Assessment of steam-injected gas turbine systems and their potential application
NASA Technical Reports Server (NTRS)
Stochl, R. J.
1982-01-01
Results were arrived at by utilizing and expanding on information presented in the literature. The results were analyzed and compared with those for simple gas turbine and combined cycles for both utility power generation and industrial cogeneration applications. The efficiency and specific power of simple gas turbine cycles can be increased as much as 30 and 50 percent, respectively, by the injection of steam into the combustor. Steam-injected gas turbines appear to be economically competitive with both simple gas turbine and combined cycles for small, clean-fuel-fired utility power generation and industrial cogeneration applications. For large powerplants with integrated coal gasifiers, the economic advantages appear to be marginal.
Survey of alternative gas turbine engine and cycle design. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukas, H.
1986-02-01
In the period of the 1940's to 1960's much experimentation was performed in the areas of intercooling, reheat, and recuperation, as well as the use of low-grade fuels in gas turbines. The Electric Power Research Institute (EPRI), in an effort to document past experience which can be used as the basis for current design activities, commissioned a study to document alternate cycles and components used in gas turbine design. The study was performed by obtaining the important technical and operational criteria of the cycles through a literature search of published documents, articles, and papers. Where possible the information was augmentedmore » through dialogue with persons associated with those cycles and with the manufacturers. The survey indicated that many different variations of the simple open-cycle gas turbine plant were used. Many of these changes resulted in increases in efficiency over the low simple-cycle efficiency of that period. Metallurgy, as well as compressor and turbine design, limited the simple-cycle efficiency to the upper teens. The cycle modifications increased those efficiencies to the twenties and thirties. Advances in metallurgy as well as compressor and turbine design, coupled with the decrease in flue cost, stopped the development of these complex cycles. Many of the plants operated successfully for many years, and only because newer simple-cycle gas turbine plants and large steam plants had better heat rates were these units shutdown or put into stand-by service. 24 refs., 25 figs., 114 tabs.« less
Small Engine Component Technology (SECT) study
NASA Technical Reports Server (NTRS)
Larkin, T. R.
1986-01-01
The objective of this study is to identify high payoff technologies for year 2000 small gas turbine engines, and to provide a technology plan to guide research and technology efforts toward revolutionizing the small gas turbine technology base. The goal is to define the required technology to provide a 30 percent reduction in mission fuel burned, to reduce direct operating costs by at least 10 percent, and to provide increased reliability and durability of the gas turbine propulsion system. The baseline established to evaluate the year 2000 technology base was an 8-passenger commercial tilt-rotor aircraft powered by a current technology gas turbine engine. Three basic engine cycles were studied: the simple cycle engine, a waste heat recovery cycle, and a wave rotor engine cycle. For the simple cycle engine, two general arrangements were considered: the traditional concentric spool arrangement and a nonconcentric spool arrangement. Both a regenerative and a recuperative cycle were studied for the waste heat recovery cycle.
Effect of steam addition on cycle performance of simple and recuperated gas turbines
NASA Technical Reports Server (NTRS)
Boyle, R. J.
1979-01-01
Results are presented for the cycle efficiency and specific power of simple and recuperated gas turbine cycles in which steam is generated and used to increase turbine flow. Calculations showed significant improvements in cycle efficiency and specific power by adding steam. The calculations were made using component efficiencies and loss assumptions typical of stationary powerplants. These results are presented for a range of operating temperatures and pressures. Relative heat exchanger size and the water use rate are also examined.
Conceptual design of closed Brayton cycle for coal-fired power generation
NASA Technical Reports Server (NTRS)
Shah, R. P.; Corman, J. C.
1977-01-01
The objectives to be realized in developing a closed cycle gas turbine are (1) to exploit high temperature gas turbine technology while maintaining a working fluid which is free from combustion gas contamination, (2) to achieve compact turbo-equipment designs through pressurization of the working fluid, and (3) to obtain relatively simple cycle configurations. The technical/economic performance of a specific closed cycle gas turbine system was evaluated through the development of a conceptual plant and system design. This energy conversion system is designed for electric utility service and to utilize coal directly in an environmentally acceptable manner.
Pros and cons of power combined cycle in Venezuela
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, C.; Hernandez, S.
1997-09-01
In Venezuela combined cycle power has not been economically attractive to electric utility companies, mainly due to the very low price of natural gas. Savings in cost of natural gas due to a higher efficiency, characteristic of this type of cycle, does not compensate additional investments required to close the simple cycle (heat recovery steam generator (HRSG) and steam turbine island). Low gas prices have contributed to create a situation characterized by investors` reluctance to commit capital in gas pipe lines and associated equipment. The Government is taking measures to improve economics. Recently (January 1, 1997), the Ministry of Energymore » and Mines raised the price of natural gas, and established a formula to tie its price to the exchange rate variation (dollar/bolivar) in an intent to stimulate investments in this sector. This is considered a good beginning after a price freeze for about three years. Another measure that has been announced is the implementation of a corporate policy of outsourcing to build new gas facilities such as pipe lines and measuring and regulation stations. Under these new circumstances, it seems that combined cycle will play an important role in the power sector. In fact, some power generation projects are considering building new plants using this technology. An economical comparative study is presented between simple and combined cycles power plant. Screening curves are showed with a gas price forecast based on the government decree recently issued, as a function of plant capacity factor.« less
NASA Technical Reports Server (NTRS)
Amos, D. J.; Grube, J. E.
1976-01-01
Open-cycle recuperated gas turbine plant with inlet temperatures of 1255 to 1644 K (1800 to 2500 F) and recuperators with effectiveness values of 0, 70, 80 and 90% are considered. A 1644 K (2500 F) gas turbine would have a 33.5% plant efficiency in a simple cycle, 37.6% in a recuperated cycle and 47.6% when combined with a sulfur dioxide bottomer. The distillate burning recuperated plant was calculated to produce electricity at a cost of 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost $170 to 200 $/kW, the open cycle gas turbine plant should see duty for peaking and intermediate load duty.
Analytical investigation of thermal barrier coatings on advanced power generation gas turbines
NASA Technical Reports Server (NTRS)
Amos, D. J.
1977-01-01
An analytical investigation of present and advanced gas turbine power generation cycles incorporating thermal barrier turbine component coatings was performed. Approximately 50 parametric points considering simple, recuperated, and combined cycles (including gasification) with gas turbine inlet temperatures from current levels through 1644K (2500 F) were evaluated. The results indicated that thermal barriers would be an attractive means to improve performance and reduce cost of electricity for these cycles. A recommended thermal barrier development program has been defined.
NASA Astrophysics Data System (ADS)
Kawakubo, T.
2016-05-01
A simple, stable and reliable modeling of the real gas nature of the working fluid is required for the aerodesigns of the turbine in the Organic Rankine Cycle and of the compressor in the Vapor Compression Cycle. Although many modern Computational Fluid Dynamics tools are capable of incorporating real gas models, simulations with such a gas model tend to be more time-consuming than those with a perfect gas model and even can be unstable due to the simulation near the saturation boundary. Thus a perfect gas approximation is still an attractive option to stably and swiftly conduct a design simulation. In this paper, an effective method of the CFD simulation with a perfect gas approximation is discussed. A method of representing the performance of the centrifugal compressor or the radial-inflow turbine by means of each set of non-dimensional performance parameters and translating the fictitious perfect gas result to the actual real gas performance is presented.
Thermodynamic design of natural gas liquefaction cycles for offshore application
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung
2014-09-01
A thermodynamic study is carried out for natural gas liquefaction cycles applicable to offshore floating plants, as partial efforts of an ongoing governmental project in Korea. For offshore liquefaction, the most suitable cycle may be different from the on-land LNG processes under operation, because compactness and simple operation are important as well as thermodynamic efficiency. As a turbine-based cycle, closed Claude cycle is proposed to use NG (natural gas) itself as refrigerant. The optimal condition for NG Claude cycle is determined with a process simulator (Aspen HYSYS), and the results are compared with fully-developed C3-MR (propane pre-cooled mixed refrigerant) JT cycles and various N2 (nitrogen) Brayton cycles in terms of efficiency and compactness. The newly proposed NG Claude cycle could be a good candidate for offshore LNG processes.
A simple performance calculation method for LH2/LOX engines with different power cycles
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1973-01-01
A simple method for the calculation of the specific impulse of an engine with a gas generator cycle is presented. The solution is obtained by a power balance between turbine and pump. Approximate equations for the performance of the combustion products of LH2/LOX are derived. Performance results are compared with solutions of different engine types.
NASA Astrophysics Data System (ADS)
Luo, Ercang
2012-06-01
This paper analyzes the thermodynamic cycle of oscillating-flow regenerative machines. Unlike the classical analysis of thermodynamic textbooks, the assumptions for pistons' movement limitations are not needed and only ideal flowing and heat transfer should be maintained in our present analysis. Under such simple assumptions, the meso-scale thermodynamic cycles of each gas parcel in typical locations of a regenerator are analyzed. It is observed that the gas parcels in the regenerator undergo Lorentz cycle in different temperature levels, whereas the locus of all gas parcels inside the regenerator is the Ericson-like thermodynamic cycle. Based on this new finding, the author argued that ideal oscillating-flow machines without heat transfer and flowing losses is not the Stirling cycle. However, this new thermodynamic cycle can still achieve the same efficiency of the Carnot heat engine and can be considered a new reversible thermodynamic cycle under two constant-temperature heat sinks.
Modeling syngas-fired gas turbine engines with two dilutants
NASA Astrophysics Data System (ADS)
Hawk, Mitchell E.
2011-12-01
Prior gas turbine engine modeling work at the University of Wyoming studied cycle performance and turbine design with air and CO2-diluted GTE cycles fired with methane and syngas fuels. Two of the cycles examined were unconventional and innovative. The work presented herein reexamines prior results and expands the modeling by including the impacts of turbine cooling and CO2 sequestration on GTE cycle performance. The simple, conventional regeneration and two alternative regeneration cycle configurations were examined. In contrast to air dilution, CO2 -diluted cycle efficiencies increased by approximately 1.0 percentage point for the three regeneration configurations examined, while the efficiency of the CO2-diluted simple cycle decreased by approximately 5.0 percentage points. For CO2-diluted cycles with a closed-exhaust recycling path, an optimum CO2-recycle pressure was determined for each configuration that was significantly lower than atmospheric pressure. Un-cooled alternative regeneration configurations with CO2 recycling achieved efficiencies near 50%, which was approximately 3.0 percentage points higher than the conventional regeneration cycle and simple cycle configurations that utilized CO2 recycling. Accounting for cooling of the first two turbine stages resulted in a 2--3 percentage point reduction in un-cooled efficiency, with air dilution corresponding to the upper extreme. Additionally, when the work required to sequester CO2 was accounted for, cooled cycle efficiency decreased by 4--6 percentage points, and was more negatively impacted when syngas fuels were used. Finally, turbine design models showed that turbine blades are shorter with CO2 dilution, resulting in fewer design restrictions.
pyhector: A Python interface for the simple climate model Hector
Willner, Sven N.; Hartin, Corinne; Gieseke, Robert
2017-04-01
Here, pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary productionmore » and respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system. The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2.« less
Benefits of solar/fossil hybrid gas turbine systems
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.
1978-01-01
The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of; cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.
Benefits of solar/fossil hybrid gas turbine systems
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.
1979-01-01
The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today's gas and oil-fired powerplants to other more abundant fuels.
40 CFR 60.4219 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... given them in the CAA and in subpart A of this part. Combustion turbine means all equipment, including but not limited to the turbine, the fuel, air, lubrication and exhaust gas systems, control systems... simple cycle combustion turbine, any regenerative/recuperative cycle combustion turbine, the combustion...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willner, Sven N.; Hartin, Corinne; Gieseke, Robert
Here, pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary productionmore » and respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system. The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2.« less
40 CFR 98.30 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., boilers, simple and combined-cycle combustion turbines, engines, incinerators, and process heaters. (b... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING General Stationary Fuel Combustion Sources § 98.30 Definition...
Combined Brayton-JT cycles with refrigerants for natural gas liquefaction
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Park, Jae Hoon; Lee, Sanggyu; Choe, Kun Hyung
2012-06-01
Thermodynamic cycles for natural gas liquefaction with single-component refrigerants are investigated under a governmental project in Korea, aiming at new processes to meet the requirements on high efficiency, large capacity, and simple equipment. Based upon the optimization theory recently published by the present authors, it is proposed to replace the methane-JT cycle in conventional cascade process with a nitrogen-Brayton cycle. A variety of systems to combine nitrogen-Brayton, ethane-JT and propane-JT cycles are simulated with Aspen HYSYS and quantitatively compared in terms of thermodynamic efficiency, flow rate of refrigerants, and estimated size of heat exchangers. A specific Brayton-JT cycle is suggested with detailed thermodynamic data for further process development. The suggested cycle is expected to be more efficient and simpler than the existing cascade process, while still taking advantage of easy and robust operation with single-component refrigerants.
Rep. Tonko, Paul [D-NY-21
2009-06-24
Senate - 12/02/2009 Received in the Senate and Read twice and referred to the Committee on Energy and Natural Resources. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:
Centrifugal Gas Compression Cycle
NASA Astrophysics Data System (ADS)
Fultun, Roy
2002-11-01
A centrifuged gas of kinetic, elastic hard spheres compresses isothermally and without flow of heat in a process that reverses free expansion. This theorem follows from stated assumptions via a collection of thought experiments, theorems and other supporting results, and it excludes application of the reversible mechanical adiabatic power law in this context. The existence of an isothermal adiabatic centrifugal compression process makes a three-process cycle possible using a fixed sample of the working gas. The three processes are: adiabatic mechanical expansion and cooling against a piston, isothermal adiabatic centrifugal compression back to the original volume, and isochoric temperature rise back to the original temperature due to an influx of heat. This cycle forms the basis for a Thomson perpetuum mobile that induces a loop of energy flow in an isolated system consisting of a heat bath connectable by a thermal path to the working gas, a mechanical extractor of the gas's internal energy, and a device that uses that mechanical energy and dissipates it as heat back into the heat bath. We present a simple experimental procedure to test the assertion that adiabatic centrifugal compression is isothermal. An energy budget for the cycle provides a criterion for breakeven in the conversion of heat to mechanical energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuehn, S.E.
1995-03-01
This article examines why the diesel engine is a very attractive choice for producing power in the combined-cycle configuration. The medium-speed diesel is already one of the most efficient simple cycle sources of electricity, especially with lower grade fuels. Large units have heat-rate efficiencies as high as 45%, equating to a heat rate of 7,580 Btu/k Whr, and no other power production prime mover can match this efficiency. Diesels also offer designers fuel flexibility and can burn an extreme variety of fuels without sacrificing many of its positive operating attributes. Diesels are the first building block in a highly efficientmore » combined cycle system that relies on the hot gas and oxygen in the diesel`s exhaust to combust either natural gas, light distillate oil, heavy oil or coal, in a boiler. By using a fired boiler, steam can be generated at sufficient temperature and pressure to operate a Rankine steam cycle efficiently. Diesel combined-cycle plants can be configured in much the same way a gas turbine plant would be. However, the diesel combined-cycle scheme requires supplemental firing to generate appropriate steam conditions. The most efficient cycle, therefore, would not be achieved until combustion air and supplemental fuel are minimized to levels that satisfy steam conditions, steam generation and power generation constraints.« less
NASA Astrophysics Data System (ADS)
Dickens, Gerald R.
2003-08-01
Prominent negative δ13C excursions characterize several past intervals of abrupt (<100 kyr) environmental change. These anomalies, best exemplified by the >2.5‰ drop across the Paleocene/Eocene thermal maximum (PETM) ca. 55.5 Ma, command our attention because they lack explanation with conventional models for global carbon cycling. Increasingly, Earth scientists have argued that they signify massive release of CH4 from marine gas hydrates, although typically without considering the underlying process or the ensuing ramifications of such an interpretation. At the most basic level, a large, dynamic 'gas hydrate capacitor' stores and releases 13C-depleted carbon at rates linked to external conditions such as deep ocean temperature. The capacitor contains three internal reservoirs: dissolved gas, gas hydrate, and free gas. Carbon enters and leaves these reservoirs through microbial decomposition of organic matter, anaerobic oxidation of CH4 in shallow sediment, and seafloor gas venting; carbon cycles between these reservoirs through several processes, including fluid flow, precipitation and dissolution of gas hydrate, and burial. Numerical simulations show that simple gas hydrate capacitors driven by inferred changes in bottom water warming during the PETM can generate a global δ13C excursion that mimics observations. The same modeling extended over longer time demonstrates that variable CH4 fluxes to and from gas hydrates can partly explain other δ13C excursions, rapid and slow, large and small, negative and positive. Although such modeling is rudimentary (because processes and variables in modern and ancient gas hydrate systems remain poorly constrained), acceptance of a vast, externally regulated gas hydrate capacitor forces us to rethink δ13C records and the operation of the global carbon cycle throughout time.
A novel high-temperature ejector-topping power cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, B.Z.; Lior, N.
1994-01-01
A novel, patented topping power cycle is described that takes its energy from a very high-temperature heat source and in which the temperature of the heat sink is still high enough to operate another, conventional power cycle. The top temperatures heat source is used to evaporate a low saturation pressure liquid, which serves as the driving fluid for compressing the secondary fluid in an ejector. Due to the inherently simple construction of ejectors, they are well suited for operation at temperatures higher than those that can be used with gas turbines. The gases exiting from the ejector transfer heat tomore » the lower temperature cycle, and are separated by condensing the primary fluid. The secondary gas is then used to drive a turbine. For a system using sodium as the primary fluid and helium as the secondary fluid, and using a bottoming Rankine steam cycle, the overall thermal efficiency can be at least 11 percent better than that of conventional steam Rankine cycles.« less
Gas swelling behaviour at different stages in Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 pouch cells
NASA Astrophysics Data System (ADS)
Liu, Wei; Liu, Haohan; Wang, Qian; Zhang, Jian; Xia, Baojia; Min, Guoquan
2017-11-01
Gas swelling behaviour is a major drawback of batteries that are based on Li4Ti5O12 anode materials and hinders their application. In this article, the morphology and electronic structure changes of Li4Ti5O12 electrodes at ageing and cycling stages are investigated using scanning electron microscopy, X-ray absorption near-edge structure and X-ray photoelectron spectroscopy. A simple method that uses an air bag to collect the generated gases was conducted and the gases were then characterised by gas chromatography/mass spectrometry. The results indicate that the charge transformation of Ti ions would aggravate the gas swelling behaviour. The solid electrolyte interphase (SEI) films form on the surface of the Li4Ti5O12 particles and become thicker with increasing charge state. The gas components change significantly during the ageing and cycling, indicating the complexity of the gas swelling mechanism.
Investigation of methods for sterilization of potting compounds and mated surfaces
NASA Technical Reports Server (NTRS)
Tulius, J. J.; Daley, D. J.; Phillips, G. B.
1972-01-01
The feasibility of using formaldehyde-liberating synthetic resins or polymers for the sterilization of potting compounds, mated and occluded areas, and spacecraft surfaces was demonstrated. The detailed study of interrelated parameters of formaldehyde gas sterilization revealed that efficient cycle conditions can be developed for the sterilization of spacecraft components. It was determined that certain parameters were more important than others in the development of cycles for specific applications. The use of formaldehyde gas for the sterilization of spacecraft components provides NASA with a highly efficient method which is inexpensive, reproducible, easily quantitated, materials compatible, operationally simple, generally non-hazardous and not thermally destructive.
A feasibility study for underground coal gasification at Krabi Mine, Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solc, J.; Steadman, E.N.; Boysen, J.E.
A study to evaluate the technical, economical, and environmental feasibility of underground coal gasification (UCG) in the Krabi Mine, Thailand, was conducted by the Energy and Environmental Research Center (EERC) in cooperation with B.C. Technologies (BCT) and the Electricity Generating Authority of Thailand (EGAT). The selected coal resource was found suitable to fuel a UCG facility producing 460,000 MJ/h (436 million Btu/h) of 100--125 Btu/scf gas for 20 years. The raw UCG gas could be produced for a selling price of $1.94/MMBtu. The UCG facility would require a total investment of $13.8 million for installed capital equipment, and annual operatingmore » expenses for the facility would be $7.0 million. The UCG gas could be either cofired in a power plant currently under construction or power a 40 MW simple-cycle gas turbine or a 60 MW combined-cycle power plant.« less
Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing
NASA Astrophysics Data System (ADS)
Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will
2018-05-01
Changes to climate-carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate-carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate-carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate-carbon feedback; and concentration-carbon feedbacks may be more sensitive to future climate change than climate-carbon feedbacks. Simple models such as that developed here also provide workbenches
for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.
Operational status and current trends in gas turbines for utility applications in Europe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, R.A.
1976-08-16
This investigation was conducted to ascertain the operational status and current trends in gas turbines for electric utility applications in Europe. A number of selected organizations were contacted by letter and personal visits and readily available pertinent literature was reviewed. The impact of business recovery in 1976 and increases in power demand on gas turbine operation and design trends is reflected in the following: annual operating hours on simple cycle gas turbines is very low in favor of more efficient combined cycle or steam plants which comprise part of the present excess reserve capacity; economics indicates the need for highermore » single unit ratings, e.g., in the 100 MW power range; inquiries and discussion of new plants are predominantly for more efficient systems--combined cycles and/or exhaust heat utilization; dual-purpose heat and power plants are getting much more attention; re-powering of existing steam plants is an attractive approach which has been demonstrated and should expand in use; ability to burn (or handle) dirty fuels is important; closed cycle gas turbine plants are receiving renewed consideration because of their good operational experience with dirty fuels including coal, flexibility in supplying varying amounts of heat and power with independent control, low pollution characteristics, ability to use over 80 percent of the heat content in thefuel, and potential for advantageous use in direct cycle, gas cooled nuclear power stations; the broad use of nuclear energy appears inevitable, and the potential advantages of direct cycle gas cooled systems with helium turbines offer incentives of increased efficiency, safety, and lower cost; and component trends are toward higher turbine inlet temperatures (1700 to 2000/sup 0/F) and toward higher compressor pressure ratios and variable geometry. Gas turbines are expected to play an important and continuing role in the utility industry in accordance with its changing requirements.« less
1982-06-01
starting and running in multifuel engines. D. FEF for Ground Turbine Engines Operation of the simple-cycle, gas-turbine engine is based on the Brayton or...MR R LAYNE) CAMERON STATION WASHINGTON DC 20362 ALEXANDRIA VA 22314 CDR CDR DAVID TAYLOR NAVAL SHIP R&D CTR MARINE CORPS LOGISTICS SUPPORT CODE 2830
Some single-piston closed-cycle machines and Peter Tailer's thermal lag engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, C.D.
1993-01-01
Peter Tailer has devised, built, and operated a beautifully simple engine with a closed working gas cycle, external heating, and only a single piston. The aim of this paper is to cast some light on the possible modes of operation for his machine. The methods develops to analyze certain aspects of Stirling cycle engines, and especially the thermodynamic losses incurred in systems that are neither perfectly isothermal nor perfectly adiabatic, can be applied to Tailer's system. The results identify two idealized cycles fr such machines; relate those cycles to a single piston, ported cylinder machine proposed earlier; and offer amore » possible explanation for the success of the thermal lag engine.« less
NASA Astrophysics Data System (ADS)
Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.
2016-08-01
Driven by the search for the highest theoretical efficiency, in the latest years several studies investigated the integration of high temperature fuel cells in natural gas fired power plants, where fuel cells are integrated with simple or modified Brayton cycles and/or with additional bottoming cycles, and CO2 can be separated via chemical or physical separation, oxy-combustion and cryogenic methods. Focusing on Solid Oxide Fuel Cells (SOFC) and following a comprehensive review and analysis of possible plant configurations, this work investigates their theoretical potential efficiency and proposes two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs integrated with a steam turbine or gas turbine cycle. The SOFC works at atmospheric or pressurized conditions and the resulting power plant exceeds 78% LHV efficiency without CO2 capture (as discussed in part A of the work) and 70% LHV efficiency with substantial CO2 capture (part B). The power plants are simulated at the 100 MW scale with a complete set of realistic assumptions about fuel cell (FC) performance, plant components and auxiliaries, presenting detailed energy and material balances together with a second law analysis.
Guatemala switch to crude saves over $1 million a month
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Biasi, V.
1980-03-01
In a two-step program designed to reduce fuel costs and improve operating efficiency, Empresa Electrica de Guatemala has modified two General Electric PG 5341 gas turbines at Laguna to run on crude oil and installed heat recovery equipment for repowering two existing steam turbines. The gas turbines, nominally rated at around 19,000 kW for base load operation at 70/sup 0/F average ambient temperature and 4000 feet altitude, were installed in 1977-78 as a base load backup to hydro power during the dry season. Original plan was to put them into immediate service as simple cycle units and then convert tomore » combined cycle operation. Priorities were shifted to switch over from distillate to crude oil firing before going ahead with the combined cycle istallation. Their economic evaluation showed the initial investment would be paid off in a few months by the savings in fuel costs.« less
Studies of long-life pulsed CO2 laser with Pt/SnO2 catalyst
NASA Technical Reports Server (NTRS)
Sidney, Barry D.
1987-01-01
Closed-cycle CO2 laser testing with and without a catalyst and with and without CO addition indicate that a catalyst is necessary for long-term operation. Initial results indicate that CO addition with a catalyst may prove optimal, but a precise gas mix has not yet been determined. A long-term run of 10 to the 6th power pulses using 1.3% added CO and a 2% Pt on SnO2 catalyst yields an efficiency of about 95% of open-cycle steady-state power. A simple mathematical analysis yields results which may be sufficient for determining optimum running conditions. Future plans call for testing various catalysts in the laser and longer tests, 10 to the 7th power pulses. A Gas Chromatograph will be installed to measure gas species concentration and the analysis will be slightly modified to include neglected but possibly important parameters.
Some single-piston closed-cycle machines and Peter Tailer`s thermal lag engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, C.D.
1993-06-01
Peter Tailer has devised, built, and operated a beautifully simple engine with a closed working gas cycle, external heating, and only a single piston. The aim of this paper is to cast some light on the possible modes of operation for his machine. The methods develops to analyze certain aspects of Stirling cycle engines, and especially the thermodynamic losses incurred in systems that are neither perfectly isothermal nor perfectly adiabatic, can be applied to Tailer`s system. The results identify two idealized cycles fr such machines; relate those cycles to a single piston, ported cylinder machine proposed earlier; and offer amore » possible explanation for the success of the thermal lag engine.« less
Combined cycle plants: Yesterday, today, and tomorrow (review)
NASA Astrophysics Data System (ADS)
Ol'khovskii, G. G.
2016-07-01
Gas turbine plants (GTP) for a long time have been developed by means of increasing the initial gas temperature and improvement of the turbo-machines aerodynamics and the efficiency of the critical components air cooling within the framework of a simple thermodynamic cycle. The application of watercooling systems that were used in experimental turbines and studied approximately 50 years ago revealed the fundamental difficulties that prevented the practical implementation of such systems in the industrial GTPs. The steam cooling researches have developed more substantially. The 300 MW power GTPs with a closedloop steam cooling, connected in parallel with the intermediate steam heating line in the steam cycle of the combined cycle plant (CCP) have been built, tested, and put into operation. The designs and cycle arrangements of such GTPs and entire combined cycle steam plants have become substantially more complicated without significant economic benefits. As a result, the steam cooling of gas turbines has not become widespread. The cycles—complicated by the intermediate air cooling under compression and reheat of the combustion products under expansion and their heat recovery to raise the combustion chamber entry temperature of the air—were used, in particular, in the domestic power GTPs with a moderate (700-800°C) initial gas turbine entry temperature. At the temperatures being reached to date (1300-1450°C), only one company, Alstom, applies in their 240-300 MW GTPs the recycled fuel cycle under expansion of gases in the turbine. Although these GTPs are reliable, there are no significant advantages in terms of their economy. To make a forecast of the further improvement of power GTPs, a brief review and assessment of the water cooling and steam cooling of hot components and complication of the GTP cycle by the recycling of fuel under expansion of gases in the turbine has been made. It is quite likely in the long term to reach the efficiency for the traditional GTPs of approximately 43% and 63% for PGUs at the initial gas temperature of 1600°C and less likely to increase the efficiency of these plants up to 45% and 65% by increasing the gas temperature up to 1700°C or by application of the steam cooling in the recycled fuel cycle.
Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.
2005-01-01
A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.
Space processing of composite materials
NASA Technical Reports Server (NTRS)
Steurer, W. H.; Kaye, S.
1975-01-01
Materials and processes for the testing of aluminum-base fiber and particle composites, and of metal foams under extended-time low-g conditions were investigated. A wetting and dispersion technique was developed, based on the theory that under the absence of a gas phase all solids are wetted by liquids. The process is characterized by a high vacuum environment and a high temperature cycle. Successful wetting and dispersion experiments were carried out with sapphire fibers, whiskers and particles, and with fibers of silicon carbide, pyrolytic graphite and tungsten. The developed process and facilities permit the preparation of a precomposite which serves as sample material for flight experiments. Low-g processing consists then merely in the uniform redistribution of the reinforcements during a melting cycle. For the preparation of metal foams, gas generation by means of a thermally decomposing compound was found most adaptable to flight experiments. For flight experiments, the use of compacted mixture of the component materials limits low-g processing to a simple melt cycle.
Thermal Analysis and Testing of Fastrac Gas Generator Design
NASA Technical Reports Server (NTRS)
Nguyen, H.
1998-01-01
The Fastrac Engine is being developed by the Marshall Space Flight Center (MSFC) to help meet the goal of substantially reducing the cost of access to space. This engine relies on a simple gas-generator cycle, which burns a small amount of RP-1 and oxygen to provide gas to drive the turbine and then exhausts the spent fuel. The Fastrac program envisions a combination of analysis, design and hot-fire evaluation testing. This paper provides the supporting thermal analysis of the gas generator design. In order to ensure that the design objectives were met, the evaluation tests have started on a component level and a total of 15 tests of different durations were completed to date at MSFC. The correlated thermal model results will also be compared against hot-fire thermocouple data gathered.
NASA Flexible Screen Propellant Management Device (PMD) Demonstration With Cryogenic Liquid
NASA Technical Reports Server (NTRS)
Wollen, Mark; Bakke, Victor; Baker, James
2012-01-01
While evaluating various options for liquid methane and liquid oxygen propellant management for lunar missions, Innovative Engineering Solutions (IES) conceived the flexible screen device as a potential simple alternative to conventional propellant management devices (PMD). An apparatus was designed and fabricated to test flexible screen devices in liquid nitrogen. After resolution of a number of issues (discussed in detail in the paper), a fine mesh screen (325 by 2300 wires per inch) spring return assembly was successfully tested. No significant degradation in the screen bubble point was observed either due to the screen stretching process or due to cyclic fatigue during testing. An estimated 30 to 50 deflection cycles, and approximately 3 to 5 thermal cycles, were performed on the final screen specimen, prior to and between formally recorded testing. These cycles included some "abusive" pressure cycling, where gas or liquid was driven through the screen at rates that produced differential pressures across the screen of several times the bubble point pressure. No obvious performance degradation or other changes were observed over the duration of testing. In summary, it is felt by the author that these simple tests validated the feasibility of the flexible screen PMD concept for use with cryogenic propellants.
A Simplified Model for Detonation Based Pressure-Gain Combustors
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2010-01-01
A time-dependent model is presented which simulates the essential physics of a detonative or otherwise constant volume, pressure-gain combustor for gas turbine applications. The model utilizes simple, global thermodynamic relations to determine an assumed instantaneous and uniform post-combustion state in one of many envisioned tubes comprising the device. A simple, second order, non-upwinding computational fluid dynamic algorithm is then used to compute the (continuous) flowfield properties during the blowdown and refill stages of the periodic cycle which each tube undergoes. The exhausted flow is averaged to provide mixed total pressure and enthalpy which may be used as a cycle performance metric for benefits analysis. The simplicity of the model allows for nearly instantaneous results when implemented on a personal computer. The results compare favorably with higher resolution numerical codes which are more difficult to configure, and more time consuming to operate.
Pseudo-simple heteroclinic cycles in R4
NASA Astrophysics Data System (ADS)
Chossat, Pascal; Lohse, Alexander; Podvigina, Olga
2018-06-01
We study pseudo-simple heteroclinic cycles for a Γ-equivariant system in R4 with finite Γ ⊂ O(4) , and their nearby dynamics. In particular, in a first step towards a full classification - analogous to that which exists already for the class of simple cycles - we identify all finite subgroups of O(4) admitting pseudo-simple cycles. To this end we introduce a constructive method to build equivariant dynamical systems possessing a robust heteroclinic cycle. Extending a previous study we also investigate the existence of periodic orbits close to a pseudo-simple cycle, which depends on the symmetry groups of equilibria in the cycle. Moreover, we identify subgroups Γ ⊂ O(4) , Γ ⊄ SO(4) , admitting fragmentarily asymptotically stable pseudo-simple heteroclinic cycles. (It has been previously shown that for Γ ⊂ SO(4) pseudo-simple cycles generically are completely unstable.) Finally, we study a generalized heteroclinic cycle, which involves a pseudo-simple cycle as a subset.
pyhector: A Python interface for the simple climate model Hector
DOE Office of Scientific and Technical Information (OSTI.GOV)
N Willner, Sven; Hartin, Corinne; Gieseke, Robert
2017-04-01
Pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary production andmore » respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system (Hartin et al. 2016). The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2. These were developed to cover the range of baseline and mitigation emissions scenarios and are widely used in climate change research and model intercomparison projects. Using DataFrames from the Python library Pandas (McKinney 2010) as a data structure for the scenarios simplifies generating and adapting scenarios. Other parameters of the Hector model can easily be modified when running the model. Pyhector can be installed using pip from the Python Package Index.3 Source code and issue tracker are available in Pyhector's GitHub repository4. Documentation is provided through Readthedocs5. Usage examples are also contained in the repository as a Jupyter Notebook (Pérez and Granger 2007; Kluyver et al. 2016). Courtesy of the Mybinder project6, the example Notebook can also be executed and modified without installing Pyhector locally.« less
NASA Technical Reports Server (NTRS)
Brown, D. H.; Corman, J. C.
1976-01-01
Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.
NASA Astrophysics Data System (ADS)
Qyyum, Muhammad Abdul; Wei, Feng; Hussain, Arif; Ali, Wahid; Sehee, Oh; Lee, Moonyong
2017-11-01
This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG). A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD) model was used to simulate the vortex tube with nitrogen (N2) as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO) approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.
Distant intense starbursts: evidence for self-regulated star formation?
NASA Astrophysics Data System (ADS)
Lehnert, M. D.
From an analysis of the Halpha and [NII]∼λ6583 rest-frame optical emission lines in a large sample of intensely star forming galaxies at z=1.3 to 2.7 observed with SINFONI on the ESO-VLT, we have reached a number of conclusions. The galaxies all have broad optical emission lines (sigma ˜50-250 km s-1) which are a function of the underlying star formation intensity as determined from the Halpha surface brightness. These broad lines are intrinsic to the galaxies and not due to beam smearing. The velocity dispersions appear to be related to the star formation intensity (Sigma SFR, star formation rate per unit area) of the form, sigma ˜ epsilon Sigma SFR1/2. This is a simple and direct relationship between the energy injection rate and the kinetic energy of the emission line gas with a coupling efficiency of epsilon . In this contribution, we outline a simple model whereby the energy output of massive stars, both mechanical and radiative, feeds a mass and energy cycle within the interstellar media of these distant galaxies. The mass and energy cycle pushes the global ISM towards the line of stability, Toomre parameter Q˜1, but only if the molecular gas captures, to some extent, the kinematics of the warm ionized gas as probed by the optical emission lines. In such a picture, the star formation intensity is self-regulating.} This work and many of the ideas presented here were developed in collaboration with L. Le Tiran, W. van Driel, P. Di Matteo (GEPI), N. Nesvadba, and F. Boulanger (IAS, Orsay, France).
A Gas-Cooled-Reactor Closed-Brayton-Cycle Demonstration with Nuclear Heating
NASA Astrophysics Data System (ADS)
Lipinski, Ronald J.; Wright, Steven A.; Dorsey, Daniel J.; Peters, Curtis D.; Brown, Nicholas; Williamson, Joshua; Jablonski, Jennifer
2005-02-01
A gas-cooled reactor may be coupled directly to turbomachinery to form a closed-Brayton-cycle (CBC) system in which the CBC working fluid serves as the reactor coolant. Such a system has the potential to be a very simple and robust space-reactor power system. Gas-cooled reactors have been built and operated in the past, but very few have been coupled directly to the turbomachinery in this fashion. In this paper we describe the option for testing such a system with a small reactor and turbomachinery at Sandia National Laboratories. Sandia currently operates the Annular Core Research Reactor (ACRR) at steady-state powers up to 4 MW and has an adjacent facility with heavy shielding in which another reactor recently operated. Sandia also has a closed-Brayton-Cycle test bed with a converted commercial turbomachinery unit that is rated for up to 30 kWe of power. It is proposed to construct a small experimental gas-cooled reactor core and attach this via ducting to the CBC turbomachinery for cooling and electricity production. Calculations suggest that such a unit could produce about 20 kWe, which would be a good power level for initial surface power units on the Moon or Mars. The intent of this experiment is to demonstrate the stable start-up and operation of such a system. Of particular interest is the effect of a negative temperature power coefficient as the initially cold Brayton gas passes through the core during startup or power changes. Sandia's dynamic model for such a system would be compared with the performance data. This paper describes the neutronics, heat transfer, and cycle dynamics of this proposed system. Safety and radiation issues are presented. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government.
Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors.
Conejero Jarque, E; San Roman, J; Silva, F; Romero, R; Holgado, W; Gonzalez-Galicia, M A; Alonso, B; Sola, I J; Crespo, H
2018-02-02
Gas-filled hollow-core fiber (HCF) pulse post-compressors generating few- to single-cycle pulses are a key enabling tool for attosecond science and ultrafast spectroscopy. Achieving optimum performance in this regime can be extremely challenging due to the ultra-broad bandwidth of the pulses and the need of an adequate temporal diagnostic. These difficulties have hindered the full exploitation of HCF post-compressors, namely the generation of stable and high-quality near-Fourier-transform-limited pulses. Here we show that, independently of conditions such as the type of gas or the laser system used, there is a universal route to obtain the shortest stable output pulse down to the single-cycle regime. Numerical simulations and experimental measurements performed with the dispersion-scan technique reveal that, in quite general conditions, post-compressed pulses exhibit a residual third-order dispersion intrinsic to optimum nonlinear propagation within the fiber, in agreement with measurements independently performed in several laboratories around the world. The understanding of this effect and its adequate correction, e.g. using simple transparent optical media, enables achieving high-quality post-compressed pulses with only minor changes in existing setups. These optimized sources have impact in many fields of science and technology and should enable new and exciting applications in the few- to single-cycle pulse regime.
Potential benefits of a ceramic thermal barrier coating on large power generation gas turbine
NASA Technical Reports Server (NTRS)
Clark, J. S.; Nainiger, J. J.
1977-01-01
Thermal barrier coating design option offers benefit in terms of reduced electricity costs when used in utility gas turbines. Options considered include: increased firing temperature, increased component life, reduced cooling air requirements, and increased corrosion resistance (resulting in increased tolerance for dirty fuels). Performance and cost data were obtained. Simple, recuperated and combined cycle applications were considered, and distillate and residual fuels were assumed. The results indicate that thermal barrier coatings could produce large electricity cost savings if these coatings permit turbine operation with residual fuels at distillate-rated firing temperatures. The results also show that increased turbine inlet temperature can result in substantial savings in fuel and capital costs.
NASA Technical Reports Server (NTRS)
Huang, Adam
2016-01-01
The goal of the Solid State Inflation Balloon Active Deorbiter project is to develop and demonstrate a scalable, simple, reliable, and low-cost active deorbiting system capable of controlling the downrange point of impact for the full-range of small satellites from 1 kg to 180 kg. The key enabling technology being developed is the Solid State Gas Generator (SSGG) chip, generating pure nitrogen gas from sodium azide (NaN3) micro-crystals. Coupled with a metalized nonelastic drag balloon, the complete Solid State Inflation Balloon (SSIB) system is capable of repeated inflation/deflation cycles. The SSGG minimizes size, weight, electrical power, and cost when compared to the current state of the art.
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
NASA Astrophysics Data System (ADS)
Linkohr, R.; Schladitz, H.
1982-08-01
Nickel oxide-electrode plaques for alkaline batteries have been developed by carbon vapor deposition plating fiber plaque substrates with nickel from nickelcarbonyo. Carbon felt proved to be a suitable substrate and large (22 x sq 15 sq cm) and thick 3 - 5 mm) plaques could be made from this material. Three metallization devices were constructed, one of which allowed continuous processing with carbonyl gas flowing through the felt; this improved evenness of nickel distribution. The physical properties of the plaques - structure, electric resistance, heat conduction, gas permeation - approximated by simple models and the corresponding calculations were compared with measurements. Nickel oxide electrodes were made from the plaques and were cycled in half-cell arrangements. The project goals concerning nickel sayings, capacity per unit area and current capability were reached.
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1511 - Exhaust gas analysis system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1509 - Exhaust gas sampling system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
Accretion onto stellar mass black holes
NASA Astrophysics Data System (ADS)
Deegan, Patrick
2009-12-01
I present work on the accretion onto stellar mass black holes in several scenarios. Due to dynamical friction stellar mass black holes are expected to form high density cusps in the inner parsec of our Galaxy. These compact remnants may be accreting cold dense gas present there, and give rise to potentially observable X-ray emission. I build a simple but detailed time-dependent model of such emission. Future observations of the distribution and orbits of the gas in the inner parsec of Sgr A* will put tighter constraints on the cusp of compact remnants. GRS 1915+105 is an LMXB, whose large orbital period implies a very large accretion disc and explains the extraordinary duration of its current outburst. I present smoothed particle hydrodynamic simulations of the accretion disc. The models includes the thermo-viscous instability, irradiation from the central object and wind loss. I find that the outburst of GRS 1915+105 should last a minimum of 20 years and up to ˜ 100 years if the irradiation is playing a significant role in this system. The predicted recurrence times are of the order of 104 years, making the duty cycle of GRS 1915+105 to be a few 0.1%. I present a simple analytical method to describe the observable behaviour of long period black hole LMXBs, similar to GRS 1915+105. Constructing two simple models for the surface density in the disc, outburst and quiescence times are calculated as a function of orbital period. LMXBs are an important constituent of the X-ray light function (XLF) of giant elliptical galaxies. I find that the duty cycle can vary considerably with orbital period, with implications for modelling the XLF.
40 CFR 86.1514 - Analytical gases.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 86.1519 - CVS calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 86.1542 - Information required.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 86.1501 - Scope; applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
40 CFR 86.1513 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...
Modeling the internal combustion engine
NASA Technical Reports Server (NTRS)
Zeleznik, F. J.; Mcbride, B. J.
1985-01-01
A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.
Application of the Enabler to nuclear electric propulsion
NASA Astrophysics Data System (ADS)
Pierce, Bill L.
This paper describes a power system concept that provides the electric power for a baseline electric propulsion system for a piloted mission to Mars. A 10-MWe space power system is formed by coupling an Enabler reactor with a simple non-recuperated closed Brayton cycle. The Enabler reactor is a gas-cooled reactor based on proven reactor technology developed under the NERVA/Rover programs. The selected power cycle, which uses a helium-xenon mixture at 1920 K at the turbine inlet, is diagramed and described. The specific mass of the power system over the power range from 5 to 70 MWe is given. The impact of operating life on the specific mass of a 10-MWe system is also shown.
Some advantages of methane in an aircraft gas turbine
NASA Technical Reports Server (NTRS)
Graham, R. W.; Glassman, A. J.
1980-01-01
Liquid methane, which can be manufactured from any of the hydrocarbon sources such as coal, shale biomass, and organic waste considered as a petroleum replacement for aircraft fuels. A simple cycle analysis is carried out for a turboprop engine flying a Mach 0.8 and 10, 688 meters (35,000 ft.) altitude. Cycle performance comparisions are rendered for four cases in which the turbine cooling air is cooled or not cooled by the methane fuel. The advantages and disadvantages of involving the fuel in the turbine cooling system are discussed. Methane combustion characteristics are appreciably different from Jet A and will require different combustor designs. Although a number of similar difficult technical problems exist, a highly fuel efficient turboprop engine burning methane appear to be feasible.
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1522 - Carbon monoxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1516 - Calibration; frequency and overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1524 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1506 - Equipment required and specifications; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1540 - Idle exhaust sample analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1530 - Test sequence; general requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1544 - Calculation; idle exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
40 CFR 86.1526 - Calibration of other equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1527 - Idle test procedure; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
40 CFR 86.1505 - Introduction; structure of subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...
Gasification in pulverized coal flames. First annual progress report, July 1975--June 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenzer, R. C.; George, P. E.; Thomas, J. F.
1976-07-01
This project concerns the production of power and synthesis gas from pulverized coal via suspension gasification. Swirling flow in both concentric jet and cyclone gasifiers will separate oxidation and reduction zones. Gasifier performance will be correlated with internally measured temperature and concentration profiles. A literature review of vortex and cyclone reactors is complete. Preliminary reviews of confined jet reactors and pulverized coal reaction models have also been completed. A simple equilibrium model for power gas production is in agreement with literature correlations. Cold gas efficiency is not a suitable performance parameter for combined cycle operation. The coal handling facility, equippedmore » with crusher, pulverizer and sieve shaker, is in working order. Test cell flow and electrical systems have been designed, and most of the equipment has been received. Construction of the cyclone gasifier has begun. A preliminary design for the gas sampling system, which will utilize a UTI Q-30C mass spectrometer, has been developed.« less
Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, A. S.; Smith III, F. G.; McCabe, D. J.
2017-01-01
The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how themore » varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.« less
Fuel cell-gas turbine hybrid system design part II: Dynamics and control
NASA Astrophysics Data System (ADS)
McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott
2014-05-01
Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.
NASA Astrophysics Data System (ADS)
García-Barberena, Javier; Olcoz, Asier; Sorbet, Fco. Javier
2017-06-01
CSP technologies are essential to allow large shares of renewables into the grid due to their unique ability to cope with the large variability of the energy resource by means of technically and economically feasible thermal energy storage (TES) systems. However, there is still the need and sought to achieve technological breakthroughs towards cost reductions and increased efficiencies. For this, research on advanced power cycles, like the Decoupled Solar Combined Cycle (DSCC) is, are regarded as a key objective. The DSCC concept is, basically, a Combined Brayton-Rankine cycle in which the bottoming cycle is decoupled from the operation of the topping cycle by means of an intermediate storage system. According to this concept, one or several solar towers driving a solar air receiver and a Gas Turbine (Brayton cycle) feed through their exhaust gasses a single storage system and bottoming cycle. This general concept benefits from a large flexibility in its design. On the one hand, different possible schemes related to number and configuration of solar towers, storage systems media and configuration, bottoming cycles, etc. are possible. On the other, within a specific scheme a large number of design parameters can be optimized, including the solar field size, the operating temperatures and pressures of the receiver, the power of the Brayton and Rankine cycles, the storage capacity and others. Heretofore, DSCC plants have been analyzed by means of simple steady-state models with pre-stablished operating parameters in the power cycles. In this work, a detailed transient simulation model for DSCC plants has been developed and is used to analyze different DSCC plant schemes. For each of the analyzed plant schemes, a sensitivity analysis and selection of the main design parameters is carried out. Results show that an increase in annual solar to electric efficiency of 30% (from 12.91 to 16.78) can be achieved by using two bottoming Rankine cycles at two different temperatures, enabling low temperature heat recovery from the receiver and Gas Turbine exhaust gasses.
NASA Astrophysics Data System (ADS)
Czaja, Daniel; Chmielnak, Tadeusz; Lepszy, Sebastian
2014-12-01
A thermodynamic and economic analysis of a GT10 gas turbine integrated with the air bottoming cycle is presented. The results are compared to commercially available combined cycle power plants based on the same gas turbine. The systems under analysis have a better chance of competing with steam bottoming cycle configurations in a small range of the power output capacity. The aim of the calculations is to determine the final cost of electricity generated by the gas turbine air bottoming cycle based on a 25 MW GT10 gas turbine with the exhaust gas mass flow rate of about 80 kg/s. The article shows the results of thermodynamic optimization of the selection of the technological structure of gas turbine air bottoming cycle and of a comparative economic analysis. Quantities are determined that have a decisive impact on the considered units profitability and competitiveness compared to the popular technology based on the steam bottoming cycle. The ultimate quantity that can be compared in the calculations is the cost of 1 MWh of electricity. It should be noted that the systems analyzed herein are power plants where electricity is the only generated product. The performed calculations do not take account of any other (potential) revenues from the sale of energy origin certificates. Keywords: Gas turbine air bottoming cycle, Air bottoming cycle, Gas turbine, GT10
Lin, Xiangfeng; Fang, Jian; Chen, Menglin; Huang, Zhi; Su, Chengyuan
2016-08-01
An efficient adsorbent/catalyst Co and Fe-catalysts loaded on sepiolite (Co-Fe/sepiolite) was successfully prepared for high temperature gas flow catalytic reaction by a simple impregnation method. The impact of preparation conditions (such as pH value of impregnation solution, impregnation time, calcination temperature, and time) on catalytic activity was studied. We found that the catalytic activity of Co-Fe/sepiolite was strongly influenced by all the investigated parameters. The regeneration efficiency (RE) was used to evaluate the catalytic activity. The RE is more noticeable at pH 5.0 of impregnation solution, impregnation time 18 h, calcination temperature 650 °C, and calcination time 3 h. This Co-Fe/sepiolite has great adsorption capacity in absorbing dye. It is used for an adsorbent to adsorb dye from wastewater solution under dynamic adsorption and saturated with dye, then regenerated with high temperature gas flow for adsorption/oxidation cycles. The Co-Fe/sepiolite acts as a catalyst to degrade the dye during regeneration under high temperature gas flow. Hence, the Co-Fe/sepiolite is not only an adsorbent but also a catalyst. The Co-Fe/sepiolite is more stable than sepiolite when applied in the treatment of plant's wastewater. The Co-Fe/sepiolite can be reused in adsorption-regeneration cycle. The results indicate the usability of the proposed combined process, dye adsorption on Co-Fe/sepiolite followed by the catalytic oxidation in high temperature gas flow.
NASA Astrophysics Data System (ADS)
Orr, Matthew; Hopkins, Philip F.
2018-06-01
I will present a simple model of non-equilibrium star formation and its relation to the scatter in the Kennicutt-Schmidt relation and large-scale star formation efficiencies in galaxies. I will highlight the importance of a hierarchy of timescales, between the galaxy dynamical time, local free-fall time, the delay time of stellar feedback, and temporal overlap in observables, in setting the scatter of the observed star formation rates for a given gas mass. Further, I will talk about how these timescales (and their associated duty-cycles of star formation) influence interpretations of the large-scale star formation efficiency in reasonably star-forming galaxies. Lastly, the connection with galactic centers and out-of-equilibrium feedback conditions will be mentioned.
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas.
Laurenzi, Ian J; Jersey, Gilbert R
2013-05-07
We present results of a life cycle assessment (LCA) of Marcellus shale gas used for power generation. The analysis employs the most extensive data set of any LCA of shale gas to date, encompassing data from actual gas production and power generation operations. Results indicate that a typical Marcellus gas life cycle yields 466 kg CO2eq/MWh (80% confidence interval: 450-567 kg CO2eq/MWh) of greenhouse gas (GHG) emissions and 224 gal/MWh (80% CI: 185-305 gal/MWh) of freshwater consumption. Operations associated with hydraulic fracturing constitute only 1.2% of the life cycle GHG emissions, and 6.2% of the life cycle freshwater consumption. These results are influenced most strongly by the estimated ultimate recovery (EUR) of the well and the power plant efficiency: increase in either quantity will reduce both life cycle freshwater consumption and GHG emissions relative to power generated at the plant. We conclude by comparing the life cycle impacts of Marcellus gas and U.S. coal: The carbon footprint of Marcellus gas is 53% (80% CI: 44-61%) lower than coal, and its freshwater consumption is about 50% of coal. We conclude that substantial GHG reductions and freshwater savings may result from the replacement of coal-fired power generation with gas-fired power generation.
Indirect-fired gas turbine dual fuel cell power cycle
Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.
1996-01-01
A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.
Shallow Methane Hydrates: Rates, Mechanisms of Formation and Environmental Significance.
NASA Astrophysics Data System (ADS)
Torres, M. E.; Trehu, A. M.
2005-05-01
Shallow gas hydrates have been identified at more than 20 locations worldwide, and are commonly associated with observations of bubble discharge at the seafloor. These deposits are host to active chemosynthetic communities and are likely to play a predominant role in energy, climate and carbon cycle issues associated with hydrate processes. Because seafloor gas hydrates are not in equilibrium with seawater, these deposits require a constant supply of methane to replace loss by continuous diffusion to bottom water. We will summarize evidence documenting that at the shallow deposits on Hydrate Ridge (OR) methane must be delivered in the free gas phase and present simple models used to infer formation rates, which are orders of magnitude higher than those for hydrates formed deeper in the sediment column (Torres et al., 2004). At Hydrate Ridge, methane gas is channeled from deep accretionary margin sequences to the gas hydrate stability zone (GHSZ) through a permeable layer that has been mapped seismically (Horizon A). High gas pressure in this horizon can drive gas through the GHSZ to the seafloor (Trehu et al., 2004). We will review current ideas that address mechanisms whereby gas migrates from Horizon A to the seafloor, including inhibition by capillary effects and the development of a high salinity front that can shift the hydrate stability field enough to allow for methane transport as a gas phase.
Life-cycle analysis of shale gas and natural gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, C.E.; Han, J.; Burnham, A.
2012-01-27
The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results showmore » that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.« less
NASA Technical Reports Server (NTRS)
Bailey, M. M.
1985-01-01
Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.
From LCAs to simplified models: a generic methodology applied to wind power electricity.
Padey, Pierryves; Girard, Robin; le Boulch, Denis; Blanc, Isabelle
2013-02-05
This study presents a generic methodology to produce simplified models able to provide a comprehensive life cycle impact assessment of energy pathways. The methodology relies on the application of global sensitivity analysis to identify key parameters explaining the impact variability of systems over their life cycle. Simplified models are built upon the identification of such key parameters. The methodology is applied to one energy pathway: onshore wind turbines of medium size considering a large sample of possible configurations representative of European conditions. Among several technological, geographical, and methodological parameters, we identified the turbine load factor and the wind turbine lifetime as the most influent parameters. Greenhouse Gas (GHG) performances have been plotted as a function of these key parameters identified. Using these curves, GHG performances of a specific wind turbine can be estimated, thus avoiding the undertaking of an extensive Life Cycle Assessment (LCA). This methodology should be useful for decisions makers, providing them a robust but simple support tool for assessing the environmental performance of energy systems.
Microscale air quality impacts of distributed power generation facilities.
Olaguer, Eduardo P; Knipping, Eladio; Shaw, Stephanie; Ravindran, Satish
2016-08-01
The electric system is experiencing rapid growth in the adoption of a mix of distributed renewable and fossil fuel sources, along with increasing amounts of off-grid generation. New operational regimes may have unforeseen consequences for air quality. A three-dimensional microscale chemical transport model (CTM) driven by an urban wind model was used to assess gaseous air pollutant and particulate matter (PM) impacts within ~10 km of fossil-fueled distributed power generation (DG) facilities during the early afternoon of a typical summer day in Houston, TX. Three types of DG scenarios were considered in the presence of motor vehicle emissions and a realistic urban canopy: (1) a 25-MW natural gas turbine operating at steady state in either simple cycle or combined heating and power (CHP) mode; (2) a 25-MW simple cycle gas turbine undergoing a cold startup with either moderate or enhanced formaldehyde emissions; and (3) a data center generating 10 MW of emergency power with either diesel or natural gas-fired backup generators (BUGs) without pollution controls. Simulations of criteria pollutants (NO2, CO, O3, PM) and the toxic pollutant, formaldehyde (HCHO), were conducted assuming a 2-hr operational time period. In all cases, NOx titration dominated ozone production near the source. The turbine scenarios did not result in ambient concentration enhancements significantly exceeding 1 ppbv for gaseous pollutants or over 1 µg/m(3) for PM after 2 hr of emission, assuming realistic plume rise. In the case of the datacenter with diesel BUGs, ambient NO2 concentrations were enhanced by 10-50 ppbv within 2 km downwind of the source, while maximum PM impacts in the immediate vicinity of the datacenter were less than 5 µg/m(3). Plausible scenarios of distributed fossil generation consistent with the electricity grid's transformation to a more flexible and modernized system suggest that a substantial amount of deployment would be required to significantly affect air quality on a localized scale. In particular, natural gas turbines typically used in distributed generation may have minor effects. Large banks of diesel backup generators such as those used by data centers, on the other hand, may require pollution controls or conversion to natural gas-fired reciprocal internal combustion engines to decrease nitrogen dioxide pollution.
NASA Astrophysics Data System (ADS)
Korposh, Sergiy; Kodaira, Suguru; Selyanchyn, Roman; Ledezma, Francisco H.; James, Stephen W.; Lee, Seung-Woo
2018-05-01
Highly sensitive fiber-optic ammonia gas sensors were fabricated via layer-by-layer deposition of poly(diallyldimethylammonium chloride) (PDDA) and tetrakis(4-sulfophenyl)porphine (TSPP) onto the surface of the core of a hard-clad multimode fiber that was stripped of its polymer cladding. The effects of film thickness, length of sensing area, and depth of evanescent wave penetration were investigated to clearly understand the sensor performance. The sensitivity of the fiber-optic sensor to ammonia was linear in the concentration range of 0.5-50 ppm and the response and recovery times were less than 3 min, with a limit of detection of 0.5 ppm, when a ten-cycle PDDA/TSPP film was assembled on the surface of the core along a 1 cm-long stripped section of the fiber. The sensor's response towards ammonia was also checked under different relative humidity conditions and a simple statistical data treatment approach, principal component analysis, demonstrated the feasibility of ammonia sensing in environmental relative humidity ranging from dry 7% to highly saturated 80%. Penetration depths of the evanescent wave for the optimal sensor configuration were estimated to be 30 and 33 nm at wavelengths of 420 and 706 nm, which are in a good agreement with the thickness of the 10-cycle deposited film (ca. 30 nm).
Cycle development and design for CO{sub 2} capture from flue gas by vacuum swing adsorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun Zhang; Paul A. Webley
CO{sub 2} capture and storage is an important component in the development of clean power generation processes. One CO{sub 2} capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO{sub 2} capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures non-isothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and ourmore » apparatus, we have designed and studied a large number of cycles for CO{sub 2} capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles - this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO{sub 2} capture from flue gases. 20 refs., 6 figs., 2 tabs.« less
Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption.
Zhang, Jun; Webley, Paul A
2008-01-15
CO2 capture and storage is an important component in the development of clean power generation processes. One CO2 capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO2 capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures nonisothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and our apparatus, we have designed and studied a large number of cycles for CO2 capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles-this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO2 capture from flue gases.
NASA Astrophysics Data System (ADS)
Roman-Duval, Julia; Bot, Caroline; Chastenet, Jeremy; Gordon, Karl
2017-06-01
Observations and modeling suggest that dust abundance (gas-to-dust ratio, G/D) depends on (surface) density. Variations of the G/D provide timescale constraints for the different processes involved in the life cycle of metals in galaxies. Recent G/D measurements based on Herschel data suggest a factor of 5-10 decrease in dust abundance between the dense and diffuse interstellar media (ISM) in the Magellanic Clouds. However, the relative nature of the Herschel measurements precludes definitive conclusions as to the magnitude of those variations. We investigate variations of the dust abundance in the LMC and SMC using all-sky far-infrared surveys, which do not suffer from the limitations of Herschel on their zero-point calibration. We stack the dust spectral energy distribution (SED) at 100, 350, 550, and 850 microns from IRAS and Planck in intervals of gas surface density, model the stacked SEDs to derive the dust surface density, and constrain the relation between G/D and gas surface density in the range 10-100 M ⊙ pc-2 on ˜80 pc scales. We find that G/D decreases by factors of 3 (from 1500 to 500) in the LMC and 7 (from 1.5× {10}4 to 2000) in the SMC between the diffuse and dense ISM. The surface-density-dependence of G/D is consistent with elemental depletions, and with simple modeling of the accretion of gas-phase metals onto dust grains. This result has important implications for the sub-grid modeling of galaxy evolution, and for the calibration of dust-based gas-mass estimates, both locally and at high redshift.
Design of automatic startup and shutdown logic for a Brayton-cycle 2- to 15-kilowatt engine
NASA Technical Reports Server (NTRS)
Vrancik, J. E.; Bainbridge, R. C.
1975-01-01
The NASA Lewis Research Center is conducting a closed-Brayton-cycle power conversion system technology program in which a complete power system (engine) has been designed and demonstrated. This report discusses the design of automatic startup and shutdown logic circuits as a modification to the control system presently used in this demonstration engine. This modification was primarily intended to make starting the engine as simple and safe as possible and to allow the engine to be run unattended. In the modified configuration the engine is started by turning the control console power on and pushing the start button after preheating the gas loop. No other operator action is required to effect a complete startup. Shutdown, if one is required, is also effected by a simple stop button. The automatic startup and shutdown of the engine have been successfully and purposefully demonstrated more than 50 times at the Lewis Research Center during 10,000 hours of unattended operation. The net effect of this modification is an engine that can be safely started and stopped by relatively untrained personnel. The approach lends itself directly to remote unattended operation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; diesel... Heavy-Duty Vehicles; Test Procedures § 86.110-94 Exhaust gas sampling system; diesel-cycle vehicles, and..., this is indicated by the statement “[Reserved].” (a) General. The exhaust gas sampling system described...
Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior
NASA Astrophysics Data System (ADS)
Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.
2016-03-01
It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.
A conceptual model for glacial cycles and the middle Pleistocene transition
NASA Astrophysics Data System (ADS)
Daruka, István; Ditlevsen, Peter D.
2016-01-01
Milankovitch's astronomical theory of glacial cycles, attributing ice age climate oscillations to orbital changes in Northern-Hemisphere insolation, is challenged by the paleoclimatic record. The climatic response to the variations in insolation is far from trivial. In general the glacial cycles are highly asymmetric in time, with slow cooling from the interglacials to the glacials (inceptions) and very rapid warming from the glacials to the interglacials (terminations). We shall refer to this fast-slow dynamics as the "saw-tooth" shape of the paleoclimatic record. This is non-linearly related to the time-symmetric variations in the orbital forcing. However, the most pronounced challenge to the Milankovitch theory is the middle Pleistocene transition (MPT) occurring about one million years ago. During that event, the prevailing 41 kyr glacial cycles, corresponding to the almost harmonic obliquity cycle were replaced by longer saw-tooth shaped cycles with a time-scale around 100 kyr. The MPT must have been driven by internal changes in climate response, since it does not correspond to any apparent changes in the orbital forcing. In order to identify possible mechanisms causing the observed changes in glacial dynamics, it is relevant to study simplified models with the capability of generating temporal behavior similar to the observed records. We present a simple oscillator type model approach, with two variables, a temperature anomaly and a climatic memory term. The generalization of the ice albedo feedback is included in terms of an effective multiplicative coupling between this latter climatic memory term (representing the internal degrees of freedom) and the external drive. The simple model reproduces the temporal asymmetry of the late Pleistocene glacial cycles and suggests that the MPT can be explained as a regime shift, aided by climatic noise, from a period 1 frequency locking to the obliquity cycle to a period 2-3 frequency locking to the same obliquity cycle. The change in dynamics has been suggested to be a result of a slow gradual decrease in atmospheric greenhouse gas concentration. The critical dependence on initial conditions in the (non-autonomous) glacial dynamics raises fundamental questions about climate predictability.
Changing climatic response: a conceptual model for glacial cycles and the Mid-Pleistocene Transition
NASA Astrophysics Data System (ADS)
Daruka, I.; Ditlevsen, P. D.
2014-03-01
Milankovitch's astronomical theory of glacial cycles, attributing ice age climate oscillations to orbital changes in Northern Northern-Hemisphere insolation, is challenged by the paleoclimatic record. The climatic response to the variations in insolation is far from trivial. In general the glacial cycles are highly asymmetric in time, with slow cooling from the interglacials to the glacials (inceptions) and very rapid warming from the glacials to the interglacials (terminations). We shall refer to this fast-slow dynamics as the "saw-tooth" shape of the paleoclimatic record. This is non-linearly related to the time-symmetric variations in the orbital forcing. However, the most pronounced challenge to the Milankovitch theory is the Mid-Pleistocene Transition (MPT) occurring about one million years ago. During that event, the prevailing 41 kyr glacial cycles, corresponding to the almost harmonic obliquity cycle were replaced by longer saw-tooth shaped cycles with a time scale around 100 kyr. The MPT must have been driven by internal changes in climate response, since it does not correspond to any apparent changes in the orbital forcing. In order to identify possible mechanisms causing the observed changes in glacial dynamics, it is relevant to study simplified models with the capability of generating temporal behavior similar to the observed records. We present a simple oscillator type model approach, with two variables, a temperature anomaly and an ice volume analogous, climatic memory term. The generalization of the ice albedo feedback is included in terms of an effective multiplicative coupling between this latter climatic memory term (representing the internal degrees of freedom) and the external drive. The simple model reproduces the temporal asymmetry of the late Pleistocene glacial cycles and suggests that the MPT can be explained as a regime shift, aided by climatic noise, from a period 1 frequency locking to the obliquity cycle to a period 2-3 frequency locking to the same obliquity cycle. The change in dynamics has been suggested to be a result of a slow gradual decrease in atmospheric greenhouse gas concentration. The presence of chaos in the (non-autonomous) glacial dynamics and a critical dependence on initial conditions raises fundamental questions about climate predictability.
Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities
NASA Technical Reports Server (NTRS)
Sydnor, George Honeycutt
2012-01-01
In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2014 CFR
2014-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and...
NASA Astrophysics Data System (ADS)
Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.
2013-12-01
Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation different working fluids and ORC conditions have been analyzed in order to evaluate the best configuration. The investigations have been performed by application of improved thermodynamic and process analysis tools, which consider the real gas behavior of the analyzed fluids. The results show that by combined operation of the solar thermal gas turbine and the ORC, the combined cycle efficiency is approximately 4%-points higher than in the solar-thermal gas turbine cycle.
NASA Technical Reports Server (NTRS)
Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.
1976-01-01
The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.
Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haihua Zhao; Per F. Peterson
2012-10-01
Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cyclesmore » can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.« less
The coal-fired gas turbine locomotive - A new look
NASA Technical Reports Server (NTRS)
Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.
1983-01-01
Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.
Indirect-fired gas turbine bottomed with fuel cell
Micheli, P.L.; Williams, M.C.; Parsons, E.L.
1995-09-12
An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.
A Modified Through-Flow Wave Rotor Cycle with Combustor Bypass Ducts
NASA Technical Reports Server (NTRS)
Paxson Daniel E.; Nalim, M. Razi
1998-01-01
A wave rotor cycle is described which avoids the inherent problem of combustor exhaust gas recirculation (EGR) found in four-port, through-flow wave rotor cycles currently under consideration for topping gas turbine engines. The recirculated hot gas is eliminated by the judicious placement of a bypass duct which transfers gas from one end of the rotor to the other. The resulting cycle, when analyzed numerically, yields an absolute mean rotor temperature 18% below the already impressive value of the conventional four-port cycle (approximately the turbine inlet temperature). The absolute temperature of the gas leading to the combustor is also reduced from the conventional four-port design by 22%. The overall design point pressure ratio of this new bypass cycle is approximately the same as the conventional four-port cycle. This paper will describe the EGR problem and the bypass cycle solution including relevant wave diagrams. Performance estimates of design and off-design operation of a specific wave rotor will be presented. The results were obtained using a one-dimensional numerical simulation and design code.
Indirect-fired gas turbine bottomed with fuel cell
Micheli, Paul L.; Williams, Mark C.; Parsons, Edward L.
1995-01-01
An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.
Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.
Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi
2012-01-17
The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.
Open-Cycle Gas Turbine/Steam Turbine Combined Cycles with synthetic fuels from coal
NASA Technical Reports Server (NTRS)
Shah, R. P.; Corman, J. C.
1977-01-01
The Open-Cycle Gas Turbine/Steam Turbine Combined Cycle can be an effective energy conversion system for converting coal to electricity. The intermediate step in this energy conversion process is to convert the coal into a fuel acceptable to a gas turbine. This can be accomplished by producing a synthetic gas or liquid, and by removing, in the fuel conversion step, the elements in the fuel that would be harmful to the environment if combusted. In this paper, two open-cycle gas turbine combined systems are evaluated: one employing an integrated low-Btu gasifier, and one utilizing a semi-clean liquid fuel. A consistent technical/economic information base is developed for these two systems, and is compared with a reference steam plant burning coal directly in a conventional furnace.
NASA Astrophysics Data System (ADS)
Kida, Masato; Jin, Yusuke; Watanabe, Mizuho; Murayama, Tetsuro; Nagao, Jiro
2017-09-01
In this report, we describe the dissociation behavior of gas hydrate grains pressed at 1 and 6 MPa. Certain simple gas hydrates in powder form show anomalous preservation phenomenon under their thermodynamic unstable condition. Investigation of simple hydrates of methane, ethane, and propane reveals that high pressure applied to the gas hydrate particles enhances their preservation effects. Application of high pressure increases the dissociation temperature of methane hydrate and has a restrictive effect against the dissociation of ethane and propane hydrate grains. These improvements of gas hydrate preservation by increasing pressure to the initial gas hydrate particles imply that appropriate pressure applied to gas hydrate particles enhances gas hydrate preservation effects.
Power generating system and method utilizing hydropyrolysis
Tolman, R.
1986-12-30
A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.
Experimental Study of High-Pressure Rotating Detonation Combustion in Rocket Environments
NASA Astrophysics Data System (ADS)
Stechmann, David Paul
Rotating Detonation Engines (RDEs) represent a promising pressure-gain combustion technology for improving the performance of existing rocket engines. While ample theoretical evidence exists for these benefits in ideal scenarios, additional research is needed to characterize the operational behavior of these devices at high pressure and validate the expected performance gains in practice. To this end, Purdue University developed a high-pressure experimental staged-combustion RDE with a supersonic plug expansion nozzle and conducted four test campaigns using this engine. The first two campaigns employed gaseous hydrogen fuel in conjunction with a liquid oxygen pre-burner. The final two campaigns employed methane and natural gas fuels. Propellant mass flows ranged from 0.47 lbm/s (0.21 Kg/s) to 8.41 lbm/s (3.8 kg/s) while mean chamber pressures ranged from 61 psia (4.1 atm) to 381 psia (25.9 atm). Results from tests conducted with hydrogen were mixed. Detonation briefly appeared at shutdown in some configurations, but the combustor behavior was generally dominated by flame holding instead of detonation. Injector erosion and instrumentation damage were also persistent challenges. Results from tests conducted with natural gas and methane were much more successful. Overall, several different types of detonation wave behavior were observed depending on test configuration and operating conditions. In all configurations, the engine thrust, chamber pressure, wave speed, and wave behavior were characterized for differences in injector orifice area, injection location, chamber width, pre-burner operating temperature, equivalence ratio, mass flow, and throat configuration. General aspects of the plume structure, startup behavior, and dynamic oxidizer manifold response were also characterized. Two configurations were also tested with a transparent combustor to characterize wave height and profile. These observations and measurements provided insight into the effects that high-pressures and rocket propellants have on RDE operating behavior. One of the more intriguing results from the experimental campaigns described above was the simple fact that natural gas and methane behaved so differently from hydrogen despite similar operating pressures, flow rates, and injector geometry. Simplified analysis and modeling of the injector dynamic response, mixing processes, and chemical kinetics provided insight into these differences and the scalability of these processes with pressure. In particular, the chemical kinetic analysis suggests that heat release during the injection and mixing phase can dominate the chamber behavior and prevent stable limit cycle detonation from occurring with certain propellant combinations above certain pressures. These results support the observed differences in engine operating behavior, and they provide insight into potential operability limits of gas-phase RDEs. In addition to the contrast between natural gas and hydrogen, several other important observations were made during the experimental RDE evaluation process. In particular, the installation of a convergent throat appeared to suppress detonation behavior. The number of waves was also invariant with respect to the mass flow and chamber pressure, and a natural transition into limit-cycle detonation modes (i.e. self-excited instabilities) appeared despite using a torch igniter with no initial detonation. Significant manifold interaction and an overall destabilizing effect in the limit-cycle detonation cycle tended to occur at low injector pressure ratios. The relationship between pressure, wave speed, and thrust did not follow the expected correlation and instead displayed a more complex configuration-dependent relationship. While the delivered thrust did not exceed theoretical values for a constant pressure cycle, thrust performance greater than 90% was achieved in configurations with simple injector geometries, simple expansion nozzle geometries and a chamber L* of only 2.75 inches. This suggests that further improvements are possible when heat loss into the wall is considered and improved injector designs are implemented. While heat flux was not measured during any experimental test cases, post-test analysis of the chamber environment using available data suggests that heat flux may be moderately higher in RDEs than in constant pressure combustors operating at the same mean flow conditions. Nevertheless, the computed heat flux was based on limited data and may have been affected by localized conditions near the injector face, so uncertainty remains in this area. Since appreciable uncertainty exists in the theoretical performance benefits relative to the measured experimental values, a detonation engine performance model was developed using modifications to existing zero-dimensional rocket performance relations. This approach made it possible to rapidly characterize the effects of different engine operating parameters on expected performance gains including propellant choice, equivalence ratio, initial propellant temperature, chamber pressure, nozzle configuration, nozzle expansion area, and ambient pressure. While the model was relatively simple, it captured the expected "DC shift" in mean chamber pressure between constant pressure combustors and combustors with steep-fronted non-linear instabilities. (Abstract shortened by ProQuest.).
Life Cycle Assessment Harmonization | Energy Analysis | NREL
change are excluded from this analysis. The data showed that life cycle greenhouse gas (GHG) emissions Sensitivity Analysis of Biopower Life-Cycle Assessments and Greenhouse Gas Emission, Electric Power Research hydropower, ocean, geothermal, biopower, solar, wind, nuclear, coal, and natural gas technologies. See the
NASA Astrophysics Data System (ADS)
Tang, Guoping; Zheng, Jianqiu; Yang, Ziming; Graham, David; Gu, Baohua; Mayes, Melanie; Painter, Scott; Thornton, Peter
2016-04-01
Among the coupled thermal, hydrological, geochemical, and biological processes, redox processes play major roles in carbon and nutrient cycling and greenhouse gas (GHG) emission. Increasingly, mechanistic representation of redox processes is acknowledged as necessary for accurate prediction of GHG emission in the assessment of land-atmosphere interactions. Simple organic substrates, Fe reduction, microbial reactions, and the Windermere Humic Aqueous Model (WHAM) were added to a reaction network used in the land component of an Earth system model. In conjunction with this amended reaction network, various temperature response functions used in ecosystem models were assessed for their ability to describe experimental observations from incubation tests with arctic soils. Incorporation of Fe reduction reactions improves the prediction of the lag time between CO2 and CH4 accumulation. The inclusion of the WHAM model enables us to approximately simulate the initial pH drop due to organic acid accumulation and then a pH increase due to Fe reduction without parameter adjustment. The CLM4.0, CENTURY, and Ratkowsky temperature response functions better described the observations than the Q10 method, Arrhenius equation, and ROTH-C. As electron acceptors between O2 and CO2 (e.g., Fe(III), SO42-) are often involved, our results support inclusion of these redox reactions for accurate prediction of CH4 production and consumption. Ongoing work includes improving the parameterization of organic matter decomposition to produce simple organic substrates, examining the influence of redox potential on methanogenesis under thermodynamically favorable conditions, and refining temperature response representation near the freezing point by additional model-experiment iterations. We will use the model to describe observed GHG emission at arctic and tropical sites.
40 CFR 86.1503 - Abbreviations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled...
Variable Cycle Intake for Reverse Core Engine
NASA Technical Reports Server (NTRS)
Chandler, Jesse M (Inventor); Staubach, Joseph B (Inventor); Suciu, Gabriel L (Inventor)
2016-01-01
A gas generator for a reverse core engine propulsion system has a variable cycle intake for the gas generator, which variable cycle intake includes a duct system. The duct system is configured for being selectively disposed in a first position and a second position, wherein free stream air is fed to the gas generator when in the first position, and fan stream air is fed to the gas generator when in the second position.
40 CFR 86.1501 - Scope; applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural...
40 CFR 86.1519 - CVS calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural...
40 CFR 86.1514 - Analytical gases.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural...
NASA Technical Reports Server (NTRS)
Beecher, D. T.
1976-01-01
Nine advanced energy conversion concepts using coal or coal-derived fuels are summarized. They are; (1) open-cycle gas turbines, (2) combined gas-steam turbine cycles, (3) closed-cycle gas turbines, (4) metal vapor Rankine topping, (5) open-cycle MHD; (6) closed-cycle MHD; (7) liquid-metal MHD; (8) advanced steam; and (9) fuel cell systems. The economics, natural resource requirements, and performance criteria for the nine concepts are discussed.
NASA Technical Reports Server (NTRS)
Manvi, R.; Fujita, T.
1978-01-01
A preliminary comparative evaluation of dispersed solar thermal power plants utilizing advanced technologies available in 1985-2000 time frame is under way at JPL. The solar power plants of 50 KWe to 10 MWe size are equipped with two axis tracking parabolic dish concentrator systems operating at temperatures in excess of 1000 F. The energy conversion schemes under consideration include advanced steam, open and closed cycle gas turbines, stirling, and combined cycle. The energy storage systems include advanced batteries, liquid metal, and chemical. This paper outlines a simple methodology for a probabilistic assessment of such systems. Sources of uncertainty in the development of advanced systems are identified, and a computer Monte Carlo simulation is exercised to permit an analysis of the tradeoffs of the risk of failure versus the potential for large gains. Frequency distribution of energy cost for several alternatives are presented.
A high- Tc SQUID-based sensor head cooled by a Joule-Thomson cryocooler
NASA Astrophysics Data System (ADS)
Rijpma, A. P.; ter Brake, H. J. M.; de Vries, E.; Nijhof, N.; Holland, H. J.; Rogalla, H.
2002-08-01
The goal of the so-called FHARMON project is to develop a high- Tc SQUID-based magnetometer system for the measurement of fetal heart activity in standard clinical environments. To lower the threshold for the application of this fetal heart monitor, it should be simple to operate. It is, therefore, advantageous to replace the liquid cryogen bath by a closed-cycle refrigerator. For this purpose, we selected a mixed-gas Joule-Thomson cooler; the APD Cryotiger ©. Because of its magnetic interference, the compressor of this closed-cycle cooler will be placed at a distance of ≈2 m from the actual sensor, which is an axial second order gradiometer. The gradiometer is formed by three magnetometers placed on an alumina cylinder, which is connected to the cold head of the cooler. This paper describes the sensor head in detail and reports on test experiments.
Two-layer thermal barrier coating for turbine airfoils - furnace and burner rig test results
NASA Technical Reports Server (NTRS)
Stecura, S.
1976-01-01
A simple, two-layer plasma-sprayed thermal barrier coating system was developed which has the potential for protecting high temperature air-cooled gas turbine components. Of those coatings initially examined, the most promising system consisted of a Ni-16Cr-6Al-0.6Y (in wt%) thermal barrier coating (about 0.005 to 0.010 cm thick) and a ZrO2-12Y2O3 (in wt%) thermal barrier coating (about 0.025 to 0.064 cm thick). This thermal barrier substantially lowered the metal temperature of an air-cooled airfoil. The coating withstood 3,200 cycles (80 sec at 1,280 C surface temperature) and 275 cycles (1 hr at 1,490 C surface temperature) without cracking or spalling. No separation of the thermal barrier from the bond coating or the bond coating from the substrate was observed.
Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Ryu, Ki Nam; Baik, Jong Hoon
2018-04-01
A thermodynamic study is carried out for the design of hydrogen liquefaction systems with helium (He) or neon (Ne) Brayton refrigerator. This effort is motivated by our immediate goal to develop a small-capacity (100 L/h) liquefier for domestic use in Korea. Eight different cycles are proposed and their thermodynamic performance is investigated in comparison with the existing liquefaction systems. The proposed cycles include the standard and modified versions of He Brayton refrigerators whose lowest temperature is below 20 K. The Brayton refrigerator is in direct thermal contact with the hydrogen flow at atmospheric pressure from ambient-temperature gas to cryogenic liquid. The Linde-Hampson system pre-cooled by a Ne Brayton refrigerator is also considered. Full cycle analysis is performed with the real properties of fluids to estimate the figure of merit (FOM) under an optimized operation condition. It is concluded that He Brayton refrigerators are feasible for this small-scale liquefaction, because a reasonably high efficiency can be achieved with simple and safe (low-pressure) operation. The complete cycles with He Brayton refrigerator are presented for the development of a prototype, including the ortho-to-para conversion.
Schneegurt, M A; Sherman, L A
1996-01-01
Simple calculations show that fixed nitrogen regeneration in a CELSS may not be as efficient as stowage and resupply of fixed nitrogen compounds. However, fixed nitrogen regeneration may be important for the sustainability and safety of a deployed CELSS. Cyanothece sp. strain ATCC 51142, a unicellular, aerobic, diazotrophic cyanobacterium, with high growth rates and a robust metabolism, is a reasonable candidate organism for a biological, fixed nitrogen regeneration system. In addition, Cyanothece sp. cultures may be used to balance gas exchange ratio imparities between plants and humans. The regeneration of fixed nitrogen compounds by cyanobacterial cultures was examined in the context of a broad computer model/simulation (called CELSS-3D). When cyanothece sp. cultures were used to balance gas exchange imparities, the biomass harvested could supply as much as half of the total fixed nitrogen needed for plant biomass production.
40 CFR 86.1530 - Test sequence; general requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and... Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...
NASA Astrophysics Data System (ADS)
Yin, Libao; Liao, Yanfen; Liu, Guicai; Liu, Zhichao; Yu, Zhaosheng; Guo, Shaode; Ma, Xiaoqian
2017-05-01
Energy consumption and pollutant emission of natural gas combined cycle power-generation (NGCC), liquefied natural gas combined cycle power-generation (LNGCC), natural gas combined heat and power generation (CHP) and ultra-supercritical power generation with ultra-low gas emission (USC) were analyzed using life cycle assessment method, pointing out the development opportunity and superiority of gas power generation in the period of coal-fired unit ultra-low emission transformation. The results show that CO2 emission followed the order: USC>LNGCC>NGCC>CHP the resource depletion coefficient of coal-fired power generation was lower than that of gas power generation, and the coal-fired power generation should be the main part of power generation in China; based on sensitivity analysis, improving the generating efficiency or shortening the transportation distance could effectively improve energy saving and emission reduction, especially for the coal-fired units, and improving the generating efficiency had a great significance for achieving the ultra-low gas emission.
40 CFR 86.1527 - Idle test procedure; overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...
40 CFR 86.1505 - Introduction; structure of subpart.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...
40 CFR 86.1540 - Idle exhaust sample analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...
40 CFR 86.1526 - Calibration of other equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled...
NASA Technical Reports Server (NTRS)
Vanfossen, G. J.
1983-01-01
A system which would allow a substantially increased output from a turboshaft engine for brief periods in emergency situations with little or no loss of turbine stress rupture life is proposed and studied analytically. The increased engine output is obtained by overtemperaturing the turbine; however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water. This decrease in cooling air temperature can offset the effect of increased gas temperature and increased shaft speed and thus keep turbine blade stress rupture life constant. The analysis utilized the NASA-Navy-Engine-Program or NNEP computer code to model the turboshaft engine in both design and off-design modes. This report is concerned with the effect of the proposed method of power augmentation on the engine cycle and turbine components. A simple cycle turboshaft engine with a 16:1 pressure ratio and a 1533 K (2760 R) turbine inlet temperature operating at sea level static conditions was studied to determine the possible power increase and the effect on turbine stress rupture life that could be expected using the proposed emergency cooling scheme. The analysis showed a 54 percent increse in output power can be achieved with no loss in gas generator turbine stress rupture life. A 231 K (415 F) rise in turbine inlet temperature is required for this level of augmentation. The required water flow rate was found to be .0109 kg water per kg of engine air flow.
Advanced technology cogeneration system conceptual design study: Closed cycle gas turbines
NASA Technical Reports Server (NTRS)
Mock, E. A. T.; Daudet, H. C.
1983-01-01
The results of a three task study performed for the Department of Energy under the direction of the NASA Lewis Research Center are documented. The thermal and electrical energy requirements of three specific industrial plants were surveyed and cost records for the energies consumed were compiled. Preliminary coal fired atmospheric fluidized bed heated closed cycle gas turbine and steam turbine cogeneration system designs were developed for each industrial plant. Preliminary cost and return-on-equity values were calculated and the results compared. The best of the three sites was selected for more detailed design and evaluation of both closed cycle gas turbine and steam turbine cogeneration systems during Task II. Task III involved characterizing the industrial sector electrical and thermal loads for the 48 contiguous states, applying a family of closed cycle gas turbine and steam turbine cogeneration systems to these loads, and conducting a market penetration analysis of the closed cycle gas turbine cogeneration system.
40 CFR 86.1503 - Abbreviations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1503...
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1502...
The effects of solarization on the performance of a gas turbine
NASA Astrophysics Data System (ADS)
Homann, Christiaan; van der Spuy, Johan; von Backström, Theodor
2016-05-01
Various hybrid solar gas turbine configurations exist. The Stellenbosch University Solar Power Thermodynamic (SUNSPOT) cycle consists of a heliostat field, solar receiver, primary Brayton gas turbine cycle, thermal storage and secondary Rankine steam cycle. This study investigates the effect of the solarization of a gas turbine on its performance and details the integration of a gas turbine into a solar power plant. A Rover 1S60 gas turbine was modelled in Flownex, a thermal-fluid system simulation and design code, and validated against a one-dimensional thermodynamic model at design input conditions. The performance map of a newly designed centrifugal compressor was created and implemented in Flownex. The effect of the improved compressor on the performance of the gas turbine was evident. The gas turbine cycle was expanded to incorporate different components of a CSP plant, such as a solar receiver and heliostat field. The solarized gas turbine model simulates the gas turbine performance when subjected to a typical variation in solar resource. Site conditions at the Helio100 solar field were investigated and the possibility of integrating a gas turbine within this system evaluated. Heat addition due to solar irradiation resulted in a decreased fuel consumption rate. The influence of the additional pressure drop over the solar receiver was evident as it leads to decreased net power output. The new compressor increased the overall performance of the gas turbine and compensated for pressure losses incurred by the addition of solar components. The simulated integration of the solarized gas turbine at Helio100 showed potential, although the solar irradiation is too little to run the gas turbine on solar heat alone. The simulation evaluates the feasibility of solarizing a gas turbine and predicts plant performance for such a turbine cycle.
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2013 CFR
2013-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1537 Idle...
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2012 CFR
2012-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1537 Idle...
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1537 Idle...
40 CFR 86.135-90 - Dynamometer procedure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum gas-fueled Otto-cycle vehicles, the composite samples collected in bags are analyzed for THC, CO..., liquefied petroleum gas-fueled and methanol-fueled diesel-cycle vehicles), THC is sampled and analyzed... analyzed for THC, CO, CO2, CH4, and NOX. (3) For natural gas-fueled, liquefied petroleum gas-fueled and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strough, R.I.
The feasibility of designing a convectively air-cooled turbine to operate in the environment of a 3000/sup 0/F combustor exit temperature with maximum turbine airfoil metal temperatures held to 1500/sup 0/F was established. The United Technologies-Kraftwerk Union V84.3 gas turbine design was used as the basic configuration for the design of the 3000/sup 0/F turbine. Turbine cooling requirements were determined based on the use of the modified V84.3 type silo combustor with a pattern factor of 0.1. The convective air-cooling technology levels in terms of cooling effectiveness required to satisfy the airfoil cooling requirements were identified. Cooling schemes and fabrication technologiesmore » required are discussed. Turbine airfoil cooling technology levels required for the 3000/sup 0/F engine were selected. The performance of the 3000/sup 0/F convectively air-cooled gas turbine in simple and combined cycle was calculated. The 3000/sup 0/F gas turbine combined-cycle system provides an increase in power of 61% and a decrease in heat rate of 10% compared to a similar system with a combustor exit temperature of 2210/sup 0/F and the same airflow. The development of a successful 3000/sup 0/F convectively air-cooled turbine can be accomplished with a reasonable design and fabrication development effort on the cooled turbine airfoils. Use of the convectively air-cooled turbine provides the transfer of technology from extensive aircraft engines developed programs and operating experience to industrial gas turbines. It eliminates the requirement for large investments in alternate cooling techniques tailored specifically for industrial engines which offer no additional benefits.« less
Nuclear Aircraft Feasibility Study. Volume 1
1975-03-01
Cycle 6-36 6.2.2 Helium Mass Flow 6-42 6.2.3 Fan Pressure Ratio 6-42 6.2.4 Regenerative Cycle Application 6-43 6.2.5 Brayton Cycle...6-8 Engine Systems Summary 6-9 T-S Diagram of Ideal Brayton Cycle 6-13 T-S Diagram of Brayton Cycle for Turbofan Engine 6-15 Comparison of... Brayton Closed Cycle Thermodynamic Analysis 6-50 6.2.8-1 Indirect Cycle Gas Circulation System 6-53 6.2.8-2 Gas Turbine Generator — Pump Cycle
Properties of Gas Mixtures and Their Use in Mixed-Refrigerant Joule-Thomson Refrigerators
NASA Astrophysics Data System (ADS)
Luo, E.; Gong, M.; Wu, J.; Zhou, Y.
2004-06-01
The Joule-Thomson (J-T) effect has been widely used for achieving low temperatures. In the past few years, much progress has been made in better understanding the working mechanism of the refrigeration method and in developing prototypes for different applications. In this talk, there are three aspects of our research work to be discussed. First, some special thermal properties of the mixtures for achieving liquid nitrogen temperature range will be presented. Secondly, some important conclusions from the optimization of various mixed-refrigerant J-T cycles such as a simple J-T cycle and an auto-cascade mixed-refrigerant J-T cycle will be presented. Moreover, an auto-cascade, mixed-refrigerant J-T refrigerator with a special mixture capable of achieving about 50K will be mentioned. Finally, various prototypes based on the mixed-refrigerant refrigeration technology will be described. These applications include miniature J-T cryocoolers for cooling infrared detectors and high-temperature superconducting devices, cryosurgical knife for medical treatment, low-temperature refrigerators for biological storage and so forth. The on-going research work and unanswered questions for this technology will be also discussed.
NASA Astrophysics Data System (ADS)
Meier, Paul Joseph
This research uses Life-Cycle Assessment (LCA) to better understand the energy and environmental performance for two electricity generation systems, a 620 MW combined-cycle natural gas plant, and an 8kW building-integrated photovoltaic system. The results of the LCA are used to provide an effective and accurate means for evaluating greenhouse gas emission reduction strategies for U.S. electricity generation. The modern combined-cycle plant considered in this thesis is nominally 48% thermally efficient, but it is only 43% energy efficient when evaluated across its entire life-cycle, due primarily to energy losses during the natural gas fuel cycle. The emission rate for the combined-cycle natural gas plant life-cycle (469 tonnes CO2-equivalent per GWeh), was 23% higher than the emission rate from plant operation alone (382 tonnes CO2-equivalent per GWeh). Uncertainty in the rate of fuel-cycle methane releases results in a potential range of emission rates between 457 to 534 tonnes CO 2-equivalent per GWeh for the studied plant. The photovoltaic system modules have a sunlight to DC electricity conversion efficiency of 5.7%. However, the system's sunlight to AC electricity conversion efficiency is 4.3%, when accounting for life-cycle energy inputs, as well as losses due to system wiring, AC inversion, and module degradation. The LCA illustrates that the PV system has a low, but not zero, life-cycle greenhouse gas emission rate of 39 Tonnes CO2-equivalent per GWeh. A ternary method of evaluation is used to evaluate three greenhouse gas mitigation alternatives: (1) fuel-switching from coal to natural gas for Kyoto-based compliance, (2) fuel-switching from coal to nuclear/renewable for Kyoto based compliance, and (3) fuel-switching to meet the White House House's Global Climate Change Initiative. In a moderate growth scenario, fuel-switching from coal to natural gas fails to meet a Kyoto-based emission target, while fuel-switching to nuclear/renewable meets the emission objective by reducing coal generated electricity 32% below 2000 levels. The Global Climate Change Initiative allows annual greenhouse gas emissions to increase to levels that are 54% higher than the proposed U.S. commitment under the Kyoto Protocol.
GT200 getting better than 34% efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, R.
1980-01-01
Design features are described for the GT200, a 50-Hz machine blend of high temperature advanced aircraft rotating components and heavy frame industrial gas turbine structure. It includes a twin spool as generator with a two-stage power turbine giving nominal performance of 85,000 kW ISO peak output with a 10,120 Btu per kW-h heat rate on LHV distillate. It is desgined for base, intermediate, or peak load operation simple or combined cycle. Stal-Laval in Sweden developed it and sold the first unit to the Swedish State Power Board in July 1977. The unit was installed at the Stallbocka Station.
Intermediate-sized natural gas fueled carbonate fuel cell power plants
NASA Astrophysics Data System (ADS)
Sudhoff, Frederick A.; Fleming, Donald K.
1994-04-01
This executive summary of the report describes the accomplishments of the joint US Department of Energy's (DOE) Morgantown Energy Technology Center (METC) and M-C POWER Corporation's Cooperative Research and Development Agreement (CRADA) No. 93-013. This study addresses the intermediate power plant size between 2 megawatt (MW) and 200 MW. A 25 MW natural-gas, fueled-carbonate fuel cell power plant was chosen for this purpose. In keeping with recent designs, the fuel cell will operate under approximately three atmospheres of pressure. An expander/alternator is utilized to expand exhaust gas to atmospheric conditions and generate additional power. A steam-bottoming cycle is not included in this study because it is not believed to be cost effective for this system size. This study also addresses the simplicity and accuracy of a spreadsheet-based simulation with that of a full Advanced System for Process Engineering (ASPEN) simulation. The personal computer can fully utilize the simple spreadsheet model simulation. This model can be made available to all users and is particularly advantageous to the small business user.
Advanced onboard storage concepts for natural gas-fueled automotive vehicles
NASA Technical Reports Server (NTRS)
Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.
1984-01-01
The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.
Advanced onboard storage concepts for natural gas-fueled automotive vehicles
NASA Astrophysics Data System (ADS)
Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.
1984-06-01
The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.
NASA Technical Reports Server (NTRS)
Lund, Gary K.; Starrett, William David; Jensen, Kent C.; McNeal, Curtis (Technical Monitor)
2001-01-01
As part of a NASA funded contract to develop and demonstrate a gas generator cycle hybrid rocket motor for upper stage space motor applications, the development and demonstration of a low sensitivity, high performance fuel composition was undertaken. The ultimate goal of the development program was to demonstrate successful hybrid operation (start, stop, throttling) of the fuel with high concentration (90+%) hydrogen peroxide. The formulation development and lab-scale testing of a simple DOT Class 1.4c gas generator propellant is described. Both forward injected center perforated and aft injected end burner hybrid combustion behavior were evaluated with gaseous oxygen and catalytically decomposed 90% hydrogen peroxide. Cross flow and static environments were found to yield profoundly different combustion behaviors, which were further governed by binder type, oxidizer level and, significantly, oxidizer particle size. Primary extinguishment was accomplished via manipulation of PDL behavior and oxidizer turndown, which is enhanced with the hydrogen peroxide system. Laboratory scale combustor results compared very well with 11-inch and 24-inch sub-scale test results with 90% hydrogen peroxide.
Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants
NASA Astrophysics Data System (ADS)
Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.
2017-12-01
Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the ratio of CH4 to CO2 in stack based emissions as it relates to our calculated emission rates and as compared to the same ratio for the emission factors.
Thermodynamic analysis of steam-injected advanced gas turbine cycles
NASA Astrophysics Data System (ADS)
Pandey, Devendra; Bade, Mukund H.
2017-12-01
This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.
Heath, Garvin A; O'Donoughue, Patrick; Arent, Douglas J; Bazilian, Morgan
2014-08-05
Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.
Heath, Garvin A.; O’Donoughue, Patrick; Arent, Douglas J.; Bazilian, Morgan
2014-01-01
Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices. PMID:25049378
40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment... HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...
Qian, Jin; Liu, Rulong; Wei, Li; Lu, Hui; Chen, Guang-Hao
2015-09-01
A sulfur cycle-based wastewater treatment process, namely the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated process (SANI(®) process) has been recently developed for organics and nitrogen removal with 90% sludge minimization and 35% energy reduction in the biological treatment of saline sewage from seawater toilet flushing practice in Hong Kong. In this study, sulfate- and sulfite-rich wastes from simple wet flue gas desulfurization (WFGD) were considered as a potential low-cost sulfur source to achieve beneficial co-treatment with non-saline (freshwater) sewage in continental areas, through a Mixed Denitrification (MD)-SANI process trialed with synthetic mixture of simple WFGD wastes and freshwater sewage. The system showed 80% COD removal efficiency (specific COD removal rate of 0.26 kg COD/kg VSS/d) at an optimal pH of 7.5 and complete denitrification through MD (specific nitrogen removal rate of 0.33 kg N/kg VSS/d). Among the electron donors in MD, organics and thiosulfate could induce a much higher denitrifying activity than sulfide in terms of both NO3(-) reduction and NO2(-) reduction, suggesting a much higher nitrogen removal rate in organics-, thiosulfate- and sulfide-based MD in MD-SANI compared to sulfide alone-based autotrophic denitrification in conventional SANI(®). Diverse sulfate/sulfite-reducing bacteria (SRB) genera dominated in the bacterial community of sulfate/sulfite-reducing up-flow sludge bed (SRUSB) sludge without methane producing bacteria detected. Desulfomicrobium-like species possibly for sulfite reduction and Desulfobulbus-like species possibly for sulfate reduction are the two dominant groups with respective abundance of 24.03 and 14.91% in the SRB genera. Diverse denitrifying genera were identified in the bacterial community of anoxic up-flow sludge bed (AnUSB) sludge and the Thauera- and Thiobacillus-like species were the major taxa. These results well explained the successful operation of the lab-scale MD-SANI process. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jaramillo, P.; Venkatesh, A.; Griffin, M.; Matthews, S.
2012-12-01
Increased production of unconventional natural gas resources in the U.S. has drastically reduced the price of natural gas. While in 2005 prices went above 10/MMBtu, since 2011 they have been below 3/MMBtu. These low prices have encouraged the increase of natural gas utilization in the United States electricity sector. Natural gas can offset coal for power generation, reducing emissions such as greenhouse gases, sulfur and nitrogen oxides. In quantifying the benefit of offsetting coal by using natural gas, life cycle assessment (LCA) studies have shown up to 50% reductions in life cycle greenhouse gas (GHG) emissions can be expected. However, these studies predominantly use limited system boundaries that contain single individual coal and natural gas power plants. They do not consider (regional) fleets of power plants that are dispatched on the basis of their short-run marginal costs. In this study, simplified economic dispatch models (representing existing power plants in a given region) are developed for three U.S. regions - ERCOT, MISO and PJM. These models, along with historical load data are used to determine how natural gas utilization will increase in the short-term due to changes in natural gas price. The associated changes in fuel mix and life cycle GHG emissions are estimated. Results indicate that life cycle GHG emissions may, at best, decrease by 5-15% as a result of low natural gas prices, compared to almost 50% reductions estimated by previous LCAs. This study thus provides more reasonable estimates of potential reductions in GHG emissions from using natural gas instead of coal in the electricity sector in the short-term.
Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers
NASA Technical Reports Server (NTRS)
Monson, D. J.
1976-01-01
Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.
NASA Astrophysics Data System (ADS)
Creswick, F. A.
Incentives for the development of gas heat pumps are discussed. Technical progress made on several promising technologies was reviewed. The status of development of gas-engine-driven heat pumps, the absorption cycle for the near- and long-term gas heat pump systems, the Stirling engine, the small Rankine-cycle engines, and gas-turbine-driven heat pump systems were briefly reviewed. Progress in the US, Japan, and Europe is noted.
Life cycle water consumption for shale gas and conventional natural gas.
Clark, Corrie E; Horner, Robert M; Harto, Christopher B
2013-10-15
Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.
Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort
NASA Technical Reports Server (NTRS)
Ensworth, Clint B., III; McKissock, David B.
1998-01-01
NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-cycle vehicles not requiring particulate emission measurements. 86.109-94 Section 86.109-94 Protection... Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.109-94 Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate...
Thermodynamic Study of Multi Pressure HRSG in Gas/Steam Combined Cycle Power Plant
NASA Astrophysics Data System (ADS)
Sharma, Meeta; Singh, Onkar
2018-01-01
Combined cycle power plants have a combination of gas based topping cycle and steam based bottoming cycle through the use of Heat Recovery Steam Generator (HRSG). These HRSG may be either of single pressure (SP) or dual pressure (DP) or multiple pressure type. Here in this study thermodynamic analysis is carried out for optimal performance of HRSG using different types of HRSG layout for combined cycle efficiency improvement. Performance of single pressure HRSG and dual pressure HRSG, utilized in gas/steam combined cycle is analyzed and presented here. In comparison to single pressure, dual pressure HRSG offers 10 to 15% higher reduction in stack temperature due to greater heat recovery and thus improved plant efficiency.
Life Cycle Water Consumption for Shale Gas and Conventional Natural Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Corrie E.; Horner, Robert M.; Harto, Christopher B.
2013-10-15
Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13–37 L/GJ) than conventional natural gas consumes (9.3–9.6 L/GJ). However, when used as a transportation fuel, shale gasmore » consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.« less
Summary of the research and development effort on the supercritical CO2 cycle
NASA Astrophysics Data System (ADS)
Fraas, A. P.
1981-06-01
The supercritical CO2 cycle has the advantage over a conventional closed cycle gas turbine in that the compression work phase of the cycle can be carried out close to the critical point and hence aerodynamic losses in the compressor are reduced and the cycle efficiency increased for a given turbine inlet temperature. However, the practicable turbine inlet temperature is reduced by permissible stresses in the heater tubes because the peak pressure in the cycle must be approx. 260 atm in order to have the compression process take place close to the critical point of the working fluid. The high system pressure also makes the capital cost of the heat exchangers and gas piping higher than that for a conventional closed cycle gas turbine. Further, the waste heat from the cycle must be rejected at too low a temperature for it to be useful for industrial process heat or for district heating systems.
The Spatial Footprint of Natural Gas-Fired Electricity
NASA Astrophysics Data System (ADS)
Jordaan, S. M.; Heath, G.; Macknick, J.; Mohammadi, E.; Ben-Horin, D.; Urrea, V.; Marceau, D.
2015-12-01
Consistent comparisons of the amount of land required for different electricity generation technologies are challenging because land use associated with fossil fuel acquisition and delivery has not been well characterized or empirically grounded. This research focuses on improving estimates of the life cycle land use of natural gas-fired electricity (m2/MWh generated) through the novel combination of inventories of natural gas-related infrastructure, satellite imagery analysis and gas production estimates. We focus on seven counties that represent 98% of the total gas production in the Barnett Shale (Texas), evaluating over 500 sites across five life cycle stages (gas production, gathering, processing, transmission, and power generation as well as produced water disposal). We find that a large fraction of total life cycle land use is related to gathering (midstream) infrastructure, particularly pipelines; access roads related to all stages also contribute a large life cycle share. Results were sensitive to several inputs, including well lifetime, pipeline right of way, number of wells per site, variability of heat rate for electricity generation, and facility lifetime. Through this work, we have demonstrated a novel, highly-resolved and empirical method for estimating life cycle land use from natural gas infrastructure in an important production region. When replicated for other gas production regions and other fuels, the results can enable more empirically-grounded and robust comparisons of the land footprint of alternative energy choices.
Mazar, Joseph; Rosado, Amy; Shelley, John; Marchica, John; Westmoreland, Tamarah J
2017-01-01
The long non-coding RNA GAS5 has been shown to modulate cancer proliferation in numerous human cancer systems and has been correlated with successful patient outcome. Our examination of GAS5 in neuroblastoma has revealed robust expression in both MYCN-amplified and non-amplified cell lines. Knockdown of GAS5 In vitro resulted in defects in cell proliferation, apoptosis, and induced cell cycle arrest. Further analysis of GAS5 clones revealed multiple novel splice variants, two of which inversely modulated with MYCN status. Complementation studies of the variants post-knockdown of GAS5 indicated alternate phenotypes, with one variant (FL) considerably enhancing cell proliferation by rescuing cell cycle arrest and the other (C2) driving apoptosis, suggesting a unique role for each in neuroblastoma cancer physiology. Global sequencing and ELISA arrays revealed that the loss of GAS5 induced p53, BRCA1, and GADD45A, which appeared to modulate cell cycle arrest in concert. Complementation with only the FL GAS5 clone could rescue cell cycle arrest, stabilizing HDM2, and leading to the loss of p53. Together, these data offer novel therapeutic targets in the form of lncRNA splice variants for separate challenges against cancer growth and cell death. PMID:28035057
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liska, Adam J.; Suyker, Andrew E.; Arkebauer, Timothy J.
2013-12-20
Soil emissions have been inadequately characterized in life cycle assessment of biofuels (see section 3.2.3). This project measures the net differences in field-level greenhouse gas emissions (CO 2, N 2O, and CH 4) due to corn residue removal for cellulosic ethanol production. Gas measurements are then incorporated into life cycle assessment of the final biofuel product to determine whether it is in compliance with federal greenhouse gas emissions standards for biofuels (Renewable Fuel Standard 2, RFS2). The field measurements have been conducted over three years on two, quarter-section, production-scale, irrigated corn fields (both roughly 50 hectares, as this size ofmore » field is necessary for reproducible eddy covariance flux measurements of CO 2; chamber measurements are used to determine N 2O and CH 4 emissions). Due to a large hail storm in 2010, estimates of the emission from residue could not be separated from the total CO 2 flux in 2011. This led us to develop soil organic carbon (SOC) modeling techniques to estimate changes in CO 2 emissions from residue removal. Modeling has predicted emissions of CO 2 from oxidation of SOC that are consistent (<12%) with 9 years of CO 2 flux measurements at the two production field sites, and modeling is also consistent with other field measurements (Liska et al., submitted). The model was then used to estimate the average change in SOC and CO 2 emissions from nine years of simulated residue removal (6 Mg biomass per hectare per year) at the sites; a loss of 0.43 Mg C ha -1 yr -1 resulted. The model was then used to estimate SOC changes over 10 years across Nebraska using supercomputing, based on 61 million, 30 x 30 meter, grid cells to account for regional variability in initial SOC, crop yield, and temperature; an average loss of 0.47 Mg C ha -1 yr -1 resulted. When these CO 2 emissions are included in simple life cycle assessment calculations, emissions from cellulosic ethanol from crop residue are above mandated levels of 60% reduction compared to gasoline (Liska, in press). These approaches are both technically effective and economically feasible. This work has been extensively peer reviewed.« less
Explosive dome eruptions modulated by periodic gas-driven inflation
Johnson, Jeffrey B.; Lyons, John; Andrews, B. J.; Lees, J.M.
2014-01-01
Volcan Santiaguito (Guatemala) “breathes” with extraordinary regularity as the edifice's conduit system accumulates free gas, which periodically vents to the atmosphere. Periodic pressurization controls explosion timing, which nearly always occurs at peak inflation, as detected with tiltmeters. Tilt cycles in January 2012 reveal regular 26 ± 6 min inflation/deflation cycles corresponding to at least ~101 kg/s of gas fluxing the system. Very long period (VLP) earthquakes presage explosions and occur during cycles when inflation rates are most rapid. VLPs locate ~300 m below the vent and indicate mobilization of volatiles, which ascend at ~50 m/s. Rapid gas ascent feeds pyroclast-laden eruptions lasting several minutes and rising to ~1 km. VLPs are not observed during less rapid inflation episodes; instead, gas vents passively through the conduit producing no infrasound and no explosion. These observations intimate that steady gas exsolution and accumulation in shallow reservoirs may drive inflation cycles at open-vent silicic volcanoes.
A Simple Model to Teach Business Cycle Macroeconomics for Emerging Market and Developing Economies
ERIC Educational Resources Information Center
Duncan, Roberto
2015-01-01
The canonical neoclassical model is insufficient to understand business cycle fluctuations in emerging market and developing economies. The author reformulates the model proposed by Aguiar and Gopinath (2007) in a simple setting that can be used to teach business cycle macroeconomics for emerging market and developing economies at the…
Tracing the Baryon Cycle within Nearby Galaxies with a next-generation VLA
NASA Astrophysics Data System (ADS)
Kepley, Amanda A.; Leroy, Adam; Murphy, Eric J.; ngVLA Baryon Cycle Science Working Group
2017-01-01
The evolution of galaxies over cosmic time is shaped by the cycling of baryons through these systems, namely the inflow of atomic gas, the formation of molecular structures, the birth of stars, and the expulsion of gas due to associated feedback processes. The best way to study this cycle in detail are observations of nearby galaxies. These systems provide a complete picture of baryon cycling over a wide range of astrophysical conditions. In the next decade, higher resolution/sensitivity observations of such galaxies will fundamentally improve our knowledge of galaxy formation and evolution, allowing us to better interpret higher redshift observations of sources that were rapidly evolving at epochs soon after the Big Bang. In particular, the centimeter-to-millimeter part of the spectrum provides critical diagnostics for each of the key baryon cycling processes and access to almost all phases of gas in galaxies: cool and cold gas (via emission and absorption lines), ionized gas (via free-free continuum and recombination lines), cosmic rays and hot gas (via synchrotron emission and the Sunyaev-Zeldovich effect). This poster highlights a number of key science problems in this area whose solutions require a next-generation radio-mm interferometer such as the next-generation VLA.
NREL, Johns Hopkins SAIS Develop Method to Quantify Life Cycle Land Use of
Life Cycle Land Use of Electricity from Natural Gas News Release: NREL, Johns Hopkins SAIS Develop Method to Quantify Life Cycle Land Use of Electricity from Natural Gas October 2, 2017 A case study of time provides quantifiable information on the life cycle land use of generating electricity from
Hasan, Naimul; Rai, Jitendra Nath; Arora, Bharat Bhushan
2014-01-01
In the Modern scenario, the naturally available resources for power generation are being depleted at an alarming rate; firstly due to wastage of power at consumer end, secondly due to inefficiency of various power system components. A Combined Cycle Gas Turbine (CCGT) integrates two cycles- Brayton cycle (Gas Turbine) and Rankine cycle (Steam Turbine) with the objective of increasing overall plant efficiency. This is accomplished by utilising the exhaust of Gas Turbine through a waste-heat recovery boiler to run a Steam Turbine. The efficiency of a gas turbine which ranges from 28% to 33% can hence be raised to about 60% by recovering some of the low grade thermal energy from the exhaust gas for steam turbine process. This paper is a study for the modelling of CCGT and comparing it with actual operational data. The performance model for CCGT plant was developed in MATLAB/Simulink.
NASA Astrophysics Data System (ADS)
Funke, H. H.-W.; Keinz, J.; Börner, S.; Hendrick, P.; Elsing, R.
2016-07-01
The paper highlights the modification of the engine control software of the hydrogen (H2) converted gas turbine Auxiliary Power Unit (APU) GTCP 36-300 allowing safe and accurate methane (CH4) operation achieved without mechanical changes of the metering unit. The acceleration and deceleration characteristics of the engine controller from idle to maximum load are analyzed comparing H2 and CH4. Also, the paper presents the influence on the thermodynamic cycle of gas turbine resulting from the different fuels supported by a gas turbine cycle simulation of H2 and CH4 using the software GasTurb.
Pipeline bottoming cycle study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-06-01
The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle workingmore » fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.« less
Complex Autocatalysis in Simple Chemistries.
Virgo, Nathaniel; Ikegami, Takashi; McGregor, Simon
2016-01-01
Life on Earth must originally have arisen from abiotic chemistry. Since the details of this chemistry are unknown, we wish to understand, in general, which types of chemistry can lead to complex, lifelike behavior. Here we show that even very simple chemistries in the thermodynamically reversible regime can self-organize to form complex autocatalytic cycles, with the catalytic effects emerging from the network structure. We demonstrate this with a very simple but thermodynamically reasonable artificial chemistry model. By suppressing the direct reaction from reactants to products, we obtain the simplest kind of autocatalytic cycle, resulting in exponential growth. When these simple first-order cycles are prevented from forming, the system achieves superexponential growth through more complex, higher-order autocatalytic cycles. This leads to nonlinear phenomena such as oscillations and bistability, the latter of which is of particular interest regarding the origins of life.
40 CFR 86.1537 - Idle test run.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled... dilute sampling. (6) For bag sampling, sample idle emissions long enough to obtain a sufficient bag...
NASA Technical Reports Server (NTRS)
Amos, D. J.; Fentress, W. K.; Stahl, W. F.
1976-01-01
Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.
Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test
NASA Astrophysics Data System (ADS)
Godfroy, Thomas J.; Kapernick, Richard J.; Bragg-Sitton, Shannon M.
2004-02-01
One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.
Matrix Fatigue Cracking Mechanisms of Alpha(2) TMC for Hypersonic Applications
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Gayda, John
1994-01-01
The objective of this work was to understand matrix cracking mechanisms in a unidirectional alpha(sub 2) TMC in possible hypersonic applications. A (0)(sub 8) SCS-6/Ti-24Al-11Nb (at. percent) TMC was first subjected to a variety of simple isothermal and nonisothermal fatigue cycles to evaluate the damage mechanisms in simple conditions. A modified ascent mission cycle test was then performed to evaluate the combined effects of loading modes. This cycle mixes mechanical cycling at 150 and 483 C, sustained loads, and a slow thermal cycle to 815 C. At low cyclic stresses and strains more common in hypersonic applications, environment-assisted surface cracking limited fatigue resistance. This damage mechanism was most acute for out-of-phase nonisothermal cycles having extended cycle periods and the ascent mission cycle. A simple linear fraction damage model was employed to help understand this damage mechanism. Time-dependent environmental damage was found to strongly influence out-of-phase and mission life, with mechanical cycling damage due to the combination of external loading and CTE mismatch stresses playing a smaller role. The mechanical cycling and sustained loads in the mission cycle also had a smaller role.
A life cycle greenhouse gas inventory of a tree production system
Alissa Kendall; E. Gregory McPherson
2012-01-01
PurposeThis study provides a detailed, process-based life cycle greenhouse gas (GHG) inventory of an ornamental tree production system for urban forestry. The success of large-scale tree planting initiatives for climate protection depends on projects being net sinks for CO2 over their entire life cycle....
NASA Astrophysics Data System (ADS)
Matsuoka, Ken; Esumi, Motoki; Ikeguchi, Ken Bryan; Kasahara, Jiro; Matsuo, Akiko; Funaki, Ikkoh
We developed a novel coaxial rotary valve for a multi-tube PDE. Since this single valve can supply three different gases (fuel, oxidizer and purge gas) into a combustor, the unification of the valve systems for three different gases is possible by using our newly designed valve. A PDRE system can be simple and lightweight by using this valve, and thus its thrust-weight ratio can be increased. We proposed the design of a multi-tube rotary-valved PDRE system by this rotary valve. Moreover, in preparation for a multi-tube rotary-valved PDRE, we carried out the multi-cycle operation experiment by the single-tube rotary-valved PDRE system. The combustion wave velocity was measured to confirm the operation of the PDRE system. Deflagration-to-detonation transition (DDT) was confirmed and DDT distance decreased under the condition of high operation frequency. In addition, a maximum operation frequency was 159 Hz.
Determination of volatile marker compounds in raw ham using headspace-trap gas chromatography.
Bosse Née Danz, Ramona; Wirth, Melanie; Konstanz, Annette; Becker, Thomas; Weiss, Jochen; Gibis, Monika
2017-03-15
A simple, reliable and automated method was developed and optimized for qualification and quantification of aroma-relevant volatile marker compounds of North European raw ham using a headspace (HS)-Trap gas chromatography-mass spectrometry (GC-MS) and GC-flame ionization detector (FID) analysis. A total of 38 volatile compounds were detected with this HS-Trap GC-MS method amongst which the largest groups were ketones (12), alcohols (8), hydrocarbons (7), aldehydes (6) and esters (3). The HS-Trap GC-FID method was optimized for the parameters: thermostatting time and temperature, vial and desorption pressure, number of extraction cycles and salt addition. A validation for 13 volatile marker compounds with limits of detection in ng/g was carried out. The optimized method can serve as alternative to conventional headspace and solid phase micro extraction methods and allows users to determine volatile compounds in raw hams making it of interest to industrial and academic meat scientists. Copyright © 2016 Elsevier Ltd. All rights reserved.
Life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well.
Jiang, Mohan; Hendrickson, Chris T; VanBriesen, Jeanne M
2014-01-01
This study estimates the life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well from its construction to end of life. Direct water consumption at the well site was assessed by analysis of data from approximately 500 individual well completion reports collected in 2010 by the Pennsylvania Department of Conservation and Natural Resources. Indirect water consumption for supply chain production at each life cycle stage of the well was estimated using the economic input-output life cycle assessment (EIO-LCA) method. Life cycle direct and indirect water quality pollution impacts were assessed and compared using the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Wastewater treatment cost was proposed as an additional indicator for water quality pollution impacts from shale gas well wastewater. Four water management scenarios for Marcellus shale well wastewater were assessed: current conditions in Pennsylvania; complete discharge; direct reuse and desalination; and complete desalination. The results show that under the current conditions, an average Marcellus shale gas well consumes 20,000 m(3) (with a range from 6700 to 33,000 m(3)) of freshwater per well over its life cycle excluding final gas utilization, with 65% direct water consumption at the well site and 35% indirect water consumption across the supply chain production. If all flowback and produced water is released into the environment without treatment, direct wastewater from a Marcellus shale gas well is estimated to have 300-3000 kg N-eq eutrophication potential, 900-23,000 kg 2,4D-eq freshwater ecotoxicity potential, 0-370 kg benzene-eq carcinogenic potential, and 2800-71,000 MT toluene-eq noncarcinogenic potential. The potential toxicity of the chemicals in the wastewater from the well site exceeds those associated with supply chain production, except for carcinogenic effects. If all the Marcellus shale well wastewater is treated to surface discharge standards by desalination, $59,000-270,000 per well would be required. The life cycle study results indicate that when gas end use is not considered hydraulic fracturing is the largest contributor to the life cycle water impacts of a Marcellus shale gas well.
ERIC Educational Resources Information Center
Madu, B. C.
2012-01-01
The study explored the efficacy of four-step (4-E) learning cycle approach on students understanding of concepts related to Simple Harmonic Motion (SHM). 124 students (63 for experimental group and 61 for control group) participated in the study. The students' views and ideas in simple Harmonic Achievement test were analyzed qualitatively. The…
40 CFR 86.1506 - Equipment required and specifications; overview.
Code of Federal Regulations, 2014 CFR
2014-07-01
... appear in §§ 86.1509 through 86.1511. (2) Fuel and analytical tests. Fuel requirements for idle exhaust... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... for performing idle exhaust emission tests on Otto-cycle heavy-duty engines and Otto-cycle light-duty...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S., E-mail: sankha.deepp@gmail.com; Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com
Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical modelmore » of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.« less
The paper discusses a life-cycle evaluation of greenhouse gas (GHG) emissions from municipal soild waste (MSW) management in the U.S. (NOTE: Using integrated waste management, recycling/composting, waste-to-energy, and better control of landfill gas, communities across the U.S. a...
Residual life assessment of the SSME/ATD HPOTP turnaround duct (TAD)
NASA Technical Reports Server (NTRS)
Gross, R. Steven
1996-01-01
This paper is concerned with the prediction of the low cycle thermal fatigue behavior of a component in a developmental (ATD) high pressure liquid oxygen turbopump (HPOTP) for the Space Shuttle Main Engine (SSME). This component is called the Turnaround Duct (TAD). The TAD is a complex single piece casting of MAR-M-247 material. Its function is to turn the hot turbine exhaust gas (1200 F hydrogen rich gas steam) such that it can exhaust radially out of the turbopump. In very simple terms, the TAD consists of two rings connected axially by 22 hollow airfoil shaped struts with the turning vanes placed at the top, middle, and bottom of each strut. The TAD is attached to the other components of the pump via bolts passing through 14 of the 22 struts. Of the remaining 8 struts, four are equally spaced (90 deg interval) and containing a cooling tube through which liquid hydrogen passes on its way to cool the shaft bearing assemblies. The remaining 4 struts are empty. One of the pump units in the certification test series was destructively examined after 22 test firings. Substantial axial cracking was found in two of the struts which contain cooling tubes. None of the other 20 struts showed any sign of internal cracking. This unusual low cycle thermal fatigue behavior within the two cooling tube struts is the focus of this study.
Air impacts of increased natural gas acquisition, processing, and use: a critical review.
Moore, Christopher W; Zielinska, Barbara; Pétron, Gabrielle; Jackson, Robert B
2014-01-01
During the past decade, technological advancements in the United States and Canada have led to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand gas, coal-bed methane), raising concerns about environmental impacts. Here, we summarize the current understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air emissions from the natural gas life cycle include greenhouse gases, ozone precursors (volatile organic compounds and nitrogen oxides), air toxics, and particulates. National and state regulators primarily use generic emission inventories to assess the climate, air quality, and health impacts of natural gas systems. These inventories rely on limited, incomplete, and sometimes outdated emission factors and activity data, based on few measurements. We discuss case studies for specific air impacts grouped by natural gas life cycle segment, summarize the potential benefits of using natural gas over other fossil fuels, and examine national and state emission regulations pertaining to natural gas systems. Finally, we highlight specific gaps in scientific knowledge and suggest that substantial additional measurements of air emissions from the natural gas life cycle are essential to understanding the impacts and benefits of this resource.
The Oceanic Cycle and Global Atmospheric Budget of Carbonyl Sulfide.
NASA Astrophysics Data System (ADS)
Weiss, Peter Scott
1995-01-01
A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux. Analytical work was carried out using the electron capture sulfur detector (ECD-S) for gas chromatography. This system was optimized for COS so that air and seawater-equilibrated air samples could be directly injected without preconcentration. This research was carried out on two cruises aboard the NOAA ship Surveyor during long meridional transects between 55^circN and 70 ^circS along 140^circ W in the Pacific Ocean. The major findings of these research activities are: (1) Photoproduction of COS is at a maximum between 313 and 336 nm in natural sunlit waters. Tropical water surface and column production rates are 68 pM/day and 360 nmol/m^2/day, respectively. Antarctic surface and column production rates are 101 pM/day and 620 nmol/m^2/day, respectively. (2) Wide regions of the open ocean were found to be undersaturated with respect to atmospheric equilibrium of COS. The global open ocean sea-air flux of COS was found to be -0.032 (-0.010 to -0.054) which represents a very weak sink of atmospheric COS. (3) Daily COS concentration losses in surface waters were used to determine seawater lifetimes, which agreed to hydrolysis lifetimes to within 15%. (4) Atmospheric COS mixing ratios displayed <5% interhemispheric ratio. However, seasonal variation in the northern hemisphere may have been as high as 10%. (5) A simple steady-state model was developed to predict seasonal cycles of atmospheric COS.
High efficiency Brayton cycles using LNG
Morrow, Charles W [Albuquerque, NM
2006-04-18
A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.
Power Gas and Combined Cycles: Clean Power From Fossil Fuels
ERIC Educational Resources Information Center
Metz, William D.
1973-01-01
The combined-cycle system is currently regarded as a useful procedure for producing electricity. This system can burn natural gas and oil distillates in addition to coal. In the future when natural gas stocks will be low, coal may become an important fuel for such systems. Considerable effort must be made for research on coal gasification and…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... gas-fired combined-cycle power station in Warren County, Virginia, extending over the next 9 years... construction of a new natural gas-fired combined-cycle power station in Warren County, Virginia. A conservation... cause take of the Madison Cave isopod. Dominion Virginia Power proposes to construct a natural gas-fired...
Cycle of a closed gas-turbine plant with a gas-dynamic energy-separation device
NASA Astrophysics Data System (ADS)
Leontiev, A. I.; Burtsev, S. A.
2017-09-01
The efficiency of closed gas-turbine space-based plants is analyzed. The weight-size characteristics of closed gas-turbine plants are shown in many respects as determined by the refrigerator-radiator parameters. The scheme of closed gas-turbine plants with a gas-dynamic temperature-stratification device is proposed, and a calculation model is developed. This model shows that the cycle efficiency decreases by 2% in comparison with that of the closed gas-turbine plants operating by the traditional scheme with increasing temperature at the output from the refrigerator-radiator by 28 K and decreasing its area by 13.7%.
Going full circle: phase-transition thermodynamics of ionic liquids.
Preiss, Ulrich; Verevkin, Sergey P; Koslowski, Thorsten; Krossing, Ingo
2011-05-27
We present the full enthalpic phase transition cycle for ionic liquids (ILs) as examples of non-classical salts. The cycle was closed for the lattice, solvation, dissociation, and vaporization enthalpies of 30 different ILs, relying on as much experimental data as was available. High-quality dissociation enthalpies were calculated at the G3 MP2 level. From the cycle, we could establish, for the first time, the lattice and solvation enthalpies of ILs with imidazolium ions. For vaporization, lattice, and dissociation enthalpies, we also developed new prediction methods in the course of our investigations. Here, as only single-ion values need to be calculated and the tedious optimization of an ion pair can be circumvented, the computational time is short. For the vaporization enthalpy, a very simple approach was found, using a surface term and the calculated enthalpic correction to the total gas-phase energy. For the lattice enthalpy, the most important constituent proved to be the calculated conductor-like screening model (COSMO) solvation enthalpy in the ideal electric conductor. A similar model was developed for the dissociation enthalpy. According to our assessment, the typical error of the lattice enthalpy would be 9.4 kJ mol(-1), which is less than half the deviation we get when using the (optimized) Kapustinskii equation or the recent volume-based thermodynamics (VBT) theory. In contrast, the non-optimized VBT formula gives lattice enthalpies 20 to 140 kJ mol(-1) lower than the ones we assessed in the cycle, because of the insufficient description of dispersive interactions. Our findings show that quantum-chemical calculations can greatly improve the VBT approaches, which were parameterized for simple, inorganic salts with ideally point-shaped charges. In conclusion, we suggest the term "augmented VBT", or "aVBT", to describe this kind of theoretical approach. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cycle analysis of MCFC/gas turbine system
NASA Astrophysics Data System (ADS)
Musa, Abdullatif; Alaktiwi, Abdulsalam; Talbi, Mosbah
2017-11-01
High temperature fuel cells such as the solid oxide fuel cell (SOFC) and the molten carbonate fuel cell (MCFC) are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC) performances is evaluated using validated model for the internally reformed (IR) fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR) cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.
Effect of freeze-thaw cycles on greenhouse gas fluxes from peat soils
NASA Astrophysics Data System (ADS)
Oh, H. D.; Rezanezhad, F.; Markelov, I.; McCarter, C. P. R.; Van Cappellen, P.
2017-12-01
The ongoing displacement of climate zones by global warming is increasing the frequency and intensity of freeze-thaw cycles in middle and high latitude regions, many of which are dominated by organic soils such as peat. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles influence greenhouse gas fluxes from peat using a newly developed experimental soil column system that simulates realistic soil temperature profiles during freeze-thaw cycles. We measured the surface and subsurface changes to gas and aqueous phase chemistry to delineate the diffusion pathways and quantify soil greenhouse gas fluxes during freeze-thaw cycles using sulfur hexafluoride (SF6) as a conservative tracer. Three peat columns were assembled inside a temperature controlled chamber with different soil structures. All three columns were packed with 40 cm of undisturbed, slightly decomposed peat, where the soil of two columns had an additional 10 cm layer on top (one with loose Sphagnum moss and one with an impermeable plug). The results indicate that the release of SF6 and CO2 gas from the soil surface was influenced by the recurrent development of a physical ice barrier, which prevented gas exchange between the soil and atmosphere during freezing conditions. With the onset of thawing a pulse of SF6 and CO2 occurred, resulting in a flux of 3.24 and 2095.52 µmol/m2h, respectively, due to the build-up of gases in the liquid-phase pore space during freezing. Additionally, we developed a model to determine the specific diffusion coefficients for each peat column. These data allow us to better predict how increased frequency and intensity of freeze-thaw cycles will affect greenhouse gas emissions in northern peat soils.
Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion
NASA Technical Reports Server (NTRS)
Nainiger, J. J.
1980-01-01
To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.
Hybrid solar central receiver for combined cycle power plant
Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.
1995-01-01
A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.
NASA Astrophysics Data System (ADS)
Glindemann, Dietmar; Edwards, Marc; Schrems, Otto
Phosphine (PH 3), was recently found worldwide even in the remote atmosphere (Naturwissenschaften83(1996a)131; Atmos. Environ. 37(2003)24 29). It is of interest to find natural mechanisms which could produce phosphine gas and drive a volatile link of the atmospheric phosphorus cycle and the formation of phosphoric acid as possible condensation nuclei for clouds. Here, we report on simulated lightning exposing sodium phosphate in a reducing medium (methane model atmosphere or organic matter) for 5 s to a spark induced by microwave. The gas product analyzed by gas chromatography contained phosphine (yield up to 0.6 g kg -1 phosphate P) and methylphosphine (CH 3)PH 2 (yield up to 0.02 g kg -1 phosphate P). We suggest a plasma-chemical formation mechanism where organic compounds or methane or secondary hydrogen thereof reduce phosphate to phosphine of which a small fraction can subsequently react with methyl radicals to form methylphosphine. A small yield of 6 mg phosphine per kg phosphate P was even obtained in methane free medium, by simple plasmatic recombination of inorganic phosphorus. We believe that methane and hydrogen are useful model substances of pyrolytic gases with high reducing power which may form if lightning strikes biomass, soil and aerosol. These results suggest evidence that phosphine and methylphosphine (detectable in the field by intense garlic odor) are produced when atmospheric lightning strikes the ground or aerosol which is containing oxidized forms of phosphorus and chemical reductants. Additional reviewed data show that laboratory lightning was able to reduce a much more significant portion of phosphate to phosphite (up to 25% yield), methylphosphonic acid (up to 8.5% yield) and traces of hypophosphite in a matter of seconds.
Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian
2018-03-01
We investigate a simple and accurate method for quantitatively analyzing dissolved inorganic carbon in environmental water by reaction headspace gas chromatography. The neutralization reaction between the inorganic carbon species (i.e. bicarbonate ions and carbonate ions) in environmental water and hydrochloric acid is carried out in a sealed headspace vial, and the carbon dioxide formed from the neutralization reaction, the self-decomposition of carbonic acid, and dissolved carbon dioxide in environmental water is then analyzed by headspace gas chromatography. The data show that the headspace gas chromatography method has good precision (relative standard deviation ≤ 1.63%) and accuracy (relative differences ≤ 5.81% compared with the coulometric titration technique). The headspace gas chromatography method is simple, reliable, and can be well applied in the dissolved inorganic carbon detection in environmental water. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Gauntner, D. J.; Yeh, F. C.
1975-01-01
Experimental transient turbine blade temperatures were obtained from tests conducted on air-cooled blades in a research turbojet engine, cycling between cruise and idle conditions. Transient data were recorded by a high speed data acquisition system. Temperatures at the same phase of each transient cycle were repeatable between cycles to within 3.9 K (7 F). Turbine inlet pressures were repeatable between cycles to within 0.32 N/sq cm (0.47 psia). The tests were conducted at a gas stream temperature of 1567 K (2360 F) at cruise, and 1067 K (1460 F) at idle conditions. The corresponding gas stream pressures were about 26.2 and 22.4 N/sq cm (38 and 32.5 psia) respectively. The nominal coolant inlet temperature was about 811 K (1000 F).
A thermodynamic review of cryogenic refrigeration cycles for liquefaction of natural gas
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung
2015-12-01
A thermodynamic review is presented on cryogenic refrigeration cycles for the liquefaction process of natural gas. The main purpose of this review is to examine the thermodynamic structure of various cycles and provide a theoretical basis for selecting a cycle in accordance with different needs and design criteria. Based on existing or proposed liquefaction processes, sixteen ideal cycles are selected and the optimal conditions to achieve their best thermodynamic performance are investigated. The selected cycles include standard and modified versions of Joule-Thomson (JT) cycle, Brayton cycle, and their combined cycle with pure refrigerants (PR) or mixed refrigerants (MR). Full details of the cycles are presented and discussed in terms of FOM (figure of merit) and thermodynamic irreversibility. In addition, a new method of nomenclature is proposed to clearly identify the structure of cycles by abbreviation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seinfeld, John H.
This project addressed the following research need in the Atmospheric System Research (ASR) Science and Program Plan: "Measurements downwind of urban sources of aerosol particles and precursor gases have shown that the mass concentration of secondary organic aerosol (SOA) can be several-fold greater than can be explained on the basis of current model calculations using observed precursor concentrations. ASR will continue conducting laboratory experiments on both gas-phase and aqueous-phase SOA formation to characterize the particle formation and the organic gases that react to form new organic aerosol material on aerosol seeds. ASR will use these experiments to guide the developmentmore » of comprehensive chemical mechanisms... to guide the development of parameterizations that are simple enough to be applied to aerosol life cycle models."« less
Task 6 -- Advanced turbine systems program conceptual design and product development
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-01-10
The Allison Engine Company has completed the Task 6 Conceptual Design and Analysis of Phase 2 of the Advanced Turbine System (ATS) contract. At the heart of Allison`s system is an advanced simple cycle gas turbine engine. This engine will incorporate components that ensure the program goals are met. Allison plans to commercialize the ATS demonstrator and market a family of engines incorporating this technology. This family of engines, ranging from 4.9 MW to 12 MW, will be suitable for use in all industrial engine applications, including electric power generation, mechanical drive, and marine propulsion. In the field of electricmore » power generation, the engines will be used for base load, standby, cogeneration, and distributed generation applications.« less
Life Cycle Water Consumption and Wastewater Generation Impacts of a Marcellus Shale Gas Well
2013-01-01
This study estimates the life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well from its construction to end of life. Direct water consumption at the well site was assessed by analysis of data from approximately 500 individual well completion reports collected in 2010 by the Pennsylvania Department of Conservation and Natural Resources. Indirect water consumption for supply chain production at each life cycle stage of the well was estimated using the economic input–output life cycle assessment (EIO-LCA) method. Life cycle direct and indirect water quality pollution impacts were assessed and compared using the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Wastewater treatment cost was proposed as an additional indicator for water quality pollution impacts from shale gas well wastewater. Four water management scenarios for Marcellus shale well wastewater were assessed: current conditions in Pennsylvania; complete discharge; direct reuse and desalination; and complete desalination. The results show that under the current conditions, an average Marcellus shale gas well consumes 20 000 m3 (with a range from 6700 to 33 000 m3) of freshwater per well over its life cycle excluding final gas utilization, with 65% direct water consumption at the well site and 35% indirect water consumption across the supply chain production. If all flowback and produced water is released into the environment without treatment, direct wastewater from a Marcellus shale gas well is estimated to have 300–3000 kg N-eq eutrophication potential, 900–23 000 kg 2,4D-eq freshwater ecotoxicity potential, 0–370 kg benzene-eq carcinogenic potential, and 2800–71 000 MT toluene-eq noncarcinogenic potential. The potential toxicity of the chemicals in the wastewater from the well site exceeds those associated with supply chain production, except for carcinogenic effects. If all the Marcellus shale well wastewater is treated to surface discharge standards by desalination, $59 000–270 000 per well would be required. The life cycle study results indicate that when gas end use is not considered hydraulic fracturing is the largest contributor to the life cycle water impacts of a Marcellus shale gas well. PMID:24380628
AIR PASSIVATION OF METAL HYDRIDE BEDS FOR WASTE DISPOSAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J; R. H. Hsu, R
2007-07-02
Metal hydride beds offer compact, safe storage of tritium. After metal hydride beds have reached the end of their useful life, the beds will replaced with new beds and the old beds prepared for disposal. One acceptance criteria for hydride bed waste disposal is that the material inside the bed not be pyrophoric. To determine the pyrophoric nature of spent metal hydride beds, controlled air ingress tests were performed. A simple gas handling manifold fitted with pressure transducers and a calibrated volume were used to introduce controlled quantities of air into a metal hydride bed and the bed temperature risemore » monitored for reactivity with the air. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 C internal temperature rise upon the first air exposure cycle and a 0.1 C temperature rise upon a second air exposure. A total of 346 scc air was consumed by the bed (0.08 scc per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12th cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water.« less
El-Eskandarany, M Sherif; Shaban, Ehab; Aldakheel, Fahad; Alkandary, Abdullah; Behbehani, Montaha; Al-Saidi, M
2017-10-16
Storing hydrogen gas into cylinders under high pressure of 350 bar is not safe and still needs many intensive studies dedic ated for tank's manufacturing. Liquid hydrogen faces also severe practical difficulties due to its very low density, leading to larger fuel tanks three times larger than traditional gasoline tank. Moreover, converting hydrogen gas into liquid phase is not an economic process since it consumes high energy needed to cool down the gas temperature to -252.8 °C. One practical solution is storing hydrogen gas in metal lattice such as Mg powder and its nanocomposites in the form of MgH 2 . There are two major issues should be solved first. One related to MgH 2 in which its inherent poor hydrogenation/dehydrogenation kinetics and high thermal stability must be improved. Secondly, related to providing a safe tank. Here we have succeeded to prepare a new binary system of MgH 2 /5 wt. % TiMn 2 nanocomposite powder that show excellent hydrogenation/dehydrogenation behavior at relatively low temperature (250 °C) with long cycle-life-time (1400 h). Moreover, a simple hydrogen storage tank filled with our synthetic nanocomposite powders was designed and tested in electrical charging a battery of a cell phone device at 180 °C through a commercial fuel cell.
Improved Visualization of Hydroacoustic Plumes Using the Split-Beam Aperture Coherence.
Blomberg, Ann E A; Weber, Thomas C; Austeng, Andreas
2018-06-25
Natural seepage of methane into the oceans is considerable, and plays a role in the global carbon cycle. Estimating the amount of this greenhouse gas entering the water column is important in order to understand their environmental impact. In addition, leakage from man-made structures such as gas pipelines may have environmental and economical consequences and should be promptly detected. Split beam echo sounders (SBES) detect hydroacoustic plumes due to the significant contrast in acoustic impedance between water and free gas. SBES are also powerful tools for plume characterization, with the ability to provide absolute acoustic measurements, estimate bubble trajectories, and capture the frequency dependent response of bubbles. However, under challenging conditions such as deep water and considerable background noise, it can be difficult to detect the presence of gas seepage from the acoustic imagery alone. The spatial coherence of the wavefield measured across the split beam sectors, quantified by the coherence factor (CF), is a computationally simple, easily available quantity which complements the acoustic imagery and may ease the ability to automatically or visually detect bubbles in the water column. We demonstrate the benefits of CF processing using SBES data from the Hudson Canyon, acquired using the Simrad EK80 SBES. We observe that hydroacoustic plumes appear more clearly defined and are easier to detect in the CF imagery than in the acoustic backscatter images.
Hybrid solar central receiver for combined cycle power plant
Bharathan, D.; Bohn, M.S.; Williams, T.A.
1995-05-23
A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.
New pressure control method of mixed gas in a combined cycle power plant of a steel mill
NASA Astrophysics Data System (ADS)
Xie, Yudong; Wang, Yong
2017-08-01
The enterprise production concept is changing with the development of society. A steel mill requires a combined-cycle power plant, which consists of both a gas turbine and steam turbine. It can recycle energy from the gases that are emitted from coke ovens and blast furnaces during steel production. This plant can decrease the overall energy consumption of the steel mill and reduce pollution to our living environment. To develop a combined-cycle power plant, the pressure in the mixed-gas transmission system must be controlled in the range of 2.30-2.40 MPa. The particularity of the combined-cycle power plant poses a challenge to conventional controllers. In this paper, a composite control method based on the Smith predictor and cascade control was proposed for the pressure control of the mixed gases. This method has a concise structure and can be easily implemented in actual industrial fields. The experiment has been conducted to validate the proposed control method. The experiment illustrates that the proposed method can suppress various disturbances in the gas transmission control system and sustain the pressure of the gas at the desired level, which helps to avoid abnormal shutdowns in the combined-cycle power plant.
Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott
2007-09-01
The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/ LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG.
NASA Astrophysics Data System (ADS)
Petukhov, A. N.
2010-10-01
The problems related to the determination of the life of the structural materials applied for important parts in gas-turbine engines and power plants from the results of high-cycle fatigue tests are discussed. Methods for increasing the reliability of the high-cycle fatigue characteristics and the factors affecting the operational reliability are considered.
Toxics and combustibles: Designing gas-detection systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, L.P.; Pryor, D.A.
1998-07-01
When a plant decides to install a gas-detection system, several questions come to mind: How many detectors are needed and where should they go? Simple questions--but unfortunately ones without a simple answer. However, there are some general considerations that plant personnel can use to rough out a gas-monitoring installation. Any evaluation process should include the following five steps. Each is discussed: (1) Understand the application; (2) Identify potential danger points; (3) Establish design goals; (4) Determine gas characteristics; and (5) Profile the plant and potential release scenarios.
Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application
NASA Astrophysics Data System (ADS)
Bae, Seong Jun; Ahn, Yoonhan; Lee, Jekyoung; Lee, Jeong Ik
2014-12-01
Various supercritical carbon dioxide (S-CO2) cycles for a power conversion system of a Molten Carbonate Fuel Cell (MCFC) hybrid system are studied in this paper. Re-Compressing Brayton (RCB) cycle, Simple Recuperated Brayton (SRB) cycle and Simple Recuperated Transcritical (SRT) cycle layouts were selected as candidates for this study. In addition, a novel concept of S-CO2 cycle which combines Brayton cycle and Rankine cycle is proposed and intensively studied with other S-CO2 layouts. A parametric study is performed to optimize the total system to be compact and to achieve wider operating range. Performances of each S-CO2 cycle are compared in terms of the thermal efficiency, net electricity of the MCFC hybrid system and approximate total volumes of each S-CO2 cycle. As a result, performance and total physical size of S-CO2 cycle can be better understood for MCFC S-CO2 hybrid system and especially, newly suggested S-CO2 cycle shows some success.
The Construction of a Simple Pyrolysis Gas Chromatograph.
ERIC Educational Resources Information Center
Hedrick, Jack L.
1982-01-01
Describes a simple and inexpensive pyrolysis gas chromatography (PGC) system constructed from items available in undergraduate institutions. The system is limited, accepting only liquid samples and pyrolyzing "on the fly" rather than statically and not allowing for reductive pyrolysis. Applications, experiments, and typical results are included.…
NASA Astrophysics Data System (ADS)
Shieh, Lih-Yir; Kan, Hung-Chih
2014-04-01
We demonstrate that plotting the P-V diagram of an ideal gas Carnot cycle on a logarithmic scale results in a more intuitive approach for deriving the final form of the efficiency equation. The same approach also facilitates the derivation of the efficiency of other thermodynamic engines that employ adiabatic ideal gas processes, such as the Brayton cycle, the Otto cycle, and the Diesel engine. We finally demonstrate that logarithmic plots of isothermal and adiabatic processes help with visualization in approximating an arbitrary process in terms of an infinite number of Carnot cycles.
Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong
2015-01-01
In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two–phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid–liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability. PMID:26462437
Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung
2015-10-14
In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.
Tomlinson, Leroy Omar; Smith, Raub Warfield
2002-01-01
In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.
Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott
2011-10-01
Increasing concerns about greenhouse gas (GHG) emissions in the United States have spurred interest in alternate low carbon fuel sources, such as natural gas. Life cycle assessment (LCA) methods can be used to estimate potential emissions reductions through the use of such fuels. Some recent policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S., without, however, acknowledging and addressing the uncertainty and variability prevalent in LCA. Natural gas is a particularly interesting fuel since it can be used to meet various energy demands, for example, as a transportation fuel or in power generation. Estimating the magnitudes and likelihoods of achieving emissions reductions from competing end-uses of natural gas using LCA offers one way to examine optimal strategies of natural gas resource allocation, given that its availability is likely to be limited in the future. In this study, the uncertainty in life cycle GHG emissions of natural gas (domestic and imported) consumed in the U.S. was estimated using probabilistic modeling methods. Monte Carlo simulations are performed to obtain sample distributions representing life cycle GHG emissions from the use of 1 MJ of domestic natural gas and imported LNG. Life cycle GHG emissions per energy unit of average natural gas consumed in the U.S were found to range between -8 and 9% of the mean value of 66 g CO(2)e/MJ. The probabilities of achieving emissions reductions by using natural gas for transportation and power generation, as a substitute for incumbent fuels such as gasoline, diesel, and coal were estimated. The use of natural gas for power generation instead of coal was found to have the highest and most likely emissions reductions (almost a 100% probability of achieving reductions of 60 g CO(2)e/MJ of natural gas used), while there is a 10-35% probability of the emissions from natural gas being higher than the incumbent if it were used as a transportation fuel. This likelihood of an increase in GHG emissions is indicative of the potential failure of a climate policy targeting reductions in GHG emissions.
Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.
Chevallier, Maguelonne; Krauth, Werner
2007-11-01
We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.
NASA Astrophysics Data System (ADS)
Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei
2017-08-01
Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery preventing financial, economic and resource loss that previously occurred.
Richard D. Bergman; James Salazar; Scott Bowe
2012-01-01
Static life cycle assessment does not fully describe the carbon footprint of construction wood because of carbon changes in the forest and product pools over time. This study developed a dynamic greenhouse gas (GHG) inventory approach using US Forest Service and life-cycle data to estimate GHG emissions on construction wood for two different end-of-life scenarios....
NASA Astrophysics Data System (ADS)
Borovkov, V. M.; Osmanova, N. M.
2011-01-01
The effect gained from afterburning of fuel in the gas conduit upstream of the heat-recovery boiler used as part of a PGU-450T combined-cycle plant is considered. The results obtained from calculations of the electric and thermal power outputs produced by the combined-cycle plant equipped with an afterburning chamber are presented.
System and method for regulating EGR cooling using a Rankine cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Timothy C.; Morris, Dave
This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.
System and method for regulating EGR cooling using a rankine cycle
Ernst, Timothy C.; Morris, Dave
2015-12-22
This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.
High-reliability gas-turbine combined-cycle development program: Phase II. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hecht, K.G.; Sanderson, R.A.; Smith, M.J.
This three-volume report presents the results of Phase II of the multiphase EPRI-sponsored High-Reliability Gas Turbine Combined-Cycle Development Program whose goal is to achieve a highly reliable gas turbine combined-cycle power plant, available by the mid-1980s, which would be an economically attractive baseload generation alternative for the electric utility industry. The Phase II program objective was to prepare the preliminary design of this power plant. This volume presents information of the reliability, availability, and maintainability (RAM) analysis of a representative plant and the preliminary design of the gas turbine, the gas turbine ancillaries, and the balance of plant including themore » steam turbine generator. To achieve the program goals, a gas turbine was incorporated which combined proven reliability characteristics with improved performance features. This gas turbine, designated the V84.3, is the result of a cooperative effort between Kraftwerk Union AG and United Technologies Corporation. Gas turbines of similar design operating in Europe under baseload conditions have demonstrated mean time between failures in excess of 40,000 hours. The reliability characteristics of the gas turbine ancillaries and balance-of-plant equipment were improved through system simplification and component redundancy and by selection of component with inherent high reliability. A digital control system was included with logic, communications, sensor redundancy, and mandual backup. An independent condition monitoring and diagnostic system was also included. Program results provide the preliminary design of a gas turbine combined-cycle baseload power plant. This power plant has a predicted mean time between failure of nearly twice the 3000-hour EPRI goal. The cost of added reliability features is offset by improved performance, which results in a comparable specific cost and an 8% lower cost of electricity compared to present market offerings.« less
Jet engine performance enhancement through use of a wave-rotor topping cycle
NASA Technical Reports Server (NTRS)
Wilson, Jack; Paxson, Daniel E.
1993-01-01
A simple model is used to calculate the thermal efficiency and specific power of simple jet engines and jet engines with a wave-rotor topping cycle. The performance of the wave rotor is based on measurements from a previous experiment. Applied to the case of an aircraft flying at Mach 0.8, the calculations show that an engine with a wave rotor topping cycle may have gains in thermal efficiency of approximately 1 to 2 percent and gains in specific power of approximately 10 to 16 percent over a simple jet engine with the same overall compression ratio. Even greater gains are possible if the wave rotor's performance can be improved.
Low Carbon Technology Options for the Natural Gas ...
The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the research will be focused on the preliminary analyses of hydrogen fuel based power production technologies utilizing hydrogen fuel in a large size, heavy-duty gas turbines in integrated reformer combined cycle (IRCC) and integrated gasification combined cycle (IGCC) for electric power generation. The research will be expanded step-by-step to include other advanced (e.g., Net Power, a potentially transformative technology utilizing a high efficiency CO2 conversion cycle (Allam cycle), and chemical looping etc.) pre-combustion and post-combustion technologies applied to natural gas, other fossil fuels (coal and heavy oil) and biomass/biofuel based on findings. Screening analysis is already under development and data for the analysis is being processed. The immediate action on this task include preliminary economic and environmental analysis of power production technologies applied to natural gas. Data for catalytic reforming technology to produce hydrogen from natural gas is being collected and compiled on Microsoft Excel. The model will be expanded for exploring and comparing various technologies scenarios to meet our goal. The primary focus of this study is to: 1) understand the chemic
Hu, Ming-Ming; Emamipour, Hamidreza; Johnsen, David L; Rood, Mark J; Song, Linhua; Zhang, Zailong
2017-07-05
Adsorption systems typically need gas and temperature sensors to monitor their adsorption/regeneration cycles to separate gases from gas streams. Activated carbon fiber cloth (ACFC)-electrothermal swing adsorption (ESA) is an adsorption system that has the potential to be controlled with the electrical properties of the adsorbent and is studied here to monitor and control the adsorption/regeneration cycles without the use of gas and temperature sensors and to predict breakthrough before it occurs. The ACFC's electrical resistance was characterized on the basis of the amount of adsorbed organic gas/vapor and the adsorbent temperature. These relationships were then used to develop control logic to monitor and control ESA cycles on the basis of measured resistance and applied power values. Continuous sets of adsorption and regeneration cycles were performed sequentially entirely on the basis of remote electrical measurements and achieved ≥95% capture efficiency at inlet concentrations of 2000 and 4000 ppm v for isobutane, acetone, and toluene in dry and elevated relative humidity gas streams, demonstrating a novel cyclic ESA system that does not require gas or temperature sensors. This contribution is important because it reduces the cost and simplifies the system, predicts breakthrough before its occurrence, and reduces emissions to the atmosphere.
Silica-Silver Nanocomposites as Regenerable Sorbents for Hg0 Removal from Flue Gases.
Cao, Tiantian; Li, Zhen; Xiong, Yong; Yang, Yue; Xu, Shengming; Bisson, Teresa; Gupta, Rajender; Xu, Zhenghe
2017-10-17
Silica-silver nanocomposites (Ag-SBA-15) are a novel class of multifunctional materials with potential applications as sorbents, catalysts, sensors, and disinfectants. In this work, an innovative yet simple and robust method of depositing silver nanoparticles on a mesoporous silica (SBA-15) was developed. The synthesized Ag-SBA-15 was found to achieve a complete capture of Hg 0 at temperatures up to 200 °C. Silver nanoparticles on the SBA-15 were shown to be the critical active sites for the capture of Hg 0 by the Ag-Hg 0 amalgamation mechanism. An Hg 0 capture capacity as high as 13.2 mg·g -1 was achieved by Ag(10)-SBA-15, which is much higher than that achievable by existing Ag-based sorbents and comparable with that achieved by commercial activated carbon. Even after exposure to more complex simulated flue gas flow for 1 h, the Ag(10)-SBA-15 could still achieve an Hg 0 removal efficiency as high as 91.6% with a Hg 0 capture capacity of 457.3 μg·g -1 . More importantly, the spent sorbent could be effectively regenerated and reused without noticeable performance degradation over five cycles. The excellent Hg 0 removal efficiency combined with a simple synthesis procedure, strong tolerance to complex flue gas environment, great thermal stability, and outstanding regeneration capability make the Ag-SBA-15 a promising sorbent for practical applications to Hg 0 capture from coal-fired flue gases.
NASA Astrophysics Data System (ADS)
Rogelj, J.; McCollum, D. L.; Reisinger, A.; Knutti, R.; Riahi, K.; Meinshausen, M.
2013-12-01
The field of integrated assessment draws from a large body of knowledge across a range of disciplines to gain robust insights about possible interactions, trade-offs, and synergies. Integrated assessment of climate change, for example, uses knowledge from the fields of energy system science, economics, geophysics, demography, climate change impacts, and many others. Each of these fields comes with its associated caveats and uncertainties, which should be taken into account when assessing any results. The geophysical system and its associated uncertainties are often represented by models of reduced complexity in integrated assessment modelling frameworks. Such models include simple representations of the carbon-cycle and climate system, and are often based on the global energy balance equation. A prominent example of such model is the 'Model for the Assessment of Greenhouse Gas Induced Climate Change', MAGICC. Here we show how a model like MAGICC can be used for the representation of geophysical uncertainties. Its strengths, weaknesses, and limitations are discussed and illustrated by means of an analysis which attempts to integrate socio-economic and geophysical uncertainties. These uncertainties in the geophysical response of the Earth system to greenhouse gases remains key for estimating the cost of greenhouse gas emission mitigation scenarios. We look at uncertainties in four dimensions: geophysical, technological, social and political. Our results indicate that while geophysical uncertainties are an important factor influencing projections of mitigation costs, political choices that delay mitigation by one or two decades a much more pronounced effect.
NASA Astrophysics Data System (ADS)
Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Chen, Ying
2015-06-01
Modern health management approaches for gas turbine engines (GTEs) aim to precisely estimate the health state of the GTE components to optimize maintenance decisions with respect to both economy and safety. In this research, we propose an advanced framework to identify the most likely degradation state of the turbine section in a GTE for prognostics and health management (PHM) applications. A novel nonlinear thermodynamic model is used to predict the performance parameters of the GTE given the measurements. The ratio between real efficiency of the GTE and simulated efficiency in the newly installed condition is defined as the health indicator and provided at each sequence. The symptom of nonrecoverable degradations in the turbine section, i.e. loss of turbine efficiency, is assumed to be the internal degradation state. A regularized auxiliary particle filter (RAPF) is developed to sequentially estimate the internal degradation state in nonuniform time sequences upon receiving sets of new measurements. The effectiveness of the technique is examined using the operating data over an entire time-between-overhaul cycle of a simple-cycle industrial GTE. The results clearly show the trend of degradation in the turbine section and the occasional fluctuations, which are well supported by the service history of the GTE. The research also suggests the efficacy of the proposed technique to monitor the health state of the turbine section of a GTE by implementing model-based PHM without the need for additional instrumentation.
Cyclic stability testing of aminated-silica solid sorbent for post-combustion CO2 capture.
Fisher, James C; Gray, McMahan
2015-02-01
The National Energy Technology Laboratory (NETL) is examining the use of solid sorbents for CO2 removal from coal-fired power plant flue gas streams. An aminated sorbent (previously reported by the NETL) is tested for stability by cyclic exposure to simulated flue gas and subsequent regeneration for 100 cycles. Each cycle was quantified using a traced gas in the simulated flue gas monitored by a mass spectrometer, which allowed for rapid determination of the capacity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Fastrac Engine Gas Generator Component Test Program and Results
NASA Technical Reports Server (NTRS)
Dennis, Henry J., Jr.; Sanders, T.
2000-01-01
Low cost access to space has been a long-time goal of the National Aeronautics and Space Administration (NASA). The Fastrac engine program was begun at NASA's Marshall Space Flight Center to develop a 60,000-pound (60K) thrust, liquid oxygen/hydrocarbon (LOX/RP), gas generator-cycle booster engine for a fraction of the cost of similar engines in existence. To achieve this goal, off-the-shelf components and readily available materials and processes would have to be used. This paper will present the Fastrac gas generator (GG) design and the component level hot-fire test program and results. The Fastrac GG is a simple, 4-piece design that uses well-defined materials and processes for fabrication. Thirty-seven component level hot-fire tests were conducted at MSFC's component test stand #116 (TS116) during 1997 and 1998. The GG was operated at all expected operating ranges of the Fastrac engine. Some minor design changes were required to successfully complete the test program as development issues arose during the testing. The test program data results and conclusions determined that the Fastrac GG design was well on the way to meeting the requirements of NASA's X-34 Pathfinder Program that chose the Fastrac engine as its main propulsion system.
Simulation of diurnal thermal energy storage systems: Preliminary results
NASA Astrophysics Data System (ADS)
Katipamula, S.; Somasundaram, S.; Williams, H. R.
1994-12-01
This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system; and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.
EXor OUTBURSTS FROM DISK AMPLIFICATION OF STELLAR MAGNETIC CYCLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armitage, Philip J., E-mail: pja@jilau1.colorado.edu
EXor outbursts—moderate-amplitude disk accretion events observed in Class I and Class II protostellar sources—have timescales and amplitudes that are consistent with the viscous accumulation and release of gas in the inner disk near the dead zone boundary. We suggest that outbursts are indirectly triggered by stellar dynamo cycles, via poloidal magnetic flux that diffuses radially outward through the disk. Interior to the dead zone the strength of the net field modulates the efficiency of angular momentum transport by the magnetorotational instability. In the dead zone changes in the polarity of the net field may lead to stronger outbursts because ofmore » the dominant role of the Hall effect in this region of the disk. At the level of simple estimates we show that changes to kG-strength stellar fields could stimulate disk outbursts on 0.1 au scales, though this optimistic conclusion depends upon the uncertain efficiency of net flux transport through the inner disk. The model predicts a close association between observational tracers of stellar magnetic activity and EXor events.« less
Life cycle greenhouse gas and energy assessment of winegrape production in California
USDA-ARS?s Scientific Manuscript database
Purpose: This study applies life cycle assessment (LCA) to assess greenhouse gas (GHG) emissions, energy use, and direct water use in winegrape production across common vineyard management scenarios in two representative growing regions of California, USA (Napa and Lodi). California hosts 90 percent...
Maisotsenko cycle applications for multistage compressors cooling
NASA Astrophysics Data System (ADS)
Levchenko, D.; Yurko, I.; Artyukhov, A.; Baga, V.
2017-08-01
The present study provides the overview of Maisotsenko Cycle (M-Cycle) applications for gas cooling in compressor systems. Various schemes of gas cooling systems are considered regarding to their thermal efficiency and cooling capacity. Preliminary calculation of M-cycle HMX has been conducted. It is found that M-cycle HMX scheme allows to brake the limit of the ambient wet bulb temperature for evaporative cooling. It has demonstrated that a compact integrated heat and moisture exchange process can cool product fluid to the level below the ambient wet bulb temperature, even to the level of dew point temperature of the incoming air with substantially lower water and energy consumption requirements.
Hybrid life-cycle assessment of natural gas based fuel chains for transportation.
Strømman, Anders Hammer; Solli, Christian; Hertwich, Edgar G
2006-04-15
This research compares the use of natural gas, methanol, and hydrogen as transportation fuels. These three fuel chains start with the extraction and processing of natural gas in the Norwegian North Sea and end with final use in Central Europe. The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. The life cycle assessment is performed by combining a process based life-cycle inventory with economic input-output data. The analysis shows that the potential climate impacts are lowest for the hydrogen fuel scenario with CO2 deposition. The hydrogen fuel chain scenario has no significant environmental disadvantage compared to the other fuel chains. Detailed analysis shows that the construction of the car contributes significantly to most impact categories. Finally, it is shown how the application of a hybrid inventory model ensures a more complete inventory description compared to standard process-based life-cycle assessment. This is particularly significant for car construction which would have been significantly underestimated in this study using standard process life-cycle assessment alone.
Lundholm, Gunnar
1983-01-01
In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.
NASA Technical Reports Server (NTRS)
Stochl, R. J.
1979-01-01
The results of an analysis to estimate the performance that could be obtained by using a chemically reacting gas (nitrogen tetroxide) as the working fluid in a closed Brayton cycle are presented. Compared with data for helium as the working fluid, these results indicate efficiency improvements from 4 to 90 percent, depending on turbine inlet temperature, pressures, and gas residence time in heat transfer equipment.
Nitrogen expander cycles for large capacity liquefaction of natural gas
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung
2014-01-01
Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.
Branched GAX cycle gas fired heat pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, D.C.; Anand, G.; Papar, R.A.
1996-12-31
GAX absorption heat pump cycles are characterized by the Generator Absorber Heat eXchange (GAX) between the high temperature end of the absorber and the low temperature end of the generator. The improved thermodynamic performance of the basic GAX cycle coupled with its mechanical simplicity has attracted substantial interest in using this cycle for gas-cooling. However, to be competitive in a cooling dominated market, the cycle has to achieve high cooling performance and also low installed cost. The Branched GAX (BGAX) cycle promises higher cooling performance using similar components as the basic GAX cycle and an additional solution pump. By increasingmore » the solution flow rate at the hot end of the absorber, the BGAX cycle makes more complete use of the temperature overlap. As a result, less external heat is supplied and higher COPs are obtained. A breadboard prototype of the BGAX cycle has been developed and is now operating. A novel thermosyphon cooled absorber eliminates the need for the outdoor hydronic loop, and reduces cost by 10%. Other component improvements yield another 10% cost reduction. The breadboard prototype has operated for more than 200 hours. Gas cooling COP = 0.87 has been consistently achieved at 30.6 C (87 F) ambient conditions. At the 35 C (95 F) ambient capacity rating condition, a cooling load of 4.5 refrigeration tons was achieved at a cycle COP = 0.95.« less
Belussi, Lorenzo; Barozzi, Benedetta
2015-12-01
The global environmental impact of urban areas has greatly increased over the years, due to the growth of urbanisation and the associated increase in management costs. There are several measures aimed at mitigating this impact that affect in different ways the environmental, economic and societal spheres. This article has analysed a selection of different mitigation measures, related to the built environment, according to the life cycle approach, aimed at identifying the procedural features chosen by the different authors and defining a common way to deal with this issue. In particular, all the individual single steps of a Life Cycle Assessment/Life Cycle Costing of the different studies are analysed and the results of the individual measures are highlighted. The analysis has shown how the scientific literature is mainly focused on the evaluation of the impact of technological solutions related to individual buildings (cool/green roof). Less interest is shown in the solutions for urban areas, while, as far as the impact on greenhouse gas emissions is concerned, some studies are shifting the target to a global scale. Due to the accuracy whereby the calculation of the impact indicators deals with and structures the life cycle methods, opportunities to compare studies developed by different authors are quite rare and hard to find. Hence the need to find a simple, intuitive and flexible scheme to combine some of the most useful results of the bibliographical studies, in a comparative outline of different technological solutions, which can support the decision-making phase through a rough assessment.
Fabrication of a novel carbon nanotube & graphene based device for gas detection
NASA Astrophysics Data System (ADS)
Khosravi, Yusef; Abdi, Yaser; Arzi, Ezatollah
2018-06-01
We present a novel, simple method for gas detection using a nano-device fabricated on a silicon substrate. The proposed method is based on changing the density of state (DOS) of a graphene sheet during the gas absorption. Fabrication of the carbon nanotube (CNT) and graphene based device for gas detection includes silicon micro machining and the growth of vertically aligned CNTs. Field emission between the as-grown CNTs and the graphene sheet which is placed on top of the CNTs is measured at a liquid nitrogen temperature to obtain the DOS of the structure in different gas environments. The measured local DOS of the structure using the fabricated device showed that each gas had its own signatory spectrum. We believe that this method will open up a new and simple way of fabricating a portable gas spectroscope.
Land-Energy Nexus: Life Cycle Land Use of Natural Gas-Fired Electricity
NASA Astrophysics Data System (ADS)
Heath, G.; Jordaan, S.; Macknick, J.; Mohammadi, E.; Ben-Horin, D.; Urrea, V.
2014-12-01
Comparisons of the land required for different types of energy are challenging due to the fact that upstream land use of fossil fuel technologies is not well characterized. This research focuses on improving estimates of the life cycle land use of natural gas-fired electricity through the novel combination of inventories of the location of natural gas-related infrastructure, satellite imagery analysis and gas production data. Land area per unit generation is calculated as the sum of natural gas life cycle stages divided by the throughput of natural gas, combined with the land use of the power plant divided by the generation of the power plant. Five natural gas life cycle stages are evaluated for their area: production, gathering, processing, transmission and disposal. The power plant stage is characterized by a thermal efficiency ηth, which converts MegaJoules (MJ) to kilowatt hours (kWh). We focus on seven counties in the Barnett shale region in Texas that represent over 90% of total Barnett Shale gas production. In addition to assessing the gathering and transmission pipeline network, approximately 500 sites are evaluated from the five life cycle stages plus power plants. For instance, assuming a 50 foot right-of-way for transmission pipelines, this part of the Barnett pipeline network occupies nearly 26,000 acres. Site, road and water components to total area are categorized. Methods are developed to scale up sampled results for each component type to the full population of sites within the Barnett. Uncertainty and variability are charaterized. Well-level production data are examined by integrating commercial datasets with advanced methods for quantifying estimated ultimate recovery (EUR) for wells, then summed to estimate natural gas produced in an entire play. Wells that are spatially coincident are merged using ArcGIS. All other sites are normalized by an estimate of gas throughput. Prior land use estimates are used to validate the satellite imagery analysis. Results of this research will provide a step towards better quantifying the land footprint of energy production activities and a methodologically consistent baseline from which more robust comparisons with alternative energy choices can be made.
Simple model of a photoacoustic system as a CR circuit
NASA Astrophysics Data System (ADS)
Fukuhara, Akiko; Kaneko, Fumitoshi; Ogawa, Naohisa
2012-05-01
We introduce the photoacoustic educational system (PAES), by which we can identify which gas causes the greenhouse effect in a classroom (Kaneko et al 2010 J. Chem. Educ. 87 202-4). PAES is an experimental system in which a pulse of infrared (IR) is absorbed into gas as internal energy, an oscillation of pressure (sound) appears, and then we can measure the absorptance of IR by the strength of sound. In this paper, we construct a simple mathematical model for PAES which is equivalent to the CR circuit. The energy absorption of an IR pulse into gas corresponds to the charge of a condenser and the heat diffusion to the outside corresponds to the energy dissipation by electric resistance. We analyse the experimental results by using this simple model, and check its validity. Although the model is simple, it explains phenomena occurring in PAES and can be a good educational resource.
Integrated gasification combined cycle (IGCC), which uses a gasilier to convert coal to fuel gas, and then uses a combined cycle power block to generate electricity. is one of the most promising technologies for generating electricity from coal in an environmentally sustainabl...
High-reliability gas-turbine combined-cycle development program: Phase II, Volume 3. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hecht, K.G.; Sanderson, R.A.; Smith, M.J.
This three-volume report presents the results of Phase II of the multiphase EPRI-sponsored High-Reliability Gas Turbine Combined-Cycle Development Program whose goal is to achieve a highly reliable gas turbine combined-cycle power plant, available by the mid-1980s, which would be an economically attractive baseload generation alternative for the electric utility industry. The Phase II program objective was to prepare the preliminary design of this power plant. The power plant was addressed in three areas: (1) the gas turbine, (2) the gas turbine ancillaries, and (3) the balance of plant including the steam turbine generator. To achieve the program goals, a gasmore » turbine was incorporated which combined proven reliability characteristics with improved performance features. This gas turbine, designated the V84.3, is the result of a cooperative effort between Kraftwerk Union AG and United Technologies Corporation. Gas turbines of similar design operating in Europe under baseload conditions have demonstrated mean time between failures in excess of 40,000. The reliability characteristics of the gas turbine ancillaries and balance-of-plant equipment were improved through system simplification and component redundancy and by selection of component with inherent high reliability. A digital control system was included with logic, communications, sensor redundancy, and manual backup. An independent condition monitoring and diagnostic system was also included. Program results provide the preliminary design of a gas turbine combined-cycle baseload power plant. This power plant has a predicted mean time between failure of nearly twice the 3000-h EPRI goal. The cost of added reliability features is offset by improved performance, which results in a comparable specific cost and an 8% lower cost of electricty compared to present market offerings.« less
Foam rheology at large deformation
NASA Astrophysics Data System (ADS)
Géminard, J.-C.; Pastenes, J. C.; Melo, F.
2018-04-01
Large deformations are prone to cause irreversible changes in materials structure, generally leading to either material hardening or softening. Aqueous foam is a metastable disordered structure of densely packed gas bubbles. We report on the mechanical response of a foam layer subjected to quasistatic periodic shear at large amplitude. We observe that, upon increasing shear, the shear stress follows a universal curve that is nearly exponential and tends to an asymptotic stress value interpreted as the critical yield stress at which the foam structure is completely remodeled. Relevant trends of the foam mechanical response to cycling are mathematically reproduced through a simple law accounting for the amount of plastic deformation upon increasing stress. This view provides a natural interpretation to stress hardening in foams, demonstrating that plastic effects are present in this material even for minute deformation.
Metal-polymer nanocomposites for stretchable optics and plasmonics
NASA Astrophysics Data System (ADS)
Potenza, Marco A. C.; Minnai, Chloé; Milani, Paolo
2016-12-01
Stretchable and conformable optical devices open very exciting perspectives for the fabrication of systems incorporating diffracting and optical power in a single element and of tunable plasmonic filters and absorbers. The use of nanocomposites obtained by inserting metallic nanoparticles produced in the gas phase into polymeric matrices allows to effectively fabricate cheap and simple stretchable optical elements able to withstand thousands of deformations and stretching cycles without any degradation of their optical properties. The nanocomposite-based reflective optical devices show excellent performances and stability compared to similar devices fabricated with standard techniques. The nanocomposite-based devices can be therefore applied to arbitrary curved non-optical grade surfaces in order to achieve optical power and to minimize aberrations like astigmatism. Examples discussed here include stretchable reflecting gratings, plasmonic filters tunable by mechanical stretching and light absorbers.
Advancement of Double Effect Absorption Cycle by Input of Low Temperature Waste Heat
NASA Astrophysics Data System (ADS)
Kojima, Hiroshi; Edera, Masaru; Nakamura, Makoto; Oka, Masahiro; Akisawa, Atsushi; Kashiwagi, Takao
Energy conservation is becoming important for global environmental protection. New simple techniques of more efficient1y using the waste heat of gas co-generation systems for refrigerationare required. In first report, a new method of using the low temperature waste heat for refrigeration was proposed, and the basic characteristics of the promising methods of recovering waste heat were c1arified. In this report, the more detailed simulation model of the series flow type double effect absorption refrigerator with auxiliary heat exchanger was constructed and the static characteristics were investigated. Then experiments on this advanced absorption refrigerator were carried out, and the results of the calculation and experiments were compared and discussed. Moreover, the betterment of the simulation model of this advanced absorption refrigerator was carried out.
NASA Technical Reports Server (NTRS)
Dykas, Brian; Bruckner, Robert; DellaCorte, Christopher; Edmonds, Brian; Prahl, Joseph
2008-01-01
A methodology for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs is presented. Features drawn from a review of the open literature are discussed as they relate to bearing performance. The design of fixtures and tooling required to fabricate foil thrust bearings is presented, using conventional machining processes where possible. A prototype bearing with dimensions drawn from the literature is constructed, with all fabrication steps described. A load-deflection curve for the bearing is presented to illustrate structural stiffness characteristics. Start-top cycles are performed on the bearing at a temperature of 425 C to demonstrate early-life wear patterns. A test of bearing load capacity demonstrates useful performance when compared with data obtained from the open literature.
Producing the Ethylene Signal: Regulation and Diversification of Ethylene Biosynthetic Enzymes1
Booker, Matthew A.; DeLong, Alison
2015-01-01
Strictly controlled production of ethylene gas lies upstream of the signaling activities of this crucial regulator throughout the plant life cycle. Although the biosynthetic pathway is enzymatically simple, the regulatory circuits that modulate signal production are fine tuned to allow integration of responses to environmental and intrinsic cues. Recently identified posttranslational mechanisms that control ethylene production converge on one family of biosynthetic enzymes and overlay several independent reversible phosphorylation events and distinct mediators of ubiquitin-dependent protein degradation. Although the core pathway is conserved throughout seed plants, these posttranslational regulatory mechanisms may represent evolutionarily recent innovations. The evolutionary origins of the pathway and its regulators are not yet clear; outside the seed plants, numerous biochemical and phylogenetic questions remain to be addressed. PMID:26134162
Zhu, Yunhua; Frey, H Christopher
2006-12-01
Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed.
NASA Astrophysics Data System (ADS)
Kler, A. M.; Zakharov, Yu. B.; Potanina, Yu. M.
2017-05-01
The objects of study are the gas turbine (GT) plant and combined cycle power plant (CCPP) with opportunity for injection between the stages of air compressor. The objective of this paper is technical and economy optimization calculations for these classes of plants with water interstage injection. The integrated development environment "System of machine building program" was a tool for creating the mathematic models for these classes of power plants. Optimization calculations with the criterion of minimum for specific capital investment as a function of the unit efficiency have been carried out. For a gas-turbine plant, the economic gain from water injection exists for entire range of power efficiency. For the combined cycle plant, the economic benefit was observed only for a certain range of plant's power efficiency.
Closed cycle high-repetition-rate pulsed HF laser
NASA Astrophysics Data System (ADS)
Harris, Michael R.; Morris, A. V.; Gorton, Eric K.
1997-04-01
The design and performance of a closed cycle high repetition rate HF laser is described. A short pulse, glow discharge is formed in a 10 SF6:1 H2 gas mixture at a total pressure of approximately 110 torr within a 15 by 0.5 by 0.5 cm3 volume. Transverse, recirculated gas flow adequate to enable repetitive operation up to 3 kHz is imposed by a centrifugal fan. The fan also forces the gas through a scrubber cell to eliminate ground state HF from the gas stream. An automated gas make-up system replenishes spent gas removed by the scrubber. Typical mean laser output powers up to 3 W can be maintained for extended periods of operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liese, Eric; Zitney, Stephen E.
A generic training simulator of a natural gas combined cycle was modified to match operations at a real plant. The objective was to use the simulator to analyze cycling operations of the plant. Initial operation of the simulator revealed the potential for saturation conditions in the final high pressure superheater as the attemperator tried to control temperature at the superheater outlet during gas turbine loading and unloading. Subsequent plant operational data confirmed simulation results. Multiple simulations were performed during loading and unloading of the gas turbine to determine operational strategies that prevented saturation and increased the approach to saturation temperature.more » The solutions included changes to the attemperator temperature control setpoints and strategic control of the steam turbine inlet pressure control valve.« less
Emissions from U.S. waste collection vehicles.
Maimoun, Mousa A; Reinhart, Debra R; Gammoh, Fatina T; McCauley Bush, Pamela
2013-05-01
This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6-10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving. Published by Elsevier Ltd.
Prospective gas turbine and combined-cycle units for power engineering (a Review)
NASA Astrophysics Data System (ADS)
Ol'khovskii, G. G.
2013-02-01
The modern state of technology for making gas turbines around the world and heat-recovery combined-cycle units constructed on their basis are considered. The progress achieved in this field by Siemens, Mitsubishi, General Electric, and Alstom is analyzed, and the objectives these companies set forth for themselves for the near and more distant future are discussed. The 375-MW gas turbine unit with an efficiency of 40% produced by Siemens, which is presently the largest one, is subjected to a detailed analysis. The main specific features of this turbine are that the gas turbine unit's hot-path components have purely air cooling, due to which the installation has enhanced maneuverability. The single-shaft combined-cycle plant constructed on the basis of this turbine has a capacity of 570 MW and efficiency higher than 60%. Programs adopted by different companies for development of new-generation gas turbine units firing synthesis gas and fitted with low-emission combustion chambers and new cooling systems are considered. Concepts of rotor blades for new gas turbine units with improved thermal barrier coatings and composite blades different parts of which are made of materials selected in accordance with the conditions of their operation are discussed.
Interrelations between random walks on diagrams (graphs) with and without cycles.
Hill, T L
1988-05-01
Three topics are discussed. A discrete-state, continuous-time random walk with one or more absorption states can be studied by a presumably new method: some mean properties, including the mean time to absorption, can be found from a modified diagram (graph) in which each absorption state is replaced by a one-way cycle back to the starting state. The second problem is a random walk on a diagram (graph) with cycles. The walk terminates on completion of the first cycle. This walk can be replaced by an equivalent walk on a modified diagram with absorption. This absorption diagram can in turn be replaced by another modified diagram with one-way cycles back to the starting state, just as in the first problem. The third problem, important in biophysics, relates to a long-time continuous walk on a diagram with cycles. This diagram can be transformed (in two steps) to a modified, more-detailed, diagram with one-way cycles only. Thus, the one-way cycle fluxes of the original diagram can be found from the state probabilities of the modified diagram. These probabilities can themselves be obtained by simple matrix inversion (the probabilities are determined by linear algebraic steady-state equations). Thus, a simple method is now available to find one-way cycle fluxes exactly (previously Monte Carlo simulation was required to find these fluxes, with attendant fluctuations, for diagrams of any complexity). An incidental benefit of the above procedure is that it provides a simple proof of the one-way cycle flux relation Jn +/- = IIn +/- sigma n/sigma, where n is any cycle of the original diagram.
Life cycle greenhouse gas emissions and freshwater consumption associated with Bakken tight oil
Laurenzi, Ian J.; Bergerson, Joule A.; Motazedi, Kavan
2016-01-01
In recent years, hydraulic fracturing and horizontal drilling have been applied to extract crude oil from tight reservoirs, including the Bakken formation. There is growing interest in understanding the greenhouse gas (GHG) emissions associated with the development of tight oil. We conducted a life cycle assessment of Bakken crude using data from operations throughout the supply chain, including drilling and completion, refining, and use of refined products. If associated gas is gathered throughout the Bakken well life cycle, then the well to wheel GHG emissions are estimated to be 89 g CO2eq/MJ (80% CI, 87–94) of Bakken-derived gasoline and 90 g CO2eq/MJ (80% CI, 88–94) of diesel. If associated gas is flared for the first 12 mo of production, then life cycle GHG emissions increase by 5% on average. Regardless of the level of flaring, the Bakken life cycle GHG emissions are comparable to those of other crudes refined in the United States because flaring GHG emissions are largely offset at the refinery due to the physical properties of this tight oil. We also assessed the life cycle freshwater consumptions of Bakken-derived gasoline and diesel to be 1.14 (80% CI, 0.67–2.15) and 1.22 barrel/barrel (80% CI, 0.71–2.29), respectively, 13% of which is associated with hydraulic fracturing. PMID:27849573
2007-02-01
gas turbine systems is the Brayton cycle that passes atmospheric air, the working fluid, through the turbine only once. The thermodynamic steps of the... Brayton cycle include compression of atmospheric air, introduction and ignition of fuel, and expansion of the heated combustion gases through the...the two heat recovery steam generators to generate steam. The gas turbine model is built by connecting the individual components of the Brayton
The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces
NASA Astrophysics Data System (ADS)
Vuik, C.; Saghir, A.; Boerstoel, G. P.
2000-08-01
Numerical modeling of the melting and combustion process is an important tool in gaining understanding of the physical and chemical phenomena that occur in a gas- or oil-fired glass-melting furnace. The incompressible Navier-Stokes equations are used to model the gas flow in the furnace. The discrete Navier-Stokes equations are solved by the SIMPLE(R) pressure-correction method. In these applications, many SIMPLE(R) iterations are necessary to obtain an accurate solution. In this paper, Krylov accelerated versions are proposed: GCR-SIMPLE(R). The properties of these methods are investigated for a simple two-dimensional flow. Thereafter, the efficiencies of the methods are compared for three-dimensional flows in industrial glass-melting furnaces. Copyright
25 CFR 152.5 - Issuance of patent in fee.
Code of Federal Regulations, 2010 CFR
2010-04-01
... simple status. (2) Where the entire interest in the oil and gas granted by the act is after June 30, 1954... Indian or Indians were the grantees of the entire interest in the oil and gas underlying a parcel of land... Secretary will convey, by patent, without application, therefor, unrestricted fee simple title to the oil...
ERIC Educational Resources Information Center
Vollmer, Michael; Mollmann, Klaus-Peter
2012-01-01
The recent introduction of inexpensive high-speed cameras offers a new experimental approach to many simple but fast-occurring events in physics. In this paper, the authors present two simple demonstration experiments recorded with high-speed cameras in the fields of gas dynamics and thermal physics. The experiments feature vapour pressure effects…
Voight; Sparks; Miller; Stewart; Hoblitt; Clarke; Ewart; Aspinall; Baptie; Calder; Cole; Druitt; Hartford; Herd; Jackson; Lejeune; Lockhart; Loughlin; Luckett; Lynch; Norton; Robertson; Watson; Watts; Young
1999-02-19
Dome growth at the Soufriere Hills volcano (1996 to 1998) was frequently accompanied by repetitive cycles of earthquakes, ground deformation, degassing, and explosive eruptions. The cycles reflected unsteady conduit flow of volatile-charged magma resulting from gas exsolution, rheological stiffening, and pressurization. The cycles, over hours to days, initiated when degassed stiff magma retarded flow in the upper conduit. Conduit pressure built with gas exsolution, causing shallow seismicity and edifice inflation. Magma and gas were then expelled and the edifice deflated. The repeat time-scale is controlled by magma ascent rates, degassing, and microlite crystallization kinetics. Cyclic behavior allows short-term forecasting of timing, and of eruption style related to explosivity potential.
NASA Astrophysics Data System (ADS)
Wang, Jianhui; Ma, Yongli; He, Jizhou
2015-07-01
Based on quantum thermodynamic processes, we make a quantum-mechanical (QM) extension of the typical heat engine cycles, such as the Carnot, Brayton, Otto, Diesel cycles, etc., with no introduction of the concept of temperature. When these QM engine cycles are implemented by an ideal gas confined in an arbitrary power-law trap, a relation between the quantum adiabatic exponent and trap exponent is found. The differences and similarities between the efficiency of a given QM engine cycle and its classical counterpart are revealed and discussed.
NASA Technical Reports Server (NTRS)
DeBonis, J. R.; Trefny, C. J.; Steffen, C. J., Jr.
1999-01-01
Design and analysis of the inlet for a rocket based combined cycle engine is discussed. Computational fluid dynamics was used in both the design and subsequent analysis. Reynolds averaged Navier-Stokes simulations were performed using both perfect gas and real gas assumptions. An inlet design that operates over the required Mach number range from 0 to 12 was produced. Performance data for cycle analysis was post processed using a stream thrust averaging technique. A detailed performance database for cycle analysis is presented. The effect ot vehicle forebody compression on air capture is also examined.
Closed-cycle gas dynamic laser design investigation
NASA Technical Reports Server (NTRS)
Ketch, G. W.; Young, W. E.
1977-01-01
A conceptual design study was made of a closed cycle gas-dynamic laser to provide definition of the major components in the laser loop. The system potential application is for long range power transmission by way of high power laser beams to provide satellite propulsion energy for orbit changing or station keeping. A parametric cycle optimization was conducted to establish the thermodynamic requirements for the system components. A conceptual design was conducted of the closed cycle system and the individual components to define physical characteristics and establish the system size and weight. Technology confirmation experimental demonstration programs were outlined to develop, evaluate, and demonstrate the technology base needed for this closed cycle GDL system.
Effect of Adding a Regenerator to Kornhauser's MIT "Two-Space" (Gas-Spring+Heat Exchanger) Test Rig
NASA Technical Reports Server (NTRS)
Ebiana, Asuquo B.; Gidugu, Praveen
2008-01-01
This study employed entropy-based second law post-processing analysis to characterize the various thermodynamic losses inside a 3-space solution domain (gas spring+heat exchanger+regenerator) operating under conditions of oscillating pressure and oscillating flow. The 3- space solution domain is adapted from the 2-space solution domain (gas spring+heat exchanger) in Kornhauser's MIT test rig by modifying the heat exchanger space to include a porous regenerator system. A thermal nonequilibrium model which assumes that the regenerator porous matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle is employed. An important and primary objective of this study is the development and application of a thermodynamic loss post-processor to characterize the major thermodynamic losses inside the 3-space model. It is anticipated that the experience gained from thermodynamic loss analysis of the simple 3-space model can be extrapolated to more complex systems like the Stirling engine. It is hoped that successful development of loss post-processors will facilitate the improvement of the optimization capability of Stirling engine analysis codes through better understanding of the heat transfer and power losses. It is also anticipated that the incorporation of a successful thermal nonequilibrium model of the regenerator in Stirling engine CFD analysis codes, will improve our ability to accurately model Stirling regenerators relative to current multidimensional thermal-equilibrium porous media models.
Exergy analysis and simulation of a 30MW cogeneration cycle
NASA Astrophysics Data System (ADS)
Dev, Nikhil; Samsher; Kachhwaha, S. S.; Attri, Rajesh
2013-06-01
Cogeneration cycle is an efficient mean to recover the waste heat from the flue gases coming out of gas turbine. With the help of computer simulation, design parameters may be selected for the best performance of cogeneration cycle. In the present work a program is executed in software EES on the basis of mathematical modelling described in paper to study cogeneration cycle performance for different parameters. Results obtained are compared with the results available in literature and are found in good agreement with them. Real gas and water properties are inbuilt in the software. Results show that enthalpy of air entering the combustion chamber is higher than that of the flue gases at combustion chamber outlet. For different operative conditions, energy and exergy efficiencies follow similar trends; although, exergy efficiency values are always lower than the corresponding energy efficiency ones. From the results it is found that turbine outlet temperature (TIT) of 524°C is uniquely suited to efficient cogeneration cycle because it enables the transfer of heat from exhaust gas to the steam cycle to take place over a minimal temperature difference. This temperature range results in the maximum thermodynamic availability while operating with highest temperature and highest efficiency cogeneration cycle. Effect of cycle pressure ratio (CR), inlet air temperature (IAT) and water pressure at heat recovery steam generator (HRSG) inlet on the 30MW cogeneration cycle is also studied.
Combined rankine and vapor compression cycles
Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.
2005-04-19
An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.
The Problem of Ensuring Reliability of Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Nozhnitsky, Yu A.
2018-01-01
Requirements to advanced engines for civil aviation are discussing. Some significant problems of ensuring reliability of advanced gas turbine engines are mentioned. Special attention is paid to successful utilization of new materials and critical technologies. Also the problem of excluding failure of engine part due to low cycle or high cycle fatigue is discussing.
The present study examines the effects of fuel (an ultra-low sulfur diesel [ULSD] versus a 20% v/v soy-based biodiesel—80% v/v petroleum blend [B20]), temperature, load, vehicle, driving cycle, and active regeneration technology on gas- and particle-phase carbon emissions from li...
The Development of a New Practical Activity: Using Microorganisms to Model Gas Cycling
ERIC Educational Resources Information Center
Redfern, James; Burdass, Dariel; Verran, Joanna
2014-01-01
For many in the school science classroom, the term "microbiology" has become synonymous with "bacteriology". By overlooking other microbes, teachers may miss out on powerful practical tools. This article describes the development of an activity that uses algae and yeast to demonstrate gas cycling, and presents full instructions…
Methane Recycling During Burial of Methane Hydrate-Bearing Sediments
NASA Astrophysics Data System (ADS)
You, K.; Flemings, P. B.
2017-12-01
We quantitatively investigate the integral processes of methane hydrate formation from local microbial methane generation, burial of methane hydrate with sedimentation, and methane recycling at the base of the hydrate stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from hydrate dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the hydrate saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated hydrate saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the hydrate stability zone, drives rapid hydrate formation and creates three-phase (gas, liquid and hydrate) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated hydrate in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated hydrate saturation intrude deeper into the hydrate stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with methane recycling, such as the formation of free gas zone, concentrated hydrate zone, bottom simulating reflector, and overpressured zone around the BHSZ, and gas venting at seafloor.
Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges
NASA Astrophysics Data System (ADS)
Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.
2015-10-01
An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.
A Study of Waste-Heat-Boiler Size and Performance of a Conceptual Marine COGAS System.
1980-02-01
The addition of a waste-heat boiler which extracts heat from the gas turbine exhaust gas to operate a bottoming Rankine cycle is one way to improve the...do not change significantly. Higher saturation pressure actually results in a somewhat lower boiler heat transfer, but the Rankine - cycle performance...of heat transferred in the waste-heat boiler and (2) the conversion efficiency of the Rankine cycle . In sizing the waste-heat boiler, attention was
Isotope Exchange in Oxide Catalyst
NASA Technical Reports Server (NTRS)
Hess, Robert V.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M., Jr.; Hoyt, Ronald F.; Upchurch, Billy T.; Brown, Kenneth G.
1987-01-01
Replacement technique maintains level of CO2/18 in closed-cycle CO2 lasers. High-energy, pulsed CO2 lasers using rare chemical isotopes must be operated in closed cycles to conserve gas. Rare isotopes operated in closed cycles to conserve gas. Rare isotopes as CO2/18 used for improved transmission of laser beam in atmosphere. To maintain laser power, CO2 must be regenerated, and O2 concentration kept below few tenths of percent. Conditions achieved by recombining CO and O2.
NASA Astrophysics Data System (ADS)
Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.
2017-01-01
This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.
Enhanced Efficiency of Internal Combustion Engines By Employing Spinning Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geyko, Vasily; Fisch, Nathaniel
2014-02-27
The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A gain in fuel efficiency of several percent is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in the efficiency.
Enhanced efficiency of internal combustion engines by employing spinning gas.
Geyko, V I; Fisch, N J
2014-08-01
The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.
NASA Astrophysics Data System (ADS)
Khomenok, L. A.
2007-09-01
Problems related to efficient afterburning of fuel in the medium of gas-turbine unit exhaust gases, as well as new design arrangements of gas-jet burners used in the chambers for afterburning fuel in heat-recovery boilers at cogeneration stations equipped with combined-cycle plants, are considered. Results obtained from comparative experimental investigations of different gas-jet flame stabilizers at a test facility are presented, and the advantages of jet-ejector stabilizers are demonstrated.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Valco, Mark J.
2002-01-01
The Oil-Free Turbomachinery team at the NASA Glenn Research Center has unlocked one of the mysteries surrounding foil air bearing performance. Foil air bearings are self-acting hydrodynamic bearings that use ambient air, or any fluid, as their lubricant. In operation, the motion of the shaft's surface drags fluid into the bearing by viscous action, creating a pressurized lubricant film. This lubricating film separates the stationary foil bearing surface from the moving shaft and supports load. Foil bearings have been around for decades and are widely employed in the air cycle machines used for cabin pressurization and cooling aboard commercial jetliners. The Oil-Free Turbomachinery team is fostering the maturation of this technology for integration into advanced Oil-Free aircraft engines. Elimination of the engine oil system can significantly reduce weight and cost and could enable revolutionary new engine designs. Foil bearings, however, have complex elastic support structures (spring packs) that make the prediction of bearing performance, such as load capacity, difficult if not impossible. Researchers at Glenn recently found a link between foil bearing design and load capacity performance. The results have led to a simple rule-of-thumb that relates a bearing's size, speed, and design to its load capacity. Early simple designs (Generation I) had simple elastic (spring) support elements, and performance was limited. More advanced bearings (Generation III) with elastic supports, in which the stiffness is varied locally to optimize gas film pressures, exhibit load capacities that are more than double those of the best previous designs. This is shown graphically in the figure. These more advanced bearings have enabled industry to introduce commercial Oil-Free gas-turbine-based electrical generators and are allowing the aeropropulsion industry to incorporate the technology into aircraft engines. The rule-of-thumb enables engine and bearing designers to easily size and select bearing technology for a new application and determine the level of complexity required in the bearings. This new understanding enables industry to assess the feasibility of new engine designs and provides critical guidance toward the future development of Oil-Free turbomachinery propulsion systems.
NASA Astrophysics Data System (ADS)
Larsson, Fredrik; Bertilsson, Simon; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik
2018-01-01
Commercial 6.8 Ah lithium-ion cells with different ageing/status have been abused by external heating in an oven. Prior to the abuse test, selected cells were aged either by C/2 cycling up to 300 cycles or stored at 60 °C. Gas emissions were measured by FTIR and three separate vents were identified, two well before the thermal runaway while the third occurred simultaneously with the thermal runaway releasing heavy smoke and gas. Emissions of toxic carbon monoxide (CO), hydrogen fluoride (HF) and phosphorous oxyfluoride (POF3) were detected in the third vent, regardless if there was a fire or not. All abused cells went into thermal runaway and emitted smoke and gas, the working cells also released flames as well as sparks. The dead cells were however less reactive but still underwent thermal runaway. For about half of the working cells, for all levels of cycle ageing, ignition of the accumulated battery released gases occurred about 15 s after the thermal runaway resulting in a gas explosion. The thermal runaway temperature, about 190 °C, varied somewhat for the different cell ageing/status where a weak local minimum was found for cells cycled between 100 and 200 times.
NASA Astrophysics Data System (ADS)
Gordeev, S. I.; Bogatova, T. F.; Ryzhkov, A. F.
2017-11-01
Raising the efficiency and environmental friendliness of electric power generation from coal is the aim of numerous research groups today. The traditional approach based on the steam power cycle has reached its efficiency limit, prompted by materials development and maneuverability performance. The rival approach based on the combined cycle is also drawing nearer to its efficiency limit. However, there is a reserve for efficiency increase of the integrated gasification combined cycle, which has the energy efficiency at the level of modern steam-turbine power units. The limit of increase in efficiency is the efficiency of NGCC. One of the main problems of the IGCC is higher costs of receiving and preparing fuel gas for GTU. It would be reasonable to decrease the necessary amount of fuel gas in the power unit to minimize the costs. The effect can be reached by raising of the heat value of fuel gas, its heat content and the heat content of cycle air. On the example of the process flowsheet of the IGCC with a power of 500 MW, running on Kuznetsk bituminous coal, by means of software Thermoflex, the influence of the developed technical solutions on the efficiency of the power plant is considered. It is received that rise in steam-air blast temperature to 900°C leads to an increase in conversion efficiency up to 84.2%. An increase in temperature levels of fuel gas clean-up to 900°C leads to an increase in the IGCC efficiency gross/net by 3.42%. Cycle air heating reduces the need for fuel gas by 40% and raises the IGCC efficiency gross/net by 0.85-1.22%. The offered solutions for IGCC allow to exceed net efficiency of analogous plants by 1.8-2.3%.
NASA Technical Reports Server (NTRS)
Choo, Y. K.; Burns, R. K.
1982-01-01
The performance of steam-injected gas turbines having combustors lined with thermionic energy converters (STIG/TEC systems) was analyzed and compared with that of two baseline systems; a steam-injected gas turbine (without a TEC-lined combustor) and a conventional combined gas turbine/steam turbine cycle. Common gas turbine parameters were assumed for all of the systems. Two configurations of the STIG/TEC system were investigated. In both cases, steam produced in an exhaust-heat-recovery boiler cools the TEC collectors. It is then injected into the gas combustion stream and expanded through the gas turbine. The STIG/TEC system combines the advantage of gas turbine steam injection with the conversion of high-temperature combustion heat by TEC's. The addition of TEC's to the baseline steam-injected gas turbine improves both its efficiency and specific power. Depending on system configuration and design parameters, the STIG/TEC system can also achieve higher efficiency and specific power than the baseline combined cycle.
This study calculated the energy and greenhouse gas life cycle and cost profiles of transitional aerobic membrane bioreactors (AeMBR) and anaerobic membrane bioreactors (AnMBR). Membrane bioreactors (MBR) represent a promising technology for decentralized wastewater treatment and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section. (1) The regeneration desorbing gas mass flow...
Code of Federal Regulations, 2014 CFR
2014-07-01
... monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section. (1) The regeneration desorbing gas mass flow...
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section. (1) The regeneration desorbing gas mass flow...
Formation of nanocarbon spheres by thermal treatment of woody char from fast pyrolysis process
Qiangu Yan; Hossein Toghiani; Zhiyong Cai; Jilei Zhang
2014-01-01
Influences of thermal treatment conditions of temperature, reaction cycle and time, and purge gas type on nanocarbon formation over bio-chars from fast pyrolysis and effects of thermal reaction cycle and purge gas type on bio-char surface functional groups were investigated by temperature-programmed desorption (TPD) and temperature programmed reduction methods....
NASA Technical Reports Server (NTRS)
Mcdonald, R. C.; Wolverton, B. C.
1979-01-01
Biodigestion apparatus produces fuel gas (primarily methane) for domestic consumption, by anaerobic bacterial digestion of organic matter such as aquatic vegetation. System includes 3,786-1 cylindrical container, mechanical agitator, and simple safe gas collector for short term storage.
Freeze-Thaw Cycles and Soil Biogeochemistry: Implications for Greenhouse Gas emission
NASA Astrophysics Data System (ADS)
Rezanezhad, F.; Milojevic, T.; Oh, D. H.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.
2016-12-01
Freeze-thaw cycles represent a major natural climate forcing acting on soils at middle and high latitudes. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles regulate carbon and nitrogen cycling and how these transformations influence greenhouse gas (GHG) fluxes. We present a novel approach, which combines the acquisition of physical and chemical data in a newly developed experimental soil column system. This system simulates realistic soil temperature profiles during freeze-thaw cycles. A high-resolution, Multi-Fiber Optode (MuFO) microsensor technique was used to detect oxygen (O2) continuously in the column at multiple depths. Surface and subsurface changes to gas and aqueous phase chemistry were measured to delineate the pathways and quantify soil respiration rates during freeze-thaw cycles. The results indicate that the time-dependent release of GHG from the soil surface is influenced by a combination of two key factors. Firstly, fluctuations in temperature and O2 availability affect soil biogeochemical activity and GHG production. Secondly, the recurrent development of a physical ice barrier prevents exchange of gaseous compounds between the soil and atmosphere during freezing conditions; removal of this barrier during thaw conditions increases GHG fluxes. During freezing, O2 levels in the unsaturated zone decreased due to restricted gas exchange with the atmosphere. As the soil thawed, O2 penetrated deeper into the soil enhancing the aerobic mineralization of organic carbon and nitrogen. Additionally, with the onset of thawing a pulse of gas flux occurred, which is attributed to the build-up of respiratory gases in the pore space during freezing. The latter implies enhanced anaerobic respiration as O2 supply ceases when the upper soil layer freezes.
NASA Astrophysics Data System (ADS)
Chaczykowski, Maciej
2016-06-01
After having described the models for the organic Rankine cycle (ORC) equipment in the first part of this paper, this second part provides an example that demonstrates the performance of different ORC systems in the energy recovery application in a gas compressor station. The application shows certain specific characteristics, i.e. relatively large scale of the system, high exhaust gas temperature, low ambient temperature operation, and incorporation of an air-cooled condenser, as an effect of the localization in a compressor station plant. Screening of 17 organic fluids, mostly alkanes, was carried out and resulted in a selection of best performing fluids for each cycle configuration, among which benzene, acetone and heptane showed highest energy recovery potential in supercritical cycles, while benzene, toluene and cyclohexane in subcritical cycles. Calculation results indicate that a maximum of 10.4 MW of shaft power can be obtained from the exhaust gases of a 25 MW compressor driver by the use of benzene as a working fluid in the supercritical cycle with heat recuperation. In relation to the particular transmission system analysed in the study, it appears that the regenerative subcritical cycle with toluene as a working fluid presents the best thermodynamic characteristics, however, require some attention insofar as operational conditions are concerned.
Flow behavior of N2 huff and puff process for enhanced oil recovery in tight oil reservoirs.
Lu, Teng; Li, Zhaomin; Li, Jian; Hou, Dawei; Zhang, Dingyong
2017-11-16
In the present work, the potential of N 2 huff and puff process to enhance the recovery of tight oil reservoir was evaluated. N 2 huff and puff experiments were performed in micromodels and cores to investigate the flow behaviors of different cycles. The results showed that, in the first cycle, N 2 was dispersed in the oil, forming the foamy oil flow. In the second cycle, the dispersed gas bubbles gradually coalesced into the continuous gas phase. In the third cycle, N 2 was produced in the form of continuous gas phase. The results from the coreflood tests showed that, the primary recovery was only 5.32%, while the recoveries for the three N 2 huff and puff cycles were 15.1%, 8.53% and 3.22%, respectively.The recovery and the pressure gradient in the first cycle were high. With the increase of huff and puff cycles, and the oil recovery and the pressure gradient rapidly decreased. The oil recovery of N 2 huff and puff has been found to increase as the N 2 injection pressure and the soaking time increased. These results showed that, the properly designed and controlled N 2 huff and puff process can lead to enhanced recovery of tight oil reservoirs.
Effect of cyclic conditions on the dynamic oxidation of gas turbine superalloys
NASA Technical Reports Server (NTRS)
Johnston, J. R.; Ashbrook, R. L.
1974-01-01
The effects of operating parameters of a dynamic apparatus used to study oxidation and thermal fatigue of gas turbine materials were studied. IN-100, TD-NiCr, and WI-52 were tested at a maximum temperature of 1,090 deg C. Heating time per cycle was varied from 1/20 hr to 10 hr. Minimum temperatures between heating cycles were room temperature, 430 deg, and 650 deg C. Cooling air velocities were zero, Mach 0.7, and Mach 1. Increasing the number of cycles for a given time at temperature increased weight loss. Thermal fatigue was related to number of cycles more than to time at temperature.
Stabilization of gas turbine unit power
NASA Astrophysics Data System (ADS)
Dolotovskii, I.; Larin, E.
2017-11-01
We propose a new cycle air preparation unit which helps increasing energy power of gas turbine units (GTU) operating as a part of combined cycle gas turbine (CCGT) units of thermal power stations and energy and water supply systems of industrial enterprises as well as reducing power loss of gas turbine engines of process blowers resulting from variable ambient air temperatures. Installation of GTU power stabilizer at CCGT unit with electric and thermal power of 192 and 163 MW, respectively, has resulted in reduction of produced electrical energy production costs by 2.4% and thermal energy production costs by 1.6% while capital expenditures after installation of this equipment increased insignificantly.
Kasumu, Adebola S; Li, Vivian; Coleman, James W; Liendo, Jeanne; Jordaan, Sarah M
2018-02-20
In the determination of the net impact of liquefied natural gas (LNG) on greenhouse gas emissions, life cycle assessments (LCA) of electricity generation have yet to combine the effects of transport distances between exporting and importing countries, country-level infrastructure in importing countries, and the fuel sources displaced in importing countries. To address this, we conduct a LCA of electricity generated from LNG export from British Columbia, Canada with a three-step approach: (1) a review of viable electricity generation markets for LNG, (2) the development of results for greenhouse gas emissions that account for transport to importing nations as well as the infrastructure required for power generation and delivery, and (3) emissions displacement scenarios to test assumptions about what electricity is being displaced in the importing nation. Results show that while the ultimate magnitude of the greenhouse gas emissions associated with natural gas production systems is still unknown, life cycle greenhouse gas emissions depend on country-level infrastructure (specifically, the efficiency of the generation fleet, transmission and distribution losses and LNG ocean transport distances) as well as the assumptions on what is displaced in the domestic electricity generation mix. Exogenous events such as the Fukushima nuclear disaster have unanticipated effects on the emissions displacement results. We highlight national regulations, environmental policies, and multilateral agreements that could play a role in mitigating emissions.
Corrosion of Structural Materials for Advanced Supercritical Carbon- Dioxide Brayton Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Kumar
The supercritical carbon-dioxide (referred to as SC-CO 2 hereon) Brayton cycle is being considered for power conversion systems for a number of nuclear reactor concepts, including the sodium fast reactor (SFR), fluoride saltcooled high temperature reactor (FHR), and high temperature gas reactor (HTGR), and several types of small modular reactors (SMR). The SC-CO 2 direct cycle gas fast reactor has also been recently proposed. The SC-CO 2 Brayton cycle (discussed in Chapter 1) provides higher efficiencies compared to the Rankine steam cycle due to less compression work stemming from higher SC-CO 2 densities, and allows for smaller components size, fewermore » components, and simpler cycle layout. For example, in the case of a SFR using a SC-CO 2 Brayton cycle instead of a steam cycle would also eliminate the possibility of sodium-water interactions. The SC-CO 2 cycle has a higher efficiency than the helium Brayton cycle, with the additional advantage of being able to operate at lower temperatures and higher pressures. In general, the SC-CO 2 Brayton cycle is well-suited for any type of nuclear reactor (including SMR) with core outlet temperature above ~ 500°C in either direct or indirect versions. In all the above applications, materials corrosion in high temperature SC-CO 2 is an important consideration, given their expected lifetimes of 20 years or longer. Our discussions with National Laboratories and private industry early on in this project indicated materials corrosion to be one of the significant gaps in the implementation of SC-CO 2 Brayton cycle. Corrosion can lead to a loss of effective load-bearing wall thickness of a component and can potentially lead to the generation of oxide particulate debris which can lead to three-body wear in turbomachinery components. Another environmental degradation effect that is rather unique to CO 2 environment is the possibility for simultaneous occurrence of carburization during oxidation of the material. Carburization can potentially lead to embrittlement of structural alloys in SC-CO 2 Brayton cycle. An important consideration in regards to corrosion is that the temperatures can vary widely across the various sections of the SC-CO 2 Brayton cycle, from room temperature to 750°C, with even higher temperatures being desirable for higher efficiencies. Thus the extent of corrosion and corrosion mechanisms in various components and SC-CO 2 Brayton cycle will be different, requiring a judicious selection of materials for different sections of the cycle. The goal of this project was to address materials corrosion-related challenges, identify appropriate materials, and advance the body of scientific knowledge in the area of high temperature SC-CO 2 corrosion. The focus was on corrosion of materials in SC-CO 2 environment in the temperature range of 450°C to 750°C at a pressure of 2900 psi for exposure duration for up to 1000 hours. The Table below lists the materials tested in the project. The materials were selected based on their high temperature strength, their code certification status, commercial availabilities, and their prior or current usage in the nuclear reactor industry. Additionally, pure Fe, Fe-12%Cr, and Ni-22%Cr were investigated as simple model materials to more clearly understand corrosion mechanisms. This first phase of the project involved testing in research grade SC-CO 2 (99.999% purity). Specially designed autoclaves with high fidelity temperature, pressure, and flow control capabilities were built or modified for this project.« less
The Dairy Greenhouse Gas Emission Model: Reference Manual
USDA-ARS?s Scientific Manuscript database
The Dairy Greenhouse Gas Model (DairyGHG) is a software tool for estimating the greenhouse gas emissions and carbon footprint of dairy production systems. A relatively simple process-based model is used to predict the primary greenhouse gas emissions, which include the net emission of carbon dioxide...
Constructing Dense Graphs with Unique Hamiltonian Cycles
ERIC Educational Resources Information Center
Lynch, Mark A. M.
2012-01-01
It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…
NASA Astrophysics Data System (ADS)
Ito, A.
2017-12-01
Terrestrial ecosystems are important sink of carbon dioxide (CO2) but significant sources of other greenhouse gases such as methane (CH4) and nitrous oxide (N2O). To resolve the role of terrestrial biosphere in the climate system, we need to quantify total greenhouse gas budget with an adequate accuracy. In addition to top-down evaluation on the basis of atmospheric measurements, model-based approach is required for integration and up-scaling of filed data and for prediction under changing environment and different management practices. Since the early 2000s, we have developed a process-based model of terrestrial biogeochemical cycles focusing on atmosphere-ecosystem exchange of trace gases: Vegetation Integrated SImulator for Trace gases (VISIT). The model includes simple and comprehensive schemes of carbon and nitrogen cycles in terrestrial ecosystems, allowing us to capture dynamic nature of greenhouse gas budget. Beginning from natural ecosystems such as temperate and tropical forests, the models is now applicable to croplands by including agricultural practices such as planting, harvest, and fertilizer input. Global simulation results have been published from several papers, but model validation and benchmarking using up-to-date observations are remained for works. The model is now applied to several practical issues such as evaluation of N2O emission from bio-fuel croplands, which are expected to accomplish the mitigation target of the Paris Agreement. We also show several topics about basic model development such as revised CH4 emission affected by dynamic water-table and refined N2O emission from nitrification.
NASA Astrophysics Data System (ADS)
Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.
2013-09-01
Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since air-sea gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during air-sea gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and air-sea gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by details of the ecosystem model formulation. For example, inclusion of a simple parameterization of iron limitation of phytoplankton growth rates and temperature-dependent zooplankton grazing rates improves the agreement with δ13CDIC observations and satellite estimates of phytoplankton growth rates and biomass, suggesting that δ13C can also be a useful test of ecosystem models.
Apparatus and methods for supplying auxiliary steam in a combined cycle system
Gorman, William G.; Carberg, William George; Jones, Charles Michael
2002-01-01
To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.
Mixture optimization for mixed gas Joule-Thomson cycle
NASA Astrophysics Data System (ADS)
Detlor, J.; Pfotenhauer, J.; Nellis, G.
2017-12-01
An appropriate gas mixture can provide lower temperatures and higher cooling power when used in a Joule-Thomson (JT) cycle than is possible with a pure fluid. However, selecting gas mixtures to meet specific cooling loads and cycle parameters is a challenging design problem. This study focuses on the development of a computational tool to optimize gas mixture compositions for specific operating parameters. This study expands on prior research by exploring higher heat rejection temperatures and lower pressure ratios. A mixture optimization model has been developed which determines an optimal three-component mixture based on the analysis of the maximum value of the minimum value of isothermal enthalpy change, ΔhT , that occurs over the temperature range. This allows optimal mixture compositions to be determined for a mixed gas JT system with load temperatures down to 110 K and supply temperatures above room temperature for pressure ratios as small as 3:1. The mixture optimization model has been paired with a separate evaluation of the percent of the heat exchanger that exists in a two-phase range in order to begin the process of selecting a mixture for experimental investigation.
ERIC Educational Resources Information Center
Lisovskiy, V. A.; Koval, V. A.; Artushenko, E. P.; Yegorenkov, V. D.
2012-01-01
In this paper we suggest a simple technique for validating the Goldstein-Wehner law for a stratified positive column of dc glow discharge while studying the properties of gas discharges in an undergraduate laboratory. To accomplish this a simple device with a pre-vacuum mechanical pump, dc source and gas pressure gauge is required. Experiments may…
ERIC Educational Resources Information Center
McGregor, Donna; Sweeney, William V.; Mills, Pamela
2012-01-01
A simple and inexpensive mercury-free apparatus to measure the change in volume of a gas as a function of pressure at different temperatures is described. The apparatus is simpler than many found in the literature and can be used to study variations in pressure, volume, and temperature. (Contains 1 table and 7 figures.)
Finch, Warren Irvin
1997-01-01
The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.
NASA Astrophysics Data System (ADS)
Vuichard, Nicolas; Soussana, Jean-FrançOis; Ciais, Philippe; Viovy, Nicolas; Ammann, Christof; Calanca, Pierluigi; Clifton-Brown, John; Fuhrer, Jürg; Jones, Mike; Martin, CéCile
2007-03-01
We improved a process-oriented biogeochemical model of carbon and nitrogen cycling in grasslands and tested it against in situ measurements of biomass and CO2 and CH4 fluxes at five European grassland sites. The new version of the model (PASIM) calculates the growth and senescence of aboveground vegetation biomass accounting for sporadic removals when the grassland is cut and for continuous removals when it is grazed. Limitations induced by high leaf area index (LAI), soil water deficits and aging of leaves are also included. We added to this a simple empirical formulation to account for the detrimental impact on vegetation of trampling and excreta by grazing animals. Finally, a more realistic methane emission module than is currently used was introduced on the basis of the quality of the animals' diet. Evaluation of this improved version of PASIM is performed at (1) Laqueuille, France, on grassland continuously grazed by cattle with two plots of intensive and extensive grazing intensities, (2) Oensingen, Switzerland, on cut grassland with two fertilized and nonfertilized plots, and (3) Carlow, Ireland, on grassland that is both cut and grazed by cattle during the growing season. In addition, we compared the modeled animal CH4 emissions with in situ measurements on cattle for two grazing intensities at the grazed grassland site of Laqueuille. Altogether, when all improvements to the PASIM model are included, we found that the new parameterizations resulted into a better fit to the observed seasonal cycle of biomass and of measured CO2 and CH4 fluxes. However, the large uncertainties in measurements of biomass and LAI make simulation of biomass dynamics difficult to make. Also simulations for cut grassland are better than for grazed swards. This work paves the way for simulating greenhouse gas fluxes over grasslands in a spatially explicit manner, in order to quantify and understand the past, present and future role of grasslands in the greenhouse gas budget of the European continent.
Geothermal wells drilled in Transcarpathians
NASA Astrophysics Data System (ADS)
Kuzma, A.
1984-12-01
The lion's share of the Earth's electric power is known to be produced by thermal electric power plants wwich burn coal and gas. New storehouses of energy must be sought. It became known that the main reserves of heat in the Earth's interior are concentrated in rock. In simple terms, the technology of delivering the Earth's heat to the surface is as follows: water injected under high pressure from a river into one well comes in contact with hot beds situated at enormous depth, after which it returns by a second well in the form of a steam-water mixture, which then operates turbines of an electric power plant. The water would be used many times over in a closed cycle. This method promises many advantages. It will provide a possibility for generating cheap electric power while excluding all pollution of the environment.
Gibson, Desmond; MacGregor, Calum
2013-01-01
This paper describes development of a novel mid-infrared light emitting diode (LED) and photodiode (PD) light source/detector combination and use within a non-dispersive infrared (NDIR) carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on the sensor from cold, warm up, take and report a measurement, and power down again ≈1 second), longevity (>15 years), low power consumption and low cost. Described performance is compatible with “fit and forget” wireless deployed sensors in applications such as indoor air quality monitoring/control & energy conservation in buildings, transport systems, horticultural greenhouses and portable deployment for safety, industrial and medical applications. Fast stabilisation time, low intrinsic power consumption and cycled operation offer typical energy consumption per measurement of mJ's, providing extended operation using battery and/or energy harvesting strategies (measurement interval of ≈ 2 minutes provides >10 years operation from one AA battery). Specific performance data is provided in relation to measurement accuracy and noise, temperature performance, cross sensitivity, measurement range (two pathlength variants are described covering ambient through to 100% gas concentration), comparison with NDIR utilizing thermal source/pyroelectric light source/detector combination and compatibility with energy harvesting. Semiconductor based LED/PD processing together with injection moulded reflective optics and simple assembly provide a route to low cost high volume manufacturing. PMID:23760090
Zou, Bin; Guo, Yunlong; Shen, Nannan; Xiao, Anshan; Li, Mingjun; Zhu, Liang; Wan, Pengbo; Sun, Xiaoming
2017-12-19
Ultrasensitive room temperature real-time NO₂ sensors are highly desirable due to potential threats on environmental security and personal respiratory. Traditional NO₂ gas sensors with highly operated temperatures (200-600 °C) and limited reversibility are mainly constructed from semiconducting oxide-deposited ceramic tubes or inter-finger probes. Herein, we report the functionalized graphene network film sensors assembled on an electrospun three-dimensional (3D) nanonetwork skeleton for ultrasensitive NO₂ sensing. The functional 3D scaffold was prepared by electrospinning interconnected polyacrylonitrile (PAN) nanofibers onto a nylon window screen to provide a 3D nanonetwork skeleton. Then, the sulfophenyl-functionalized reduced graphene oxide (SFRGO) was assembled on the electrospun 3D nanonetwork skeleton to form SFRGO network films. The assembled functionalized graphene network film sensors exhibit excellent NO₂ sensing performance (10 ppb to 20 ppm) at room temperature, reliable reversibility, good selectivity, and better sensing cycle stability. These improvements can be ascribed to the functionalization of graphene with electron-withdrawing sulfophenyl groups, the high surface-to-volume ratio, and the effective sensing channels from SFRGO wrapping onto the interconnected 3D scaffold. The SFRGO network-sensing film has the advantages of simple preparation, low cost, good processability, and ultrasensitive NO₂ sensing, all advantages that can be utilized for potential integration into smart windows and wearable electronic devices for real-time household gas sensors.
Gibson, Desmond; MacGregor, Calum
2013-05-29
This paper describes development of a novel mid-infrared light emitting diode (LED) and photodiode (PD) light source/detector combination and use within a non-dispersive infrared (NDIR) carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on the sensor from cold, warm up, take and report a measurement, and power down again ≈1 second), longevity (>15 years), low power consumption and low cost. Described performance is compatible with "fit and forget" wireless deployed sensors in applications such as indoor air quality monitoring/control & energy conservation in buildings, transport systems, horticultural greenhouses and portable deployment for safety, industrial and medical applications. Fast stabilisation time, low intrinsic power consumption and cycled operation offer typical energy consumption per measurement of mJ's, providing extended operation using battery and/or energy harvesting strategies (measurement interval of ≈ 2 minutes provides >10 years operation from one AA battery). Specific performance data is provided in relation to measurement accuracy and noise, temperature performance, cross sensitivity, measurement range (two pathlength variants are described covering ambient through to 100% gas concentration), comparison with NDIR utilizing thermal source/pyroelectric light source/detector combination and compatibility with energy harvesting. Semiconductor based LED/PD processing together with injection moulded reflective optics and simple assembly provide a route to low cost high volume manufacturing.
Maimoun, Mousa; Madani, Kaveh; Reinhart, Debra
2016-04-15
Historically, the U.S. waste collection fleet was dominated by diesel-fueled waste collection vehicles (WCVs); the growing need for sustainable waste collection has urged decision makers to incorporate economically efficient alternative fuels, while mitigating environmental impacts. The pros and cons of alternative fuels complicate the decisions making process, calling for a comprehensive study that assesses the multiple factors involved. Multi-criteria decision analysis (MCDA) methods allow decision makers to select the best alternatives with respect to selection criteria. In this study, two MCDA methods, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Simple Additive Weighting (SAW), were used to rank fuel alternatives for the U.S. waste collection industry with respect to a multi-level environmental and financial decision matrix. The environmental criteria consisted of life-cycle emissions, tail-pipe emissions, water footprint (WFP), and power density, while the financial criteria comprised of vehicle cost, fuel price, fuel price stability, and fueling station availability. The overall analysis showed that conventional diesel is still the best option, followed by hydraulic-hybrid WCVs, landfill gas (LFG) sourced natural gas, fossil natural gas, and biodiesel. The elimination of the WFP and power density criteria from the environmental criteria ranked biodiesel 100 (BD100) as an environmentally better alternative compared to other fossil fuels (diesel and natural gas). This result showed that considering the WFP and power density as environmental criteria can make a difference in the decision process. The elimination of the fueling station and fuel price stability criteria from the decision matrix ranked fossil natural gas second after LFG-sourced natural gas. This scenario was found to represent the status quo of the waste collection industry. A sensitivity analysis for the status quo scenario showed the overall ranking of diesel and fossil natural gas to be more sensitive to changing fuel prices as compared to other alternatives. Copyright © 2016 Elsevier B.V. All rights reserved.
Laboratory Connections--Gas Monitoring Transducers Part III: Combustible Gas Sensors.
ERIC Educational Resources Information Center
Powers, Michael H.; Dahman, Doug
1989-01-01
Describes an interface that uses semiconductor metal oxides to detect low gas concentrations. Notes the detector has long life, high stability, good reproducibility, low cost, and is able to convert the gas concentration to an electrical signal with a simple circuit. Theory, schematic, and applications are provided. (MVL)
Code of Federal Regulations, 2013 CFR
2013-07-01
...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...
Code of Federal Regulations, 2012 CFR
2012-07-01
...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...
Code of Federal Regulations, 2011 CFR
2011-07-01
...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...
40 CFR Appendix Vii to Part 86 - Standard Bench Cycle (SBC)
Code of Federal Regulations, 2011 CFR
2011-07-01
... procedures [Ref. § 86.1823-08(d)] consist of aging a catalyst-oxygen-sensor system on an aging bench which... bench with an engine as the source of feed gas for the catalyst. 3. The SBC is a 60-second cycle which... occurs in the hottest catalyst. Alternatively, the feed gas temperature may be measured and converted to...
40 CFR Appendix Vii to Part 86 - Standard Bench Cycle (SBC)
Code of Federal Regulations, 2010 CFR
2010-07-01
... procedures [Ref. § 86.1823-08(d)] consist of aging a catalyst-oxygen-sensor system on an aging bench which... bench with an engine as the source of feed gas for the catalyst. 3. The SBC is a 60-second cycle which... occurs in the hottest catalyst. Alternatively, the feed gas temperature may be measured and converted to...
Combined cycle power plant incorporating coal gasification
Liljedahl, Gregory N.; Moffat, Bruce K.
1981-01-01
A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.
Benefits of advanced technology in industrial cogeneration
NASA Technical Reports Server (NTRS)
Barna, G. J.; Burns, R. K.
1979-01-01
This broad study is aimed at identifying the most attractive advanced energy conversion systems for industrial cogeneration for the 1985 to 2000 time period and assessing the advantages of advanced technology systems compared to using today's commercially available technology. Energy conversion systems being studied include those using steam turbines, open cycle gas turbines, combined cycles, diesel engines, Stirling engines, closed cycle gas turbines, phosphoric acid and molten carbonate fuel cells and thermionics. Specific cases using today's commercially available technology are being included to serve as a baseline for assessing the advantages of advanced technology.
Thiruvengadam, Arvind; Besch, Marc C; Thiruvengadam, Pragalath; Pradhan, Saroj; Carder, Daniel; Kappanna, Hemanth; Gautam, Mridul; Oshinuga, Adewale; Hogo, Henry; Miyasato, Matt
2015-04-21
Chassis dynamometer emissions testing of 11 heavy-duty goods movement vehicles, including diesel, natural gas, and dual-fuel technology, compliant with US-EPA 2010 emissions standard were conducted. Results of the study show that three-way catalyst (TWC) equipped stoichiometric natural gas vehicles emit 96% lower NOx emissions as compared to selective catalytic reduction (SCR) equipped diesel vehicles. Characteristics of drayage truck vocation, represented by the near-dock and local drayage driving cycles, were linked to high NOx emissions from diesel vehicles equipped with a SCR. Exhaust gas temperatures below 250 °C, for more than 95% duration of the local and near-dock driving cycles, resulted in minimal SCR activity. The low percentage of activity SCR over the local and near-dock cycles contributed to a brake-specific NOx emissions that were 5-7 times higher than in-use certification limit. The study also illustrated the differences between emissions rate measured from chassis dynamometer testing and prediction from the EMFAC model. The results of the study emphasize the need for model inputs relative to SCR performance as a function of driving cycle and engine operation characteristics.
Respiratory analysis system and method
NASA Technical Reports Server (NTRS)
Liu, F. F. (Inventor)
1973-01-01
A system is described for monitoring the respiratory process in which the gas flow rate and the frequency of respiration and expiration cycles can be determined on a real time basis. A face mask is provided with one-way inlet and outlet valves where the gas flow is through independent flowmeters and through a mass spectrometer. The opening and closing of a valve operates an electrical switch, and the combination of the two switches produces a low frequency electrical signal of the respiratory inhalation and exhalation cycles. During the time a switch is operated, the corresponsing flowmeter produces electric pulses representative of the flow rate; the electrical pulses being at a higher frequency than that of the breathing cycle and combined with the low frequency signal. The high frequency pulses are supplied to conventional analyzer computer which also receives temperature and pressure inputs and computes mass flow rate and totalized mass flow of gas. From the mass spectrometer, components of the gas are separately computed as to flow rate. The electrical switches cause operation of up-down inputs of a reversible counter. The respective up and down cycles can be individually monitored and combined for various respiratory measurements.
Apparatus for the liquefaction of natural gas and methods relating to same
Wilding, Bruce M [Idaho Falls, ID; Bingham, Dennis N [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Raterman, Kevin T [Idaho Falls, ID; Palmer, Gary L [Shelley, ID; Klingler, Kerry M [Idaho Falls, ID; Vranicar, John J [Concord, CA
2007-05-22
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Rateman, Kevin T.; Palmer, Gary L.; Klinger, Kerry M.; Vranicar, John J.
2005-11-08
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2005-05-03
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2003-06-24
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
NASA Technical Reports Server (NTRS)
Wheeler, D. B.
1978-01-01
Engine performance data, combustion gas thermodynamic properties, and turbine gas parameters were determined for various high power cycle engine configurations derived from the space shuttle main engine that will allow sequential burning of LOX/hydrocarbon and LOX/hydrogen fuels. Both stage combustion and gas generator pump power cycles were considered. Engine concepts were formulated for LOX/RP-1, LOX/CH4, and LOX/C3H8 propellants. Flowrates and operating conditions were established for this initial set of engine systems, and the adaptability of the major components of shuttle main engine was investigated.
Carbon Dioxide Absorption Heat Pump
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor)
2002-01-01
A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.
Compressed Natural Gas Technology for Alternative Fuel Power Plants
NASA Astrophysics Data System (ADS)
Pujotomo, Isworo
2018-02-01
Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.
Two-fluid dusty shocks: simple benchmarking problems and applications to protoplanetary discs
NASA Astrophysics Data System (ADS)
Lehmann, Andrew; Wardle, Mark
2018-05-01
The key role that dust plays in the interstellar medium has motivated the development of numerical codes designed to study the coupled evolution of dust and gas in systems such as turbulent molecular clouds and protoplanetary discs. Drift between dust and gas has proven to be important as well as numerically challenging. We provide simple benchmarking problems for dusty gas codes by numerically solving the two-fluid dust-gas equations for steady, plane-parallel shock waves. The two distinct shock solutions to these equations allow a numerical code to test different forms of drag between the two fluids, the strength of that drag and the dust to gas ratio. We also provide an astrophysical application of J-type dust-gas shocks to studying the structure of accretion shocks on to protoplanetary discs. We find that two-fluid effects are most important for grains larger than 1 μm, and that the peak dust temperature within an accretion shock provides a signature of the dust-to-gas ratio of the infalling material.
NASA Technical Reports Server (NTRS)
Jones, Scott M.
2007-01-01
This document is intended as an introduction to the analysis of gas turbine engine cycles using the Numerical Propulsion System Simulation (NPSS) code. It is assumed that the analyst has a firm understanding of fluid flow, gas dynamics, thermodynamics, and turbomachinery theory. The purpose of this paper is to provide for the novice the information necessary to begin cycle analysis using NPSS. This paper and the annotated example serve as a starting point and by no means cover the entire range of information and experience necessary for engine performance simulation. NPSS syntax is presented but for a more detailed explanation of the code the user is referred to the NPSS User Guide and Reference document (ref. 1).
An investigation of improved airbag performance by vent control and gas injection
NASA Astrophysics Data System (ADS)
Lee, Calvin; Rosato, Nick; Lai, Francis
Airbags are currently being investigated as an impact energy absorber for U.S. Army airdrop. Simple airbags with constant vent areas have been found to be unsatisfactory in yielding high G forces. In this paper, a method of controlling the vent area and a method of injecting gas into the airbag during its compression stroke to improve airbag performance are presented. Theoretical analysis of complex airbags using these two methods show that they provide lower G forces than simple airbags. Vertical drop tests of a vent-control airbag confirm this result. Gas-injection airbags are currently being tested.
Wise, Marcus B.; Thompson, Cyril V.
1998-01-01
An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.
Mistarz, Ulrik H; Brown, Jeffery M; Haselmann, Kim F; Rand, Kasper D
2014-12-02
Gas-phase hydrogen/deuterium exchange (HDX) is a fast and sensitive, yet unharnessed analytical approach for providing information on the structural properties of biomolecules, in a complementary manner to mass analysis. Here, we describe a simple setup for ND3-mediated millisecond gas-phase HDX inside a mass spectrometer immediately after ESI (gas-phase HDX-MS) and show utility for studying the primary and higher-order structure of peptides and proteins. HDX was achieved by passing N2-gas through a container filled with aqueous deuterated ammonia reagent (ND3/D2O) and admitting the saturated gas immediately upstream or downstream of the primary skimmer cone. The approach was implemented on three commercially available mass spectrometers and required no or minor fully reversible reconfiguration of gas-inlets of the ion source. Results from gas-phase HDX-MS of peptides using the aqueous ND3/D2O as HDX reagent indicate that labeling is facilitated exclusively through gaseous ND3, yielding similar results to the infusion of purified ND3-gas, while circumventing the complications associated with the use of hazardous purified gases. Comparison of the solution-phase- and gas-phase deuterium uptake of Leu-Enkephalin and Glu-Fibrinopeptide B, confirmed that this gas-phase HDX-MS approach allows for labeling of sites (heteroatom-bound non-amide hydrogens located on side-chains, N-terminus and C-terminus) not accessed by classical solution-phase HDX-MS. The simple setup is compatible with liquid chromatography and a chip-based automated nanoESI interface, allowing for online gas-phase HDX-MS analysis of peptides and proteins separated on a liquid chromatographic time scale at increased throughput. Furthermore, online gas-phase HDX-MS could be performed in tandem with ion mobility separation or electron transfer dissociation, thus enabling multiple orthogonal analyses of the structural properties of peptides and proteins in a single automated LC-MS workflow.
Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L
2015-06-16
The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks.
Nickel-iron battery system safety
NASA Technical Reports Server (NTRS)
Saltat, R. C.
1984-01-01
The generated flow rates of gaseous hydrogen and gaseous oxygen from an electrical vehicle nickel-iron battery system were determined and used to evaluate the flame quenching capabilities of several candidate devices to prevent flame propagation within batteries having central watering/venting systems. The battery generated hydrogen and oxygen gases were measured for a complete charge and discharge cycle. The data correlates well with accepted theory during strong overcharge conditions indicating that the measurements are valid for other portions of the cycle. Tests confirm that the gas mixture in the cells is always flammable regardless of the battery status. The literature indicated that a conventional flame arrestor would not be effective over the broad spectrum of gassing conditions presented by a nickel-iron battery. Four different types of protective devices were evaluated. A foam-metal arrestor design was successful in quenching gaseous hydrogen and gaseous oxygen flames, however; the application of this flame arrestor to individual cell or module protection in a battery is problematic. A possible rearrangement of the watering/venting system to accept the partial protection of simple one-way valves is presented which, in combination with the successful foam-metal arrestor as main vent protection, could result in a significant improvement in battery protection.
Economic aspects of advanced coal-fired gas turbine locomotives
NASA Technical Reports Server (NTRS)
Liddle, S. G.; Bonzo, B. B.; Houser, B. C.
1983-01-01
Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.
Two-phase turbine engines. [using gas-liquid mixture accelerated in nozzles
NASA Technical Reports Server (NTRS)
Elliott, D. G.; Hays, L. G.
1976-01-01
A description is given of a two-phase turbine which utilizes a uniform mixture of gas and liquid accelerated in nozzles of the types reported by Elliott and Weinberg (1968). The mixture acts directly on an axial flow or tangential impulse turbine or is separated into gas and liquid streams which operate separately on a gas turbine and a hydraulic turbine. The basic two-phase cycles are examined, taking into account working fluids, aspects of nozzle expansion, details of turbine cycle operation, and the effect of mixture ratio variation. Attention is also given to two-phase nozzle efficiency, two-phase turbine operating characteristics and efficiencies, separator turbines, and impulse turbine experiments.
Life cycle assessment of energy and CO2 emissions for residential buildings in Jakarta, Indonesia
NASA Astrophysics Data System (ADS)
Surahman, U.; Kubota, T.; Wijaya, A.
2016-04-01
In order to develop low energy and low carbon residential buildings, it is important to understand their detailed energy profiles. This study provides the results of life cycle assessment of energy and CO2 emissions for residential buildings in Jakarta, Indonesia. A survey was conducted in the city in 2012 to obtain both material inventory and household energy consumption data within the selected residential buildings (n=300), which are classified into three categories, namely simple, medium and luxurious houses. The results showed that the average embodied energy of simple, medium and luxurious houses was 58.5, 201.0, and 559.5 GJ, respectively. It was found that total embodied energy of each house can be explained by its total floor area alone with high accuracy in respective house categories. Meanwhile, it was seen that operational energy usage patterns varied largely among house categories as well as households especially in the simple and medium houses. The energy consumption for cooling was found to be the most significant factor of the increase in operational energy from simple to luxurious houses. Further, in the life cycle energy, the operational energy accounted for much larger proportions of about 86-92% than embodied energy regardless of the house categories. The life cycle CO2 emissions for medium and luxurious houses were larger than that of simple houses by 2 and 6 times on average. In the simple houses, cooking was the largest contributor to the CO2 emissions (25%), while the emissions caused by cooling increased largely with the house category and became the largest contributors in the medium (26%) and luxurious houses (41%).
Verma, Amit; Singh, Madhu Pandey
2018-01-01
Venous air embolism can be a catastrophic iatrogenic complication during operative hysteroscopy and makes this simple surgical procedure very risky, especially with the lack of knowledge about its prevention, presentation, and immediate management. Three out of 13 hysteroscopic myoma resections at our center had venous gas embolism (VGE). The prevention, diagnosis, and management of VGE are described in this report of three cases. PMID:29643632
NASA Astrophysics Data System (ADS)
Sudarmaji, A.; Margiwiyatno, A.; Ediati, R.; Mustofa, A.
2018-05-01
The aroma/vapor of essential oils is complex compound which depends on the content of the gases and volatiles generated from essential oil. This paper describes a design of quick, simple, and low-cost static measurement system to acquire vapor profile of essential oil. The gases and volatiles are captured in a chamber by means of 9 MOS gas sensors which driven with advance temperature modulation technique. A PSoC CY8C28445-24PVXI based-interface unit is built to generate the modulation signal and acquire all sensor output into computer wirelessly via radio frequency serial communication using Digi International Inc., XBee (IEEE 802.15.4) through developed software under Visual.Net. The system was tested to measure 2 kinds of essential oil (Patchouli and Clove Oils) in 4 temperature modulations (without, 0.25 Hz, 1 Hz, and 4 Hz). A cycle measurement consists of reference and sample measurement sequentially which is set during 2 minutes in every 1 second respectively. It is found that the suitable modulation is 0,25Hz; 75%, and the results of Principle Component Analysis show that the system is able to distinguish clearly between Patchouli Oil and Clove Oil.
Muscle Activation during Gait in Children with Duchenne Muscular Dystrophy.
Ropars, Juliette; Lempereur, Mathieu; Vuillerot, Carole; Tiffreau, Vincent; Peudenier, Sylviane; Cuisset, Jean-Marie; Pereon, Yann; Leboeuf, Fabien; Delporte, Ludovic; Delpierre, Yannick; Gross, Raphaël; Brochard, Sylvain
2016-01-01
The aim of this prospective study was to investigate changes in muscle activity during gait in children with Duchenne muscular Dystrophy (DMD). Dynamic surface electromyography recordings (EMGs) of 16 children with DMD and pathological gait were compared with those of 15 control children. The activity of the rectus femoris (RF), vastus lateralis (VL), medial hamstrings (HS), tibialis anterior (TA) and gastrocnemius soleus (GAS) muscles was recorded and analysed quantitatively and qualitatively. The overall muscle activity in the children with DMD was significantly different from that of the control group. Percentage activation amplitudes of RF, HS and TA were greater throughout the gait cycle in the children with DMD and the timing of GAS activity differed from the control children. Significantly greater muscle coactivation was found in the children with DMD. There were no significant differences between sides. Since the motor command is normal in DMD, the hyper-activity and co-contractions likely compensate for gait instability and muscle weakness, however may have negative consequences on the muscles and may increase the energy cost of gait. Simple rehabilitative strategies such as targeted physical therapies may improve stability and thus the pattern of muscle activity.
Preliminary investigation of acoustic oscillations in an H2-O2 fired Hall generator
NASA Technical Reports Server (NTRS)
Phillips, B.
1981-01-01
Burner pressure oscillations and interelectrode voltage oscillations measured in an open-cycle supersonic flow Hall generator are presented. The ionized gas for the channel was supplied by seeding the approximately 1 lb/sec of hydrogen-oxygen combustion products with cesium. Since both the burner and the channel were located within magnetic fields exceeding 4 Tesla during operation, an infinite probe pressure measurement technique was used to measure burner pressure oscillations. Calibration of the burner pressure transducer using a resonance tube technique is presented. Evidence is presented for the existence of the first longitudinal mode of oscillations (5000 Hz) within the burner. Interelectrode voltage oscillations were simultaneously measured at two separate axial stations. The magnitude change and the phase shift between the two signals was interpreted as a decaying magnetoacoustic wave driven by the burner that propagates at local gas plus sonic velocities. The amplitude of the electrical voltage oscillations at the start of the power producing region of the channel varied with the magnetic field. This variation is compared with the results of a simple perturbation analysis. Arguments are presented for using an unsteady model for analyzing wave processes in channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Cheng-Yu; Radu, Daniela R.; Pizzi, Nicholas
Carbon capture is an integral part of the CO 2 mitigation efforts, and encompasses, among other measures, the demonstration of effective and inexpensive CO 2 capture technologies. The project demonstrated a novel platform—the amine-functionalized stellate mesoporous silica nanosphere (MSN)—for effective CO 2 absorption. The reported CO 2 absorption data are superior to the performance of other reported silica matrices utilized for carbon capture, featuring an amount of over 4 milimoles CO 2/g sorbent at low temperatures (in the range of 30-45 ºC), selected for simulating the temperature of actual flue gas. The reported platform is highly resilient, showing recyclability andmore » 85 % mass conservation of sorbent upon nine tested cycles. Importantly, the stellate MSNs show high CO 2 selectivity at room temperature, indicating that the presence of nitrogen in flue gas will not impair the CO 2 absorption performance. The results could lead to a simple and inexpensive new technology for CO 2 mitigation which could be implemented as measure of CO 2 mitigation in current fossil-fuel burning plants in the form of solid sorbent.« less
A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification.
Nandi, Shyamapada; De Luna, Phil; Daff, Thomas D; Rother, Jens; Liu, Ming; Buchanan, William; Hawari, Ayman I; Woo, Tom K; Vaidhyanathan, Ramanathan
2015-12-01
Metal organic frameworks (MOFs) built from a single small ligand typically have high stability, are rigid, and have syntheses that are often simple and easily scalable. However, they are normally ultra-microporous and do not have large surface areas amenable to gas separation applications. We report an ultra-microporous (3.5 and 4.8 Å pores) Ni-(4-pyridylcarboxylate)2 with a cubic framework that exhibits exceptionally high CO2/H2 selectivities (285 for 20:80 and 230 for 40:60 mixtures at 10 bar, 40°C) and working capacities (3.95 mmol/g), making it suitable for hydrogen purification under typical precombustion CO2 capture conditions (1- to 10-bar pressure swing). It exhibits facile CO2 adsorption-desorption cycling and has CO2 self-diffusivities of ~3 × 10(-9) m(2)/s, which is two orders higher than that of zeolite 13X and comparable to other top-performing MOFs for this application. Simulations reveal a high density of binding sites that allow for favorable CO2-CO2 interactions and large cooperative binding energies. Ultra-micropores generated by a small ligand ensures hydrolytic, hydrostatic stabilities, shelf life, and stability toward humid gas streams.
Gas-Generator Augmented Expander Cycle Rocket Engine
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2011-01-01
An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.
Analysis and simulation of the I C engine Otto cycle using the second law of thermodynamics
NASA Astrophysics Data System (ADS)
Abdel-Rahim, Y. M.
The present investigation is an application of the second law of thermodynamics to the spark ignition engine cycle. A comprehensive thermodynamic analysis of the air standard cycle is conducted using the first and second laws of thermodynamics, the ideal gas equation of state and the perfect gas properties for air. The study investigates the effect of the cycle parameters on the cycle performance reflected by the first and second law efficiencies, the heat added, the work done, the available energy added as well as the history of the internal, available and unavailable energies along the cycle. The study shows that the second law efficiency is a function of the compression ratio, the initial temperature, the maximum temperature as well as the dead state temperature. A non-dimensional comprehensive thermodynamic simulation model for the actual Otto cycle is developed to study the effects of the design and operating parameters of the cycle on the cycle performance. The analysis takes into account engine geometry, mixture strength, heat transfer, piston motion, engine speed, mechanical friction, spark advance and combustion duration.
Coal-fired high performance power generating system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can bemore » achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.« less
Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H
2007-01-01
A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.
Deerinck, T J; Shone, T M; Bushong, E A; Ramachandra, R; Peltier, S T; Ellisman, M H
2018-05-01
A longstanding limitation of imaging with serial block-face scanning electron microscopy is specimen surface charging. This charging is largely due to the difficulties in making biological specimens and the resins in which they are embedded sufficiently conductive. Local accumulation of charge on the specimen surface can result in poor image quality and distortions. Even minor charging can lead to misalignments between sequential images of the block-face due to image jitter. Typically, variable-pressure SEM is used to reduce specimen charging, but this results in a significant reduction to spatial resolution, signal-to-noise ratio and overall image quality. Here we show the development and application of a simple system that effectively mitigates specimen charging by using focal gas injection of nitrogen over the sample block-face during imaging. A standard gas injection valve is paired with a precisely positioned but retractable application nozzle, which is mechanically coupled to the reciprocating action of the serial block-face ultramicrotome. This system enables the application of nitrogen gas precisely over the block-face during imaging while allowing the specimen chamber to be maintained under high vacuum to maximise achievable SEM image resolution. The action of the ultramicrotome drives the nozzle retraction, automatically moving it away from the specimen area during the cutting cycle of the knife. The device described was added to a Gatan 3View system with minimal modifications, allowing high-resolution block-face imaging of even the most charge prone of epoxy-embedded biological samples. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Modeling of static and flowing-gas diode pumped alkali lasers
NASA Astrophysics Data System (ADS)
Barmashenko, Boris D.; Auslender, Ilya; Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Rosenwaks, Salman
2016-03-01
Modeling of static and flowing-gas subsonic, transonic and supersonic Cs and K Ti:Sapphire and diode pumped alkali lasers (DPALs) is reported. A simple optical model applied to the static K and Cs lasers shows good agreement between the calculated and measured dependence of the laser power on the incident pump power. The model reproduces the observed threshold pump power in K DPAL which is much higher than that predicted by standard models of the DPAL. Scaling up flowing-gas DPALs to megawatt class power is studied using accurate three-dimensional computational fluid dynamics model, taking into account the effects of temperature rise and losses of alkali atoms due to ionization. Both the maximum achievable power and laser beam quality are estimated for Cs and K lasers. The performance of subsonic and, in particular, supersonic DPALs is compared with that of transonic, where supersonic nozzle and diffuser are spared and high power mechanical pump (needed for recovery of the gas total pressure which strongly drops in the diffuser), is not required for continuous closed cycle operation. For pumping by beams of the same rectangular cross section, comparison between end-pumping and transverse-pumping shows that the output power is not affected by the pump geometry, however, the intensity of the output laser beam in the case of transverse-pumped DPALs is strongly non-uniform in the laser beam cross section resulting in higher brightness and better beam quality in the far field for the end-pumping geometry where the intensity of the output beam is uniform.
Cycle-to-cycle IMEP fluctuations in a stoichiometrically-fueled S. I. engine at low speed and load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sztenderowicz, M.L.; Heywood, J.B.
1990-01-01
In a previous experimental investigation of the effects of residual gas nonuniformity on S.I. engine combustion variability, it was found that eliminating residual gas nonuniformity by skip firing has no detectable impact on the flame development process, but nonetheless caused IMEP fluctuations to drop by about half under very light load conditions. This paper reports that under further investigation, it has been determined that the observed IMEP fluctuations, particularly for optimally-phased cycles, are controlled by cyclic variations in the amount of fuel burning per cycle. Real-time sampling of the hydrocarbon concentration in the exhaust port has shown that the variationmore » in fuel burned per cycle is not primarily due to variations in combustion completeness, and must therefore be attributed to variations in the amount of fuel trapped within the cylinder prior to combustion. Several mechanisms for this variation were identified, all of which are plausible but none of which are likely to dominate: variations in fuel quantity left in the cylinder from the previous cycle; variations in the fluid dynamics of the intake process; fresh charge displacement due to variations in residual gas temperature; variations in leakage through valves; and fluctuations in crevice effects and blow-by.« less
Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity
Patterson, Rainey E.; Kalavalapalli, Srilaxmi; Williams, Caroline M.; Nautiyal, Manisha; Mathew, Justin T.; Martinez, Janie; Reinhard, Mary K.; McDougall, Danielle J.; Rocca, James R.; Yost, Richard A.; Cusi, Kenneth; Garrett, Timothy J.
2016-01-01
The hepatic tricarboxylic acid (TCA) cycle is central to integrating macronutrient metabolism and is closely coupled to cellular respiration, free radical generation, and inflammation. Oxidative flux through the TCA cycle is induced during hepatic insulin resistance, in mice and humans with simple steatosis, reflecting early compensatory remodeling of mitochondrial energetics. We hypothesized that progressive severity of hepatic insulin resistance and the onset of nonalcoholic steatohepatitis (NASH) would impair oxidative flux through the hepatic TCA cycle. Mice (C57/BL6) were fed a high-trans-fat high-fructose diet (TFD) for 8 wk to induce simple steatosis and NASH by 24 wk. In vivo fasting hepatic mitochondrial fluxes were determined by 13C-nuclear magnetic resonance (NMR)-based isotopomer analysis. Hepatic metabolic intermediates were quantified using mass spectrometry-based targeted metabolomics. Hepatic triglyceride accumulation and insulin resistance preceded alterations in mitochondrial metabolism, since TCA cycle fluxes remained normal during simple steatosis. However, mice with NASH had a twofold induction (P < 0.05) of mitochondrial fluxes (μmol/min) through the TCA cycle (2.6 ± 0.5 vs. 5.4 ± 0.6), anaplerosis (9.1 ± 1.2 vs. 16.9 ± 2.2), and pyruvate cycling (4.9 ± 1.0 vs. 11.1 ± 1.9) compared with their age-matched controls. Induction of the TCA cycle activity during NASH was concurrent with blunted ketogenesis and accumulation of hepatic diacylglycerols (DAGs), ceramides (Cer), and long-chain acylcarnitines, suggesting inefficient oxidation and disposal of excess free fatty acids (FFA). Sustained induction of mitochondrial TCA cycle failed to prevent accretion of “lipotoxic” metabolites in the liver and could hasten inflammation and the metabolic transition to NASH. PMID:26814015
Supercritical Brayton Cycle Nuclear Power System Concepts
NASA Astrophysics Data System (ADS)
Wright, Steven A.
2007-01-01
Both the NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, and for next generation nuclear power plants on earth. The gas Brayton cycle offers many practical solutions for space nuclear power systems and was selected as the nuclear power system of choice for the NASA Prometheus project. An alternative Brayton cycle that offers high efficiency at a lower reactor coolant outlet temperature is the supercritical Brayton cycle (SCBC). The supercritical cycle is a true Brayton cycle because it uses a single phase fluid with a compressor inlet temperature that is just above the critical point of the fluid. This paper describes the use of a supercritical Brayton cycle that achieves a cycle efficiency of 26.6% with a peak coolant temperature of 750 K and for a compressor inlet temperature of 390 K. The working fluid uses a clear odorless, nontoxic refrigerant C318 perflurocarbon (C4F8) that always operates in the gas phase. This coolant was selected because it has a critical temperature and pressure of 388.38 K and 2.777 MPa. The relatively high critical temperature allows for efficient thermal radiation that keeps the radiator mass small. The SCBC achieves high efficiency because the loop design takes advantage of the non-ideal nature of the coolant equation of state just above the critical point. The lower coolant temperature means that metal fuels, uranium oxide fuels, and uranium zirconium hydride fuels with stainless steel, ferretic steel, or superalloy cladding can be used with little mass penalty or reduction in cycle efficiency. The reactor can use liquid-metal coolants and no high temperature heat exchangers need to be developed. Indirect gas cooling or perhaps even direct gas cooling can be used if the C4F8 coolant is found to be sufficiently radiation tolerant. Other fluids can also be used in the supercritical Brayton cycle including Propane (C3H8, Tcritical = 369 K) and Hexane (C6H14, Tcritical = 506.1 K) provided they have adequate chemical compatibility and stability. Overall the use of supercritical Brayton cycles may offer ``break through'' operating capabilities for space nuclear power plants because high efficiencies can be achieved a very low reactor operating temperatures which in turn allows for the use of available fuels, cladding, and structural materials.
U.S. ENVIRONMENTAL PROTECTION AGENCY'S LANDFILL GAS EMISSION MODEL (LANDGEM)
The paper discusses EPA's available software for estimating landfill gas emissions. This software is based on a first-order decomposition rate equation using empirical data from U.S. landfills. The software provides a relatively simple approach to estimating landfill gas emissi...
NASA Astrophysics Data System (ADS)
Masiello, C. A.; Silberg, J. J.; Cheng, H. Y.; Del Valle, I.; Fulk, E. M.; Gao, X.; Bennett, G. N.
2017-12-01
Microbes can be programmed through synthetic biology to report on their behavior, informing researchers when their environment has triggered changes in their gene expression (e.g. in response to shifts in O2 or H2O), or when they have participated in a specific step of an elemental cycle (e.g. denitrification). This use of synthetic biology has the potential to significantly improve our understanding of microbes' roles in elemental and water cycling, because it allows reporting on the environment from the perspective of a microbe, matching the measurement scale exactly to the scale that a microbe experiences. However, synthetic microbes have not yet seen wide use in soil and sediment laboratory experiments because synthetic organisms typically report by fluorescing, making their signals difficult to detect outside the petri dish. We are developing a new suite of microbial programs that report instead by releasing easily-detected gases, allowing the real-time, noninvasive monitoring of behaviors in sediments and soils. Microbial biosensors can, in theory, be programmed to detect dynamic processes that contribute to a wide range of geobiological processes, including C cycling (biofilm production, methanogenesis, and synthesis of extracellular enzymes that degrade organic matter), N cycling (expression of enzymes that underlie different steps of the N cycle) and potentially S cycling. We will provide an overview of the potential uses of gas-reporting biosensors in soil and sediment lab experiments, and will report the development of the systematics of these sensors. Successful development of gas biosensors for laboratory use will require addressing issues including: engineering the intensity and selectivity of microbial gas production to maximize the signal to noise ratio; normalizing the gas reporter signal to cell population size, managing gas diffusion effects on signal shape; and developing multiple gases that can be used in parallel.
Evaluation of an Interferometric Sensor for In-Space Detection of Gas Leaks
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Korman, Valentin; Sinko, John; Hendrickson, Adam
2009-01-01
Space mission planning often involves long-term storage of volatile liquids or high-pressure gases. These may include cryogenic fuels and oxidizers, high-pressure gases, and life-support-critical consumables. The risk associated with the storage of fluids and gases in space systems has long been an issue and the ability to retain these fluids is often tied to mission success. A leak in the storage or distribution system can cause many different problems, including a simple, but mission endangering, loss of inventory or, in severe cases, unbalanced thrust loads on a flight vehicle. Cryogenic propellants are especially difficult to store, especially over a long duration. The propellant can boil off and be lost through the insulating walls of the tank or simple thermal cycling of the fittings, valves, and propellant feed lines may unseat seals allowing the fluid to escape. Current NASA missions call for long-duration in-space storage of propellants, oxidizers, and life support supplies. Leaks of a scale detectable through a pressure drop in the storage tank are often catastrophic and have long been the focus of ground-based mitigation efforts where redundant systems are often employed. However, there is presently no technology available for detecting and monitoring low-level, but still mission-endangering, gas leaks in space. Standard in-space gas detection methods either have a very limited pressure range over which they operate effectively or are limited to certain gases. Mass spectrometer systems are able to perform the detection tasks, but their size, mass and use of high voltage, which could potentially lead to an arc that ignites a combustible propellent, severely limit their usefulness in a space system. In this paper, we present results from testing of the light-based interferometric gas monitoring and leak detection sensor shown in Fig. 1. The output of the sensor is an interference fringe pattern that is a function of the gas density, and commensurate index of refraction, in the sample region. Changes in the density of gas cause the interference fringes to move across a photodiode detector, providing a temporal history of the leak. The sensor is fiber coupled and constructed from solid optics, allowing for placement almost anywhere on the spacecraft. It is also advantageous in that it consumes very little power and does not introduce an ignition source. Data are presented demonstrating the capability of the sensor to measure density variations in different gas species. In addition, the transient response of the sensor in vacuum is demonstrated. These data extend and improve upon the results previously presented by the authors in Ref. [1].
A Piagetian Learning Cycle for Introductory Chemical Kinetics.
ERIC Educational Resources Information Center
Batt, Russell H.
1980-01-01
Described is a Piagetian learning cycle based on Monte Carlo modeling of several simple reaction mechanisms. Included are descriptions of learning cycle phases (exploration, invention, and discovery) and four BASIC-PLUS computer programs to be used in the explanation of chemical reacting systems. (Author/DS)
Oil and Gas Wells and Pipelines on U.S. Wildlife Refuges: Challenges for Managers
2015-01-01
The increased demand for oil and gas places a burden on lands set aside for natural resource conservation. Oil and gas development alters the environment locally and on a much broader spatial scale depending on the intensity and extent of mineral resource extraction. The current increase in oil and gas exploration and production in the United States prompted an update of the number of pipelines and wells associated with oil and gas production on National Wildlife Refuge System (NWRS) lands. We obtained geospatial data on the location of oil and gas wells and pipelines within and close to the boundaries of NWRS lands (units) acquired as fee simple (i.e. absolute title to the surface land) by the U.S. Fish and Wildlife Service. We found that 5,002 wells are located in 107 NWRS units and 595 pipelines transect 149 of the 599 NWRS units. Almost half of the wells (2,196) were inactive, one-third (1,665) were active, and the remainder of the wells were either plugged and abandoned or the status was unknown. Pipelines crossed a total of 2,155 kilometers (1,339 miles) of NWRS fee simple lands. The high level of oil and gas activity warrants follow up assessments for wells lacking information on production type or well status with emphasis on verifying the well status and identifying abandoned and unplugged wells. NWRS fee simple lands should also be assessed for impacts from brine, oil and other hydrocarbon spills, as well as habitat alteration associated with oil and gas, including the identification of abandoned oil and gas facilities requiring equipment removal and site restoration. PMID:25915417
NASA Astrophysics Data System (ADS)
Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.
2010-06-01
In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.
NASA Astrophysics Data System (ADS)
Napitupulu, F. H.; Daulay, F. A.; Dedy, P. M.; Denis; Jecson
2017-03-01
In order to recover the waste heat from the exhaust gas of a combustion engine, an adsorption refrigeration cycle is proposed. This is a preliminary study on design and testing of a prototype of absorption refrigeration cycle powered by an internal combustion engine. The heat source of the cycle is a compression ignition engine which generates 122.36 W of heat in generator of the cycle. The pairs of absorbent and refrigerant are water and ammonia. Here the generator is made of a shell and tube heat exchanger with number of tube and its length are 20 and 0.69 m, respectively. In the experiments the exhaust gas, with a mass flow rate of 0.00016 kg/s, enters the generator at 110°C and leaves it at 72°C. Here, the solution is heated from 30°C to 90°C. In the evaporator, the lowest temperature can be reached is 17.9°C and COP of the system is 0.45. The main conclusion can be drawn here is that the proposed system can be used to recycle the waste heat and produced cooling. However, the COP is still low.
Small ponds play big role in greenhouse gas emissions from inland waters
NASA Astrophysics Data System (ADS)
Holgerson, M.; Raymond, P. A.
2017-12-01
Inland waters are an important part of the global carbon cycle, but there is uncertainty in estimating their greenhouse gas emissions. Uncertainty stems from different models and variable estimates of surface water gas concentrations, gas exchange rates, and the global size distribution of water bodies. Emissions from small water bodies are especially difficult to estimate because they are not globally mapped and few studies have assessed their greenhouse gas concentrations and gas exchange rates. To overcome these limitations, we studied greenhouse gases and gas exchange rates in small ponds in temperate forests of the northeastern United States. We then compiled our data with direct measurements of CO2 and CH4 concentrations from 427 ponds and lakes worldwide, and upscaled to estimate greenhouse gas emissions using estimates of gas exchange rates and the size distribution of lakes. We found that small ponds play a disproportionately large role in greenhouse gas emissions. While small ponds only account for about 9% of global lakes and ponds by area, they contribute 15% of CO2 and 41% of diffusive CH4 emissions from inland freshwaters. Secondly, we measured gas exchange velocities (k) in small ponds and compiled direct measurements of k from 67 global water bodies. We found that k is low but highly variable in small ponds, and increases and becomes even more variable with lake size, a finding that is not currently included in global carbon models. In a third study, we found that gas exchange in small ponds is highly sensitive to overnight cooling, which can lead to short bursts of increased k at night, with implications for greenhouse gas emissions. Overall, these studies show that small ponds are a critical part of the global carbon cycle, and also highlight many knowledge gaps. Therefore, understanding small pond carbon cycling is an important research priority.
Study on the variable cycle engine modeling techniques based on the component method
NASA Astrophysics Data System (ADS)
Zhang, Lihua; Xue, Hui; Bao, Yuhai; Li, Jijun; Yan, Lan
2016-01-01
Based on the structure platform of the gas turbine engine, the components of variable cycle engine were simulated by using the component method. The mathematical model of nonlinear equations correspondeing to each component of the gas turbine engine was established. Based on Matlab programming, the nonlinear equations were solved by using Newton-Raphson steady-state algorithm, and the performance of the components for engine was calculated. The numerical simulation results showed that the model bulit can describe the basic performance of the gas turbine engine, which verified the validity of the model.
Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine
Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel
2002-01-01
The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.
Production of synthetic fuels using syngas from a steam hydrogasification and reforming process
NASA Astrophysics Data System (ADS)
Raju, Arun Satheesh Kumar
This thesis is aimed at the research, optimization and development of a thermo-chemical process aimed at the production of synthesis gas (mixture of H2 and CO) with a flexible H2 to CO ratio using coupled steam hydrogasification and steam reforming processes. The steam hydrogasification step generates a product gas containing significant amounts of methane by gasifying a carbonaceous feed material with steam and internally generated H2. This product gas is converted to synthesis gas with an excess H2 to CO using the steam reformer. Research involving experimental and simulation work has been conducted on steam hydrogasification, steam reforming and the Fischer-Tropsch reaction. The Aspen Plus simulation tool has been used to develop a process model that can perform heat and mass balance calculations of the whole process using built-in reactor modules and an empirical FT model available in the literature. This model has been used to estimate optimum feed ratios and process conditions for specific feedstocks and products. Steam hydrogasification of coal and wood mixtures of varying coal to wood ratios has been performed in a stirred batch reactor. The carbon conversion of the feedstocks to gaseous products is around 60% at 700°C and 80% at 800°C. The coal to wood ratio of the feedstock does not exert a significant influence on the carbon conversion. The rates of formation of CO, CO 2 and CH4 during gasification have been calculated based on the experimental results using a simple kinetic model. Experimental research on steam reforming has been performed. It has been shown that temperature and the feed CO2/CH4 ratio play a dominant role in determining the product gas H2/CO ratio. Reforming of typical steam hydrogasification product-gas stream has been investigated over a commercial steam reforming catalyst. The results demonstrate that the combined use of steam hydrogasification process with a reformer can generate a synthesis gas with a predetermined H2/CO ratio from carbonaceous feedstocks. Experimental work on the Fischer-Tropsch synthesis has also been performed. A life cycle analysis has been performed with the objective of comparing the life cycle energy consumption and emissions of synthetic diesel fuel produced through the CE-CERT process with other fuel/vehicle combinations. The experimental and simulation results presented here demonstrate that the CE-CERT process is versatile and can potentially handle a number of different feedstocks. CE-CERT process appears to be suitable for commercialization in very large scales with a coal feedstock and also in a distributed network of smaller scale reactors utilizing localized renewable feedstocks.
Wise, M.B.; Thompson, C.V.
1998-07-14
An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.
Pressure Dependence of Gas-Phase Reaction Rates
ERIC Educational Resources Information Center
De Persis, Stephanie; Dollet, Alain; Teyssandier, Francis
2004-01-01
It is presented that only simple concepts, mainly taken from activated-complex or transition-state theory, are required to explain and analytically describe the influence of pressure on gas-phase reaction kinetics. The simplest kind of elementary gas-phase reaction is a unimolecular decomposition reaction.
A Primer on Alternative Transportation Fuels
2010-09-01
cycles used are the Otto Cycle (gasoline engines), the Diesel Cycle, and the Brayton Cycle (gas and steam turbines). These cycles are usually...can be achieved. This leads to diesel engines usually being about 30% more efficient than gasoline engines. The ideal Brayton cycle operates between...wetted area of the vessel. For analytical simplicity we will use a formula for A developed by David Taylor : 2 1)(6.2 LA Δ
Transient Characteristics of Free Piston Vuilleurnier Cycle Heat Pumps
NASA Astrophysics Data System (ADS)
Matsue, Junji; Fujimoto, Norioki; Shirai, Hiroyuki
A dynamic analysis of a free piston Vuilleumier cycle heat pump was performed using a time-stepping integration method to investigate transient characteristics under power controlling. The nonlinear relationship between displacement and force for pistons was taken into account for the motion of reciprocating components. The force for pistons is mainly caused by the pressure change of working gas varying with piston displacements; moreover nonlinear viscous dissipative force due to the oscillating flow of working gas in heat exchangers and discontinuous damping force caused by solid friction at piston seals and rod seals are included. The displacements of pistons and pressure changes in the Vuilleumier cycle heat pump were integrated by an ideal isothermal thermodynamic relationship. It was assumed that the flow friction was proportional to the kinematic pressure of working gas, and that the solid friction at the seals was due to the functions of the working gas pressure and the tension of seal springs. In order to investigate the transient characteristics of a proposed free piston Vuilleumier cycle heat pump machine when hot-side working gas temperatures and alternate force were changed, some calculations were performed and discussed. These calculation results make clear transient characteristics at starting and power controlling. It was further found that only a small amount of starter power is required in particular conditions. During controlling, the machine becomes unstable when there is ar elatively large reduction in cooling or heating power. Therefore, an auxiliary device is additionally needed to obtain stable operation, such as al inear motor.
Analysis of potential benefits of integrated-gasifier combined cycles for a utility system
NASA Technical Reports Server (NTRS)
Choo, Y. K.
1983-01-01
Potential benefits of integrated gasifier combined cycle (IGCC) units were evaluated for a reference utility system by comparing long range expansion plans using IGCC units and gas turbine peakers with a plan using only state of the art steam turbine units and gas turbine peakers. Also evaluated was the importance of the benefits of individual IGCC unit characteristics, particularly unit efficiency, unit equivalent forced outage rate, and unit size. A range of IGCC units was analyzed, including cases achievable with state of the art gas turbines and cases assuming advanced gas turbine technology. All utility system expansion plans that used IGCC units showed substantial savings compared with the base expansion plan using the steam turbine units.
NASA Technical Reports Server (NTRS)
Johnson, Paul K.; Mason, Lee S.
2006-01-01
This paper provides an analytical evaluation on the operation and performance of a dual Brayton common gas system. The NASA Glenn Research Center in-house computer program Closed Cycle System Simulation (CCSS) was used to construct a model of two identical 50 kWe-class recuperated closed-Brayton-cycle (CBC) power conversion units that share a common gas inventory and single heat source. As operating conditions for each CBC change, the total gas inventory is redistributed between the two units and overall system performance is affected. Several steady-state off-design operating points were analyzed by varying turbine inlet temperature and turbo-alternator shaft rotational speed to investigate the interaction of the two units.
Study on integration potential of gas turbines and gas engines into parabolic trough power plants
NASA Astrophysics Data System (ADS)
Vogel, Tobias; Oeljeklaus, Gerd; Görner, Klaus
2017-06-01
Hybrid power plants represent an important intermediate step on the way to an energy supply structure based substantially on renewable energies. Natural gas is the preferred fossil fuel for hybridization of solar thermal power plants, due to its low specific CO2-emission and technical advantages by means of integration into the power plant process. The power plant SHAMS ONE serves as an exemplary object of this study. In order to facilitate peaker gas turbines in an economical way to a combined cycle approach, with the SGT-400 an industrial gas turbine of the 10-20 MWel class have been integrated into the base case power plant. The concept has been set up, to make use of the gas turbine waste heat for power generation and increasing the overall power plant efficiency of the hybrid power plant at the same time. This concept represents an alternative to the widely used concept of combined cycle power plants with solar heat integration. Supplementary, this paper also dedicates the alternative to use gas engines instead of gas turbines.
Innovative Aircraft Design Study. Task II. Nuclear Aircraft Concepts
1977-04-01
simple cycle and system with no feedwater heating, reheating, or moisture removal from the turbine. The steam Rankine cycle is schematically shown in... cycle . With the SO Rankine cycle , the fluid is heated supercritically without a phase change, thereby reducing the complexity of the heater as...one and ten percent lighter in ramp weight than the other candidates at both payloads. Analyses of several Rankine and Brayton nuclear propulsion cycles
Petit and grand ensemble Monte Carlo calculations of the thermodynamics of the lattice gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murch, G.E.; Thorn, R.J.
1978-11-01
A direct Monte Carlo method for estimating the chemical potential in the petit canonical ensemble was applied to the simple cubic Ising-like lattice gas. The method is based on a simple relationship between the chemical potential and the potential energy distribution in a lattice gas at equilibrium as derived independently by Widom, and Jackson and Klein. Results are presented here for the chemical potential at various compositions and temperatures above and below the zero field ferromagnetic and antiferromagnetic critical points. The same lattice gas model was reconstructed in the form of a restricted grand canonical ensemble and results at severalmore » temperatures were compared with those from the petit canonical ensemble. The agreement was excellent in these cases.« less
NASA Astrophysics Data System (ADS)
Kühn, Michael; Li, Qi; Nakaten, Natalie, Christine; Kempka, Thomas
2017-04-01
Integration and further development of the energy supply system in China is a major challenge for the years to come. Part of the strategy is the implementation of a low carbon energy system based on carbon dioxide capture and storage (CCS). The innovative idea presented here is based on an extension of the power-to-gas-to-power (PGP) technology by establishing a closed carbon dioxide cycle [1]. Thereto, hydrogen generated from excess renewable energy is transformed into methane for combustion in a combined cycle gas power plant. To comply with the fluctuating energy demand, carbon dioxide produced during methane combustion and required for the methanation process as well as excess methane are temporarily stored in two underground reservoirs located close to each other [2]. Consequently, renewable energy generation units can be operated even if energy demand is below consumption, while stored energy can be fed into the grid as energy demand exceeds production [3]. We studied a show case for Xinjiang in China [4] to determine the energy demand of the entire process chain based on numerical computer simulations for the operation of the CO2 and CH4 storage reservoirs, and to ascertain the pressure regimes present in the storage formations during the injection and production phases of the annual cycle. [1] Streibel M., Nakaten N., Kempka T., Kühn M. (2013) Analysis of an integrated carbon cycle for storage of renewables. Energy Procedia 40, 202-211. doi: 10.1016/j.egypro.2013.08.024. [2] Kühn M., Streibel M., Nakaten N.C., Kempka T. (2014) Integrated Underground Gas Storage of CO2 and CH4 to Decarbonise the "Power-to-gas-to-gas-to-power" Technology. Energy Procedia 59, 9-15. doi: 10.1016/j.egypro.2014.10.342 [3] Kühn M., Nakaten N.C., Streibel M., Kempka T. (2014) CO2 Geological Storage and Utilization for a Carbon Neutral "Power-to-gas-to-power" Cycle to Even Out Fluctuations of Renewable Energy Provision. Energy Procedia 63, 8044-8049. doi: 10.1016/j.egypro.2014.11.841 [4] Li Q., Chen Z.A., Zhang J.T., Liu L.C., Li X.C., Jia L. (2016) Positioning and Revision of CCUS Technology Development in China. International Journal of Greenhouse Gas Control 46, 282-293. doi: 10.1016/j.ijggc.2015.02.024
Endoscopic spray cryotherapy for genitourinary malignancies: safety and efficacy in a porcine model
Power, Nicholas E.; Silberstein, Jonathan L.; Tarin, Tatum; Au, Joyce; Thorner, Daniel; Ezell, Paula; Monette, Sébastien; Fong, Yuman; Rusch, Valerie; Finley, David
2013-01-01
Objective: To examine the effects and safety of using endoscopic spray cryotherapy (ESC) on bladder, ureteral, and renal pelvis urothelium in a live porcine model. Subjects and methods: ESC treatments were systematically applied to urothelial sites in the bladder, ureter, and renal pelvis of eight female Yorkshire swine in a prospective trial. Freeze–thaw cycles ranged from 5 to 60 s/cycle for one to six cycles using a 7 French cryotherapy catheter. Tissue was evaluated histologically for treatment-related effects. Acute physiologic effects were evaluated with pulse oximetry, Doppler sonography, and postmortem findings. Results: In bladder, treatment depth was inconsistent regardless of dose, demonstrating urothelial necrosis in one, muscularis propria depth necrosis in two, and full thickness necrosis in all remaining samples. In ureter, full thickness necrosis was seen in all samples, even with the shortest spray duration (5 s/cycle for six cycles or 30 s/cycle for one cycle). Treatment to the renal pelvis was complicated by adiabatic gas expansion of liquid nitrogen to its gaseous state, resulting in high intraluminal pressures requiring venting to avoid organ perforation, even at the lowest treatment settings. At a planned dose of 5 s/cycle for six cycles of the first renal pelvis animal, treatment was interrupted by sudden and unrecoverable cardiopulmonary failure after three cycles. Repeated studies replicated this event. Ultrasound and immediate necropsy confirmed the creation of a large gaseous embolism and reproducible cardiopulmonary effects. Conclusion: ESC in a porcine urothelial treatment model results in full-thickness tissue necrosis in bladder, ureter, and renal pelvis at a minimal treatment settings of 5 s/cycle for six cycles. Adiabatic gas expansion may result in fatal pyelovenous gas embolism and collateral organ injury, as seen in both animals receiving treatment to the renal pelvis in this study. These results raise safety concerns for use of ESC as a treatment modality in urothelial tissues with current device settings. PMID:23730328
Stirling Laboratory Research Engine: Preprototype configuration report
NASA Technical Reports Server (NTRS)
Hoehn, F. W.
1982-01-01
The concept of a simple Stirling research engine that could be used by industrial, university, and government laboratories was studied. The conceptual and final designs, hardware fabrication and the experimental validation of a preprototype stirling laboratory research engine (SLRE) were completed. Also completed was a task to identify the potential markets for research engines of this type. An analytical effort was conducted to provide a stirling cycle computer model. The versatile engine is a horizontally opposed, two piston, single acting stirling engine with a split crankshaft drive mechanism; special instrumentation is installed at all component interfaces. Results of a thermodynamic energy balance for the system are reported. Also included are the engine performance results obtained over a range of speeds, working pressures, phase angles and gas temperatures. The potential for a stirling research engine to support the laboratory requirements of educators and researchers was demonstrated.
Lock hopper values for coal gasification plant service
NASA Technical Reports Server (NTRS)
Schoeneweis, E. F.
1977-01-01
Although the operating principle of the lock hopper system is extremely simple, valve applications involving this service for coal gasification plants are likewise extremely difficult. The difficulties center on the requirement of handling highly erosive pulverized coal or char (either in dry or slurry form) combined with the requirement of providing tight sealing against high-pressure (possibly very hot) gas. Operating pressures and temperatures in these applications typically range up to 1600 psi (110bar) and 600F (316C), with certain process requirements going even higher. In addition, and of primary concern, is the need for reliable operation over long service periods with the provision for practical and economical maintenance. Currently available data indicate the requirement for something in the order of 20,000 to 30,000 open-close cycles per year and a desire to operate at least that long without valve failure.
Attributing land-use change carbon emissions to exported biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saikku, Laura, E-mail: laura.saikku@helsinki.fi; Soimakallio, Sampo, E-mail: sampo.soimakallio@vtt.fi; Pingoud, Kim, E-mail: kim.pingoud@vtt.fi
2012-11-15
In this study, a simple, transparent and robust method is developed in which land-use change (LUC) emissions are retrospectively attributed to exported biomass products based on the agricultural area occupied for the production. LUC emissions account for approximately one-fifth of current greenhouse gas emissions. Increasing agricultural exports are becoming an important driver of deforestation. Brazil and Indonesia are used as case studies due to their significant deforestation in recent years. According to our study, in 2007, approximately 32% and 15% of the total agricultural land harvested and LUC emissions in Brazil and Indonesia respectively were due to exports. The mostmore » important exported single items with regard to deforestation were palm oil for Indonesia and bovine meat for Brazil. To reduce greenhouse gas (GHG) emissions effectively worldwide, leakage of emissions should be avoided. This can be done, for example, by attributing embodied LUC emissions to exported biomass products. With the approach developed in this study, controversial attribution between direct and indirect LUC and amortization of emissions over the product life cycle can be overcome, as the method operates on an average basis and annual level. The approach could be considered in the context of the UNFCCC climate policy instead of, or alongside with, other instruments aimed at reducing deforestation. However, the quality of the data should be improved and some methodological issues, such as the allocation procedure in multiproduct systems and the possible dilution effect through third parties not committed to emission reduction targets, should be considered. - Highlights: Black-Right-Pointing-Pointer CO{sub 2} emissions from land use changes are highly important. Black-Right-Pointing-Pointer Attribution of land use changes for products is difficult. Black-Right-Pointing-Pointer Simple and robust method is developed to attribute land use change emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Selow, E.R.; Cobden, P.D.; Verbraeken, P.A.
2009-05-15
A novel route for precombustion decarbonization is the sorption-enhanced water-gas shift (SEWGS) process. In this process carbon dioxide is removed from a synthesis gas at elevated temperature by adsorption. Simultaneously, carbon monoxide is converted to carbon dioxide by the water-gas shift reaction. The periodic adsorption and desorption of carbon dioxide is induced by a pressure swing cycle, and the cyclic capacity can be amplified by purging with steam. From previous studies is it known that for SEWGS applications, hydrotalcite-based materials are particularly attractive as sorbent, and commercial high-temperature shift catalysts can be used for the conversion of carbon monoxide. Tabletsmore » of a potassium promoted hydrotalcite-based material are characterized in both breakthrough and cyclic experiments in a 2 m tall fixed-bed reactor. When exposed to a mixture of carbon dioxide, steam, and nitrogen at 400{sup o}C, the material shows a breakthrough capacity of 1.4 mmol/g. In subsequent experiments the material was mixed with tablets of promoted iron-chromium shift catalyst and exposed to a mixture of carbon dioxide, carbon monoxide, steam, hydrogen, and nitrogen. It is demonstrated that carbon monoxide conversion can be enhanced to 100% in the presence of a carbon dioxide sorbent. At breakthrough, carbon monoxide and carbon dioxide simultaneously appear at the end of the bed. During more than 300 cycles of adsorption/reaction and desorption, the capture rate, and carbon monoxide conversion are confirmed to be stable. Two different cycle types are investigated: one cycle with a CO{sub 2} rinse step and one cycle with a steam rinse step. The performance of both SEWGS cycles are discussed.« less
NASA Technical Reports Server (NTRS)
Zoby, E. V.; Gnoffo, P. A.; Graves, R. A., Jr.
1976-01-01
Simple relations for determining the enthalpy and temperature of hydrogen-helium gas mixtures were developed for hydrogen volumetric compositions from 1.0 to 0.7. These relations are expressed as a function of pressure and density and are valid for a range of temperatures from 7,000 to 35,000 K and pressures from 0.10 to 3.14 MPa. The proportionality constant and exponents in the correlation equations were determined for each gas composition by applying a linear least squares curve fit to a large number of thermodynamic calculations obtained from a detailed computer code. Although these simple relations yielded thermodynamic properties suitable for many engineering applications, their accuracy was improved significantly by evaluating the proportionality constants at postshock conditions and correlating these values as a function of the gas composition and the product of freestream velocity and shock angle. The resulting equations for the proportionality constants in terms of velocity and gas composition and the corresponding simple realtions for enthalpy and temperature were incorporated into a flow field computational scheme. Comparison was good between the thermodynamic properties determined from these relations and those obtained by using a detailed computer code to determine the properties. Thus, an appreciable savings in computer time was realized with no significant loss in accuracy.
NASA Astrophysics Data System (ADS)
Comer-Warner, S.; Krause, S.; Gooddy, D.; Blaen, P.; Brekenfeld, N.; Wexler, S.; Kaiser, J.
2017-12-01
Hotspots of enhanced biogeochemical reactivity are produced where groundwater and surface water mixes in streambed sediments. This enhanced reactivity is due to elevated residence times and nutrient concentrations found in these areas, leading to increased rates of microbial metabolic activity. Streambed sediments, therefore, may be important in reducing catchment-wide nutrient concentrations through increased cycling. However, they also have the potential to produce high concentrations of greenhouse gases (CO2, CH4 and N2O), as end-products of respiration and intermediate products of denitrification. The hydrological and biogeochemical drivers of streambed C and N cycling, are still insufficiently understood. Here we present results from biogeochemical sampling and tracer experiments in an agricultural sandstone stream in the UK. Nutrient, DOC and greenhouse gas concentrations, as well as d13CCO2, were measured in the streambed sediment in multilevel piezometers, and nutrient concentrations, as well as d15NNO3 and d18ONO3, were measured in Diffusive Equilibrium in Thin-film Gels. Tracer experiments using both conservative (Fluorescein and NaCl) and smart (Resazurin-Resorufin) tracers were performed to determine in-stream metabolism, transient storage and solute transport times in sub-reaches of the stream. Our results show large differences in nutrient and greenhouse gas concentrations between sub-reaches dominated by gravel sediments and those dominated by sandy sediments, as well as seasonally. This suggests temperature, sediment type and residence time are key controls on streambed nutrient cycling and greenhouse gas production. The results of this study have important implications for future greenhouse gas estimates from streams and rivers, particularly as the contribution of sediment greenhouse gas production is recognised as increasingly significant.
Sulfate radicals enable a non-enzymatic Krebs cycle precursor
Keller, Markus A.; Kampjut, Domen; Harrison, Stuart A.; Ralser, Markus
2017-01-01
The evolutionary origins of the tricarboxylic acid cycle (TCA), or Krebs cycle, are so far unclear. Despite a few years ago, the existence of a simple non-enzymatic Krebs-cycle catalyst has been dismissed ‘as an appeal to magic’, citrate and other intermediates have meanwhile been discovered on a carbonaceous meteorite and do interconvert non-enzymatically. To identify the non-enzymatic Krebs cycle catalyst, we used combinatorial, quantitative high-throughput metabolomics to systematically screen iron and sulfate reaction milieus that orient on Archean sediment constituents. TCA cycle intermediates are found stable in water and in the presence of most iron and sulfate species, including simple iron-sulfate minerals. However, we report that TCA intermediates undergo 24 interconversion reactions in the presence of sulfate radicals that form from peroxydisulfate. The non-enzymatic reactions critically cover a topology as present in the Krebs cycle, the glyoxylate shunt and the succinic semialdehyde pathways. Assembled in a chemical network, the reactions achieve more than ninety percent carbon recovery. Our results show that a non-enzymatic precursor for the Krebs cycle is biologically sensible, efficient, and forms spontaneously in the presence of sulfate radicals. PMID:28584880
Simultaneous stack-gas scrubbing and waste water treatment
NASA Technical Reports Server (NTRS)
Poradek, J. C.; Collins, D. D.
1980-01-01
Simultaneous treatment of wastewater and S02-laden stack gas make both treatments more efficient and economical. According to results of preliminary tests, solution generated by stack gas scrubbing cycle reduces bacterial content of wastewater. Both processess benefit by sharing concentrations of iron.
Greenhouse gas emissions in an agroforestry system in the southeastern USA
USDA-ARS?s Scientific Manuscript database
Agroforestry systems may provide diverse ecosystem services and economic benefits that conventional agriculture cannot, e.g. potentially mitigating greenhouse gas emissions by enhancing nutrient cycling, since tree roots can capture nutrients not taken up by crops. However, greenhouse gas emission ...
Determination of gas volume trapped in a closed fluid system
NASA Technical Reports Server (NTRS)
Hunter, W. F.; Jolley, J. E.
1971-01-01
Technique involves extracting known volume of fluid and measuring system before and after extraction, volume of entrapped gas is then computed. Formula derived from ideal gas laws is basis of this method. Technique is applicable to thermodynamic cycles and hydraulic systems.
Investigation of propulsion system for large LNG ships
NASA Astrophysics Data System (ADS)
Sinha, R. P.; Nik, Wan Mohd Norsani Wan
2012-09-01
Requirements to move away from coal for power generation has made LNG as the most sought after fuel source, raising steep demands on its supply and production. Added to this scenario is the gradual depletion of the offshore oil and gas fields which is pushing future explorations and production activities far away into the hostile environment of deep sea. Production of gas in such environment has great technical and commercial impacts on gas business. For instance, laying gas pipes from deep sea to distant receiving terminals will be technically and economically challenging. Alternative to laying gas pipes will require installing re-liquefaction unit on board FPSOs to convert gas into liquid for transportation by sea. But, then because of increased distance between gas source and receiving terminals the current medium size LNG ships will no longer remain economical to operate. Recognizing this business scenario shipowners are making huge investments in the acquisition of large LNG ships. As power need of large LNG ships is very different from the current small ones, a variety of propulsion derivatives such as UST, DFDE, 2-Stroke DRL and Combined cycle GT have been proposed by leading engine manufacturers. Since, propulsion system constitutes major element of the ship's capital and life cycle cost, which of these options is most suited for large LNG ships is currently a major concern of the shipping industry and must be thoroughly assessed. In this paper the authors investigate relative merits of these propulsion options against the benchmark performance criteria of BOG disposal, fuel consumption, gas emissions, plant availability and overall life cycle cost.
Visibility graph network analysis of natural gas price: The case of North American market
NASA Astrophysics Data System (ADS)
Sun, Mei; Wang, Yaqi; Gao, Cuixia
2016-11-01
Fluctuations in prices of natural gas significantly affect global economy. Therefore, the research on the characteristics of natural gas price fluctuations, turning points and its influencing cycle on the subsequent price series is of great significance. Global natural gas trade concentrates on three regional markets: the North American market, the European market and the Asia-Pacific market, with North America having the most developed natural gas financial market. In addition, perfect legal supervision and coordinated regulations make the North American market more open and more competitive. This paper focuses on the North American natural gas market specifically. The Henry Hub natural gas spot price time series is converted to a visibility graph network which provides a new direction for macro analysis of time series, and several indicators are investigated: degree and degree distribution, the average shortest path length and community structure. The internal mechanisms underlying price fluctuations are explored through the indicators. The results show that the natural gas prices visibility graph network (NGP-VGN) is of small-world and scale-free properties simultaneously. After random rearrangement of original price time series, the degree distribution of network becomes exponential distribution, different from the original ones. This means that, the original price time series is of long-range negative correlation fractal characteristic. In addition, nodes with large degree correspond to significant geopolitical or economic events. Communities correspond to time cycles in visibility graph network. The cycles of time series and the impact scope of hubs can be found by community structure partition.
A PILOT STUDY OF THE INFLUENCE OF RESIDENTIAL HAC DUTY CYCLE ON INDOOR AIR QUALITY
A simple methodology was developed to collect measurements of duty cycle, the fraction of time the heating and air conditioning (HAC) system was operating inside residences. The primary purpose of the measurements was to assess whether the HAC duty cycle was related to reducti...
FUNDAMENTALS OF LIFE CYCLE ASSESSMENT AND OFF-THE-SHELF SOFTWARE DEMONSTRATION
As the name implies, Life Cycle Assesssment (LCA) evaluates the entire life cycle of a product, process, activity, or service, not just simple economics at the time of delivery. This course on LCA covers the following issues:
Basic principles of LCA for use in producing, des...
Particle behavior and char burnout mechanisms under pressurized combustion conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, C.M.; Spliethoff, H.; Hein, K.R.G.
Combined cycle systems with coal-fired gas turbines promise highest cycle efficiencies for this fuel. Pressurized pulverized coal combustion, in particular, yields high cycle efficiencies due to the high flue gas temperatures possible. The main problem, however, is to ensure a flue gas clean enough to meet the high gas turbine standards with a dirty fuel like coal. On the one hand, a profound knowledge of the basic chemical and physical processes during fuel conversion under elevated pressures is required whereas on the other hand suitable hot gas cleaning systems need to be developed. The objective of this work was tomore » provide experimental data to enable a detailed description of pressurized coal combustion processes. A series of experiments were performed with two German hvb coals, Ensdorf and Goettelborn, and one German brown coal, Garzweiler, using a semi-technical scale pressurized entrained flow reactor. The parameters varied in the experiments were pressure, gas temperature and bulk gas oxygen concentration. A two-color pyrometer was used for in-situ determination of particle surface temperatures and particle sizes. Flue gas composition was measured and solid residue samples taken and subsequently analyzed. The char burnout reaction rates were determinated varying the parameters pressure, gas temperature and initial oxygen concentration. Variation of residence time was achieved by taking the samples at different points along the reaction zone. The most influential parameters on char burnout reaction rates were found to be oxygen partial pressure and fuel volatile content. With increasing pressure the burn-out reactions are accelerated and are mostly controlled by product desorption and pore diffusion being the limiting processes. The char burnout process is enhanced by a higher fuel volatile content.« less
The mechanisms underlying the production of discontinuous gas exchange cycles in insects.
Matthews, Philip G D
2018-03-01
This review examines the control of gas exchange in insects, specifically examining what mechanisms could explain the emergence of discontinuous gas exchange cycles (DGCs). DGCs are gas exchange patterns consisting of alternating breath-hold periods and bouts of gas exchange. While all insects are capable of displaying a continuous pattern of gas exchange, this episodic pattern is known to occur within only some groups of insects and then only sporadically or during certain phases of their life cycle. Investigations into DGCs have tended to emphasise the role of chemosensory thresholds in triggering spiracle opening as critical for producing these gas exchange patterns. However, a chemosensory basis for episodic breathing also requires an as-of-yet unidentified hysteresis between internal respiratory stimuli, chemoreceptors, and the spiracles. What has been less appreciated is the role that the insect's central nervous system (CNS) might play in generating episodic patterns of ventilation. The active ventilation displayed by many insects during DGCs suggests that this pattern could be the product of directed control by the CNS rather than arising passively as a result of self-sustaining oscillations in internal oxygen and carbon dioxide levels. This paper attempts to summarise what is currently known about insect gas exchange regulation, examining the location and control of ventilatory pattern generators in the CNS, the influence of chemoreceptor feedback in the form of O 2 and CO 2 /pH fluctuations in the haemolymph, and the role of state-dependent changes in CNS activity on ventilatory control. This information is placed in the context of what is currently known regarding the production of discontinuous gas exchange patterns.
Luk, Jason M; Saville, Bradley A; MacLean, Heather L
2015-04-21
This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31 000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits.
Eustice, Moriah; Pillus, Lorraine
2014-01-01
Chromatin organization and structure are crucial for transcriptional regulation, DNA replication, and damage repair. Although initially characterized in remodeling cell wall glucans, the β-1,3-glucanosyltransferase Gas1 was recently discovered to regulate transcriptional silencing in a manner separable from its activity at the cell wall. However, the function of Gas1 in modulating chromatin remains largely unexplored. Our genetic characterization revealed that GAS1 had critical interactions with genes encoding the histone H3 lysine acetyltransferases Gcn5 and Sas3. Specifically, whereas the gas1gcn5 double mutant was synthetically lethal, deletion of both GAS1 and SAS3 restored silencing in Saccharomyces cerevisiae. The loss of GAS1 also led to broad DNA damage sensitivity with reduced Rad53 phosphorylation and defective cell cycle checkpoint activation following exposure to select genotoxins. Deletion of SAS3 in the gas1 background restored both Rad53 phosphorylation and checkpoint activation following exposure to genotoxins that trigger the DNA replication checkpoint. Our analysis thus uncovers previously unsuspected functions for both Gas1 and Sas3 in DNA damage response and cell cycle regulation. PMID:24532730
Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface.
Weiland, Nathan T; Zinn, Ben T
2003-11-01
In an open cycle traveling wave thermoacoustic engine, the hot heat exchanger is replaced by a steady flow of hot gas into the regenerator to provide the thermal energy input to the engine. The steady-state operation of such a device requires that a potentially large mean temperature difference exist between the incoming gas and the solid material at the regenerator's hot side, due in part to isentropic gas oscillations in the open space adjacent to the regenerator. The magnitude of this temperature difference will have a significant effect on the efficiencies of these open cycle devices. To help assess the feasibility of such thermoacoustic engines, a numerical model is developed that predicts the dependence of the mean temperature difference upon the important design and operating parameters of the open cycle thermoacoustic engine, including the acoustic pressure, mean mass flow rate, acoustic phase angles, and conductive heat loss. Using this model, it is also shown that the temperature difference at the regenerator interface is approximately proportional to the sum of the acoustic power output and the conductive heat loss at this location.
Highly Damping Hard Coatings for Protection of Titanium Blades
2005-10-01
Cycle Fatigue in Gas Turbine Engines for Land, Sea and Air Vehicles (pp. 11-1 – 11-16). Meeting Proceedings RTO-MP-AVT-121, Paper 11. Neuilly-sur...121. Evaluation, Control and Prevention of High Cycle Fatigue in Gas Turbine Engines for Land, Sea and Air Vehicles., The original document contains...result of microplastic deformation of the coating in the nano-structured state, is controlled at alternating loading by reversible phenomena of vacancy
Integrated Heat Switch/Oxide Sorption Compressor
NASA Technical Reports Server (NTRS)
Bard, Steven
1989-01-01
Thermally-driven, nonmechanical compressor uses container filled with compressed praseodymium cerium oxide powder (PrCeOx) to provide high-pressure flow of oxygen gas for driving closed-cycle Joule-Thomson-expansion refrigeration unit. Integrated heat switch/oxide sorption compressor has no moving parts except check valves, which control flow of oxygen gas between compressor and closed-cycle Joule-Thomson refrigeration system. Oxygen expelled from sorbent at high pressure by evacuating heat-switch gap and turning on heater.
Small engine technology programs
NASA Technical Reports Server (NTRS)
Niedzwiecki, Richard W.
1990-01-01
Described here is the small engine technology program being sponsored at the Lewis Research Center. Small gas turbine research is aimed at general aviation, commuter aircraft, rotorcraft, and cruise missile applications. The Rotary Engine program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. The Automotive Gas Turbine (AGT) and Heavy-Duty Diesel Transport Technology (HDTT) programs are sponsored by DOE. The Compound Cycle Engine program is sponsored by the Army. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The HDTT, rotary technology, and the compound cycle programs are all examining approaches to minimum heat rejection, or 'adiabatic' systems employing advanced materials. The AGT program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbine programs will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.
Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P
2015-09-01
Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.
Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; ...
2015-09-01
One effective method of reducing NO x emissions while improving efficiency is exhaust gas recirculation (EGR) in internal combustion engines. But, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder nonuniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. Furthermore, a sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO 2 concentration at various locationsmore » in the intake manifold. Our study employed mid-infrared light sources tuned to an absorption band of CO 2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.« less
Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.
2007-01-01
Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor, or other heat source, to electrical power using a closed-loop cycle. The operating fluid in the closed-loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus, foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed, and the effects of a very high ambient pressure, start-up torque, and misalignment, have been observed and are reported here.
Optimisation of Combined Cycle Gas Turbine Power Plant in Intraday Market: Riga CHP-2 Example
NASA Astrophysics Data System (ADS)
Ivanova, P.; Grebesh, E.; Linkevics, O.
2018-02-01
In the research, the influence of optimised combined cycle gas turbine unit - according to the previously developed EM & OM approach with its use in the intraday market - is evaluated on the generation portfolio. It consists of the two combined cycle gas turbine units. The introduced evaluation algorithm saves the power and heat balance before and after the performance of EM & OM approach by making changes in the generation profile of units. The aim of this algorithm is profit maximisation of the generation portfolio. The evaluation algorithm is implemented in multi-paradigm numerical computing environment MATLab on the example of Riga CHP-2. The results show that the use of EM & OM approach in the intraday market can be profitable or unprofitable. It depends on the initial state of generation units in the intraday market and on the content of the generation portfolio.
Exploratory study of several advanced nuclear-MHD power plant systems.
NASA Technical Reports Server (NTRS)
Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.
1973-01-01
In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob, J.T.; Chu, L.A.
The modular nature of gasification-combined-cycle (GCC) plants is known to facilitate capacity addition in increments (phased construction) that may match more closely with the anticipated growth in electrical load. Because the gas turbines are the primary building blocks of a phased GCC plant, utility planners are investigating in more detail prospective gas turbines of current and advanced designs developed by several manufacturers. This report summarizes the results of the evaluation of a GCC power plant based on the Kraftwerk Union Model V84.2 gas turbines of the current design now offered for the US market. The design of the Model V84.2more » machine, a scaled-down version of Kraftwerk Union's 50 Hz Model V94 machine, incorporates features suitable for burning gases, such as coal-derived synthesis gas. 14 figs., 42 tabs.« less
High-temperature Gas Reactor (HTGR)
NASA Astrophysics Data System (ADS)
Abedi, Sajad
2011-05-01
General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.
Simplified Life-Cycle Cost Estimation
NASA Technical Reports Server (NTRS)
Remer, D. S.; Lorden, G.; Eisenberger, I.
1983-01-01
Simple method for life-cycle cost (LCC) estimation avoids pitfalls inherent in formulations requiring separate estimates of inflation and interest rates. Method depends for validity observation that interest and inflation rates closely track each other.
Derivation of the Ideal Gas Law
ERIC Educational Resources Information Center
Laugier, Alexander; Garai, Jozsef
2007-01-01
Undergraduate and graduate physics and chemistry books usually state that combining the gas laws results in the ideal gas law. Leaving the derivation to the students implies that this should be a simple task, most likely a substitution. Boyle's law, Charles's law, and the Avogadro's principle are given under certain conditions; therefore, direct…
76 FR 41772 - Combined Notice of Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
.... Description: Columbia Gas Transmission, LLC submits tariff filing per 154.204: TCRA Out-Of-Cycle to be... that the Commission has received the following Natural Gas Pipeline Rate and Refund Report filings: Docket Numbers: RP11-2245-000. Applicants: Kinder Morgan Interstate Gas Transmission LLC. Description...
Carbon footprint of Breton pâté production: a case study.
Teixeira, Ricardo; Himeno, Anne; Gustavus, Lori
2013-10-01
This study targeted 9 different pork pâtés, produced with pork from different meat production systems (conventional, organic, and other quality certifications). Besides greenhouse gas (GHG) emissions, the study also included a detailed analysis of product nutrition. Results show that the GHG emissions range from 200 g CO2 e per 100 g of product for conventional pork pâtés and 330 g CO2 e per 100 g for organic pork pâtés. Results for organic pâtés are an indirect consequence of the lower productivity of swine feed ingredients. However, if the reference flow unit is nutritional indicator (e.g., calories, protein) instead of 100 g of product, results can be inverted. This fact highlights the difficulty of choosing a functional unit for studies on food products. The function of a food product is to provide quality nutrition, but because there are many different nutritional indicators, life cycle assessment practitioners normally use simple comparisons between amounts. This issue together with the choice of emissions allocation method between pork parts are the main sources of uncertainty. Also, the life cycle of pork production is the main hotspot in the C footprint, accounting for more than 80% of the total emissions. Energy spent for processing and packaging, the only life cycle step that the producer controls directly, accounts for less than 10% of the impact. © 2013 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui
A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of themore » one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.« less
NASA Astrophysics Data System (ADS)
Perez, R. J.; Shevalier, M.; Hutcheon, I.
2004-05-01
Gas solubility is of considerable interest, not only for the theoretical understanding of vapor-liquid equilibria, but also due to extensive applications in combined geochemical, engineering, and environmental problems, such as greenhouse gas sequestration. Reliable models for gas solubility calculations in salt waters and hydrocarbons are also valuable when evaluating fluid inclusions saturated with gas components. We have modeled the solubility of methane, ethane, hydrogen, carbon dioxide, hydrogen sulfide, and five other gases in a water-brine-hydrocarbon system by solving a non-linear system of equations composed by modified Henry's Law Constants (HLC), gas fugacities, and assuming binary mixtures. HLCs are a function of pressure, temperature, brine salinity, and hydrocarbon density. Experimental data of vapor pressures and mutual solubilities of binary mixtures provide the basis for the calibration of the proposed model. It is demonstrated that, by using the Setchenow equation, only a relatively simple modification of the pure water model is required to assess the solubility of gases in brine solutions. Henry's Law constants for gases in hydrocarbons are derived using regular solution theory and Ostwald coefficients available from the literature. We present a set of two-parameter polynomial expressions, which allow simple computation and formulation of the model. Our calculations show that solubility predictions using modified HLCs are acceptable within 0 to 250 C, 1 to 150 bars, salinity up to 5 molar, and gas concentrations up to 4 molar. Our model is currently being used in the IEA Weyburn CO2 monitoring and storage project.
Measuring Carbon Monoxide in Auto Exhaust by Gas Chromatography.
ERIC Educational Resources Information Center
Jaffe, Dan; Herndon, Scott
1995-01-01
Presents a simple and reliable technique using commonly available equipment for monitoring carbon monoxide in automobile exhaust. The experiment utilizes a gas chromatograph and a thermal conductivity detector (TCD). (DDR)
Modeling the complete Otto cycle: Preliminary version. [computer programming
NASA Technical Reports Server (NTRS)
Zeleznik, F. J.; Mcbride, B. J.
1977-01-01
A description is given of the equations and the computer program being developed to model the complete Otto cycle. The program incorporates such important features as: (1) heat transfer, (2) finite combustion rates, (3) complete chemical kinetics in the burned gas, (4) exhaust gas recirculation, and (5) manifold vacuum or supercharging. Changes in thermodynamic, kinetic and transport data as well as model parameters can be made without reprogramming. Preliminary calculations indicate that: (1) chemistry and heat transfer significantly affect composition and performance, (2) there seems to be a strong interaction among model parameters, and (3) a number of cycles must be calculated in order to obtain steady-state conditions.
Heat exchangers in regenerative gas turbine cycles
NASA Astrophysics Data System (ADS)
Nina, M. N. R.; Aguas, M. P. N.
1985-09-01
Advances in compact heat exchanger design and fabrication together with fuel cost rises continuously improve the attractability of regenerative gas turbine helicopter engines. In this study cycle parameters aiming at reduced specific fuel consumption and increased payload or mission range, have been optimized together with heat exchanger type and size. The discussion is based on a typical mission for an attack helicopter in the 900 kw power class. A range of heat exchangers is studied to define the most favorable geometry in terms of lower fuel consumption and minimum engine plus fuel weight. Heat exchanger volume, frontal area ratio and pressure drop effect on cycle efficiency are considered.
NASA Astrophysics Data System (ADS)
Azharuddin; Santarelli, Massimo
2016-09-01
Thermodynamic analysis of a closed cycle, solar powered Brayton gas turbine power plant with Concentrating Receiver system has been studied. A Brayton cycle is simpler than a Rankine cycle and has an advantage where the water is scarce. With the normal Brayton cycle a Concentrating Receiver System has been analysed which has a dependence on field density and optical system. This study presents a method of optimization of design parameter, such as the receiver working temperature and the heliostats density. This method aims at maximizing the overall efficiency of the three major subsystem that constitute the entire plant, namely, the heliostat field and the tower, the receiver and the power block. The results of the optimization process are shown and analysed.
NASA Technical Reports Server (NTRS)
Deegan, P. B.
1976-01-01
Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).
Applications of plasma core reactors to terrestrial energy systems
NASA Technical Reports Server (NTRS)
Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.
1974-01-01
Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-
Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.
Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul
2016-11-01
The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to increase both carbonyl and nitrous oxide emissions.
10 CFR 436.23 - Estimated simple payback time.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Methodology and Procedures for Life Cycle Cost Analyses § 436.23 Estimated simple payback time. The estimated simple payback time is the number of years required for the cumulative value of energy or water cost savings less future non-fuel or non-water costs to equal the investment costs of the building energy or...
10 CFR 436.23 - Estimated simple payback time.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Methodology and Procedures for Life Cycle Cost Analyses § 436.23 Estimated simple payback time. The estimated simple payback time is the number of years required for the cumulative value of energy or water cost savings less future non-fuel or non-water costs to equal the investment costs of the building energy or...
10 CFR 436.23 - Estimated simple payback time.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Methodology and Procedures for Life Cycle Cost Analyses § 436.23 Estimated simple payback time. The estimated simple payback time is the number of years required for the cumulative value of energy or water cost savings less future non-fuel or non-water costs to equal the investment costs of the building energy or...
10 CFR 436.23 - Estimated simple payback time.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Methodology and Procedures for Life Cycle Cost Analyses § 436.23 Estimated simple payback time. The estimated simple payback time is the number of years required for the cumulative value of energy or water cost savings less future non-fuel or non-water costs to equal the investment costs of the building energy or...
10 CFR 436.23 - Estimated simple payback time.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Methodology and Procedures for Life Cycle Cost Analyses § 436.23 Estimated simple payback time. The estimated simple payback time is the number of years required for the cumulative value of energy or water cost savings less future non-fuel or non-water costs to equal the investment costs of the building energy or...
Yuan, Jin-Peng; Ji, Zhong-Hua; Zhao, Yan-Ting; Chang, Xue-Fang; Xiao, Lian-Tuan; Jia, Suo-Tang
2013-09-01
We present a simple, reliable, and nondestructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to the collision rate constant between cold atoms and the background gas with a coefficient k, which can be calculated by means of the simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curves of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atomic systems and meets the miniaturization requirement of commercial applications.
Schiff Base as Additive for Preventing Gas Evolution in Li4Ti5O12-Based Lithium-Ion Battery.
Daigle, Jean-Christophe; Asakawa, Yuichiro; Hovington, Pierre; Zaghib, Karim
2017-11-29
Lithium titanium oxide (Li 4 Ti 5 O 12 )-based electrodes are very promising for long-life cycle batteries. However, the surface reactivity of Li 4 Ti 5 O 12 in organic electrolytes leading to gas evolution is still a problem that may cause expansion of pouch cells. In this study, we report the use of Schiff base (1,8-diazabicyclo[5.4.0]undec-7-ene) as an additive that prevents gas evolution during cell aging by a new mechanism involving the solid electrolyte interface on the anode surface. The in situ ring opening polymerization of cyclic carbonates occurs during the first cycles to decrease gas evolution by 9.7 vol % without increasing the internal resistance of the battery.
NASA Astrophysics Data System (ADS)
Chaczykowski, Maciej
2016-06-01
Basic organic Rankine cycle (ORC), and two variants of regenerative ORC have been considered for the recovery of exhaust heat from natural gas compressor station. The modelling framework for ORC systems has been presented and the optimisation of the systems was carried out with turbine power output as the variable to be maximized. The determination of ORC system design parameters was accomplished by means of the genetic algorithm. The study was aimed at estimating the thermodynamic potential of different ORC configurations with several working fluids employed. The first part of this paper describes the ORC equipment models which are employed to build a NLP formulation to tackle design problems representative for waste energy recovery on gas turbines driving natural gas pipeline compressors.
FCA Group LLC request to the EPA regarding greenhouse gas, off-cycle CO2 credits for High Efficiency Alternators used on 2009 and subsequent model year vehicles and off-cycle fuel consumption credits for 2017 and subsequent model year vehicles.
NASA Astrophysics Data System (ADS)
Taleb, Aly I.; Sapin, Paul; Barfuß, Christoph; Fabris, Drazen; Markides, Christos N.
2017-03-01
The efficiency of expanders is of prime importance in determining the overall performance of a variety of thermodynamic power systems, with reciprocating-piston expanders favoured at intermediate-scales of application (typically 10-100 kW). Once the mechanical losses in reciprocating machines are minimized (e.g. through careful valve design and operation), losses due to the unsteady thermal-energy exchange between the working fluid and the solid walls of the containing device can become the dominant loss mechanism. In this work, gas-spring devices are investigated numerically in order to focus explicitly on the thermodynamic losses that arise due to this unsteady heat transfer. The specific aim of the study is to investigate the behaviour of real gases in gas springs and to compare this to that of ideal gases in order to attain a better understanding of the impact of real-gas effects on the thermally induced losses in reciprocating expanders and compressors. A CFD-model of a gas spring is developed in OpenFOAM. Three different fluid models are compared: (1) an ideal-gas model with constant thermodynamic and transport properties; (2) an ideal-gas model with temperature-dependent properties; and (3) a real-gas model using the Peng-Robinson equation-of-state with temperature and pressure-dependent properties. Results indicate that, for simple, mono- and diatomic gases, like helium or nitrogen, there is a negligible difference in the pressure and temperature oscillations over a cycle between the ideal and real-gas models. However, when considering heavier (organic) molecules, such as propane, the ideal-gas model tends to overestimate the pressure compared to the real-gas model, especially if the temperature and pressure dependency of the thermodynamic properties is not taken into account. In fact, the ideal-gas model predicts higher pressures by as much as 25% (compared to the real-gas model). Additionally, both ideal-gas models underestimate the thermally induced loss compared to the real-gas model for heavier gases. This discrepancy is most pronounced at rotational speeds where the losses are highest. The real-gas model predicts a peak loss of 8.9% of the compression work, while the ideal-gas model predicts a peak loss of 5.7%. These differences in the work loss are due to the fact that the gas behaves less ideally during expansion than during compression, with the compressibility factor being lower during compression. This behaviour cannot be captured with the ideal-gas law. It is concluded that real-gas effects must be taken into account in order to predict accurately the thermally induced loss mechanism when using heavy fluid molecules in such devices.
Towards the simplest hydrodynamic lattice-gas model.
Boghosian, Bruce M; Love, Peter J; Meyer, David A
2002-03-15
It has been known since 1986 that it is possible to construct simple lattice-gas cellular automata whose hydrodynamics are governed by the Navier-Stokes equations in two dimensions. The simplest such model heretofore known has six bits of state per site on a triangular lattice. In this work, we demonstrate that it is possible to construct a model with only five bits of state per site on a Kagome lattice. Moreover, the model has a simple, deterministic set of collision rules and is easily implemented on a computer. In this work, we derive the equilibrium distribution function for this lattice-gas automaton and carry out the Chapman-Enskog analysis to determine the form of the Navier-Stokes equations.
Wilkins, Rodney; Menefee, Anne H; Clarens, Andres F
2016-12-06
Many of the environmental impacts associated with hydraulic fracturing of unconventional gas wells are tied to the large volumes of water that such operations require. Efforts to develop nonaqueous alternatives have focused on carbon dioxide as a tunable working fluid even though the full environmental and production impacts of a switch away from water have yet to be quantified. Here we report on a life cycle analysis of using either water or CO 2 for gas production in the Marcellus shale. The results show that CO 2 -based fluids, as currently conceived, could reduce greenhouse gas emissions by 400% (with sequestration credit) and water consumption by 80% when compared to conventional water-based fluids. These benefits are offset by a 44% increase in net energy use when compared to slickwater fracturing as well as logistical barriers resulting from the need to move and store large volumes of CO 2 . Scenario analyses explore the outlook for CO 2 , which under best-case conditions could eventually reduce life cycle energy, water, and greenhouse gas (GHG) burdens associated with fracturing. To achieve these benefits, it will be necessary to reduce CO 2 sourcing and transport burdens and to realize opportunities for improved energy recovery, averted water quality impacts, and carbon storage.
Impact of Geoengineering Schemes on the Global Hydrological Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, G; Duffy, P; Taylor, K
2007-12-07
The rapidly rising CO{sub 2} level in the atmosphere has led to proposals of climate stabilization via 'Geoengineering' schemes that would mitigate climate change by intentionally reducing the solar radiation incident on earth's surface. In this paper, we address the impact of these climate stabilization schemes on the global hydrological cycle, using equilibrium simulations from an atmospheric general circulation model coupled to a slab ocean model. We show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in the intensity of the global hydrologic cycle. This occurs because solar forcing is more effective in driving changesmore » in global mean evaporation than is CO{sub 2} forcing of a similar magnitude. In the model used here, the hydrologic sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% for solar forcing, but only 1.5% for CO{sub 2} forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. Compared to changing temperature by altering greenhouse gas concentrations, changing temperature by varying insolation results in larger changes in net radiative fluxes at the surface; these are compensated by larger changes in latent and sensible heat fluxes. Hence the hydrological cycle is more sensitive to temperature adjustment via changes in insolation than changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once.« less
Deliquification (SIC) of gas wells. Liberal District-Amoco Production Company
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smalley, R. Jr.
Various solutions are presented to the problem of deliquefying gas wells to achieve maximum ultimate recovery and avoid premature abandonment. Advantages and disadvantages of each method of deliquefication are discussed. The methods described include blowing up the casing, siphon strings (gas and liquids up tubing, or gas up casing-tubing annulus, and liquids up tubing), gas cycling, compression, bottomhole separators, plunger lift, and sucker rod pumping.
Finite Feedback Cycling in Structural Equation Models
ERIC Educational Resources Information Center
Hayduk, Leslie A.
2009-01-01
In models containing reciprocal effects, or longer causal loops, the usual effect estimates assume that any effect touching a loop initiates an infinite cycling of effects around that loop. The real world, in contrast, might permit only finite feedback cycles. I use a simple hypothetical model to demonstrate that if the world permits only a few…
A PILOT STUDY OF THE INFLUENCE OF RESIDENTIAL HAC DUTY CYCLE ON INDOOR AIR QUALITY (AE)
A simple methodology was developed to collect measurements of duty cycle, the fraction of time the heating and air conditioning (HAC) system was operating, inside residences. The primary purpose of the measurements was to assess whether the HAC duty cycle was related to reductio...
Bubble gate for in-plane flow control.
Oskooei, Ali; Abolhasani, Milad; Günther, Axel
2013-07-07
We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (i) Calculate the 5-cycle city and highway fuel economy values from the tests performed using gasoline or diesel test fuel. (ii)(A) Calculate the 5-cycle city and highway fuel economy values from the tests performed using alcohol or natural gas test fuel, if 5-cycle testing has been performed. Otherwise...
NASA Astrophysics Data System (ADS)
Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar
2017-12-01
Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chattopadhyay, S., E-mail: suman.mech09@gmail.com; Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com
Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR)more » cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (r{sub p}) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio and GT-TIT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, B.A.
1990-09-01
The purpose of the total project is to develop a gas-fired absorption heat pump for residential and small-commercial applications that will produce at least 1.6 Btu of heating and 0.7 Btu of cooling per Btu of heat content in the gas being burned. The primary technology advances that can be used to attain the new goals are higher efficiency cycles, increased flue efficiency, and better fluids. Flue efficiency technology is well developed, and fan-assisted combustion systems with condensing heat exchangers can limit flue and insulation losses to the 10% range. If this 10% loss assumption is made, the resulting targetmore » cycle COPs are 1.78 in heating mode and 0.78 in cooling mode at the ARI rating conditions. The objective of Phase 1 was to analyze working fluids and absorption-cycle concepts that are capable of performing at the target COPs and are potentially competitive with existing space-conditioning products in cost, operating life, and reliability. Six advanced cycles were evaluated with ammonia/water as the fluid pair. Then additional analysis was performed with other fluid pairs to determine whether cycle ranking would change depending on which fluid was used. It was concluded that the preferred cycle/fluid was the generator-absorber heat exchange (GAX) cycle using ammonia/water as the fluid pair. A cost estimate made by an independent manufacturing engineering firm for a residential heat pump based on the cycle/fluid combination determined that the GAX heat pump could be cost competitive with existing products. 20 refs., 28 figs., 2 tabs.« less
Gas Cavities inside Dust Cavities in Disks Inferred from ALMA Observations
NASA Astrophysics Data System (ADS)
van der Marel, Nienke; van Dishoeck, Ewine F.; Bruderer, Simon; Pinilla, Paola; van Kempen, Tim; Perez, Laura; Isella, Andrea
2016-01-01
Protoplanetary disks with cavities in their dust distribution, also named transitional disks, are expected to be in the middle of active evolution and possibly planet formation. In recent years, millimeter-dust rings observed by ALMA have been suggested to have their origin in dust traps, caused by pressure bumps. One of the ways to generate these is by the presence of planets, which lower the gas density along their orbit and create pressure bumps at the edge. We present spatially resolved ALMA Cycle 0 and Cycle 1 observations of CO and CO isotopologues of several famous transitional disks. Gas is found to be present inside the dust cavities, but at a reduced level compared with the gas surface density profile of the outer disk. The dust and gas emission are quantified using the physical-chemical modeling code DALI. In the majority of these disks we find clear evidence for a drop in gas density of at least a factor of 10 inside the cavity, whereas the dust density drops by at least a factor 1000. The CO isotopologue observations reveal that the gas cavities are significantly smaller than the dust cavities. These gas structures suggest clearing by one or more planetary-mass companions.
ERIC Educational Resources Information Center
Binder, P.-M.; Tanoue, C. K. S.
2013-01-01
Thermo dynamic cycles in introductory physics courses are usually made up from a small number of permutations of isothermal, adiabatic, and constant-pressure and volume quasistatic strokes, with the working fluid usually being an ideal gas. Among them we find the Carnot, Stirling, Otto, Diesel, and Joule-Brayton cycles; in more advanced courses,…
Visualizing Gas Adsorption on Porous Solids: Four Simple, Effective Demonstrations
ERIC Educational Resources Information Center
Cheung, Ocean
2014-01-01
Gas adsorption on porous solids is a topic that is often discussed in an undergraduate chemistry or chemical engineering course. The idea of porosity and gas adsorption on a porous solid is usually discussed with adsorption isotherms recorded using commercially available equipment. This discussion can be rather abstract and can be difficult for…
Simple gas chromatographic system for analysis of microbial respiratory gases
NASA Technical Reports Server (NTRS)
Carle, G. C.
1972-01-01
Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.
40 CFR 86.140-94 - Exhaust sample analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-cycle and methanol-fueled, natural gas-fueled and liquefied petroleum gas-fueled (if non-heated FID option is used) diesel vehicle HC: (1) Zero the analyzers and obtain a stable zero reading. Recheck after...: (1) Zero HFID analyzer and obtain a stable zero reading. (2) Introduce span gas and set instrument...
40 CFR 86.140-94 - Exhaust sample analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-cycle and methanol-fueled, natural gas-fueled and liquefied petroleum gas-fueled (if non-heated FID option is used) diesel vehicle HC: (1) Zero the analyzers and obtain a stable zero reading. Recheck after...: (1) Zero HFID analyzer and obtain a stable zero reading. (2) Introduce span gas and set instrument...
Seike, Yasushi; Fukumori, Ryoko; Senga, Yukiko; Oka, Hiroki; Fujinaga, Kaoru; Okumura, Minoru
2004-01-01
A new and simple method for the determination of hydroxylamine in environmental water, such as fresh rivers and lakes using hypochlorite, followed by its gas choromatographic detection, has been developed. A glass vial filled with sample water was sealed by a butyl-rubber stopper and aluminum cap without head-space, and then sodium hypochlorite solution was injected into the vial through a syringe to convert hydroxylamine to nitrous oxide. The head-space in the glass vial was prepared with 99.9% grade N2 using a gas-tight syringe. After the glass vial was shaken for a few minutes, nitrous oxide in the gas-phase was measured by a gas chromatograph with an electron-capture detector. The dissolved nitrous oxide in the liquid-phase was calculated according to the solubility formula. The proposed method was applied to the analysis of fresh-water samples taken from Iu river and Hii river, flowing into brackish Lakes Nakaumi and Shinji, respectively.
Port, Johannes; Tao, Ziran; Junger, Annika; Joppek, Christoph; Tempel, Philipp; Husemann, Kim; Singer, Florian; Latzin, Philipp; Yammine, Sophie; Nagel, Joachim H; Kohlhäufl, Martin
2017-11-01
For the assessment of small airway diseases, a noninvasive double-tracer gas single-breath washout (DTG-SBW) with sulfur hexafluoride (SF 6 ) and helium (He) as tracer components has been proposed. It is assumed that small airway diseases may produce typical ventilation inhomogeneities which can be detected within one single tidal breath, when using two tracer components. Characteristic parameters calculated from a relative molar mass (MM) signal of the airflow during the washout expiration phase are analyzed. The DTG-SBW signal is acquired by subtracting a reconstructed MM signal without tracer gas from the signal measured with an ultrasonic sensor during in- and exhalation of the double-tracer gas for one tidal breath. In this paper, a simple method to determine the reconstructed MM signal is presented. Measurements on subjects with and without obstructive lung diseases including the small airways have shown high reliability and reproducibility of this method.
Spectral Simulations and Abundance Determinations in the Interstellar Medium of Active Galaxies
NASA Astrophysics Data System (ADS)
Ferguson, Jason W.
The narrow emission line spectra of gas illuminated by the nuclear region of active galaxies cannot be described by models involving simple photoionization calculations. In this project we develop the numerical tools necessary to accurately simulate observed spectra from such regions. We begin by developing a compact model hydrogen atom, and show that a moderate number of atomic levels can reproduce the emission of much larger, definitive calculations. We discuss the excitation mechanism of the gas, that is, whether the emission we see is a result of either local shock excitation or direct photoionization by the central source. We show that photoionization plus continuum fluorescence can mimic excitation by shocks, and we suggest an observational test to distinguish between photoionization due to shocks and the central source. We extend to the narrow line region of active galaxies the 'locally optimally-emitting cloud' (LOC) model, wherein the observed spectra are predominantly determined by a simple, yet powerful selection effect. Namely, nature provides the emitting line region with clouds of a vast ensemble of properties, and we observe emission lines from those clouds that are most efficient at emitting them. We have calculated large grids of photoionization models of narrow line clouds for a wide range of gas density and distances from the ionizing source. We show that when coupled to a simple Keplerian velocity field, the LOC naturally reproduces the line width - critical density correlation observed in many narrow line objects. In addition, we calculate classical diagnostic line ratios and use simple LOC integrations over gas density to simulate the radial emission of the narrow lines and compare with observations. The effects of including dust in the simulations is discussed and we show that the more neutral gas is likely to be dusty, while the more highly ionized gas is dust-free. This implies a variety of cloud origins.
2010-01-01
constant-pressure ( Brayton ) cycle used in gas turbines and ramjets. The advantages of PDE for air- breathing propulsion are simplicity and easy scaling...constant-volume, and detonative combustion cycles will be referred to as Brayton , Humphrey, and PDE cycles. The efficiency of thermodynamic cycles O’ODD...efficiency of Brayton cycle, as 0G HH =′ , i.e., 0==constpχ (3) Constant-volume combustion (point E in Fig. 1) results in temperature K 2647/0E
Analyzing the dynamics of cell cycle processes from fixed samples through ergodic principles
Wheeler, Richard John
2015-01-01
Tools to analyze cyclical cellular processes, particularly the cell cycle, are of broad value for cell biology. Cell cycle synchronization and live-cell time-lapse observation are widely used to analyze these processes but are not available for many systems. Simple mathematical methods built on the ergodic principle are a well-established, widely applicable, and powerful alternative analysis approach, although they are less widely used. These methods extract data about the dynamics of a cyclical process from a single time-point “snapshot” of a population of cells progressing through the cycle asynchronously. Here, I demonstrate application of these simple mathematical methods to analysis of basic cyclical processes—cycles including a division event, cell populations undergoing unicellular aging, and cell cycles with multiple fission (schizogony)—as well as recent advances that allow detailed mapping of the cell cycle from continuously changing properties of the cell such as size and DNA content. This includes examples using existing data from mammalian, yeast, and unicellular eukaryotic parasite cell biology. Through the ongoing advances in high-throughput cell analysis by light microscopy, electron microscopy, and flow cytometry, these mathematical methods are becoming ever more important and are a powerful complementary method to traditional synchronization and time-lapse cell cycle analysis methods. PMID:26543196
Temperature control during regeneration of activated carbon fiber cloth with resistance-feedback.
Johnsen, David L; Rood, Mark J
2012-10-16
Electrothermal swing adsorption (ESA) of organic compounds from gas streams with activated carbon fiber cloth (ACFC) reduces emissions to the atmosphere and recovers feedstock for reuse. Local temperature measurement (e.g., with a thermocouple) is typically used to monitor/control adsorbent regeneration cycles. Remote electrical resistance measurement is evaluated here as an alternative to local temperature measurement. ACFC resistance that was modeled based on its physical properties was within 10.5% of the measured resistance values during electrothermal heating. Resistance control was developed based on this measured relationship and used to control temperature to within 2.3% of regeneration set-point temperatures. Isobutane-laden adsorbent was then heated with resistance control. After 2 min of heating, the temperature of the adsorbent with isobutane was 13% less than the adsorbent without isobutane. This difference decreased to 2.1% after 9 min of heating, showing desorption of isobutane. An ACFC cartridge was also heated to 175 °C for 900 cycles with its resistance and adsorption capacity values remaining within 3% and 2%, respectively. This new method to control regeneration power application based on rapid sensing of the adsorbent's resistance removes the need for direct-contact temperature sensors providing a simple, cost-efficient, and long-term regeneration technique for ESA systems.
Seasonal fluxes of carbonyl sulfide in a midlatitude forest
Commane, Róisín; Meredith, Laura K.; Baker, Ian T.; Berry, Joseph A.; Munger, J. William; Montzka, Stephen A.; Templer, Pamela H.; Juice, Stephanie M.; Zahniser, Mark S.; Wofsy, Steven C.
2015-01-01
Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale. PMID:26578759
Seasonal fluxes of carbonyl sulfide in a midlatitude forest.
Commane, Róisín; Meredith, Laura K; Baker, Ian T; Berry, Joseph A; Munger, J William; Montzka, Stephen A; Templer, Pamela H; Juice, Stephanie M; Zahniser, Mark S; Wofsy, Steven C
2015-11-17
Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale.
Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert
2016-05-03
Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.
Time-resolved microplasma excitation temperature in a pulsed microwave discharge
NASA Astrophysics Data System (ADS)
Hopwood, Jeffrey; Monfared, Shabnam; Hoskinson, Alan
2013-09-01
Microwave-driven microplasmas are usually operated in a steady-state mode such that the electron temperature is constant in time. Transient measurements of excitation temperature and helium emission lines, however, suggest that short microwave pulses can be used to raise the electron energy by 20-30% for approximately 100 ns. Time-resolved optical emission spectrometry reveals an initial burst of light emission from the igniting microplasma. This emission overshoot is also correlated with a measured increase in excitation temperature. Excimer emission lags atomic emission, however, and does not overshoot. A simple model demonstrates that an increase in electron temperature is responsible for the overshoot of atomic optical emission at the beginning of each microwave pulse. The formation of dimers and subsequent excimer emission requires slower three-body collisions with the excited rare gas atom; this is why excimer emission does not overshoot the steady state value. Similar experimental and modeling results are observed in argon gas. The overshoot in electron temperature may be used to manipulate the collisional production of species in microplasmas using short, low-duty cycle microwave pulses. This material is based upon work supported by the USAF and Physical Sciences Inc., under contract No. FA8650-C-12-C-2312. Additional support was provided by the DARPA MPD program under award FA9550-12-1-0006.
Berzosa, Álvaro; Barandica, Jesús M; Fernández-Sánchez, Gonzalo
2014-01-01
In recent years, several methodologies have been developed for the quantification of greenhouse gas (GHG) emissions. However, determining who is responsible for these emissions is also quite challenging. The most common approach is to assign emissions to the producer (based on the Kyoto Protocol), but proposals also exist for its allocation to the consumer (based on an ecological footprint perspective) and for a hybrid approach called shared responsibility. In this study, the existing proposals and standards regarding the allocation of GHG emissions responsibilities are analyzed, focusing on their main advantages and problems. A new model of shared responsibility that overcomes some of the existing problems is also proposed. This model is based on applying the best available technologies (BATs). This new approach allocates the responsibility between the producers and the final consumers based on the real capacity of each agent to reduce emissions. The proposed approach is demonstrated using a simple case study of a 4-step life cycle of ammonia nitrate (AN) fertilizer production. The proposed model has the characteristics that the standards and publications for assignment of GHG emissions responsibilities demand. This study presents a new way to assign responsibilities that pushes all the actors in the production chain, including consumers, to reduce pollution. © 2013 SETAC.
A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification
Nandi, Shyamapada; De Luna, Phil; Daff, Thomas D.; Rother, Jens; Liu, Ming; Buchanan, William; Hawari, Ayman I.; Woo, Tom K.; Vaidhyanathan, Ramanathan
2015-01-01
Metal organic frameworks (MOFs) built from a single small ligand typically have high stability, are rigid, and have syntheses that are often simple and easily scalable. However, they are normally ultra-microporous and do not have large surface areas amenable to gas separation applications. We report an ultra-microporous (3.5 and 4.8 Å pores) Ni-(4-pyridylcarboxylate)2 with a cubic framework that exhibits exceptionally high CO2/H2 selectivities (285 for 20:80 and 230 for 40:60 mixtures at 10 bar, 40°C) and working capacities (3.95 mmol/g), making it suitable for hydrogen purification under typical precombustion CO2 capture conditions (1- to 10-bar pressure swing). It exhibits facile CO2 adsorption-desorption cycling and has CO2 self-diffusivities of ~3 × 10−9 m2/s, which is two orders higher than that of zeolite 13X and comparable to other top-performing MOFs for this application. Simulations reveal a high density of binding sites that allow for favorable CO2-CO2 interactions and large cooperative binding energies. Ultra-micropores generated by a small ligand ensures hydrolytic, hydrostatic stabilities, shelf life, and stability toward humid gas streams. PMID:26824055
Design of the NASA Lewis 4-Port Wave Rotor Experiment
NASA Technical Reports Server (NTRS)
Wilson, Jack
1997-01-01
Pressure exchange wave rotors, used in a topping stage, are currently being considered as a possible means of increasing the specific power, and reducing the specific fuel consumption of gas turbine engines. Despite this interest, there is very little information on the performance of a wave rotor operating on the cycle (i.e., set of waves) appropriate for use in a topping stage. One such cycle, which has the advantage of being relatively easy to incorporate into an engine, is the four-port cycle. Consequently, an experiment to measure the performance of a four-port wave rotor for temperature ratios relevant to application as a topping cycle for a gas turbine engine has been designed and built at NASA Lewis. The design of the wave rotor is described, together with the constraints on the experiment.
Technical and economic feasibility study of solar/fossil hybrid power systems
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.; Calogeras, J. E.
1977-01-01
Results show that new hybrid systems utilizing fossil fuel augmentation of solar energy can provide significant capital and energy cost benefits when compared with solar thermal systems requiring thermal storage. These benefits accrue from a reduction of solar collection area that results from both the use of highly efficient gas and combined cycle energy conversion subsystems and elimination of the requirement for long-term energy storage subsystems. Technical feasibility and fuel savings benefits of solar hybrid retrofit to existing fossil-fired, gas and vapor cycle powerplants was confirmed; however, economic viability of steam cycle retrofit was found to be dependent on the thermodynamic and operational characteristics of the existing powerplant.
The application of probabilistic design theory to high temperature low cycle fatigue
NASA Technical Reports Server (NTRS)
Wirsching, P. H.
1981-01-01
Metal fatigue under stress and thermal cycling is a principal mode of failure in gas turbine engine hot section components such as turbine blades and disks and combustor liners. Designing for fatigue is subject to considerable uncertainty, e.g., scatter in cycles to failure, available fatigue test data and operating environment data, uncertainties in the models used to predict stresses, etc. Methods of analyzing fatigue test data for probabilistic design purposes are summarized. The general strain life as well as homo- and hetero-scedastic models are considered. Modern probabilistic design theory is reviewed and examples are presented which illustrate application to reliability analysis of gas turbine engine components.
NASA Astrophysics Data System (ADS)
Reyes, F. M.; Jaczilevich, A.; Grutter, M. A.; Huerta, M. A.; Rincón, P.; Rincón, R.; González, R.
2004-12-01
In this contribution, a methodology to acquire valuable information on the chemical composition and evolution of vehicular emissions is presented. With this innovative experimental set-up, it is possible to obtain real-time emissions of the combustion products without the need of dilution or sample collection. Key pollutants such as CO, CO2, H2CO, CH4, NO, N2O, NH3, SO2, CH3OH, acetylene, ethylene, ethane and total hydrocarbons, most of which are not regulated nor measured by current emissions control programs, can be accurately monitored with a single instrument. An FTIR spectrometer is used for the analysis of a constant flow of sample gas from the tail-pipe into a stainless-steel cylindrical cell of constant volume.(1) The cell is heated to 185 °C to avoid condensation, the pressure is kept constant and a multi-pass optical arrangement(2)is used to transmit the modulated infrared beam several times to improve the sensitivity. The total flow from the exhaust used for calculating the emission can be continuously determined from the differential pressure measurements from a "Pitot" tube calibrated against a hot-wire devise. This simple methodology is proposed for performing state-of-the-art evaluations on the emission behavior of new technologies, reformulated fuels and emission control devices. The results presented here were performed on a dynamometer running FTP-75 and driving cycles typical for Mexico City.(3,4) References 1. Grutter M. "Multi-Gas Analysis using FTIR Spectroscopy over Mexico City." Atmosfera 16, 1-16 (2003). 2. White J.U. "Long optical paths of large aperture. J. Opt. Soc. Am., 32, 285-288 (1942). 3. Santiago Cruz L. and P.I. Rincón. "Instrumentation of the Emission Control Laboratory at the Engineering School of the National Autonomous University of Mexico." Instrumentation and Development 4, 19-24, (2000). 4. González Oropeza R. and A. Galván Zacarías. "Desarrollo de ciclos de manejo característicos de la Ciudad de México." Memorias del IX Congreso Anual, Soc. Mex. de Ing. Mec. 535-544 (2003).
Ochs, Thomas L.; Sands, William D.; Schroeder, Karl; Summers, Cathy A.; Utz, Bruce R.
2002-01-29
This invention is a process for the passivation or deactivation with respect to oxygen of a carbonaceous material by the exposure of the carbonaceous material to an oxygenated gas in which the oxygenated gas pressure is increased from a first pressure to a second pressure and then the pressure is changed to a third pressure. Preferably a cyclic process which comprises exposing the carbonaceous material to the gas at low pressure and increasing the pressure to a second higher pressure and then returning the pressure to a lower pressure is used. The cycle is repeated at least twice wherein the higher pressure may be increased after a selected number of cycles.
The Tracer Gas Method of Determining the Charging Efficiency of Two-stroke-cycle Diesel Engines
NASA Technical Reports Server (NTRS)
Schweitzer, P H; Deluca, Frank, Jr
1942-01-01
A convenient method has been developed for determining the scavenging efficiency or the charging efficiency of two-stroke-cycle engines. The method consists of introducing a suitable tracer gas into the inlet air of the running engine and measuring chemically its concentration both in the inlet and exhaust gas. Monomethylamine CH(sub 3)NH(sub 2) was found suitable for the purpose as it burns almost completely during combustion, whereas the "short-circuited" portion does not burn at all and can be determined quantitatively in the exhaust. The method was tested both on four-stroke and on two-stroke engines and is considered accurate within 1 percent.
Ochs, Thomas L.; Sands, William D.; Schroeder, Karl; Summers, Cathy A.; Utz, Bruce R.
2000-11-14
This invention is a process for the passivation or deactivation with resp to oxygen of a carbonaceous material by the exposure of the carbonaceous material to an oxygenated gas in which the oxygenated gas pressure is increased from a first pressure to a second pressure and then the pressure is changed to a third pressure. Preferably a cyclic process which comprises exposing the carbonaceous material to the gas at low pressure and increasing the pressure to a second higher pressure and then returning the pressure to a lower pressure is used. The cycle is repeated at least twice wherein the higher pressure may be increased after a selected number of cycles.
ERIC Educational Resources Information Center
Jahnke, Thomas; Hamson, Mike
1999-01-01
Investigates the basic mechanics of cycling with a simple reckoning of how much effort is needed from the cyclist. The work done by the cyclist is quantified when the ride is on the flat and also when pedaling uphill. Proves that by making use of the available gears on a mountain bike, cycling uphill can be accomplished without pain. (Author/ASK)
Parasites and Their Impact on Ecosystem Nutrient Cycling.
Vannatta, J Trevor; Minchella, Dennis J
2018-06-01
Consumer species alter nutrient cycling through nutrient transformation, transfer, and bioturbation. Parasites have rarely been considered in this framework despite their ability to indirectly alter the cycling of nutrients via their hosts. A simple mathematical framework can be used to assess the relative importance of parasite-derived nutrients in an ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.
3 Steps to Great Coaching: A Simple but Powerful Instructional Coaching Cycle Nets Results
ERIC Educational Resources Information Center
Knight, Jim; Elford, Marti; Hock, Michael; Dunekack, Devona; Bradley, Barbara; Deshler, Donald D.; Knight, David
2015-01-01
In this article the authors describe a three-step instructional coaching cycle that can helps coaches become more effective. The article provides the steps and related components to: (1) Identify; (2) Learn; and (3) Improve. While the instructional coaching cycle is only one effective coaching program, coaches also need professional learning that…
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
NASA Astrophysics Data System (ADS)
1981-09-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
Development of a Miniature Gas-Bearing Cryogenic Turbo Refrigerator
1975-10-01
the rotor balance . AL4TERNATORi lElSIGN Trhe alternatior design is simitlar to previous designs but, because of the required design-point values of...VISOOSITY&MAX CL§*SECofIN**1)093IDOt-0S .JOURNAL DIA* (IN) 00961 ROTOR WEIGHT (LU) 0*0596 LEFT OVERHUNG WT. (LR) 0.0074 WT* 1ETWIEN BRGS. (LB) 0.0396...Open-Cycle Turboalternator Test Station.. a • •. .... 166 77 Open-Cycle Turboalternator Inlet Gas Instrumentation... 167 78 Modified Model MV-6 Balancer
Method of calculating gas dynamics and heat transfer in single stage refrigeration units
NASA Technical Reports Server (NTRS)
Zhitomirskiy, I. S.; Popolskiy, A. B.
1974-01-01
A generalized mathematical model of gas-dynamic and heat transfer processes in single-stage regenerative installations operating in Stirling, MacMahon, Gifford-MacMahon, and pulsating tube cycles is proposed. A numerical method os solving initial equations on a digital computer is given. This makes it possible to calculate the change in the thermodynamic parameters in the working cycle in different machine components, as well as the dependence of cold productivity on the temperature level in the steady regime.
NASA Astrophysics Data System (ADS)
1980-08-01
The technologies selected for the detailed characterization were: solar technology; terrestrial photovoltaic (200 MWe); coal technologies; conventional high sulfur coal combustion with advanced fine gas desulfurization (1250 MWe), and open cycle gas turbine combined cycle plant with low Btu gasifier (1250 MWe); and nuclear technologies: conventional light water reactor (1250 MWe), liquid metal fast breeder reactor (1250 MWe), and magnetic fusion reactor (1320 MWe). A brief technical summary of each power plant design is given.
NASA Technical Reports Server (NTRS)
Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.
1973-01-01
A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.
NASA Astrophysics Data System (ADS)
Venkatesh, Aranya
Increasing concerns about the environmental impacts of fossil fuels used in the U.S. transportation and electricity sectors have spurred interest in alternate energy sources, such as natural gas and biofuels. Life cycle assessment (LCA) methods can be used to estimate the environmental impacts of incumbent energy sources and potential impact reductions achievable through the use of alternate energy sources. Some recent U.S. climate policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S. However, the LCA methods used to estimate potential reductions in environmental impact have some drawbacks. First, the LCAs are predominantly based on deterministic approaches that do not account for any uncertainty inherent in life cycle data and methods. Such methods overstate the accuracy of the point estimate results, which could in turn lead to incorrect and (consequent) expensive decision-making. Second, system boundaries considered by most LCA studies tend to be limited (considered a manifestation of uncertainty in LCA). Although LCAs can estimate the benefits of transitioning to energy systems of lower environmental impact, they may not be able to characterize real world systems perfectly. Improved modeling of energy systems mechanisms can provide more accurate representations of reality and define more likely limits on potential environmental impact reductions. This dissertation quantitatively and qualitatively examines the limitations in LCA studies outlined previously. The first three research chapters address the uncertainty in life cycle greenhouse gas (GHG) emissions associated with petroleum-based fuels, natural gas and coal consumed in the U.S. The uncertainty in life cycle GHG emissions from fossil fuels was found to range between 13 and 18% of their respective mean values. For instance, the 90% confidence interval of the life cycle GHG emissions of average natural gas consumed in the U.S was found to range between -8 to 9% (17%) of the mean value of 66 g CO2e/MJ. Results indicate that uncertainty affects the conclusions of comparative life cycle assessments, especially when differences in average environmental impacts between two competing fuels/products are small. In the final two research chapters of this thesis, system boundary limitations in LCA are addressed. Simplified economic dispatch models for are developed to examine changes in regional power plant dispatch that occur when coal power plants are retired and when natural gas prices drop. These models better reflect reality by estimating the order in which existing power plants are dispatched to meet electricity demand based on short-run marginal costs. Results indicate that the reduction in air emissions are lower than suggested by LCA studies, since they generally do not include the complexity of regional electricity grids, predominantly driven by comparative fuel prices. For instance, comparison, this study estimates 7-15% reductions in emissions with low natural gas prices. Although this is a significant reduction in itself, it is still lower than the benefits reported in traditional life cycle comparisons of coal and natural gas-based power (close to 50%), mainly due to the effects of plant dispatch.
Microfluidic droplet trapping array as nanoliter reactors for gas-liquid chemical reaction.
Zhang, Qingquan; Zeng, Shaojiang; Qin, Jianhua; Lin, Bingcheng
2009-09-01
This article presents a simple method for trapping arrays of droplets relying on the designed microstructures of the microfluidic device, and this has been successfully used for parallel gas-liquid chemical reaction. In this approach, the trapping structure is composed of main channel, lateral channel and trapping region. Under a negative pressure, array droplets can be generated and trapped in the microstructure simultaneously, without the use of surfactant and the precise control of the flow velocity. By using a multi-layer microdevice containing the microstructures, single (pH gradient) and multiple gas-liquid reactions (metal ion-NH3 complex reaction) can be performed in array droplets through the transmembrane diffusion of the gas. The droplets with quantitative concentration gradient can be formed by only replacing the specific membrane. The established method is simple, robust and easy to operate, demonstrating the potential of this device for droplet-based high-throughput screening.
Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.
Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F
2016-04-04
Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98% isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gas-Surface Interactions in Cryogenic Whole Air Sampling.
1981-05-01
analysis using electron paramagnetic resonance (EPR) for the cryofrost in the solid phase, and gas chromatography for samples desorbed to the gas...e.g. cryogenic-fraction (used on occasion), and/or controlled vaporization, followed by analysis using NO xchemiluminescence, gas chromatography , and...CS202 closed cycle cryogenic refrigerator, which employs helium as the working fluid . This refrigerator is comprised of two basic sections - an
Workshop summary: Physical properties of gas hydrate-bearing sediment
Waite, William F.; Santamarina, J.C.
2008-01-01
A wide range of particle and pore scale phenomena, often coupled, determines the macro-scale response of gas-hydrate bearing sediment to changes in mechanical, thermal, or chemical conditions. Predicting this macro-scale response is critical for applications such as optimizing the production of methane from gas-hydrate deposits, or determining the role of gas hydrates in global carbon cycling and climate change.
Code of Federal Regulations, 2010 CFR
2010-01-01
... clothes drying cycle when the added gas or electric heat is terminated and the clothes continue to tumble... termination control” means a dryer control system with a sensor which monitors either the dryer load... highest voltage specified by the manufacturer. 2.3.2Gas supply. 2.3.2.1Natural gas. Maintains the gas...
Parra, Macarena; Jung, Jimmy; Boone, Travis D; Tran, Luan; Blaber, Elizabeth A; Brown, Mark; Chin, Matthew; Chinn, Tori; Cohen, Jacob; Doebler, Robert; Hoang, Dzung; Hyde, Elizabeth; Lera, Matthew; Luzod, Louie T; Mallinson, Mark; Marcu, Oana; Mohamedaly, Youssef; Ricco, Antonio J; Rubins, Kathleen; Sgarlato, Gregory D; Talavera, Rafael O; Tong, Peter; Uribe, Eddie; Williams, Jeffrey; Wu, Diana; Yousuf, Rukhsana; Richey, Charles S; Schonfeld, Julie; Almeida, Eduardo A C
2017-01-01
The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment.
Boone, Travis D.; Tran, Luan; Blaber, Elizabeth A.; Brown, Mark; Chin, Matthew; Chinn, Tori; Cohen, Jacob; Doebler, Robert; Hoang, Dzung; Hyde, Elizabeth; Lera, Matthew; Luzod, Louie T.; Mallinson, Mark; Marcu, Oana; Mohamedaly, Youssef; Ricco, Antonio J.; Rubins, Kathleen; Sgarlato, Gregory D.; Talavera, Rafael O.; Tong, Peter; Uribe, Eddie; Williams, Jeffrey; Wu, Diana; Yousuf, Rukhsana; Richey, Charles S.; Schonfeld, Julie
2017-01-01
The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment. PMID:28877184