truncated cones and cylinders. The applied loading is static, and can consist of any combination of internal or external pressure, axial force, bending moment, and torque. Stress margins are calculated by means of simple closed form strength of material type equations. Stability margins are determined by approximate, orthotropic-shell, closed-form equations. A modified form of Powell's method, in conjunction with a modified form of the external penalty method, is used to determine the minimum weight of the structure subject to stress and stability margin constraints, as well as user input constraints on the structural dimensions. The graphical interface guides the user through the required data prompts, explains program options and graphically displays results for easy interpretation.

  16. Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution.

    PubMed

    Nagata, Shunjiro; Kokado, Kenta; Sada, Kazuki

    2015-05-21

    A smart metal-organic framework (MOF) exhibiting controlled release was achieved by modification with a thermoresponsive polymer (PNIPAM) via a surface-selective post-synthetic modification technique. Simple temperature variation readily switches "open" (lower temperature) and "closed" (higher temperature) states of the polymer-modified MOF through conformational change of PNIPAM grafted onto the MOF, resulting in controlled release of the included guest molecules such as resorufin, caffeine, and procainamide.

  17. Application of fractional derivative with exponential law to bi-fractional-order wave equation with frictional memory kernel

    NASA Astrophysics Data System (ADS)

    Cuahutenango-Barro, B.; Taneco-Hernández, M. A.; Gómez-Aguilar, J. F.

    2017-12-01

    Analytical solutions of the wave equation with bi-fractional-order and frictional memory kernel of Mittag-Leffler type are obtained via Caputo-Fabrizio fractional derivative in the Liouville-Caputo sense. Through the method of separation of variables and Laplace transform method we derive closed-form solutions and establish fundamental solutions. Special cases with homogeneous Dirichlet boundary conditions and nonhomogeneous initial conditions, as well as for the external force are considered. Numerical simulations of the special solutions were done and novel behaviors are obtained.

  18. Atmospheric guidance law for planar skip trajectories

    NASA Technical Reports Server (NTRS)

    Mease, K. D.; Mccreary, F. A.

    1985-01-01

    The applicability of an approximate, closed-form, analytical solution to the equations of motion, as a basis for a deterministic guidance law for controlling the in-plane motion during a skip trajectory, is investigated. The derivation of the solution by the method of matched asymptotic expansions is discussed. Specific issues that arise in the application of the solution to skip trajectories are addressed. Based on the solution, an explicit formula for the approximate energy loss due to an atmospheric pass is derived. A guidance strategy is proposed that illustrates the use of the approximate solution. A numerical example shows encouraging performance.

  19. path integral approach to closed form pricing formulas in the Heston framework.

    NASA Astrophysics Data System (ADS)

    Lemmens, Damiaan; Wouters, Michiel; Tempere, Jacques; Foulon, Sven

    2008-03-01

    We present a path integral approach for finding closed form formulas for option prices in the framework of the Heston model. The first model for determining option prices was the Black-Scholes model, which assumed that the logreturn followed a Wiener process with a given drift and constant volatility. To provide a realistic description of the market, the Black-Scholes results must be extended to include stochastic volatility. This is achieved by the Heston model, which assumes that the volatility follows a mean reverting square root process. Current applications of the Heston model are hampered by the unavailability of fast numerical methods, due to a lack of closed-form formulae. Therefore the search for closed form solutions is an essential step before the qualitatively better stochastic volatility models will be used in practice. To attain this goal we outline a simplified path integral approach yielding straightforward results for vanilla Heston options with correlation. Extensions to barrier options and other path-dependent option are discussed, and the new derivation is compared to existing results obtained from alternative path-integral approaches (Dragulescu, Kleinert).

  20. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models

    PubMed Central

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  1. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  2. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  3. In vitro/in vivo evaluation of agar nanospheres for pulmonary delivery of bupropion HCl.

    PubMed

    Varshosaz, Jaleh; Minaiyan, Mohsen; Zaki, Mohammad Reza; Fathi, Milad; Jaleh, Hossein

    2016-07-01

    Bupropion HCl is an atypical antidepressant drug with rapid and high first-pass metabolism. Sustained release dosage form of this drug is suggested for reducing its side effects which are mainly seizures. The aim of the present study was to design pulmonary agar nanospheres of bupropion HCl with effective systemic absorption and extended release properties. Bupropion HCl was encapsulated in agar nanospheres by ionic gelation, and characterized for physical and release properties. Pharmacokinetic studies on nanospheres were performed on rats by intratracheal spraying of 5 mg/kg of drug in form of nanospheres compared to intravenous and pulmonary delivery of the same dose as simple solution of the drug. The optimized nanoparticles showed particle size of 320 ± 90 nm with polydispersity index of 0.85, the zeta potential of -29.6 mV, drug loading efficiency of 43.1 ± 0.28% and release efficiency of 66.7 ± 2%. The area under the serum concentration-time profile for the pulmonary nanospheres versus simple solution was 10 237.84 versus 28.8 µg/ml min, Tmax of 360 versus 60 min and the Cmax of 1927.93 versus9.93 ng/ml, respectively. The absolute bioavailability of the drug was 86.69% for nanospheres and 0.25% for pulmonary simple solution. Our results indicate that pulmonary delivery of bupropion loaded agar nanospheres achieves systemic exposure and extends serum levels of the drug.

  4. Binding of an adatom to a simple metal surface

    NASA Technical Reports Server (NTRS)

    Huntington, H. B.; Turk, L. A.; White, W. W., III

    1975-01-01

    The density functional formalism of Hohenberg and Kohn is used to investigate the energies, charge densities and forces which hold an adatom on the surface of a simple metal. The valence wavefunction of the adatom is fitted to the Herman-Skillman solutions at large distance and is simplified somewhat in the core region. The field of the ion is represented by the Ashcroft pseudopotential. For the metal the jellium model is used. Detailed calculations are carried out for a sodium adatom on a sodium surface. Simply juxtaposing adatom and surface gives a binding energy of about 1/3 eV. This value is approximately twice the surface energy per atom in the close-packed plane. Charge redistributions as determined variationally increase the binding energy by about 10%. The equilibrium distance for the adatom turns out to be 1.66 A from the surface, as compared with 1.52 A, the observed value for one-half the distance between the close-packed planes.

  5. Surface response of a viscoelastic medium to subsurface acoustic sources with application to medical diagnosis

    NASA Astrophysics Data System (ADS)

    Royston, Thomas J.; Yazicioglu, Yigit; Loth, Francis

    2003-02-01

    The response at the surface of an isotropic viscoelastic medium to buried fundamental acoustic sources is studied theoretically, computationally and experimentally. Finite and infinitesimal monopole and dipole sources within the low audible frequency range (40-400 Hz) are considered. Analytical and numerical integral solutions that account for compression, shear and surface wave response to the buried sources are formulated and compared with numerical finite element simulations and experimental studies on finite dimension phantom models. It is found that at low audible frequencies, compression and shear wave propagation from point sources can both be significant, with shear wave effects becoming less significant as frequency increases. Additionally, it is shown that simple closed-form analytical approximations based on an infinite medium model agree well with numerically obtained ``exact'' half-space solutions for the frequency range and material of interest in this study. The focus here is on developing a better understanding of how biological soft tissue affects the transmission of vibro-acoustic energy from biological acoustic sources below the skin surface, whose typical spectral content is in the low audible frequency range. Examples include sound radiated from pulmonary, gastro-intestinal and cardiovascular system functions, such as breath sounds, bowel sounds and vascular bruits, respectively.

  6. Stresses in adhesively bonded joints: A closed form solution. [plate theory

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1980-01-01

    The plane strain of adhesively bonded structures which consist of two different orthotropic adherents is considered. Assuming that the thicknesses of the adherends are constant and are small in relation to the lateral dimensions of the bonded region, the adherends are treated as plates. The transverse shear effects in the adherends and the in-plane normal strain in the adhesive are taken into account. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form. A single lap joint and a stiffened plate under various loading conditions are considered as examples. To verify the basic trend of the solutions obtained from the plate theory a sample problem is solved by using the finite element method and by treating the adherends and the adhesive as elastic continua. The plate theory not only predicts the correct trend for the adhesive stresses but also gives rather surprisingly accurate results.

  7. Exact geodesic distances in FLRW spacetimes

    NASA Astrophysics Data System (ADS)

    Cunningham, William J.; Rideout, David; Halverson, James; Krioukov, Dmitri

    2017-11-01

    Geodesics are used in a wide array of applications in cosmology and astrophysics. However, it is not a trivial task to efficiently calculate exact geodesic distances in an arbitrary spacetime. We show that in spatially flat (3 +1 )-dimensional Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes, it is possible to integrate the second-order geodesic differential equations, and derive a general method for finding both timelike and spacelike distances given initial-value or boundary-value constraints. In flat spacetimes with either dark energy or matter, whether dust, radiation, or a stiff fluid, we find an exact closed-form solution for geodesic distances. In spacetimes with a mixture of dark energy and matter, including spacetimes used to model our physical universe, there exists no closed-form solution, but we provide a fast numerical method to compute geodesics. A general method is also described for determining the geodesic connectedness of an FLRW manifold, provided only its scale factor.

  8. Structural mechanism of JH delivery in hemolymph by JHBP of silkworm, Bombyx mori

    PubMed Central

    Suzuki, Rintaro; Fujimoto, Zui; Shiotsuki, Takahiro; Tsuchiya, Wataru; Momma, Mitsuru; Tase, Akira; Miyazawa, Mitsuhiro; Yamazaki, Toshimasa

    2011-01-01

    Juvenile hormone (JH) plays crucial roles in many aspects of the insect life. All the JH actions are initiated by transport of JH in the hemolymph as a complex with JH-binding protein (JHBP) to target tissues. Here, we report structural mechanism of JH delivery by JHBP based upon the crystal and solution structures of apo and JH-bound JHBP. In solution, apo-JHBP exists in equilibrium of multiple conformations with different orientations of the gate helix for the hormone-binding pocket ranging from closed to open forms. JH-binding to the gate-open form results in the fully closed JHBP-JH complex structure where the bound JH is completely buried inside the protein. JH-bound JHBP opens the gate helix to release the bound hormone likely by sensing the less polar environment at the membrane surface of target cells. This is the first report that provides structural insight into JH signaling. PMID:22355650

  9. Nanoscale phase transition behavior of shape memory alloys — closed form solution of 1D effective modelling

    NASA Astrophysics Data System (ADS)

    Li, M. P.; Sun, Q. P.

    2018-01-01

    We investigate the roles of grain size (lg) and grain boundary thickness (lb) on the stress-induced phase transition (PT) behaviors of nanocrystalline shape memory alloys (SMAs) by using a Core-shell type "crystallite-amorphous composite" model. A non-dimensionalized length scale lbarg(=lg /lb) is identified as the governing parameter which is indicative of the energy competition between the crystallite and the grain boundary. Closed form analytical solutions of a reduced effective 1D model with embedded microstructure length scales of lg and lb are presented in this paper. It is shown that, with lbarg reduction, the energy of the elastic non-transformable grain boundary will gradually become dominant in the phase transition process, and eventually bring fundamental changes of the deformation behaviors: breakdown of two-phase coexistence and vanishing of superelastic hysteresis. The predictions are supported by experimental data of nanocrystalline NiTi SMAs.

  10. Exact closed-form solution of the hyperbolic equation of string vibrations with material relaxation properties taken into account

    NASA Astrophysics Data System (ADS)

    Kudinov, I. V.; Kudinov, V. A.

    2014-09-01

    The differential equation of damped string vibrations was obtained with the finite speed of extension and strain propagation in the Hooke's law formula taken into account. In contrast to the well-known equations, the obtained equation contains the first and third time derivatives of the displacement and the mixed derivative with respect to the space and time variables. Separation of variables was used to obtain its exact closed-form solution, whose analysis showed that, for large values of the relaxation coefficient, the string return to the initial state after its escape from equilibrium is accompanied by high-frequency low-amplitude damped vibrations, which occur on the initial time interval only in the region of positive displacements. And in the limit, for some large values of the relaxation coefficient, the string return to the initial state occurs practically without any oscillatory process.

  11. A family of solutions to the Einstein-Maxwell system of equations describing relativistic charged fluid spheres

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Sharma, Ranjan

    2018-05-01

    In this paper, we present a formalism to generate a family of interior solutions to the Einstein-Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner-Nordström space-time. By reducing the Einstein-Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.

  12. A simple and effective approach to prepare injectable macroporous calcium phosphate cement for bone repair: Syringe-foaming using a viscous hydrophilic polymeric solution.

    PubMed

    Zhang, Jingtao; Liu, Weizhen; Gauthier, Olivier; Sourice, Sophie; Pilet, Paul; Rethore, Gildas; Khairoun, Khalid; Bouler, Jean-Michel; Tancret, Franck; Weiss, Pierre

    2016-02-01

    In this study, we propose a simple and effective strategy to prepare injectable macroporous calcium phosphate cements (CPCs) by syringe-foaming via hydrophilic viscous polymeric solution, such as using silanized-hydroxypropyl methylcellulose (Si-HPMC) as a foaming agent. The Si-HPMC foamed CPCs demonstrate excellent handling properties such as injectability and cohesion. After hardening the foamed CPCs possess hierarchical macropores and their mechanical properties (Young's modulus and compressive strength) are comparable to those of cancellous bone. Moreover, a preliminary in vivo study in the distal femoral sites of rabbits was conducted to evaluate the biofunctionality of this injectable macroporous CPC. The evidence of newly formed bone in the central zone of implantation site indicates the feasibility and effectiveness of this foaming strategy that will have to be optimized by further extensive animal experiments. A major challenge in the design of biomaterial-based injectable bone substitutes is the development of cohesive, macroporous and self-setting calcium phosphate cement (CPC) that enables rapid cell invasion with adequate initial mechanical properties without the use of complex processing and additives. Thus, we propose a simple and effective strategy to prepare injectable macroporous CPCs through syringe-foaming using a hydrophilic viscous polymeric solution (silanized-hydroxypropyl methylcellulose, Si-HPMC) as a foaming agent, that simultaneously meets all the aforementioned aims. Evidence from our in vivo studies shows the existence of newly formed bone within the implantation site, indicating the feasibility and effectiveness of this foaming strategy, which could be used in various CPC systems using other hydrophilic viscous polymeric solutions. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Maslov indices, Poisson brackets, and singular differential forms

    NASA Astrophysics Data System (ADS)

    Esterlis, I.; Haggard, H. M.; Hedeman, A.; Littlejohn, R. G.

    2014-06-01

    Maslov indices are integers that appear in semiclassical wave functions and quantization conditions. They are often notoriously difficult to compute. We present methods of computing the Maslov index that rely only on typically elementary Poisson brackets and simple linear algebra. We also present a singular differential form, whose integral along a curve gives the Maslov index of that curve. The form is closed but not exact, and transforms by an exact differential under canonical transformations. We illustrate the method with the 6j-symbol, which is important in angular-momentum theory and in quantum gravity.

  14. Sorption of carboxylic acid from carboxylic salt solutions at pHs close to or above the pK[sub a] of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C.J.; Tung, L.A.

    1992-07-21

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.

  15. Spherical-wave expansions of piston-radiator fields.

    PubMed

    Wittmann, R C; Yaghjian, A D

    1991-09-01

    Simple spherical-wave expansions of the continuous-wave fields of a circular piston radiator in a rigid baffle are derived. These expansions are valid throughout the illuminated half-space and are useful for efficient numerical computation in the near-field region. Multipole coefficients are given by closed-form expressions which can be evaluated recursively.

  16. Some new exact solitary wave solutions of the van der Waals model arising in nature

    NASA Astrophysics Data System (ADS)

    Bibi, Sadaf; Ahmed, Naveed; Khan, Umar; Mohyud-Din, Syed Tauseef

    2018-06-01

    This work proposes two well-known methods, namely, Exponential rational function method (ERFM) and Generalized Kudryashov method (GKM) to seek new exact solutions of the van der Waals normal form for the fluidized granular matter, linked with natural phenomena and industrial applications. New soliton solutions such as kink, periodic and solitary wave solutions are established coupled with 2D and 3D graphical patterns for clarity of physical features. Our comparison reveals that the said methods excel several existing methods. The worked-out solutions show that the suggested methods are simple and reliable as compared to many other approaches which tackle nonlinear equations stemming from applied sciences.

  17. Preliminary numerical analysis of improved gas chromatograph model

    NASA Technical Reports Server (NTRS)

    Woodrow, P. T.

    1973-01-01

    A mathematical model for the gas chromatograph was developed which incorporates the heretofore neglected transport mechanisms of intraparticle diffusion and rates of adsorption. Because a closed-form analytical solution to the model does not appear realizable, techniques for the numerical solution of the model equations are being investigated. Criteria were developed for using a finite terminal boundary condition in place of an infinite boundary condition used in analytical solution techniques. The class of weighted residual methods known as orthogonal collocation is presently being investigated and appears promising.

  18. Hydrodynamics beyond Navier-Stokes: exact solution to the lattice Boltzmann hierarchy.

    PubMed

    Ansumali, S; Karlin, I V; Arcidiacono, S; Abbas, A; Prasianakis, N I

    2007-03-23

    The exact solution to the hierarchy of nonlinear lattice Boltzmann (LB) kinetic equations in the stationary planar Couette flow is found at nonvanishing Knudsen numbers. A new method of solving LB kinetic equations which combines the method of moments with boundary conditions for populations enables us to derive closed-form solutions for all higher-order moments. A convergence of results suggests that the LB hierarchy with larger velocity sets is the novel way to approximate kinetic theory.

  19. A Novel Capacity Analysis for Wireless Backhaul Mesh Networks

    NASA Astrophysics Data System (ADS)

    Chung, Tein-Yaw; Lee, Kuan-Chun; Lee, Hsiao-Chih

    This paper derived a closed-form expression for inter-flow capacity of a backhaul wireless mesh network (WMN) with centralized scheduling by employing a ring-based approach. Through the definition of an interference area, we are able to accurately describe a bottleneck collision area for a WMN and calculate the upper bound of inter-flow capacity. The closed-form expression shows that the upper bound is a function of the ratio between transmission range and network radius. Simulations and numerical analysis show that our analytic solution can better estimate the inter-flow capacity of WMNs than that of previous approach.

  20. Exceptional point in a simple textbook example

    NASA Astrophysics Data System (ADS)

    Fernández, Francisco M.

    2018-07-01

    We propose to introduce the concept of exceptional points in intermediate courses on mathematics and classical mechanics by means of simple textbook examples. The first one is an ordinary second-order differential equation with constant coefficients. The second one is the well-known damped harmonic oscillator. From a strict mathematical viewpoint both are the same problem that enables one to connect the occurrence of linearly dependent exponential solutions with a defective matrix which cannot be diagonalized but can be transformed into a Jordan canonical form.

  1. The passage of an infinite swept airfoil through an oblique gust. [approximate solution for aerodynamic response

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. L.

    1974-01-01

    An approximate solution is reported for the unsteady aerodynamic response of an infinite swept wing encountering a vertical oblique gust in a compressible stream. The approximate expressions are of closed form and do not require excessive computer storage or computation time, and further, they are in good agreement with the results of exact theory. This analysis is used to predict the unsteady aerodynamic response of a helicopter rotor blade encountering the trailing vortex from a previous blade. Significant effects of three dimensionality and compressibility are evident in the results obtained. In addition, an approximate solution for the unsteady aerodynamic forces associated with the pitching or plunging motion of a two dimensional airfoil in a subsonic stream is presented. The mathematical form of this solution approaches the incompressible solution as the Mach number vanishes, the linear transonic solution as the Mach number approaches one, and the solution predicted by piston theory as the reduced frequency becomes large.

  2. Quantitative analysis of fungicide azoxystrobin in agricultural samples with rapid, simple and reliable monoclonal immunoassay.

    PubMed

    Watanabe, Eiki; Miyake, Shiro

    2013-01-15

    This work presents analytical performance of a kit-based direct competitive enzyme-linked immunosorbent assay (dc-ELISA) for azoxystrobin detection in agricultural products. The dc-ELISA was sufficiently sensitive for analysis of residue levels close to the maximum residue limits. The dc-ELISA did not show cross-reactivity to other strobilurin analogues. Absorbance decreased with the increase of methanol concentration in sample solution from 2% to 40%, while the standard curve became most linear when the sample solution contained 10% methanol. Agricultural samples were extracted with methanol, and the extracts were diluted with water to 10% methanol adequate. No significant matrix interference was observed. Satisfying recovery was found for all of spiked samples and the results were well agreed with the analysis with liquid chromatography. These results clearly indicate that the kit-based dc-ELISA is suitable for the rapid, simple, quantitative and reliable determination of the fungicide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Accurate ω-ψ Spectral Solution of the Singular Driven Cavity Problem

    NASA Astrophysics Data System (ADS)

    Auteri, F.; Quartapelle, L.; Vigevano, L.

    2002-08-01

    This article provides accurate spectral solutions of the driven cavity problem, calculated in the vorticity-stream function representation without smoothing the corner singularities—a prima facie impossible task. As in a recent benchmark spectral calculation by primitive variables of Botella and Peyret, closed-form contributions of the singular solution for both zero and finite Reynolds numbers are subtracted from the unknown of the problem tackled here numerically in biharmonic form. The method employed is based on a split approach to the vorticity and stream function equations, a Galerkin-Legendre approximation of the problem for the perturbation, and an evaluation of the nonlinear terms by Gauss-Legendre numerical integration. Results computed for Re=0, 100, and 1000 compare well with the benchmark steady solutions provided by the aforementioned collocation-Chebyshev projection method. The validity of the proposed singularity subtraction scheme for computing time-dependent solutions is also established.

  4. Verification of low-Mach number combustion codes using the method of manufactured solutions

    NASA Astrophysics Data System (ADS)

    Shunn, Lee; Ham, Frank; Knupp, Patrick; Moin, Parviz

    2007-11-01

    Many computational combustion models rely on tabulated constitutive relations to close the system of equations. As these reactive state-equations are typically multi-dimensional and highly non-linear, their implications on the convergence and accuracy of simulation codes are not well understood. In this presentation, the effects of tabulated state-relationships on the computational performance of low-Mach number combustion codes are explored using the method of manufactured solutions (MMS). Several MMS examples are developed and applied, progressing from simple one-dimensional configurations to problems involving higher dimensionality and solution-complexity. The manufactured solutions are implemented in two multi-physics hydrodynamics codes: CDP developed at Stanford University and FUEGO developed at Sandia National Laboratories. In addition to verifying the order-of-accuracy of the codes, the MMS problems help highlight certain robustness issues in existing variable-density flow-solvers. Strategies to overcome these issues are briefly discussed.

  5. A computational study of the open and closed forms of the N-lobe human serum transferrin apoprotein.

    PubMed

    Rinaldo, David; Field, Martin J

    2003-12-01

    Human serum transferrin tightly binds ferric ions in the blood stream but is able to release them in cells by a process involving receptor-mediated endocytosis and decrease in pH. Iron binding and release are accompanied by a large conformation change. In this study, we investigate theoretically the open and closed forms of the N-lobe human serum transferrin apoprotein by performing pKa calculations and molecular dynamics and free-energy simulations. In agreement with the hypothesis based on the x-ray crystal structures, our calculations show that there is a shift in the pKa values of the lysines forming the dilysine trigger when the conformation changes. We argue, however, that simple electrostatic repulsion between the lysines is not sufficient to trigger domain opening and, instead, propose an alternative explanation for the dilysine-trigger effect. Analysis of the molecular dynamics and free-energy results indicate that the open form is more mobile than the closed form and is much more stable at pH 5.3, in large part due to entropic effects. Despite a lower free energy, the dynamics simulation of the open form shows that it is flexible enough to sample conformations that are consistent with iron binding.

  6. Microbiota of radish plants, cultivated in closed and open ecological systems

    NASA Astrophysics Data System (ADS)

    Tirranen, L. S.

    It is common knowledge that microorganisms respond to environmental changes faster than other representatives of the living world. The major aim of this work was to examine and analyze the characteristics of the microbiota of radish culture, cultivated in the closed ecological system of human life-support Bios-3 and in an open system in different experiments. Microbial community of near-root, root zone and phyllosphere of radish were studied at the phases of seedlings, root formation, technical ripeness—by washing-off method—like microbiota of the substrate (expanded clay aggregate) and of the seeds of radish culture. Inoculation on appropriate media was made to count total quantity of anaerobic and aerobic bacteria, bacteria of coliform group, spore-forming, Proteus group, fluorescent, phytopathogenic bacteria, growing on Fermi medium, yeasts, microscopic fungi, Actinomyces. It was revealed that formation of the microbiota of radish plants depends on the age, plant cultivation technology and the specific conditions of the closed system. Composition of microbial conveyor-cultivated in phytotrons varied in quality and in quantity with plant growth phases—in the same manner as cultivation of even-aged soil and hydroponics monocultures which was determined by different qualitative and quantitative composition of root emissions in the course of plant vegetation. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of radish. We registered the changes in the species composition and microorganism quantity during plant cultivation in the closed system on a long-used solution. It was demonstrated that during the short-term (7 days) use of the nutrient solution in the experiments without system closing, the species composition of the microbiota of radish plants was more diverse in a multiple-aged vegetable polyculture (61 species of bacteria), than in an even-aged monoculture (32 species). Long-term use (120 days) of the solution for cultivation of multiple-aged vegetable polyculture from different radish parts in the experiment without system closing revealed 50 species, while in the experiment with the closed ecosystem only 39 species of bacteria were detected. It was found out that plant cultivation in a polyculture consisting of nine vegetable cultures is more preferable than in a monoculture, because the microbial complex is more stable, the functioning of elements is more accurate and the crop is higher.

  7. Optimal Control of a Circular Satellite Formation Subject to Gravitational Perturbations

    DTIC Science & Technology

    2007-03-01

    fundamental reference in the study of the dynamics of close-proximity spacecraft is the paper by Clohessy and Wiltshire (5). In this work, the linear...dynamics for a satellite rendezvous problem are derived, which are now commonly known as either the Clohessy - Wiltshire (CW) equations or Hill’s...themselves to closed-form solutions, as did the Clohessy - Wiltshire development. When the nonlinear approach is undertaken, the numeric integration

  8. An Analytic Approach to Projectile Motion in a Linear Resisting Medium

    ERIC Educational Resources Information Center

    Stewart, Sean M.

    2006-01-01

    The time of flight, range and the angle which maximizes the range of a projectile in a linear resisting medium are expressed in analytic form in terms of the recently defined Lambert W function. From the closed-form solutions a number of results characteristic to the motion of the projectile in a linear resisting medium are analytically confirmed,…

  9. Fractionation analysis of oxyanion-forming metals and metalloids in leachates of cement-based materials using ion exchange solid phase extraction.

    PubMed

    Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Lund, Walter

    2009-05-15

    A simple and versatile solid phase extraction (SPE) method has been developed to determine the anionic species of As, Cr, Mo, Sb, Se and V in leachates of cement mortar and concrete materials in the pH range 3-13. The anionic fractions of these elements were extracted using a strong anion exchanger (SAX) and their concentrations were determined as the difference in element concentration between the sample and the SAX effluent. Inductively coupled plasma mass spectrometry (ICP-MS) was used off-line to analyse solutions before and after passing through the SAX. The extraction method has been developed by optimizing sorbent type, sorbent conditioning and sample percolation rate. Breakthrough volumes and effect of matrix constituents were also studied. It was found that a polymer-based SAX conditioned with a buffer close to the sample pH or in some cases deionised water gave the best retention of the analytes. Optimal conditions were also determined for the quantitative elution of analytes retained on the SAX. Extraction of the cement mortar and concrete leachates showed that most of the elements had similar distribution of anions in both leachate types, and that the distribution was strongly pH dependent. Cr, Mo and V exist in anionic forms in strongly basic leachates (pH>12), and significant fractions of anionic Se were also detected in these solutions. Cr, Mo, Se and V were not determined as anions by the present method in the leachates of pH<12. Anionic As and Sb were found in small fractions in most of the leachates.

  10. Using emergent order to shape a space society

    NASA Technical Reports Server (NTRS)

    Graps, Amara L.

    1993-01-01

    A fast-growing movement in the scientific community is reshaping the way that we view the world around us. The short-hand name for this movement is 'chaos'. Chaos is a science of the global, nonlinear nature of systems. The center of this set of ideas is that simple, deterministic systems can breed complexity. Systems as complex as the human body, ecology, the mind or a human society. While it is true that simple laws can breed complexity, the other side is that complex systems can breed order. It is the latter that I will focus on in this paper. In the past, nonlinear was nearly synonymous with unsolvable because no general analytic solutions exist. Mathematically, an essential difference exists between linear and nonlinear systems. For linear systems, you just break up the complicated system into many simple pieces and patch together the separated solutions for each piece to form a solution to the full problem. In contrast, solutions to a nonlinear system cannot be added to form a new solution. The system must be treated in its full complexity. While it is true that no general analytical approach exists for reducing a complex system such as a society, it can be modeled. The technical involves a mathematical construct called phase space. In this space stable structures can appear which I use as analogies for the stable structures that appear in a complex system such as an ecology, the mind or a society. The common denominator in all of these systems is that they rely on a process called feedback loops. Feedback loops link the microscopic (individual) parts to the macroscopic (global) parts. The key, then, in shaping a space society, is in effectively using feedback loops. This paper will illustrate how one can model a space society by using methods that chaoticists have developed over the last hundred years. And I will show that common threads exist in the modeling of biological, economical, philosophical, and sociological systems.

  11. Terrain Correction on the moving equal area cylindrical map projection of the surface of a reference ellipsoid

    NASA Astrophysics Data System (ADS)

    Ardalan, A.; Safari, A.; Grafarend, E.

    2003-04-01

    An operational algorithm for computing the ellipsoidal terrain correction based on application of closed form solution of the Newton integral in terms of Cartesian coordinates in the cylindrical equal area map projected surface of a reference ellipsoid has been developed. As the first step the mapping of the points on the surface of a reference ellipsoid onto the cylindrical equal area map projection of a cylinder tangent to a point on the surface of reference ellipsoid closely studied and the map projection formulas are computed. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid is considered and the gravitational potential and the vector of gravitational intensity of these mass elements has been computed via the solution of Newton integral in terms of ellipsoidal coordinates. The geographical cross section areas of the selected ellipsoidal mass elements are transferred into cylindrical equal area map projection and based on the transformed area elements Cartesian mass elements with the same height as that of the ellipsoidal mass elements are constructed. Using the close form solution of the Newton integral in terms of Cartesian coordinates the potential of the Cartesian mass elements are computed and compared with the same results based on the application of the ellipsoidal Newton integral over the ellipsoidal mass elements. The results of the numerical computations show that difference between computed gravitational potential of the ellipsoidal mass elements and Cartesian mass element in the cylindrical equal area map projection is of the order of 1.6 × 10-8m^2/s^2 for a mass element with the cross section size of 10 km × 10 km and the height of 1000 m. For a 1 km × 1 km mass element with the same height, this difference is less than 1.5 × 10-4 m^2}/s^2. The results of the numerical computations indicate that a new method for computing the terrain correction based on the closed form solution of the Newton integral in terms of Cartesian coordinates and with accuracy of ellipsoidal terrain correction has been achieved! In this way one can enjoy the simplicity of the solution of the Newton integral in terms of Cartesian coordinates and at the same time the accuracy of the ellipsoidal terrain correction, which is needed for the modern theory of geoid computations.

  12. Gravity Gradient Tensor of Arbitrary 3D Polyhedral Bodies with up to Third-Order Polynomial Horizontal and Vertical Mass Contrasts

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang

    2018-03-01

    During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained between our solutions and other published exact solutions. In addition, stability tests are performed to demonstrate that our exact solutions can safely be used to detect shallow subsurface targets.

  13. Multifactor valuation models of energy futures and options on futures

    NASA Astrophysics Data System (ADS)

    Bertus, Mark J.

    The intent of this dissertation is to investigate continuous time pricing models for commodity derivative contracts that consider mean reversion. The motivation for pricing commodity futures and option on futures contracts leads to improved practical risk management techniques in markets where uncertainty is increasing. In the dissertation closed-form solutions to mean reverting one-factor, two-factor, three-factor Brownian motions are developed for futures contracts. These solutions are obtained through risk neutral pricing methods that yield tractable expressions for futures prices, which are linear in the state variables, hence making them attractive for estimation. These functions, however, are expressed in terms of latent variables (i.e. spot prices, convenience yield) which complicate the estimation of the futures pricing equation. To address this complication a discussion on Dynamic factor analysis is given. This procedure documents latent variables using a Kalman filter and illustrations show how this technique may be used for the analysis. In addition, to the futures contracts closed form solutions for two option models are obtained. Solutions to the one- and two-factor models are tailored solutions of the Black-Scholes pricing model. Furthermore, since these contracts are written on the futures contracts, they too are influenced by the same underlying parameters of the state variables used to price the futures contracts. To conclude, the analysis finishes with an investigation of commodity futures options that incorporate random discrete jumps.

  14. Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B

    PubMed Central

    Scior, Thomas; Mack, Hans-Georg; García, José Antonio Guevara; Koch, Wolfhard

    2008-01-01

    The postulated transition of Bis-Maltolato-OxoVanadium(IV) (BMOV) from its inactive trans- into its cis-aquo-BMOV isomeric form in solution was simulated by means of computational molecular modeling. The rotational barrier was calculated with DFT – B3LYP under a stepwise optimization protocol with STO-3G, 3-21G, 3-21G*, and 6-31G ab initio basis sets. Our computed results are consistent with reports on the putative molecular mechanism of BMOV triggering the insulin-like cellular response (insulin mimetic) as a potent inhibitor of the protein tyrosine phosphatase-1B (PTP-1B). Initially, trans-BMOV is present in its solid dosage form but in aqueous solution, and during oral administration, it is readily converted into a mixture of “open-type” and “closed-type” complexes of cis-aquo-BMOV under equilibrium conditions. However, in the same measure as the “closed-type” complex binds to the cytosolic PTP-1B, it disappears from solution, and the equilibrium shifts towards the “closed-type” species. In full accordance, the computed binding mode of cis-BMOV is energetically favored over sterically hindered trans-BMOV. In view of our earlier report on prodrug hypothesis of vanadium organic compounds the present results suggest that cis-BMOV is the bioactive species. PMID:19920909

  15. Robust Control Design via Linear Programming

    NASA Technical Reports Server (NTRS)

    Keel, L. H.; Bhattacharyya, S. P.

    1998-01-01

    This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garifullin, R. N., E-mail: rustem@matem.anrb.ru; Suleimanov, B. I., E-mail: bisul@mail.r

    An analysis is presented of the effect of weak dispersion on transitions from weak to strong discontinuities in inviscid fluid dynamics. In the neighborhoods of transition points, this effect is described by simultaneous solutions to the Korteweg-de Vries equation u{sub t}'+ uu{sub x}' + u{sub xxx}' = 0 and fifth-order nonautonomous ordinary differential equations. As x{sup 2} + t{sup 2} {yields}{infinity}, the asymptotic behavior of these simultaneous solutions in the zone of undamped oscillations is given by quasi-simple wave solutions to Whitham equations of the form r{sub i}(t, x) = tl{sub i} x/t{sup 2}.

  17. Constructing analytic solutions on the Tricomi equation

    NASA Astrophysics Data System (ADS)

    Ghiasi, Emran Khoshrouye; Saleh, Reza

    2018-04-01

    In this paper, homotopy analysis method (HAM) and variational iteration method (VIM) are utilized to derive the approximate solutions of the Tricomi equation. Afterwards, the HAM is optimized to accelerate the convergence of the series solution by minimizing its square residual error at any order of the approximation. It is found that effect of the optimal values of auxiliary parameter on the convergence of the series solution is not negligible. Furthermore, the present results are found to agree well with those obtained through a closed-form equation available in the literature. To conclude, it is seen that the two are effective to achieve the solution of the partial differential equations.

  18. Spectral methods in general relativity and large Randall-Sundrum II black holes

    NASA Astrophysics Data System (ADS)

    Abdolrahimi, Shohreh; Cattoën, Céline; Page, Don N.; \\\\; Yaghoobpour-Tari, Shima

    2013-06-01

    Using a novel numerical spectral method, we have found solutions for large static Randall-Sundrum II (RSII) black holes by perturbing a numerical AdS5-CFT4 solution to the Einstein equation with a negative cosmological constant Λ that is asymptotically conformal to the Schwarzschild metric. We used a numerical spectral method independent of the Ricci-DeTurck-flow method used by Figueras, Lucietti, and Wiseman for a similar numerical solution. We have compared our black-hole solution to the one Figueras and Wiseman have derived by perturbing their numerical AdS5-CFT4 solution, showing that our solution agrees closely with theirs. We have obtained a closed-form approximation to the metric of the black hole on the brane. We have also deduced the new results that to first order in 1/(-ΛM2), the Hawking temperature and entropy of an RSII static black hole have the same values as the Schwarzschild metric with the same mass, but the horizon area is increased by about 4.7/(-Λ).

  19. A New Standard Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-01

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  20. On traveling waves in beams

    NASA Technical Reports Server (NTRS)

    Leonard, Robert W; Budiansky, Bernard

    1954-01-01

    The basic equations of Timoshenko for the motion of vibrating nonuniform beams, which allow for effects of transverse shear deformation and rotary inertia, are presented in several forms, including one in which the equations are written in the directions of the characteristics. The propagation of discontinuities in moment and shear, as governed by these equations, is discussed. Numerical traveling-wave solutions are obtained for some elementary problems of finite uniform beams for which the propagation velocities of bending and shear discontinuities are taken to be equal. These solutions are compared with modal solutions of Timoshenko's equations and, in some cases, with exact closed solutions. (author)

  1. Mean-variance portfolio selection for defined-contribution pension funds with stochastic salary.

    PubMed

    Zhang, Chubing

    2014-01-01

    This paper focuses on a continuous-time dynamic mean-variance portfolio selection problem of defined-contribution pension funds with stochastic salary, whose risk comes from both financial market and nonfinancial market. By constructing a special Riccati equation as a continuous (actually a viscosity) solution to the HJB equation, we obtain an explicit closed form solution for the optimal investment portfolio as well as the efficient frontier.

  2. Quantum models with energy-dependent potentials solvable in terms of exceptional orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu; Department of Physics, Indiana University Northwest, 3400 Broadway, Gary IN 46408; Roy, Pinaki, E-mail: pinaki@isical.ac.in

    We construct energy-dependent potentials for which the Schrödinger equations admit solutions in terms of exceptional orthogonal polynomials. Our method of construction is based on certain point transformations, applied to the equations of exceptional Hermite, Jacobi and Laguerre polynomials. We present several examples of boundary-value problems with energy-dependent potentials that admit a discrete spectrum and the corresponding normalizable solutions in closed form.

  3. Schwarz maps of algebraic linear ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  4. A Novel Hypercomplex Solution to Kepler's Problem

    NASA Astrophysics Data System (ADS)

    Condurache, C.; Martinuşi, V.

    2007-05-01

    By using a Sundman like regularization, we offer a unified solution to Kepler's problem by using hypercomplex numbers. The fundamental role in this paper is played by the Laplace-Runge-Lenz prime integral and by the hypercomplex numbers algebra. The procedure unifies and generalizes the regularizations offered by Levi-Civita and Kustaanheimo-Stiefel. Closed form hypercomplex expressions for the law of motion and velocity are deduced, together with inedite hypercomplex prime integrals.

  5. MODELING STREAM-AQUIFIER INTERACTIONS WITH LINEAR RESPONSE FUNCTIONS

    EPA Science Inventory

    The problem of stream-aquifer interactions is pertinent to conjunctive-use management of water resources and riparian zone hydrology. Closed form solutions are derived for stream-aquifer interactions in rates and volumes expressed as convolution integrals of impulse response and ...

  6. Simulating Self-Assembly with Simple Models

    NASA Astrophysics Data System (ADS)

    Rapaport, D. C.

    Results from recent molecular dynamics simulations of virus capsid self-assembly are described. The model is based on rigid trapezoidal particles designed to form polyhedral shells of size 60, together with an atomistic solvent. The underlying bonding process is fully reversible. More extensive computations are required than in previous work on icosahedral shells built from triangular particles, but the outcome is a high yield of closed shells. Intermediate clusters have a variety of forms, and bond counts provide a useful classification scheme

  7. Conformational free energy of melts of ring-linear polymer blends.

    PubMed

    Subramanian, Gopinath; Shanbhag, Sachin

    2009-10-01

    The conformational free energy of ring polymers in a blend of ring and linear polymers is investigated using the bond-fluctuation model. Previously established scaling relationships for the free energy of a ring polymer are shown to be valid only in the mean-field sense, and alternative functional forms are investigated. It is shown that it may be difficult to accurately express the total free energy of a ring polymer by a simple scaling argument, or in closed form.

  8. A Compact Formula for Rotations as Spin Matrix Polynomials

    DOE PAGES

    Curtright, Thomas L.; Fairlie, David B.; Zachos, Cosmas K.

    2014-08-12

    Group elements of SU(2) are expressed in closed form as finite polynomials of the Lie algebra generators, for all definite spin representations of the rotation group. Here, the simple explicit result exhibits connections between group theory, combinatorics, and Fourier analysis, especially in the large spin limit. Salient intuitive features of the formula are illustrated and discussed.

  9. Nonlinear pressure-flow relationships for passive microfluidic valves.

    PubMed

    Seker, Erkin; Leslie, Daniel C; Haj-Hariri, Hossein; Landers, James P; Utz, Marcel; Begley, Matthew R

    2009-09-21

    An analytical solution is presented for the nonlinear pressure-flow relationship of deformable passive valves, which are formed by bonding a deformable film over etched channels separated by a weir. A fluidic pathway connecting the channels is opened when the upstream pressure creates a tunnel along a predefined narrow strip where the film is not bonded to the weir. When the width of the strip is comparable to the inlet channel width, the predicted closed-form pressure-flow rate relationship is in excellent agreement with experiments, which determine pressures by measuring film deflections for prescribed flow rates. The validated closed-form models involve no fitting parameters, and provide the foundation to design passive diodes with specific nonlinear pressure-flow characteristics.

  10. Adhesive-bonded scarf and stepped-lap joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Continuum mechanics solutions are derived for the static load-carrying capacity of scarf and stepped-lap adhesive-bonded joints. The analyses account for adhesive plasticity and adherend stiffness imbalance and thermal mismatch. The scarf joint solutions include a simple algebraic formula which serves as a close lower bound, within a small fraction of a per cent of the true answer for most practical geometries and materials. Digital computer programs were developed and, for the stepped-lap joints, the critical adherend and adhesive stresses are computed for each step. The scarf joint solutions exhibit grossly different behavior from that for double-lap joints for long overlaps inasmuch as that the potential bond shear strength continues to increase with indefinitely long overlaps on the scarf joints. The stepped-lap joint solutions exhibit some characteristics of both the scarf and double-lap joints. The stepped-lap computer program handles arbitrary (different) step lengths and thickness and the solutions obtained have clarified potentially weak design details and the remedies. The program has been used effectively to optimize the joint proportions.

  11. Symmetric tops in combined electric fields: Conditional quasisolvability via the quantum Hamilton-Jacobi theory

    NASA Astrophysics Data System (ADS)

    Schatz, Konrad; Friedrich, Bretislav; Becker, Simon; Schmidt, Burkhard

    2018-05-01

    We make use of the quantum Hamilton-Jacobi (QHJ) theory to investigate conditional quasisolvability of the quantum symmetric top subject to combined electric fields (symmetric top pendulum). We derive the conditions of quasisolvability of the time-independent Schrödinger equation as well as the corresponding finite sets of exact analytic solutions. We do so for this prototypical trigonometric system as well as for its anti-isospectral hyperbolic counterpart. An examination of the algebraic and numerical spectra of these two systems reveals mutually closely related patterns. The QHJ approach allows us to retrieve the closed-form solutions for the spherical and planar pendula and the Razavy system that had been obtained in our earlier work via supersymmetric quantum mechanics as well as to find a cornucopia of additional exact analytic solutions.

  12. Chameleon stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzhunushaliev, Vladimir; Institute of Physicotechnical Problems and Material Science of the NAS of the Kyrgyz Republic, 265 a, Chui Street, Bishkek, 720071; Folomeev, Vladimir

    2011-10-15

    We consider a gravitating spherically symmetric configuration consisting of a scalar field nonminimally coupled to ordinary matter in the form of a perfect fluid. For this system we find static, regular, asymptotically flat solutions for both relativistic and nonrelativistic cases. It is shown that the presence of the nonminimal interaction leads to substantial changes both in the radial matter distribution of the star and in the star's total mass. A simple stability test indicates that, for the choice of parameters used in the paper, the solutions are unstable.

  13. Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation

    NASA Astrophysics Data System (ADS)

    Ormerod, Christopher M.

    2014-01-01

    We identify a periodic reduction of the non-autonomous lattice potential Korteweg-de Vries equation with the additive discrete Painlevé equation with E_6^{(1)} symmetry. We present a description of a set of symmetries of the reduced equations and their relations to the symmetries of the discrete Painlevé equation. Finally, we exploit the simple symmetric form of the reduced equations to find rational and hypergeometric solutions of this discrete Painlevé equation.

  14. Self-assembled pentacenequinone derivative for trace detection of picric acid.

    PubMed

    Bhalla, Vandana; Gupta, Ankush; Kumar, Manoj; Rao, D S Shankar; Prasad, S Krishna

    2013-02-01

    Pentacenequinone derivative 3 forms luminescent supramolecular aggregates both in bulk as well as in solution phase. In bulk phase at high temperature, long-range stacking of columns leads to formation of stable and ordered columnar mesophase. Further, derivative 3 works as sensitive chemosensor for picric acid (PA) and gel-coated paper strips detect PA at nanomolar level and provide a simple, portable, and low-cost method for detection of PA in aqueous solution, vapor phase, and in contact mode.

  15. Hypergeometric Equation in Modeling Relativistic Isotropic Sphere

    NASA Astrophysics Data System (ADS)

    Thirukkanesh, S.; Ragel, F. C.

    2014-04-01

    We study the Einstein system of equations in static spherically symmetric spacetimes. We obtained classes of exact solutions to the Einstein system by transforming the condition for pressure isotropy to a hypergeometric equation choosing a rational form for one of the gravitational potentials. The solutions are given in simple form that is a desirable requisite to study the behavior of relativistic compact objects in detail. A physical analysis indicate that our models satisfy all the fundamental requirements of realistic star and match smoothly with the exterior Schwarzschild metric. The derived masses and densities are consistent with the previously reported experimental and theoretical studies describing strange stars. The models satisfy the standard energy conditions required by normal matter.

  16. A new and simple resonance Rayleigh scattering method for human serum albumin using graphite oxide as probe.

    PubMed

    Wang, Shengmian; Xu, Lili; Wang, Lisheng; Liang, Aihui; Jiang, Zhiliang

    2013-01-01

    Graphite oxide (GO) was prepared by the Hummer procedure, and can be dispersed to stable colloid solution by ultrasonic wave. The GO exhibited an absorption peak at 313 nm, and a resonance Rayleigh scattering (RRS) peak at 490 nm. In pH 4.6 HAc-NaAc buffer solution, human serum albumin (HSA) combined with GO probe to form large HSA-GO particles that caused the RRS peak increasing at 490 nm. The increased RRS intensity was linear to HSA concentration in the range 0.50-200 µg/mL. Thus, a new and simple RRS method was proposed for the determination of HSA in samples, with a recovery of 98.1-104%. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Optimal Mortgage Refinancing: A Closed Form Solution

    PubMed Central

    Agarwal, Sumit; Driscoll, John C.; Laibson, David I.

    2013-01-01

    We derive the first closed-form optimal refinancing rule: Refinance when the current mortgage interest rate falls below the original rate by at least 1ψ[ϕ+W(−exp(−ϕ))]. In this formula W(.) is the Lambert W-function, ψ=2(ρ+λ)σ,ϕ=1+ψ(ρ+λ)κ∕M(1−τ), ρ is the real discount rate, λ is the expected real rate of exogenous mortgage repayment, σ is the standard deviation of the mortgage rate, κ/M is the ratio of the tax-adjusted refinancing cost and the remaining mortgage value, and τ is the marginal tax rate. This expression is derived by solving a tractable class of refinancing problems. Our quantitative results closely match those reported by researchers using numerical methods. PMID:25843977

  18. CuInSe₂ thin-film solar cells with 7.72 % efficiency prepared via direct coating of a metal salts/alcohol-based precursor solution.

    PubMed

    Ahn, Sejin; Son, Tae Hwa; Cho, Ara; Gwak, Jihye; Yun, Jae Ho; Shin, Keeshik; Ahn, Seoung Kyu; Park, Sang Hyun; Yoon, Kyunghoon

    2012-09-01

    A simple direct solution coating process for forming CuInSe₂ (CIS) thin films was described, employing a low-cost and environmentally friendly precursor solution. The precursor solution was prepared by mixing metal acetates, ethanol, and ethanolamine. The facile formation of a precursor solution without the need to prefabricate nanoparticles enables a rapid and easy processing, and the high stability of the solution in air further ensures the precursor preparation and the film deposition in ambient conditions without a glove box. The thin film solar cell fabricated with the absorber film prepared by this route showed an initial conversion efficiency of as high as 7.72 %. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of stochastic gating on channel-facilitated transport of non-interacting and strongly repelling solutes.

    PubMed

    Berezhkovskii, Alexander M; Bezrukov, Sergey M

    2017-08-28

    Ligand- or voltage-driven stochastic gating-the structural rearrangements by which the channel switches between its open and closed states-is a fundamental property of biological membrane channels. Gating underlies the channel's ability to respond to different stimuli and, therefore, to be functionally regulated by the changing environment. The accepted understanding of the gating effect on the solute flux through the channel is that the mean flux is the product of the flux through the open channel and the probability of finding the channel in the open state. Here, using a diffusion model of channel-facilitated transport, we show that this is true only when the gating is much slower than the dynamics of solute translocation through the channel. If this condition breaks, the mean flux could differ from this simple estimate by orders of magnitude.

  20. Effect of stochastic gating on channel-facilitated transport of non-interacting and strongly repelling solutes

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Bezrukov, Sergey M.

    2017-08-01

    Ligand- or voltage-driven stochastic gating—the structural rearrangements by which the channel switches between its open and closed states—is a fundamental property of biological membrane channels. Gating underlies the channel's ability to respond to different stimuli and, therefore, to be functionally regulated by the changing environment. The accepted understanding of the gating effect on the solute flux through the channel is that the mean flux is the product of the flux through the open channel and the probability of finding the channel in the open state. Here, using a diffusion model of channel-facilitated transport, we show that this is true only when the gating is much slower than the dynamics of solute translocation through the channel. If this condition breaks, the mean flux could differ from this simple estimate by orders of magnitude.

  1. Accelerating the weighted histogram analysis method by direct inversion in the iterative subspace.

    PubMed

    Zhang, Cheng; Lai, Chun-Liang; Pettitt, B Montgomery

    The weighted histogram analysis method (WHAM) for free energy calculations is a valuable tool to produce free energy differences with the minimal errors. Given multiple simulations, WHAM obtains from the distribution overlaps the optimal statistical estimator of the density of states, from which the free energy differences can be computed. The WHAM equations are often solved by an iterative procedure. In this work, we use a well-known linear algebra algorithm which allows for more rapid convergence to the solution. We find that the computational complexity of the iterative solution to WHAM and the closely-related multiple Bennett acceptance ratio (MBAR) method can be improved by using the method of direct inversion in the iterative subspace. We give examples from a lattice model, a simple liquid and an aqueous protein solution.

  2. Growth and dissolution kinetics of tetragonal lysozyme

    NASA Technical Reports Server (NTRS)

    Monaco, L. A.; Rosenberger, F.

    1993-01-01

    The growth and dissolution kinetics of lysozyme in a 25 ml solution bridge inside a closed growth cell was investigated. It was found that, under all growth conditions, the growth habit forming (110) and (101) faces grew through layer spreading with different growth rate dependence on supersaturation/temperature. On the other hand, (100) faces which formed only at low temperatures underwent a thermal roughening transition around 12 C.

  3. Characteristics of HgS nanoparticles formed in hair by a chemical reaction

    NASA Astrophysics Data System (ADS)

    Patriarche, G.; Walter, P.; Van Elslande, E.; Ayache, J.; Castaing, J.

    2013-01-01

    A chemical reaction, derived from an ancient recipe for hair dyeing, is used to precipitate nanoparticles of mercury sulphide in hair by the simple process of immersion in a water solution of Ca(OH)2 and HgO. After several days, HgS nanoparticles appear throughout the hair and are particularly numerous in the various interfaces. The formation of these nanoparticles has been studied by analytical and atomic resolution electron microscopy. High resolution quantitative analysis allowed the determination of two varieties of HgS precipitate crystal structures formed: a hexagonal cinnabar and a cubic metacinnabar structure. This very simple process of a chemical reaction in hair is a particularly inexpensive way to fabricate semiconductor sulphide nanoparticles with specific properties.

  4. The Form of the Solutions of the Linear Integro-Differential Equations of Subsonic Aeroelasticity.

    DTIC Science & Technology

    1979-09-01

    coefficients w (0) are given in Table 3; it V follows that, for T > 0 and (E - K v2) non-singular, the inverse transform of M- ) has the form, using (B-I) V...degree of freedom system by expanding )M- I in the form of equation (35), obtaining its inverse transform using the v -1results of Appendix A and hence...obtaining the inverse transform of M- l . The two-dimensional case, when the characteristic equation has a zero root, is not as simple. * Assuming all

  5. Anisotropic extension of Finch and Skea stellar model

    NASA Astrophysics Data System (ADS)

    Sharma, Ranjan; Das, Shyam; Thirukkanesh, S.

    2017-12-01

    In this paper, the spacetime geometry of Finch and Skea [Class. Quantum Gravity 6:467, 1989] has been utilized to obtain closed-form solutions for a spherically symmetric anisotropic matter distribution. By examining its physical admissibility, we have shown that the class of solutions can be used as viable models for observed pulsars. In particular, a specific class of solutions can be used as an `anisotropic switch' to examine the impact of anisotropy on the gross physical properties of a stellar configuration. Accordingly, the mass-radius relationship has been analyzed.

  6. Analytical Solution for Optimum Design of Furrow Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Kiwan, M. E.

    1996-05-01

    An analytical solution for the optimum design of furrow irrigation systems is derived. The non-linear calculus optimization method is used to formulate a general form for designing the optimum system elements under circumstances of maximizing the water application efficiency of the system during irrigation. Different system bases and constraints are considered in the solution. A full irrigation water depth is considered to be achieved at the tail of the furrow line. The solution is based on neglecting the recession and depletion times after off-irrigation. This assumption is valid in the case of open-end (free gradient) furrow systems rather than closed-end (closed dike) systems. Illustrative examples for different systems are presented and the results are compared with the output obtained using an iterative numerical solution method. The final derived solution is expressed as a function of the furrow length ratio (the furrow length to the water travelling distance). The function of water travelling developed by Reddy et al. is considered for reaching the optimum solution. As practical results from the study, the optimum furrow elements for free gradient systems can be estimated to achieve the maximum application efficiency, i.e. furrow length, water inflow rate and cutoff irrigation time.

  7. A Simple Method for Decreasing the Liquid Junction Potential in a Flow-through-Type Differential pH Sensor Probe Consisting of pH-FETs by Exerting Spatiotemporal Control of the Liquid Junction

    PubMed Central

    Yamada, Akira; Mohri, Satoshi; Nakamura, Michihiro; Naruse, Keiji

    2015-01-01

    The liquid junction potential (LJP), the phenomenon that occurs when two electrolyte solutions of different composition come into contact, prevents accurate measurements in potentiometry. The effect of the LJP is usually remarkable in measurements of diluted solutions with low buffering capacities or low ion concentrations. Our group has constructed a simple method to eliminate the LJP by exerting spatiotemporal control of a liquid junction (LJ) formed between two solutions, a sample solution and a baseline solution (BLS), in a flow-through-type differential pH sensor probe. The method was contrived based on microfluidics. The sensor probe is a differential measurement system composed of two ion-sensitive field-effect transistors (ISFETs) and one Ag/AgCl electrode. With our new method, the border region of the sample solution and BLS is vibrated in order to mix solutions and suppress the overshoot after the sample solution is suctioned into the sensor probe. Compared to the conventional method without vibration, our method shortened the settling time from over two min to 15 s and reduced the measurement error by 86% to within 0.060 pH. This new method will be useful for improving the response characteristics and decreasing the measurement error of many apparatuses that use LJs. PMID:25835300

  8. Simple synthesis of graphene nanocomposites MgO-rGO and Fe2O3-rGO for multifunctional applications

    NASA Astrophysics Data System (ADS)

    Abdel-Aal, Seham K.; Ionov, Andrey; Mozhchil, R. N.; Naqvi, Alim H.

    2018-05-01

    Hummer's method was used to prepare graphene oxide (GO) by chemical exfoliation of graphite. Simple precipitation method was used for the preparation of hybrid nanocomposites MgO-rGO and Fe2O3-rGO. A 0.3 Molar of corresponding metal nitrate solution and GO solution are used for the preparation process. XRD, FT-IR, and XPS were used to characterize the prepared nanocomposites. The reduction of GO into reduced rGO in the formed nanocomposites was confirmed. Morphological characterization showed the formation of needle-shaped nanocrystals of MgO successfully grown on graphene nanosheet with average crystallite size 8.4 nm. Hematite nanocomposite Fe2O3-rGO forms rod-shaped crystals with average crystallite size 27.5 nm. The saturation magnetization observed for Fe2O3-rGO is less than reported value for the pure Fe2O3 nanoparticles. Thermal properties of as-prepared hybrid nanocomposites MgO-rGO and Fe2O3-rGO showed thermal stability of the prepared nanocomposite over long range of temperature.

  9. Mean-Variance Portfolio Selection for Defined-Contribution Pension Funds with Stochastic Salary

    PubMed Central

    Zhang, Chubing

    2014-01-01

    This paper focuses on a continuous-time dynamic mean-variance portfolio selection problem of defined-contribution pension funds with stochastic salary, whose risk comes from both financial market and nonfinancial market. By constructing a special Riccati equation as a continuous (actually a viscosity) solution to the HJB equation, we obtain an explicit closed form solution for the optimal investment portfolio as well as the efficient frontier. PMID:24782667

  10. Laser Melt/Particle Injection Processing; Characterization and Performance of Materials

    DTIC Science & Technology

    1989-05-01

    cases of the present more general solution. Closed-form solutions of the elastic field for both the inclusion with nonshear eigenstrain and 27 N GEO...ellipsoidal inclusion with shear eigenstrain in the half-space are obtained by the combination of present innovative method and Mindlin’s point force... eigenstrain which had been accepted by the Journal of Applied Mechanics, and are incorporated herein. Elastic Constants of Films Determined by the

  11. The natural frequencies of symmetric angle-ply laminates derived from eigensensitivity analysis

    NASA Technical Reports Server (NTRS)

    Reiss, Robert; Ramachandran, S.; Qian, BO

    1988-01-01

    In this paper, a new closed-form approximate solution for the natural frequencies of symmetric rectangular angle-ply laminates simply supported on all four edges is derived. The solution, obtained from eigensensitivity analysis, is expressed as a truncated Fourier series in the ply angle. Results show that the prediction for the fundamental frequency is quite accurate for engineering applications, often within 1-2 percent of the true frequency.

  12. Singular perturbation analysis of AOTV-related trajectory optimization problems

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Bae, Gyoung H.

    1990-01-01

    The problem of real time guidance and optimal control of Aeroassisted Orbit Transfer Vehicles (AOTV's) was addressed using singular perturbation theory as an underlying method of analysis. Trajectories were optimized with the objective of minimum energy expenditure in the atmospheric phase of the maneuver. Two major problem areas were addressed: optimal reentry, and synergetic plane change with aeroglide. For the reentry problem, several reduced order models were analyzed with the objective of optimal changes in heading with minimum energy loss. It was demonstrated that a further model order reduction to a single state model is possible through the application of singular perturbation theory. The optimal solution for the reduced problem defines an optimal altitude profile dependent on the current energy level of the vehicle. A separate boundary layer analysis is used to account for altitude and flight path angle dynamics, and to obtain lift and bank angle control solutions. By considering alternative approximations to solve the boundary layer problem, three guidance laws were derived, each having an analytic feedback form. The guidance laws were evaluated using a Maneuvering Reentry Research Vehicle model and all three laws were found to be near optimal. For the problem of synergetic plane change with aeroglide, a difficult terminal boundary layer control problem arises which to date is found to be analytically intractable. Thus a predictive/corrective solution was developed to satisfy the terminal constraints on altitude and flight path angle. A composite guidance solution was obtained by combining the optimal reentry solution with the predictive/corrective guidance method. Numerical comparisons with the corresponding optimal trajectory solutions show that the resulting performance is very close to optimal. An attempt was made to obtain numerically optimized trajectories for the case where heating rate is constrained. A first order state variable inequality constraint was imposed on the full order AOTV point mass equations of motion, using a simple aerodynamic heating rate model.

  13. Closed-form solution of decomposable stochastic models

    NASA Technical Reports Server (NTRS)

    Sjogren, Jon A.

    1990-01-01

    Markov and semi-Markov processes are increasingly being used in the modeling of complex reconfigurable systems (fault tolerant computers). The estimation of the reliability (or some measure of performance) of the system reduces to solving the process for its state probabilities. Such a model may exhibit numerous states and complicated transition distributions, contributing to an expensive and numerically delicate solution procedure. Thus, when a system exhibits a decomposition property, either structurally (autonomous subsystems), or behaviorally (component failure versus reconfiguration), it is desirable to exploit this decomposition in the reliability calculation. In interesting cases there can be failure states which arise from non-failure states of the subsystems. Equations are presented which allow the computation of failure probabilities of the total (combined) model without requiring a complete solution of the combined model. This material is presented within the context of closed-form functional representation of probabilities as utilized in the Symbolic Hierarchical Automated Reliability and Performance Evaluator (SHARPE) tool. The techniques adopted enable one to compute such probability functions for a much wider class of systems at a reduced computational cost. Several examples show how the method is used, especially in enhancing the versatility of the SHARPE tool.

  14. First-order analytic propagation of satellites in the exponential atmosphere of an oblate planet

    NASA Astrophysics Data System (ADS)

    Martinusi, Vladimir; Dell'Elce, Lamberto; Kerschen, Gaëtan

    2017-04-01

    The paper offers the fully analytic solution to the motion of a satellite orbiting under the influence of the two major perturbations, due to the oblateness and the atmospheric drag. The solution is presented in a time-explicit form, and takes into account an exponential distribution of the atmospheric density, an assumption that is reasonably close to reality. The approach involves two essential steps. The first one concerns a new approximate mathematical model that admits a closed-form solution with respect to a set of new variables. The second step is the determination of an infinitesimal contact transformation that allows to navigate between the new and the original variables. This contact transformation is obtained in exact form, and afterwards a Taylor series approximation is proposed in order to make all the computations explicit. The aforementioned transformation accommodates both perturbations, improving the accuracy of the orbit predictions by one order of magnitude with respect to the case when the atmospheric drag is absent from the transformation. Numerical simulations are performed for a low Earth orbit starting at an altitude of 350 km, and they show that the incorporation of drag terms into the contact transformation generates an error reduction by a factor of 7 in the position vector. The proposed method aims at improving the accuracy of analytic orbit propagation and transforming it into a viable alternative to the computationally intensive numerical methods.

  15. Time-optimal Aircraft Pursuit-evasion with a Weapon Envelope Constraint

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1990-01-01

    The optimal pursuit-evasion problem between two aircraft including a realistic weapon envelope is analyzed using differential game theory. Six order nonlinear point mass vehicle models are employed and the inclusion of an arbitrary weapon envelope geometry is allowed. The performance index is a linear combination of flight time and the square of the vehicle acceleration. Closed form solution to this high-order differential game is then obtained using feedback linearization. The solution is in the form of a feedback guidance law together with a quartic polynomial for time-to-go. Due to its modest computational requirements, this nonlinear guidance law is useful for on-board real-time implementation.

  16. Formation and enhanced biocidal activity of water-dispersable organic nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Haifei; Wang, Dong; Butler, Rachel; Campbell, Neil L.; Long, James; Tan, Bien; Duncalf, David J.; Foster, Alison J.; Hopkinson, Andrew; Taylor, David; Angus, Doris; Cooper, Andrew I.; Rannard, Steven P.

    2008-08-01

    Water-insoluble organic compounds are often used in aqueous environments in various pharmaceutical and consumer products. To overcome insolubility, the particles are dispersed in a medium during product formation, but large particles that are formed may affect product performance and safety. Many techniques have been used to produce nanodispersions-dispersions with nanometre-scale dimensions-that have properties similar to solutions. However, making nanodispersions requires complex processing, and it is difficult to achieve stability over long periods. Here we report a generic method for producing organic nanoparticles with a combination of modified emulsion-templating and freeze-drying. The dry powder composites formed using this method are highly porous, stable and form nanodispersions upon simple addition of water. Aqueous nanodispersions of Triclosan (a commercial antimicrobial agent) produced with this approach show greater activity than organic/aqueous solutions of Triclosan.

  17. Abdominal drainage following cholecystectomy: high, low, or no suction?

    PubMed Central

    McCormack, T. T.; Abel, P. D.; Collins, C. D.

    1983-01-01

    A prospective trial to assess the effect of suction in an abdominal drain following cholecystectomy was carried out. Three types of closed drainage system were compared: a simple tube drain, a low negative pressure drain, and a high negative pressure drain: 120 consecutive patients undergoing cholecystectomy were randomly allocated to one of the three drainage groups. There was no significant difference in postoperative pyrexia, wound infection, chest infection, or hospital stay. This study failed to demonstrate any clinically useful difference between high negative pressure, low negative pressure, and static drainage system were compared: a simple tube drain, a low negative used, suction is not necessary and a simple tube drain (greater than 6 mm internal diameter) is the most effective form of drainage. PMID:6614773

  18. Occupation probabilities and fluctuations in the asymmetric simple inclusion process

    NASA Astrophysics Data System (ADS)

    Reuveni, Shlomi; Hirschberg, Ori; Eliazar, Iddo; Yechiali, Uri

    2014-04-01

    The asymmetric simple inclusion process (ASIP), a lattice-gas model of unidirectional transport and aggregation, was recently proposed as an "inclusion" counterpart of the asymmetric simple exclusion process. In this paper we present an exact closed-form expression for the probability that a given number of particles occupies a given set of consecutive lattice sites. Our results are expressed in terms of the entries of Catalan's trapezoids—number arrays which generalize Catalan's numbers and Catalan's triangle. We further prove that the ASIP is asymptotically governed by the following: (i) an inverse square-root law of occupation, (ii) a square-root law of fluctuation, and (iii) a Rayleigh law for the distribution of interexit times. The universality of these results is discussed.

  19. Automatic Generation of Algorithms for the Statistical Analysis of Planetary Nebulae Images

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd

    2004-01-01

    Analyzing data sets collected in experiments or by observations is a Core scientific activity. Typically, experimentd and observational data are &aught with uncertainty, and the analysis is based on a statistical model of the conjectured underlying processes, The large data volumes collected by modern instruments make computer support indispensible for this. Consequently, scientists spend significant amounts of their time with the development and refinement of the data analysis programs. AutoBayes [GF+02, FS03] is a fully automatic synthesis system for generating statistical data analysis programs. Externally, it looks like a compiler: it takes an abstract problem specification and translates it into executable code. Its input is a concise description of a data analysis problem in the form of a statistical model as shown in Figure 1; its output is optimized and fully documented C/C++ code which can be linked dynamically into the Matlab and Octave environments. Internally, however, it is quite different: AutoBayes derives a customized algorithm implementing the given model using a schema-based process, and then further refines and optimizes the algorithm into code. A schema is a parameterized code template with associated semantic constraints which define and restrict the template s applicability. The schema parameters are instantiated in a problem-specific way during synthesis as AutoBayes checks the constraints against the original model or, recursively, against emerging sub-problems. AutoBayes schema library contains problem decomposition operators (which are justified by theorems in a formal logic in the domain of Bayesian networks) as well as machine learning algorithms (e.g., EM, k-Means) and nu- meric optimization methods (e.g., Nelder-Mead simplex, conjugate gradient). AutoBayes augments this schema-based approach by symbolic computation to derive closed-form solutions whenever possible. This is a major advantage over other statistical data analysis systems which use numerical approximations even in cases where closed-form solutions exist. AutoBayes is implemented in Prolog and comprises approximately 75.000 lines of code. In this paper, we take one typical scientific data analysis problem-analyzing planetary nebulae images taken by the Hubble Space Telescope-and show how AutoBayes can be used to automate the implementation of the necessary anal- ysis programs. We initially follow the analysis described by Knuth and Hajian [KHO2] and use AutoBayes to derive code for the published models. We show the details of the code derivation process, including the symbolic computations and automatic integration of library procedures, and compare the results of the automatically generated and manually implemented code. We then go beyond the original analysis and use AutoBayes to derive code for a simple image segmentation procedure based on a mixture model which can be used to automate a manual preproceesing step. Finally, we combine the original approach with the simple segmentation which yields a more detailed analysis. This also demonstrates that AutoBayes makes it easy to combine different aspects of data analysis.

  20. Multifunctional thin film surface

    DOEpatents

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  1. Design equations for the assessment and FRP-strengthening of reinforced rectangular concrete columns under combined biaxial bending and axial loads

    NASA Astrophysics Data System (ADS)

    Alessandri, S.; Monti, G.

    2008-05-01

    A simple procedure is proposed for the assessment of reinforced rectangular concrete columns under combined biaxial bending and axial loads and for the design of a correct amount of FRP-strengthening for underdesigned concrete sections. Approximate closed-form equations are developed based on the load contour method originally proposed by Bresler for reinforced concrete sections. The 3D failure surface is approximated along its contours, at a constant axial load, by means of equations given as the sum of the acting/resisting moment ratio in the directions of principal axes of the sections, raised to a power depending on the axial load, the steel reinforcement ratio, and the section shape. The method is extended to FRP-strengthened sections. Moreover, to make it possible to apply the load contour method in a more practical way, simple closed-form equations are developed for rectangular reinforced concrete sections with a two-way steel reinforcement and FRP strengthenings on each side. A comparison between the approach proposed and the fiber method (which is considered exact) shows that the simplified equations correctly represent the section interaction diagram.

  2. The role of shape complexity in the detection of closed contours.

    PubMed

    Wilder, John; Feldman, Jacob; Singh, Manish

    2016-09-01

    The detection of contours in noise has been extensively studied, but the detection of closed contours, such as the boundaries of whole objects, has received relatively little attention. Closed contours pose substantial challenges not present in the simple (open) case, because they form the outlines of whole shapes and thus take on a range of potentially important configural properties. In this paper we consider the detection of closed contours in noise as a probabilistic decision problem. Previous work on open contours suggests that contour complexity, quantified as the negative log probability (Description Length, DL) of the contour under a suitably chosen statistical model, impairs contour detectability; more complex (statistically surprising) contours are harder to detect. In this study we extended this result to closed contours, developing a suitable probabilistic model of whole shapes that gives rise to several distinct though interrelated measures of shape complexity. We asked subjects to detect either natural shapes (Exp. 1) or experimentally manipulated shapes (Exp. 2) embedded in noise fields. We found systematic effects of global shape complexity on detection performance, demonstrating how aspects of global shape and form influence the basic process of object detection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A three-dimensional semi-analytical solution for predicting drug release through the orifice of a spherical device.

    PubMed

    Simon, Laurent; Ospina, Juan

    2016-07-25

    Three-dimensional solute transport was investigated for a spherical device with a release hole. The governing equation was derived using the Fick's second law. A mixed Neumann-Dirichlet condition was imposed at the boundary to represent diffusion through a small region on the surface of the device. The cumulative percentage of drug released was calculated in the Laplace domain and represented by the first term of an infinite series of Legendre and modified Bessel functions of the first kind. Application of the Zakian algorithm yielded the time-domain closed-form expression. The first-order solution closely matched a numerical solution generated by Mathematica(®). The proposed method allowed computation of the characteristic time. A larger surface pore resulted in a smaller effective time constant. The agreement between the numerical solution and the semi-analytical method improved noticeably as the size of the orifice increased. It took four time constants for the device to release approximately ninety-eight of its drug content. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing.

    PubMed

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang-Yul

    2012-10-05

    Arc discharge in solution, generated by applying a high voltage of unipolar pulsed dc to electrodes of Ag and Pt, was used as a method to form Ag/Pt bimetallic nanocomposites via electrode erosion by the effects of the electric arc at the cathode (Ag rod) and the sputtering at the anode (Pt rod). Ag/Pt bimetallic nanocomposites were formed as colloidal particles dispersed in solution via the reduction of hydrogen radicals generated during discharge without the addition of chemical precursor or reducing agent. At a discharge time of 30 s, the fine bimetallic nanoparticles with a mean particle size of approximately 5 nm were observed by transmission electron microscopy (TEM). With increasing discharge time, the bimetallic nanoparticle size tended to increase by forming an agglomeration. The presence of the relatively small amount of Pt dispersed in the Ag matrix could be observed by the analytical mapping mode of energy-dispersive x-ray spectroscopy and high-resolution TEM. This demonstrated that the synthesized particle was in the form of a nanocomposite. No contamination of other chemical substances was detected by x-ray photoelectron spectroscopy. Hence, solution plasma could be a clean and simple process to effectively synthesize Ag/Pt bimetallic nanocomposites and it is expected to be widely applicable in the preparation of several types of nanoparticle.

  5. Gain weighted eigenspace assignment

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Andrisani, Dominick, II

    1994-01-01

    This report presents the development of the gain weighted eigenspace assignment methodology. This provides a designer with a systematic methodology for trading off eigenvector placement versus gain magnitudes, while still maintaining desired closed-loop eigenvalue locations. This is accomplished by forming a cost function composed of a scalar measure of error between desired and achievable eigenvectors and a scalar measure of gain magnitude, determining analytical expressions for the gradients, and solving for the optimal solution by numerical iteration. For this development the scalar measure of gain magnitude is chosen to be a weighted sum of the squares of all the individual elements of the feedback gain matrix. An example is presented to demonstrate the method. In this example, solutions yielding achievable eigenvectors close to the desired eigenvectors are obtained with significant reductions in gain magnitude compared to a solution obtained using a previously developed eigenspace (eigenstructure) assignment method.

  6. Thin airfoil theory based on approximate solution of the transonic flow equation

    NASA Technical Reports Server (NTRS)

    Spreiter, John R; Alksne, Alberta Y

    1957-01-01

    A method is presented for the approximate solution of the nonlinear equations transonic flow theory. Solutions are found for two-dimensional flows at a Mach number of 1 and for purely subsonic and purely supersonic flows. Results are obtained in closed analytic form for a large and significant class of nonlifting airfoils. At a Mach number of 1 general expressions are given for the pressure distribution on an airfoil of specified geometry and for the shape of an airfoil having a prescribed pressure distribution. Extensive comparisons are made with available data, particularly for a Mach number of 1, and with existing solutions.

  7. The Fundamental Solutions for the Stress Intensity Factors of Modes I, II And III. The Axially Symmetric Problem

    NASA Astrophysics Data System (ADS)

    Rogowski, B.

    2015-05-01

    The subject of the paper are Green's functions for the stress intensity factors of modes I, II and III. Green's functions are defined as a solution to the problem of an elastic, transversely isotropic solid with a penny-shaped or an external crack under general axisymmetric loadings acting along a circumference on the plane parallel to the crack plane. Exact solutions are presented in a closed form for the stress intensity factors under each type of axisymmetric ring forces as fundamental solutions. Numerical examples are employed and conclusions which can be utilized in engineering practice are formulated.

  8. Simple metric for a magnetized, spinning, deformed mass

    NASA Astrophysics Data System (ADS)

    Manko, V. S.; Ruiz, E.

    2018-05-01

    We present and discuss a 4-parameter stationary axisymmetric solution of the Einstein-Maxwell equations, which is able to describe the exterior field of a rotating magnetized deformed mass. The solution arises as a system of two overlapping corotating magnetized nonequal black holes or hyperextreme disks, and we write it in a concise explicit form that is very suitable for concrete applications. An interesting peculiar feature of this electrovac solution is that it does not develop massless ring singularities outside the stationary limit surface, its first four electric multipole moments being equal to zero; it also has a nontrivial extreme limit, which we elaborate completely in terms of four polynomial factors.

  9. On base station cooperation using statistical CSI in jointly correlated MIMO downlink channels

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Jiang, Bin; Jin, Shi; Gao, Xiqi; Wong, Kai-Kit

    2012-12-01

    This article studies the transmission of a single cell-edge user's signal using statistical channel state information at cooperative base stations (BSs) with a general jointly correlated multiple-input multiple-output (MIMO) channel model. We first present an optimal scheme to maximize the ergodic sum capacity with per-BS power constraints, revealing that the transmitted signals of all BSs are mutually independent and the optimum transmit directions for each BS align with the eigenvectors of the BS's own transmit correlation matrix of the channel. Then, we employ matrix permanents to derive a closed-form tight upper bound for the ergodic sum capacity. Based on these results, we develop a low-complexity power allocation solution using convex optimization techniques and a simple iterative water-filling algorithm (IWFA) for power allocation. Finally, we derive a necessary and sufficient condition for which a beamforming approach achieves capacity for all BSs. Simulation results demonstrate that the upper bound of ergodic sum capacity is tight and the proposed cooperative transmission scheme increases the downlink system sum capacity considerably.

  10. Convoluted Quasi Sturmian basis for the two-electron continuum

    NASA Astrophysics Data System (ADS)

    Ancarani, Lorenzo Ugo; Zaytsev, A. S.; Zaytsev, S. A.

    2016-09-01

    In the construction of solutions for the Coulomb three-body scattering problem one encounters a series of mathematical and numerical difficulties, one of which are the cumbersome boundary conditions the wave function should obey. We propose to describe a Coulomb three-body system continuum with a set of two-particle functions, named Convoluted Quasi Sturmian (CQS) in. They are built using recently introduced Quasi Sturmian (QS) functions which have the merit of possessing a closed form. Unlike a simple product of two one-particle functions, by construction, the CQS functions look asymptotically like a six-dimensional outgoing spherical wave. The proposed CQS basis is tested through the study of the double ionization of helium by high-energy electron impact in the framework of the Temkin-Poet model. An adequate logarithmic-like phase factor is further included in order to take into account the Coulomb interelectronic interaction and formally build the correct asymptotic behavior when all interparticle distances are large. With such a phase-factor (that can be easily extended to take into account higher partial waves) rapid convergence of the expansion can be obtained.

  11. New Carrier Made from Glass Nanofibres for the Colorimetric Biosensor of Cholinesterase Inhibitors.

    PubMed

    Matějovský, Lukáš; Pitschmann, Vladimír

    2018-05-30

    Cholinesterase inhibitors are widely used as pesticides in agriculture, but also form a group of organophosphates known as nerve chemical warfare agents. This calls for close attention regarding their detection, including the use of various biosensors. One such biosensor made in the Czech Republic is the Detehit, which is based on a cholinesterase reaction that is assessed using a colour indicator-the Ellman's reagent-which is anchored on cellulose filter paper together with the substrate. With the use of this biosensor, detection is simple, quick, and sensitive. However, its disadvantage is that a less pronounced yellow discoloration occurs, especially under difficult light conditions. As a possible solution, a new indicator/substrate carrier has been designed. It is made of glass nanofibres, so the physical characteristics of the carrier positively influence reaction conditions, and as a result improve the colour response of the biosensor. The authors present and discuss some of the results of the study of this carrier under various experimental conditions. These findings have been used for the development of a modified Detehit biosensor.

  12. Tele-autonomous control involving contacts: The applications of a high precision laser line range sensor

    NASA Technical Reports Server (NTRS)

    Volz, R. A.; Shao, L.; Walker, M. W.; Conway, L. A.

    1989-01-01

    The object localization algorithm based on line-segment matching is presented. The method is very simple and computationally fast. In most cases, closed-form formulas are used to derive the solution. The method is also quite flexible, because only few surfaces (one or two) need to be accessed (sensed) to gather necessary range data. For example, if the line-segments are extracted from boundaries of a planar surface, only parameters of one surface and two of its boundaries need to be extracted, as compared with traditional point-surface matching or line-surface matching algorithms which need to access at least three surfaces in order to locate a planar object. Therefore, this method is especially suitable for applications when an object is surrounded by many other work pieces and most of the object is very difficult, is not impossible, to be measured; or when not all parts of the object can be reached. The theoretical ground on how to use line range sensor to located an object was laid. Much work has to be done in order to be really useful.

  13. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5.

    PubMed

    Kuminek, Gislaine; Cao, Fengjuan; Bahia de Oliveira da Rocha, Alanny; Gonçalves Cardoso, Simone; Rodríguez-Hornedo, Naír

    2016-06-01

    Besides enhancing aqueous solubilities, cocrystals have the ability to fine-tune solubility advantage over drug, supersaturation index, and bioavailability. This review presents important facts about cocrystals that set them apart from other solid-state forms of drugs, and a quantitative set of rules for the selection of additives and solution/formulation conditions that predict cocrystal solubility, supersaturation index, and transition points. Cocrystal eutectic constants are shown to be the most important cocrystal property that can be measured once a cocrystal is discovered, and simple relationships are presented that allow for prediction of cocrystal behavior as a function of pH and drug solubilizing agents. Cocrystal eutectic constant is a stability or supersatuation index that: (a) reflects how close or far from equilibrium a cocrystal is, (b) establishes transition points, and (c) provides a quantitative scale of cocrystal true solubility changes over drug. The benefit of this strategy is that a single measurement, that requires little material and time, provides a principled basis to tailor cocrystal supersaturation index by the rational selection of cocrystal formulation, dissolution, and processing conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. User-Perceived Reliability of M-for-N (M: N) Shared Protection Systems

    NASA Astrophysics Data System (ADS)

    Ozaki, Hirokazu; Kara, Atsushi; Cheng, Zixue

    In this paper we investigate the reliability of general type shared protection systems i.e. M for N (M: N) that can typically be applied to various telecommunication network devices. We focus on the reliability that is perceived by an end user of one of N units. We assume that any failed unit is instantly replaced by one of the M units (if available). We describe the effectiveness of such a protection system in a quantitative manner. The mathematical analysis gives the closed-form solution of the availability, the recursive computing algorithm of the MTTFF (Mean Time to First Failure) and the MTTF (Mean Time to Failure) perceived by an arbitrary end user. We also show that, under a certain condition, the probability distribution of TTFF (Time to First Failure) can be approximated by a simple exponential distribution. The analysis provides useful information for the analysis and the design of not only the telecommunication network devices but also other general shared protection systems that are subject to service level agreements (SLA) involving user-perceived reliability measures.

  15. Higher-n triangular dilatonic black holes

    NASA Astrophysics Data System (ADS)

    Zadora, Anton; Gal'tsov, Dmitri V.; Chen, Chiang-Mei

    2018-04-01

    Dilaton gravity with the form fields is known to possess dyon solutions with two horizons for the discrete "triangular" values of the dilaton coupling constant a =√{ n (n + 1) / 2 }. This sequence first obtained numerically and then explained analytically as consequence of the regularity of the dilaton, should have some higher-dimensional and/or group theoretical origin. Meanwhile, this origin was explained earlier only for n = 1 , 2 in which cases the solutions were known analytically. We extend this explanation to n = 3 , 5 presenting analytical triangular solutions for the theory with different dilaton couplings a , b in electric and magnetic sectors in which case the quantization condition reads ab = n (n + 1) / 2. The solutions are derived via the Toda chains for B2 and G2 Lie algebras. They are found in the closed form in general D space-time dimensions. Solutions satisfy the entropy product rules indicating on the microscopic origin of their entropy and have negative binding energy in the extremal case.

  16. An improved shear beam method for the characterization of bonded composite joints

    NASA Technical Reports Server (NTRS)

    Hiel, Clem C.; Brinson, Hal F.

    1989-01-01

    Closed-form analytical solutions, which govern the displacements and stresses in an adhesive shear beam, are discussed. The remarkable precision with which the shear stresses in the adhesive can be predicted forms the basis of the proposed characterization procedure. The shear modulus of the adhesive is obtained by means of a parameter estimation procedure which requires a symbiosis of theoretical and experimental stress analysis.

  17. Time-optimal aircraft pursuit-evasion with a weapon envelope constraint

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Duke, E. L.

    1990-01-01

    The optimal pursuit-evasion problem between two aircraft, including nonlinear point-mass vehicle models and a realistic weapon envelope, is analyzed. Using a linear combination of flight time and the square of the vehicle acceleration as the performance index, a closed-form solution is obtained in nonlinear feedback form. Due to its modest computational requirements, this guidance law can be used for onboard real-time implementation.

  18. Coronal emission-line polarization from the statistical equilibrium of magnetic sublevels. II. Fe XIV 5303 A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, L.L.; Querfeld, C.W.; Rees, D.E.

    1982-04-15

    Coronal magnetic fields influence in the intensity and linear polarization of light scattered by coronal Fe XIV ions. To interpret polarization measurements of Fe XIV 5303 A coronal emission requires a detailed understanding of the dependence of the emitted Stokes vector on coronal magnetic field direction, electron density, and temperature and on height of origin. The required dependence is included in the solutions of statistical equilibrium for the ion which are solved explicitly for 34 magnetic sublevels in both the ground and four excited terms. The full solutions are reduced to equivalent simple analytic forms which clearly show the requiredmore » dependence on coronal conditions. The analytic forms of the reduced solutions are suitable for routine analysis of 5303 green line polarimetric data obtained at Pic du Midi and from the Solar Maximum Mission Coronagraph/Polarimeter.« less

  19. Using multi-criteria decision making for selection of the optimal strategy for municipal solid waste management.

    PubMed

    Jovanovic, Sasa; Savic, Slobodan; Jovicic, Nebojsa; Boskovic, Goran; Djordjevic, Zorica

    2016-09-01

    Multi-criteria decision making (MCDM) is a relatively new tool for decision makers who deal with numerous and often contradictory factors during their decision making process. This paper presents a procedure to choose the optimal municipal solid waste (MSW) management system for the area of the city of Kragujevac (Republic of Serbia) based on the MCDM method. Two methods of multiple attribute decision making, i.e. SAW (simple additive weighting method) and TOPSIS (technique for order preference by similarity to ideal solution), respectively, were used to compare the proposed waste management strategies (WMS). Each of the created strategies was simulated using the software package IWM2. Total values for eight chosen parameters were calculated for all the strategies. Contribution of each of the six waste treatment options was valorized. The SAW analysis was used to obtain the sum characteristics for all the waste management treatment strategies and they were ranked accordingly. The TOPSIS method was used to calculate the relative closeness factors to the ideal solution for all the alternatives. Then, the proposed strategies were ranked in form of tables and diagrams obtained based on both MCDM methods. As shown in this paper, the results were in good agreement, which additionally confirmed and facilitated the choice of the optimal MSW management strategy. © The Author(s) 2016.

  20. Electromagnetic-radiation absorption by water

    NASA Astrophysics Data System (ADS)

    Lunkenheimer, P.; Emmert, S.; Gulich, R.; Köhler, M.; Wolf, M.; Schwab, M.; Loidl, A.

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  1. Polymer-mediated formation of polyoxomolybdate nanomaterials

    NASA Astrophysics Data System (ADS)

    Wan, Quan

    A polymer-mediated synthetic pathway to a polyoxomolybdate nanomaterial is investigated in this work. Block copolymers or homopolymers containing poly(ethylene oxide) (PEO) are mixed with a MoO2(OH)(OOH) aqueous solution to form a golden gel or viscous solution. As revealed by synchrotron X-ray scattering measurements, electron microscopy, and other characterization techniques, the final dark blue polyoxomolybdate product is a highly ordered simple cubic network similar to certain zeolite structure but with a much larger lattice constant of ˜5.2 nm. The average size of the cube-like single crystals is close to 1 mum. Based on its relatively low density (˜2.2 g/cm3), the nanomaterial can be highly porous if the amount of the residual polymer can be substantially reduced. The valence of molybdenum is ˜5.7 based on cerimetric titration, representing the mixed-valence nature of the polyoxomolybdate structure. The self-assembled structures (if any) of the polymer gel do not have any correlation with the final polyoxomolybdate nanostructure, excluding the possible role of polymers being a structure-directing template. On the other hand, the PEO polymer stabilizes the precursor molybdenum compound through coordination between its ether oxygen atoms and molybdenum atoms, and reduces the molybdenum (VI) precursor compound with its hydroxyl group being a reducing agent. The rare simple cubic ordering necessitates the existence of special affinities among the polyoxomolybdate nanosphere units resulted from the reduction reaction. Our mechanism study shows that the acidified condition is necessary for the synthesis of the mixed-valence polyoxomolybdate clusters, while H2O2 content modulates the rate of the reduction reaction. The polymer degradation is evidenced by the observation of a huge viscosity change, and is likely through a hydrolysis process catalyzed by molybdenum compounds. Cube-like polyoxomolybdate nanocrystals with size of ˜40 nm are obtained by means of inversed microemulsions. Reducing agents such as di(ethylene glycol) and glycerol are utilized to synthesize various nanoscale ordering polyoxomolybdate structures. Only PEO-containing polymers are capable of producing the simple cubic polyoxomolybdate nanomaterials. Such a synthetic strategy may open up new pathways to prepare similar functional nanomaterials.

  2. Joint Symbol Timing and CFO Estimation for OFDM/OQAM Systems in Multipath Channels

    NASA Astrophysics Data System (ADS)

    Fusco, Tilde; Petrella, Angelo; Tanda, Mario

    2009-12-01

    The problem of data-aided synchronization for orthogonal frequency division multiplexing (OFDM) systems based on offset quadrature amplitude modulation (OQAM) in multipath channels is considered. In particular, the joint maximum-likelihood (ML) estimator for carrier-frequency offset (CFO), amplitudes, phases, and delays, exploiting a short known preamble, is derived. The ML estimators for phases and amplitudes are in closed form. Moreover, under the assumption that the CFO is sufficiently small, a closed form approximate ML (AML) CFO estimator is obtained. By exploiting the obtained closed form solutions a cost function whose peaks provide an estimate of the delays is derived. In particular, the symbol timing (i.e., the delay of the first multipath component) is obtained by considering the smallest estimated delay. The performance of the proposed joint AML estimator is assessed via computer simulations and compared with that achieved by the joint AML estimator designed for AWGN channel and that achieved by a previously derived joint estimator for OFDM systems.

  3. The problem of exact interior solutions for rotating rigid bodies in general relativity

    NASA Technical Reports Server (NTRS)

    Wahlquist, H. D.

    1993-01-01

    The (3 + 1) dyadic formalism for timelike congruences is applied to derive interior solutions for stationary, axisymmetric, rigidly rotating bodies. In this approach the mathematics is formulated in terms of three-space-covariant, first-order, vector-dyadic, differential equations for a and Omega, the acceleration and angular velocity three-vectors of the rigid body; for T, the stress dyadic of the matter; and for A and B, the 'electric' and 'magnetic' Weyl curvature dyadics which describe the gravitational field. It is shown how an appropriate ansatz for the forms of these dyadics can be used to discover exact rotating interior solutions such as the perfect fluid solution first published in 1968. By incorporating anisotropic stresses, a generalization is found of that previous solution and, in addition, a very simple new solution that can only exist in toroidal configurations.

  4. Simple Test Functions in Meshless Local Petrov-Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.

    2016-01-01

    Two meshless local Petrov-Galerkin (MLPG) methods based on two different trial functions but that use a simple linear test function were developed for beam and column problems. These methods used generalized moving least squares (GMLS) and radial basis (RB) interpolation functions as trial functions. These two methods were tested on various patch test problems. Both methods passed the patch tests successfully. Then the methods were applied to various beam vibration problems and problems involving Euler and Beck's columns. Both methods yielded accurate solutions for all problems studied. The simple linear test function offers considerable savings in computing efforts as the domain integrals involved in the weak form are avoided. The two methods based on this simple linear test function method produced accurate results for frequencies and buckling loads. Of the two methods studied, the method with radial basis trial functions is very attractive as the method is simple, accurate, and robust.

  5. A new standard pulsar magnetosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes, E-mail: icontop@academyofathens.gr

    2014-01-20

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger thanmore » that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.« less

  6. Testing Pattern Hypotheses for Correlation Matrices

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    1975-01-01

    The treatment of covariance matrices given by McDonald (1974) can be readily modified to cover hypotheses prescribing zeros and equalities in the correlation matrix rather than the covariance matrix, still with the convenience of the closed-form Least Squares solution and the classical Newton method. (Author/RC)

  7. Continuous versus discontinuous albedo representations in a simple diffusive climate model

    NASA Astrophysics Data System (ADS)

    Simmons, P. A.; Griffel, D. H.

    1988-07-01

    A one-dimensional annually and zonally averaged energy-balance model, with diffusive meridional heat transport and including icealbedo feedback, is considered. This type of model is found to be very sensitive to the form of albedo used. The solutions for a discontinuous step-function albedo are compared to those for a more realistic smoothly varying albedo. The smooth albedo gives a closer fit to present conditions, but the discontinuous form gives a better representation of climates in earlier epochs.

  8. Portfolio optimization using fuzzy linear programming

    NASA Astrophysics Data System (ADS)

    Pandit, Purnima K.

    2013-09-01

    Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.

  9. A mass weighted chemical elastic network model elucidates closed form domain motions in proteins

    PubMed Central

    Kim, Min Hyeok; Seo, Sangjae; Jeong, Jay Il; Kim, Bum Joon; Liu, Wing Kam; Lim, Byeong Soo; Choi, Jae Boong; Kim, Moon Ki

    2013-01-01

    An elastic network model (ENM), usually Cα coarse-grained one, has been widely used to study protein dynamics as an alternative to classical molecular dynamics simulation. This simple approach dramatically saves the computational cost, but sometimes fails to describe a feasible conformational change due to unrealistically excessive spring connections. To overcome this limitation, we propose a mass-weighted chemical elastic network model (MWCENM) in which the total mass of each residue is assumed to be concentrated on the representative alpha carbon atom and various stiffness values are precisely assigned according to the types of chemical interactions. We test MWCENM on several well-known proteins of which both closed and open conformations are available as well as three α-helix rich proteins. Their normal mode analysis reveals that MWCENM not only generates more plausible conformational changes, especially for closed forms of proteins, but also preserves protein secondary structures thus distinguishing MWCENM from traditional ENMs. In addition, MWCENM also reduces computational burden by using a more sparse stiffness matrix. PMID:23456820

  10. Corrosion of titanium and zirconium in organic solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clapp, R.A.; Saldanha, B.J.; Kvochak, J.J.

    1995-09-01

    Experiences of reactive metal corrosion in organic acids will be discussed. Emphasis will be placed on anhydrous organic solutions, and organic acids containing halides which are often added as catalysts or promoters. The case examples will illustrate the importance of evaluating reactive metals under conditions that closely simulate actual process chemistry, type of exposure (vapor, liquid, condensate), and final fabricated form, to ensure that the material will provide predictable long-term service in a commercial facility.

  11. An explicit closed-form analytical solution for European options under the CGMY model

    NASA Astrophysics Data System (ADS)

    Chen, Wenting; Du, Meiyu; Xu, Xiang

    2017-01-01

    In this paper, we consider the analytical pricing of European path-independent options under the CGMY model, which is a particular type of pure jump Le´vy process, and agrees well with many observed properties of the real market data by allowing the diffusions and jumps to have both finite and infinite activity and variation. It is shown that, under this model, the option price is governed by a fractional partial differential equation (FPDE) with both the left-side and right-side spatial-fractional derivatives. In comparison to derivatives of integer order, fractional derivatives at a point not only involve properties of the function at that particular point, but also the information of the function in a certain subset of the entire domain of definition. This ;globalness; of the fractional derivatives has added an additional degree of difficulty when either analytical methods or numerical solutions are attempted. Albeit difficult, we still have managed to derive an explicit closed-form analytical solution for European options under the CGMY model. Based on our solution, the asymptotic behaviors of the option price and the put-call parity under the CGMY model are further discussed. Practically, a reliable numerical evaluation technique for the current formula is proposed. With the numerical results, some analyses of impacts of four key parameters of the CGMY model on European option prices are also provided.

  12. A facile and efficient method to modify gold nanorods with thiolated DNA at a low pH value.

    PubMed

    Shi, Dangwei; Song, Chen; Jiang, Qiao; Wang, Zhen-Gang; Ding, Baoquan

    2013-03-28

    We report a simple, rapid and efficient strategy for modification of gold nanorods (AuNRs) with thiolated DNA at low solution pH and high salt concentration. DNA functionalized AuNRs were then used to assemble with DNA modified gold nanoparticles to form discrete satellite nanostructures.

  13. Analytical solution for the diffusion of a capacitor discharge generated magnetic field pulse in a conductor

    NASA Astrophysics Data System (ADS)

    Grants, Ilmārs; Bojarevičs, Andris; Gerbeth, Gunter

    2016-06-01

    Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.

  14. Elastocapillary snapping

    NASA Astrophysics Data System (ADS)

    Antkowiak, Arnaud; Fargette, Aurelie; Neukirch, Sebastien

    2010-11-01

    An elastica buckled in the form of an arch is subjected to a transverse force. Above a critical load value, the buckling mode is switched and the elastica takes the form of a reversed arch. This is the well-known snap-through phenomenon which has been extensively studied in solid mechanics. Here, we revisit this phenomenon and show that capillary forces may promote snapping of a buckled polymer strip. We report detailed experiments of this new paradigm for elasto-capillary interactions, and the obtained results are in close agreement with a simple elastic stability theory.

  15. Determination of 3-chloro-1,2-propanediol in polyamideamine epichlorohydrin resin solution by reaction-based headspace gas chromatography.

    PubMed

    Yan, Ning; Wan, Xiao-Fang; Chai, Xin-Sheng; Chen, Run-Quan

    2018-04-01

    We report on a headspace gas chromatographic method for determining the content of 3-chloro-1,2-propanediol in polyamideamine epichlorohydrin resin solution. It was based on quantitatively converting 3-chloro-1,2-propanediol to formaldehyde by periodate oxidation in a closed headspace sample vial at a room temperature for 10 min, and then to methanol by borohydride reduction at 90°C for 40 min followed by the headspace gas chromatographic measurement. The results showed that the present method has an excellent measurement precision (relative standard deviation < 2.60%) and accuracy (recoveries from 96.4-102%) in 3-chloro-1,2-propanediol analysis. The limit of quantitation was 0.031 mg/mL. It is simple and suitable for determining the 3-chloro-1,2-propanediol content in polyamideamine epichlorohydrin resin solution. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Brandeis Dice Problem and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    van Enk, Steven J.

    2014-11-01

    Jaynes invented the Brandeis Dice Problem as a simple illustration of the MaxEnt (Maximum Entropy) procedure that he had demonstrated to work so well in Statistical Mechanics. I construct here two alternative solutions to his toy problem. One, like Jaynes' solution, uses MaxEnt and yields an analog of the canonical ensemble, but at a different level of description. The other uses Bayesian updating and yields an analog of the micro-canonical ensemble. Both, unlike Jaynes' solution, yield error bars, whose operational merits I discuss. These two alternative solutions are not equivalent for the original Brandeis Dice Problem, but become so in what must, therefore, count as the analog of the thermodynamic limit, M-sided dice with M → ∞. Whereas the mathematical analogies between the dice problem and Stat Mech are quite close, there are physical properties that the former lacks but that are crucial to the workings of the latter. Stat Mech is more than just MaxEnt.

  17. Structure of the sporulation histidine kinase inhibitor Sda from Bacillus subtilis and insights into its solution state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques, David A.; Streamer, Margaret; Rowland, Susan L.

    2009-09-02

    The crystal structure of the DNA-damage checkpoint inhibitor of sporulation, Sda, from Bacillus subtilis, has been solved by the MAD technique using selenomethionine-substituted protein. The structure closely resembles that previously solved by NMR, as well as the structure of a homologue from Geobacillus stearothermophilus solved in complex with the histidine kinase KinB. The structure contains three molecules in the asymmetric unit. The unusual trimeric arrangement, which lacks simple internal symmetry, appears to be preserved in solution based on an essentially ideal fit to previously acquired scattering data for Sda in solution. This interpretation contradicts previous findings that Sda was monomericmore » or dimeric in solution. This study demonstrates the difficulties that can be associated with the characterization of small proteins and the value of combining multiple biophysical techniques. It also emphasizes the importance of understanding the physical principles behind these techniques and therefore their limitations.« less

  18. Techniques for Accelerating Iterative Methods for the Solution of Mathematical Problems

    DTIC Science & Technology

    1989-07-01

    m, we can find a solu ion to the problem by using generalized inverses. Hence, ;= Ih.i = GAi = G - where G is of the form (18). A simple choice for V...have understood why I was not available for many of their activities and not home many of the nights. Their love is forever. I have saved the best for...Xk) Extrapolation applied to terms xP through Xk F Operator on x G Iteration function Ik Identity matrix of rank k Solution of the problem or the limit

  19. Solution of the equations for one-dimensional, two-phase, immiscible flow by geometric methods

    NASA Astrophysics Data System (ADS)

    Boronin, Ivan; Shevlyakov, Andrey

    2018-03-01

    Buckley-Leverett equations describe non viscous, immiscible, two-phase filtration, which is often of interest in modelling of oil production. For many parameters and initial conditions, the solutions of these equations exhibit non-smooth behaviour, namely discontinuities in form of shock waves. In this paper we obtain a novel method for the solution of Buckley-Leverett equations, which is based on geometry of differential equations. This method is fast, accurate, stable, and describes non-smooth phenomena. The main idea of the method is that classic discontinuous solutions correspond to the continuous surfaces in the space of jets - the so-called multi-valued solutions (Bocharov et al., Symmetries and conservation laws for differential equations of mathematical physics. American Mathematical Society, Providence, 1998). A mapping of multi-valued solutions from the jet space onto the plane of the independent variables is constructed. This mapping is not one-to-one, and its singular points form a curve on the plane of the independent variables, which is called the caustic. The real shock occurs at the points close to the caustic and is determined by the Rankine-Hugoniot conditions.

  20. A high capacity data recording device based on a digital audio processor and a video cassette recorder.

    PubMed

    Bezanilla, F

    1985-03-01

    A modified digital audio processor, a video cassette recorder, and some simple added circuitry are assembled into a recording device of high capacity. The unit converts two analog channels into digital form at 44-kHz sampling rate and stores the information in digital form in a common video cassette. Bandwidth of each channel is from direct current to approximately 20 kHz and the dynamic range is close to 90 dB. The total storage capacity in a 3-h video cassette is 2 Gbytes. The information can be retrieved in analog or digital form.

  1. A high capacity data recording device based on a digital audio processor and a video cassette recorder.

    PubMed Central

    Bezanilla, F

    1985-01-01

    A modified digital audio processor, a video cassette recorder, and some simple added circuitry are assembled into a recording device of high capacity. The unit converts two analog channels into digital form at 44-kHz sampling rate and stores the information in digital form in a common video cassette. Bandwidth of each channel is from direct current to approximately 20 kHz and the dynamic range is close to 90 dB. The total storage capacity in a 3-h video cassette is 2 Gbytes. The information can be retrieved in analog or digital form. PMID:3978213

  2. Comparing the Tolerability of a Novel Wound Closure Device Using a Porcine Wound Model

    PubMed Central

    Townsend, Katy L.; Akeroyd, Jen; Russell, Duncan S.; Kruzic, Jamie J.; Robertson, Bria L.; Lear, William

    2018-01-01

    Objective: To compare the tolerability and mechanical tensile strength of acute skin wounds closed with nylon suture plus a novel suture bridge device (SBD) with acute skin wounds closed with nylon suture in a porcine model. Approach: Four Yucatan pigs each received 12 4.5 cm full-thickness incisions that were closed with 1 of 4 options: Suture bridge with nylon, suture bridge with nylon and subdermal polyglactin, nylon simple interrupted, and nylon simple interrupted with subdermal polyglactin. Epithelial reaction, inflammation, and scarring were examined histologically at days 10 and 42. Wound strength was examined mechanically at days 10 and 42 on ex vivo wounds from euthanized pigs. Results: Histopathology in the suture entry/exit planes showed greater dermal inflammation with a simple interrupted nylon suture retained for 42 days compared with the SBD retained for 42 days (p < 0.03). While tensile wound strength in the device and suture groups were similar at day 10, wounds closed with the devices were nearly 8 times stronger at day 42 compared with day 10 (p < 0.001). Innovation: A novel SBD optimized for cutaneous wound closure that protects the skin surface from suture strands, forms a protective bridge over the healing wound edges, and knotlessly clamps sutures. Conclusion: This study suggests that the use of a SBD increases the tolerability of nylon sutures in porcine acute skin wound closures allowing for prolonged mechanical support of the wound. For slow healing wounds, this may prevent skin wound disruption, such as edge necrosis and dehiscence. PMID:29892494

  3. Coplanar Waveguide Radial Line Double Stub and Application to Filter Circuits

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Taub, S. R.

    1993-01-01

    Coplanar waveguide (CPW) and grounded coplanar waveguide (GCPW) radial line double stub resonators are experimentally characterized with respect to stub radius and sector angle. A simple closed-form design equation, which predicts the resonance radius of the stub, is presented. Use of a double stub resonator as a lowpass filter or as a harmonic suppression filter is demonstrated, and design rules are given.

  4. Thermodynamics of Thomas-Fermi screened Coulomb systems

    NASA Technical Reports Server (NTRS)

    Firey, B.; Ashcroft, N. W.

    1977-01-01

    We obtain in closed analytic form, estimates for the thermodynamic properties of classical fluids with pair potentials of Yukawa type, with special reference to dense fully ionized plasmas with Thomas-Fermi or Debye-Hueckel screening. We further generalize the hard-sphere perturbative approach used for similarly screened two-component mixtures, and demonstrate phase separation in this simple model of a liquid mixture of metallic helium and hydrogen.

  5. Reflection and Non-Reflection of Particle Wavepackets

    ERIC Educational Resources Information Center

    Cox, Timothy; Lekner, John

    2008-01-01

    Exact closed-form solutions of the time-dependent Schrodinger equation are obtained, describing the propagation of wavepackets in the neighbourhood of a potential. Examples given include zero reflection, total reflection and partial reflection of the wavepacket, for the sech[superscript 2]x/a, 1/x[superscript 2] and delta(x) potentials,…

  6. Mathematical model for predicting human vertebral fracture

    NASA Technical Reports Server (NTRS)

    Benedict, J. V.

    1973-01-01

    Mathematical model has been constructed to predict dynamic response of tapered, curved beam columns in as much as human spine closely resembles this form. Model takes into consideration effects of impact force, mass distribution, and material properties. Solutions were verified by dynamic tests on curved, tapered, elastic polyethylene beam.

  7. Small Internal Combustion Engine Testing for a Hybrid-Electric Remotely-Piloted Aircraft

    DTIC Science & Technology

    2011-03-01

    differential equations (ODEs) were formed and solved for numerically using various solvers in MATLAB . From these solutions, engine performance...program 5. □ Make sure eddy-current absorber and sprockets are free of debris and that no loose materials are close enough to become entangled

  8. Propagation of waves in a bounded random layer with laminar structure

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1985-01-01

    A closed form solution has been developed to obtain the intensity propagating in a bounded layer with laminar structure. Then, the brightness temperature due to an arbitrary temperature profile has been derived. Results are specialized to a half space to compare with those reported in the literature.

  9. On the Singularity Structure of WKB Solution of the Boosted Whittaker Equation: its Relevance to Resurgent Functions with Essential Singularities

    NASA Astrophysics Data System (ADS)

    Kamimoto, Shingo; Kawai, Takahiro; Koike, Tatsuya

    2016-12-01

    Inspired by the symbol calculus of linear differential operators of infinite order applied to the Borel transformed WKB solutions of simple-pole type equation [Kamimoto et al. (RIMS Kôkyûroku Bessatsu B 52:127-146, 2014)], which is summarized in Section 1, we introduce in Section 2 the space of simple resurgent functions depending on a parameter with an infra-exponential type growth order, and then we define the assigning operator A which acts on the space and produces resurgent functions with essential singularities. In Section 3, we apply the operator A to the Borel transforms of the Voros coefficient and its exponentiation for the Whittaker equation with a large parameter so that we may find the Borel transforms of the Voros coefficient and its exponentiation for the boosted Whittaker equation with a large parameter. In Section 4, we use these results to find the explicit form of the alien derivatives of the Borel transformed WKB solutions of the boosted Whittaker equation with a large parameter. The results in this paper manifest the importance of resurgent functions with essential singularities in developing the exact WKB analysis, the WKB analysis based on the resurgent function theory. It is also worth emphasizing that the concrete form of essential singularities we encounter is expressed by the linear differential operators of infinite order.

  10. Falling head ponded infiltration in the nonlinear limit

    NASA Astrophysics Data System (ADS)

    Triadis, D.

    2014-12-01

    The Green and Ampt infiltration solution represents only an extreme example of behavior within a larger class of very nonlinear, delta function diffusivity soils. The mathematical analysis of these soils is greatly simplified by the existence of a sharp wetting front below the soil surface. Solutions for more realistic delta function soil models have recently been presented for infiltration under surface saturation without ponding. After general formulation of the problem, solutions for a full suite of delta function soils are derived for ponded surface water depleted by infiltration. Exact expressions for the cumulative infiltration as a function of time, or the drainage time as a function of the initial ponded depth may take implicit or parametric forms, and are supplemented by simple asymptotic expressions valid for small times, and small and large initial ponded depths. As with surface saturation without ponding, the Green-Ampt model overestimates the effect of the soil hydraulic conductivity. At the opposing extreme, a low-conductivity model is identified that also takes a very simple mathematical form and appears to be more accurate than the Green-Ampt model for larger ponded depths. Between these two, the nonlinear limit of Gardner's soil is recommended as a physically valid first approximation. Relative discrepancies between different soil models are observed to reach a maximum for intermediate values of the dimensionless initial ponded depth, and in general are smaller than for surface saturation without ponding.

  11. Kinetics of phase separation and coarsening in dilute surfactant pentaethylene glycol monododecyl ether solutions

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Kubo, Y.; Yokoyama, Y.; Toda, A.; Taguchi, K.; Kajioka, H.

    2011-12-01

    We investigated the phase separation phenomena in dilute surfactant pentaethylene glycol monodedecyl ether (C12E5) solutions focusing on the growth law of separated domains. The solutions confined between two glass plates were found to exhibit the phase inversion, characteristic of the viscoelastic phase separation; the majority phase (water-rich phase) nucleated as droplets and the minority phase (micelle-rich phase) formed a network temporarily, then they collapsed into an usual sea-island pattern where minority phase formed islands. We found from the real-space microscopic imaging that the dynamic scaling hypothesis did not hold throughout the coarsening process. The power law growth of the domains with the exponent close to 1/3 was observed even though the coarsening was induced mainly by hydrodynamic flow, which was explained by Darcy's law of laminar flow.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liemert, André, E-mail: andre.liemert@ilm.uni-ulm.de; Kienle, Alwin

    Purpose: Explicit solutions of the monoenergetic radiative transport equation in the P{sub 3} approximation have been derived which can be evaluated with nearly the same computational effort as needed for solving the standard diffusion equation (DE). In detail, the authors considered the important case of a semi-infinite medium which is illuminated by a collimated beam of light. Methods: A combination of the classic spherical harmonics method and the recently developed method of rotated reference frames is used for solving the P{sub 3} equations in closed form. Results: The derived solutions are illustrated and compared to exact solutions of the radiativemore » transport equation obtained via the Monte Carlo (MC) method as well as with other approximated analytical solutions. It is shown that for the considered cases which are relevant for biomedical optics applications, the P{sub 3} approximation is close to the exact solution of the radiative transport equation. Conclusions: The authors derived exact analytical solutions of the P{sub 3} equations under consideration of boundary conditions for defining a semi-infinite medium. The good agreement to Monte Carlo simulations in the investigated domains, for example, in the steady-state and time domains, as well as the short evaluation time needed suggests that the derived equations can replace the often applied solutions of the diffusion equation for the homogeneous semi-infinite medium.« less

  13. Needleless electrospinning with twisted wire spinneret

    NASA Astrophysics Data System (ADS)

    Holopainen, Jani; Penttinen, Toni; Santala, Eero; Ritala, Mikko

    2015-01-01

    A needleless electrospinning setup named ‘Needleless Twisted Wire Electrospinning’ was developed. The polymer solution is electrospun from the surface of a twisted wire set to a high voltage and collected on a cylindrical collector around the wire. Multiple Taylor cones are simultaneously self-formed on the downward flowing solution. The system is robust and simple with no moving parts aside from the syringe pump used to transport the solution to the top of the wire. The structure and process parameters of the setup and the results on the preparation of polyvinyl pyrrolidone (PVP), hydroxyapatite (HA) and bioglass fibers with the setup are presented. PVP fiber sheets with areas of 40 × 120 cm2 and masses up to 1.15 g were prepared. High production rates of 5.23 g h-1 and 1.40 g h-1 were achieved for PVP and HA respectively. The major limiting factor of the setup is drying of the polymer solution on the wire during the electrospinning process which will eventually force to interrupt the process for cleaning of the wire. Possible solutions to this problem and other ways to develop the setup are discussed. The presented system provides a simple way to increase the production rate and area of fiber sheet as compared with the conventional needle electrospinning.

  14. Sublaminate analysis of interlaminar fracture in composites

    NASA Technical Reports Server (NTRS)

    Armanios, E. A.; Rehfield, L. W.

    1986-01-01

    A simple analysis method based upon a transverse shear deformation theory and a sublaminate approach is utilized to analyze a mixed-mode edge delamination specimen. The analysis provides closed form expressions for the interlaminar shear stresses ahead of the crack, the total energy release rate, and the energy release rate components. The parameters controlling the behavior are identified. The effect of specimen stacking sequence and delamination interface on the strain energy release rate components is investigated. Results are compared with a finite element simulation for reference. The simple nature of the method makes it suitable for preliminary design analyses which require a large number of configurations to be evaluated quickly and economically.

  15. Modeling Subsurface Storm and Tile Drain Systems in GSSHA with SUPERLINK

    DTIC Science & Technology

    2014-09-01

    side is computed as . ( )e Kq d m m L   2 0 01 2 (7) de is defined as ( van der Molen and Wesseling (1991)) ERDC/CHL TR-14-11 15...Conservation Service. Van der Molen , W.H., and J. Wesseling. 1991. A solution in closed form and a series solution to replace the tables for thickness of...effective lateral hydraulic conductivity (cm hr-1) C = 1 in the present version. Hooghoudt ( van Schilfgaarde 1974) characterized flow to cylindrical

  16. Approximate bound-state solutions of the Dirac equation for the generalized yukawa potential plus the generalized tensor interaction

    NASA Astrophysics Data System (ADS)

    Ikot, Akpan N.; Maghsoodi, Elham; Hassanabadi, Hassan; Obu, Joseph A.

    2014-05-01

    In this paper, we obtain the approximate analytical bound-state solutions of the Dirac particle with the generalized Yukawa potential within the framework of spin and pseudospin symmetries for the arbitrary к state with a generalized tensor interaction. The generalized parametric Nikiforov-Uvarov method is used to obtain the energy eigenvalues and the corresponding wave functions in closed form. We also report some numerical results and present figures to show the effect of the tensor interaction.

  17. Efficient option valuation of single and double barrier options

    NASA Astrophysics Data System (ADS)

    Kabaivanov, Stanimir; Milev, Mariyan; Koleva-Petkova, Dessislava; Vladev, Veselin

    2017-12-01

    In this paper we present an implementation of pricing algorithm for single and double barrier options using Mellin transformation with Maximum Entropy Inversion and its suitability for real-world applications. A detailed analysis of the applied algorithm is accompanied by implementation in C++ that is then compared to existing solutions in terms of efficiency and computational power. We then compare the applied method with existing closed-form solutions and well known methods of pricing barrier options that are based on finite differences.

  18. Closed form solution for the finite anti-plane shear field for a class of hyperelastic incompressible brittle solids

    NASA Astrophysics Data System (ADS)

    Stolz, Claude

    2010-12-01

    The equilibrium solution of a damaged zone in finite elasticity is given for a class of hyperelastic materials which does not suffer tension when a critical stretching value is reached. The study is made for a crack in anti-plane shear loading condition. The prescribed loading is that of linearized elastostatics conditions at infinity. The geometry of the damaged zone is found and the stationary propagation is discussed when the inertia terms can be neglected.

  19. An exact solution for the solidification of a liquid slab of binary mixture

    NASA Technical Reports Server (NTRS)

    Antar, B. N.; Collins, F. G.; Aumalia, A. E.

    1986-01-01

    The time dependent temperature and concentration profiles of a one dimensional finite slab of a binary liquid alloy is investigated during solidification. The governing equations are reduced to a set of coupled, nonlinear initial value problems using the method outlined by Meyer. Two methods will be used to solve these equations. The first method uses a Runge-Kutta-Fehlberg integrator to solve the equations numerically. The second method comprises of finding closed form solutions of the equations.

  20. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery.

    PubMed

    Cao, Yanxia; Zhang, Can; Shen, Wenbin; Cheng, Zhihong; Yu, Liangli Lucy; Ping, Qineng

    2007-07-31

    A novel copolymer, poly(N-isopropylacrylamide)-chitosan (PNIPAAm-CS), was investigated for its thermosensitive in situ gel-forming properties and potential utilization for ocular drug delivery. The thermal sensitivity and low critical solution temperature (LCST) were determined by the cloud point method. PNIPAAm-CS had a LCST of 32 degrees C, which is close to the surface temperature of the eye. The in vivo ocular pharmacokinetics of timolol maleate in PNIPAAm-CS solution were evaluated and compared to that in conventional eye drop solution by using rabbits according to the microdialysis method. The C(max) of timolol maleate in aqueous fluid for the PNIPAAm-CS solution was 11.2 microg/ml, which is two-fold higher than that of the conventional eye drop, along with greater AUC. Furthermore, the PNIPAAm-CS gel-forming solution of timolol maleate had a stronger capacity to reduce the intra-ocular pressure (IOP) than that of the conventional eye drop of same concentration over a period of 12 h. In addition, the MTT assay showed that there is little cytotoxicity of PNIPAAm-CS at concentration range of 0.5-400 microg/ml. These results suggest that PNIPAAm-CS is a potential thermosensitive in situ gel-forming material for ocular drug delivery, and it may improve the bio-availability, efficacy, and compliance of some eye drugs.

  1. Solution of the mean spherical approximation for polydisperse multi-Yukawa hard-sphere fluid mixture using orthogonal polynomial expansions

    NASA Astrophysics Data System (ADS)

    Kalyuzhnyi, Yurij V.; Cummings, Peter T.

    2006-03-01

    The Blum-Høye [J. Stat. Phys. 19 317 (1978)] solution of the mean spherical approximation for a multicomponent multi-Yukawa hard-sphere fluid is extended to a polydisperse multi-Yukawa hard-sphere fluid. Our extension is based on the application of the orthogonal polynomial expansion method of Lado [Phys. Rev. E 54, 4411 (1996)]. Closed form analytical expressions for the structural and thermodynamic properties of the model are presented. They are given in terms of the parameters that follow directly from the solution. By way of illustration the method of solution is applied to describe the thermodynamic properties of the one- and two-Yukawa versions of the model.

  2. Silver nanoparticle formation by femtosecond laser induced reduction of ammonia-containing AgNO3 solution

    NASA Astrophysics Data System (ADS)

    Herbani, Y.; Nakamura, T.; Sato, S.

    2017-04-01

    This paper reports the synthesis of silver colloids by femtosecond laser ablation of ammonia-containing AgNO3 solution. Effect of ammonia concentration in solution on the production of Ag nanoparticles was discussed. It is found that ammonia rules out significantly to the formation of Ag nanoparticles at which no Ag nanoparticle were formed in the solution without ammonia. Using the solution with the optimum ratio of ammonia to Ag+ ions, we further investigate the growth process of Ag nanoparticle by monitoring the evolution of its absorption spectra at 402 nm as a function of irradiation time. The result showed that the growth process was fit to the simple exponential function, and confirmed that the addition of ammonia alone to the metal ion system can boost the particle production by femtosecond laser.

  3. Inverse kinematic solution for near-simple robots and its application to robot calibration

    NASA Technical Reports Server (NTRS)

    Hayati, Samad A.; Roston, Gerald P.

    1986-01-01

    This paper provides an inverse kinematic solution for a class of robot manipulators called near-simple manipulators. The kinematics of these manipulators differ from those of simple-robots by small parameter variations. Although most robots are by design simple, in practice, due to manufacturing tolerances, every robot is near-simple. The method in this paper gives an approximate inverse kinematics solution for real time applications based on the nominal solution for these robots. The validity of the results are tested both by a simulation study and by applying the algorithm to a PUMA robot.

  4. Additive Manufacturing of Transparent Silica Glass from Solutions.

    PubMed

    Cooperstein, Ido; Shukrun, Efrat; Press, Ofir; Kamyshny, Alexander; Magdassi, Shlomo

    2018-06-06

    A sol, aqueous solution-based ink is presented for fabrication of 3D transparent silica glass objects with complex geometries, by a simple 3D printing process conducted at room temperature. The ink combines a hybrid ceramic precursor that can undergo both the photopolymerization reaction and a sol-gel process, both in the solution form, without any particles. The printing is conducted by localized photopolymerization with the use of a low-cost 3D printer. Following printing, upon aging and densifying, the resulting objects convert from a gel to a xerogel and then to a fused silica. The printed objects, which are composed of fused silica, are transparent and have tunable density and refractive indices.

  5. Secular Orbit Evolution in Systems with a Strong External Perturber—A Simple and Accurate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade-Ines, Eduardo; Eggl, Siegfried, E-mail: eandrade.ines@gmail.com, E-mail: siegfried.eggl@jpl.nasa.gov

    We present a semi-analytical correction to the seminal solution for the secular motion of a planet’s orbit under gravitational influence of an external perturber derived by Heppenheimer. A comparison between analytical predictions and numerical simulations allows us to determine corrective factors for the secular frequency and forced eccentricity in the coplanar restricted three-body problem. The correction is given in the form of a polynomial function of the system’s parameters that can be applied to first-order forced eccentricity and secular frequency estimates. The resulting secular equations are simple, straight forward to use, and improve the fidelity of Heppenheimers solution well beyond higher-ordermore » models. The quality and convergence of the corrected secular equations are tested for a wide range of parameters and limits of its applicability are given.« less

  6. Nonlinear Modeling by Assembling Piecewise Linear Models

    NASA Technical Reports Server (NTRS)

    Yao, Weigang; Liou, Meng-Sing

    2013-01-01

    To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.

  7. Nick-free formation of reciprocal heteroduplexes: a simple solution to the topological problem.

    PubMed Central

    Wilson, J H

    1979-01-01

    Because the individual strands of DNA are intertwined, formation of heteroduplex structures between duplexes--as in presumed recombination intermediates--presents a topological puzzle, known as the winding problem. Previous approaches to this problem have assumed that single-strand breaks are required to permit formation of fully coiled heteroduplexes. This paper describes a simple, nick-free solution to the winding problem that satisfies all topological constraints. Homologous duplexes associated by their minor-groove surfaces can switch strand pairing to form reciprocal heteroduplexes that coil together into a compact, four-stranded helix throughout the region of pairing. Model building shows that this fused heteroduplex structure is plausible, being composed entirely of right-handed primary helices with Watson-Crick base pairing throughout. Its simplicity of formation, structural symmetry, and high degree of specificity are suggestive of a natural mechanism for alignment by base pairing between intact homologous duplexes. Implications for genetic recombination are discussed. Images PMID:291028

  8. Power-efficient distributed resource allocation under goodput QoS constraints for heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Andreotti, Riccardo; Del Fiorentino, Paolo; Giannetti, Filippo; Lottici, Vincenzo

    2016-12-01

    This work proposes a distributed resource allocation (RA) algorithm for packet bit-interleaved coded OFDM transmissions in the uplink of heterogeneous networks (HetNets), characterized by small cells deployed over a macrocell area and sharing the same band. Every user allocates its transmission resources, i.e., bits per active subcarrier, coding rate, and power per subcarrier, to minimize the power consumption while both guaranteeing a target quality of service (QoS) and accounting for the interference inflicted by other users transmitting over the same band. The QoS consists of the number of information bits delivered in error-free packets per unit of time, or goodput (GP), estimated at the transmitter by resorting to an efficient effective SNR mapping technique. First, the RA problem is solved in the point-to-point case, thus deriving an approximate yet accurate closed-form expression for the power allocation (PA). Then, the interference-limited HetNet case is examined, where the RA problem is described as a non-cooperative game, providing a solution in terms of generalized Nash equilibrium. Thanks to the closed-form of the PA, the solution analysis is based on the best response concept. Hence, sufficient conditions for existence and uniqueness of the solution are analytically derived, along with a distributed algorithm capable of reaching the game equilibrium.

  9. Derivation of a closed form analytical expression for fluorescence recovery after photo bleaching in the case of continuous bleaching during read out

    NASA Astrophysics Data System (ADS)

    Endress, E.; Weigelt, S.; Reents, G.; Bayerl, T. M.

    2005-01-01

    Measurements of very slow diffusive processes in membranes, like the diffusion of integral membrane proteins, by fluorescence recovery after photo bleaching (FRAP) are hampered by bleaching of the probe during the read out of the fluorescence recovery. In the limit of long observation time (very slow diffusion as in the case of large membrane proteins), this bleaching may cause errors to the recovery function and thus provides error-prone diffusion coefficients. In this work we present a new approach to a two-dimensional closed form analytical solution of the reaction-diffusion equation, based on the addition of a dissipative term to the conventional diffusion equation. The calculation was done assuming (i) a Gaussian laser beam profile for bleaching the spot and (ii) that the fluorescence intensity profile emerging from the spot can be approximated by a two-dimensional Gaussian. The detection scheme derived from the analytical solution allows for diffusion measurements without the constraint of observation bleaching. Recovery curves of experimental FRAP data obtained under non-negligible read-out bleaching for native membranes (rabbit endoplasmic reticulum) on a planar solid support showed excellent agreement with the analytical solution and allowed the calculation of the lipid diffusion coefficient.

  10. 2-(2-Hydroxyphenyl)imidazole-based four-coordinate organoboron compounds with efficient deep blue photoluminescence and electroluminescence.

    PubMed

    Zhang, Zhenyu; Zhang, Zuolun; Zhang, Hongyu; Wang, Yue

    2017-12-19

    Two new four-coordinate organoboron compounds with 2-(2-hydroxyphenyl)imidazole derivatives as the chelating ligands have been synthesized. They possess high thermal stability and are able to form an amorphous glass state. Crystallographic analyses indicate that the differences in ligand structure cause the change of ππ stacking character. The CH 2 Cl 2 solutions and thin films of these compounds display bright blue emission, and these compounds have appropriate HOMO and LUMO energy levels for carrier injection in OLEDs. By utilizing the good thermal and luminescent properties, as well as the proper frontier orbital energy levels, bright non-doped OLEDs with a simple structure have been realized. Notably, these simple devices show deep blue electroluminescence with the Commission Internationale de l'Éclairage (CIE) coordinate of ca. (0.16, 0.08), which is close to the CIE coordinate of (0.14, 0.08) for standard blue defined by the National Television System Committee. In addition, one of the devices exhibits good performance, showing brightness, current efficiency, power efficiency and external quantum efficiency up to 2692 cd m -2 , 2.50 cd A -1 , 1.81 lm W -1 and 3.63%, respectively. This study not only provides good deep-blue emitting OLED materials that are rarely achieved by using four-coordinate organoboron compounds, but also allows a deeper understanding of the structure-property relationship of 2-(2-hydroxyphenyl)imidazole-based boron complexes, which benefits the further structural design of this type of material.

  11. Analysis of the role of diffraction in topographic site effects using boundary element techniques

    NASA Astrophysics Data System (ADS)

    Gomez, Juan; Restrepo, Doriam; Jaramillo, Juan; Valencia, Camilo

    2013-10-01

    The role played by the diffraction field on the problem of seismic site effects is studied. For that purpose we solve and analyze simple scattering problems under P and SV in-plane wave assumptions, using two well known direct boundary-element-based numerical methods. After establishing the difference between scattered and diffracted motions, and introducing the concept of artificious and physically based incoming fields, we obtain the amplitude of the Fourier spectra for the diffracted part of the response: this is achieved after establishing the connection between the spatial distribution of the transfer function over the studied simple topographies and the diffracted field. From the numerical simulations it is observed that this diffracted part of the response is responsible for the amplification of the surface ground motions due to the geometric effect. Furthermore, it is also found that the diffraction field sets in a fingerprint of the topographic effect in the total ground motions. These conclusions are further supported by observations in the time-domain in terms of snapshots of the propagation patterns over the complete computational model. In this sense the geometric singularities are clearly identified as sources of diffraction and for the considered range of dimensionless frequencies it is evident that larger amplifications are obtained for the geometries containing a larger number of diffraction sources thus resulting in a stronger topographic effect. The need for closed-form solutions of canonical problems to construct a robust analysis method based on the diffraction field is identified.

  12. Estimation of a simple agent-based model of financial markets: An application to Australian stock and foreign exchange data

    NASA Astrophysics Data System (ADS)

    Alfarano, Simone; Lux, Thomas; Wagner, Friedrich

    2006-10-01

    Following Alfarano et al. [Estimation of agent-based models: the case of an asymmetric herding model, Comput. Econ. 26 (2005) 19-49; Excess volatility and herding in an artificial financial market: analytical approach and estimation, in: W. Franz, H. Ramser, M. Stadler (Eds.), Funktionsfähigkeit und Stabilität von Finanzmärkten, Mohr Siebeck, Tübingen, 2005, pp. 241-254], we consider a simple agent-based model of a highly stylized financial market. The model takes Kirman's ant process [A. Kirman, Epidemics of opinion and speculative bubbles in financial markets, in: M.P. Taylor (Ed.), Money and Financial Markets, Blackwell, Cambridge, 1991, pp. 354-368; A. Kirman, Ants, rationality, and recruitment, Q. J. Econ. 108 (1993) 137-156] of mimetic contagion as its starting point, but allows for asymmetry in the attractiveness of both groups. Embedding the contagion process into a standard asset-pricing framework, and identifying the abstract groups of the herding model as chartists and fundamentalist traders, a market with periodic bubbles and bursts is obtained. Taking stock of the availability of a closed-form solution for the stationary distribution of returns for this model, we can estimate its parameters via maximum likelihood. Expanding our earlier work, this paper presents pertinent estimates for the Australian dollar/US dollar exchange rate and the Australian stock market index. As it turns out, our model indicates dominance of fundamentalist behavior in both the stock and foreign exchange market.

  13. Californium--palladium metal neutron source material

    DOEpatents

    Dahlen, B.L.; Mosly, W.C. Jr.; Smith, P.K.; Albenesius, E.L.

    1974-01-22

    Californium, as metal or oxide, is uniformly dispersed throughout a noble metal matrix, provided in compact, rod or wire form. A solution of californium values is added to palladium metal powder, dried, blended and pressed into a compact having a uni-form distribution of californium. The californium values are decomposed to californium oxide or metal by heating in an inert or reducing atmosphere. Sintering the compact to a high density closes the matrix around the dispersed californium. The sintered compact is then mechanically shaped into an elongated rod or wire form. (4 claims, no drawings) (Official Gazette)

  14. Extremal black holes in dynamical Chern-Simons gravity

    NASA Astrophysics Data System (ADS)

    McNees, Robert; Stein, Leo C.; Yunes, Nicolás

    2016-12-01

    Rapidly rotating black hole (BH) solutions in theories beyond general relativity (GR) play a key role in experimental gravity, as they allow us to compute observables in extreme spacetimes that deviate from the predictions of GR. Such solutions are often difficult to find in beyond-general-relativity theories due to the inclusion of additional fields that couple to the metric nonlinearly and non-minimally. In this paper, we consider rotating BH solutions in one such theory, dynamical Chern-Simons (dCS) gravity, where the Einstein-Hilbert action is modified by the introduction of a dynamical scalar field that couples to the metric through the Pontryagin density. We treat dCS gravity as an effective field theory and work in the decoupling limit, where corrections are treated as small perturbations from GR. We perturb about the maximally rotating Kerr solution, the so-called extremal limit, and develop mathematical insight into the analysis techniques needed to construct solutions for generic spin. First we find closed-form, analytic expressions for the extremal scalar field, and then determine the trace of the metric perturbation, giving both in terms of Legendre decompositions. Retaining only the first three and four modes in the Legendre representation of the scalar field and the trace, respectively, suffices to ensure a fidelity of over 99% relative to full numerical solutions. The leading-order mode in the Legendre expansion of the trace of the metric perturbation contains a logarithmic divergence at the extremal Kerr horizon, which is likely to be unimportant as it occurs inside the perturbed dCS horizon. The techniques employed here should enable the construction of analytic, closed-form expressions for the scalar field and metric perturbations on a background with arbitrary rotation.

  15. Stability of Thin-Walled Tubes Under Torsion

    NASA Technical Reports Server (NTRS)

    Donnell, L H

    1935-01-01

    In this report a theoretical solution is developed for the torsion on a round thin-walled tube for which the walls become unstable. The results of this theory are given by a few simple formulas and curves which cover all cases. The differential equations of equilibrium are derived in a simpler form than previously found, it being shown that many items can be neglected.

  16. The Motion of a Leaking Oscillator: A Study for the Physics Class

    ERIC Educational Resources Information Center

    Rodrigues, Hilário; Panza, Nelson; Portes, Dirceu; Soares, Alexandre

    2014-01-01

    This paper is essentially about the general form of Newton's second law for variable mass problems. We develop a model for describing the motion of the one-dimensional oscillator with a variable mass within the framework of classroom physics. We present a simple numerical procedure for the solution of the equation of motion of the system to…

  17. Simple robust control laws for robot manipulators. Part 2: Adaptive case

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.; Wen, J. T.

    1987-01-01

    A new class of asymptotically stable adaptive control laws is introduced for application to the robotic manipulator. Unlike most applications of adaptive control theory to robotic manipulators, this analysis addresses the nonlinear dynamics directly without approximation, linearization, or ad hoc assumptions, and utilizes a parameterization based on physical (time-invariant) quantities. This approach is made possible by using energy-like Lyapunov functions which retain the nonlinear character and structure of the dynamics, rather than simple quadratic forms which are ubiquitous to the adaptive control literature, and which have bound the theory tightly to linear systems with unknown parameters. It is a unique feature of these results that the adaptive forms arise by straightforward certainty equivalence adaptation of their nonadaptive counterparts found in the companion to this paper (i.e., by replacing unknown quantities by their estimates) and that this simple approach leads to asymptotically stable closed-loop adaptive systems. Furthermore, it is emphasized that this approach does not require convergence of the parameter estimates (i.e., via persistent excitation), invertibility of the mass matrix estimate, or measurement of the joint accelerations.

  18. Effects of Catalytic Action and Ligand Binding on Conformational Ensembles of Adenylate Kinase.

    PubMed

    Onuk, Emre; Badger, John; Wang, Yu Jing; Bardhan, Jaydeep; Chishti, Yasmin; Akcakaya, Murat; Brooks, Dana H; Erdogmus, Deniz; Minh, David D L; Makowski, Lee

    2017-08-29

    Crystal structures of adenylate kinase (AdK) from Escherichia coli capture two states: an "open" conformation (apo) obtained in the absence of ligands and a "closed" conformation in which ligands are bound. Other AdK crystal structures suggest intermediate conformations that may lie on the transition pathway between these two states. To characterize the transition from open to closed states in solution, X-ray solution scattering data were collected from AdK in the apo form and with progressively increasing concentrations of five different ligands. Scattering data from apo AdK are consistent with scattering predicted from the crystal structure of AdK in the open conformation. In contrast, data from AdK samples saturated with Ap5A do not agree with that calculated from AdK in the closed conformation. Using cluster analysis of available structures, we selected representative structures in five conformational states: open, partially open, intermediate, partially closed, and closed. We used these structures to estimate the relative abundances of these states for each experimental condition. X-ray solution scattering data obtained from AdK with AMP are dominated by scattering from AdK in the open conformation. For AdK in the presence of high concentrations of ATP and ADP, the conformational ensemble shifts to a mixture of partially open and closed states. Even when AdK is saturated with Ap5A, a significant proportion of AdK remains in a partially open conformation. These results are consistent with an induced-fit model in which the transition of AdK from an open state to a closed state is initiated by ATP binding.

  19. Analytic Closed-Form Solution of a Mixed Layer Model for Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Akyurek, Bengu Ozge

    Stratocumulus clouds play an important role in climate cooling and are hard to predict using global climate and weather forecast models. Thus, previous studies in the literature use observations and numerical simulation tools, such as large-eddy simulation (LES), to solve the governing equations for the evolution of stratocumulus clouds. In contrast to the previous works, this work provides an analytic closed-form solution to the cloud thickness evolution of stratocumulus clouds in a mixed-layer model framework. With a focus on application over coastal lands, the diurnal cycle of cloud thickness and whether or not clouds dissipate are of particular interest. An analytic solution enables the sensitivity analysis of implicitly interdependent variables and extrema analysis of cloud variables that are hard to achieve using numerical solutions. In this work, the sensitivity of inversion height, cloud-base height, and cloud thickness with respect to initial and boundary conditions, such as Bowen ratio, subsidence, surface temperature, and initial inversion height, are studied. A critical initial cloud thickness value that can be dissipated pre- and post-sunrise is provided. Furthermore, an extrema analysis is provided to obtain the minima and maxima of the inversion height and cloud thickness within 24 h. The proposed solution is validated against LES results under the same initial and boundary conditions. Then, the proposed analytic framework is extended to incorporate multiple vertical columns that are coupled by advection through wind flow. This enables a bridge between the micro-scale and the mesoscale relations. The effect of advection on cloud evolution is studied and a sensitivity analysis is provided.

  20. Structural architecture of prothrombin in solution revealed by single molecule spectroscopy

    DOE PAGES

    Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing; ...

    2016-07-19

    The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr 93 in kringle-1 onto Trp 547 in the protease domain that obliterates access tomore » the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. As a result, the open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase.« less

  1. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  2. The Space-Time Conservation Element and Solution Element Method: A New High-Resolution and Genuinely Multidimensional Paradigm for Solving Conservation Laws. 1; The Two Dimensional Time Marching Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen

    1998-01-01

    A new high resolution and genuinely multidimensional numerical method for solving conservation laws is being, developed. It was designed to avoid the limitations of the traditional methods. and was built from round zero with extensive physics considerations. Nevertheless, its foundation is mathmatically simple enough that one can build from it a coherent, robust. efficient and accurate numerical framework. Two basic beliefs that set the new method apart from the established methods are at the core of its development. The first belief is that, in order to capture physics more efficiently and realistically, the modeling, focus should be placed on the original integral form of the physical conservation laws, rather than the differential form. The latter form follows from the integral form under the additional assumption that the physical solution is smooth, an assumption that is difficult to realize numerically in a region of rapid chance. such as a boundary layer or a shock. The second belief is that, with proper modeling of the integral and differential forms themselves, the resulting, numerical solution should automatically be consistent with the properties derived front the integral and differential forms, e.g., the jump conditions across a shock and the properties of characteristics. Therefore a much simpler and more robust method can be developed by not using the above derived properties explicitly.

  3. An analytical method for the inverse Cauchy problem of Lame equation in a rectangle

    NASA Astrophysics Data System (ADS)

    Grigor’ev, Yu

    2018-04-01

    In this paper, we present an analytical computational method for the inverse Cauchy problem of Lame equation in the elasticity theory. A rectangular domain is frequently used in engineering structures and we only consider the analytical solution in a two-dimensional rectangle, wherein a missing boundary condition is recovered from the full measurement of stresses and displacements on an accessible boundary. The essence of the method consists in solving three independent Cauchy problems for the Laplace and Poisson equations. For each of them, the Fourier series is used to formulate a first-kind Fredholm integral equation for the unknown function of data. Then, we use a Lavrentiev regularization method, and the termwise separable property of kernel function allows us to obtain a closed-form regularized solution. As a result, for the displacement components, we obtain solutions in the form of a sum of series with three regularization parameters. The uniform convergence and error estimation of the regularized solutions are proved.

  4. Highly Accurate Analytical Approximate Solution to a Nonlinear Pseudo-Oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Baisheng; Liu, Weijia; Lim, C. W.

    2017-07-01

    A second-order Newton method is presented to construct analytical approximate solutions to a nonlinear pseudo-oscillator in which the restoring force is inversely proportional to the dependent variable. The nonlinear equation is first expressed in a specific form, and it is then solved in two steps, a predictor and a corrector step. In each step, the harmonic balance method is used in an appropriate manner to obtain a set of linear algebraic equations. With only one simple second-order Newton iteration step, a short, explicit, and highly accurate analytical approximate solution can be derived. The approximate solutions are valid for all amplitudes of the pseudo-oscillator. Furthermore, the method incorporates second-order Taylor expansion in a natural way, and it is of significant faster convergence rate.

  5. Analytically-derived sensitivities in one-dimensional models of solute transport in porous media

    USGS Publications Warehouse

    Knopman, D.S.

    1987-01-01

    Analytically-derived sensitivities are presented for parameters in one-dimensional models of solute transport in porous media. Sensitivities were derived by direct differentiation of closed form solutions for each of the odel, and by a time integral method for two of the models. Models are based on the advection-dispersion equation and include adsorption and first-order chemical decay. Boundary conditions considered are: a constant step input of solute, constant flux input of solute, and exponentially decaying input of solute at the upstream boundary. A zero flux is assumed at the downstream boundary. Initial conditions include a constant and spatially varying distribution of solute. One model simulates the mixing of solute in an observation well from individual layers in a multilayer aquifer system. Computer programs produce output files compatible with graphics software in which sensitivities are plotted as a function of either time or space. (USGS)

  6. Liquid fractionation. Part I: Basic principles and experimental simulations

    NASA Astrophysics Data System (ADS)

    McBirney, Alexander R.; Baker, Brian H.; Nilson, Robert H.

    1985-03-01

    A possible explanation for the closely associated magmas of contrasting compositions erupted from many mature volcanic centers can be found in the large differences of density produced by relatively small compositional variations in liquids that evolve by crystallization or melting at the walls of shallow magma chambers. A mechanism of liquid fractionation in which differentiated liquids segragate gravitationally to form compositionally graded columns of magma may surmount the long-standing problem of explaining large volumes of highly evolved liquids that reach advanced degrees of differentiation in times that are too short to be consistent with conventional models of crystal fractionation based on crystal settling. In those types of magmas that decrease in density as they differentiate, a fractionated liquid next to a wall may form a buoyant compositional boundary layer that flows up the wall and accumulates as a separate zone in the upper levels of the reservoir. Magmas that increase in density as they differentiate will have the opposite behavior; they descend along the wall and pond on the floor. Both types of systems can be modeled using simple aqueous solutions and techniques similar to those developed by Chen and Turner (1980). The insights gained through experiments of this kind suggest a number of processes that may be responsible for common types of volcanic behavior and patterns of differentiation in shallow plutons.

  7. Face Centered Cubic and Hexagonal Close Packed Skyrmion Crystals in Centrosymmetric Magnets

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Batista, Cristian D.

    2018-02-01

    Skyrmions are disklike objects that typically form triangular crystals in two-dimensional systems. This situation is analogous to the so-called pancake vortices of quasi-two-dimensional superconductors. The way in which Skyrmion disks or "pancake Skyrmions" pile up in layered centrosymmetric materials is dictated by the interlayer exchange. Unbiased Monte Carlo simulations and simple stabilization arguments reveal face centered cubic and hexagonal close packed Skyrmion crystals for different choices of the interlayer exchange, in addition to the conventional triangular crystal of Skyrmion lines. Moreover, an inhomogeneous current induces a sliding motion of pancake Skyrmions, indicating that they behave as effective mesoscale particles.

  8. A class of simple bouncing and late-time accelerating cosmologies in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Kuiroukidis, A.

    We consider the field equations for a flat FRW cosmological model, given by Eq. (??), in an a priori generic f(R) gravity model and cast them into a, completely normalized and dimensionless, system of ODEs for the scale factor and the function f(R), with respect to the scalar curvature R. It is shown that under reasonable assumptions, namely for power-law functional form for the f(R) gravity model, one can produce simple analytical and numerical solutions describing bouncing cosmological models where in addition there are late-time accelerating. The power-law form for the f(R) gravity model is typically considered in the literature as the most concrete, reasonable, practical and viable assumption [see S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 90 (2014) 124083, arXiv:1410.8183 [gr-qc

  9. The linear stability of vertical mixture seepage into the close porous filter with clogging

    NASA Astrophysics Data System (ADS)

    Maryshev, Boris S.

    2017-02-01

    In the present paper, filtration of a mixture through a close porous filter is considered. A heavy solute penetrates from the upper side of the filter into the filter body due to seepage flow and diffusion. In the presence of heavy solute a domain with a heavy fluid is formed near the upper boundary of the filter. The stratification, at which the heavy fluid is located above the light, is unstable. When the mass of the heavy solute exceeds the critical value, one can observe the onset of instability. As a result, two regimes of vertical filtration can occur: (1) homogeneous seepage and (2) convective filtration. Filtration of a mixture in porous media is a complex process. It is necessary to take into account the solute immobilization (or sorption) and clogging of porous medium. We consider the case of low solute concentrations, in which the immobilization is described by the linear MIM (mobile/immobile media) model. The clogging is described by the dependence of permeability on porosity in terms of the Carman-Kozeny formula. The presence of immobile (or adsorbed) particles of the solute decreases the porosity of media and porous media becomes less permeable. The purpose of the paper is to find the stability conditions for the homogeneous vertical seepage of the mixture into the close porous filter. The linear stability problem is solved using the quasi-static approach. The critical times of instability are estimated. The stability maps have been plotted in the space of system parameters. The applicability of quasi-static approach is substantiated by direct numerical simulation.

  10. Deviation of Long-Period Tides from Equilibrium: Kinematics and Geostrophy

    NASA Technical Reports Server (NTRS)

    Egbert, Gary D.; Ray, Richard D.

    2003-01-01

    New empirical estimates of the long-period fortnightly (Mf) tide obtained from TOPEX/Poseidon (T/P) altimeter data confirm significant basin-scale deviations from equilibrium. Elevations in the low-latitude Pacific have reduced amplitude and lag those in the Atlantic by 30 deg or more. These interbasin amplitude and phase variations are robust features that are reproduced by numerical solutions of the shallow-water equations, even for a constant-depth ocean with schematic interconnected rectangular basins. A simplified analytical model for cooscillating connected basins also reproduces the principal features observed in the empirical solutions. This simple model is largely kinematic. Zonally averaged elevations within a simple closed basin would be nearly in equilibrium with the gravitational potential, except for a constant offset required to conserve mass. With connected basins these offsets are mostly eliminated by interbasin mass flux. Because of rotation, this flux occurs mostly in a narrow boundary layer across the mouth and at the western edge of each basin, and geostrophic balance in this zone supports small residual offsets (and phase shifts) between basins. The simple model predicts that this effect should decrease roughly linearly with frequency, a result that is confirmed by numerical modeling and empirical T/P estimates of the monthly (Mm) tidal constituent. This model also explains some aspects of the anomalous nonisostatic response of the ocean to atmospheric pressure forcing at periods of around 5 days.

  11. What Greek Secondary School Students Believe about Climate Change?

    ERIC Educational Resources Information Center

    Liarakou, Georgia; Athanasiadis, Ilias; Gavrilakis, Costas

    2011-01-01

    The purpose of this study was to investigate what Greek secondary school students (grades 8 and 11) believe about the greenhouse effect and climate change. A total of 626 students completed a closed-form questionnaire consisting of statements regarding the causes, impacts and solutions for this global environmental issue. The possible influence of…

  12. Partial Row-Sums of Pascal's Triangle

    ERIC Educational Resources Information Center

    Ollerton, Richard L.

    2007-01-01

    Identities for many and varied combinations of binomial coefficients abound. Indeed, because of the wide range of interrelationships it is possible that a great deal of mathematical effort has been wasted in proving essentially equivalent formulae. As well as proving identities these methods can be used to rule out closed form solutions (at least…

  13. The Rigid Orthogonal Procrustes Rotation Problem

    ERIC Educational Resources Information Center

    ten Berge, Jos M. F.

    2006-01-01

    The problem of rotating a matrix orthogonally to a best least squares fit with another matrix of the same order has a closed-form solution based on a singular value decomposition. The optimal rotation matrix is not necessarily rigid, but may also involve a reflection. In some applications, only rigid rotations are permitted. Gower (1976) has…

  14. Application of closed-form solutions to a mesh point field in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lamorte, M. F.

    1985-01-01

    A computer simulation method is discussed that provides for equivalent simulation accuracy, but that exhibits significantly lower CPU running time per bias point compared to other techniques. This new method is applied to a mesh point field as is customary in numerical integration (NI) techniques. The assumption of a linear approximation for the dependent variable, which is typically used in the finite difference and finite element NI methods, is not required. Instead, the set of device transport equations is applied to, and the closed-form solutions obtained for, each mesh point. The mesh point field is generated so that the coefficients in the set of transport equations exhibit small changes between adjacent mesh points. Application of this method to high-efficiency silicon solar cells is described; and the method by which Auger recombination, ambipolar considerations, built-in and induced electric fields, bandgap narrowing, carrier confinement, and carrier diffusivities are treated. Bandgap narrowing has been investigated using Fermi-Dirac statistics, and these results show that bandgap narrowing is more pronounced and that it is temperature-dependent in contrast to the results based on Boltzmann statistics.

  15. Wave propagation in strain gradient poroelastic medium with microinertia: closed-form and finite element solutions

    NASA Astrophysics Data System (ADS)

    Rosi, Giuseppe; Scala, Ilaria; Nguyen, Vu-Hieu; Naili, Salah

    2017-06-01

    This article is about ultrasonic wave propagation in microstructured porous media. The classic Biot's model is enriched using a strain gradient approach to be able to capture high-order effects when the wavelength approaches the characteristic size of the microstructure. In order to reproduce actual transmission/reflection experiments performed on poroelastic samples, and to validate the choice of the model, the computation of the time domain response is necessary, as it allows for a direct comparison with experimental results. For obtaining the time response, we use two strategies: on the one hand we compute the closed form solution by using the Laplace and Fourier transforms techniques; on the other hand we used a finite element method. The results are presented for a transmission/reflection test performed on a poroelastic sample immersed in water. The effects introduced by the strain gradient terms are visible in the time response and in agreement with experimental observations. The results can be exploited in characterization of mechanical properties of poroelastic media by enhancing the reliability of quantitative ultrasound techniques.

  16. Aluminum and its effect in the equilibrium between folded/unfolded conformation of NADH.

    PubMed

    Formoso, Elena; Mujika, Jon I; Grabowski, Slawomir J; Lopez, Xabier

    2015-11-01

    Nicotinamide adenine dinucleotide (NADH) is one of the most abundant cofactor employed by proteins and enzymes. The molecule is formed by two nucleotides that can lead to two main conformations: folded/closed and unfolded/open. Experimentally, it has been determined that the closed form is about 2 kcal/mol more stable than the open formed. Computationally, a correct description of the NADH unfolding process is challenging due to different reasons: 1) The unfolding process shows a very low energy difference between the two conformations 2) The molecule can form a high number of internal hydrogen bond interactions 3) Subtle effects such as dispersion may be important. In order to tackle all these effects, we have employed a number of different state of the art computational techniques, including: a) well-tempered metadynamics, b) geometry optimizations, and c) Quantum Theory of Atoms in Molecules (QTAIM) calculations, to investigate the conformational change of NADH in solution and interacting with aluminum. All the results indicate that aluminum indeed favors the closed conformation of NADH, due mainly to the formation of a more rigid structure through key hydrogen bond interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Topics in elementary particle physics

    NASA Astrophysics Data System (ADS)

    Jin, Xiang

    The author of this thesis discusses two topics in elementary particle physics: n-ary algebras and their applications to M-theory (Part I), and functional evolution and Renormalization Group flows (Part II). In part I, Lie algebra is extended to four different n-ary algebraic structure: generalized Lie algebra, Filippov algebra, Nambu algebra and Nambu-Poisson tensor; though there are still many other n-ary algebras. A natural property of Generalized Lie algebras — the Bremner identity, is studied, and proved with a totally different method from its original version. We extend Bremner identity to n-bracket cases, where n is an arbitrary odd integer. Filippov algebras do not focus on associativity, and are defined by the Fundamental identity. We add associativity to Filippov algebras, and give examples of how to construct Filippov algebras from su(2), bosonic oscillator, Virasoro algebra. We try to include fermionic charges into the ternary Virasoro-Witt algebra, but the attempt fails because fermionic charges keep generating new charges that make the algebra not closed. We also study the Bremner identity restriction on Nambu algebras and Nambu-Poisson tensors. So far, the only example 3-algebra being used in physics is the BLG model with 3-algebra A4, describing two M2-branes interactions. Its extension with Nambu algebra, BLG-NB model, is believed to describe infinite M2-branes condensation. Also, there is another propose for M2-brane interactions, the ABJM model, which is constructed by ordinary Lie algebra. We compare the symmetry properties between them, and discuss the possible approaches to include these three models into a grand unification theory. In Part II, we give an approximate solution for Schroeder's equations, based on series and conjugation methods. We use the logistic map as an example, and demonstrate that this approximate solution converges to known analytical solutions around the fixed point, around which the approximate solution is constructed. Although the closed-form solutions for Schroeder's equations can not always be approached analytically, by fitting the approximation solutions, one can still obtain closed-form solutions sometimes. Based on Schroeder's theory, approximate solutions for trajectories, velocities and potentials can also be constructed. The approximate solution is significantly useful to calculate the beta function in renormalization group trajectory. By "wrapping" the series solutions with the conjugations from different inverse functions, we generate different branches of the trajectory, and construct a counterexample for a folk theorem about limited cycles.

  18. Self-assembly of Spherical Macroions in Solution: A Coarse-grained Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Liu, Zhuonan; Liu, Tianbo; Tsige, Mesfin

    2015-03-01

    Macroions (such as polyoxometalates) in solution can form a stable hollow spherical super-molecular structure called blackberry when they have moderate surface charge density and size (1-10 nm). Depending on the surface charge density of macroions, the size of the blackberry can be from 20 to more than 100 nm. Other macroions such as dendrimers can also self-assemble into similar super-molecular structure in solution. Existing theories such as Debye-Hückel and DLVO theories cannot explain this phenomenon and we are not aware of any other theory that can explain this. Previous studies using all-atom Molecular Dynamics simulations have shown identical macroions forming oligomers mediated by counterions. Due to the limitations in all-atom simulation and available computational capabilities, these studies handled only small systems with simple macroions, leading to less conclusive but still relevant results on the self-assembly behavior. To overcome these limitations, in this work large-scale coarse-grained modeling of macroions in solution is used. In order to understand the origin of the attractive force that is responsible for the self-assembly of macroions, different types of macroions in different solution conditions are studied. This work was supported by NSF Grant DMR0847580.

  19. Solution-processed air-stable mesoscopic selenium solar cells

    DOE PAGES

    Zhu, Menghua; Hao, Feng; Ma, Lin; ...

    2016-07-28

    Crystalline selenium (c-Se) is a direct band gap semiconductor and has been developed for detector applications for more than 30 years. While most advances have been made using vacuum deposition processes, it remains a challenge to prepare efficient c-Se devices directly from solution. We demonstrate a simple solution process leading to uniform and high-crystallinity selenium films under ambient conditions. A combination of ethylenediamine (EDA) and hydrazine solvents was found to be effective in dissolving selenium powder and forming highly concentrated solutions. These can be used to infiltrate a mesoporous titanium dioxide layer and form a smooth and pinhole-free capping overlayer.more » Efficient light-induced charge injection from the crystalline selenium to TiO 2 was observed using transient absorption spectroscopy. A small amount of EDA addition in the hydrazine solution was found to improve the film coverage significantly, and on the basis of the finding, we are able to achieve up to 3.52% power conversion efficiency solar cells with a fill factor of 57%. Lastly, these results provide a method to control the crystalline selenium film and represent significant progress in developing low-cost selenium-based solar cells.« less

  20. Inclusion of products of physicochemical oxidation of organic wastes in matter recycling of biological-technical life support systems.

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Alexander A.; Kudenko, Yurii; Trifonov, Sergei; Ushakova, Sofya

    Inclusion of products of human and plant wastes' `wet' incineration in 22 medium using alter-nating current into matter recycling of biological-technical life support system (BTLSS) has been considered. Fluid and gaseous components have been shown to be the products of such processing. In particular, the final product contained all necessary for plant cultivation nitrogen forms: NO2, NO3, NH4+. As the base solution included urine than NH4+ form dominated. At human solid wastes' mineralization NO2 NH4+ were registered in approximately equal amount. Comparative analysis of mineral composition of oxidized human wastes' and standard Knop solutions has been carried out. On the grounds of that analysis the dilution methods of solutions prepared with addition of oxidized human wastes for their further use for plant irrigation have been suggested. Reasonable levels of wheat productivity cultivated at use of given solutions have been obtained. CO2, N2 and O2 have been determined to be the main gas components of the gas admixture emitted within the given process. These gases easily integrate in matter recycling process of closed ecosystem. The data of plants' cultivation feasibility in the atmosphere obtained after closing of gas loop including physicochemical facility and vegetation chamber with plants-representatives of LSS phototrophic unit has been received. Conclusion of advance research on creation of matter recycling process in the integrated physical-chemical-biological model system has been drawn.

Top