Sample records for simple dynamical model

  1. A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.

    1990-01-01

    A simple dynamic engine model was developed at the NASA Ames Research Center, Dryden Flight Research Facility, for use in thrust vectoring control law development and real-time aircraft simulation. The simple dynamic engine model of the F404-GE-400 engine (General Electric, Lynn, Massachusetts) operates within the aircraft simulator. It was developed using tabular data generated from a complete nonlinear dynamic engine model supplied by the manufacturer. Engine dynamics were simulated using a throttle rate limiter and low-pass filter. Included is a description of a method to account for axial thrust loss resulting from thrust vectoring. In addition, the development of the simple dynamic engine model and its incorporation into the F-18 high alpha research vehicle (HARV) thrust vectoring simulation. The simple dynamic engine model was evaluated at Mach 0.2, 35,000 ft altitude and at Mach 0.7, 35,000 ft altitude. The simple dynamic engine model is within 3 percent of the steady state response, and within 25 percent of the transient response of the complete nonlinear dynamic engine model.

  2. Supply based on demand dynamical model

    NASA Astrophysics Data System (ADS)

    Levi, Asaf; Sabuco, Juan; Sanjuán, Miguel A. F.

    2018-04-01

    We propose and numerically analyze a simple dynamical model that describes the firm behaviors under uncertainty of demand. Iterating this simple model and varying some parameter values, we observe a wide variety of market dynamics such as equilibria, periodic, and chaotic behaviors. Interestingly, the model is also able to reproduce market collapses.

  3. Dynamical minimalism: why less is more in psychology.

    PubMed

    Nowak, Andrzej

    2004-01-01

    The principle of parsimony, embraced in all areas of science, states that simple explanations are preferable to complex explanations in theory construction. Parsimony, however, can necessitate a trade-off with depth and richness in understanding. The approach of dynamical minimalism avoids this trade-off. The goal of this approach is to identify the simplest mechanisms and fewest variables capable of producing the phenomenon in question. A dynamical model in which change is produced by simple rules repetitively interacting with each other can exhibit unexpected and complex properties. It is thus possible to explain complex psychological and social phenomena with very simple models if these models are dynamic. In dynamical minimalist theories, then, the principle of parsimony can be followed without sacrificing depth in understanding. Computer simulations have proven especially useful for investigating the emergent properties of simple models.

  4. A SIMPLE CELLULAR AUTOMATON MODEL FOR HIGH-LEVEL VEGETATION DYNAMICS

    EPA Science Inventory

    We have produced a simple two-dimensional (ground-plan) cellular automata model of vegetation dynamics specifically to investigate high-level community processes. The model is probabilistic, with individual plant behavior determined by physiologically-based rules derived from a w...

  5. Collinear Collision Chemistry: 1. A Simple Model for Inelastic and Reactive Collision Dynamics

    ERIC Educational Resources Information Center

    Mahan, Bruce H.

    1974-01-01

    Discusses a model for the collinear collision of an atom with a diatomic molecule on a simple potential surface. Indicates that the model can provide a framework for thinking about molecular collisions and reveal many factors which affect the dynamics of reactive and inelastic collisions. (CC)

  6. The dynamics of coastal models

    USGS Publications Warehouse

    Hearn, Clifford J.

    2008-01-01

    Coastal basins are defined as estuaries, lagoons, and embayments. This book deals with the science of coastal basins using simple models, many of which are presented in either analytical form or Microsoft Excel or MATLAB. The book introduces simple hydrodynamics and its applications, from the use of simple box and one-dimensional models to flow over coral reefs. The book also emphasizes models as a scientific tool in our understanding of coasts, and introduces the value of the most modern flexible mesh combined wave-current models. Examples from shallow basins around the world illustrate the wonders of the scientific method and the power of simple dynamics. This book is ideal for use as an advanced textbook for graduate students and as an introduction to the topic for researchers, especially those from other fields of science needing a basic understanding of the basic ideas of the dynamics of coastal basins.

  7. Development of methodology for horizontal axis wind turbine dynamic analysis

    NASA Technical Reports Server (NTRS)

    Dugundji, J.

    1982-01-01

    Horizontal axis wind turbine dynamics were studied. The following findings are summarized: (1) review of the MOSTAS computer programs for dynamic analysis of horizontal axis wind turbines; (2) review of various analysis methods for rotating systems with periodic coefficients; (3) review of structural dynamics analysis tools for large wind turbine; (4) experiments for yaw characteristics of a rotating rotor; (5) development of a finite element model for rotors; (6) development of simple models for aeroelastics; and (7) development of simple models for stability and response of wind turbines on flexible towers.

  8. Analysis and Modeling of Ground Operations at Hub Airports

    NASA Technical Reports Server (NTRS)

    Atkins, Stephen (Technical Monitor); Andersson, Kari; Carr, Francis; Feron, Eric; Hall, William D.

    2000-01-01

    Building simple and accurate models of hub airports can considerably help one understand airport dynamics, and may provide quantitative estimates of operational airport improvements. In this paper, three models are proposed to capture the dynamics of busy hub airport operations. Two simple queuing models are introduced to capture the taxi-out and taxi-in processes. An integer programming model aimed at representing airline decision-making attempts to capture the dynamics of the aircraft turnaround process. These models can be applied for predictive purposes. They may also be used to evaluate control strategies for improving overall airport efficiency.

  9. Glassy behaviour in simple kinetically constrained models: topological networks, lattice analogues and annihilation-diffusion

    NASA Astrophysics Data System (ADS)

    Sherrington, David; Davison, Lexie; Buhot, Arnaud; Garrahan, Juan P.

    2002-02-01

    We report a study of a series of simple model systems with only non-interacting Hamiltonians, and hence simple equilibrium thermodynamics, but with constrained dynamics of a type initially suggested by foams and idealized covalent glasses. We demonstrate that macroscopic dynamical features characteristic of real and more complex model glasses, such as two-time decays in energy and auto-correlation functions, arise from the dynamics and we explain them qualitatively and quantitatively in terms of annihilation-diffusion concepts and theory. The comparison is with strong glasses. We also consider fluctuation-dissipation relations and demonstrate subtleties of interpretation. We find no FDT breakdown when the correct normalization is chosen.

  10. Chemical Kinetics, Heat Transfer, and Sensor Dynamics Revisited in a Simple Experiment

    ERIC Educational Resources Information Center

    Sad, Maria E.; Sad, Mario R.; Castro, Alberto A.; Garetto, Teresita F.

    2008-01-01

    A simple experiment about thermal effects in chemical reactors is described, which can be used to illustrate chemical reactor models, the determination and validation of their parameters, and some simple principles of heat transfer and sensor dynamics. It is based in the exothermic reaction between aqueous solutions of sodium thiosulfate and…

  11. Disaggregation and Refinement of System Dynamics Models via Agent-based Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutaro, James J; Ozmen, Ozgur; Schryver, Jack C

    System dynamics models are usually used to investigate aggregate level behavior, but these models can be decomposed into agents that have more realistic individual behaviors. Here we develop a simple model of the STEM workforce to illuminate the impacts that arise from the disaggregation and refinement of system dynamics models via agent-based modeling. Particularly, alteration of Poisson assumptions, adding heterogeneity to decision-making processes of agents, and discrete-time formulation are investigated and their impacts are illustrated. The goal is to demonstrate both the promise and danger of agent-based modeling in the context of a relatively simple model and to delineate themore » importance of modeling decisions that are often overlooked.« less

  12. Evolutionary dynamics of fearfulness and boldness.

    PubMed

    Ji, Ting; Zhang, Boyu; Sun, Yuehua; Tao, Yi

    2009-02-21

    A negative relationship between reproductive effort and survival is consistent with life-history. Evolutionary dynamics and evolutionarily stable strategy (ESS) for the trade-off between survival and reproduction are investigated using a simple model with two phenotypes, fearfulness and boldness. The dynamical stability of the pure strategy model and analysis of ESS conditions reveal that: (i) the simple coexistence of fearfulness and boldness is impossible; (ii) a small population size is favorable to fearfulness, but a large population size is favorable to boldness, i.e., neither fearfulness, nor boldness is always favored by natural selection; and (iii) the dynamics of population density is crucial for a proper understanding of the strategy dynamics.

  13. Trajectory optimization and guidance law development for national aerospace plane applications

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Flandro, G. A.; Corban, J. E.

    1988-01-01

    The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case.

  14. Generating self-organizing collective behavior using separation dynamics from experimental data

    NASA Astrophysics Data System (ADS)

    Dieck Kattas, Graciano; Xu, Xiao-Ke; Small, Michael

    2012-09-01

    Mathematical models for systems of interacting agents using simple local rules have been proposed and shown to exhibit emergent swarming behavior. Most of these models are constructed by intuition or manual observations of real phenomena, and later tuned or verified to simulate desired dynamics. In contrast to this approach, we propose using a model that attempts to follow an averaged rule of the essential distance-dependent collective behavior of real pigeon flocks, which was abstracted from experimental data. By using a simple model to follow the behavioral tendencies of real data, we show that our model can exhibit a wide range of emergent self-organizing dynamics such as flocking, pattern formation, and counter-rotating vortices.

  15. Generating self-organizing collective behavior using separation dynamics from experimental data.

    PubMed

    Dieck Kattas, Graciano; Xu, Xiao-Ke; Small, Michael

    2012-09-01

    Mathematical models for systems of interacting agents using simple local rules have been proposed and shown to exhibit emergent swarming behavior. Most of these models are constructed by intuition or manual observations of real phenomena, and later tuned or verified to simulate desired dynamics. In contrast to this approach, we propose using a model that attempts to follow an averaged rule of the essential distance-dependent collective behavior of real pigeon flocks, which was abstracted from experimental data. By using a simple model to follow the behavioral tendencies of real data, we show that our model can exhibit a wide range of emergent self-organizing dynamics such as flocking, pattern formation, and counter-rotating vortices.

  16. A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks

    PubMed Central

    Schaffer, Evan S.; Ostojic, Srdjan; Abbott, L. F.

    2013-01-01

    Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the transition to spike synchronization in networks of coupled excitatory and inhibitory neurons. PMID:24204236

  17. Chaos and simple determinism in reversed field pinch plasmas: Nonlinear analysis of numerical simulation and experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Christopher A.

    In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulatemore » the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less

  18. Dynamics of financial crises in the world trade network

    NASA Astrophysics Data System (ADS)

    Askari, Marziyeh; Shirazi, Homayoun; Aghababaei Samani, Keivan

    2018-07-01

    A simple dynamical model is introduced to simulate the spreading of financial crises in the world trade network. In this model a directed network is constructed in which a weighted and directed link indicates the export value between two countries. The weights are subject to the change by a simple dynamical rule. The process begins with a crisis, i.e. a sudden decrease in the export value of a certain country and spreads throughout the whole network. We compare our results with the real values corresponding to the global financial crisis of 2008 and show that the results of our model are in good agreement with reality.

  19. The nature of the colloidal 'glass' transition.

    PubMed

    Dawson, Kenneth A; Lawlor, A; DeGregorio, Paolo; McCullagh, Gavin D; Zaccarelli, Emanuela; Foffi, Giuseppe; Tartaglia, Piero

    2003-01-01

    The dynamically arrested state of matter is discussed in the context of athermal systems, such as the hard sphere colloidal arrest. We believe that the singular dynamical behaviour near arrest expressed, for example, in how the diffusion constant vanishes may be 'universal', in a sense to be discussed in the paper. Based on this we argue the merits of studying the problem with simple lattice models. This, by analogy with the the critical point of the Ising model, should lead us to clarify the questions, and begin the program of establishing the degree of universality to be expected. We deal only with 'ideal' athermal dynamical arrest transitions, such as those found for hard sphere systems. However, it is argued that dynamically available volume (DAV) is the relevant order parameter of the transition, and that universal mechanisms may be well expressed in terms of DAV. For simple lattice models we give examples of simple laws that emerge near the dynamical arrest, emphasising the idea of a near-ideal gas of 'holes', interacting to give the power law diffusion constant scaling near the arrest. We also seek to open the discussion of the possibility of an underlying weak coupling theory of the dynamical arrest transition, based on DAV.

  20. Heterogeneity-induced large deviations in activity and (in some cases) entropy production

    NASA Astrophysics Data System (ADS)

    Gingrich, Todd R.; Vaikuntanathan, Suriyanarayanan; Geissler, Phillip L.

    2014-10-01

    We solve a simple model that supports a dynamic phase transition and show conditions for the existence of the transition. Using methods of large deviation theory we analytically compute the probability distribution for activity and entropy production rates of the trajectories on a large ring with a single heterogeneous link. The corresponding joint rate function demonstrates two dynamical phases—one localized and the other delocalized, but the marginal rate functions do not always exhibit the underlying transition. Symmetries in dynamic order parameters influence the observation of a transition, such that distributions for certain dynamic order parameters need not reveal an underlying dynamical bistability. Solution of our model system furthermore yields the form of the effective Markov transition matrices that generate dynamics in which the two dynamical phases are at coexistence. We discuss the implications of the transition for the response of bacterial cells to antibiotic treatment, arguing that even simple models of a cell cycle lacking an explicit bistability in configuration space will exhibit a bistability of dynamical phases.

  1. Peer pressure and Generalised Lotka Volterra models

    NASA Astrophysics Data System (ADS)

    Richmond, Peter; Sabatelli, Lorenzo

    2004-12-01

    We develop a novel approach to peer pressure and Generalised Lotka-Volterra (GLV) models that builds on the development of a simple Langevin equation that characterises stochastic processes. We generalise the approach to stochastic equations that model interacting agents. The agent models recently advocated by Marsilli and Solomon are motivated. Using a simple change of variable, we show that the peer pressure model (similar to the one introduced by Marsilli) and the wealth dynamics model of Solomon may be (almost) mapped one into the other. This may help shed light in the (apparently) different wealth dynamics described by GLV and the Marsili-like peer pressure models.

  2. A simple analytical model for dynamics of time-varying target leverage ratios

    NASA Astrophysics Data System (ADS)

    Lo, C. F.; Hui, C. H.

    2012-03-01

    In this paper we have formulated a simple theoretical model for the dynamics of the time-varying target leverage ratio of a firm under some assumptions based upon empirical observations. In our theoretical model the time evolution of the target leverage ratio of a firm can be derived self-consistently from a set of coupled Ito's stochastic differential equations governing the leverage ratios of an ensemble of firms by the nonlinear Fokker-Planck equation approach. The theoretically derived time paths of the target leverage ratio bear great resemblance to those used in the time-dependent stationary-leverage (TDSL) model [Hui et al., Int. Rev. Financ. Analy. 15, 220 (2006)]. Thus, our simple model is able to provide a theoretical foundation for the selected time paths of the target leverage ratio in the TDSL model. We also examine how the pace of the adjustment of a firm's target ratio, the volatility of the leverage ratio and the current leverage ratio affect the dynamics of the time-varying target leverage ratio. Hence, with the proposed dynamics of the time-dependent target leverage ratio, the TDSL model can be readily applied to generate the default probabilities of individual firms and to assess the default risk of the firms.

  3. Dynamics and forecast in a simple model of sustainable development for rural populations.

    PubMed

    Angulo, David; Angulo, Fabiola; Olivar, Gerard

    2015-02-01

    Society is becoming more conscious on the need to preserve the environment. Sustainable development schemes have grown rapidly as a tool for managing, predicting and improving the growth path in different regions and economy sectors. We introduce a novel and simple mathematical model of ordinary differential equations (ODEs) in order to obtain a dynamical description for each one of the sustainability components (economy, social development and environment conservation), together with their dependence with demographic dynamics. The main part in the modeling task is inspired by the works by Cobb, Douglas, Brander and Taylor. This is completed through some new insights by the authors. A model application is presented for three specific geographical rural regions in Caldas (Colombia).

  4. Manipulators with flexible links: A simple model and experiments

    NASA Technical Reports Server (NTRS)

    Shimoyama, Isao; Oppenheim, Irving J.

    1989-01-01

    A simple dynamic model proposed for flexible links is briefly reviewed and experimental control results are presented for different flexible systems. A simple dynamic model is useful for rapid prototyping of manipulators and their control systems, for possible application to manipulator design decisions, and for real time computation as might be applied in model based or feedforward control. Such a model is proposed, with the further advantage that clear physical arguments and explanations can be associated with its simplifying features and with its resulting analytical properties. The model is mathematically equivalent to Rayleigh's method. Taking the example of planar bending, the approach originates in its choice of two amplitude variables, typically chosen as the link end rotations referenced to the chord (or the tangent) motion of the link. This particular choice is key in establishing the advantageous features of the model, and it was used to support the series of experiments reported.

  5. Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers.

    PubMed

    Axelsen, Jacob Bock; Yaari, Rami; Grenfell, Bryan T; Stone, Lewi

    2014-07-01

    Human influenza occurs annually in most temperate climatic zones of the world, with epidemics peaking in the cold winter months. Considerable debate surrounds the relative role of epidemic dynamics, viral evolution, and climatic drivers in driving year-to-year variability of outbreaks. The ultimate test of understanding is prediction; however, existing influenza models rarely forecast beyond a single year at best. Here, we use a simple epidemiological model to reveal multiannual predictability based on high-quality influenza surveillance data for Israel; the model fit is corroborated by simple metapopulation comparisons within Israel. Successful forecasts are driven by temperature, humidity, antigenic drift, and immunity loss. Essentially, influenza dynamics are a balance between large perturbations following significant antigenic jumps, interspersed with nonlinear epidemic dynamics tuned by climatic forcing.

  6. Backward bifurcations, turning points and rich dynamics in simple disease models.

    PubMed

    Zhang, Wenjing; Wahl, Lindi M; Yu, Pei

    2016-10-01

    In this paper, dynamical systems theory and bifurcation theory are applied to investigate the rich dynamical behaviours observed in three simple disease models. The 2- and 3-dimensional models we investigate have arisen in previous investigations of epidemiology, in-host disease, and autoimmunity. These closely related models display interesting dynamical behaviors including bistability, recurrence, and regular oscillations, each of which has possible clinical or public health implications. In this contribution we elucidate the key role of backward bifurcations in the parameter regimes leading to the behaviors of interest. We demonstrate that backward bifurcations with varied positions of turning points facilitate the appearance of Hopf bifurcations, and the varied dynamical behaviors are then determined by the properties of the Hopf bifurcation(s), including their location and direction. A Maple program developed earlier is implemented to determine the stability of limit cycles bifurcating from the Hopf bifurcation. Numerical simulations are presented to illustrate phenomena of interest such as bistability, recurrence and oscillation. We also discuss the physical motivations for the models and the clinical implications of the resulting dynamics.

  7. A large-signal dynamic simulation for the series resonant converter

    NASA Technical Reports Server (NTRS)

    King, R. J.; Stuart, T. A.

    1983-01-01

    A simple nonlinear discrete-time dynamic model for the series resonant dc-dc converter is derived using approximations appropriate to most power converters. This model is useful for the dynamic simulation of a series resonant converter using only a desktop calculator. The model is compared with a laboratory converter for a large transient event.

  8. From Complex to Simple: Interdisciplinary Stochastic Models

    ERIC Educational Resources Information Center

    Mazilu, D. A.; Zamora, G.; Mazilu, I.

    2012-01-01

    We present two simple, one-dimensional, stochastic models that lead to a qualitative understanding of very complex systems from biology, nanoscience and social sciences. The first model explains the complicated dynamics of microtubules, stochastic cellular highways. Using the theory of random walks in one dimension, we find analytical expressions…

  9. Rubber friction and tire dynamics.

    PubMed

    Persson, B N J

    2011-01-12

    We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.

  10. A framework for studying transient dynamics of population projection matrix models.

    PubMed

    Stott, Iain; Townley, Stuart; Hodgson, David James

    2011-09-01

    Empirical models are central to effective conservation and population management, and should be predictive of real-world dynamics. Available modelling methods are diverse, but analysis usually focuses on long-term dynamics that are unable to describe the complicated short-term time series that can arise even from simple models following ecological disturbances or perturbations. Recent interest in such transient dynamics has led to diverse methodologies for their quantification in density-independent, time-invariant population projection matrix (PPM) models, but the fragmented nature of this literature has stifled the widespread analysis of transients. We review the literature on transient analyses of linear PPM models and synthesise a coherent framework. We promote the use of standardised indices, and categorise indices according to their focus on either convergence times or transient population density, and on either transient bounds or case-specific transient dynamics. We use a large database of empirical PPM models to explore relationships between indices of transient dynamics. This analysis promotes the use of population inertia as a simple, versatile and informative predictor of transient population density, but criticises the utility of established indices of convergence times. Our findings should guide further development of analyses of transient population dynamics using PPMs or other empirical modelling techniques. © 2011 Blackwell Publishing Ltd/CNRS.

  11. A Simple Model for Complex Dynamical Transitions in Epidemics

    NASA Astrophysics Data System (ADS)

    Earn, David J. D.; Rohani, Pejman; Bolker, Benjamin M.; Grenfell, Bryan T.

    2000-01-01

    Dramatic changes in patterns of epidemics have been observed throughout this century. For childhood infectious diseases such as measles, the major transitions are between regular cycles and irregular, possibly chaotic epidemics, and from regionally synchronized oscillations to complex, spatially incoherent epidemics. A simple model can explain both kinds of transitions as the consequences of changes in birth and vaccination rates. Measles is a natural ecological system that exhibits different dynamical transitions at different times and places, yet all of these transitions can be predicted as bifurcations of a single nonlinear model.

  12. Seasonal ENSO forecasting: Where does a simple model stand amongst other operational ENSO models?

    NASA Astrophysics Data System (ADS)

    Halide, Halmar

    2017-01-01

    We apply a simple linear multiple regression model called IndOzy for predicting ENSO up to 7 seasonal lead times. The model still used 5 (five) predictors of the past seasonal Niño 3.4 ENSO indices derived from chaos theory and it was rolling-validated to give a one-step ahead forecast. The model skill was evaluated against data from the season of May-June-July (MJJ) 2003 to November-December-January (NDJ) 2015/2016. There were three skill measures such as: Pearson correlation, RMSE, and Euclidean distance were used for forecast verification. The skill of this simple model was than compared to those of combined Statistical and Dynamical models compiled at the IRI (International Research Institute) website. It was found that the simple model was only capable of producing a useful ENSO prediction only up to 3 seasonal leads, while the IRI statistical and Dynamical model skill were still useful up to 4 and 6 seasonal leads, respectively. Even with its short-range seasonal prediction skills, however, the simple model still has a potential to give ENSO-derived tailored products such as probabilistic measures of precipitation and air temperature. Both meteorological conditions affect the presence of wild-land fire hot-spots in Sumatera and Kalimantan. It is suggested that to improve its long-range skill, the simple INDOZY model needs to incorporate a nonlinear model such as an artificial neural network technique.

  13. Nonequilibrium Green's functions and atom-surface dynamics: Simple views from a simple model system

    NASA Astrophysics Data System (ADS)

    Boström, E.; Hopjan, M.; Kartsev, A.; Verdozzi, C.; Almbladh, C.-O.

    2016-03-01

    We employ Non-equilibrium Green's functions (NEGF) to describe the real-time dynamics of an adsorbate-surface model system exposed to ultrafast laser pulses. For a finite number of electronic orbitals, the system is solved exactly and within different levels of approximation. Specifically i) the full exact quantum mechanical solution for electron and nuclear degrees of freedom is used to benchmark ii) the Ehrenfest approximation (EA) for the nuclei, with the electron dynamics still treated exactly. Then, using the EA, electronic correlations are treated with NEGF within iii) 2nd Born and with iv) a recently introduced hybrid scheme, which mixes 2nd Born self-energies with non-perturbative, local exchange- correlation potentials of Density Functional Theory (DFT). Finally, the effect of a semi-infinite substrate is considered: we observe that a macroscopic number of de-excitation channels can hinder desorption. While very preliminary in character and based on a simple and rather specific model system, our results clearly illustrate the large potential of NEGF to investigate atomic desorption, and more generally, the non equilibrium dynamics of material surfaces subject to ultrafast laser fields.

  14. Chaos in plasma simulation and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, C.; Newman, D.E.; Sprott, J.C.

    1993-09-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFPmore » dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less

  15. Chaos and unpredictability in evolution.

    PubMed

    Doebeli, Michael; Ispolatov, Iaroslav

    2014-05-01

    The possibility of complicated dynamic behavior driven by nonlinear feedbacks in dynamical systems has revolutionized science in the latter part of the last century. Yet despite examples of complicated frequency dynamics, the possibility of long-term evolutionary chaos is rarely considered. The concept of "survival of the fittest" is central to much evolutionary thinking and embodies a perspective of evolution as a directional optimization process exhibiting simple, predictable dynamics. This perspective is adequate for simple scenarios, when frequency-independent selection acts on scalar phenotypes. However, in most organisms many phenotypic properties combine in complicated ways to determine ecological interactions, and hence frequency-dependent selection. Therefore, it is natural to consider models for evolutionary dynamics generated by frequency-dependent selection acting simultaneously on many different phenotypes. Here we show that complicated, chaotic dynamics of long-term evolutionary trajectories in phenotype space is very common in a large class of such models when the dimension of phenotype space is large, and when there are selective interactions between the phenotypic components. Our results suggest that the perspective of evolution as a process with simple, predictable dynamics covers only a small fragment of long-term evolution. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  16. "Back of the Spoon" Outlook of Coanda Effect

    ERIC Educational Resources Information Center

    Lopez-Arias, T.; Gratton, L. M.; Bon, S.; Oss, S.

    2009-01-01

    The tendency of fluids to follow, in certain conditions, curved profiles is often referred to as the Coanda effect. A simple experiment modeling the common teapot effect, the curling of the liquid around the beak when it is poured, can be used in the classroom to illustrate simple dynamic principles and basic fluid dynamics concepts as well.

  17. Cooperative Team Networks

    DTIC Science & Technology

    2016-06-01

    team processes, such as identifying motifs of dynamic communication exchanges which goes well beyond simple dyadic and triadic configurations; as well...new metrics and ways to formulate team processes, such as identifying motifs of dynamic communication exchanges which goes well beyond simple dyadic ...sensing, communication , information, and decision networks - Darryl Ahner (AFIT: Air Force Inst Tech) Panel Session: Mathematical Models of

  18. A dynamical systems approach to actin-based motility in Listeria monocytogenes

    NASA Astrophysics Data System (ADS)

    Hotton, S.

    2010-11-01

    A simple kinematic model for the trajectories of Listeria monocytogenes is generalized to a dynamical system rich enough to exhibit the resonant Hopf bifurcation structure of excitable media and simple enough to be studied geometrically. It is shown how L. monocytogenes trajectories and meandering spiral waves are organized by the same type of attracting set.

  19. Simple Kinematic Pathway Approach (KPA) to Catchment-scale Travel Time and Water Age Distributions

    NASA Astrophysics Data System (ADS)

    Soltani, S. S.; Cvetkovic, V.; Destouni, G.

    2017-12-01

    The distribution of catchment-scale water travel times is strongly influenced by morphological dispersion and is partitioned between hillslope and larger, regional scales. We explore whether hillslope travel times are predictable using a simple semi-analytical "kinematic pathway approach" (KPA) that accounts for dispersion on two levels of morphological and macro-dispersion. The study gives new insights to shallow (hillslope) and deep (regional) groundwater travel times by comparing numerical simulations of travel time distributions, referred to as "dynamic model", with corresponding KPA computations for three different real catchment case studies in Sweden. KPA uses basic structural and hydrological data to compute transient water travel time (forward mode) and age (backward mode) distributions at the catchment outlet. Longitudinal and morphological dispersion components are reflected in KPA computations by assuming an effective Peclet number and topographically driven pathway length distributions, respectively. Numerical simulations of advective travel times are obtained by means of particle tracking using the fully-integrated flow model MIKE SHE. The comparison of computed cumulative distribution functions of travel times shows significant influence of morphological dispersion and groundwater recharge rate on the compatibility of the "kinematic pathway" and "dynamic" models. Zones of high recharge rate in "dynamic" models are associated with topographically driven groundwater flow paths to adjacent discharge zones, e.g. rivers and lakes, through relatively shallow pathway compartments. These zones exhibit more compatible behavior between "dynamic" and "kinematic pathway" models than the zones of low recharge rate. Interestingly, the travel time distributions of hillslope compartments remain almost unchanged with increasing recharge rates in the "dynamic" models. This robust "dynamic" model behavior suggests that flow path lengths and travel times in shallow hillslope compartments are controlled by topography, and therefore application and further development of the simple "kinematic pathway" approach is promising for their modeling.

  20. A Simple Treatment of the Liquidity Trap for Intermediate Macroeconomics Courses

    ERIC Educational Resources Information Center

    Buttet, Sebastien; Roy, Udayan

    2014-01-01

    Several leading undergraduate intermediate macroeconomics textbooks now include a simple reduced-form New Keynesian model of short-run dynamics (alongside the IS-LM model). Unfortunately, there is no accompanying description of how the zero lower bound on nominal interest rates affects the model. In this article, the authors show how the…

  1. Seasonally forced disease dynamics explored as switching between attractors

    NASA Astrophysics Data System (ADS)

    Keeling, Matt J.; Rohani, Pejman; Grenfell, Bryan T.

    2001-01-01

    Biological phenomena offer a rich diversity of problems that can be understood using mathematical techniques. Three key features common to many biological systems are temporal forcing, stochasticity and nonlinearity. Here, using simple disease models compared to data, we examine how these three factors interact to produce a range of complicated dynamics. The study of disease dynamics has been amongst the most theoretically developed areas of mathematical biology; simple models have been highly successful in explaining the dynamics of a wide variety of diseases. Models of childhood diseases incorporate seasonal variation in contact rates due to the increased mixing during school terms compared to school holidays. This ‘binary’ nature of the seasonal forcing results in dynamics that can be explained as switching between two nonlinear spiral sinks. Finally, we consider the stability of the attractors to understand the interaction between the deterministic dynamics and demographic and environmental stochasticity. Throughout attention is focused on the behaviour of measles, whooping cough and rubella.

  2. Predictability in community dynamics.

    PubMed

    Blonder, Benjamin; Moulton, Derek E; Blois, Jessica; Enquist, Brian J; Graae, Bente J; Macias-Fauria, Marc; McGill, Brian; Nogué, Sandra; Ordonez, Alejandro; Sandel, Brody; Svenning, Jens-Christian

    2017-03-01

    The coupling between community composition and climate change spans a gradient from no lags to strong lags. The no-lag hypothesis is the foundation of many ecophysiological models, correlative species distribution modelling and climate reconstruction approaches. Simple lag hypotheses have become prominent in disequilibrium ecology, proposing that communities track climate change following a fixed function or with a time delay. However, more complex dynamics are possible and may lead to memory effects and alternate unstable states. We develop graphical and analytic methods for assessing these scenarios and show that these dynamics can appear in even simple models. The overall implications are that (1) complex community dynamics may be common and (2) detailed knowledge of past climate change and community states will often be necessary yet sometimes insufficient to make predictions of a community's future state. © 2017 John Wiley & Sons Ltd/CNRS.

  3. Dynamical systems, attractors, and neural circuits.

    PubMed

    Miller, Paul

    2016-01-01

    Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.

  4. Simple scaling of catastrophic landslide dynamics.

    PubMed

    Ekström, Göran; Stark, Colin P

    2013-03-22

    Catastrophic landslides involve the acceleration and deceleration of millions of tons of rock and debris in response to the forces of gravity and dissipation. Their unpredictability and frequent location in remote areas have made observations of their dynamics rare. Through real-time detection and inverse modeling of teleseismic data, we show that landslide dynamics are primarily determined by the length scale of the source mass. When combined with geometric constraints from satellite imagery, the seismically determined landslide force histories yield estimates of landslide duration, momenta, potential energy loss, mass, and runout trajectory. Measurements of these dynamical properties for 29 teleseismogenic landslides are consistent with a simple acceleration model in which height drop and rupture depth scale with the length of the failing slope.

  5. A simple dynamic subgrid-scale model for LES of particle-laden turbulence

    NASA Astrophysics Data System (ADS)

    Park, George Ilhwan; Bassenne, Maxime; Urzay, Javier; Moin, Parviz

    2017-04-01

    In this study, a dynamic model for large-eddy simulations is proposed in order to describe the motion of small inertial particles in turbulent flows. The model is simple, involves no significant computational overhead, contains no adjustable parameters, and is flexible enough to be deployed in any type of flow solvers and grids, including unstructured setups. The approach is based on the use of elliptic differential filters to model the subgrid-scale velocity. The only model parameter, which is related to the nominal filter width, is determined dynamically by imposing consistency constraints on the estimated subgrid energetics. The performance of the model is tested in large-eddy simulations of homogeneous-isotropic turbulence laden with particles, where improved agreement with direct numerical simulation results is observed in the dispersed-phase statistics, including particle acceleration, local carrier-phase velocity, and preferential-concentration metrics.

  6. A simple electric circuit model for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lazarou, Stavros; Pyrgioti, Eleftheria; Alexandridis, Antonio T.

    A simple and novel dynamic circuit model for a proton exchange membrane (PEM) fuel cell suitable for the analysis and design of power systems is presented. The model takes into account phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The proposed circuit model includes three resistors to approach adequately these phenomena; however, since for the PEM dynamic performance connection or disconnection of an additional load is of crucial importance, the proposed model uses two saturable inductors accompanied by an ideal transformer to simulate the double layer charging effect during load step changes. To evaluate the effectiveness of the proposed model its dynamic performance under load step changes is simulated. Experimental results coming from a commercial PEM fuel cell module that uses hydrogen from a pressurized cylinder at the anode and atmospheric oxygen at the cathode, clearly verify the simulation results.

  7. Benchmarking novel approaches for modelling species range dynamics

    PubMed Central

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H.; Moore, Kara A.; Zimmermann, Niklaus E.

    2016-01-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species’ range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species’ response to climate change but also emphasise several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. PMID:26872305

  8. Benchmarking novel approaches for modelling species range dynamics.

    PubMed

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. © 2016 John Wiley & Sons Ltd.

  9. Energetics and dynamics of simple impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Starr, R.; Heindl, W. A.; Crannell, C. J.; Thomas, R. J.; Batchelor, D. A.; Magun, A.

    1987-01-01

    Flare energetics and dynamics were studied using observations of simple impulsive spike bursts. A large, homogeneous set of events was selected to enable the most definite tests possible of competing flare models, in the absence of spatially resolved observations. The emission mechanisms and specific flare models that were considered in this investigation are described, and the derivations of the parameters that were tested are presented. Results of the correlation analysis between soft and hard X-ray energetics are also presented. The ion conduction front model and tests of that model with the well-observed spike bursts are described. Finally, conclusions drawn from this investigation and suggestions for future studies are discussed.

  10. On the derivation of a simple dynamic model of anaerobic digestion including the evolution of hydrogen.

    PubMed

    Giovannini, Giannina; Sbarciog, Mihaela; Steyer, Jean-Philippe; Chamy, Rolando; Vande Wouwer, Alain

    2018-05-01

    Hydrogen has been found to be an important intermediate during anaerobic digestion (AD) and a key variable for process monitoring as it gives valuable information about the stability of the reactor. However, simple dynamic models describing the evolution of hydrogen are not commonplace. In this work, such a dynamic model is derived using a systematic data driven-approach, which consists of a principal component analysis to deduce the dimension of the minimal reaction subspace explaining the data, followed by an identification of the kinetic parameters in the least-squares sense. The procedure requires the availability of informative data sets. When the available data does not fulfill this condition, the model can still be built from simulated data, obtained using a detailed model such as ADM1. This dynamic model could be exploited in monitoring and control applications after a re-identification of the parameters using actual process data. As an example, the model is used in the framework of a control strategy, and is also fitted to experimental data from raw industrial wine processing wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Control-structure interaction study for the Space Station solar dynamic power module

    NASA Technical Reports Server (NTRS)

    Cheng, J.; Ianculescu, G.; Ly, J.; Kim, M.

    1991-01-01

    The authors investigate the feasibility of using a conventional PID (proportional plus integral plus derivative) controller design to perform the pointing and tracking functions for the Space Station Freedom solar dynamic power module. Using this simple controller design, the control/structure interaction effects were also studied without assuming frequency bandwidth separation. From the results, the feasibility of a simple solar dynamic control solution with a reduced-order model, which satisfies the basic system pointing and stability requirements, is suggested. However, the conventional control design approach is shown to be very much influenced by the order of reduction of the plant model, i.e., the number of the retained elastic modes from the full-order model. This suggests that, for complex large space structures, such as the Space Station Freedom solar dynamic, the conventional control system design methods may not be adequate.

  12. A simple model of low-scale direct gauge mediation

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Shirman, Yuri; Terning, John

    2007-05-01

    We construct a calculable model of low-energy direct gauge mediation making use of the metastable supersymmetry breaking vacua recently discovered by Intriligator, Seiberg and Shih. The standard model gauge group is a subgroup of the global symmetries of the SUSY breaking sector and messengers play an essential role in dynamical SUSY breaking: they are composites of a confining gauge theory, and the holomorphic scalar messenger mass appears as a consequence of the confining dynamics. The SUSY breaking scale is around 100 TeV nevertheless the model is calculable. The minimal non-renormalizable coupling of the Higgs to the DSB sector leads in a simple way to a μ-term, while the B-term arises at two-loop order resulting in a moderately large tan β. A novel feature of this class of models is that some particles from the dynamical SUSY breaking sector may be accessible at the LHC.

  13. Flexible Modes Control Using Sliding Mode Observers: Application to Ares I

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.; Hall, Charles E.; Baev, Simon; Orr, Jeb S.

    2010-01-01

    The launch vehicle dynamics affected by bending and sloshing modes are considered. Attitude measurement data that are corrupted by flexible modes could yield instability of the vehicle dynamics. Flexible body and sloshing modes are reconstructed by sliding mode observers. The resultant estimates are used to remove the undesirable dynamics from the measurements, and the direct effects of sloshing and bending modes on the launch vehicle are compensated by means of a controller that is designed without taking the bending and sloshing modes into account. A linearized mathematical model of Ares I launch vehicle was derived based on FRACTAL, a linear model developed by NASA/MSFC. The compensated vehicle dynamics with a simple PID controller were studied for the launch vehicle model that included two bending modes, two slosh modes and actuator dynamics. A simulation study demonstrated stable and accurate performance of the flight control system with the augmented simple PID controller without the use of traditional linear bending filters.

  14. Dynamic Characteristics of Simple Cylindrical Hydraulic Engine Mount Utilizing Air Compressibility

    NASA Astrophysics Data System (ADS)

    Nakahara, Kazunari; Nakagawa, Noritoshi; Ohta, Katsutoshi

    A cylindrical hydraulic engine mount with simple construction has been developed. This engine mount has a sub chamber formed by utilizing air compressibility without a diaphragm. A mathematical model of the mount is presented to predict non-linear dynamic characteristics in consideration of the effect of the excitation amplitude on the storage stiffness and loss factor. The mathematical model predicts experimental results well for the frequency responses of the storage stiffness and loss factor over the frequency range of 5 Hz to 60Hz. The effect of air volume and internal pressure on the dynamic characteristics is clarified by the analysis and dynamic characterization testing. The effectiveness of the cylindrical hydraulic engine mount on the reduction of engine shake is demonstrated for riding comfort through on-vehicle testing with a chassis dynamometer.

  15. How interactions between animal movement and landscape processes modify range dynamics and extinction risk

    EPA Science Inventory

    Range dynamics models now incorporate many of the mechanisms and interactions that drive species distributions. However, connectivity continues to be studied using overly simple distance-based dispersal models with little consideration of how the individual behavior of dispersin...

  16. Repeatability Modeling for Wind-Tunnel Measurements: Results for Three Langley Facilities

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.; Houlden, Heather P.

    2014-01-01

    Data from extensive check standard tests of seven measurement processes in three NASA Langley Research Center wind tunnels are statistically analyzed to test a simple model previously presented in 2000 for characterizing short-term, within-test and across-test repeatability. The analysis is intended to support process improvement and development of uncertainty models for the measurements. The analysis suggests that the repeatability can be estimated adequately as a function of only the test section dynamic pressure over a two-orders- of-magnitude dynamic pressure range. As expected for low instrument loading, short-term coefficient repeatability is determined by the resolution of the instrument alone (air off). However, as previously pointed out, for the highest dynamic pressure range the coefficient repeatability appears to be independent of dynamic pressure, thus presenting a lower floor for the standard deviation for all three time frames. The simple repeatability model is shown to be adequate for all of the cases presented and for all three time frames.

  17. Convection driven zonal flows and vortices in the major planets.

    PubMed

    Busse, F. H.

    1994-06-01

    The dynamical properties of convection in rotating cylindrical annuli and spherical shells are reviewed. Simple theoretical models and experimental simulations of planetary convection through the use of the centrifugal force in the laboratory are emphasized. The model of columnar convection in a cylindrical annulus not only serves as a guide to the dynamical properties of convection in rotating sphere; it also is of interest as a basic physical system that exhibits several dynamical properties in their most simple form. The generation of zonal mean flows is discussed in some detail and examples of recent numerical computations are presented. The exploration of the parameter space for the annulus model is not yet complete and the theoretical exploration of convection in rotating spheres is still in the beginning phase. Quantitative comparisons with the observations of the dynamics of planetary atmospheres will have to await the consideration in the models of the effects of magnetic fields and the deviations from the Boussinesq approximation.

  18. Interaction dynamics of multiple mobile robots with simple navigation strategies

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1989-01-01

    The global dynamic behavior of multiple interacting autonomous mobile robots with simple navigation strategies is studied. Here, the effective spatial domain of each robot is taken to be a closed ball about its mass center. It is assumed that each robot has a specified cone of visibility such that interaction with other robots takes place only when they enter its visibility cone. Based on a particle model for the robots, various simple homing and collision-avoidance navigation strategies are derived. Then, an analysis of the dynamical behavior of the interacting robots in unbounded spatial domains is made. The article concludes with the results of computer simulations studies of two or more interacting robots.

  19. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  20. Predicting Mercury's precession using simple relativistic Newtonian dynamics

    NASA Astrophysics Data System (ADS)

    Friedman, Y.; Steiner, J. M.

    2016-03-01

    We present a new simple relativistic model for planetary motion describing accurately the anomalous precession of the perihelion of Mercury and its origin. The model is based on transforming Newton's classical equation for planetary motion from absolute to real spacetime influenced by the gravitational potential and introducing the concept of influenced direction.

  1. Modeling the Hydrogen Bond within Molecular Dynamics

    ERIC Educational Resources Information Center

    Lykos, Peter

    2004-01-01

    The structure of a hydrogen bond is elucidated within the framework of molecular dynamics based on the model of Rahman and Stillinger (R-S) liquid water treatment. Thus, undergraduates are exposed to the powerful but simple use of classical mechanics to solid objects from a molecular viewpoint.

  2. Self-organized criticality in sandpiles - Nature of the critical phenomenon. [dynamic models in phase transition

    NASA Technical Reports Server (NTRS)

    Carlson, J. M.; Chayes, J. T.; Swindle, G. H.; Grannan, E. R.

    1990-01-01

    The scaling behavior of sandpile models is investigated analytically. First, it is shown that sandpile models contain a set of domain walls, referred to as troughs, which bound regions that can experience avalanches. It is further shown that the dynamics of the troughs is governed by a simple set of rules involving birth, death, and coalescence events. A simple trough model is then introduced, and it is proved that the model has a phase transition with the density of the troughs as an order parameter and that, in the thermodynamic limit, the trough density goes to zero at the transition point. Finally, it is shown that the observed scaling behavior is a consequence of finite-size effects.

  3. The Design and Development of the Dragoon Intelligent Tutoring System for Model Construction: Lessons Learned

    ERIC Educational Resources Information Center

    Wetzel, Jon; VanLehn, Kurt; Butler, Dillan; Chaudhari, Pradeep; Desai, Avaneesh; Feng, Jingxian; Grover, Sachin; Joiner, Reid; Kong-Sivert, Mackenzie; Patade, Vallabh; Samala, Ritesh; Tiwari, Megha; van de Sande, Brett

    2017-01-01

    This paper describes Dragoon, a simple intelligent tutoring system which teaches the construction of models of dynamic systems. Modelling is one of seven practices dictated in two new sets of educational standards in the U.S.A., and Dragoon is one of the first systems for teaching model construction for dynamic systems. Dragoon can be classified…

  4. A study of helicopter stability and control including blade dynamics

    NASA Technical Reports Server (NTRS)

    Zhao, Xin; Curtiss, H. C., Jr.

    1988-01-01

    A linearized model of rotorcraft dynamics has been developed through the use of symbolic automatic equation generating techniques. The dynamic model has been formulated in a unique way such that it can be used to analyze a variety of rotor/body coupling problems including a rotor mounted on a flexible shaft with a number of modes as well as free-flight stability and control characteristics. Direct comparison of the time response to longitudinal, lateral and directional control inputs at various trim conditions shows that the linear model yields good to very good correlation with flight test. In particular it is shown that a dynamic inflow model is essential to obtain good time response correlation, especially for the hover trim condition. It also is shown that the main rotor wake interaction with the tail rotor and fixed tail surfaces is a significant contributor to the response at translational flight trim conditions. A relatively simple model for the downwash and sidewash at the tail surfaces based on flat vortex wake theory is shown to produce good agreement. Then, the influence of rotor flap and lag dynamics on automatic control systems feedback gain limitations is investigated with the model. It is shown that the blade dynamics, especially lagging dynamics, can severly limit the useable values of the feedback gain for simple feedback control and that multivariable optimal control theory is a powerful tool to design high gain augmentation control system. The frequency-shaped optimal control design can offer much better flight dynamic characteristics and a stable margin for the feedback system without need to model the lagging dynamics.

  5. Comparison of human driver dynamics in simulators with complex and simple visual displays and in an automobile on the road

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Klein, R. H.

    1975-01-01

    As part of a comprehensive program exploring driver/vehicle system response in lateral steering tasks, driver/vehicle system describing functions and other dynamic data have been gathered in several milieu. These include a simple fixed base simulator with an elementary roadway delineation only display; a fixed base statically operating automobile with a terrain model based, wide angle projection system display; and a full scale moving base automobile operating on the road. Dynamic data with the two fixed base simulators compared favorably, implying that the impoverished visual scene, lack of engine noise, and simplified steering wheel feel characteristics in the simple simulator did not induce significant driver dynamic behavior variations. The fixed base vs. moving base comparisons showed substantially greater crossover frequencies and phase margins on the road course.

  6. Beyond harmonic sounds in a simple model for birdsong production.

    PubMed

    Amador, Ana; Mindlin, Gabriel B

    2008-12-01

    In this work we present an analysis of the dynamics displayed by a simple bidimensional model of labial oscillations during birdsong production. We show that the same model capable of generating tonal sounds can present, for a wide range of parameters, solutions which are spectrally rich. The role of physiologically sensible parameters is discussed in each oscillatory regime, allowing us to interpret previously reported data.

  7. FITPOP, a heuristic simulation model of population dynamics and genetics with special reference to fisheries

    USGS Publications Warehouse

    McKenna, James E.

    2000-01-01

    Although, perceiving genetic differences and their effects on fish population dynamics is difficult, simulation models offer a means to explore and illustrate these effects. I partitioned the intrinsic rate of increase parameter of a simple logistic-competition model into three components, allowing specification of effects of relative differences in fitness and mortality, as well as finite rate of increase. This model was placed into an interactive, stochastic environment to allow easy manipulation of model parameters (FITPOP). Simulation results illustrated the effects of subtle differences in genetic and population parameters on total population size, overall fitness, and sensitivity of the system to variability. Several consequences of mixing genetically distinct populations were illustrated. For example, behaviors such as depression of population size after initial introgression and extirpation of native stocks due to continuous stocking of genetically inferior fish were reproduced. It also was shown that carrying capacity relative to the amount of stocking had an important influence on population dynamics. Uncertainty associated with parameter estimates reduced confidence in model projections. The FITPOP model provided a simple tool to explore population dynamics, which may assist in formulating management strategies and identifying research needs.

  8. The Computer Simulation of Liquids by Molecular Dynamics.

    ERIC Educational Resources Information Center

    Smith, W.

    1987-01-01

    Proposes a mathematical computer model for the behavior of liquids using the classical dynamic principles of Sir Isaac Newton and the molecular dynamics method invented by other scientists. Concludes that other applications will be successful using supercomputers to go beyond simple Newtonian physics. (CW)

  9. Class and Home Problems: Humidification, a True "Home" Problem for p. Chemical Engineer

    ERIC Educational Resources Information Center

    Condoret, Jean-Stephane

    2012-01-01

    The problem of maintaining hygrothermal comfort in a house is addressed using the chemical engineer's toolbox. A simple dynamic modelling proved to give a good description of the humidification of the house in winter, using a domestic humidifier. Parameters of the model were identified from a simple experiment. Surprising results, especially…

  10. An investigation of the astronomical theory of the ice ages using a simple climate-ice sheet model

    NASA Technical Reports Server (NTRS)

    Pollard, D.

    1978-01-01

    The astronomical theory of the Quaternary ice ages is incorporated into a simple climate model for global weather; important features of the model include the albedo feedback, topography and dynamics of the ice sheets. For various parameterizations of the orbital elements, the model yields realistic assessments of the northern ice sheet. Lack of a land-sea heat capacity contrast represents one of the chief difficulties of the model.

  11. The life of a meander bend: Connecting shape and dynamics via analysis of a numerical model

    NASA Astrophysics Data System (ADS)

    Schwenk, Jon; Lanzoni, Stefano; Foufoula-Georgiou, Efi

    2015-04-01

    Analysis of bend-scale meandering river dynamics is a problem of theoretical and practical interest. This work introduces a method for extracting and analyzing the history of individual meander bends from inception until cutoff (called "atoms") by tracking backward through time the set of two cutoff nodes in numerical meander migration models. Application of this method to a simplified yet physically based model provides access to previously unavailable bend-scale meander dynamics over long times and at high temporal resolutions. We find that before cutoffs, the intrinsic model dynamics invariably simulate a prototypical cutoff atom shape we dub simple. Once perturbations from cutoffs occur, two other archetypal cutoff planform shapes emerge called long and round that are distinguished by a stretching along their long and perpendicular axes, respectively. Three measures of meander migration—growth rate, average migration rate, and centroid migration rate—are introduced to capture the dynamic lives of individual bends and reveal that similar cutoff atom geometries share similar dynamic histories. Specifically, through the lens of the three shape types, simples are seen to have the highest growth and average migration rates, followed by rounds, and finally longs. Using the maximum average migration rate as a metric describing an atom's dynamic past, we show a strong connection between it and two metrics of cutoff geometry. This result suggests both that early formative dynamics may be inferred from static cutoff planforms and that there exists a critical period early in a meander bend's life when its dynamic trajectory is most sensitive to cutoff perturbations. An example of how these results could be applied to Mississippi River oxbow lakes with unknown historic dynamics is shown. The results characterize the underlying model and provide a framework for comparisons against more complex models and observed dynamics.

  12. Dynamic modeling of parallel robots for computed-torque control implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Codourey, A.

    1998-12-01

    In recent years, increased interest in parallel robots has been observed. Their control with modern theory, such as the computed-torque method, has, however, been restrained, essentially due to the difficulty in establishing a simple dynamic model that can be calculated in real time. In this paper, a simple method based on the virtual work principle is proposed for modeling parallel robots. The mass matrix of the robot, needed for decoupling control strategies, does not explicitly appear in the formulation; however, it can be computed separately, based on kinetic energy considerations. The method is applied to the DELTA parallel robot, leadingmore » to a very efficient model that has been implemented in a real-time computed-torque control algorithm.« less

  13. Dynamic calibration of agent-based models using data assimilation.

    PubMed

    Ward, Jonathan A; Evans, Andrew J; Malleson, Nicolas S

    2016-04-01

    A widespread approach to investigating the dynamical behaviour of complex social systems is via agent-based models (ABMs). In this paper, we describe how such models can be dynamically calibrated using the ensemble Kalman filter (EnKF), a standard method of data assimilation. Our goal is twofold. First, we want to present the EnKF in a simple setting for the benefit of ABM practitioners who are unfamiliar with it. Second, we want to illustrate to data assimilation experts the value of using such methods in the context of ABMs of complex social systems and the new challenges these types of model present. We work towards these goals within the context of a simple question of practical value: how many people are there in Leeds (or any other major city) right now? We build a hierarchy of exemplar models that we use to demonstrate how to apply the EnKF and calibrate these using open data of footfall counts in Leeds.

  14. Cloud fluid models of gas dynamics and star formation in galaxies

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.

    1987-01-01

    The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.

  15. Quantum-like dynamics applied to cognition: a consideration of available options

    NASA Astrophysics Data System (ADS)

    Broekaert, Jan; Basieva, Irina; Blasiak, Pawel; Pothos, Emmanuel M.

    2017-10-01

    Quantum probability theory (QPT) has provided a novel, rich mathematical framework for cognitive modelling, especially for situations which appear paradoxical from classical perspectives. This work concerns the dynamical aspects of QPT, as relevant to cognitive modelling. We aspire to shed light on how the mind's driving potentials (encoded in Hamiltonian and Lindbladian operators) impact the evolution of a mental state. Some existing QPT cognitive models do employ dynamical aspects when considering how a mental state changes with time, but it is often the case that several simplifying assumptions are introduced. What kind of modelling flexibility does QPT dynamics offer without any simplifying assumptions and is it likely that such flexibility will be relevant in cognitive modelling? We consider a series of nested QPT dynamical models, constructed with a view to accommodate results from a simple, hypothetical experimental paradigm on decision-making. We consider Hamiltonians more complex than the ones which have traditionally been employed with a view to explore the putative explanatory value of this additional complexity. We then proceed to compare simple models with extensions regarding both the initial state (e.g. a mixed state with a specific orthogonal decomposition; a general mixed state) and the dynamics (by introducing Hamiltonians which destroy the separability of the initial structure and by considering an open-system extension). We illustrate the relations between these models mathematically and numerically. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  16. Evidence of complex contagion of information in social media: An experiment using Twitter bots.

    PubMed

    Mønsted, Bjarke; Sapieżyński, Piotr; Ferrara, Emilio; Lehmann, Sune

    2017-01-01

    It has recently become possible to study the dynamics of information diffusion in techno-social systems at scale, due to the emergence of online platforms, such as Twitter, with millions of users. One question that systematically recurs is whether information spreads according to simple or complex dynamics: does each exposure to a piece of information have an independent probability of a user adopting it (simple contagion), or does this probability depend instead on the number of sources of exposure, increasing above some threshold (complex contagion)? Most studies to date are observational and, therefore, unable to disentangle the effects of confounding factors such as social reinforcement, homophily, limited attention, or network community structure. Here we describe a novel controlled experiment that we performed on Twitter using 'social bots' deployed to carry out coordinated attempts at spreading information. We propose two Bayesian statistical models describing simple and complex contagion dynamics, and test the competing hypotheses. We provide experimental evidence that the complex contagion model describes the observed information diffusion behavior more accurately than simple contagion. Future applications of our results include more effective defenses against malicious propaganda campaigns on social media, improved marketing and advertisement strategies, and design of effective network intervention techniques.

  17. Accounting for Space—Quantification of Cell-To-Cell Transmission Kinetics Using Virus Dynamics Models.

    PubMed

    Kumberger, Peter; Durso-Cain, Karina; Uprichard, Susan L; Dahari, Harel; Graw, Frederik

    2018-04-17

    Mathematical models based on ordinary differential equations (ODE) that describe the population dynamics of viruses and infected cells have been an essential tool to characterize and quantify viral infection dynamics. Although an important aspect of viral infection is the dynamics of viral spread, which includes transmission by cell-free virions and direct cell-to-cell transmission, models used so far ignored cell-to-cell transmission completely, or accounted for this process by simple mass-action kinetics between infected and uninfected cells. In this study, we show that the simple mass-action approach falls short when describing viral spread in a spatially-defined environment. Using simulated data, we present a model extension that allows correct quantification of cell-to-cell transmission dynamics within a monolayer of cells. By considering the decreasing proportion of cells that can contribute to cell-to-cell spread with progressing infection, our extension accounts for the transmission dynamics on a single cell level while still remaining applicable to standard population-based experimental measurements. While the ability to infer the proportion of cells infected by either of the transmission modes depends on the viral diffusion rate, the improved estimates obtained using our novel approach emphasize the need to correctly account for spatial aspects when analyzing viral spread.

  18. Control of ITBs in Fusion Self-Heated Plasmas

    NASA Astrophysics Data System (ADS)

    Panta, Soma; Newman, David; Terry, Paul; Sanchez, Raul

    2015-11-01

    Simple dynamical models have been able to capture a remarkable amount of the dynamics of the transport barriers found in many devices, including the often disconnected nature of the electron thermal transport channel sometimes observed in the presence of a standard (``ion channel'') barrier. By including in this rich though simple dynamic transport model an evolution equation for electron fluctuations we have previously investigated the interaction between the formation of the standard ion channel barrier and the somewhat less common electron channel barrier. The electron channel formation and evolution is even more sensitive to the alignment of the various gradients making up the sheared radial electric field then the ion barrier is. Because of this sensitivity and coupling of the barrier dynamics, the dynamic evolution of the fusion self-heating profile can have a significant impact on the barrier location and dynamics. To investigate this, self-heating has been added this model and the impact of the self-heating on the formation and controllability of the various barriers is explored. It has been found that the evolution of the heating profiles can suppress or collapse the electron channel barrier. NBI and RF schemes will be investigated for profile/barrier control.

  19. Nonlinear Dynamic Models in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.

  20. The dynamics of charge transfer with and without a barrier: A very simplified model of cyclic voltammetry.

    PubMed

    Ouyang, Wenjun; Subotnik, Joseph E

    2017-05-07

    Using the Anderson-Holstein model, we investigate charge transfer dynamics between a molecule and a metal surface for two extreme cases. (i) With a large barrier, we show that the dynamics follow a single exponential decay as expected; (ii) without any barrier, we show that the dynamics are more complicated. On the one hand, if the metal-molecule coupling is small, single exponential dynamics persist. On the other hand, when the coupling between the metal and the molecule is large, the dynamics follow a biexponential decay. We analyze the dynamics using the Smoluchowski equation, develop a simple model, and explore the consequences of biexponential dynamics for a hypothetical cyclic voltammetry experiment.

  1. Structure and Dynamics of Solvent Landscapes in Charge-Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Leite, Vitor B. Pereira

    The dynamics of solvent polarization plays a major role in the control of charge transfer reactions. The success of Marcus theory describing the solvent influence via a single collective quadratic polarization coordinate has been remarkable. Onuchic and Wolynes have recently proposed (J. Chem Phys 98 (3) 2218, 1993) a simple model demonstrating how a many-dimensional-complex model composed by several dipole moments (representing solvent molecules or polar groups in proteins) can be reduced under the appropriate limits into the Marcus Model. This work presents a dynamical study of the same model, which is characterized by two parameters, an average dipole-dipole interaction as a term associated with the potential energy landscape roughness. It is shown why the effective potential, obtained using a thermodynamic approach, is appropriate for the dynamics of the system. At high temperatures, the system exhibits effective diffusive one-dimensional dynamics, where the Born-Marcus limit is recovered. At low temperatures, a glassy phase appears with a slow non-self-averaging dynamics. At intermediate temperatures, the concept of equivalent diffusion paths and polarization dependence effects are discussed. This approach is extended to treat more realistic solvent models. Real solvents are discussed in terms of simple parameters described above, and an analysis of how different regimes affect the rate of charge transfer is presented. Finally, these ideas are correlated to analogous problems in other areas.

  2. The importance of steady and dynamic inflow on the stability of rotor-body systems

    NASA Technical Reports Server (NTRS)

    Peters, David A.

    1988-01-01

    The induced flow field of a rotor responds in a dynamic fashion to oscillations in rotor lift. This was long known to affect the stability and control derivatives of the rotor. More recently, however, it was also shown that this dynamic inflow also affects rotor and rotor-body aeroelastic stability. Thus, both the steady and unsteady inflow have pronounced effects on air resonance. Recent theoretical developments were made in the modeling of dynamic inflow, and these were verified experimentally. Thus, there is now a simple, verified dynamic inflow model for use in dynamic analyses.

  3. Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure

    DTIC Science & Technology

    2001-09-30

    mutualism utilized modified Lotka - Volterra (L-V) competition equations in which the sign of the interspecific interaction term was changed from...within complex communities and ecosystems. Prior to the current award, the PIs formulated and tested general dynamic energy budget models...Nisbet, 1998; chapter 7) make a convincing case that ecosystems do truly have dynamics that can be described by relatively simple, general , models

  4. On the simple random-walk models of ion-channel gate dynamics reflecting long-term memory.

    PubMed

    Wawrzkiewicz, Agata; Pawelek, Krzysztof; Borys, Przemyslaw; Dworakowska, Beata; Grzywna, Zbigniew J

    2012-06-01

    Several approaches to ion-channel gating modelling have been proposed. Although many models describe the dwell-time distributions correctly, they are incapable of predicting and explaining the long-term correlations between the lengths of adjacent openings and closings of a channel. In this paper we propose two simple random-walk models of the gating dynamics of voltage and Ca(2+)-activated potassium channels which qualitatively reproduce the dwell-time distributions, and describe the experimentally observed long-term memory quite well. Biological interpretation of both models is presented. In particular, the origin of the correlations is associated with fluctuations of channel mass density. The long-term memory effect, as measured by Hurst R/S analysis of experimental single-channel patch-clamp recordings, is close to the behaviour predicted by our models. The flexibility of the models enables their use as templates for other types of ion channel.

  5. Modeling of rail track substructure linear elastic coupling

    DOT National Transportation Integrated Search

    2015-09-30

    Most analyses of rail dynamics neglect contribution of the soil, or treat it in a very simple manner such as using spring elements. This can cause accuracy issues in examining dynamics for passenger comfort, derailment, substructure analysis, or othe...

  6. A simple hydrodynamic model of tornado-like vortices

    NASA Astrophysics Data System (ADS)

    Kurgansky, M. V.

    2015-05-01

    Based on similarity arguments, a simple fluid dynamic model of tornado-like vortices is offered that, with account for "vortex breakdown" at a certain height above the ground, relates the maximal azimuthal velocity in the vortex, reachable near the ground surface, to the convective available potential energy (CAPE) stored in the environmental atmosphere under pre-tornado conditions. The relative proportion of the helicity (kinetic energy) destruction (dissipation) in the "vortex breakdown" zone and, accordingly, within the surface boundary layer beneath the vortex is evaluated. These considerations form the basis of the dynamic-statistical analysis of the relationship between the tornado intensity and the CAPE budget in the surrounding atmosphere.

  7. On the kinetics of the capillary imbibition of a simple fluid through a designed nanochannel using the molecular dynamics simulation approach.

    PubMed

    Ahadian, Samad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2010-12-15

    A molecular dynamics (MD) approach was employed to simulate the imbibition of a designed nanopore by a simple fluid (i.e., a Lennard-Jones (LJ) fluid). The length of imbibition as a function of time for various interactions between the LJ fluid and the pore wall was recorded for this system (i.e., the LJ fluid and the nanopore). By and large, the kinetics of imbibition was successfully described by the Lucas-Washburn (LW) equation, although deviation from it was observed in some cases. This lack of agreement is due to the neglect of the dynamic contact angle (DCA) in the LW equation. Two commonly used models (i.e., hydrodynamic and molecular-kinetic (MK) models) were thus employed to calculate the DCA. It is demonstrated that the MK model is able to justify the simulation results in which are not in good agreement with the simple LW equation. However, the hydrodynamic model is not capable of doing that. Further investigation of the MD simulation data revealed an interesting fact that there is a direct relationship between the wall-fluid interaction and the speed of the capillary imbibition. More evidence to support this claim is presented. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results

    NASA Astrophysics Data System (ADS)

    Park, DaeKil

    2018-06-01

    The dynamics of entanglement and uncertainty relation is explored by solving the time-dependent Schrödinger equation for coupled harmonic oscillator system analytically when the angular frequencies and coupling constant are arbitrarily time dependent. We derive the spectral and Schmidt decompositions for vacuum solution. Using the decompositions, we derive the analytical expressions for von Neumann and Rényi entropies. Making use of Wigner distribution function defined in phase space, we derive the time dependence of position-momentum uncertainty relations. To show the dynamics of entanglement and uncertainty relation graphically, we introduce two toy models and one realistic quenched model. While the dynamics can be conjectured by simple consideration in the toy models, the dynamics in the realistic quenched model is somewhat different from that in the toy models. In particular, the dynamics of entanglement exhibits similar pattern to dynamics of uncertainty parameter in the realistic quenched model.

  9. Dynamic Paper Constructions for Easier Visualization of Molecular Symmetry

    ERIC Educational Resources Information Center

    Sein, Lawrence T., Jr.

    2010-01-01

    A system for construction of simple poster-board models is described. The models dynamically demonstrate the symmetry operations of proper rotation, improper rotation, reflection, and inversion for the chemically important point groups D[subscript 3h], D[subscript 4h], D[subscript 5h], D[subscript 6h], T[subscript d], and O[subscript h]. The…

  10. A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot.

    PubMed

    Huang, Ke-Jung; Huang, Chun-Kai; Lin, Pei-Chun

    2014-10-07

    We report on the development of a robot's dynamic locomotion based on a template which fits the robot's natural dynamics. The developed template is a low degree-of-freedom planar model for running with rolling contact, which we call rolling spring loaded inverted pendulum (R-SLIP). Originating from a reduced-order model of the RHex-style robot with compliant circular legs, the R-SLIP model also acts as the template for general dynamic running. The model has a torsional spring and a large circular arc as the distributed foot, so during locomotion it rolls on the ground with varied equivalent linear stiffness. This differs from the well-known spring loaded inverted pendulum (SLIP) model with fixed stiffness and ground contact points. Through dimensionless steps-to-fall and return map analysis, within a wide range of parameter spaces, the R-SLIP model is revealed to have self-stable gaits and a larger stability region than that of the SLIP model. The R-SLIP model is then embedded as the reduced-order 'template' in a more complex 'anchor', the RHex-style robot, via various mapping definitions between the template and the anchor. Experimental validation confirms that by merely deploying the stable running gaits of the R-SLIP model on the empirical robot with simple open-loop control strategy, the robot can easily initiate its dynamic running behaviors with a flight phase and can move with similar body state profiles to those of the model, in all five testing speeds. The robot, embedded with the SLIP model but performing walking locomotion, further confirms the importance of finding an adequate template of the robot for dynamic locomotion.

  11. Forgetfulness can help you win games.

    PubMed

    Burridge, James; Gao, Yu; Mao, Yong

    2015-09-01

    We present a simple game model where agents with different memory lengths compete for finite resources. We show by simulation and analytically that an instability exists at a critical memory length, and as a result, different memory lengths can compete and coexist in a dynamical equilibrium. Our analytical formulation makes a connection to statistical urn models, and we show that temperature is mirrored by the agent's memory. Our simple model of memory may be incorporated into other game models with implications that we briefly discuss.

  12. Traffic jam dynamics in stochastic cellular automata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagel, K.; Schreckenberg, M.

    1995-09-01

    Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) traffic flow. Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic fundamental diagrams. One can use these models to investigate traffic phenomena near maximum flow. A so-called phase transition at average maximum flow is visible in the life-times of jams. The resulting dynamic picture is consistent with recent fluid-dynamical results by Kuehne/Kerner/Konhaeuser, and with Treiterer`s hysteresis description. This places CA models between car-following models and fluid-dynamical models for traffic flow. CA models are tested in projects in Los Alamos (USA)more » and in NRW (Germany) for large scale microsimulations of network traffic.« less

  13. Comparisons of CTH simulations with measured wave profiles for simple flyer plate experiments

    DOE PAGES

    Thomas, S. A.; Veeser, L. R.; Turley, W. D.; ...

    2016-06-13

    We conducted detailed 2-dimensional hydrodynamics calculations to assess the quality of simulations commonly used to design and analyze simple shock compression experiments. Such simple shock experiments also contain data where dynamic properties of materials are integrated together. We wished to assess how well the chosen computer hydrodynamic code could do at capturing both the simple parts of the experiments and the integral parts. We began with very simple shock experiments, in which we examined the effects of the equation of state and the compressional and tensile strength models. We increased complexity to include spallation in copper and iron and amore » solid-solid phase transformation in iron to assess the quality of the damage and phase transformation simulations. For experiments with a window, the response of both the sample and the window are integrated together, providing a good test of the material models. While CTH physics models are not perfect and do not reproduce all experimental details well, we find the models are useful; the simulations are adequate for understanding much of the dynamic process and for planning experiments. However, higher complexity in the simulations, such as adding in spall, led to greater differences between simulation and experiment. Lastly, this comparison of simulation to experiment may help guide future development of hydrodynamics codes so that they better capture the underlying physics.« less

  14. Estimation of kinematic parameters in CALIFA galaxies: no-assumption on internal dynamics

    NASA Astrophysics Data System (ADS)

    García-Lorenzo, B.; Barrera-Ballesteros, J.; CALIFA Team

    2016-06-01

    We propose a simple approach to homogeneously estimate kinematic parameters of a broad variety of galaxies (elliptical, spirals, irregulars or interacting systems). This methodology avoids the use of any kinematical model or any assumption on internal dynamics. This simple but novel approach allows us to determine: the frequency of kinematic distortions, systemic velocity, kinematic center, and kinematic position angles which are directly measured from the two dimensional-distributions of radial velocities. We test our analysis tools using the CALIFA Survey

  15. A Partially-Stirred Batch Reactor Model for Under-Ventilated Fire Dynamics

    NASA Astrophysics Data System (ADS)

    McDermott, Randall; Weinschenk, Craig

    2013-11-01

    A simple discrete quadrature method is developed for closure of the mean chemical source term in large-eddy simulations (LES) and implemented in the publicly available fire model, Fire Dynamics Simulator (FDS). The method is cast as a partially-stirred batch reactor model for each computational cell. The model has three distinct components: (1) a subgrid mixing environment, (2) a mixing model, and (3) a set of chemical rate laws. The subgrid probability density function (PDF) is described by a linear combination of Dirac delta functions with quadrature weights set to satisfy simple integral constraints for the computational cell. It is shown that under certain limiting assumptions, the present method reduces to the eddy dissipation concept (EDC). The model is used to predict carbon monoxide concentrations in direct numerical simulation (DNS) of a methane slot burner and in LES of an under-ventilated compartment fire.

  16. Local Difference Measures between Complex Networks for Dynamical System Model Evaluation

    PubMed Central

    Lange, Stefan; Donges, Jonathan F.; Volkholz, Jan; Kurths, Jürgen

    2015-01-01

    A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation. Building on a recent study by Feldhoff et al. [1] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system. Three types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed. PMID:25856374

  17. Local difference measures between complex networks for dynamical system model evaluation.

    PubMed

    Lange, Stefan; Donges, Jonathan F; Volkholz, Jan; Kurths, Jürgen

    2015-01-01

    A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation.Building on a recent study by Feldhoff et al. [8] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system [corrected]. types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed.

  18. Energy Balance Models and Planetary Dynamics

    NASA Technical Reports Server (NTRS)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  19. Unusual dynamics of extinction in a simple ecological model.

    PubMed Central

    Sinha, S; Parthasarathy, S

    1996-01-01

    Studies on natural populations and harvesting biological resources have led to the view, commonly held, that (i) populations exhibiting chaotic oscillations run a high risk of extinction; and (ii) a decrease in emigration/exploitation may reduce the risk of extinction. Here we describe a simple ecological model with emigration/depletion that shows behavior in contrast to this. This model displays unusual dynamics of extinction and survival, where populations growing beyond a critical rate can persist within a band of high depletion rates, whereas extinction occurs for lower depletion rates. Though prior to extinction at lower depletion rates the population exhibits chaotic dynamics with large amplitudes of variation and very low minima, at higher depletion rates the population persists at chaos but with reduced variation and increased minima. For still higher values, within the band of persistence, the dynamics show period reversal leading to stability. These results illustrate that chaos does not necessarily lead to population extinction. In addition, the persistence of populations at high depletion rates has important implications in the considerations of strategies for the management of biological resources. PMID:8643661

  20. Some anticipated contributions to core fluid dynamics from the GRM

    NASA Technical Reports Server (NTRS)

    Vanvorhies, C.

    1985-01-01

    It is broadly maintained that the secular variation (SV) of the large scale geomagnetic field contains information on the fluid dynamics of Earth's electrically conducting outer core. The electromagnetic theory appropriate to a simple Earth model has recently been combined with reduced geomagnetic data in order to extract some of this information and ascertain its significance. The simple Earth model consists of a rigid, electrically insulating mantle surrounding a spherical, inviscid, and perfectly conducting liquid outer core. This model was tested against seismology by using truncated spherical harmonic models of the observed geomagnetic field to locate Earth's core-mantle boundary, CMB. Further electromagnetic theory has been developed and applied to the problem of estimating the horizontal fluid motion just beneath CMB. Of particular geophysical interest are the hypotheses that these motions: (1) include appreciable surface divergence indicative of vertical motion at depth, and (2) are steady for time intervals of a decade or more. In addition to the extended testing of the basic Earth model, the proposed GRM provides a unique opportunity to test these dynamical hypotheses.

  1. Atomic Dynamics in Simple Liquid: de Gennes Narrowing Revisited

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Iwashita, Takuya; Egami, Takeshi

    2018-03-01

    The de Gennes narrowing phenomenon is frequently observed by neutron or x -ray scattering measurements of the dynamics of complex systems, such as liquids, proteins, colloids, and polymers. The characteristic slowing down of dynamics in the vicinity of the maximum of the total scattering intensity is commonly attributed to enhanced cooperativity. In this Letter, we present an alternative view on its origin through the examination of the time-dependent pair correlation function, the van Hove correlation function, for a model liquid in two, three, and four dimensions. We find that the relaxation time increases monotonically with distance and the dependence on distance varies with dimension. We propose a heuristic explanation of this dependence based on a simple geometrical model. This finding sheds new light on the interpretation of the de Gennes narrowing phenomenon and the α -relaxation time.

  2. Single-particle dynamics of the Anderson model: a local moment approach

    NASA Astrophysics Data System (ADS)

    Glossop, Matthew T.; Logan, David E.

    2002-07-01

    A non-perturbative local moment approach to single-particle dynamics of the general asymmetric Anderson impurity model is developed. The approach encompasses all energy scales and interaction strengths. It captures thereby strong coupling Kondo behaviour, including the resultant universal scaling behaviour of the single-particle spectrum; as well as the mixed valence and essentially perturbative empty orbital regimes. The underlying approach is physically transparent and innately simple, and as such is capable of practical extension to lattice-based models within the framework of dynamical mean-field theory.

  3. Dynamic design and control of a high-speed pneumatic jet actuator

    NASA Astrophysics Data System (ADS)

    Misyurin, S. Yu; Ivlev, V. I.; Kreinin, G. V.

    2017-12-01

    Mathematical model of an actuator, consisting of a pneumatic (gas) high-speed jet engine, transfer mechanism, and a control device used for switching the ball valve is worked out. The specific attention was paid to the transition (normalization) of the dynamic model into the dimensionless form. Its dynamic simulation criteria are determined, and dynamics study of an actuator was carried out. The simple control algorithm of relay action with a velocity feedback enabling the valve plug to be turned with a smooth nonstop and continuous approach to the final position is demonstrated

  4. Using CONTENT 1.5 to analyze an SIR model for childhood infectious diseases

    NASA Astrophysics Data System (ADS)

    Su, Rui; He, Daihai

    2008-11-01

    In this work, we introduce a standard software CONTENT 1.5 for analysis of dynamical systems. A simple model for childhood infectious diseases is used as an example. The detailed steps to obtain the bifurcation structures of the system are given. These bifurcation structures can be used to explain the observed dynamical transition in measles incidences.

  5. Automatic network coupling analysis for dynamical systems based on detailed kinetic models.

    PubMed

    Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich

    2005-10-01

    We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.

  6. Requirements for implementation of Kuessner and Wagner indicial lift growth functions into the FLEXSTAB computer program system for use in dynamic loads analyses

    NASA Technical Reports Server (NTRS)

    Miller, R. D.; Rogers, J. T.

    1975-01-01

    General requirements for dynamic loads analyses are described. The indicial lift growth function unsteady subsonic aerodynamic representation is reviewed, and the FLEXSTAB CPS is evaluated with respect to these general requirements. The effects of residual flexibility techniques on dynamic loads analyses are also evaluated using a simple dynamic model.

  7. Estimation method of finger tapping dynamics using simple magnetic detection system

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo

    2010-05-01

    We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.

  8. Estimation method of finger tapping dynamics using simple magnetic detection system.

    PubMed

    Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo

    2010-05-01

    We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.

  9. Mathematical Modeling of the Dynamics of Salmonella Cerro Infection in a US Dairy Herd

    NASA Astrophysics Data System (ADS)

    Chapagain, Prem; van Kessel, Jo Ann; Karns, Jeffrey; Wolfgang, David; Schukken, Ynte; Grohn, Yrjo

    2006-03-01

    Salmonellosis has been one of the major causes of human foodborne illness in the US. The high prevalence of infections makes transmission dynamics of Salmonella in a farm environment of interest both from animal and human health perspectives. Mathematical modeling approaches are increasingly being applied to understand the dynamics of various infectious diseases in dairy herds. Here, we describe the transmission dynamics of Salmonella infection in a dairy herd with a set of non-linear differential equations. Although the infection dynamics of different serotypes of Salmonella in cattle are likely to be different, we find that a relatively simple SIR-type model can describe the observed dynamics of the Salmonella enterica serotype Cerro infection in the herd.

  10. Untangling Slab Dynamics Using 3-D Numerical and Analytical Models

    NASA Astrophysics Data System (ADS)

    Holt, A. F.; Royden, L.; Becker, T. W.

    2016-12-01

    Increasingly sophisticated numerical models have enabled us to make significant strides in identifying the key controls on how subducting slabs deform. For example, 3-D models have demonstrated that subducting plate width, and the related strength of toroidal flow around the plate edge, exerts a strong control on both the curvature and the rate of migration of the trench. However, the results of numerical subduction models can be difficult to interpret, and many first order dynamics issues remain at least partially unresolved. Such issues include the dominant controls on trench migration, the interdependence of asthenospheric pressure and slab dynamics, and how nearby slabs influence each other's dynamics. We augment 3-D, dynamically evolving finite element models with simple, analytical force-balance models to distill the physics associated with subduction into more manageable parts. We demonstrate that for single, isolated subducting slabs much of the complexity of our fully numerical models can be encapsulated by simple analytical expressions. Rates of subduction and slab dip correlate strongly with the asthenospheric pressure difference across the subducting slab. For double subduction, an additional slab gives rise to more complex mantle pressure and flow fields, and significantly extends the range of plate kinematics (e.g., convergence rate, trench migration rate) beyond those present in single slab models. Despite these additional complexities, we show that much of the dynamics of such multi-slab systems can be understood using the physics illuminated by our single slab study, and that a force-balance method can be used to relate intra-plate stress to viscous pressure in the asthenosphere and coupling forces at plate boundaries. This method has promise for rapid modeling of large systems of subduction zones on a global scale.

  11. Testing particle filters on convective scale dynamics

    NASA Astrophysics Data System (ADS)

    Haslehner, Mylene; Craig, George. C.; Janjic, Tijana

    2014-05-01

    Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical fluid dynamics. - Computers and Fluids, doi:10,1016/j.compfluid.2010.11.011, 1096 2011. Würsch, M. and G. C. Craig, 2013: A simple dynamical model of cumulus convection for data assimilation research, submitted to Met. Zeitschrift.

  12. Differential equation models for sharp threshold dynamics.

    PubMed

    Schramm, Harrison C; Dimitrov, Nedialko B

    2014-01-01

    We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations. Published by Elsevier Inc.

  13. Parameter and Structure Inference for Nonlinear Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark

    2006-01-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.

  14. Nonequilibrium Langevin dynamics: A demonstration study of shear flow fluctuations in a simple fluid

    NASA Astrophysics Data System (ADS)

    Belousov, Roman; Cohen, E. G. D.; Rondoni, Lamberto

    2017-08-01

    The present paper is based on a recent success of the second-order stochastic fluctuation theory in describing time autocorrelations of equilibrium and nonequilibrium physical systems. In particular, it was shown to yield values of the related deterministic parameters of the Langevin equation for a Couette flow in a microscopic molecular dynamics model of a simple fluid. In this paper we find all the remaining constants of the stochastic dynamics, which then is simulated numerically and compared directly with the original physical system. By using these data, we study in detail the accuracy and precision of a second-order Langevin model for nonequilibrium physical systems theoretically and computationally. We find an intriguing relation between an applied external force and cumulants of the resulting flow fluctuations. This is characterized by a linear dependence of an athermal cumulant ratio, an apposite quantity introduced here. In addition, we discuss how the order of a given Langevin dynamics can be raised systematically by introducing colored noise.

  15. From homeostasis to behavior: Balanced activity in an exploration of embodied dynamic environmental-neural interaction.

    PubMed

    Hellyer, Peter John; Clopath, Claudia; Kehagia, Angie A; Turkheimer, Federico E; Leech, Robert

    2017-08-01

    In recent years, there have been many computational simulations of spontaneous neural dynamics. Here, we describe a simple model of spontaneous neural dynamics that controls an agent moving in a simple virtual environment. These dynamics generate interesting brain-environment feedback interactions that rapidly destabilize neural and behavioral dynamics demonstrating the need for homeostatic mechanisms. We investigate roles for homeostatic plasticity both locally (local inhibition adjusting to balance excitatory input) as well as more globally (regional "task negative" activity that compensates for "task positive", sensory input in another region) balancing neural activity and leading to more stable behavior (trajectories through the environment). Our results suggest complementary functional roles for both local and macroscale mechanisms in maintaining neural and behavioral dynamics and a novel functional role for macroscopic "task-negative" patterns of activity (e.g., the default mode network).

  16. A simple orbit-attitude coupled modelling method for large solar power satellites

    NASA Astrophysics Data System (ADS)

    Li, Qingjun; Wang, Bo; Deng, Zichen; Ouyang, Huajiang; Wei, Yi

    2018-04-01

    A simple modelling method is proposed to study the orbit-attitude coupled dynamics of large solar power satellites based on natural coordinate formulation. The generalized coordinates are composed of Cartesian coordinates of two points and Cartesian components of two unitary vectors instead of Euler angles and angular velocities, which is the reason for its simplicity. Firstly, in order to develop natural coordinate formulation to take gravitational force and gravity gradient torque of a rigid body into account, Taylor series expansion is adopted to approximate the gravitational potential energy. The equations of motion are constructed through constrained Hamilton's equations. Then, an energy- and constraint-conserving algorithm is presented to solve the differential-algebraic equations. Finally, the proposed method is applied to simulate the orbit-attitude coupled dynamics and control of a large solar power satellite considering gravity gradient torque and solar radiation pressure. This method is also applicable to dynamic modelling of other rigid multibody aerospace systems.

  17. Maintenance of algal endosymbionts in Paramecium bursaria: a simple model based on population dynamics.

    PubMed

    Iwai, Sosuke; Fujiwara, Kenji; Tamura, Takuro

    2016-09-01

    Algal endosymbiosis is widely distributed in eukaryotes including many protists and metazoans, and plays important roles in aquatic ecosystems, combining phagotrophy and phototrophy. To maintain a stable symbiotic relationship, endosymbiont population size in the host must be properly regulated and maintained at a constant level; however, the mechanisms underlying the maintenance of algal endosymbionts are still largely unknown. Here we investigate the population dynamics of the unicellular ciliate Paramecium bursaria and its Chlorella-like algal endosymbiont under various experimental conditions in a simple culture system. Our results suggest that endosymbiont population size in P. bursaria was not regulated by active processes such as cell division coupling between the two organisms, or partitioning of the endosymbionts at host cell division. Regardless, endosymbiont population size was eventually adjusted to a nearly constant level once cells were grown with light and nutrients. To explain this apparent regulation of population size, we propose a simple mechanism based on the different growth properties (specifically the nutrient requirements) of the two organisms, and based from this develop a mathematical model to describe the population dynamics of host and endosymbiont. The proposed mechanism and model may provide a basis for understanding the maintenance of algal endosymbionts. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. The coefficient of restitution of pressurized balls: a mechanistic model

    NASA Astrophysics Data System (ADS)

    Georgallas, Alex; Landry, Gaëtan

    2016-01-01

    Pressurized, inflated balls used in professional sports are regulated so that their behaviour upon impact can be anticipated and allow the game to have its distinctive character. However, the dynamics governing the impacts of such balls, even on stationary hard surfaces, can be extremely complex. The energy transformations, which arise from the compression of the gas within the ball and from the shear forces associated with the deformation of the wall, are examined in this paper. We develop a simple mechanistic model of the dependence of the coefficient of restitution, e, upon both the gauge pressure, P_G, of the gas and the shear modulus, G, of the wall. The model is validated using the results from a simple series of experiments using three different sports balls. The fits to the data are extremely good for P_G > 25 kPa and consistent values are obtained for the value of G for the wall material. As far as the authors can tell, this simple, mechanistic model of the pressure dependence of the coefficient of restitution is the first in the literature. *%K Coefficient of Restitution, Dynamics, Inflated Balls, Pressure, Impact Model

  19. Generalized Tavis-Cummings models and quantum networks

    NASA Astrophysics Data System (ADS)

    Gorokhov, A. V.

    2018-04-01

    The properties of quantum networks based on generalized Tavis-Cummings models are theoretically investigated. We have calculated the information transfer success rate from one node to another in a simple model of a quantum network realized with two-level atoms placed in the cavities and interacting with an external laser field and cavity photons. The method of dynamical group of the Hamiltonian and technique of corresponding coherent states were used for investigation of the temporal dynamics of the two nodes model.

  20. Stability of the thermodynamic equilibrium - A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Faghihi, Mustafa; Scheffel, Jan; Spies, Guenther O.

    1988-05-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure.

  1. Multiloop Manual Control of Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Mcnally, B. D.

    1984-01-01

    Human interaction with a simple, multiloop dynamic system in which the human's activity was systematically varied by changing the levels of automation was studied. The control loop structure resulting from the task definition parallels that for any multiloop manual control system, is considered a sterotype. Simple models of the human in the task, and upon extending a technique for describing the manner in which the human subjectively quantifies his opinion of task difficulty were developed. A man in the loop simulation which provides data to support and direct the analytical effort is presented.

  2. Global dynamics in a stoichiometric food chain model with two limiting nutrients.

    PubMed

    Chen, Ming; Fan, Meng; Kuang, Yang

    2017-07-01

    Ecological stoichiometry studies the balance of energy and multiple chemical elements in ecological interactions to establish how the nutrient content affect food-web dynamics and nutrient cycling in ecosystems. In this study, we formulate a food chain with two limiting nutrients in the form of a stoichiometric population model. A comprehensive global analysis of the rich dynamics of the targeted model is explored both analytically and numerically. Chaotic dynamic is observed in this simple stoichiometric food chain model and is compared with traditional model without stoichiometry. The detailed comparison reveals that stoichiometry can reduce the parameter space for chaotic dynamics. Our findings also show that decreasing producer production efficiency may have only a small effect on the consumer growth but a more profound impact on the top predator growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Comparison of heaving buoy and oscillating flap wave energy converters

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Mohd Aftar; Green, David A.; Metcalfe, Andrew V.; Najafian, G.

    2013-04-01

    Waves offer an attractive source of renewable energy, with relatively low environmental impact, for communities reasonably close to the sea. Two types of simple wave energy converters (WEC), the heaving buoy WEC and the oscillating flap WEC, are studied. Both WECs are considered as simple energy converters because they can be modelled, to a first approximation, as single degree of freedom linear dynamic systems. In this study, we estimate the response of both WECs to typical wave inputs; wave height for the buoy and corresponding wave surge for the flap, using spectral methods. A nonlinear model of the oscillating flap WEC that includes the drag force, modelled by the Morison equation is also considered. The response to a surge input is estimated by discrete time simulation (DTS), using central difference approximations to derivatives. This is compared with the response of the linear model obtained by DTS and also validated using the spectral method. Bendat's nonlinear system identification (BNLSI) technique was used to analyze the nonlinear dynamic system since the spectral analysis was only suitable for linear dynamic system. The effects of including the nonlinear term are quantified.

  4. Topological determinants of self-sustained activity in a simple model of excitable dynamics on graphs

    PubMed Central

    Fretter, Christoph; Lesne, Annick; Hilgetag, Claus C.; Hütt, Marc-Thorsten

    2017-01-01

    Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience. PMID:28186182

  5. Atomic Dynamics in Simple Liquid: de Gennes Narrowing Revisited

    DOE PAGES

    Wu, Bin; Iwashita, Takuya; Egami, Takeshi

    2018-03-27

    The de Gennes narrowing phenomenon is frequently observed by neutron or x-ray scattering measurements of the dynamics of complex systems, such as liquids, proteins, colloids, and polymers. The characteristic slowing down of dynamics in the vicinity of the maximum of the total scattering intensity is commonly attributed to enhanced cooperativity. In this Letter, we present an alternative view on its origin through the examination of the time-dependent pair correlation function, the van Hove correlation function, for a model liquid in two, three, and four dimensions. We find that the relaxation time increases monotonically with distance and the dependence on distancemore » varies with dimension. We propose a heuristic explanation of this dependence based on a simple geometrical model. Furthermore, this finding sheds new light on the interpretation of the de Gennes narrowing phenomenon and the α-relaxation time.« less

  6. Atomic Dynamics in Simple Liquid: de Gennes Narrowing Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Bin; Iwashita, Takuya; Egami, Takeshi

    The de Gennes narrowing phenomenon is frequently observed by neutron or x-ray scattering measurements of the dynamics of complex systems, such as liquids, proteins, colloids, and polymers. The characteristic slowing down of dynamics in the vicinity of the maximum of the total scattering intensity is commonly attributed to enhanced cooperativity. In this Letter, we present an alternative view on its origin through the examination of the time-dependent pair correlation function, the van Hove correlation function, for a model liquid in two, three, and four dimensions. We find that the relaxation time increases monotonically with distance and the dependence on distancemore » varies with dimension. We propose a heuristic explanation of this dependence based on a simple geometrical model. Furthermore, this finding sheds new light on the interpretation of the de Gennes narrowing phenomenon and the α-relaxation time.« less

  7. Relaxation mechanisms in glassy dynamics: the Arrhenius and fragile regimes.

    PubMed

    Hentschel, H George E; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques

    2012-06-01

    Generic glass formers exhibit at least two characteristic changes in their relaxation behavior, first to an Arrhenius-type relaxation at some characteristic temperature and then at a lower characteristic temperature to a super-Arrhenius (fragile) behavior. We address these transitions by studying the statistics of free energy barriers for different systems at different temperatures and space dimensions. We present a clear evidence for changes in the dynamical behavior at the transition to Arrhenius and then to a super-Arrhenius behavior. A simple model is presented, based on the idea of competition between single-particle and cooperative dynamics. We argue that Arrhenius behavior can take place as long as there is enough free volume for the completion of a simple T1 relaxation process. Once free volume is absent one needs a cooperative mechanism to "collect" enough free volume. We show that this model captures all the qualitative behavior observed in simulations throughout the considered temperature range.

  8. Topological determinants of self-sustained activity in a simple model of excitable dynamics on graphs.

    PubMed

    Fretter, Christoph; Lesne, Annick; Hilgetag, Claus C; Hütt, Marc-Thorsten

    2017-02-10

    Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience.

  9. Using entropy measures to characterize human locomotion.

    PubMed

    Leverick, Graham; Szturm, Tony; Wu, Christine Q

    2014-12-01

    Entropy measures have been widely used to quantify the complexity of theoretical and experimental dynamical systems. In this paper, the value of using entropy measures to characterize human locomotion is demonstrated based on their construct validity, predictive validity in a simple model of human walking and convergent validity in an experimental study. Results show that four of the five considered entropy measures increase meaningfully with the increased probability of falling in a simple passive bipedal walker model. The same four entropy measures also experienced statistically significant increases in response to increasing age and gait impairment caused by cognitive interference in an experimental study. Of the considered entropy measures, the proposed quantized dynamical entropy (QDE) and quantization-based approximation of sample entropy (QASE) offered the best combination of sensitivity to changes in gait dynamics and computational efficiency. Based on these results, entropy appears to be a viable candidate for assessing the stability of human locomotion.

  10. Dynamics of liquid spreading on solid surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalliadasis, S.; Chang, H.C.

    1996-09-01

    Using simple scaling arguments and a precursor film model, the authors show that the appropriate macroscopic contact angle {theta} during the slow spreading of a completely or partially wetting liquid under conditions of viscous flow and small slopes should be described by tan {theta} = [tan{sup 3} {theta}{sub e} {minus} 9 log {eta}Ca]{sup 1/3} where {theta}{sub e} is the static contact angle, Ca is the capillary number, and {eta} is a scaled Hamaker constant. Using this simple relation as a boundary condition, the authors are able to quantitatively model, without any empirical parameter, the spreading dynamics of several classical spreadingmore » phenomena (capillary rise, sessile, and pendant drop spreading) by simply equating the slope of the leading order static bulk region to the dynamic contact angle boundary condition without performing a matched asymptotic analysis for each case independently as is usually done in the literature.« less

  11. Topological determinants of self-sustained activity in a simple model of excitable dynamics on graphs

    NASA Astrophysics Data System (ADS)

    Fretter, Christoph; Lesne, Annick; Hilgetag, Claus C.; Hütt, Marc-Thorsten

    2017-02-01

    Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience.

  12. On the modelling of shallow turbidity flows

    NASA Astrophysics Data System (ADS)

    Liapidevskii, Valery Yu.; Dutykh, Denys; Gisclon, Marguerite

    2018-03-01

    In this study we investigate shallow turbidity density currents and underflows from mechanical point of view. We propose a simple hyperbolic model for such flows. On one hand, our model is based on very basic conservation principles. On the other hand, the turbulent nature of the flow is also taken into account through the energy dissipation mechanism. Moreover, the mixing with the pure water along with sediments entrainment and deposition processes are considered, which makes the problem dynamically interesting. One of the main advantages of our model is that it requires the specification of only two modeling parameters - the rate of turbulent dissipation and the rate of the pure water entrainment. Consequently, the resulting model turns out to be very simple and self-consistent. This model is validated against several experimental data and several special classes of solutions (such as travelling, self-similar and steady) are constructed. Unsteady simulations show that some special solutions are realized as asymptotic long time states of dynamic trajectories.

  13. Large deviations in the presence of cooperativity and slow dynamics

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen

    2018-06-01

    We study simple models of intermittency, involving switching between two states, within the dynamical large-deviation formalism. Singularities appear in the formalism when switching is cooperative or when its basic time scale diverges. In the first case the unbiased trajectory distribution undergoes a symmetry breaking, leading to a change in shape of the large-deviation rate function for a particular dynamical observable. In the second case the symmetry of the unbiased trajectory distribution remains unbroken. Comparison of these models suggests that singularities of the dynamical large-deviation formalism can signal the dynamical equivalent of an equilibrium phase transition but do not necessarily do so.

  14. Nonconservative dynamics in long atomic wires

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian; Todorov, Tchavdar N.; Dundas, Daniel

    2014-09-01

    The effect of nonconservative current-induced forces on the ions in a defect-free metallic nanowire is investigated using both steady-state calculations and dynamical simulations. Nonconservative forces were found to have a major influence on the ion dynamics in these systems, but their role in increasing the kinetic energy of the ions decreases with increasing system length. The results illustrate the importance of nonconservative effects in short nanowires and the scaling of these effects with system size. The dependence on bias and ion mass can be understood with the help of a simple pen and paper model. This material highlights the benefit of simple preliminary steady-state calculations in anticipating aspects of brute-force dynamical simulations, and provides rule of thumb criteria for the design of stable quantum wires.

  15. Interaction of a sodium ion with the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1989-01-01

    Molecular dynamics results are presented for the density profile of a sodium ion near the water liquid-vapor interface at 320 K. These results are compared with the predictions of a simple dielectric model for the interaction of a monovalent ion with this interface. The interfacial region described by the model profile is too narrow and the profile decreases too abruptly near the solution interface. Thus, the simple model does not provide a satisfactory description of the molecular dynamics results for ion positions within two molecular diameters from the solution interface where appreciable ion concentrations are observed. These results suggest that surfaces associated with dielectric models of ionic processes at aqueous solution interfaces should be located at least two molecular diameters inside the liquid phase. A free energy expense of about 2 kcal/mol is required to move the ion within two molecular layers of the free water liquid-vapor interface.

  16. Dynamic Modelling Of A SCARA Robot

    NASA Astrophysics Data System (ADS)

    Turiel, J. Perez; Calleja, R. Grossi; Diez, V. Gutierrez

    1987-10-01

    This paper describes a method for modelling industrial robots that considers dynamic approach to manipulation systems motion generation, obtaining the complete dynamic model for the mechanic part of the robot and taking into account the dynamic effect of actuators acting at the joints. For a four degree of freedom SCARA robot we obtain the dynamic model for the basic (minimal) configuration, that is, the three degrees of freedom that allow us to place the robot end effector in a desired point, using the Lagrange Method to obtain the dynamic equations in matrix form. The manipulator is considered to be a set of rigid bodies inter-connected by joints in the form of simple kinematic pairs. Then, the state space model is obtained for the actuators that move the robot joints, uniting the models of the single actuators, that is, two DC permanent magnet servomotors and an electrohydraulic actuator. Finally, using a computer simulation program written in FORTRAN language, we can compute the matrices of the complete model.

  17. A dynamical system of deposit and loan volumes based on the Lotka-Volterra model

    NASA Astrophysics Data System (ADS)

    Sumarti, N.; Nurfitriyana, R.; Nurwenda, W.

    2014-02-01

    In this research, we proposed a dynamical system of deposit and loan volumes of a bank using a predator-prey paradigm, where the predator is loan volumes, and the prey is deposit volumes. The existence of loan depends on the existence of deposit because the bank will allocate the loan volume from a portion of the deposit volume. The dynamical systems have been constructed are a simple model, a model with Michaelis-Menten Response and a model with the Reserve Requirement. Equilibria of the systems are analysed whether they are stable or unstable based on their linearised system.

  18. Model of ballistic targets' dynamics used for trajectory tracking algorithms

    NASA Astrophysics Data System (ADS)

    Okoń-FÄ fara, Marta; Kawalec, Adam; Witczak, Andrzej

    2017-04-01

    There are known only few ballistic object tracking algorithms. To develop such algorithms and to its further testing, it is necessary to implement possibly simple and reliable objects' dynamics model. The article presents the dynamics' model of a tactical ballistic missile (TBM) including the three stages of flight: the boost stage and two passive stages - the ascending one and the descending one. Additionally, the procedure of transformation from the local coordinate system to the polar-radar oriented and the global is presented. The prepared theoretical data may be used to determine the tracking algorithm parameters and to its further verification.

  19. Implementing a GPU-based numerical algorithm for modelling dynamics of a high-speed train

    NASA Astrophysics Data System (ADS)

    Sytov, E. S.; Bratus, A. S.; Yurchenko, D.

    2018-04-01

    This paper discusses the initiative of implementing a GPU-based numerical algorithm for studying various phenomena associated with dynamics of a high-speed railway transport. The proposed numerical algorithm for calculating a critical speed of the bogie is based on the first Lyapunov number. Numerical algorithm is validated by analytical results, derived for a simple model. A dynamic model of a carriage connected to a new dual-wheelset flexible bogie is studied for linear and dry friction damping. Numerical results obtained by CPU, MPU and GPU approaches are compared and appropriateness of these methods is discussed.

  20. Dynamical network interactions in distributed control of robots

    NASA Astrophysics Data System (ADS)

    Buscarino, Arturo; Fortuna, Luigi; Frasca, Mattia; Rizzo, Alessandro

    2006-03-01

    In this paper the dynamical network model of the interactions within a group of mobile robots is investigated and proposed as a possible strategy for controlling the robots without central coordination. Motivated by the results of the analysis of our simple model, we show that the system performance in the presence of noise can be improved by including long-range connections between the robots. Finally, a suitable strategy based on this model to control exploration and transport is introduced.

  1. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns

    PubMed Central

    Cruchet, Steeve; Gustafson, Kyle; Benton, Richard; Floreano, Dario

    2015-01-01

    The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs—locomotor bouts—matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior. PMID:26600381

  2. Modeling of human operator dynamics in simple manual control utilizing time series analysis. [tracking (position)

    NASA Technical Reports Server (NTRS)

    Agarwal, G. C.; Osafo-Charles, F.; Oneill, W. D.; Gottlieb, G. L.

    1982-01-01

    Time series analysis is applied to model human operator dynamics in pursuit and compensatory tracking modes. The normalized residual criterion is used as a one-step analytical tool to encompass the processes of identification, estimation, and diagnostic checking. A parameter constraining technique is introduced to develop more reliable models of human operator dynamics. The human operator is adequately modeled by a second order dynamic system both in pursuit and compensatory tracking modes. In comparing the data sampling rates, 100 msec between samples is adequate and is shown to provide better results than 200 msec sampling. The residual power spectrum and eigenvalue analysis show that the human operator is not a generator of periodic characteristics.

  3. Anomalous glassy dynamics in simple models of dense biological tissue

    NASA Astrophysics Data System (ADS)

    Sussman, Daniel M.; Paoluzzi, M.; Marchetti, M. Cristina; Manning, M. Lisa

    2018-02-01

    In order to understand the mechanisms for glassy dynamics in biological tissues and shed light on those in non-biological materials, we study the low-temperature disordered phase of 2D vertex-like models. Recently it has been noted that vertex models have quite unusual behavior in the zero-temperature limit, with rigidity transitions that are controlled by residual stresses and therefore exhibit very different scaling and phenomenology compared to particulate systems. Here we investigate the finite-temperature phase of two-dimensional Voronoi and Vertex models, and show that they have highly unusual, sub-Arrhenius scaling of dynamics with temperature. We connect the anomalous glassy dynamics to features of the potential energy landscape associated with zero-temperature inherent states.

  4. Determination of dynamic variations in the optical properties of graphene oxide in response to gas exposure based on thin-film interference.

    PubMed

    Tabassum, Shawana; Dong, Liang; Kumar, Ratnesh

    2018-03-05

    We present an effective yet simple approach to study the dynamic variations in optical properties (such as the refractive index (RI)) of graphene oxide (GO) when exposed to gases in the visible spectral region, using the thin-film interference method. The dynamic variations in the complex refractive index of GO in response to exposure to a gas is an important factor affecting the performance of GO-based gas sensors. In contrast to the conventional ellipsometry, this method alleviates the need of selecting a dispersion model from among a list of model choices, which is limiting if an applicable model is not known a priori. In addition, the method used is computationally simpler, and does not need to employ any functional approximations. Further advantage over ellipsometry is that no bulky optics is required, and as a result it can be easily integrated into the sensing system, thereby allowing the reliable, simple, and dynamic evaluation of the optical performance of any GO-based gas sensor. In addition, the derived values of the dynamically changing RI values of the GO layer obtained from the method we have employed are corroborated by comparing with the values obtained from ellipsometry.

  5. Models for Models: An Introduction to Polymer Models Employing Simple Analogies

    NASA Astrophysics Data System (ADS)

    Tarazona, M. Pilar; Saiz, Enrique

    1998-11-01

    An introduction to the most common models used in the calculations of conformational properties of polymers, ranging from the freely jointed chain approximation to Monte Carlo or molecular dynamics methods, is presented. Mathematical formalism is avoided and simple analogies, such as human chains, gases, opinion polls, or marketing strategies, are used to explain the different models presented. A second goal of the paper is to teach students how models required for the interpretation of a system can be elaborated, starting with the simplest model and introducing successive improvements until the refinements become so sophisticated that it is much better to use an alternative approach.

  6. Dynamic Systems Modeling in Educational System Design & Policy

    ERIC Educational Resources Information Center

    Groff, Jennifer Sterling

    2013-01-01

    Over the last several hundred years, local and national educational systems have evolved from relatively simple systems to incredibly complex, interdependent, policy-laden structures, to which many question their value, effectiveness, and direction they are headed. System Dynamics is a field of analysis used to guide policy and system design in…

  7. Molecular dynamics of conformational substates for a simplified protein model

    NASA Astrophysics Data System (ADS)

    Grubmüller, Helmut; Tavan, Paul

    1994-09-01

    Extended molecular dynamics simulations covering a total of 0.232 μs have been carried out on a simplified protein model. Despite its simplified structure, that model exhibits properties similar to those of more realistic protein models. In particular, the model was found to undergo transitions between conformational substates at a time scale of several hundred picoseconds. The computed trajectories turned out to be sufficiently long as to permit a statistical analysis of that conformational dynamics. To check whether effective descriptions neglecting memory effects can reproduce the observed conformational dynamics, two stochastic models were studied. A one-dimensional Langevin effective potential model derived by elimination of subpicosecond dynamical processes could not describe the observed conformational transition rates. In contrast, a simple Markov model describing the transitions between but neglecting dynamical processes within conformational substates reproduced the observed distribution of first passage times. These findings suggest, that protein dynamics generally does not exhibit memory effects at time scales above a few hundred picoseconds, but confirms the existence of memory effects at a picosecond time scale.

  8. Predictive power of food web models based on body size decreases with trophic complexity.

    PubMed

    Jonsson, Tomas; Kaartinen, Riikka; Jonsson, Mattias; Bommarco, Riccardo

    2018-05-01

    Food web models parameterised using body size show promise to predict trophic interaction strengths (IS) and abundance dynamics. However, this remains to be rigorously tested in food webs beyond simple trophic modules, where indirect and intraguild interactions could be important and driven by traits other than body size. We systematically varied predator body size, guild composition and richness in microcosm insect webs and compared experimental outcomes with predictions of IS from models with allometrically scaled parameters. Body size was a strong predictor of IS in simple modules (r 2  = 0.92), but with increasing complexity the predictive power decreased, with model IS being consistently overestimated. We quantify the strength of observed trophic interaction modifications, partition this into density-mediated vs. behaviour-mediated indirect effects and show that model shortcomings in predicting IS is related to the size of behaviour-mediated effects. Our findings encourage development of dynamical food web models explicitly including and exploring indirect mechanisms. © 2018 John Wiley & Sons Ltd/CNRS.

  9. Conifer ovulate cones accumulate pollen principally by simple impaction.

    PubMed

    Cresswell, James E; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A; Young, Phillipe G; Tabor, Gavin R

    2007-11-13

    In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones.

  10. Conifer ovulate cones accumulate pollen principally by simple impaction

    PubMed Central

    Cresswell, James E.; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A.; Young, Phillipe G.; Tabor, Gavin R.

    2007-01-01

    In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones. PMID:17986613

  11. EIT Noise Resonance Power Broadening: a probe for coherence dynamics

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; O'Leary, Shannon; Snider, Charles

    2012-06-01

    EIT noise correlation spectroscopy holds promise as a simple, robust method for performing high resolution spectroscopy used in devices as diverse as magnetometers and clocks. One useful feature of these noise correlation resonances is that they do not power broaden with the EIT window. We report on measurements of the eventual power broadening (at higher optical powers) of these resonances and a simple, quantitative theoretical model that relates the observed power broadening slope with processes such as two-photon detuning gradients and coherence diffusion. These processes reduce the ground state coherence relative to that of a homogeneous system, and thus the power broadening slope of the EIT noise correlation resonance may be a simple, useful probe for coherence dynamics.

  12. Application of numerical optimization techniques to control system design for nonlinear dynamic models of aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Ge, Fuying

    1989-01-01

    Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.

  13. Universality classes of fluctuation dynamics in hierarchical complex systems

    NASA Astrophysics Data System (ADS)

    Macêdo, A. M. S.; González, Iván R. Roa; Salazar, D. S. P.; Vasconcelos, G. L.

    2017-03-01

    A unified approach is proposed to describe the statistics of the short-time dynamics of multiscale complex systems. The probability density function of the relevant time series (signal) is represented as a statistical superposition of a large time-scale distribution weighted by the distribution of certain internal variables that characterize the slowly changing background. The dynamics of the background is formulated as a hierarchical stochastic model whose form is derived from simple physical constraints, which in turn restrict the dynamics to only two possible classes. The probability distributions of both the signal and the background have simple representations in terms of Meijer G functions. The two universality classes for the background dynamics manifest themselves in the signal distribution as two types of tails: power law and stretched exponential, respectively. A detailed analysis of empirical data from classical turbulence and financial markets shows excellent agreement with the theory.

  14. Dynamic PET simulator via tomographic emission projection for kinetic modeling and parametric image studies.

    PubMed

    Häggström, Ida; Beattie, Bradley J; Schmidtlein, C Ross

    2016-06-01

    To develop and evaluate a fast and simple tool called dpetstep (Dynamic PET Simulator of Tracers via Emission Projection), for dynamic PET simulations as an alternative to Monte Carlo (MC), useful for educational purposes and evaluation of the effects of the clinical environment, postprocessing choices, etc., on dynamic and parametric images. The tool was developed in matlab using both new and previously reported modules of petstep (PET Simulator of Tracers via Emission Projection). Time activity curves are generated for each voxel of the input parametric image, whereby effects of imaging system blurring, counting noise, scatters, randoms, and attenuation are simulated for each frame. Each frame is then reconstructed into images according to the user specified method, settings, and corrections. Reconstructed images were compared to MC data, and simple Gaussian noised time activity curves (GAUSS). dpetstep was 8000 times faster than MC. Dynamic images from dpetstep had a root mean square error that was within 4% on average of that of MC images, whereas the GAUSS images were within 11%. The average bias in dpetstep and MC images was the same, while GAUSS differed by 3% points. Noise profiles in dpetstep images conformed well to MC images, confirmed visually by scatter plot histograms, and statistically by tumor region of interest histogram comparisons that showed no significant differences (p < 0.01). Compared to GAUSS, dpetstep images and noise properties agreed better with MC. The authors have developed a fast and easy one-stop solution for simulations of dynamic PET and parametric images, and demonstrated that it generates both images and subsequent parametric images with very similar noise properties to those of MC images, in a fraction of the time. They believe dpetstep to be very useful for generating fast, simple, and realistic results, however since it uses simple scatter and random models it may not be suitable for studies investigating these phenomena. dpetstep can be downloaded free of cost from https://github.com/CRossSchmidtlein/dPETSTEP.

  15. Quantifying characteristic growth dynamics in a semiarid grassland ecosystem by predicting short-term NDVI phenology from daily rainfall: a simple 4 parameter coupled-reservoir model

    USDA-ARS?s Scientific Manuscript database

    Predicting impacts of the magnitude and seasonal timing of rainfall pulses in water-limited grassland ecosystems concerns ecologists, climate scientists, hydrologists, and a variety of stakeholders. This report describes a simple, effective procedure to emulate the seasonal response of grassland bio...

  16. Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models.

    PubMed

    Franke, John E; Yakubu, Abdul-Aziz

    2008-12-01

    The dynamics of simple discrete-time epidemic models without disease-induced mortality are typically characterized by global transcritical bifurcation. We prove that in corresponding models with disease-induced mortality a tiny number of infectious individuals can drive an otherwise persistent population to extinction. Our model with disease-induced mortality supports multiple attractors. In addition, we use a Ricker recruitment function in an SIS model and obtained a three component discrete Hopf (Neimark-Sacker) cycle attractor coexisting with a fixed point attractor. The basin boundaries of the coexisting attractors are fractal in nature, and the example exhibits sensitive dependence of the long-term disease dynamics on initial conditions. Furthermore, we show that in contrast to corresponding models without disease-induced mortality, the disease-free state dynamics do not drive the disease dynamics.

  17. Automated adaptive inference of phenomenological dynamical models.

    PubMed

    Daniels, Bryan C; Nemenman, Ilya

    2015-08-21

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.

  18. Automated adaptive inference of phenomenological dynamical models

    PubMed Central

    Daniels, Bryan C.; Nemenman, Ilya

    2015-01-01

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508

  19. Dark matter and MOND dynamical models of the massive spiral galaxy NGC 2841

    NASA Astrophysics Data System (ADS)

    Samurović, S.; Vudragović, A.; Jovanović, M.

    2015-08-01

    We study dynamical models of the massive spiral galaxy NGC 2841 using both the Newtonian models with Navarro-Frenk-White (NFW) and isothermal dark haloes, as well as various MOND (MOdified Newtonian Dynamics) models. We use the observations coming from several publicly available data bases: we use radio data, near-infrared photometry as well as spectroscopic observations. In our models, we find that both tested Newtonian dark matter approaches can successfully fit the observed rotational curve of NGC 2841. The three tested MOND models (standard, simple and, for the first time applied to another spiral galaxy than the Milky Way, Bekenstein's toy model) provide fits of the observed rotational curve with various degrees of success: the best result was obtained with the standard MOND model. For both approaches, Newtonian and MOND, the values of the mass-to-light ratios of the bulge are consistent with the predictions from the stellar population synthesis (SPS) based on the Salpeter initial mass function (IMF). Also, for Newtonian and simple and standard MOND models, the estimated stellar mass-to-light ratios of the disc agree with the predictions from the SPS models based on the Kroupa IMF, whereas the toy MOND model provides too low a value of the stellar mass-to-light ratio, incompatible with the predictions of the tested SPS models. In all our MOND models, we vary the distance to NGC 2841, and our best-fitting standard and toy models use the values higher than the Cepheid-based distance to the galaxy NGC 2841, and the best-fitting simple MOND model is based on the lower value of the distance. The best-fitting NFW model is inconsistent with the predictions of the Λ cold dark matter cosmology, because the inferred concentration index is too high for the established virial mass.

  20. Complex and unexpected dynamics in simple genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey

    2014-03-01

    One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.

  1. Keep it simple - A case study of model development in the context of the Dynamic Stocks and Flows (DSF) task

    NASA Astrophysics Data System (ADS)

    Halbrügge, Marc

    2010-12-01

    This paper describes the creation of a cognitive model submitted to the ‘Dynamic Stocks and Flows’ (DSF) modeling challenge. This challenge aims at comparing computational cognitive models for human behavior during an open ended control task. Participants in the modeling competition were provided with a simulation environment and training data for benchmarking their models while the actual specification of the competition task was withheld. To meet this challenge, the cognitive model described here was designed and optimized for generalizability. Only two simple assumptions about human problem solving were used to explain the empirical findings of the training data. In-depth analysis of the data set prior to the development of the model led to the dismissal of correlations or other parametric statistics as goodness-of-fit indicators. A new statistical measurement based on rank orders and sequence matching techniques is being proposed instead. This measurement, when being applied to the human sample, also identifies clusters of subjects that use different strategies for the task. The acceptability of the fits achieved by the model is verified using permutation tests.

  2. Boolean Dynamic Modeling Approaches to Study Plant Gene Regulatory Networks: Integration, Validation, and Prediction.

    PubMed

    Velderraín, José Dávila; Martínez-García, Juan Carlos; Álvarez-Buylla, Elena R

    2017-01-01

    Mathematical models based on dynamical systems theory are well-suited tools for the integration of available molecular experimental data into coherent frameworks in order to propose hypotheses about the cooperative regulatory mechanisms driving developmental processes. Computational analysis of the proposed models using well-established methods enables testing the hypotheses by contrasting predictions with observations. Within such framework, Boolean gene regulatory network dynamical models have been extensively used in modeling plant development. Boolean models are simple and intuitively appealing, ideal tools for collaborative efforts between theorists and experimentalists. In this chapter we present protocols used in our group for the study of diverse plant developmental processes. We focus on conceptual clarity and practical implementation, providing directions to the corresponding technical literature.

  3. Evolution of the cerebellum as a neuronal machine for Bayesian state estimation

    NASA Astrophysics Data System (ADS)

    Paulin, M. G.

    2005-09-01

    The cerebellum evolved in association with the electric sense and vestibular sense of the earliest vertebrates. Accurate information provided by these sensory systems would have been essential for precise control of orienting behavior in predation. A simple model shows that individual spikes in electrosensory primary afferent neurons can be interpreted as measurements of prey location. Using this result, I construct a computational neural model in which the spatial distribution of spikes in a secondary electrosensory map forms a Monte Carlo approximation to the Bayesian posterior distribution of prey locations given the sense data. The neural circuit that emerges naturally to perform this task resembles the cerebellar-like hindbrain electrosensory filtering circuitry of sharks and other electrosensory vertebrates. The optimal filtering mechanism can be extended to handle dynamical targets observed from a dynamical platform; that is, to construct an optimal dynamical state estimator using spiking neurons. This may provide a generic model of cerebellar computation. Vertebrate motion-sensing neurons have specific fractional-order dynamical characteristics that allow Bayesian state estimators to be implemented elegantly and efficiently, using simple operations with asynchronous pulses, i.e. spikes. The computational neural models described in this paper represent a novel kind of particle filter, using spikes as particles. The models are specific and make testable predictions about computational mechanisms in cerebellar circuitry, while providing a plausible explanation of cerebellar contributions to aspects of motor control, perception and cognition.

  4. A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks.

    PubMed

    Antoneli, Fernando; Ferreira, Renata C; Briones, Marcelo R S

    2016-06-01

    Here we propose a new approach to modeling gene expression based on the theory of random dynamical systems (RDS) that provides a general coupling prescription between the nodes of any given regulatory network given the dynamics of each node is modeled by a RDS. The main virtues of this approach are the following: (i) it provides a natural way to obtain arbitrarily large networks by coupling together simple basic pieces, thus revealing the modularity of regulatory networks; (ii) the assumptions about the stochastic processes used in the modeling are fairly general, in the sense that the only requirement is stationarity; (iii) there is a well developed mathematical theory, which is a blend of smooth dynamical systems theory, ergodic theory and stochastic analysis that allows one to extract relevant dynamical and statistical information without solving the system; (iv) one may obtain the classical rate equations form the corresponding stochastic version by averaging the dynamic random variables (small noise limit). It is important to emphasize that unlike the deterministic case, where coupling two equations is a trivial matter, coupling two RDS is non-trivial, specially in our case, where the coupling is performed between a state variable of one gene and the switching stochastic process of another gene and, hence, it is not a priori true that the resulting coupled system will satisfy the definition of a random dynamical system. We shall provide the necessary arguments that ensure that our coupling prescription does indeed furnish a coupled regulatory network of random dynamical systems. Finally, the fact that classical rate equations are the small noise limit of our stochastic model ensures that any validation or prediction made on the basis of the classical theory is also a validation or prediction of our model. We illustrate our framework with some simple examples of single-gene system and network motifs. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Simple deterministic models and applications. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Mo

    2015-12-01

    Currently, discrete modellings are largely accepted due to the access to computers with huge storage capacity and high performance processors and easy implementation of algorithms, allowing to develop and simulate increasingly sophisticated models. Wang et al. [7] present a review of dynamics in complex networks, focusing on the interaction between disease dynamics and human behavioral and social dynamics. By doing an extensive review regarding to the human behavior responding to disease dynamics, the authors briefly describe the complex dynamics found in the literature: well-mixed populations networks, where spatial structure can be neglected, and other networks considering heterogeneity on spatially distributed populations. As controlling mechanisms are implemented, such as social distancing due 'social contagion', quarantine, non-pharmaceutical interventions and vaccination, adaptive behavior can occur in human population, which can be easily taken into account in the dynamics formulated by networked populations.

  6. Modeling of dynamic effects of a low power laser beam

    NASA Technical Reports Server (NTRS)

    Lawrence, George N.; Scholl, Marija S.; Khatib, AL

    1988-01-01

    Methods of modeling some of the dynamic effects involved in laser beam propagation through the atmosphere are addressed with emphasis on the development of simple but accurate models which are readily implemented in a physical optics code. A space relay system with a ground based laser facility is considered as an example. The modeling of such characteristic phenomena as laser output distribution, flat and curved mirrors, diffraction propagation, atmospheric effects (aberration and wind shear), adaptive mirrors, jitter, and time integration of power on target, is discussed.

  7. Oscillations and Multiple Equilibria in Microvascular Blood Flow.

    PubMed

    Karst, Nathaniel J; Storey, Brian D; Geddes, John B

    2015-07-01

    We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.

  8. Reactivating dynamics for the susceptible-infected-susceptible model: a simple method to simulate the absorbing phase

    NASA Astrophysics Data System (ADS)

    Macedo-Filho, A.; Alves, G. A.; Costa Filho, R. N.; Alves, T. F. A.

    2018-04-01

    We investigated the susceptible-infected-susceptible model on a square lattice in the presence of a conjugated field based on recently proposed reactivating dynamics. Reactivating dynamics consists of reactivating the infection by adding one infected site, chosen randomly when the infection dies out, avoiding the dynamics being trapped in the absorbing state. We show that the reactivating dynamics can be interpreted as the usual dynamics performed in the presence of an effective conjugated field, named the reactivating field. The reactivating field scales as the inverse of the lattice number of vertices n, which vanishes at the thermodynamic limit and does not affect any scaling properties including ones related to the conjugated field.

  9. Random Evolution of Idiotypic Networks: Dynamics and Architecture

    NASA Astrophysics Data System (ADS)

    Brede, Markus; Behn, Ulrich

    The paper deals with modelling a subsystem of the immune system, the so-called idiotypic network (INW). INWs, conceived by N.K. Jerne in 1974, are functional networks of interacting antibodies and B cells. In principle, Jernes' framework provides solutions to many issues in immunology, such as immunological memory, mechanisms for antigen recognition and self/non-self discrimination. Explaining the interconnection between the elementary components, local dynamics, network formation and architecture, and possible modes of global system function appears to be an ideal playground of statistical mechanics. We present a simple cellular automaton model, based on a graph representation of the system. From a simplified description of idiotypic interactions, rules for the random evolution of networks of occupied and empty sites on these graphs are derived. In certain biologically relevant parameter ranges the resultant dynamics leads to stationary states. A stationary state is found to correspond to a specific pattern of network organization. It turns out that even these very simple rules give rise to a multitude of different kinds of patterns. We characterize these networks by classifying `static' and `dynamic' network-patterns. A type of `dynamic' network is found to display many features of real INWs.

  10. Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Sharma, Vivek

    Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.

  11. Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.

    PubMed

    Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C

    2015-05-21

    In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.

  12. Entropic Lattice Boltzmann Methods

    DTIC Science & Technology

    2001-12-10

    model of fluid dynamics in one dimension, first considered by Renda et al. in 1997 [14]. Here the geometric picture involves a four dimensional polytope...convention of including constant terms in an extra column of the matrix, using the device of appending 1 to the column vector of unknowns. In general, there...we apply the entropic lattice Boltzmann method to a simple five-velocity model of fluid dynamics in one dimension, first considered by Renda et al

  13. Self-organizing biopsychosocial dynamics and the patient-healer relationship.

    PubMed

    Pincus, David

    2012-01-01

    The patient-healer relationship has an increasing area of interest for complementary and alternative medicine (CAM) researchers. This focus on the interpersonal context of treatment is not surprising as dismantling studies, clinical trials and other linear research designs continually point toward the critical role of context and the broadband biopsychosocial nature of therapeutic responses to CAM. Unfortunately, the same traditional research models and methods that fail to find simple and specific treatment-outcome relations are similarly failing to find simple and specific mechanisms to explain how interpersonal processes influence patient outcomes. This paper presents an overview of some of the key models and methods from nonlinear dynamical systems that are better equipped for empirical testing of CAM outcomes on broadband biopsychosocial processes. Suggestions are made for CAM researchers to assist in modeling the interactions among key process dynamics interacting across biopsychosocial scales: empathy, intra-psychic conflict, physiological arousal, and leukocyte telomerase activity. Finally, some speculations are made regarding the possibility for deeper cross-scale information exchange involving quantum temporal nonlocality. Copyright © 2012 S. Karger AG, Basel.

  14. Fish robotics and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lauder, George

    2010-11-01

    Studying the fluid dynamics of locomotion in freely-swimming fishes is challenging due to difficulties in controlling fish behavior. To provide better control over fish-like propulsive systems we have constructed a variety of fish-like robotic test platforms that range from highly biomimetic models of fins, to simple physical models of body movements during aquatic locomotion. First, we have constructed a series of biorobotic models of fish pectoral fins with 5 fin rays that allow detailed study of fin motion, forces, and fluid dynamics associated with fin-based locomotion. We find that by tuning fin ray stiffness and the imposed motion program we can produce thrust both on the fin outstroke and instroke. Second, we are using a robotic flapping foil system to study the self-propulsion of flexible plastic foils of varying stiffness, length, and trailing edge shape as a means of investigating the fluid dynamic effect of simple changes in the properties of undulating bodies moving through water. We find unexpected non-linear stiffness-dependent effects of changing foil length on self-propelled speed, and as well as significant effects of trailing edge shape on foil swimming speed.

  15. Chaotic Ising-like dynamics in traffic signals

    PubMed Central

    Suzuki, Hideyuki; Imura, Jun-ichi; Aihara, Kazuyuki

    2013-01-01

    The green and red lights of a traffic signal can be viewed as the up and down states of an Ising spin. Moreover, traffic signals in a city interact with each other, if they are controlled in a decentralised way. In this paper, a simple model of such interacting signals on a finite-size two-dimensional lattice is shown to have Ising-like dynamics that undergoes a ferromagnetic phase transition. Probabilistic behaviour of the model is realised by chaotic billiard dynamics that arises from coupled non-chaotic elements. This purely deterministic model is expected to serve as a starting point for considering statistical mechanics of traffic signals. PMID:23350034

  16. Parameter Estimation in Epidemiology: from Simple to Complex Dynamics

    NASA Astrophysics Data System (ADS)

    Aguiar, Maíra; Ballesteros, Sebastién; Boto, João Pedro; Kooi, Bob W.; Mateus, Luís; Stollenwerk, Nico

    2011-09-01

    We revisit the parameter estimation framework for population biological dynamical systems, and apply it to calibrate various models in epidemiology with empirical time series, namely influenza and dengue fever. When it comes to more complex models like multi-strain dynamics to describe the virus-host interaction in dengue fever, even most recently developed parameter estimation techniques, like maximum likelihood iterated filtering, come to their computational limits. However, the first results of parameter estimation with data on dengue fever from Thailand indicate a subtle interplay between stochasticity and deterministic skeleton. The deterministic system on its own already displays complex dynamics up to deterministic chaos and coexistence of multiple attractors.

  17. Acoustics and dynamics of coaxial interacting vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony; Zabusky, Norman J.; Ferziger, Joel H.

    1988-01-01

    Using a contour dynamics method for inviscid axisymmetric flow we examine the effects of core deformation on the dynamics and acoustic signatures of coaxial interacting vortex rings. Both 'passage' and 'collision' (head-on) interactions are studied for initially identical vortices. Good correspondence with experiments is obtained. A simple model which retains only the elliptic degree of freedom in the core shape is used to explain some of the calculated features.

  18. Estimating Phenomenological Parameters in Multi-Assets Markets

    NASA Astrophysics Data System (ADS)

    Raffaelli, Giacomo; Marsili, Matteo

    Financial correlations exhibit a non-trivial dynamic behavior. This is reproduced by a simple phenomenological model of a multi-asset financial market, which takes into account the impact of portfolio investment on price dynamics. This captures the fact that correlations determine the optimal portfolio but are affected by investment based on it. Such a feedback on correlations gives rise to an instability when the volume of investment exceeds a critical value. Close to the critical point the model exhibits dynamical correlations very similar to those observed in real markets. We discuss how the model's parameter can be estimated in real market data with a maximum likelihood principle. This confirms the main conclusion that real markets operate close to a dynamically unstable point.

  19. Classification framework for partially observed dynamical systems

    NASA Astrophysics Data System (ADS)

    Shen, Yuan; Tino, Peter; Tsaneva-Atanasova, Krasimira

    2017-04-01

    We present a general framework for classifying partially observed dynamical systems based on the idea of learning in the model space. In contrast to the existing approaches using point estimates of model parameters to represent individual data items, we employ posterior distributions over model parameters, thus taking into account in a principled manner the uncertainty due to both the generative (observational and/or dynamic noise) and observation (sampling in time) processes. We evaluate the framework on two test beds: a biological pathway model and a stochastic double-well system. Crucially, we show that the classification performance is not impaired when the model structure used for inferring posterior distributions is much more simple than the observation-generating model structure, provided the reduced-complexity inferential model structure captures the essential characteristics needed for the given classification task.

  20. Dynamics of Individual cilia to external loading- A simple one dimensional picture

    NASA Astrophysics Data System (ADS)

    Swaminathan, Vinay; Hill, David; Superfine, R.

    2008-10-01

    From being called the cellular janitors to swinging debauchers, cilia have captured the fascinations of researchers for over 200 years. In cystic fibrosis and chronic obstructive pulmonary disease where the cilia loses it's function, the protective mucus layer in the lung thickens and mucociliary clearance breaks down, leading to inflammation along the airways and an increased rate of infection. The mechanistic understanding of mucus clearance depends on a quantitative assessment of the axoneme dynamics and the maximum force the cilia are capable of generating and imparting to the mucus layer. Similar to the situation in molecular motors, detailed quantitative measurements of dynamics under applied load conditions are expected to be essential in developing predictive models. Based on our measurements of the dynamics of individual ciliary motion in the human bronchial epithelial cell under the application of an applied load, we present a simple one dimensional model for the axoneme dynamics and quantify the axoneme stiffness, the internal force generated by the axoneme, the stall force and show how the dynamics sheds insight on the time dependence of the internal force generation. The internal force generated by the axoneme is related to the ability of cilia to propel fluids and to their potential role in force sensing.

  1. Spin glass model for dynamics of cell reprogramming

    NASA Astrophysics Data System (ADS)

    Pusuluri, Sai Teja; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    2015-03-01

    Recent experiments show that differentiated cells can be reprogrammed to become pluripotent stem cells. The possible cell fates can be modeled as attractors in a dynamical system, the ``epigenetic landscape.'' Both cellular differentiation and reprogramming can be described in the landscape picture as motion from one attractor to another attractor. We perform Monte Carlo simulations in a simple model of the landscape. This model is based on spin glass theory and it can be used to construct a simulated epigenetic landscape starting from the experimental genomic data. We re-analyse data from several cell reprogramming experiments and compare with our simulation results. We find that the model can reproduce some of the main features of the dynamics of cell reprogramming.

  2. Influence of the Mesh Geometry Evolution on Gearbox Dynamics during Its Maintenance

    NASA Astrophysics Data System (ADS)

    Dąbrowski, Z.; Dziurdź, J.; Klekot, G.

    2017-12-01

    Toothed gears constitute the necessary elements of power transmission systems. They are applied as stationary devices in drive systems of road vehicles, ships and crafts as well as airplanes and helicopters. One of the problems related to the toothed gears usage is the determination of their technical state or its evolutions. Assuming that the gear slippage velocity is attributed to vibrations and noises generated by cooperating toothed wheels, the application of a simple cooperation model of rolled wheels of skew teeth is proposed for the analysis of the mesh evolution influence on the gear dynamics. In addition, an example of utilising an ordinary coherence function for investigating evolutionary mesh changes related to the effects impossible to be described by means of the simple kinematic model is presented.

  3. A simple, dynamic, hydrological model of a mesotidal salt marsh

    EPA Science Inventory

    Salt marsh hydrology presents many difficulties from a modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because of these difficu...

  4. PREDICTIVE MODEL OF CONJUGATIVE PLASMID TRANSFER IN THE RHIZOSPHERE AND PHYLLOSPHERE

    EPA Science Inventory

    A computer simulation model was used to predict the dynamics of survival and conjugation of Pseudomonas cepacia (carrying the transmissible recombinant plasmid R388:Tn1721) with a nonrecombinant recipient strain in simple rhizosphere and phyllosphere microcosms. lasmid transfer r...

  5. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  6. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qing; Shi, Chaowei; Yu, Lu

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in amore » defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.« less

  7. Modeling epidemics on adaptively evolving networks: A data-mining perspective.

    PubMed

    Kattis, Assimakis A; Holiday, Alexander; Stoica, Ana-Andreea; Kevrekidis, Ioannis G

    2016-01-01

    The exploration of epidemic dynamics on dynamically evolving ("adaptive") networks poses nontrivial challenges to the modeler, such as the determination of a small number of informative statistics of the detailed network state (that is, a few "good observables") that usefully summarize the overall (macroscopic, systems-level) behavior. Obtaining reduced, small size accurate models in terms of these few statistical observables--that is, trying to coarse-grain the full network epidemic model to a small but useful macroscopic one--is even more daunting. Here we describe a data-based approach to solving the first challenge: the detection of a few informative collective observables of the detailed epidemic dynamics. This is accomplished through Diffusion Maps (DMAPS), a recently developed data-mining technique. We illustrate the approach through simulations of a simple mathematical model of epidemics on a network: a model known to exhibit complex temporal dynamics. We discuss potential extensions of the approach, as well as possible shortcomings.

  8. Proximity Networks and Epidemics

    NASA Astrophysics Data System (ADS)

    Guclu, Hasan; Toroczkai, Zoltán

    2007-03-01

    We presented the basis of a framework to account for the dynamics of contacts in epidemic processes, through the notion of dynamic proximity graphs. By varying the integration time-parameter T, which is the period of infectivity one can give a simple account for some of the differences in the observed contact networks for different diseases, such as smallpox, or AIDS. Our simplistic model also seems to shed some light on the shape of the degree distribution of the measured people-people contact network from the EPISIM data. We certainly do not claim that the simplistic graph integration model above is a good model for dynamic contact graphs. It only contains the essential ingredients for such processes to produce a qualitative agreement with some observations. We expect that further refinements and extensions to this picture, in particular deriving the link-probabilities in the dynamic proximity graph from more realistic contact dynamics should improve the agreement between models and data.

  9. Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations.

    PubMed

    Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W

    2015-01-01

    Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.

  10. Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations

    PubMed Central

    Hu, Eric Y.; Bouteiller, Jean-Marie C.; Song, Dong; Baudry, Michel; Berger, Theodore W.

    2015-01-01

    Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations. PMID:26441622

  11. Cellular reprogramming dynamics follow a simple 1D reaction coordinate

    NASA Astrophysics Data System (ADS)

    Teja Pusuluri, Sai; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    2018-01-01

    Cellular reprogramming, the conversion of one cell type to another, induces global changes in gene expression involving thousands of genes, and understanding how cells globally alter their gene expression profile during reprogramming is an ongoing problem. Here we reanalyze time-course data on cellular reprogramming from differentiated cell types to induced pluripotent stem cells (iPSCs) and show that gene expression dynamics during reprogramming follow a simple 1D reaction coordinate. This reaction coordinate is independent of both the time it takes to reach the iPSC state as well as the details of the experimental protocol used. Using Monte-Carlo simulations, we show that such a reaction coordinate emerges from epigenetic landscape models where cellular reprogramming is viewed as a ‘barrier-crossing’ process between cell fates. Overall, our analysis and model suggest that gene expression dynamics during reprogramming follow a canonical trajectory consistent with the idea of an ‘optimal path’ in gene expression space for reprogramming.

  12. Nonlinear Dynamic Modeling of a Supersonic Commercial Transport Turbo-Machinery Propulsion System for Aero-Propulso-Servo-Elasticity Research

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Carlson, Jan-Renee; Woolwine, Kyle

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the de- scribed dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.

  13. Nonlinear Dynamic Modeling of a Supersonic Commercial Transport Turbo-Machinery Propulsion System for Aero-Propulso-Servo-Elasticity Research

    NASA Technical Reports Server (NTRS)

    Connolly, Joe; Carlson, Jan-Renee; Kopasakis, George; Woolwine, Kyle

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the described dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.

  14. Understanding the complex dynamics of stock markets through cellular automata

    NASA Astrophysics Data System (ADS)

    Qiu, G.; Kandhai, D.; Sloot, P. M. A.

    2007-04-01

    We present a cellular automaton (CA) model for simulating the complex dynamics of stock markets. Within this model, a stock market is represented by a two-dimensional lattice, of which each vertex stands for a trader. According to typical trading behavior in real stock markets, agents of only two types are adopted: fundamentalists and imitators. Our CA model is based on local interactions, adopting simple rules for representing the behavior of traders and a simple rule for price updating. This model can reproduce, in a simple and robust manner, the main characteristics observed in empirical financial time series. Heavy-tailed return distributions due to large price variations can be generated through the imitating behavior of agents. In contrast to other microscopic simulation (MS) models, our results suggest that it is not necessary to assume a certain network topology in which agents group together, e.g., a random graph or a percolation network. That is, long-range interactions can emerge from local interactions. Volatility clustering, which also leads to heavy tails, seems to be related to the combined effect of a fast and a slow process: the evolution of the influence of news and the evolution of agents’ activity, respectively. In a general sense, these causes of heavy tails and volatility clustering appear to be common among some notable MS models that can confirm the main characteristics of financial markets.

  15. Quasi-Dynamic Versus Fully-Dynamic Simulations of Slip Accumulation on Faults with Enhanced Dynamic Weakening

    NASA Astrophysics Data System (ADS)

    Lapusta, N.; Thomas, M.; Noda, H.; Avouac, J.

    2012-12-01

    Long-term simulations that incorporate both seismic events and aseismic slip are quite important for studies of earthquake physics but challenging computationally. To study long deformation histories, most simulation methods do not incorporate full inertial effects (wave propagation) during simulated earthquakes, using quasi-dynamic approximations instead. Here we compare the results of quasi-dynamic simulations to the fully dynamic ones for a range of problems to determine the applicability of the quasi-dynamic approach. Intuitively, the quasi-dynamic approach should do relatively well in problems where wave-mediated effects are relatively simple but should have substantially different (and hence wrong) response when the wave-mediated stress transfers dominate the character of the seismic events. This is exactly what we observe in our simulations. We consider a 2D model of a rate-and-state fault with a seismogenic (steady-state velocity-weakening) zone surrounded by creeping (steady-state velocity-strengthening) areas. If the seismogenic zone is described by the standard Dieterich-Ruina rate-and-state friction, the resulting earthquake sequences consist of relatively simple crack-like ruptures, and the inclusion of true wave-propagation effects mostly serves to concentrate stress more efficiently at the rupture front. Hence, in such models, rupture speeds and slip rates are significantly (several times) lower in the quasi-dynamic simulations compared to the fully dynamic ones, but the total slip, the crack-like nature of seismic events, and the overall pattern of earthquake sequences is comparable, consistently with prior studies. Such behavior can be classified as qualitatively similar but quantitatively different, and it motivates the popularity of the quasi-dynamic methods in simulations. However, the comparison changes dramatically once we consider a model with enhanced dynamic weakening in the seismogenic zone in the form of flash heating. In this case, the fully dynamic simulations produce seismic ruptures in the form of short-duration slip pulses, where the pulses form due to a combination of enhanced weakening and wave effects. The quasi-dynamic simulations in the same model produce completely different results, with large crack-like ruptures, different total slips, different rupture patterns, and different prestress state before large, model-spanning events. Such qualitative differences between the quasi-dynamic and fully-dynamic simulation should result in any model where inertial effects lead to qualitative differences, such as cases with supershear transition or fault with different materials on the two sides. We will present results on our current work on how the quasi-dynamic and fully dynamic simulations compare for the cases with heterogeneous fault properties.

  16. Integrating microbial diversity in soil carbon dynamic models parameters

    NASA Astrophysics Data System (ADS)

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten sampling time in order to follow the dynamic of residue and soil organic matter mineralization. Diversity, structure and composition of microbial communities have been characterized before incubation time. The dynamic of carbon fluxes through CO2 emissions has been modelled through a simple model. Using statistical tools, relations between parameters of the model and microbial diversity indexes and/or pedological characteristics have been developed and integrated to the model. First results show that global diversity has an impact on the models parameters. Moreover, larger fungi diversity seems to lead to larger parameters representing decomposition rates and/or carbon use efficiencies than bacterial diversity. Classically, pedological factors such as soil pH and texture must also be taken into account.

  17. Phase-field crystal modeling of heteroepitaxy and exotic modes of crystal nucleation

    NASA Astrophysics Data System (ADS)

    Podmaniczky, Frigyes; Tóth, Gyula I.; Tegze, György; Pusztai, Tamás; Gránásy, László

    2017-01-01

    We review recent advances made in modeling heteroepitaxy, two-step nucleation, and nucleation at the growth front within the framework of a simple dynamical density functional theory, the Phase-Field Crystal (PFC) model. The crystalline substrate is represented by spatially confined periodic potentials. We investigate the misfit dependence of the critical thickness in the StranskiKrastanov growth mode in isothermal studies. Apparently, the simulation results for stress release via the misfit dislocations fit better to the PeopleBean model than to the one by Matthews and Blakeslee. Next, we investigate structural aspects of two-step crystal nucleation at high undercoolings, where an amorphous precursor forms in the first stage. Finally, we present results for the formation of new grains at the solid-liquid interface at high supersaturations/supercoolings, a phenomenon termed Growth Front Nucleation (GFN). Results obtained with diffusive dynamics (applicable to colloids) and with a hydrodynamic extension of the PFC theory (HPFC, developed for simple liquids) will be compared. The HPFC simulations indicate two possible mechanisms for GFN.

  18. Exploring the role of internal friction in the dynamics of unfolded proteins using simple polymer models.

    PubMed

    Cheng, Ryan R; Hawk, Alexander T; Makarov, Dmitrii E

    2013-02-21

    Recent experiments showed that the reconfiguration dynamics of unfolded proteins are often adequately described by simple polymer models. In particular, the Rouse model with internal friction (RIF) captures internal friction effects as observed in single-molecule fluorescence correlation spectroscopy (FCS) studies of a number of proteins. Here we use RIF, and its non-free draining analog, Zimm model with internal friction, to explore the effect of internal friction on the rate with which intramolecular contacts can be formed within the unfolded chain. Unlike the reconfiguration times inferred from FCS experiments, which depend linearly on the solvent viscosity, the first passage times to form intramolecular contacts are shown to display a more complex viscosity dependence. We further describe scaling relationships obeyed by contact formation times in the limits of high and low internal friction. Our findings provide experimentally testable predictions that can serve as a framework for the analysis of future studies of contact formation in proteins.

  19. The interaction of cannibalism and omnivory: consequences for community dynamics.

    PubMed

    Rudolf, Volker H W

    2007-11-01

    Although cannibalism is ubiquitous in food webs and frequent in systems where a predator and its prey also share a common resource (intraguild predation, IGP), its impacts on species interactions and the dynamics and structure of communities are still poorly understood. In addition, the few existing studies on cannibalism have generally focused on cannibalism in the top-predator, ignoring that it is frequent at intermediate trophic levels. A set of structured models shows that cannibalism can completely alter the dynamics and structure of three-species IGP systems depending on the trophic position where cannibalism occurs. Contrary to the expectations of simple models, the IG predator can exploit the resources more efficiently when it is cannibalistic, enabling the predator to persist at lower resource densities than the IG prey. Cannibalism in the IG predator can also alter the effect of enrichment, preventing predator-mediated extinction of the IG prey at high productivities predicted by simple models. Cannibalism in the IG prey can reverse the effect of top-down cascades, leading to an increase in the resource with decreasing IG predator density. These predictions are consistent with current data. Overall, cannibalism promotes the coexistence of the IG predator and IG prey. These results indicate that including cannibalism in current models can overcome the discrepancy between theory and empirical data. Thus, we need to measure and account for cannibalistic interactions to reliably predict the structure and dynamics of communities.

  20. Spatial surplus production modeling of Atlantic tunas and billfish.

    PubMed

    Carruthers, Thomas R; McAllister, Murdoch K; Taylor, Nathan G

    2011-10-01

    We formulate and simulation-test a spatial surplus production model that provides a basis with which to undertake multispecies, multi-area, stock assessment. Movement between areas is parameterized using a simple gravity model that includes a "residency" parameter that determines the degree of stock mixing among areas. The model is deliberately simple in order to (1) accommodate nontarget species that typically have fewer available data and (2) minimize computational demand to enable simulation evaluation of spatial management strategies. Using this model, we demonstrate that careful consideration of spatial catch and effort data can provide the basis for simple yet reliable spatial stock assessments. If simple spatial dynamics can be assumed, tagging data are not required to reliably estimate spatial distribution and movement. When applied to eight stocks of Atlantic tuna and billfish, the model tracks regional catch data relatively well by approximating local depletions and exchange among high-abundance areas. We use these results to investigate and discuss the implications of using spatially aggregated stock assessment for fisheries in which the distribution of both the population and fishing vary over time.

  1. An Exact Solvable Model of Rocket Dynamics in Atmosphere

    ERIC Educational Resources Information Center

    Rodrigues, H.; Pinho, M. O.; Portes, D., Jr.; Santiago, A.

    2009-01-01

    In basic physics courses at undergraduate level, the dynamics of self-propelled bodies is presented as an example of momentum conservation law applied to systems with time-varying mass. However, is often studied the simple situation of free motion or the motion under the action of a constant gravitational field. In this work, we investigate the…

  2. How Reflected Wave Fronts Dynamically Establish Hooke's Law in a Spring

    ERIC Educational Resources Information Center

    Fahy, Stephen; O'Riordan, John; O'Sullivan, Colm; Twomey, Patrick

    2012-01-01

    A simple benchtop experiment in which a moving cart collides with a fixed spring is described. Force-time and force-distance data recorded during the collision display the transit of compression wave fronts through the spring following impact. These data can be used by students to develop a computational model of the dynamics of this simple…

  3. Direct identification of predator-prey dynamics in gyrokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gürcan, Özgür D; Diamond, Patrick H.

    2015-09-15

    The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varyingmore » level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.« less

  4. Analysing and controlling the tax evasion dynamics via majority-vote model

    NASA Astrophysics Data System (ADS)

    Lima, F. W. S.

    2010-09-01

    Within the context of agent-based Monte-Carlo simulations, we study the well-known majority-vote model (MVM) with noise applied to tax evasion on simple square lattices, Voronoi-Delaunay random lattices, Barabasi-Albert networks, and Erdös-Rényi random graphs. In the order to analyse and to control the fluctuations for tax evasion in the economics model proposed by Zaklan, MVM is applied in the neighborhod of the noise critical qc to evolve the Zaklan model. The Zaklan model had been studied recently using the equilibrium Ising model. Here we show that the Zaklan model is robust because this can be studied using equilibrium dynamics of Ising model also through the nonequilibrium MVM and on various topologies cited above giving the same behavior regardless of dynamic or topology used here.

  5. The effects of mixotrophy on the stability and dynamics of a simple planktonic food web

    USGS Publications Warehouse

    Jost, Christian; Lawrence, Cathryn A.; Campolongo, Francesca; Wouter, van de Bund; Hill, Sheryl; DeAngelis, Donald L.

    2004-01-01

    Recognition of the microbial loop as an important part of aquatic ecosystems disrupted the notion of simple linear food chains. However, current research suggests that even the microbial loop paradigm is a gross simplification of microbial interactions due to the presence of mixotrophs—organisms that both photosynthesize and graze. We present a simple food web model with four trophic species, three of them arranged in a food chain (nutrients–autotrophs–herbivores) and the fourth as a mixotroph with links to both the nutrients and the autotrophs. This model is used to study the general implications of inclusion of the mixotrophic link in microbial food webs and the specific predictions for a parameterization that describes open ocean mixed layer plankton dynamics. The analysis indicates that the system parameters reside in a region of the parameter space where the dynamics converge to a stable equilibrium rather than displaying periodic or chaotic solutions. However, convergence requires weeks to months, suggesting that the system would never reach equilibrium in the ocean due to alteration of the physical forcing regime. Most importantly, the mixotrophic grazing link seems to stabilize the system in this region of the parameter space, particularly when nutrient recycling feedback loops are included.

  6. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1994-01-01

    Progress over the past year includes the following: A simplified rotor model with a flexible shaft and backup bearings has been developed. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501. The magnetic bearing test rig is currently floating and dynamics/control tests are being conducted. A paper has been written that documents the work using the T-501 engine model. Work has continued with the simplified model. The finite element model is currently being modified to include the effects of foundation dynamics. A literature search for material on foil bearings has been conducted. A finite element model is being developed for a magnetic bearing in series with a foil backup bearing.

  7. And So It Grows: Using a Computer-Based Simulation of a Population Growth Model to Integrate Biology & Mathematics

    ERIC Educational Resources Information Center

    Street, Garrett M.; Laubach, Timothy A.

    2013-01-01

    We provide a 5E structured-inquiry lesson so that students can learn more of the mathematics behind the logistic model of population biology. By using models and mathematics, students understand how population dynamics can be influenced by relatively simple changes in the environment.

  8. Nonthermal model for ultrafast laser-induced plasma generation around a plasmonic nanorod

    NASA Astrophysics Data System (ADS)

    Labouret, Timothée; Palpant, Bruno

    2016-12-01

    The excitation of plasmonic gold nanoparticles by ultrashort laser pulses can trigger interesting electron-based effects in biological media such as production of reactive oxygen species or cell membrane optoporation. In order to better understand the optical and thermal processes at play, we modeled the interaction of a subpicosecond, near-infrared laser pulse with a gold nanorod in water. A nonthermal model is used and compared to a simple two-temperature thermal approach. For both models, the computation of the transient optical response reveals strong plasmon damping. Electron emission from the metal into the water is also calculated in a specific way for each model. The dynamics of the resulting local plasma in water is assessed by a rate equation model. While both approaches provide similar results for the transient optical properties, the simple thermal one is unable to properly describe electron emission and plasma generation. The latter is shown to mostly originate from electron-electron thermionic emission and photoemission from the metal. Taking into account the transient optical response is mandatory to properly calculate both electron emission and local plasma dynamics in water.

  9. Nonlinear Dynamics of a Bubble Contrast Agent Oscillating near an Elastic Wall

    NASA Astrophysics Data System (ADS)

    Garashchuk, Ivan R.; Sinelshchikov, Dmitry I.; Kudryashov, Nikolay A.

    2018-05-01

    Contrast agent microbubbles, which are encapsulated gas bubbles, are widely used to enhance ultrasound imaging. There are also several new promising applications of the contrast agents such as targeted drug delivery and noninvasive therapy. Here we study three models of the microbubble dynamics: a nonencapsulated bubble oscillating close to an elastic wall, a simple coated bubble and a coated bubble near an elastic wall.We demonstrate that complex dynamics can occur in these models. We are particularly interested in the multistability phenomenon of bubble dynamics. We show that coexisting attractors appear in all of these models, but for higher acoustic pressures for the models of an encapsulated bubble.We demonstrate how several tools can be used to localize the coexisting attractors. We provide some considerations why the multistability can be undesirable for applications.

  10. Communication: Note on detailed balance in symmetrical quasi-classical models for electronically non-adiabatic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William H., E-mail: millerwh@berkeley.edu; Cotton, Stephen J., E-mail: StephenJCotton47@gmail.com

    2015-04-07

    It is noted that the recently developed symmetrical quasi-classical (SQC) treatment of the Meyer-Miller (MM) model for the simulation of electronically non-adiabatic dynamics provides a good description of detailed balance, even though the dynamics which results from the classical MM Hamiltonian is “Ehrenfest dynamics” (i.e., the force on the nuclei is an instantaneous coherent average over all electronic states). This is seen to be a consequence of the SQC windowing methodology for “processing” the results of the trajectory calculation. For a particularly simple model discussed here, this is shown to be true regardless of the choice of windowing function employedmore » in the SQC model, and for a more realistic full classical molecular dynamics simulation, it is seen to be maintained correctly for very long time.« less

  11. The potential energy landscape contribution to the dynamic heat capacity

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; McCoy, John D.

    2011-05-01

    The dynamic heat capacity of a simple polymeric, model glassformer was computed using molecular dynamics simulations by sinusoidally driving the temperature and recording the resultant energy. The underlying potential energy landscape of the system was probed by taking a time series of particle positions and quenching them. The resulting dynamic heat capacity demonstrates that the long time relaxation is the direct result of dynamics resulting from the potential energy landscape. Moreover, the equilibrium (low frequency) portion of the potential energy landscape contribution to the heat capacity is found to increase rapidly at low temperatures and at high packing fractions. This increase in the heat capacity is explained by a statistical mechanical model based on the distribution of minima in the potential energy landscape.

  12. Quantum Dynamics of Multi Harmonic Oscillators Described by Time Variant Conic Hamiltonian and their Use in Contemporary Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demiralp, Metin

    This work focuses on the dynamics of a system of quantum multi harmonic oscillators whose Hamiltonian is conic in positions and momenta with time variant coefficients. While it is simple, this system is useful for modeling the dynamics of a number of systems in contemporary sciences where the equations governing spatial or temporal changes are described by sets of ODEs. The dynamical causal models used readily in neuroscience can be indirectly described by these systems. In this work, we want to show that it is possible to describe these systems using quantum wave function type entities and expectations if themore » dynamic of the system is related to a set of ODEs.« less

  13. Attitude control with realization of linear error dynamics

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1993-01-01

    An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.

  14. Roles of dark energy perturbations in dynamical dark energy models: can we ignore them?

    PubMed

    Park, Chan-Gyung; Hwang, Jai-chan; Lee, Jae-heon; Noh, Hyerim

    2009-10-09

    We show the importance of properly including the perturbations of the dark energy component in the dynamical dark energy models based on a scalar field and modified gravity theories in order to meet with present and future observational precisions. Based on a simple scaling scalar field dark energy model, we show that observationally distinguishable substantial differences appear by ignoring the dark energy perturbation. By ignoring it the perturbed system of equations becomes inconsistent and deviations in (gauge-invariant) power spectra depend on the gauge choice.

  15. On the dynamical vs. thermodynamical performance of a β-type Stirling engine

    NASA Astrophysics Data System (ADS)

    Reséndiz-Antonio, Margarita; Santillán, Moisés

    2014-09-01

    In this work we present a simple mathematical model for a β-type Stirling engine. Despite its simplicity, the model considers all the engine’s relevant thermodynamic and mechanical aspects. The dynamic behavior of the model equation of motion is analyzed in order to obtain the sufficient conditions for engine cycling and to study the stability of the stationary regime. The performance of the engine’s thermodynamic part is also investigated. As a matter of fact, we found that it corresponds to a Carnot engine.

  16. The effect of the behavior of an average consumer on the public debt dynamics

    NASA Astrophysics Data System (ADS)

    De Luca, Roberto; Di Mauro, Marco; Falzarano, Angelo; Naddeo, Adele

    2017-09-01

    An important issue within the present economic crisis is understanding the dynamics of the public debt of a given country, and how the behavior of average consumers and tax payers in that country affects it. Starting from a model of the average consumer behavior introduced earlier by the authors, we propose a simple model to quantitatively address this issue. The model is then studied and analytically solved under some reasonable simplifying assumptions. In this way we obtain a condition under which the public debt steadily decreases.

  17. Seasonal Synchronization of a Simple Stochastic Dynamical Model Capturing El Niño Diversity

    NASA Astrophysics Data System (ADS)

    Thual, S.; Majda, A.; Chen, N.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) has significant impact on global climate and seasonal prediction. Recently, a simple ENSO model was developed that automatically captures the ENSO diversity and intermittency in nature, where state-dependent stochastic wind bursts and nonlinear advection of sea surface temperature (SST) are coupled to simple ocean-atmosphere processes that are otherwise deterministic, linear and stable. In the present article, it is further shown that the model can reproduce qualitatively the ENSO synchronization (or phase-locking) to the seasonal cycle in nature. This goal is achieved by incorporating a cloud radiative feedback that is derived naturally from the model's atmosphere dynamics with no ad-hoc assumptions and accounts in simple fashion for the marked seasonal variations of convective activity and cloud cover in the eastern Pacific. In particular, the weak convective response to SSTs in boreal fall favors the eastern Pacific warming that triggers El Niño events while the increased convective activity and cloud cover during the following spring contributes to the shutdown of those events by blocking incoming shortwave solar radiations. In addition to simulating the ENSO diversity with realistic non-Gaussian statistics in different Niño regions, both the eastern Pacific moderate and super El Niño, the central Pacific El Niño as well as La Niña show a realistic chronology with a tendency to peak in boreal winter as well as decreased predictability in spring consistent with the persistence barrier in nature. The incorporation of other possible seasonal feedbacks in the model is also documented for completeness.

  18. Development of a solid propellant viscoelastic dynamic model

    NASA Technical Reports Server (NTRS)

    Hufferd, W. L.; Fitzgerald, J. E.

    1976-01-01

    The results of a one year study to develop a dynamic response model for the Space Shuttle Solid Rocket Motor (SRM) propellant are presented. An extensive literature survey was conducted, from which it was concluded that the only significant variables affecting the dynamic response of the SRM propellant are temperature and frequency. Based on this study, and experimental data on propellants related to the SRM propellant, a dynamic constitutive model was developed in the form of a simple power law with temperature incorporated in the form of a modified power law. A computer program was generated which performs a least-squares curve-fit of laboratory data to determine the model parameters and it calculates dynamic moduli at any desired temperature and frequency. Additional studies investigated dynamic scaling laws and the extent of coupling between the SRM propellant and motor cases. It was found, in agreement with other investigations, that the propellant provides all of the mass and damping characteristics whereas the case provides all of the stiffness.

  19. MODEL CORRELATION STUDY OF A RETRACTABLE BOOM FOR A SOLAR SAIL SPACECRAFT

    NASA Technical Reports Server (NTRS)

    Adetona, O.; Keel, L. H.; Oakley, J. D.; Kappus, K.; Whorton, M. S.; Kim, Y. K.; Rakpczy, J. M.

    2005-01-01

    To realize design concepts, predict dynamic behavior and develop appropriate control strategies for high performance operation of a solar-sail spacecraft, we developed a simple analytical model that represents dynamic behavior of spacecraft with various sizes. Since motion of the vehicle is dominated by retractable booms that support the structure, our study concentrates on developing and validating a dynamic model of a long retractable boom. Extensive tests with various configurations were conducted for the 30 Meter, light-weight, retractable, lattice boom at NASA MSFC that is structurally and dynamically similar to those of a solar-sail spacecraft currently under construction. Experimental data were then compared with the corresponding response of the analytical model. Though mixed results were obtained, the analytical model emulates several key characteristics of the boom. The paper concludes with a detailed discussion of issues observed during the study.

  20. Modelling sexually transmitted infections: less is usually more for informing public health policy.

    PubMed

    Regan, David G; Wilson, David P

    2008-03-01

    Mathematical models have been used to investigate the dynamics of infectious disease transmission since Bernoulli's smallpox modelling in 1760. Their use has become widespread for exploring how epidemics can be prevented or contained. Here we discuss the importance of modelling the dynamics of sexually transmitted infections, the technology-driven dichotomy in methodology, and the need to 'keep it simple' to explore sensitivity, to link the models to reality and to provide understandable mechanistic explanations for real-world policy-makers. The aim of models, after all, is to influence or change public health policy by providing rational forecasting based on sound scientific principles.

  1. Simple versus complex models of trait evolution and stasis as a response to environmental change

    NASA Astrophysics Data System (ADS)

    Hunt, Gene; Hopkins, Melanie J.; Lidgard, Scott

    2015-04-01

    Previous analyses of evolutionary patterns, or modes, in fossil lineages have focused overwhelmingly on three simple models: stasis, random walks, and directional evolution. Here we use likelihood methods to fit an expanded set of evolutionary models to a large compilation of ancestor-descendant series of populations from the fossil record. In addition to the standard three models, we assess more complex models with punctuations and shifts from one evolutionary mode to another. As in previous studies, we find that stasis is common in the fossil record, as is a strict version of stasis that entails no real evolutionary changes. Incidence of directional evolution is relatively low (13%), but higher than in previous studies because our analytical approach can more sensitively detect noisy trends. Complex evolutionary models are often favored, overwhelmingly so for sequences comprising many samples. This finding is consistent with evolutionary dynamics that are, in reality, more complex than any of the models we consider. Furthermore, the timing of shifts in evolutionary dynamics varies among traits measured from the same series. Finally, we use our empirical collection of evolutionary sequences and a long and highly resolved proxy for global climate to inform simulations in which traits adaptively track temperature changes over time. When realistically calibrated, we find that this simple model can reproduce important aspects of our paleontological results. We conclude that observed paleontological patterns, including the prevalence of stasis, need not be inconsistent with adaptive evolution, even in the face of unstable physical environments.

  2. Simulation of Combustion Systems with Realistic g-jitter

    NASA Technical Reports Server (NTRS)

    Mell, William E.; McGrattan, Kevin B.; Baum, Howard R.

    2003-01-01

    In this project a transient, fully three-dimensional computer simulation code was developed to simulate the effects of realistic g-jitter on a number of combustion systems. The simulation code is capable of simulating flame spread on a solid and nonpremixed or premixed gaseous combustion in nonturbulent flow with simple combustion models. Simple combustion models were used to preserve computational efficiency since this is meant to be an engineering code. Also, the use of sophisticated turbulence models was not pursued (a simple Smagorinsky type model can be implemented if deemed appropriate) because if flow velocities are large enough for turbulence to develop in a reduced gravity combustion scenario it is unlikely that g-jitter disturbances (in NASA's reduced gravity facilities) will play an important role in the flame dynamics. Acceleration disturbances of realistic orientation, magnitude, and time dependence can be easily included in the simulation. The simulation algorithm was based on techniques used in an existing large eddy simulation code which has successfully simulated fire dynamics in complex domains. A series of simulations with measured and predicted acceleration disturbances on the International Space Station (ISS) are presented. The results of this series of simulations suggested a passive isolation system and appropriate scheduling of crew activity would provide a sufficiently "quiet" acceleration environment for spherical diffusion flames.

  3. Three Dimensional (3D) Printing: A Straightforward, User-Friendly Protocol to Convert Virtual Chemical Models to Real-Life Objects

    ERIC Educational Resources Information Center

    Rossi, Sergio; Benaglia, Maurizio; Brenna, Davide; Porta, Riccardo; Orlandi, Manuel

    2015-01-01

    A simple procedure to convert protein data bank files (.pdb) into a stereolithography file (.stl) using VMD software (Virtual Molecular Dynamic) is reported. This tutorial allows generating, with a very simple protocol, three-dimensional customized structures that can be printed by a low-cost 3D-printer, and used for teaching chemical education…

  4. Dynamic coal mine model. [Generic feedback-loop model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, M.S.

    1978-01-01

    This study examines the determinants of the productive life cycle of a single hypothetical coal mine. The article addresses the questions of how long the mine will operate, what its annual production will be, and what percentage of the resource base will be recovered. As greatly expanded production requires capital investment, the investment decision is singled out as the principal determinant of the mine's dynamic behavior. A simple dynamic feedback loop model was constructed, the performance of which is compared with actual data to see how well the model can reproduce known behavior. Exogenous variables, such as the price ofmore » coal, the wage rate, operating costs, and the tax structure, are then changed to see how these changes affect the mine's performance.« less

  5. Reducing the Dynamical Degradation by Bi-Coupling Digital Chaotic Maps

    NASA Astrophysics Data System (ADS)

    Liu, Lingfeng; Liu, Bocheng; Hu, Hanping; Miao, Suoxia

    A chaotic map which is realized on a computer will suffer dynamical degradation. Here, a coupled chaotic model is proposed to reduce the dynamical degradation. In this model, the state variable of one digital chaotic map is used to control the parameter of the other digital map. This coupled model is universal and can be used for all chaotic maps. In this paper, two coupled models (one is coupled by two logistic maps, the other is coupled by Chebyshev map and Baker map) are performed, and the numerical experiments show that the performances of these two coupled chaotic maps are greatly improved. Furthermore, a simple pseudorandom bit generator (PRBG) based on coupled digital logistic maps is proposed as an application for our method.

  6. Complex discrete dynamics from simple continuous population models.

    PubMed

    Gamarra, Javier G P; Solé, Ricard V

    2002-05-01

    Nonoverlapping generations have been classically modelled as difference equations in order to account for the discrete nature of reproductive events. However, other events such as resource consumption or mortality are continuous and take place in the within-generation time. We have realistically assumed a hybrid ODE bidimensional model of resources and consumers with discrete events for reproduction. Numerical and analytical approaches showed that the resulting dynamics resembles a Ricker map, including the doubling route to chaos. Stochastic simulations with a handling-time parameter for indirect competition of juveniles may affect the qualitative behaviour of the model.

  7. Effect of lethality on the extinction and on the error threshold of quasispecies.

    PubMed

    Tejero, Hector; Marín, Arturo; Montero, Francisco

    2010-02-21

    In this paper the effect of lethality on error threshold and extinction has been studied in a population of error-prone self-replicating molecules. For given lethality and a simple fitness landscape, three dynamic regimes can be obtained: quasispecies, error catastrophe, and extinction. Using a simple model in which molecules are classified as master, lethal and non-lethal mutants, it is possible to obtain the mutation rates of the transitions between the three regimes analytically. The numerical resolution of the extended model, in which molecules are classified depending on their Hamming distance to the master sequence, confirms the results obtained in the simple model and shows how an error catastrophe regime changes when lethality is taken in account. (c) 2009 Elsevier Ltd. All rights reserved.

  8. [A simple model for describing pressure-volume curves in free balloon dilatation with reference the dynamics of inflation hydraulic aspects].

    PubMed

    Bloss, P; Werner, C

    2000-06-01

    We propose a simple model to describe pressure-time and pressure-volume curves for the free balloon (balloon in air) of balloon catheters, taking into account the dynamics of the inflation device. On the basis of our investigations of the flow rate-dependence of characteristic parameters of the pressure-time curves, the appropriateness of this simple model is demonstrated using a representative example. Basic considerations lead to the following assumptions: (1) the flow within the shaft of the catheter is laminar, and (ii) the volume decrease of the liquid used for inflation due to pressurization can be neglected if the liquid is carefully degassed prior to inflation, and if the total volume of the liquid in the system is less than 2 ml. Taking into account the dynamics of the inflation device used for pumping the liquid into the proximal end of the shaft during inflation, the inflation process can be subdivided into the following three phases: initial phase, filling phase and dilatation phase. For these three phases, the transformation of the time into the volume coordinates is given. On the basis of our model, the following parameters of the balloon catheter can be determined from a measured pressure-time curve: (1) the resistance to flow of the liquid through the shaft of the catheter and the resulting pressure drop across the shaft, (2) the residual volume and residual pressure of the balloon, and (3) the volume compliance of the balloon catheter with and without the inflation device.

  9. Flood Risk and Asset Management

    DTIC Science & Technology

    2011-06-15

    Model cascade could include HEC - RAS , HR BREACH and Dynamic RFSM. Action HRW to consider model coupling and advise DM. It was felt useful to...simple loss of life approach. WL can provide input and advise on USACE LIFESIM approaches. To enable comparison with HEC FRM approaches, it was

  10. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  11. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2014-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  12. Digit replacement: A generic map for nonlinear dynamical systems.

    PubMed

    García-Morales, Vladimir

    2016-09-01

    A simple discontinuous map is proposed as a generic model for nonlinear dynamical systems. The orbit of the map admits exact solutions for wide regions in parameter space and the method employed (digit manipulation) allows the mathematical design of useful signals, such as regular or aperiodic oscillations with specific waveforms, the construction of complex attractors with nontrivial properties as well as the coexistence of different basins of attraction in phase space with different qualitative properties. A detailed analysis of the dynamical behavior of the map suggests how the latter can be used in the modeling of complex nonlinear dynamics including, e.g., aperiodic nonchaotic attractors and the hierarchical deposition of grains of different sizes on a surface.

  13. Robust master-slave synchronization for general uncertain delayed dynamical model based on adaptive control scheme.

    PubMed

    Wang, Tianbo; Zhou, Wuneng; Zhao, Shouwei; Yu, Weiqin

    2014-03-01

    In this paper, the robust exponential synchronization problem for a class of uncertain delayed master-slave dynamical system is investigated by using the adaptive control method. Different from some existing master-slave models, the considered master-slave system includes bounded unmodeled dynamics. In order to compensate the effect of unmodeled dynamics and effectively achieve synchronization, a novel adaptive controller with simple updated laws is proposed. Moreover, the results are given in terms of LMIs, which can be easily solved by LMI Toolbox in Matlab. A numerical example is given to illustrate the effectiveness of the method. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Antidepressant treatment and suicide attempts and self-inflicted injury in children and adolescents.

    PubMed

    Gibbons, Robert D; Coca Perraillon, Marcelo; Hur, Kwan; Conti, Rena M; Valuck, Robert J; Brent, David A

    2015-02-01

    In the 2004, FDA placed a black box warning on antidepressants for risk of suicidal thoughts and behavior in children and adolescents. The purpose of this paper is to examine the risk of suicide attempt and self-inflicted injury in depressed children ages 5-17 treated with antidepressants in two large observational datasets taking account time-varying confounding. We analyzed two large US medical claims databases (MarketScan and LifeLink) containing 221,028 youth (ages 5-17) with new episodes of depression, with and without antidepressant treatment during the period of 2004-2009. Subjects were followed for up to 180 days. Marginal structural models were used to adjust for time-dependent confounding. For both datasets, significantly increased risk of suicide attempts and self-inflicted injury were seen during antidepressant treatment episodes in the unadjusted and simple covariate adjusted analyses. Marginal structural models revealed that the majority of the association is produced by dynamic confounding in the treatment selection process; estimated odds ratios were close to 1.0 consistent with the unadjusted and simple covariate adjusted association being a product of chance alone. Our analysis suggests antidepressant treatment selection is a product of both static and dynamic patient characteristics. Lack of adjustment for treatment selection based on dynamic patient characteristics can lead to the appearance of an association between antidepressant treatment and suicide attempts and self-inflicted injury among youths in unadjusted and simple covariate adjusted analyses. Marginal structural models can be used to adjust for static and dynamic treatment selection processes such as that likely encountered in observational studies of associations between antidepressant treatment selection, suicide and related behaviors in youth. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Stereoisomeric effects on dynamic viscosity versus pressure and temperature for the system cis- + trans-decalin

    NASA Astrophysics Data System (ADS)

    Miyake, Yasufumi; Boned, Christian; Baylaucq, Antoine; Bessières, David; Zéberg-Mikkelsen, Claus K.; Galliéro, Guillaume; Ushiki, Hideharu

    2007-07-01

    In order to study the influence of stereoisomeric effects on the dynamic viscosity, an extensive experimental study of the viscosity of the binary system composed of the two stereoisomeric molecular forms of decalin - cis and trans - has been carried out for five different mixtures at three temperatures (303.15, 323.15 and 343.15) K and six isobars up to 100 MPa with a falling-body viscometer (a total of 90 points). The experimental relative uncertainty is estimated to be 2%. The variations of dynamic viscosity versus composition are discussed with respect to their behavior due to stereoisomerism. Four different models with a physical and theoretical background are studied in order to investigate how they take the stereoisomeric effect into account through their required model parameters. The evaluated models are based on the hard-sphere scheme, the concepts of the free-volume and the friction theory, and a model derived from molecular dynamics. Overall, a satisfactory representation of the viscosity of this binary system is found for the different models within the considered ( T, p) range taken into account their simplicity. All the models are able to distinguish between the two stereoisomeric decalin compounds. Further, based on the analysis of the model parameters performed on the pure compounds, it has been found that the use of simple mixing rules without introducing any binary interaction parameters are sufficient in order to predict the viscosity of cis + trans-decalin mixtures with the same accuracy in comparison with the experimental values as obtained for the pure compounds. In addition to these models, a semi-empirical self-referencing model and the simple mixing laws of Grunberg-Nissan and Katti-Chaudhri are also applied in the representation of the viscosity behavior of these systems.

  16. A simple method for identifying parameter correlations in partially observed linear dynamic models.

    PubMed

    Li, Pu; Vu, Quoc Dong

    2015-12-14

    Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a software packet.

  17. A computer model of context-dependent perception in a very simple world

    NASA Astrophysics Data System (ADS)

    Lara-Dammer, Francisco; Hofstadter, Douglas R.; Goldstone, Robert L.

    2017-11-01

    We propose the foundations of a computer model of scientific discovery that takes into account certain psychological aspects of human observation of the world. To this end, we simulate two main components of such a system. The first is a dynamic microworld in which physical events take place, and the second is an observer that visually perceives entities and events in the microworld. For reason of space, this paper focuses only on the starting phase of discovery, which is the relatively simple visual inputs of objects and collisions.

  18. A simple phenomenological study of photodarkening in As2S3 glasses

    NASA Astrophysics Data System (ADS)

    Florea, Catalin; Busse, Lynda; Sanghera, Jasbinder; Shaw, Brandon; Aggarwal, Ishwar

    2012-06-01

    By using a simple photodarkening model we investigate the dynamics of photodarkening in As2S3 glasses under laser illumination. We find that, for illumination at 633 nm, the quantum efficiency of the photodarkening process is of about 4% and that the absorption cross-section of the dark centers is ˜2.2 times larger than that of the intrinsic structural units. The insights gained from the modeling are compared with the experimental results obtained when writing Bragg gratings using 633 nm, 594 nm and 568 nm laser light.

  19. A simple spatiotemporal rabies model for skunk and bat interaction in northeast Texas.

    PubMed

    Borchering, Rebecca K; Liu, Hao; Steinhaus, Mara C; Gardner, Carl L; Kuang, Yang

    2012-12-07

    We formulate a simple partial differential equation model in an effort to qualitatively reproduce the spread dynamics and spatial pattern of rabies in northeast Texas with overlapping reservoir species (skunks and bats). Most existing models ignore reservoir species or model them with patchy models by ordinary differential equations. In our model, we incorporate interspecies rabies infection in addition to rabid population random movement. We apply this model to the confirmed case data from northeast Texas with most parameter values obtained or computed from the literature. Results of simulations using both our skunk-only model and our skunk and bat model demonstrate that the model with overlapping reservoir species more accurately reproduces the progression of rabies spread in northeast Texas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1994-01-01

    Substantial progress has been made toward the goals of this research effort in the past six months. A simplified rotor model with a flexible shaft and backup bearings has been developed. The model is based upon the work of Ishii and Kirk. Parameter studies of the behavior of this model are currently being conducted. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. The study consists of simulation work coupled with experimental verification. The work is documented in the attached paper. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. The dynamics of this model are currently being studied with the objective of verifying the conclusions obtained from the simpler models. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501.

  1. Component model reduction via the projection and assembly method

    NASA Technical Reports Server (NTRS)

    Bernard, Douglas E.

    1989-01-01

    The problem of acquiring a simple but sufficiently accurate model of a dynamic system is made more difficult when the dynamic system of interest is a multibody system comprised of several components. A low order system model may be created by reducing the order of the component models and making use of various available multibody dynamics programs to assemble them into a system model. The difficulty is in choosing the reduced order component models to meet system level requirements. The projection and assembly method, proposed originally by Eke, solves this difficulty by forming the full order system model, performing model reduction at the the system level using system level requirements, and then projecting the desired modes onto the components for component level model reduction. The projection and assembly method is analyzed to show the conditions under which the desired modes are captured exactly; to the numerical precision of the algorithm.

  2. Synchronisation of chaos and its applications

    NASA Astrophysics Data System (ADS)

    Eroglu, Deniz; Lamb, Jeroen S. W.; Pereira, Tiago

    2017-07-01

    Dynamical networks are important models for the behaviour of complex systems, modelling physical, biological and societal systems, including the brain, food webs, epidemic disease in populations, power grids and many other. Such dynamical networks can exhibit behaviour in which deterministic chaos, exhibiting unpredictability and disorder, coexists with synchronisation, a classical paradigm of order. We survey the main theory behind complete, generalised and phase synchronisation phenomena in simple as well as complex networks and discuss applications to secure communications, parameter estimation and the anticipation of chaos.

  3. Spontaneous mode switching in coupled oscillators competing for constant amounts of resources

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Aono, Masashi; Hara, Masahiko; Aihara, Kazuyuki

    2010-03-01

    We propose a widely applicable scheme of coupling that models competitions among dynamical systems for fixed amounts of resources. Two oscillators coupled in this way synchronize in antiphase. Three oscillators coupled circularly show a number of oscillation modes such as rotation and partially in-phase synchronization. Intriguingly, simple oscillators in the model also produce complex behavior such as spontaneous switching among different modes. The dynamics reproduces well the spatiotemporal oscillatory behavior of a true slime mold Physarum, which is capable of computational optimization.

  4. Nonlinear Dynamics of Biofilm Growth on Sediment Surfaces

    NASA Astrophysics Data System (ADS)

    Molz, F. J.; Murdoch, L. C.; Faybishenko, B.

    2013-12-01

    Bioclogging often begins with the establishment of small colonies (microcolonies), which then form biofilms on the surfaces of a porous medium. These biofilm-porous media surfaces are not simple coatings of single microbes, but complex assemblages of cooperative and competing microbes, interacting with their chemical environment. This leads one to ask: what are the underlying dynamics involved with biofilm growth? To begin answering this question, we have extended the work of Kot et al. (1992, Bull. Mathematical Bio.) from a fully mixed chemostat to an idealized, one-dimensional, biofilm environment, taking into account a simple predator-prey microbial competition, with the prey feeding on a specified food source. With a variable (periodic) food source, Kot et al. (1992) were able to demonstrate chaotic dynamics in the coupled substrate-prey-predator system. Initially, deterministic chaos was thought by many to be mainly a mathematical phenomenon. However, several recent publications (e.g., Becks et al, 2005, Nature Letters; Graham et al. 2007, Int. Soc Microb. Eco. J.; Beninca et al., 2008, Nature Letters; Saleh, 2011, IJBAS) have brought together, using experimental studies and relevant mathematics, a breakthrough discovery that deterministic chaos is present in relatively simple biochemical systems. Two of us (Faybishenko and Molz, 2013, Procedia Environ. Sci)) have numerically analyzed a mathematical model of rhizosphere dynamics (Kravchenko et al., 2004, Microbiology) and detected patterns of nonlinear dynamical interactions supporting evidence of synchronized synergetic oscillations of microbial populations, carbon and oxygen concentrations driven by root exudation into a fully mixed system. In this study, we have extended the application of the Kot et al. model to investigate a spatially-dependent biofilm system. We will present the results of numerical simulations obtained using COMSOL Multi-Physics software, which we used to determine the nature of the complex dynamics. We found that complex dynamics occur even with a constant food supply maintained at the upstream boundary of the biofilm. Results will be presented along with a description of the model, including 3 coupled partial differential equations and examples of the localized and propagating nonlinear dynamics inherent in the system. Contrary to a common opinion that chaos in many mechanical systems is a type of instability, appearing when energy is added, we hypothesize, based on the results of our modeling, that chaos in biofilm dynamics and other microbial ecosystems is driven by a competitive decrease in the food supply (i.e., chemical energy). We also hypothesize that, somewhat paradoxically, this, in turn, may support a long-term system stability that could cause bioclogging in porous media.

  5. Dynamic PET simulator via tomographic emission projection for kinetic modeling and parametric image studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Häggström, Ida, E-mail: haeggsti@mskcc.org; Beattie, Bradley J.; Schmidtlein, C. Ross

    2016-06-15

    Purpose: To develop and evaluate a fast and simple tool called dPETSTEP (Dynamic PET Simulator of Tracers via Emission Projection), for dynamic PET simulations as an alternative to Monte Carlo (MC), useful for educational purposes and evaluation of the effects of the clinical environment, postprocessing choices, etc., on dynamic and parametric images. Methods: The tool was developed in MATLAB using both new and previously reported modules of PETSTEP (PET Simulator of Tracers via Emission Projection). Time activity curves are generated for each voxel of the input parametric image, whereby effects of imaging system blurring, counting noise, scatters, randoms, and attenuationmore » are simulated for each frame. Each frame is then reconstructed into images according to the user specified method, settings, and corrections. Reconstructed images were compared to MC data, and simple Gaussian noised time activity curves (GAUSS). Results: dPETSTEP was 8000 times faster than MC. Dynamic images from dPETSTEP had a root mean square error that was within 4% on average of that of MC images, whereas the GAUSS images were within 11%. The average bias in dPETSTEP and MC images was the same, while GAUSS differed by 3% points. Noise profiles in dPETSTEP images conformed well to MC images, confirmed visually by scatter plot histograms, and statistically by tumor region of interest histogram comparisons that showed no significant differences (p < 0.01). Compared to GAUSS, dPETSTEP images and noise properties agreed better with MC. Conclusions: The authors have developed a fast and easy one-stop solution for simulations of dynamic PET and parametric images, and demonstrated that it generates both images and subsequent parametric images with very similar noise properties to those of MC images, in a fraction of the time. They believe dPETSTEP to be very useful for generating fast, simple, and realistic results, however since it uses simple scatter and random models it may not be suitable for studies investigating these phenomena. dPETSTEP can be downloaded free of cost from https://github.com/CRossSchmidtlein/dPETSTEP.« less

  6. The use of mechanistic descriptions of algal growth and zooplankton grazing in an estuarine eutrophication model

    NASA Astrophysics Data System (ADS)

    Baird, M. E.; Walker, S. J.; Wallace, B. B.; Webster, I. T.; Parslow, J. S.

    2003-03-01

    A simple model of estuarine eutrophication is built on biomechanical (or mechanistic) descriptions of a number of the key ecological processes in estuaries. Mechanistically described processes include the nutrient uptake and light capture of planktonic and benthic autotrophs, and the encounter rates of planktonic predators and prey. Other more complex processes, such as sediment biogeochemistry, detrital processes and phosphate dynamics, are modelled using empirical descriptions from the Port Phillip Bay Environmental Study (PPBES) ecological model. A comparison is made between the mechanistically determined rates of ecological processes and the analogous empirically determined rates in the PPBES ecological model. The rates generally agree, with a few significant exceptions. Model simulations were run at a range of estuarine depths and nutrient loads, with outputs presented as the annually averaged biomass of autotrophs. The simulations followed a simple conceptual model of eutrophication, suggesting a simple biomechanical understanding of estuarine processes can provide a predictive tool for ecological processes in a wide range of estuarine ecosystems.

  7. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins.

    PubMed

    Bieri, Michael; d'Auvergne, Edward J; Gooley, Paul R

    2011-06-01

    Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

  8. [Are simple time lags responsible for cyclic variation of population density? : A comparison of laboratory population dynamics of Brachionus calyciflorus pallas (rotatoria) with computer simulations].

    PubMed

    Halbach, Udo; Burkhardt, Heinz Jürgen

    1972-09-01

    Laboratory populations of the rotifer Brachionus calyciflorus were cultured at different temperatures (25, 20, 15°C) but otherwise at constant conditions. The population densities showed relatively constant oscillations (Figs. 1 to 3A-C). Amplitudes and frequencies of the oscillations were positively correlated with temperature (Table 1). A test was made, whether the logistic growth function with simple time lag is able to describe the population curves. There are strong similarities between the simulations (Figs. 1-3E) and the real population dynamics if minor adjustments of the empirically determined parameters are made. There-fore it is suggested that time lags are responsible for the observed oscillations. However, the actual time lags probably do not act in the simple manner of the model, because birth and death rates react with different time lags, and both parameters are dependent on individual age and population density. A more complex model, which incorporates these modifications, should lead to a more realistic description of the observed oscillations.

  9. Multibody dynamic analysis using a rotation-free shell element with corotational frame

    NASA Astrophysics Data System (ADS)

    Shi, Jiabei; Liu, Zhuyong; Hong, Jiazhen

    2018-03-01

    Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore, the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.

  10. Wildfires in the Lab: Simple Experiment and Models for the Exploration of Excitable Dynamics

    ERIC Educational Resources Information Center

    Punckt, Christian; Bodega, Pablo S.; Kaira, Prabha; Rotermund, Harm H.

    2015-01-01

    Wildfires lead to the loss of life and property in many parts of the world. Understanding their dangers and, more particularly, the underlying dynamics which lead to fires of catastrophic scale contributes to better awareness as well as prevention and firefighting capabilities within the affected areas. In order to enable a basic understanding of…

  11. Recent applications of spectral methods in fluid dynamics

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Hussaini, M. Y.

    1985-01-01

    Origins of spectral methods, especially their relation to the method of weighted residuals, are surveyed. Basic Fourier and Chebyshev spectral concepts are reviewed and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic and mixzed type. Fluid dynamical applications are emphasized.

  12. Complex dynamics and empirical evidence (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Delli Gatti, Domenico; Gaffeo, Edoardo; Giulioni, Gianfranco; Gallegati, Mauro; Kirman, Alan; Palestrini, Antonio; Russo, Alberto

    2005-05-01

    Standard macroeconomics, based on a reductionist approach centered on the representative agent, is badly equipped to explain the empirical evidence where heterogeneity and industrial dynamics are the rule. In this paper we show that a simple agent-based model of heterogeneous financially fragile agents is able to replicate a large number of scaling type stylized facts with a remarkable degree of statistical precision.

  13. A Note on Verification of Computer Simulation Models

    ERIC Educational Resources Information Center

    Aigner, Dennis J.

    1972-01-01

    Establishes an argument that questions the validity of one test'' of goodness-of-fit (the extent to which a series of obtained measures agrees with a series of theoretical measures) for the simulated time path of a simple endogenous (internally developed) variable in a simultaneous, perhaps dynamic econometric model. (Author)

  14. Loglinear Approximate Solutions to Real-Business-Cycle Models: Some Observations

    ERIC Educational Resources Information Center

    Lau, Sau-Him Paul; Ng, Philip Hoi-Tak

    2007-01-01

    Following the analytical approach suggested in Campbell, the authors consider a baseline real-business-cycle (RBC) model with endogenous labor supply. They observe that the coefficients in the loglinear approximation of the dynamic equations characterizing the equilibrium are related to the fundamental parameters in a relatively simple manner.…

  15. Adaptive Control Of Remote Manipulator

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  16. The Influence of Wall Conductivity of Film Condensation with Integral Fin Tubes

    DTIC Science & Technology

    1993-09-23

    tube based on Nusselt theory ) dynamic viscosity, kg/(m*s) Mf dynamic viscosity of the condensate film, kg/(m*s) Aw dynamic viscosity of the cooling...improve the simple model of Nusselt to predict the heat transfer 2 coefficient for condensation on horizontal tubes. Nusselt’s theory was based on a plain...be developed and utilized. 1. Norisontal Smooth Tubes Nusselt [Ref. 16] developed the foundation for the study of filmwise condensation on horizontal

  17. Dynamics in a one-dimensional ferrogel model: relaxation, pairing, shock-wave propagation.

    PubMed

    Goh, Segun; Menzel, Andreas M; Löwen, Hartmut

    2018-05-23

    Ferrogels are smart soft materials, consisting of a polymeric network and embedded magnetic particles. Novel phenomena, such as the variation of the overall mechanical properties by external magnetic fields, emerge consequently. However, the dynamic behavior of ferrogels remains largely unveiled. In this paper, we consider a one-dimensional chain consisting of magnetic dipoles and elastic springs between them as a simple model for ferrogels. The model is evaluated by corresponding simulations. To probe the dynamics theoretically, we investigate a continuum limit of the energy governing the system and the corresponding equation of motion. We provide general classification scenarios for the dynamics, elucidating the touching/detachment dynamics of the magnetic particles along the chain. In particular, it is verified in certain cases that the long-time relaxation corresponds to solutions of shock-wave propagation, while formations of particle pairs underlie the initial stage of the dynamics. We expect that these results will provide insight into the understanding of the dynamics of more realistic models with randomness in parameters and time-dependent magnetic fields.

  18. Boltzmann's "H"-Theorem and the Assumption of Molecular Chaos

    ERIC Educational Resources Information Center

    Boozer, A. D.

    2011-01-01

    We describe a simple dynamical model of a one-dimensional ideal gas and use computer simulations of the model to illustrate two fundamental results of kinetic theory: the Boltzmann transport equation and the Boltzmann "H"-theorem. Although the model is time-reversal invariant, both results predict that the behaviour of the gas is time-asymmetric.…

  19. Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops

    NASA Astrophysics Data System (ADS)

    Rahman, Aminur; Jordan, Ian; Blackmore, Denis

    2018-01-01

    It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.

  20. Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops.

    PubMed

    Rahman, Aminur; Jordan, Ian; Blackmore, Denis

    2018-01-01

    It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.

  1. Longitudinal train dynamics model for a rail transit simulation system

    DOE PAGES

    Wang, Jinghui; Rakha, Hesham A.

    2018-01-01

    The paper develops a longitudinal train dynamics model in support of microscopic railway transportation simulation. The model can be calibrated without any mechanical data making it ideal for implementation in transportation simulators. The calibration and validation work is based on data collected from the Portland light rail train fleet. The calibration procedure is mathematically formulated as a constrained non-linear optimization problem. The validity of the model is assessed by comparing instantaneous model predictions against field observations, and also evaluated in the domains of acceleration/deceleration versus speed and acceleration/deceleration versus distance. A test is conducted to investigate the adequacy of themore » model in simulation implementation. The results demonstrate that the proposed model can adequately capture instantaneous train dynamics, and provides good performance in the simulation test. Thus, the model provides a simple theoretical foundation for microscopic simulators and will significantly support the planning, management and control of railway transportation systems.« less

  2. Longitudinal train dynamics model for a rail transit simulation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jinghui; Rakha, Hesham A.

    The paper develops a longitudinal train dynamics model in support of microscopic railway transportation simulation. The model can be calibrated without any mechanical data making it ideal for implementation in transportation simulators. The calibration and validation work is based on data collected from the Portland light rail train fleet. The calibration procedure is mathematically formulated as a constrained non-linear optimization problem. The validity of the model is assessed by comparing instantaneous model predictions against field observations, and also evaluated in the domains of acceleration/deceleration versus speed and acceleration/deceleration versus distance. A test is conducted to investigate the adequacy of themore » model in simulation implementation. The results demonstrate that the proposed model can adequately capture instantaneous train dynamics, and provides good performance in the simulation test. Thus, the model provides a simple theoretical foundation for microscopic simulators and will significantly support the planning, management and control of railway transportation systems.« less

  3. Automation effects in a multiloop manual control system

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Mcnally, B. D.

    1986-01-01

    An experimental and analytical study was undertaken to investigate human interaction with a simple multiloop manual control system in which the human's activity was systematically varied by changing the level of automation. The system simulated was the longitudinal dynamics of a hovering helicopter. The automation-systems-stabilized vehicle responses from attitude to velocity to position and also provided for display automation in the form of a flight director. The control-loop structure resulting from the task definition can be considered a simple stereotype of a hierarchical control system. The experimental study was complemented by an analytical modeling effort which utilized simple crossover models of the human operator. It was shown that such models can be extended to the description of multiloop tasks involving preview and precognitive human operator behavior. The existence of time optimal manual control behavior was established for these tasks and the role which internal models may play in establishing human-machine performance was discussed.

  4. Spreadsheets in Science Teaching.

    ERIC Educational Resources Information Center

    Elliot, Chris

    1988-01-01

    Described is the use of a spreadsheet to model dynamic phenomena using numerical iterative methods. Uses the discharge of a capacitor, simple and damped harmonic motion, and the flow of heat along a bar as examples. (Author/CW)

  5. Modeling Human Dynamics of Face-to-Face Interaction Networks

    NASA Astrophysics Data System (ADS)

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2013-04-01

    Face-to-face interaction networks describe social interactions in human gatherings, and are the substrate for processes such as epidemic spreading and gossip propagation. The bursty nature of human behavior characterizes many aspects of empirical data, such as the distribution of conversation lengths, of conversations per person, or of interconversation times. Despite several recent attempts, a general theoretical understanding of the global picture emerging from data is still lacking. Here we present a simple model that reproduces quantitatively most of the relevant features of empirical face-to-face interaction networks. The model describes agents that perform a random walk in a two-dimensional space and are characterized by an attractiveness whose effect is to slow down the motion of people around them. The proposed framework sheds light on the dynamics of human interactions and can improve the modeling of dynamical processes taking place on the ensuing dynamical social networks.

  6. Dynamical graph theory networks techniques for the analysis of sparse connectivity networks in dementia

    NASA Astrophysics Data System (ADS)

    Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke

    2017-05-01

    Graph network models in dementia have become an important computational technique in neuroscience to study fundamental organizational principles of brain structure and function of neurodegenerative diseases such as dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional connections of the graph network, which is mostly based on simple Pearson correlation links. In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct correlations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connectivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based on combining dynamic graph network theory and modeling strategies at different time scales. We present the theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters pertaining to node and area parameters, as well as dynamic parameters, such as system's eigenvalues. By implementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we reveal differences in the structure of these network that play an important role in the temporal evolution of this disease. The described research is key to advance biomedical research on novel disease prediction trajectories and dementia therapies.

  7. Effect of vorticity on polycrystalline ice deformation

    NASA Astrophysics Data System (ADS)

    Llorens, Maria-Gema; Griera, Albert; Steinbach, Florian; Bons, Paul D.; Gomez-Rivas, Enrique; Jansen, Daniela; Lebensohn, Ricardo A.; Weikusat, Ilka

    2017-04-01

    Understanding ice sheet dynamics requires a good knowledge of how dynamic recrystallisation controls ice microstructures and rheology at different boundary conditions. In polar ice sheets, pure shear flattening typically occurs at the top of the sheets, while simple shearing dominates near their base. We present a series of two-dimensional microdynamic numerical simulations that couple ice deformation with dynamic recrystallisation of various intensities, paying special attention to the effect of boundary conditions. The viscoplastic full-field numerical modelling approach (VPFFT) (Lebensohn, 2001) is used to calculate the response of a polycrystalline aggregate that deforms purely by dislocation glide. This code is coupled with the ELLE microstructural modelling platform that includes recrystallisation in the aggregate by intracrystalline recovery, nucleation by polygonisation, as well as grain boundary migration driven by the reduction of surface and strain energies (Llorens et al., 2016a, 2016b, 2017). The results reveal that regardless the amount of DRX and ice flow a single c-axes maximum develops all simulations. This maximum is oriented approximately parallel to the maximum finite shortening direction and rotates in simple shear towards the normal to the shear plane. This leads to a distinctly different behaviour in pure and simple shear. In pure shear, the lattice preferred orientation (LPO) and shape-preferred orientation (SPO) are increasingly unfavourable for deformation, leading to hardening and an increased activity of non-basal slip. The opposite happens in simple shear, where the imposed vorticity causes rotation of the LPO and SPO to a favourable orientation, leading to strain softening. An increase of recrystallisation enhances the activity of the non-basal slip, due to the reduction of deformation localisation. In pure shear conditions, the pyramidal slip activity is thus even more enhanced and can become higher than the basal-slip activity. Our results further show that subgrain boundaries can be developed by the activity of the non-basal slip systems. The implementation of the polygonisation routine reduces grain size and SPO, but does not significantly change the final LPO, because newly nucleated grains approximately keep the c-axis orientations of their parental grains. However, it enables the establishment of an equilibrium grain size, and therefore the differential stress reaches a steady-state. Lebensohn. 2001 N-site modelling of a 3D viscoplastic polycrystal using fast Fourier transform. Acta Materialia, 49(14), 2723-2737. Llorens, et al., 2016a. Dynamic recrystallisation of ice aggregates during co-axial viscoplastic deformation: a numerical approach. Journal of Glaciology, 62(232), 359-377. Llorens, et al., 2016b. Full-field predictions of ice dynamic recrystallisation under simple shear conditions, Earth and Planetary Science Letters, 450, 233-242. Llorens, et al., 2017. Dynamic recrystallisation during deformation of polycrystalline ice: insights from numerical simulations, Philosophical Transactions of the Royal Society A, 375 (2086), 20150346.

  8. Simple control-theoretic models of human steering activity in visually guided vehicle control

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1991-01-01

    A simple control theoretic model of human steering or control activity in the lateral-directional control of vehicles such as automobiles and rotorcraft is discussed. The term 'control theoretic' is used to emphasize the fact that the model is derived from a consideration of well-known control system design principles as opposed to psychological theories regarding egomotion, etc. The model is employed to emphasize the 'closed-loop' nature of tasks involving the visually guided control of vehicles upon, or in close proximity to, the earth and to hypothesize how changes in vehicle dynamics can significantly alter the nature of the visual cues which a human might use in such tasks.

  9. Supercomputer use in orthopaedic biomechanics research: focus on functional adaptation of bone.

    PubMed

    Hart, R T; Thongpreda, N; Van Buskirk, W C

    1988-01-01

    The authors describe two biomechanical analyses carried out using numerical methods. One is an analysis of the stress and strain in a human mandible, and the other analysis involves modeling the adaptive response of a sheep bone to mechanical loading. The computing environment required for the two types of analyses is discussed. It is shown that a simple stress analysis of a geometrically complex mandible can be accomplished using a minicomputer. However, more sophisticated analyses of the same model with dynamic loading or nonlinear materials would require supercomputer capabilities. A supercomputer is also required for modeling the adaptive response of living bone, even when simple geometric and material models are use.

  10. Physical models of collective cell motility: from cell to tissue

    NASA Astrophysics Data System (ADS)

    Camley, B. A.; Rappel, W.-J.

    2017-03-01

    In this article, we review physics-based models of collective cell motility. We discuss a range of techniques at different scales, ranging from models that represent cells as simple self-propelled particles to phase field models that can represent a cell’s shape and dynamics in great detail. We also extensively review the ways in which cells within a tissue choose their direction, the statistics of cell motion, and some simple examples of how cell-cell signaling can interact with collective cell motility. This review also covers in more detail selected recent works on collective cell motion of small numbers of cells on micropatterns, in wound healing, and the chemotaxis of clusters of cells.

  11. Modeling Long-Term Fluvial Incision : Shall we Care for the Details of Short-Term Fluvial Dynamics?

    NASA Astrophysics Data System (ADS)

    Lague, D.; Davy, P.

    2008-12-01

    Fluvial incision laws used in numerical models of coupled climate, erosion and tectonics systems are mainly based on the family of stream power laws for which the rate of local erosion E is a power function of the topographic slope S and the local mean discharge Q : E = K Qm Sn. The exponents m and n are generally taken as (0.35, 0.7) or (0.5, 1), and K is chosen such that the predicted topographic elevation given the prevailing rates of precipitation and tectonics stay within realistic values. The resulting topographies are reasonably realistic, and the coupled system dynamics behaves somehow as expected : more precipitation induces increased erosion and localization of the deformation. Yet, if we now focus on smaller scale fluvial dynamics (the reach scale), recent advances have suggested that discharge variability, channel width dynamics or sediment flux effects may play a significant role in controlling incision rates. These are not factored in the simple stream power law model. In this work, we study how these short- term details propagate into long-term incision dynamics within the framework of surface/tectonics coupled numerical models. To upscale the short term dynamics to geological timescales, we use a numerical model of a trapezoidal river in which vertical and lateral incision processes are computed from fluid shear stress at a daily timescale, sediment transport and protection effects are factored in, as well as a variable discharge. We show that the stream power law model might still be a valid model but that as soon as realistic effects are included such as a threshold for sediment transport, variable discharge and dynamic width the resulting exponents m and n can be as high as 2 and 4. This high non-linearity has a profound consequence on the sensitivity of fluvial relief to incision rate. We also show that additional complexity does not systematically translates into more non-linear behaviour. For instance, considering only a dynamical width without discharge variability does not induce a significant difference in the predicted long-term incision law and scaling of relief with incision rate at steady-state. We conclude that the simple stream power law models currently in use are false, and that details of short-term fluvial dynamics must make their way into long-term evolution models to avoid oversimplifying the coupled dynamics between erosion, tectonics and climate.

  12. Identifying mechanisms for superdiffusive dynamics in cell trajectories

    NASA Astrophysics Data System (ADS)

    Passucci, Giuseppe; Brasch, Megan; Henderson, James; Manning, M. Lisa

    Self-propelled particle (SPP) models have been used to explore features of active matter such as motility-induced phase separation, jamming, and flocking, and are often used to model biological cells. However, many cells exhibit super-diffusive trajectories, where displacements scale faster than t 1 / 2 in all directions, and these are not captured by traditional SPP models. We extract cell trajectories from image stacks of mouse fibroblast cells moving on 2D substrates and find super-diffusive mean-squared displacements in all directions across varying densities. Two SPP model modifications have been proposed to capture super-diffusive dynamics: Levy walks and heterogeneous motility parameters. In mouse fibroblast cells displacement probability distributions collapse when time is rescaled by a power greater than 1/2, which is consistent with Levy walks. We show that a simple SPP model with heterogeneous rotational noise can also generate a similar collapse. Furthermore, a close examination of statistics extracted directly from cell trajectories is consistent with a heterogeneous mobility SPP model and inconsistent with a Levy walk model. Our work demonstrates that a simple set of analyses can distinguish between mechanisms for anomalous diffusion in active matter.

  13. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics

    NASA Astrophysics Data System (ADS)

    Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.

    2017-03-01

    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.

  14. The dynamics of aloof baby Skyrmions

    DOE PAGES

    Salmi, Petja; Sutcliffe, Paul

    2016-01-25

    The aloof baby Skyrme model is a (2+1)-dimensional theory with solitons that are lightly bound. It is a low-dimensional analogue of a similar Skyrme model in (3+1)- dimensions, where the lightly bound solitons have binding energies comparable to nuclei. A previous study of static solitons in the aloof baby Skyrme model revealed that multi-soliton bound states have a cluster structure, with constituents that preserve their individual identities due to the short-range repulsion and long-range attraction between solitons. Furthermore, there are many different local energy minima that are all well-described by a simple binary species particle model. In this paper wemore » present the first results on soliton dynamics in the aloof baby Skyrme model. Numerical field theory simulations reveal that the lightly bound cluster structure results in a variety of exotic soliton scattering events that are novel in comparison to standard Skyrmion scattering. A dynamical version of the binary species point particle model is shown to provide a good qualitative description of the dynamics.« less

  15. Empirical evidence that metabolic theory describes the temperature dependency of within-host parasite dynamics.

    PubMed

    Kirk, Devin; Jones, Natalie; Peacock, Stephanie; Phillips, Jessica; Molnár, Péter K; Krkošek, Martin; Luijckx, Pepijn

    2018-02-01

    The complexity of host-parasite interactions makes it difficult to predict how host-parasite systems will respond to climate change. In particular, host and parasite traits such as survival and virulence may have distinct temperature dependencies that must be integrated into models of disease dynamics. Using experimental data from Daphnia magna and a microsporidian parasite, we fitted a mechanistic model of the within-host parasite population dynamics. Model parameters comprising host aging and mortality, as well as parasite growth, virulence, and equilibrium abundance, were specified by relationships arising from the metabolic theory of ecology. The model effectively predicts host survival, parasite growth, and the cost of infection across temperature while using less than half the parameters compared to modeling temperatures discretely. Our results serve as a proof of concept that linking simple metabolic models with a mechanistic host-parasite framework can be used to predict temperature responses of parasite population dynamics at the within-host level.

  16. Empirical evidence that metabolic theory describes the temperature dependency of within-host parasite dynamics

    PubMed Central

    Jones, Natalie; Peacock, Stephanie; Phillips, Jessica; Molnár, Péter K.; Krkošek, Martin; Luijckx, Pepijn

    2018-01-01

    The complexity of host–parasite interactions makes it difficult to predict how host–parasite systems will respond to climate change. In particular, host and parasite traits such as survival and virulence may have distinct temperature dependencies that must be integrated into models of disease dynamics. Using experimental data from Daphnia magna and a microsporidian parasite, we fitted a mechanistic model of the within-host parasite population dynamics. Model parameters comprising host aging and mortality, as well as parasite growth, virulence, and equilibrium abundance, were specified by relationships arising from the metabolic theory of ecology. The model effectively predicts host survival, parasite growth, and the cost of infection across temperature while using less than half the parameters compared to modeling temperatures discretely. Our results serve as a proof of concept that linking simple metabolic models with a mechanistic host–parasite framework can be used to predict temperature responses of parasite population dynamics at the within-host level. PMID:29415043

  17. The dynamics of aloof baby Skyrmions

    NASA Astrophysics Data System (ADS)

    Salmi, Petja; Sutcliffe, Paul

    2016-01-01

    The aloof baby Skyrme model is a (2+1)-dimensional theory with solitons that are lightly bound. It is a low-dimensional analogue of a similar Skyrme model in (3+1)-dimensions, where the lightly bound solitons have binding energies comparable to nuclei. A previous study of static solitons in the aloof baby Skyrme model revealed that multi-soliton bound states have a cluster structure, with constituents that preserve their individual identities due to the short-range repulsion and long-range attraction between solitons. Furthermore, there are many different local energy minima that are all well-described by a simple binary species particle model. In this paper we present the first results on soliton dynamics in the aloof baby Skyrme model. Numerical field theory simulations reveal that the lightly bound cluster structure results in a variety of exotic soliton scattering events that are novel in comparison to standard Skyrmion scattering. A dynamical version of the binary species point particle model is shown to provide a good qualitative description of the dynamics.

  18. Universality in the Self Organized Critical behavior of a cellular model of superconducting vortex dynamics

    NASA Astrophysics Data System (ADS)

    Sun, Yudong; Vadakkan, Tegy; Bassler, Kevin

    2007-03-01

    We study the universality and robustness of variants of the simple model of superconducting vortex dynamics first introduced by Bassler and Paczuski in Phys. Rev. Lett. 81, 3761 (1998). The model is a coarse-grained model that captures the essential features of the plastic vortex motion. It accounts for the repulsive interaction between vortices, the pining of vortices at quenched disordered locations in the material, and the over-damped dynamics of the vortices that leads to tearing of the flux line lattice. We report the results of extensive simulations of the critical ``Bean state" dynamics of the model. We find a phase diagram containing four distinct phases of dynamical behavior, including two phases with distinct Self Organized Critical (SOC) behavior. Exponents describing the avalanche scaling behavior in the two SOC phases are determined using finite-size scaling. The exponents are found to be robust within each phase and for different variants of the model. The difference of the scaling behavior in the two phases is also observed in the morphology of the avalanches.

  19. Dynamic self-assembly of charged colloidal strings and walls in simple fluid flows.

    PubMed

    Abe, Yu; Zhang, Bo; Gordillo, Leonardo; Karim, Alireza Mohammad; Francis, Lorraine F; Cheng, Xiang

    2017-02-22

    Colloidal particles can self-assemble into various ordered structures in fluid flows that have potential applications in biomedicine, materials synthesis and encryption. These dynamic processes are also of fundamental interest for probing the general principles of self-assembly under non-equilibrium conditions. Here, we report a simple microfluidic experiment, where charged colloidal particles self-assemble into flow-aligned 1D strings with regular particle spacing near a solid boundary. Using high-speed confocal microscopy, we systematically investigate the influence of flow rates, electrostatics and particle polydispersity on the observed string structures. By studying the detailed dynamics of stable flow-driven particle pairs, we quantitatively characterize interparticle interactions. Based on the results, we construct a simple model that explains the intriguing non-equilibrium self-assembly process. Our study shows that the colloidal strings arise from a delicate balance between attractive hydrodynamic coupling and repulsive electrostatic interaction between particles. Finally, we demonstrate that, with the assistance of transverse electric fields, a similar mechanism also leads to the formation of 2D colloidal walls.

  20. Mobile application MDDCS for modeling the expansion dynamics of a dislocation loop in FCC metals

    NASA Astrophysics Data System (ADS)

    Kirilyuk, Vasiliy; Petelin, Alexander; Eliseev, Andrey

    2017-11-01

    A mobile version of the software package Dynamic Dislocation of Crystallographic Slip (MDDCS) designed for modeling the expansion dynamics of dislocation loops and formation of a crystallographic slip zone in FCC-metals is examined. The paper describes the possibilities for using MDDCS, the application interface, and the database scheme. The software has a simple and intuitive interface and does not require special training. The user can set the initial parameters of the experiment, carry out computational experiments, export parameters and results of the experiment into separate text files, and display the experiment results on the device screen.

  1. Cellular and Network Mechanisms Underlying Information Processing in a Simple Sensory System

    NASA Technical Reports Server (NTRS)

    Jacobs, Gwen; Henze, Chris; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Realistic, biophysically-based compartmental models were constructed of several primary sensory interneurons in the cricket cercal sensory system. A dynamic atlas of the afferent input to these cells was used to set spatio-temporal parameters for the simulated stimulus-dependent synaptic inputs. We examined the roles of dendritic morphology, passive membrane properties, and active conductances on the frequency tuning of the neurons. The sensitivity of narrow-band low pass interneurons could be explained entirely by the electronic structure of the dendritic arbors and the dynamic sensitivity of the SIZ. The dynamic characteristics of interneurons with higher frequency sensitivity required models with voltage-dependent dendritic conductances.

  2. Collective firm bankruptcies and phase transition in rating dynamics

    NASA Astrophysics Data System (ADS)

    Sieczka, P.; Hołyst, J. A.

    2009-10-01

    We present a simple model of firm rating evolution. We consider two sources of defaults: individual dynamics of economic development and Potts-like interactions between firms. We show that such a defined model leads to phase transition, which results in collective defaults. The existence of the collective phase depends on the mean interaction strength. For small interaction strength parameters, there are many independent bankruptcies of individual companies. For large parameters, there are giant collective defaults of firm clusters. In the case when the individual firm dynamics favors dumping of rating changes, there is an optimal strength of the firm's interactions from the systemic risk point of view. in here

  3. Quantum Bose-Hubbard model with an evolving graph as a toy model for emergent spacetime

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Markopoulou, Fotini; Lloyd, Seth; Caravelli, Francesco; Severini, Simone; Markström, Klas

    2010-05-01

    We present a toy model for interacting matter and geometry that explores quantum dynamics in a spin system as a precursor to a quantum theory of gravity. The model has no a priori geometric properties; instead, locality is inferred from the more fundamental notion of interaction between the matter degrees of freedom. The interaction terms are themselves quantum degrees of freedom so that the structure of interactions and hence the resulting local and causal structures are dynamical. The system is a Hubbard model where the graph of the interactions is a set of quantum evolving variables. We show entanglement between spatial and matter degrees of freedom. We study numerically the quantum system and analyze its entanglement dynamics. We analyze the asymptotic behavior of the classical model. Finally, we discuss analogues of trapped surfaces and gravitational attraction in this simple model.

  4. Dynamic modeling of wheeled planetary rovers: A model based on the pseudo-coordiates approach

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Genta, Giancarlo

    2012-12-01

    The paper deals with the dynamic modeling of wheeled planetary rovers operating on rough terrain. The dedicated model here presented, although kept as simple as possible, includes the effect of nonlinearities and models the suspensions in a realistic, albeit simplified, way. It can be interfaced with a model of the control system so that different control strategies can be studied in detail and, in case of teleoperated rovers, it can be used as a simulator for training the operators. Different implementations, with different degrees of complexity, are presented and compared with each other so that the user can simulate the dynamics of the rover making a tradeoff between simulation accuracy and computer time. The model allows to study the effects of the terrain characteristics, of the ground irregularities and the operating speed on the behavior of the rover. Some examples dealing with rovers with different configurations conclude the paper.

  5. The development of an autonomous rendezvous and docking simulation using rapid integration and prototyping technology

    NASA Technical Reports Server (NTRS)

    Shackelford, John H.; Saugen, John D.; Wurst, Michael J.; Adler, James

    1991-01-01

    A generic planar 3 degree of freedom simulation was developed that supports hardware in the loop simulations, guidance and control analysis, and can directly generate flight software. This simulation was developed in a small amount of time utilizing rapid prototyping techniques. The approach taken to develop this simulation tool, the benefits seen using this approach to development, and on-going efforts to improve and extend this capability are described. The simulation is composed of 3 major elements: (1) Docker dynamics model, (2) Dockee dynamics model, and (3) Docker Control System. The docker and dockee models are based on simple planar orbital dynamics equations using a spherical earth gravity model. The docker control system is based on a phase plane approach to error correction.

  6. Macroscopic Fluctuation Theory for Stationary Non-Equilibrium States

    NASA Astrophysics Data System (ADS)

    Bertini, L.; de Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C.

    2002-05-01

    We formulate a dynamical fluctuation theory for stationary non-equilibrium states (SNS) which is tested explicitly in stochastic models of interacting particles. In our theory a crucial role is played by the time reversed dynamics. Within this theory we derive the following results: the modification of the Onsager-Machlup theory in the SNS; a general Hamilton-Jacobi equation for the macroscopic entropy; a non-equilibrium, nonlinear fluctuation dissipation relation valid for a wide class of systems; an H theorem for the entropy. We discuss in detail two models of stochastic boundary driven lattice gases: the zero range and the simple exclusion processes. In the first model the invariant measure is explicitly known and we verify the predictions of the general theory. For the one dimensional simple exclusion process, as recently shown by Derrida, Lebowitz, and Speer, it is possible to express the macroscopic entropy in terms of the solution of a nonlinear ordinary differential equation; by using the Hamilton-Jacobi equation, we obtain a logically independent derivation of this result.

  7. Understanding system dynamics of an adaptive enzyme network from globally profiled kinetic parameters.

    PubMed

    Chiang, Austin W T; Liu, Wei-Chung; Charusanti, Pep; Hwang, Ming-Jing

    2014-01-15

    A major challenge in mathematical modeling of biological systems is to determine how model parameters contribute to systems dynamics. As biological processes are often complex in nature, it is desirable to address this issue using a systematic approach. Here, we propose a simple methodology that first performs an enrichment test to find patterns in the values of globally profiled kinetic parameters with which a model can produce the required system dynamics; this is then followed by a statistical test to elucidate the association between individual parameters and different parts of the system's dynamics. We demonstrate our methodology on a prototype biological system of perfect adaptation dynamics, namely the chemotaxis model for Escherichia coli. Our results agreed well with those derived from experimental data and theoretical studies in the literature. Using this model system, we showed that there are motifs in kinetic parameters and that these motifs are governed by constraints of the specified system dynamics. A systematic approach based on enrichment statistical tests has been developed to elucidate the relationships between model parameters and the roles they play in affecting system dynamics of a prototype biological network. The proposed approach is generally applicable and therefore can find wide use in systems biology modeling research.

  8. Population-reaction model and microbial experimental ecosystems for understanding hierarchical dynamics of ecosystems.

    PubMed

    Hosoda, Kazufumi; Tsuda, Soichiro; Kadowaki, Kohmei; Nakamura, Yutaka; Nakano, Tadashi; Ishii, Kojiro

    2016-02-01

    Understanding ecosystem dynamics is crucial as contemporary human societies face ecosystem degradation. One of the challenges that needs to be recognized is the complex hierarchical dynamics. Conventional dynamic models in ecology often represent only the population level and have yet to include the dynamics of the sub-organism level, which makes an ecosystem a complex adaptive system that shows characteristic behaviors such as resilience and regime shifts. The neglect of the sub-organism level in the conventional dynamic models would be because integrating multiple hierarchical levels makes the models unnecessarily complex unless supporting experimental data are present. Now that large amounts of molecular and ecological data are increasingly accessible in microbial experimental ecosystems, it is worthwhile to tackle the questions of their complex hierarchical dynamics. Here, we propose an approach that combines microbial experimental ecosystems and a hierarchical dynamic model named population-reaction model. We present a simple microbial experimental ecosystem as an example and show how the system can be analyzed by a population-reaction model. We also show that population-reaction models can be applied to various ecological concepts, such as predator-prey interactions, climate change, evolution, and stability of diversity. Our approach will reveal a path to the general understanding of various ecosystems and organisms. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Fast trimers in a one-dimensional extended Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Dhar, A.; Törmä, P.; Kinnunen, J. J.

    2018-04-01

    We consider a one-dimensional two-component extended Fermi-Hubbard model with nearest-neighbor interactions and mass imbalance between the two species. We study the binding energy of trimers, various observables for detecting them, and expansion dynamics. We generalize the definition of the trimer gap to include the formation of different types of clusters originating from nearest-neighbor interactions. Expansion dynamics reveal rapidly propagating trimers, with speeds exceeding doublon propagation in the strongly interacting regime. We present a simple model for understanding this unique feature of the movement of the trimers, and we discuss the potential for experimental realization.

  10. Continuous distribution of emission states from single CdSe/ZnS quantum dots.

    PubMed

    Zhang, Kai; Chang, Hauyee; Fu, Aihua; Alivisatos, A Paul; Yang, Haw

    2006-04-01

    The photoluminescence dynamics of colloidal CdSe/ZnS/streptavidin quantum dots were studied using time-resolved single-molecule spectroscopy. Statistical tests of the photon-counting data suggested that the simple "on/off" discrete state model is inconsistent with experimental results. Instead, a continuous emission state distribution model was found to be more appropriate. Autocorrelation analysis of lifetime and intensity fluctuations showed a nonlinear correlation between them. These results were consistent with the model that charged quantum dots were also emissive, and that time-dependent charge migration gave rise to the observed photoluminescence dynamics.

  11. Exponential quantum spreading in a class of kicked rotor systems near high-order resonances

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Wang, Jiao; Guarneri, Italo; Casati, Giulio; Gong, Jiangbin

    2013-11-01

    Long-lasting exponential quantum spreading was recently found in a simple but very rich dynamical model, namely, an on-resonance double-kicked rotor model [J. Wang, I. Guarneri, G. Casati, and J. B. Gong, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.234104 107, 234104 (2011)]. The underlying mechanism, unrelated to the chaotic motion in the classical limit but resting on quasi-integrable motion in a pseudoclassical limit, is identified for one special case. By presenting a detailed study of the same model, this work offers a framework to explain long-lasting exponential quantum spreading under much more general conditions. In particular, we adopt the so-called “spinor” representation to treat the kicked-rotor dynamics under high-order resonance conditions and then exploit the Born-Oppenheimer approximation to understand the dynamical evolution. It is found that the existence of a flat band (or an effectively flat band) is one important feature behind why and how the exponential dynamics emerges. It is also found that a quantitative prediction of the exponential spreading rate based on an interesting and simple pseudoclassical map may be inaccurate. In addition to general interests regarding the question of how exponential behavior in quantum systems may persist for a long time scale, our results should motivate further studies toward a better understanding of high-order resonance behavior in δ-kicked quantum systems.

  12. Diffusion in randomly perturbed dissipative dynamics

    NASA Astrophysics Data System (ADS)

    Rodrigues, Christian S.; Chechkin, Aleksei V.; de Moura, Alessandro P. S.; Grebogi, Celso; Klages, Rainer

    2014-11-01

    Dynamical systems having many coexisting attractors present interesting properties from both fundamental theoretical and modelling points of view. When such dynamics is under bounded random perturbations, the basins of attraction are no longer invariant and there is the possibility of transport among them. Here we introduce a basic theoretical setting which enables us to study this hopping process from the perspective of anomalous transport using the concept of a random dynamical system with holes. We apply it to a simple model by investigating the role of hyperbolicity for the transport among basins. We show numerically that our system exhibits non-Gaussian position distributions, power-law escape times, and subdiffusion. Our simulation results are reproduced consistently from stochastic continuous time random walk theory.

  13. Cultural ecologies of adaptive vs. maladaptive traits: A simple nonlinear model

    NASA Astrophysics Data System (ADS)

    Antoci, Angelo; Russu, Paolo; Sacco, Pier Luigi

    2018-05-01

    In this paper, we generalize a model by Enquist and Ghirlanda [12] to analyze the "macro" dynamics of cumulative culture in a context where there is a coexistence of adaptive and maladaptive cultural traits. In particular, we introduce a different, nonlinear specification of the main processes at work in the cumulative culture dynamics: imperfect transmission of traits, generation of new traits, and switches from adaptive to maladaptive and vice-versa. We find that the system exhibits a variety of dynamic behaviors where the crucial force is the switching between the adaptive and maladaptive nature of a certain trait, with the other processes playing a modulating role. We identify in particular a number of dynamic regimes with distinctive characteristics.

  14. Molecular modeling of polycarbonate materials: Glass transition and mechanical properties

    NASA Astrophysics Data System (ADS)

    Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim

    2017-09-01

    Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.

  15. Non-monotonicity and divergent time scale in Axelrod model dynamics

    NASA Astrophysics Data System (ADS)

    Vazquez, F.; Redner, S.

    2007-04-01

    We study the evolution of the Axelrod model for cultural diversity, a prototypical non-equilibrium process that exhibits rich dynamics and a dynamic phase transition between diversity and an inactive state. We consider a simple version of the model in which each individual possesses two features that can assume q possibilities. Within a mean-field description in which each individual has just a few interaction partners, we find a phase transition at a critical value qc between an active, diverse state for q < qc and a frozen state. For q lesssim qc, the density of active links is non-monotonic in time and the asymptotic approach to the steady state is controlled by a time scale that diverges as (q-qc)-1/2.

  16. Dynamic Divisive Normalization Predicts Time-Varying Value Coding in Decision-Related Circuits

    PubMed Central

    LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W.

    2014-01-01

    Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. PMID:25429145

  17. Dynamic Constitutive/Failure Models

    DTIC Science & Technology

    1988-12-01

    compressive failure--microfracture versus microplasticity . Actual traces observed in plate impact tests on ceramic targets are hardly ever as simple as the...observa- tions for microfracture and microplasticity . Unfortunately, each team of investigators has used slightly different experimental techniques and

  18. Advancements in dynamic kill calculations for blowout wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouba, G.E.; MacDougall, G.R.; Schumacher, B.W.

    1993-09-01

    This paper addresses the development, interpretation, and use of dynamic kill equations. To this end, three simple calculation techniques are developed for determining the minimum dynamic kill rate. Two techniques contain only single-phase calculations and are independent of reservoir inflow performance. Despite these limitations, these two methods are useful for bracketing the minimum flow rates necessary to kill a blowing well. For the third technique, a simplified mechanistic multiphase-flow model is used to determine a most-probable minimum kill rate.

  19. Dynamic stability of maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.

    1994-05-01

    Because dynamic instabilities are not acceptable in any commercial maglev system, it is important to consider dynamic instability in the development of all maglev systems. This study considers the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.

  20. Growth of Ni nanoclusters on irradiated graphene: a molecular dynamics study.

    PubMed

    Valencia, F J; Hernandez-Vazquez, E E; Bringa, E M; Moran-Lopez, J L; Rogan, J; Gonzalez, R I; Munoz, F

    2018-04-23

    We studied the soft landing of Ni atoms on a previously damaged graphene sheet by means of molecular dynamics simulations. We found a monotonic decrease of the cluster frequency as a function of its size, but few big clusters comprise an appreciable fraction of the total number of Ni atoms. The aggregation of Ni atoms is also modeled by means of a simple phenomenological model. The results are in clear contrast with the case of hard or energetic landing of metal atoms, where there is a tendency to form mono-disperse metal clusters. This behavior is attributed to the high diffusion of unattached Ni atoms, together with vacancies acting as capture centers. The findings of this work show that a simple study of the energetics of the system is not enough in the soft landing regime, where it is unavoidable to also consider the growth process of metal clusters.

  1. RESEARCH AREA 7.1: Exploring the Systematics of Controlling Quantum Phenomena

    DTIC Science & Technology

    2016-10-05

    the bottom to the top of the landscape. Computational analyses for simple model quantum systems are performed to ascertain the relative abundance of...SECURITY CLASSIFICATION OF: This research is concerned with the theoretical and experimental control quantum dynamics phenomena. Advances include new...algorithms to accelerate quantum control as well as provide physical insights into the controlled dynamics. The latter research includes the

  2. Euler Strut: A Mechanical Analogy for Dynamics in the Vicinity of a Critical Point

    ERIC Educational Resources Information Center

    Bobnar, Jaka; Susman, Katarina; Parsegian, V. Adrian; Rand, Peter R.; Cepic, Mojca; Podgornik, Rudolf

    2011-01-01

    An anchored elastic filament (Euler strut) under an external point load applied to its free end is a simple model for a second-order phase transition. In the static case, a load greater than the critical load causes a Euler buckling instability, leading to a change in the filament's shape. The analysis of filament dynamics with an external point…

  3. Two-dimensional model of resonant electron collisions with diatomic molecules and molecular cations

    NASA Astrophysics Data System (ADS)

    Vana, Martin; Hvizdos, David; Houfek, Karel; Curik, Roman; Greene, Chris H.; Rescigno, Thomas N.; McCurdy, C. William

    2016-05-01

    A simple model for resonant collisions of electrons with diatomic molecules with one electronic and one nuclear degree of freedom (2D model) which was solved numerically exactly within the time-independent approach was used to probe the local complex potential approximation and nonlocal approximation to nuclear dynamics of these collisions. This model was reformulated in the time-dependent picture and extended to model also electron collisions with molecular cations, especially with H2+.This model enables an assessment of approximate methods, such as the boomerang model or the frame transformation theory. We will present both time-dependent and time-independent results and show how we can use the model to extract deeper insight into the dynamics of the resonant collisions.

  4. A simple method for characterizing passive and active neuronal properties: application to striatal neurons.

    PubMed

    Lepora, Nathan F; Blomeley, Craig P; Hoyland, Darren; Bracci, Enrico; Overton, Paul G; Gurney, Kevin

    2011-11-01

    The study of active and passive neuronal dynamics usually relies on a sophisticated array of electrophysiological, staining and pharmacological techniques. We describe here a simple complementary method that recovers many findings of these more complex methods but relies only on a basic patch-clamp recording approach. Somatic short and long current pulses were applied in vitro to striatal medium spiny (MS) and fast spiking (FS) neurons from juvenile rats. The passive dynamics were quantified by fitting two-compartment models to the short current pulse data. Lumped conductances for the active dynamics were then found by compensating this fitted passive dynamics within the current-voltage relationship from the long current pulse data. These estimated passive and active properties were consistent with previous more complex estimations of the neuron properties, supporting the approach. Relationships within the MS and FS neuron types were also evident, including a graduation of MS neuron properties consistent with recent findings about D1 and D2 dopamine receptor expression. Application of the method to simulated neuron data supported the hypothesis that it gives reasonable estimates of membrane properties and gross morphology. Therefore detailed information about the biophysics can be gained from this simple approach, which is useful for both classification of neuron type and biophysical modelling. Furthermore, because these methods rely upon no manipulations to the cell other than patch clamping, they are ideally suited to in vivo electrophysiology. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  5. Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models

    ERIC Educational Resources Information Center

    Dickes, Amanda Catherine; Sengupta, Pratim

    2013-01-01

    In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these…

  6. Glycolysis Is Governed by Growth Regime and Simple Enzyme Regulation in Adherent MDCK Cells

    PubMed Central

    Rehberg, Markus; Ritter, Joachim B.; Reichl, Udo

    2014-01-01

    Due to its vital importance in the supply of cellular pathways with energy and precursors, glycolysis has been studied for several decades regarding its capacity and regulation. For a systems-level understanding of the Madin-Darby canine kidney (MDCK) cell metabolism, we couple a segregated cell growth model published earlier with a structured model of glycolysis, which is based on relatively simple kinetics for enzymatic reactions of glycolysis, to explain the pathway dynamics under various cultivation conditions. The structured model takes into account in vitro enzyme activities, and links glycolysis with pentose phosphate pathway and glycogenesis. Using a single parameterization, metabolite pool dynamics during cell cultivation, glucose limitation and glucose pulse experiments can be consistently reproduced by considering the cultivation history of the cells. Growth phase-dependent glucose uptake together with cell-specific volume changes generate high intracellular metabolite pools and flux rates to satisfy the cellular demand during growth. Under glucose limitation, the coordinated control of glycolytic enzymes re-adjusts the glycolytic flux to prevent the depletion of glycolytic intermediates. Finally, the model's predictive power supports the design of more efficient bioprocesses. PMID:25329309

  7. Glycolysis is governed by growth regime and simple enzyme regulation in adherent MDCK cells.

    PubMed

    Rehberg, Markus; Ritter, Joachim B; Reichl, Udo

    2014-10-01

    Due to its vital importance in the supply of cellular pathways with energy and precursors, glycolysis has been studied for several decades regarding its capacity and regulation. For a systems-level understanding of the Madin-Darby canine kidney (MDCK) cell metabolism, we couple a segregated cell growth model published earlier with a structured model of glycolysis, which is based on relatively simple kinetics for enzymatic reactions of glycolysis, to explain the pathway dynamics under various cultivation conditions. The structured model takes into account in vitro enzyme activities, and links glycolysis with pentose phosphate pathway and glycogenesis. Using a single parameterization, metabolite pool dynamics during cell cultivation, glucose limitation and glucose pulse experiments can be consistently reproduced by considering the cultivation history of the cells. Growth phase-dependent glucose uptake together with cell-specific volume changes generate high intracellular metabolite pools and flux rates to satisfy the cellular demand during growth. Under glucose limitation, the coordinated control of glycolytic enzymes re-adjusts the glycolytic flux to prevent the depletion of glycolytic intermediates. Finally, the model's predictive power supports the design of more efficient bioprocesses.

  8. Modeling of breath methane concentration profiles during exercise on an ergometer*

    PubMed Central

    Szabó, Anna; Unterkofler, Karl; Mochalski, Pawel; Jandacka, Martin; Ruzsanyi, Vera; Szabó, Gábor; Mohácsi, Árpád; Teschl, Susanne; Teschl, Gerald; King, Julian

    2016-01-01

    We develop a simple three compartment model based on mass balance equations which quantitatively describes the dynamics of breath methane concentration profiles during exercise on an ergometer. With the help of this model it is possible to estimate the endogenous production rate of methane in the large intestine by measuring breath gas concentrations of methane. PMID:26828421

  9. Modeling 2D and 3D diffusion.

    PubMed

    Saxton, Michael J

    2007-01-01

    Modeling obstructed diffusion is essential to the understanding of diffusion-mediated processes in the crowded cellular environment. Simple Monte Carlo techniques for modeling obstructed random walks are explained and related to Brownian dynamics and more complicated Monte Carlo methods. Random number generation is reviewed in the context of random walk simulations. Programming techniques and event-driven algorithms are discussed as ways to speed simulations.

  10. Coupling Climate Models and Forward-Looking Economic Models

    NASA Astrophysics Data System (ADS)

    Judd, K.; Brock, W. A.

    2010-12-01

    Authors: Dr. Kenneth L. Judd, Hoover Institution, and Prof. William A. Brock, University of Wisconsin Current climate models range from General Circulation Models (GCM’s) with millions of degrees of freedom to models with few degrees of freedom. Simple Energy Balance Climate Models (EBCM’s) help us understand the dynamics of GCM’s. The same is true in economics with Computable General Equilibrium Models (CGE’s) where some models are infinite-dimensional multidimensional differential equations but some are simple models. Nordhaus (2007, 2010) couples a simple EBCM with a simple economic model. One- and two- dimensional ECBM’s do better at approximating damages across the globe and positive and negative feedbacks from anthroprogenic forcing (North etal. (1981), Wu and North (2007)). A proper coupling of climate and economic systems is crucial for arriving at effective policies. Brock and Xepapadeas (2010) have used Fourier/Legendre based expansions to study the shape of socially optimal carbon taxes over time at the planetary level in the face of damages caused by polar ice cap melt (as discussed by Oppenheimer, 2005) but in only a “one dimensional” EBCM. Economists have used orthogonal polynomial expansions to solve dynamic, forward-looking economic models (Judd, 1992, 1998). This presentation will couple EBCM climate models with basic forward-looking economic models, and examine the effectiveness and scaling properties of alternative solution methods. We will use a two dimensional EBCM model on the sphere (Wu and North, 2007) and a multicountry, multisector regional model of the economic system. Our aim will be to gain insights into intertemporal shape of the optimal carbon tax schedule, and its impact on global food production, as modeled by Golub and Hertel (2009). We will initially have limited computing resources and will need to focus on highly aggregated models. However, this will be more complex than existing models with forward-looking economic modules, and the initial models will help guide the construction of more refined models that can effectively use more powerful computational environments to analyze economic policies related to climate change. REFERENCES Brock, W., Xepapadeas, A., 2010, “An Integration of Simple Dynamic Energy Balance Climate Models and Ramsey Growth Models,” Department of Economics, University of Wisconsin, Madison, and University of Athens. Golub, A., Hertel, T., etal., 2009, “The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry,” RESOURCE AND ENERGY ECONOMICS, 31, 299-319. Judd, K., 1992, “Projection methods for solving aggregate growth models,” JOURNAL OF ECONOMIC THEORY, 58: 410-52. Judd, K., 1998, NUMERICAL METHODS IN ECONOMICS, MIT Press, Cambridge, Mass. Nordhaus, W., 2007, A QUESTION OF BALANCE: ECONOMIC MODELS OF CLIMATE CHANGE, Yale University Press, New Haven, CT. North, G., R., Cahalan, R., Coakely, J., 1981, “Energy balance climate models,” REVIEWS OF GEOPHYSICS AND SPACE PHYSICS, Vol. 19, No. 1, 91-121, February Wu, W., North, G. R., 2007, “Thermal decay modes of a 2-D energy balance climate model,” TELLUS, 59A, 618-626.

  11. Chiral Dark Sector

    NASA Astrophysics Data System (ADS)

    Co, Raymond T.; Harigaya, Keisuke; Nomura, Yasunori

    2017-03-01

    We present a simple and natural dark sector model in which dark matter particles arise as composite states of hidden strong dynamics and their stability is ensured by accidental symmetries. The model has only a few free parameters. In particular, the gauge symmetry of the model forbids the masses of dark quarks, and the confinement scale of the dynamics provides the unique mass scale of the model. The gauge group contains an Abelian symmetry U (1 )D , which couples the dark and standard model sectors through kinetic mixing. This model, despite its simple structure, has rich and distinctive phenomenology. In the case where the dark pion becomes massive due to U (1 )D quantum corrections, direct and indirect detection experiments can probe thermal relic dark matter which is generically a mixture of the dark pion and the dark baryon, and the Large Hadron Collider can discover the U (1 )D gauge boson. Alternatively, if the dark pion stays light due to a specific U (1 )D charge assignment of the dark quarks, then the dark pion constitutes dark radiation. The signal of this radiation is highly correlated with that of dark baryons in dark matter direct detection.

  12. Chiral Dark Sector.

    PubMed

    Co, Raymond T; Harigaya, Keisuke; Nomura, Yasunori

    2017-03-10

    We present a simple and natural dark sector model in which dark matter particles arise as composite states of hidden strong dynamics and their stability is ensured by accidental symmetries. The model has only a few free parameters. In particular, the gauge symmetry of the model forbids the masses of dark quarks, and the confinement scale of the dynamics provides the unique mass scale of the model. The gauge group contains an Abelian symmetry U(1)_{D}, which couples the dark and standard model sectors through kinetic mixing. This model, despite its simple structure, has rich and distinctive phenomenology. In the case where the dark pion becomes massive due to U(1)_{D} quantum corrections, direct and indirect detection experiments can probe thermal relic dark matter which is generically a mixture of the dark pion and the dark baryon, and the Large Hadron Collider can discover the U(1)_{D} gauge boson. Alternatively, if the dark pion stays light due to a specific U(1)_{D} charge assignment of the dark quarks, then the dark pion constitutes dark radiation. The signal of this radiation is highly correlated with that of dark baryons in dark matter direct detection.

  13. Transport properties and efficiency of elastically coupled particles in asymmetric periodic potentials

    NASA Astrophysics Data System (ADS)

    Igarashi, Akito; Tsukamoto, Shinji

    2000-02-01

    Biological molecular motors drive unidirectional transport and transduce chemical energy to mechanical work. In order to identify this energy conversion which is a common feature of molecular motors, many workers have studied various physical models, which consist of Brownian particles in spatially periodic potentials. Most of the models are, however, based on "single-particle" dynamics and too simple as models for biological motors, especially for actin-myosin motors, which cause muscle contraction. In this paper, particles coupled by elastic strings in an asymmetric periodic potential are considered as a model for the motors. We investigate the dynamics of the model and calculate the efficiency of energy conversion with the use of molecular dynamical method. In particular, we find that the velocity and efficiency of the elastically coupled particles where the natural length of the springs is incommensurable with the period of the periodic potential are larger than those of the corresponding single particle model.

  14. Bak-Sneppen model: Local equilibrium and critical value.

    PubMed

    Fraiman, Daniel

    2018-04-01

    The Bak-Sneppen (BS) model is a very simple model that exhibits all the richness of self-organized criticality theory. At the thermodynamic limit, the BS model converges to a situation where all particles have a fitness that is uniformly distributed between a critical value p_{c} and 1. The p_{c} value is unknown, as are the variables that influence and determine this value. Here we study the BS model in the case in which the lowest fitness particle interacts with an arbitrary even number of m nearest neighbors. We show that p_{c} verifies a simple local equilibrium relation. Based on this relation, we can determine bounds for p_{c} of the BS model and exact results for some BS-like models. Finally, we show how transformations of the original BS model can be done without altering the model's complex dynamics.

  15. Bak-Sneppen model: Local equilibrium and critical value

    NASA Astrophysics Data System (ADS)

    Fraiman, Daniel

    2018-04-01

    The Bak-Sneppen (BS) model is a very simple model that exhibits all the richness of self-organized criticality theory. At the thermodynamic limit, the BS model converges to a situation where all particles have a fitness that is uniformly distributed between a critical value pc and 1. The pc value is unknown, as are the variables that influence and determine this value. Here we study the BS model in the case in which the lowest fitness particle interacts with an arbitrary even number of m nearest neighbors. We show that pc verifies a simple local equilibrium relation. Based on this relation, we can determine bounds for pc of the BS model and exact results for some BS-like models. Finally, we show how transformations of the original BS model can be done without altering the model's complex dynamics.

  16. Landau-Zener transitions and Dykhne formula in a simple continuum model

    NASA Astrophysics Data System (ADS)

    Dunham, Yujin; Garmon, Savannah

    The Landau-Zener model describing the interaction between two linearly driven discrete levels is useful in describing many simple dynamical systems; however, no system is completely isolated from the surrounding environment. Here we examine a generalizations of the original Landau-Zener model to study simple environmental influences. We consider a model in which one of the discrete levels is replaced with a energy continuum, in which we find that the survival probability for the initially occupied diabatic level is unaffected by the presence of the continuum. This result can be predicted by assuming that each step in the evolution for the diabatic state evolves independently according to the Landau-Zener formula, even in the continuum limit. We also show that, at least for the simplest model, this result can also be predicted with the natural generalization of the Dykhne formula for open systems. We also observe dissipation as the non-escape probability from the discrete levels is no longer equal to one.

  17. Dynamics of Social Group Competition: Modeling the Decline of Religious Affiliation

    NASA Astrophysics Data System (ADS)

    Abrams, Daniel M.; Yaple, Haley A.; Wiener, Richard J.

    2011-08-01

    When social groups compete for members, the resulting dynamics may be understandable with mathematical models. We demonstrate that a simple ordinary differential equation (ODE) model is a good fit for religious shift by comparing it to a new international data set tracking religious nonaffiliation. We then generalize the model to include the possibility of nontrivial social interaction networks and examine the limiting case of a continuous system. Analytical and numerical predictions of this generalized system, which is robust to polarizing perturbations, match those of the original ODE model and justify its agreement with real-world data. The resulting predictions highlight possible causes of social shift and suggest future lines of research in both physics and sociology.

  18. Unsteady hovering wake parameters identified from dynamic model tests, part 1

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Crews, S. T.

    1977-01-01

    The development of a 4-bladed model rotor is reported that can be excited with a simple eccentric mechanism in progressing and regressing modes with either harmonic or transient inputs. Parameter identification methods were applied to the problem of extracting parameters for linear perturbation models, including rotor dynamic inflow effects, from the measured blade flapping responses to transient pitch stirring excitations. These perturbation models were then used to predict blade flapping response to other pitch stirring transient inputs, and rotor wake and blade flapping responses to harmonic inputs. The viability and utility of using parameter identification methods for extracting the perturbation models from transients are demonstrated through these combined analytical and experimental studies.

  19. Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angus, G.W.; Gentile, G.; Diaferio, A.

    2014-10-01

    In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrinomore » ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.« less

  20. Numerical Modeling in Geodynamics: Success, Failure and Perspective

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.

    2005-12-01

    A real success in numerical modeling of dynamics of the Earth can be achieved only by multidisciplinary research teams of experts in geodynamics, applied and pure mathematics, and computer science. The success in numerical modeling is based on the following basic, but simple, rules. (i) People need simplicity most, but they understand intricacies best (B. Pasternak, writer). Start from a simple numerical model, which describes basic physical laws by a set of mathematical equations, and move then to a complex model. Never start from a complex model, because you cannot understand the contribution of each term of the equations to the modeled geophysical phenomenon. (ii) Study the numerical methods behind your computer code. Otherwise it becomes difficult to distinguish true and erroneous solutions to the geodynamic problem, especially when your problem is complex enough. (iii) Test your model versus analytical and asymptotic solutions, simple 2D and 3D model examples. Develop benchmark analysis of different numerical codes and compare numerical results with laboratory experiments. Remember that the numerical tool you employ is not perfect, and there are small bugs in every computer code. Therefore the testing is the most important part of your numerical modeling. (iv) Prove (if possible) or learn relevant statements concerning the existence, uniqueness and stability of the solution to the mathematical and discrete problems. Otherwise you can solve an improperly-posed problem, and the results of the modeling will be far from the true solution of your model problem. (v) Try to analyze numerical models of a geological phenomenon using as less as possible tuning model variables. Already two tuning variables give enough possibilities to constrain your model well enough with respect to observations. The data fitting sometimes is quite attractive and can take you far from a principal aim of your numerical modeling: to understand geophysical phenomena. (vi) If the number of tuning model variables are greater than two, test carefully the effect of each of the variables on the modeled phenomenon. Remember: With four exponents I can fit an elephant (E. Fermi, physicist). (vii) Make your numerical model as accurate as possible, but never put the aim to reach a great accuracy: Undue precision of computations is the first symptom of mathematical illiteracy (N. Krylov, mathematician). How complex should be a numerical model? A model which images any detail of the reality is as useful as a map of scale 1:1 (J. Robinson, economist). This message is quite important for geoscientists, who study numerical models of complex geodynamical processes. I believe that geoscientists will never create a model of the real Earth dynamics, but we should try to model the dynamics such a way to simulate basic geophysical processes and phenomena. Does a particular model have a predictive power? Each numerical model has a predictive power, otherwise the model is useless. The predictability of the model varies with its complexity. Remember that a solution to the numerical model is an approximate solution to the equations, which have been chosen in believe that they describe dynamic processes of the Earth. Hence a numerical model predicts dynamics of the Earth as well as the mathematical equations describe this dynamics. What methodological advances are still needed for testable geodynamic modeling? Inverse (time-reverse) numerical modeling and data assimilation are new methodologies in geodynamics. The inverse modeling can allow to test geodynamic models forward in time using restored (from present-day observations) initial conditions instead of unknown conditions.

  1. Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation

    NASA Astrophysics Data System (ADS)

    Ridoux, J.; Lardjane, N.; Monasse, L.; Coulouvrat, F.

    2018-03-01

    Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A{-}M rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine-Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model's approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A{-}M relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.

  2. What Is a Simple Liquid?

    NASA Astrophysics Data System (ADS)

    Ingebrigtsen, Trond S.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2012-01-01

    This paper is an attempt to identify the real essence of simplicity of liquids in John Locke’s understanding of the term. Simple liquids are traditionally defined as many-body systems of classical particles interacting via radially symmetric pair potentials. We suggest that a simple liquid should be defined instead by the property of having strong correlations between virial and potential-energy equilibrium fluctuations in the NVT ensemble. There is considerable overlap between the two definitions, but also some notable differences. For instance, in the new definition simplicity is not a direct property of the intermolecular potential because a liquid is usually only strongly correlating in part of its phase diagram. Moreover, not all simple liquids are atomic (i.e., with radially symmetric pair potentials) and not all atomic liquids are simple. The main part of the paper motivates the new definition of liquid simplicity by presenting evidence that a liquid is strongly correlating if and only if its intermolecular interactions may be ignored beyond the first coordination shell (FCS). This is demonstrated by NVT simulations of the structure and dynamics of several atomic and three molecular model liquids with a shifted-forces cutoff placed at the first minimum of the radial distribution function. The liquids studied are inverse power-law systems (r-n pair potentials with n=18,6,4), Lennard-Jones (LJ) models (the standard LJ model, two generalized Kob-Andersen binary LJ mixtures, and the Wahnstrom binary LJ mixture), the Buckingham model, the Dzugutov model, the LJ Gaussian model, the Gaussian core model, the Hansen-McDonald molten salt model, the Lewis-Wahnstrom ortho-terphenyl model, the asymmetric dumbbell model, and the single-point charge water model. The final part of the paper summarizes properties of strongly correlating liquids, emphasizing that these are simpler than liquids in general. Simple liquids, as defined here, may be characterized in three quite different ways: (1) chemically by the fact that the liquid’s properties are fully determined by interactions from the molecules within the FCS, (2) physically by the fact that there are isomorphs in the phase diagram, i.e., curves along which several properties like excess entropy, structure, and dynamics, are invariant in reduced units, and (3) mathematically by the fact that throughout the phase diagram the reduced-coordinate constant-potential-energy hypersurfaces define a one-parameter family of compact Riemannian manifolds. No proof is given that the chemical characterization follows from the strong correlation property, but we show that this FCS characterization is consistent with the existence of isomorphs in strongly correlating liquids’ phase diagram. Finally, we note that the FCS characterization of simple liquids calls into question the physical basis of standard perturbation theory, according to which the repulsive and attractive forces play fundamentally different roles for the physics of liquids.

  3. Description and validation of the Simple, Efficient, Dynamic, Global, Ecological Simulator (SEDGES v.1.0)

    NASA Astrophysics Data System (ADS)

    Paiewonsky, Pablo; Elison Timm, Oliver

    2018-03-01

    In this paper, we present a simple dynamic global vegetation model whose primary intended use is auxiliary to the land-atmosphere coupling scheme of a climate model, particularly one of intermediate complexity. The model simulates and provides important ecological-only variables but also some hydrological and surface energy variables that are typically either simulated by land surface schemes or else used as boundary data input for these schemes. The model formulations and their derivations are presented here, in detail. The model includes some realistic and useful features for its level of complexity, including a photosynthetic dependency on light, full coupling of photosynthesis and transpiration through an interactive canopy resistance, and a soil organic carbon dependence for bare-soil albedo. We evaluate the model's performance by running it as part of a simple land surface scheme that is driven by reanalysis data. The evaluation against observational data includes net primary productivity, leaf area index, surface albedo, and diagnosed variables relevant for the closure of the hydrological cycle. In this setup, we find that the model gives an adequate to good simulation of basic large-scale ecological and hydrological variables. Of the variables analyzed in this paper, gross primary productivity is particularly well simulated. The results also reveal the current limitations of the model. The most significant deficiency is the excessive simulation of evapotranspiration in mid- to high northern latitudes during their winter to spring transition. The model has a relative advantage in situations that require some combination of computational efficiency, model transparency and tractability, and the simulation of the large-scale vegetation and land surface characteristics under non-present-day conditions.

  4. Modeling and Dynamic Analysis of Paralleled dc/dc Converters With Master-Slave Current Sharing Control

    NASA Technical Reports Server (NTRS)

    Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce

    1996-01-01

    A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.

  5. Low dimensional worm-holes

    NASA Astrophysics Data System (ADS)

    Samardzija, Nikola

    1995-01-01

    A simple three dimensional physical model is proposed to qualitatively address a particular type of dynamics evolving on toroidal structures. In the phase space this dynamics creates appearance of a worm-hole through which a chaotic, quasiperiodic and periodic behaviors are formed. An intriguing topological property of such a system is that it possesses no steady state solutions. As such, it opens some interesting questions in the bifurcation theory. The model also offers a novel qualitative tool for explaining some recently reported experimental and simulation results observed in physics, chemistry and biology.

  6. Robust controller designs for second-order dynamic system: A virtual passive approach

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1990-01-01

    A robust controller design is presented for second-order dynamic systems. The controller is model-independent and itself is a virtual second-order dynamic system. Conditions on actuator and sensor placements are identified for controller designs that guarantee overall closed-loop stability. The dynamic controller can be viewed as a virtual passive damping system that serves to stabilize the actual dynamic system. The control gains are interpreted as virtual mass, spring, and dashpot elements that play the same roles as actual physical elements in stability analysis. Position, velocity, and acceleration feedback are considered. Simple examples are provided to illustrate the physical meaning of this controller design.

  7. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    DOE PAGES

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    2015-10-30

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less

  8. Emulating a System Dynamics Model with Agent-Based Models: A Methodological Case Study in Simulation of Diabetes Progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, Jack; Nutaro, James; Shankar, Mallikarjun

    An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less

  9. Ultimate dynamics of the Kirschner-Panetta model: Tumor eradication and related problems

    NASA Astrophysics Data System (ADS)

    Starkov, Konstantin E.; Krishchenko, Alexander P.

    2017-10-01

    In this paper we consider the ultimate dynamics of the Kirschner-Panetta model which was created for studying the immune response to tumors under special types of immunotherapy. New ultimate upper bounds for compact invariant sets of this model are given, as well as sufficient conditions for the existence of a positively invariant polytope. We establish three types of conditions for the nonexistence of compact invariant sets in the domain of the tumor-cell population. Our main results are two types of conditions for global tumor elimination depending on the ratio between the proliferation rate of the immune cells and their mortality rate. These conditions are described in terms of simple algebraic inequalities imposed on model parameters and treatment parameters. Our theoretical studies of ultimate dynamics are complemented by numerical simulation results.

  10. Final Report for Dynamic Models for Causal Analysis of Panel Data. Models for Change in Quantitative Variables, Part II Scholastic Models. Part II, Chapter 4.

    ERIC Educational Resources Information Center

    Hannan, Michael T.

    This document is part of a series of chapters described in SO 011 759. Stochastic models for the sociological analysis of change and the change process in quantitative variables are presented. The author lays groundwork for the statistical treatment of simple stochastic differential equations (SDEs) and discusses some of the continuities of…

  11. The Monash University Interactive Simple Climate Model

    NASA Astrophysics Data System (ADS)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  12. A Review of Hemolysis Prediction Models for Computational Fluid Dynamics.

    PubMed

    Yu, Hai; Engel, Sebastian; Janiga, Gábor; Thévenin, Dominique

    2017-07-01

    Flow-induced hemolysis is a crucial issue for many biomedical applications; in particular, it is an essential issue for the development of blood-transporting devices such as left ventricular assist devices, and other types of blood pumps. In order to estimate red blood cell (RBC) damage in blood flows, many models have been proposed in the past. Most models have been validated by their respective authors. However, the accuracy and the validity range of these models remains unclear. In this work, the most established hemolysis models compatible with computational fluid dynamics of full-scale devices are described and assessed by comparing two selected reference experiments: a simple rheometric flow and a more complex hemodialytic flow through a needle. The quantitative comparisons show very large deviations concerning hemolysis predictions, depending on the model and model parameter. In light of the current results, two simple power-law models deliver the best compromise between computational efficiency and obtained accuracy. Finally, hemolysis has been computed in an axial blood pump. The reconstructed geometry of a HeartMate II shows that hemolysis occurs mainly at the tip and leading edge of the rotor blades, as well as at the leading edge of the diffusor vanes. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter

    2018-05-01

    While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.

  14. Self-Organized Criticality and Scaling in Lifetime of Traffic Jams

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1995-01-01

    The deterministic cellular automaton 184 (the one-dimensional asymmetric simple-exclusion model with parallel dynamics) is extended to take into account injection or extraction of particles. The model presents the traffic flow on a highway with inflow or outflow of cars.Introducing injection or extraction of particles into the asymmetric simple-exclusion model drives the system asymptotically into a steady state exhibiting a self-organized criticality. The typical lifetime of traffic jams scales as \\cong Lν with ν=0.65±0.04. It is shown that the cumulative distribution Nm (L) of lifetimes satisfies the finite-size scaling form Nm (L) \\cong L-1 f(m/Lν).

  15. Surfing on Protein Waves: Proteophoresis as a Mechanism for Bacterial Genome Partitioning

    NASA Astrophysics Data System (ADS)

    Walter, J.-C.; Dorignac, J.; Lorman, V.; Rech, J.; Bouet, J.-Y.; Nollmann, M.; Palmeri, J.; Parmeggiani, A.; Geniet, F.

    2017-07-01

    Efficient bacterial chromosome segregation typically requires the coordinated action of a three-component machinery, fueled by adenosine triphosphate, called the partition complex. We present a phenomenological model accounting for the dynamic activity of this system that is also relevant for the physics of catalytic particles in active environments. The model is obtained by coupling simple linear reaction-diffusion equations with a proteophoresis, or "volumetric" chemophoresis, force field that arises from protein-protein interactions and provides a physically viable mechanism for complex translocation. This minimal description captures most known experimental observations: dynamic oscillations of complex components, complex separation, and subsequent symmetrical positioning. The predictions of our model are in phenomenological agreement with and provide substantial insight into recent experiments. From a nonlinear physics view point, this system explores the active separation of matter at micrometric scales with a dynamical instability between static positioning and traveling wave regimes triggered by the dynamical spontaneous breaking of rotational symmetry.

  16. Carrier States in Ferromagnetic Semiconductors and Diluted Magnetic Semiconductors—Coherent Potential Approach—

    PubMed Central

    Takahashi, Masao

    2010-01-01

    The theoretical study of magnetic semiconductors using the dynamical coherent potential approximation (dynamical CPA) is briefly reviewed. First, we give the results for ferromagnetic semiconductors (FMSs) such as EuO and EuS by applying the dynamical CPA to the s-f model. Next, applying the dynamical CPA to a simple model for A1−xMnxB-type diluted magnetic semiconductors (DMSs), we show the results for three typical cases to clarify the nature and properties of the carrier states in DMSs. On the basis of this model, we discuss the difference in the optical band edges between II-V DMSs and III-V-based DMSs, and show that two types of ferromagnetism can occur in DMSs when carriers are introduced. The carrier-induced ferromagnetism of Ga1−xMnxAs is ascribed to a double-exchange (DE)-like mechanism realized in the magnetic impurity band/or in the band tail.

  17. Belowground Controls on the Dynamics of Plant Communities

    NASA Astrophysics Data System (ADS)

    Sivandran, G.

    2013-12-01

    Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. In particular, the rooting strategies employed by vegetation can be critical to their survival. These rooting strategies also dictate the competitive outcomes within plant communities. A dynamic rooting scheme was incorporated into tRIBS+VEGGIE (a physically-based, distributed ecohydrologic model). The dynamic rooting scheme allows vegetation the freedom to alter its rooting profile in response to changes in rainfall and soil conditions, in a way that more closely mimics observed phenotypic plasticity. A simple competition-colonization model was combined with the new dynamic root scheme to explore the role of root adaptability in plant competition and landscape evolution in semi-arid environments. The influence of model representation of rooting strategy on the long term plant community composition

  18. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcaraz, Olga; Trullàs, Joaquim, E-mail: quim.trullas@upc.edu; Tahara, Shuta

    2016-09-07

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å{sup −1} related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  19. Epidemics Modelings: Some New Challenges

    NASA Astrophysics Data System (ADS)

    Boatto, Stefanella; Khouri, Renata Stella; Solerman, Lucas; Codeço, Claudia; Bonnet, Catherine

    2010-09-01

    Epidemics modeling has been particularly growing in the past years. In epidemics studies, mathematical modeling is used in particular to reach a better understanding of some neglected diseases (dengue, malaria, …) and of new emerging ones (SARS, influenza A,….) of big agglomerates. Such studies offer new challenges both from the modeling point of view (searching for simple models which capture the main characteristics of the disease spreading), data analysis and mathematical complexity. We are facing often with complex networks especially when modeling the city dynamics. Such networks can be static (in first approximation) and homogeneous, static and not homogeneous and/or not static (when taking into account the city structure, micro-climates, people circulation, etc.). The objective being studying epidemics dynamics and being able to predict its spreading.

  20. An implicit divalent counterion force field for RNA molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henke, Paul S.; Mak, Chi H., E-mail: cmak@usc.edu; Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California 90089

    How to properly account for polyvalent counterions in a molecular dynamics simulation of polyelectrolytes such as nucleic acids remains an open question. Not only do counterions such as Mg{sup 2+} screen electrostatic interactions, they also produce attractive intrachain interactions that stabilize secondary and tertiary structures. Here, we show how a simple force field derived from a recently reported implicit counterion model can be integrated into a molecular dynamics simulation for RNAs to realistically reproduce key structural details of both single-stranded and base-paired RNA constructs. This divalent counterion model is computationally efficient. It works with existing atomistic force fields, or coarse-grainedmore » models may be tuned to work with it. We provide optimized parameters for a coarse-grained RNA model that takes advantage of this new counterion force field. Using the new model, we illustrate how the structural flexibility of RNA two-way junctions is modified under different salt conditions.« less

  1. Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection.

    PubMed

    Girard, B; Tabareau, N; Pham, Q C; Berthoz, A; Slotine, J-J

    2008-05-01

    Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.

  2. A model for seasonal phytoplankton blooms.

    PubMed

    Huppert, Amit; Blasius, Bernd; Olinky, Ronen; Stone, Lewi

    2005-10-07

    We analyse a generic bottom-up nutrient phytoplankton model to help understand the dynamics of seasonally recurring algae blooms. The deterministic model displays a wide spectrum of dynamical behaviours, from simple cyclical blooms which trigger annually, to irregular chaotic blooms in which both the time between outbreaks and their magnitudes are erratic. Unusually, despite the persistent seasonal forcing, it is extremely difficult to generate blooms that are both annually recurring and also chaotic or irregular (i.e. in amplitude) even though this characterizes many real time-series. Instead the model has a tendency to 'skip' with outbreaks often being suppressed from 1 year to the next. This behaviour is studied in detail and we develop analytical expressions to describe the model's flow in phase space, yielding insights into the mechanism of the bloom recurrence. We also discuss how modifications to the equations through the inclusion of appropriate functional forms can generate more realistic dynamics.

  3. DEAN: A program for dynamic engine analysis

    NASA Technical Reports Server (NTRS)

    Sadler, G. G.; Melcher, K. J.

    1985-01-01

    The Dynamic Engine Analysis program, DEAN, is a FORTRAN code implemented on the IBM/370 mainframe at NASA Lewis Research Center for digital simulation of turbofan engine dynamics. DEAN is an interactive program which allows the user to simulate engine subsystems as well as a full engine systems with relative ease. The nonlinear first order ordinary differential equations which define the engine model may be solved by one of four integration schemes, a second order Runge-Kutta, a fourth order Runge-Kutta, an Adams Predictor-Corrector, or Gear's method for still systems. The numerical data generated by the model equations are displayed at specified intervals between which the user may choose to modify various parameters affecting the model equations and transient execution. Following the transient run, versatile graphics capabilities allow close examination of the data. DEAN's modeling procedure and capabilities are demonstrated by generating a model of simple compressor rig.

  4. Synchronisation and Circuit Realisation of Chaotic Hartley System

    NASA Astrophysics Data System (ADS)

    Varan, Metin; Akgül, Akif; Güleryüz, Emre; Serbest, Kasım

    2018-06-01

    Hartley chaotic system is topologically the simplest, but its dynamical behaviours are very rich and its synchronisation has not been seen in literature. This paper aims to introduce a simple chaotic system which can be used as alternative to classical chaotic systems in synchronisation fields. Time series, phase portraits, and bifurcation diagrams reveal the dynamics of the mentioned system. Chaotic Hartley model is also supported with electronic circuit model simulations. Its exponential dynamics are hard to realise on circuit model; this paper is the first in literature that handles such a complex modelling problem. Modelling, synchronisation, and circuit realisation of the Hartley system are implemented respectively in MATLAB-Simulink and ORCAD environments. The effectiveness of the applied synchronisation method is revealed via numerical methods, and the results are discussed. Retrieved results show that this complex chaotic system can be used in secure communication fields.

  5. A Dynamic Approach to Monitoring Particle Fallout in a Cleanroom Environment

    NASA Technical Reports Server (NTRS)

    Perry, Radford L., III

    2010-01-01

    This slide presentation discusses a mathematical model to monitor particle fallout in a cleanroom. "Cleanliness levels" do not lead to increases with regards to cleanroom type or time because the levels are not linear. Activity level, impacts the cleanroom class. The numerical method presented leads to a simple Class-hour formulation, that allows for dynamic monitoring of the particle using a standard air particle counter.

  6. 1997 Annual Tropical Cyclone Report

    DTIC Science & Technology

    1997-01-01

    caused much loss of life and great destruction at their respective landfall sites in China andVietnam. Mainland Japan, the Ryukyu Islands, the Bonin ...Aside from passing through the Volcano Islands and the Bonin Islands of Japan, Nestor remained over water. Nestor did produce some high waves on...DYNAMIC AVERAGE ( DAVE ) A simple average of all dynamic forecast aids: NOGAPS (NGPS), Bracknell (EGRR), Japanese Typhoon Model (JTYM), JT92, FBAM, OTCM

  7. Physics of cancer propagation: A game theory perspective

    NASA Astrophysics Data System (ADS)

    Cleveland, Chris; Liao, David; Austin, Robert

    2012-03-01

    This is a theoretical paper which examines at a game theoretical perspective the dynamics of cooperators and cheater cells under metabolic stress conditions and high spatial heterogeneity. Although the ultimate aim of this work is to understand the dynamics of cancer tumor evolution under stress, we use a simple bacterial model to gain fundamental insights into the progression of resistance to drugs under high competition and stress conditions.

  8. Regimes of stability and scaling relations for the removal time in the asteroid belt: a simple kinetic model and numerical tests

    NASA Astrophysics Data System (ADS)

    Cubrovic, Mihailo

    2005-02-01

    We report on our theoretical and numerical results concerning the transport mechanisms in the asteroid belt. We first derive a simple kinetic model of chaotic diffusion and show how it gives rise to some simple correlations (but not laws) between the removal time (the time for an asteroid to experience a qualitative change of dynamical behavior and enter a wide chaotic zone) and the Lyapunov time. The correlations are shown to arise in two different regimes, characterized by exponential and power-law scalings. We also show how is the so-called “stable chaos” (exponential regime) related to anomalous diffusion. Finally, we check our results numerically and discuss their possible applications in analyzing the motion of particular asteroids.

  9. Robust Flutter Analysis for Aeroservoelastic Systems

    NASA Astrophysics Data System (ADS)

    Kotikalpudi, Aditya

    The dynamics of a flexible air vehicle are typically described using an aeroservoelastic model which accounts for interaction between aerodynamics, structural dynamics, rigid body dynamics and control laws. These subsystems can be individually modeled using a theoretical approach and experimental data from various ground tests can be combined into them. For instance, a combination of linear finite element modeling and data from ground vibration tests may be used to obtain a validated structural model. Similarly, an aerodynamic model can be obtained using computational fluid dynamics or simple panel methods and partially updated using limited data from wind tunnel tests. In all cases, the models obtained for these subsystems have a degree of uncertainty owing to inherent assumptions in the theory and errors in experimental data. Suitable uncertain models that account for these uncertainties can be built to study the impact of these modeling errors on the ability to predict dynamic instabilities known as flutter. This thesis addresses the methods used for modeling rigid body dynamics, structural dynamics and unsteady aerodynamics of a blended wing design called the Body Freedom Flutter vehicle. It discusses the procedure used to incorporate data from a wide range of ground based experiments in the form of model uncertainties within these subsystems. Finally, it provides the mathematical tools for carrying out flutter analysis and sensitivity analysis which account for these model uncertainties. These analyses are carried out for both open loop and controller in the loop (closed loop) cases.

  10. The modeling of the dynamic behavior of an unsymmetrical rotor

    NASA Astrophysics Data System (ADS)

    Pǎrǎuşanu, Ioan; Gheorghiu, Horia; Petre, Cristian; Jiga, Gabriel; Crişan, Nicoleta

    2018-02-01

    The purpose of this article is to present the modeling of the dynamic behaviour of unsymmetrical rotors in relatively simple quantitative terms. Numerical simulations show that the shaft orthotropy produces a peak of resonant vibration about half the regular critical speed and, for small damping, a range of possible unstable behavior between the two critical speeds. Rotors having the shaft and/or the disks with unequal diametral moments of inertia (e.g., two-bladed small airplane propellers, wind turbines and fans) are dynamically unstable above a certain speed and some of these may return to a stable condition at a sufficiently high speed, depending on the particular magnitudes of the gyroscopic coupling and the inertia inequality.

  11. An Approach for Dynamic Optimization of Prevention Program Implementation in Stochastic Environments

    NASA Astrophysics Data System (ADS)

    Kang, Yuncheol; Prabhu, Vittal

    The science of preventing youth problems has significantly advanced in developing evidence-based prevention program (EBP) by using randomized clinical trials. Effective EBP can reduce delinquency, aggression, violence, bullying and substance abuse among youth. Unfortunately the outcomes of EBP implemented in natural settings usually tend to be lower than in clinical trials, which has motivated the need to study EBP implementations. In this paper we propose to model EBP implementations in natural settings as stochastic dynamic processes. Specifically, we propose Markov Decision Process (MDP) for modeling and dynamic optimization of such EBP implementations. We illustrate these concepts using simple numerical examples and discuss potential challenges in using such approaches in practice.

  12. Analytical solution for a class of network dynamics with mechanical and financial applications

    NASA Astrophysics Data System (ADS)

    Krejčí, P.; Lamba, H.; Melnik, S.; Rachinskii, D.

    2014-09-01

    We show that for a certain class of dynamics at the nodes the response of a network of any topology to arbitrary inputs is defined in a simple way by its response to a monotone input. The nodes may have either a discrete or continuous set of states and there is no limit on the complexity of the network. The results provide both an efficient numerical method and the potential for accurate analytic approximation of the dynamics on such networks. As illustrative applications, we introduce a quasistatic mechanical model with objects interacting via frictional forces and a financial market model with avalanches and critical behavior that are generated by momentum trading strategies.

  13. Molecular dynamics studies of simple membrane-water interfaces: Structure and functions in the beginnings of cellular life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    1995-01-01

    Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Born barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience 'interfacial resistance' to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.

  14. Controlled recovery of phylogenetic communities from an evolutionary model using a network approach

    NASA Astrophysics Data System (ADS)

    Sousa, Arthur M. Y. R.; Vieira, André P.; Prado, Carmen P. C.; Andrade, Roberto F. S.

    2016-04-01

    This works reports the use of a complex network approach to produce a phylogenetic classification tree of a simple evolutionary model. This approach has already been used to treat proteomic data of actual extant organisms, but an investigation of its reliability to retrieve a traceable evolutionary history is missing. The used evolutionary model includes key ingredients for the emergence of groups of related organisms by differentiation through random mutations and population growth, but purposefully omits other realistic ingredients that are not strictly necessary to originate an evolutionary history. This choice causes the model to depend only on a small set of parameters, controlling the mutation probability and the population of different species. Our results indicate that for a set of parameter values, the phylogenetic classification produced by the used framework reproduces the actual evolutionary history with a very high average degree of accuracy. This includes parameter values where the species originated by the evolutionary dynamics have modular structures. In the more general context of community identification in complex networks, our model offers a simple setting for evaluating the effects, on the efficiency of community formation and identification, of the underlying dynamics generating the network itself.

  15. Dynamical heterogeneities and mechanical non-linearities: Modeling the onset of plasticity in polymer in the glass transition.

    PubMed

    Masurel, R J; Gelineau, P; Lequeux, F; Cantournet, S; Montes, H

    2017-12-27

    In this paper we focus on the role of dynamical heterogeneities on the non-linear response of polymers in the glass transition domain. We start from a simple coarse-grained model that assumes a random distribution of the initial local relaxation times and that quantitatively describes the linear viscoelasticity of a polymer in the glass transition regime. We extend this model to non-linear mechanics assuming a local Eyring stress dependence of the relaxation times. Implementing the model in a finite element mechanics code, we derive the mechanical properties and the local mechanical fields at the beginning of the non-linear regime. The model predicts a narrowing of distribution of relaxation times and the storage of a part of the mechanical energy --internal stress-- transferred to the material during stretching in this temperature range. We show that the stress field is not spatially correlated under and after loading and follows a Gaussian distribution. In addition the strain field exhibits shear bands, but the strain distribution is narrow. Hence, most of the mechanical quantities can be calculated analytically, in a very good approximation, with the simple assumption that the strain rate is constant.

  16. Chesapeake Bay Sediment Flux Model

    DTIC Science & Technology

    1993-06-01

    1988; Van der Molen , -88- 1991; Yoshida, 1981.) The model developed below is based on both of these approaches. It incorporates the diagenetic...288: pp. 289-333. Van der Molen , D.T. (1991): A simple, dynamic model for the simulation of the release of phosphorus from sediments in shallow...1974; Berner, 1980; van Cappellen and Berner, 1988). These relate the diagenetic production of phosphate to the resulting pore water concentration

  17. Tuning of PID controllers for boiler-turbine units.

    PubMed

    Tan, Wen; Liu, Jizhen; Fang, Fang; Chen, Yanqiao

    2004-10-01

    A simple two-by-two model for a boiler-turbine unit is demonstrated in this paper. The model can capture the essential dynamics of a unit. The design of a coordinated controller is discussed based on this model. A PID control structure is derived, and a tuning procedure is proposed. The examples show that the method is easy to apply and can achieve acceptable performance.

  18. From 6D superconformal field theories to dynamic gauged linear sigma models

    NASA Astrophysics Data System (ADS)

    Apruzzi, Fabio; Hassler, Falk; Heckman, Jonathan J.; Melnikov, Ilarion V.

    2017-09-01

    Compactifications of six-dimensional (6D) superconformal field theories (SCFTs) on four- manifolds generate a large class of novel two-dimensional (2D) quantum field theories. We consider in detail the case of the rank-one simple non-Higgsable cluster 6D SCFTs. On the tensor branch of these theories, the gauge group is simple and there are no matter fields. For compactifications on suitably chosen Kähler surfaces, we present evidence that this provides a method to realize 2D SCFTs with N =(0 ,2 ) supersymmetry. In particular, we find that reduction on the tensor branch of the 6D SCFT yields a description of the same 2D fixed point that is described in the UV by a gauged linear sigma model (GLSM) in which the parameters are promoted to dynamical fields, that is, a "dynamic GLSM" (DGLSM). Consistency of the model requires the DGLSM to be coupled to additional non-Lagrangian sectors obtained from reduction of the antichiral two-form of the 6D theory. These extra sectors include both chiral and antichiral currents, as well as spacetime filling noncritical strings of the 6D theory. For each candidate 2D SCFT, we also extract the left- and right-moving central charges in terms of data of the 6D SCFT and the compactification manifold.

  19. Dynamical system with plastic self-organized velocity field as an alternative conceptual model of a cognitive system.

    PubMed

    Janson, Natalia B; Marsden, Christopher J

    2017-12-05

    It is well known that architecturally the brain is a neural network, i.e. a collection of many relatively simple units coupled flexibly. However, it has been unclear how the possession of this architecture enables higher-level cognitive functions, which are unique to the brain. Here, we consider the brain from the viewpoint of dynamical systems theory and hypothesize that the unique feature of the brain, the self-organized plasticity of its architecture, could represent the means of enabling the self-organized plasticity of its velocity vector field. We propose that, conceptually, the principle of cognition could amount to the existence of appropriate rules governing self-organization of the velocity field of a dynamical system with an appropriate account of stimuli. To support this hypothesis, we propose a simple non-neuromorphic mathematical model with a plastic self-organized velocity field, which has no prototype in physical world. This system is shown to be capable of basic cognition, which is illustrated numerically and with musical data. Our conceptual model could provide an additional insight into the working principles of the brain. Moreover, hardware implementations of plastic velocity fields self-organizing according to various rules could pave the way to creating artificial intelligence of a novel type.

  20. Principal process analysis of biological models.

    PubMed

    Casagranda, Stefano; Touzeau, Suzanne; Ropers, Delphine; Gouzé, Jean-Luc

    2018-06-14

    Understanding the dynamical behaviour of biological systems is challenged by their large number of components and interactions. While efforts have been made in this direction to reduce model complexity, they often prove insufficient to grasp which and when model processes play a crucial role. Answering these questions is fundamental to unravel the functioning of living organisms. We design a method for dealing with model complexity, based on the analysis of dynamical models by means of Principal Process Analysis. We apply the method to a well-known model of circadian rhythms in mammals. The knowledge of the system trajectories allows us to decompose the system dynamics into processes that are active or inactive with respect to a certain threshold value. Process activities are graphically represented by Boolean and Dynamical Process Maps. We detect model processes that are always inactive, or inactive on some time interval. Eliminating these processes reduces the complex dynamics of the original model to the much simpler dynamics of the core processes, in a succession of sub-models that are easier to analyse. We quantify by means of global relative errors the extent to which the simplified models reproduce the main features of the original system dynamics and apply global sensitivity analysis to test the influence of model parameters on the errors. The results obtained prove the robustness of the method. The analysis of the sub-model dynamics allows us to identify the source of circadian oscillations. We find that the negative feedback loop involving proteins PER, CRY, CLOCK-BMAL1 is the main oscillator, in agreement with previous modelling and experimental studies. In conclusion, Principal Process Analysis is a simple-to-use method, which constitutes an additional and useful tool for analysing the complex dynamical behaviour of biological systems.

  1. Cyclic dynamics in a simple vertebrate predator-prey community.

    PubMed

    Gilg, Olivier; Hanski, Ilkka; Sittler, Benoît

    2003-10-31

    The collared lemming in the high-Arctic tundra in Greenland is preyed upon by four species of predators that show marked differences in the numbers of lemmings each consumes and in the dependence of their dynamics on lemming density. A predator prey model based on the field-estimated predator responses robustly predicts 4-year periodicity in lemming dynamics, in agreement with long-term empirical data. There is no indication in the field that food or space limits lemming population growth, nor is there need in the model to consider those factors. The cyclic dynamics are driven by a 1-year delay in the numerical response of the stoat and stabilized by strongly density-dependent predation by the arctic fox, the snowy owl, and the long-tailed skua.

  2. Tree cover bimodality in savannas and forests emerging from the switching between two fire dynamics.

    PubMed

    De Michele, Carlo; Accatino, Francesco

    2014-01-01

    Moist savannas and tropical forests share the same climatic conditions and occur side by side. Experimental evidences show that the tree cover of these ecosystems exhibits a bimodal frequency distribution. This is considered as a proof of savanna-forest bistability, predicted by dynamic vegetation models based on non-linear differential equations. Here, we propose a change of perspective about the bimodality of tree cover distribution. We show, using a simple matrix model of tree dynamics, how the bimodality of tree cover can emerge from the switching between two linear dynamics of trees, one in presence and one in absence of fire, with a feedback between fire and trees. As consequence, we find that the transitions between moist savannas and tropical forests, if sharp, are not necessarily catastrophic.

  3. Coevolution of Glauber-like Ising dynamics and topology

    NASA Astrophysics Data System (ADS)

    Mandrà, Salvatore; Fortunato, Santo; Castellano, Claudio

    2009-11-01

    We study the coevolution of a generalized Glauber dynamics for Ising spins with tunable threshold and of the graph topology where the dynamics takes place. This simple coevolution dynamics generates a rich phase diagram in the space of the two parameters of the model, the threshold and the rewiring probability. The diagram displays phase transitions of different types: spin ordering, percolation, and connectedness. At variance with traditional coevolution models, in which all spins of each connected component of the graph have equal value in the stationary state, we find that, for suitable choices of the parameters, the system may converge to a state in which spins of opposite sign coexist in the same component organized in compact clusters of like-signed spins. Mean field calculations enable one to estimate some features of the phase diagram.

  4. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1984

    1984-01-01

    Presents an experiment which links mass spectrometry to gas chromatography. Also presents a simulation of iron extraction using a ZX81 computer and discussions of Fehling versus Benedict's solutions, transition metal ammine complexes, electrochemical and other chemical series, and a simple model of dynamic equilibria. (JN)

  5. Equilibrium stochastic dynamics of a Brownian particle in inhomogeneous space: Derivation of an alternative model

    NASA Astrophysics Data System (ADS)

    Bhattacharyay, A.

    2018-03-01

    An alternative equilibrium stochastic dynamics for a Brownian particle in inhomogeneous space is derived. Such a dynamics can model the motion of a complex molecule in its conformation space when in equilibrium with a uniform heat bath. The derivation is done by a simple generalization of the formulation due to Zwanzig for a Brownian particle in homogeneous heat bath. We show that, if the system couples to different number of bath degrees of freedom at different conformations then the alternative model gets derived. We discuss results of an experiment by Faucheux and Libchaber which probably has indicated possible limitation of the Boltzmann distribution as equilibrium distribution of a Brownian particle in inhomogeneous space and propose experimental verification of the present theory using similar methods.

  6. Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches.

    PubMed

    Wiratsudakul, Anuwat; Suparit, Parinya; Modchang, Charin

    2018-01-01

    The Zika virus was first discovered in 1947. It was neglected until a major outbreak occurred on Yap Island, Micronesia, in 2007. Teratogenic effects resulting in microcephaly in newborn infants is the greatest public health threat. In 2016, the Zika virus epidemic was declared as a Public Health Emergency of International Concern (PHEIC). Consequently, mathematical models were constructed to explicitly elucidate related transmission dynamics. In this review article, two steps of journal article searching were performed. First, we attempted to identify mathematical models previously applied to the study of vector-borne diseases using the search terms "dynamics," "mathematical model," "modeling," and "vector-borne" together with the names of vector-borne diseases including chikungunya, dengue, malaria, West Nile, and Zika. Then the identified types of model were further investigated. Second, we narrowed down our survey to focus on only Zika virus research. The terms we searched for were "compartmental," "spatial," "metapopulation," "network," "individual-based," "agent-based" AND "Zika." All relevant studies were included regardless of the year of publication. We have collected research articles that were published before August 2017 based on our search criteria. In this publication survey, we explored the Google Scholar and PubMed databases. We found five basic model architectures previously applied to vector-borne virus studies, particularly in Zika virus simulations. These include compartmental, spatial, metapopulation, network, and individual-based models. We found that Zika models carried out for early epidemics were mostly fit into compartmental structures and were less complicated compared to the more recent ones. Simple models are still commonly used for the timely assessment of epidemics. Nevertheless, due to the availability of large-scale real-world data and computational power, recently there has been growing interest in more complex modeling frameworks. Mathematical models are employed to explore and predict how an infectious disease spreads in the real world, evaluate the disease importation risk, and assess the effectiveness of intervention strategies. As the trends in modeling of infectious diseases have been shifting towards data-driven approaches, simple and complex models should be exploited differently. Simple models can be produced in a timely fashion to provide an estimation of the possible impacts. In contrast, complex models integrating real-world data require more time to develop but are far more realistic. The preparation of complicated modeling frameworks prior to the outbreaks is recommended, including the case of future Zika epidemic preparation.

  7. Comparing simple respiration models for eddy flux and dynamic chamber data

    Treesearch

    Andrew D. Richardson; Bobby H. Braswell; David Y. Hollinger; Prabir Burman; Eric A. Davidson; Robert S. Evans; Lawrence B. Flanagan; J. William Munger; Kathleen Savage; Shawn P. Urbanski; Steven C. Wofsy

    2006-01-01

    Selection of an appropriate model for respiration (R) is important for accurate gap-filling of CO2 flux data, and for partitioning measurements of net ecosystem exchange (NEE) to respiration and gross ecosystem exchange (GEE). Using cross-validation methods and a version of Akaike's Information Criterion (AIC), we evaluate a wide range of...

  8. Modelling Market Dynamics with a "Market Game"

    NASA Astrophysics Data System (ADS)

    Katahira, Kei; Chen, Yu

    In the financial market, traders, especially speculators, typically behave as to yield capital gains by the difference between selling and buying prices. Making use of the structure of Minority Game, we build a novel market toy model which takes account of such the speculative mind involving a round-trip trade to analyze the market dynamics as a system. Even though the micro-level behavioral rules of players in this new model is quite simple, its macroscopic aggregational output has the reproducibility of the well-known stylized facts such as volatility clustering and heavy tails. The proposed model may become a new alternative bottom-up approach in order to study the emerging mechanism of those stylized qualitative properties of asset returns.

  9. Quantum Impurity Models as Reference Systems for Strongly Correlated Materials: The Road from the Kondo Impurity Model to First Principles Electronic Structure Calculations with Dynamical Mean-Field Theory

    NASA Astrophysics Data System (ADS)

    Kotliar, Gabriel

    2005-01-01

    Dynamical mean field theory (DMFT) relates extended systems (bulk solids, surfaces and interfaces) to quantum impurity models (QIM) satisfying a self-consistency condition. This mapping provides an economic description of correlated electron materials. It is currently used in practical computations of physical properties of real materials. It has also great conceptual value, providing a simple picture of correlated electron phenomena on the lattice, using concepts derived from quantum impurity models such as the Kondo effect. DMFT can also be formulated as a first principles electronic structure method and is applicable to correlated materials.

  10. Language competition in a population of migrating agents.

    PubMed

    Lipowska, Dorota; Lipowski, Adam

    2017-05-01

    Influencing various aspects of human activity, migration is associated also with language formation. To examine the mutual interaction of these processes, we study a Naming Game with migrating agents. The dynamics of the model leads to formation of low-mobility clusters, which turns out to break the symmetry of the model: although the Naming Game remains symmetric, low-mobility languages are favored. High-mobility languages are gradually eliminated from the system, and the dynamics of language formation considerably slows down. Our model is too simple to explain in detail language competition of migrating human communities, but it certainly shows that languages of settlers are favored over nomadic ones.

  11. Human dynamic orientation model applied to motion simulation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Borah, J. D.

    1976-01-01

    The Ormsby model of dynamic orientation, in the form of a discrete time computer program was used to predict non-visually induced sensations during an idealized coordinated aircraft turn. To predict simulation fidelity, the Ormsby model was used to assign penalties for incorrect attitude and angular rate perceptions. It was determined that a three rotational degree of freedom simulation should remain faithful to attitude perception even at the expense of incorrect angular rate sensations. Implementing this strategy, a simulation profile for the idealized turn was designed for a Link GAT-1 trainer. A simple optokinetic display was added to improve the fidelity of roll rate sensations.

  12. Applications of Perron-Frobenius theory to population dynamics.

    PubMed

    Li, Chi-Kwong; Schneider, Hans

    2002-05-01

    By the use of Perron-Frobenius theory, simple proofs are given of the Fundamental Theorem of Demography and of a theorem of Cushing and Yicang on the net reproductive rate occurring in matrix models of population dynamics. The latter result, which is closely related to the Stein-Rosenberg theorem in numerical linear algebra, is further refined with some additional nonnegative matrix theory. When the fertility matrix is scaled by the net reproductive rate, the growth rate of the model is $1$. More generally, we show how to achieve a given growth rate for the model by scaling the fertility matrix. Demographic interpretations of the results are given.

  13. Language competition in a population of migrating agents

    NASA Astrophysics Data System (ADS)

    Lipowska, Dorota; Lipowski, Adam

    2017-05-01

    Influencing various aspects of human activity, migration is associated also with language formation. To examine the mutual interaction of these processes, we study a Naming Game with migrating agents. The dynamics of the model leads to formation of low-mobility clusters, which turns out to break the symmetry of the model: although the Naming Game remains symmetric, low-mobility languages are favored. High-mobility languages are gradually eliminated from the system, and the dynamics of language formation considerably slows down. Our model is too simple to explain in detail language competition of migrating human communities, but it certainly shows that languages of settlers are favored over nomadic ones.

  14. Automated adaptive inference of phenomenological dynamical models

    NASA Astrophysics Data System (ADS)

    Daniels, Bryan

    Understanding the dynamics of biochemical systems can seem impossibly complicated at the microscopic level: detailed properties of every molecular species, including those that have not yet been discovered, could be important for producing macroscopic behavior. The profusion of data in this area has raised the hope that microscopic dynamics might be recovered in an automated search over possible models, yet the combinatorial growth of this space has limited these techniques to systems that contain only a few interacting species. We take a different approach inspired by coarse-grained, phenomenological models in physics. Akin to a Taylor series producing Hooke's Law, forgoing microscopic accuracy allows us to constrain the search over dynamical models to a single dimension. This makes it feasible to infer dynamics with very limited data, including cases in which important dynamical variables are unobserved. We name our method Sir Isaac after its ability to infer the dynamical structure of the law of gravitation given simulated planetary motion data. Applying the method to output from a microscopically complicated but macroscopically simple biological signaling model, it is able to adapt the level of detail to the amount of available data. Finally, using nematode behavioral time series data, the method discovers an effective switch between behavioral attractors after the application of a painful stimulus.

  15. Effects of host social hierarchy on disease persistence.

    PubMed

    Davidson, Ross S; Marion, Glenn; Hutchings, Michael R

    2008-08-07

    The effects of social hierarchy on population dynamics and epidemiology are examined through a model which contains a number of fundamental features of hierarchical systems, but is simple enough to allow analytical insight. In order to allow for differences in birth rates, contact rates and movement rates among different sets of individuals the population is first divided into subgroups representing levels in the hierarchy. Movement, representing dominance challenges, is allowed between any two levels, giving a completely connected network. The model includes hierarchical effects by introducing a set of dominance parameters which affect birth rates in each social level and movement rates between social levels, dependent upon their rank. Although natural hierarchies vary greatly in form, the skewing of contact patterns, introduced here through non-uniform dominance parameters, has marked effects on the spread of disease. A simple homogeneous mixing differential equation model of a disease with SI dynamics in a population subject to simple birth and death process is presented and it is shown that the hierarchical model tends to this as certain parameter regions are approached. Outside of these parameter regions correlations within the system give rise to deviations from the simple theory. A Gaussian moment closure scheme is developed which extends the homogeneous model in order to take account of correlations arising from the hierarchical structure, and it is shown that the results are in reasonable agreement with simulations across a range of parameters. This approach helps to elucidate the origin of hierarchical effects and shows that it may be straightforward to relate the correlations in the model to measurable quantities which could be used to determine the importance of hierarchical corrections. Overall, hierarchical effects decrease the levels of disease present in a given population compared to a homogeneous unstructured model, but show higher levels of disease than structured models with no hierarchy. The separation between these three models is greatest when the rate of dominance challenges is low, reducing mixing, and when the disease prevalence is low. This suggests that these effects will often need to be considered in models being used to examine the impact of control strategies where the low disease prevalence behaviour of a model is critical.

  16. Assessment of Simple Models for Molecular Simulation of Ethylene Carbonate and Propylene Carbonate as Solvents for Electrolyte Solutions.

    PubMed

    Chaudhari, Mangesh I; Muralidharan, Ajay; Pratt, Lawrence R; Rempe, Susan B

    2018-02-12

    Progress in understanding liquid ethylene carbonate (EC) and propylene carbonate (PC) on the basis of molecular simulation, emphasizing simple models of interatomic forces, is reviewed. Results on the bulk liquids are examined from the perspective of anticipated applications to materials for electrical energy storage devices. Preliminary results on electrochemical double-layer capacitors based on carbon nanotube forests and on model solid-electrolyte interphase (SEI) layers of lithium ion batteries are considered as examples. The basic results discussed suggest that an empirically parameterized, non-polarizable force field can reproduce experimental structural, thermodynamic, and dielectric properties of EC and PC liquids with acceptable accuracy. More sophisticated force fields might include molecular polarizability and Buckingham-model description of inter-atomic overlap repulsions as extensions to Lennard-Jones models of van der Waals interactions. Simple approaches should be similarly successful also for applications to organic molecular ions in EC/PC solutions, but the important case of Li[Formula: see text] deserves special attention because of the particularly strong interactions of that small ion with neighboring solvent molecules. To treat the Li[Formula: see text] ions in liquid EC/PC solutions, we identify interaction models defined by empirically scaled partial charges for ion-solvent interactions. The empirical adjustments use more basic inputs, electronic structure calculations and ab initio molecular dynamics simulations, and also experimental results on Li[Formula: see text] thermodynamics and transport in EC/PC solutions. Application of such models to the mechanism of Li[Formula: see text] transport in glassy SEI models emphasizes the advantage of long time-scale molecular dynamics studies of these non-equilibrium materials.

  17. An eco-hydrologic model of malaria outbreaks

    NASA Astrophysics Data System (ADS)

    Montosi, E.; Manzoni, S.; Porporato, A.; Montanari, A.

    2012-03-01

    Malaria is a geographically widespread infectious disease that is well known to be affected by climate variability at both seasonal and interannual timescales. In an effort to identify climatic factors that impact malaria dynamics, there has been considerable research focused on the development of appropriate disease models for malaria transmission and their consideration alongside climatic datasets. These analyses have focused largely on variation in temperature and rainfall as direct climatic drivers of malaria dynamics. Here, we further these efforts by considering additionally the role that soil water content may play in driving malaria incidence. Specifically, we hypothesize that hydro-climatic variability should be an important factor in controlling the availability of mosquito habitats, thereby governing mosquito growth rates. To test this hypothesis, we reduce a nonlinear eco-hydrologic model to a simple linear model through a series of consecutive assumptions and apply this model to malaria incidence data from three South African provinces. Despite the assumptions made in the reduction of the model, we show that soil water content can account for a significant portion of malaria's case variability beyond its seasonal patterns, whereas neither temperature nor rainfall alone can do so. Future work should therefore consider soil water content as a simple and computable variable for incorporation into climate-driven disease models of malaria and other vector-borne infectious diseases.

  18. An ecohydrological model of malaria outbreaks

    NASA Astrophysics Data System (ADS)

    Montosi, E.; Manzoni, S.; Porporato, A.; Montanari, A.

    2012-08-01

    Malaria is a geographically widespread infectious disease that is well known to be affected by climate variability at both seasonal and interannual timescales. In an effort to identify climatic factors that impact malaria dynamics, there has been considerable research focused on the development of appropriate disease models for malaria transmission driven by climatic time series. These analyses have focused largely on variation in temperature and rainfall as direct climatic drivers of malaria dynamics. Here, we further these efforts by considering additionally the role that soil water content may play in driving malaria incidence. Specifically, we hypothesize that hydro-climatic variability should be an important factor in controlling the availability of mosquito habitats, thereby governing mosquito growth rates. To test this hypothesis, we reduce a nonlinear ecohydrological model to a simple linear model through a series of consecutive assumptions and apply this model to malaria incidence data from three South African provinces. Despite the assumptions made in the reduction of the model, we show that soil water content can account for a significant portion of malaria's case variability beyond its seasonal patterns, whereas neither temperature nor rainfall alone can do so. Future work should therefore consider soil water content as a simple and computable variable for incorporation into climate-driven disease models of malaria and other vector-borne infectious diseases.

  19. Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization.

    PubMed

    Sánchez, Benjamín J; Pérez-Correa, José R; Agosin, Eduardo

    2014-09-01

    Dynamic flux balance analysis (dFBA) has been widely employed in metabolic engineering to predict the effect of genetic modifications and environmental conditions in the cell׳s metabolism during dynamic cultures. However, the importance of the model parameters used in these methodologies has not been properly addressed. Here, we present a novel and simple procedure to identify dFBA parameters that are relevant for model calibration. The procedure uses metaheuristic optimization and pre/post-regression diagnostics, fixing iteratively the model parameters that do not have a significant role. We evaluated this protocol in a Saccharomyces cerevisiae dFBA framework calibrated for aerobic fed-batch and anaerobic batch cultivations. The model structures achieved have only significant, sensitive and uncorrelated parameters and are able to calibrate different experimental data. We show that consumption, suboptimal growth and production rates are more useful for calibrating dynamic S. cerevisiae metabolic models than Boolean gene expression rules, biomass requirements and ATP maintenance. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Using experimental human influenza infections to validate a viral dynamic model and the implications for prediction.

    PubMed

    Chen, S C; You, S H; Liu, C Y; Chio, C P; Liao, C M

    2012-09-01

    The aim of this work was to use experimental infection data of human influenza to assess a simple viral dynamics model in epithelial cells and better understand the underlying complex factors governing the infection process. The developed study model expands on previous reports of a target cell-limited model with delayed virus production. Data from 10 published experimental infection studies of human influenza was used to validate the model. Our results elucidate, mechanistically, the associations between epithelial cells, human immune responses, and viral titres and were supported by the experimental infection data. We report that the maximum total number of free virions following infection is 10(3)-fold higher than the initial introduced titre. Our results indicated that the infection rates of unprotected epithelial cells probably play an important role in affecting viral dynamics. By simulating an advanced model of viral dynamics and applying it to experimental infection data of human influenza, we obtained important estimates of the infection rate. This work provides epidemiologically meaningful results, meriting further efforts to understand the causes and consequences of influenza A infection.

  1. Spinal circuits can accommodate interaction torques during multijoint limb movements.

    PubMed

    Buhrmann, Thomas; Di Paolo, Ezequiel A

    2014-01-01

    The dynamic interaction of limb segments during movements that involve multiple joints creates torques in one joint due to motion about another. Evidence shows that such interaction torques are taken into account during the planning or control of movement in humans. Two alternative hypotheses could explain the compensation of these dynamic torques. One involves the use of internal models to centrally compute predicted interaction torques and their explicit compensation through anticipatory adjustment of descending motor commands. The alternative, based on the equilibrium-point hypothesis, claims that descending signals can be simple and related to the desired movement kinematics only, while spinal feedback mechanisms are responsible for the appropriate creation and coordination of dynamic muscle forces. Partial supporting evidence exists in each case. However, until now no model has explicitly shown, in the case of the second hypothesis, whether peripheral feedback is really sufficient on its own for coordinating the motion of several joints while at the same time accommodating intersegmental interaction torques. Here we propose a minimal computational model to examine this question. Using a biomechanics simulation of a two-joint arm controlled by spinal neural circuitry, we show for the first time that it is indeed possible for the neuromusculoskeletal system to transform simple descending control signals into muscle activation patterns that accommodate interaction forces depending on their direction and magnitude. This is achieved without the aid of any central predictive signal. Even though the model makes various simplifications and abstractions compared to the complexities involved in the control of human arm movements, the finding lends plausibility to the hypothesis that some multijoint movements can in principle be controlled even in the absence of internal models of intersegmental dynamics or learned compensatory motor signals.

  2. Using a dynamical advection to reconstruct a part of the SSH evolution in the context of SWOT, application to the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Rogé, Marine; Morrow, Rosemary; Ubelmann, Clément; Dibarboure, Gérald

    2017-08-01

    The main oceanographic objective of the future SWOT mission is to better characterize the ocean mesoscale and sub-mesoscale circulation, by observing a finer range of ocean topography dynamics down to 20 km wavelength. Despite the very high spatial resolution of the future satellite, it will not capture the time evolution of the shorter mesoscale signals, such as the formation and evolution of small eddies. SWOT will have an exact repeat cycle of 21 days, with near repeats around 5-10 days, depending on the latitude. Here, we investigate a technique to reconstruct the missing 2D SSH signal in the time between two satellite revisits. We use the dynamical interpolation (DI) technique developed by Ubelmann et al. (2015). Based on potential vorticity (hereafter PV) conservation using a one and a half layer quasi-geostrophic model, it features an active advection of the SSH field. This model has been tested in energetic open ocean regions such as the Gulf Stream and the Californian Current, and has given promising results. Here, we test this model in the Western Mediterranean Sea, a lower energy region with complex small scale physics, and compare the SSH reconstruction with the high-resolution Symphonie model. We investigate an extension of the simple dynamical model including a separated mean circulation. We find that the DI gives a 16-18% improvement in the reconstruction of the surface height and eddy kinetic energy fields, compared with a simple linear interpolation, and a 37% improvement in the Northern Current subregion. Reconstruction errors are higher during winter and autumn but statistically, the improvement from the DI is also better for these seasons.

  3. Origin of Complexity in Multicellular Organisms

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2000-06-01

    Through extensive studies of dynamical system modeling cellular growth and reproduction, we find evidence that complexity arises in multicellular organisms naturally through evolution. Without any elaborate control mechanism, these systems can exhibit complex pattern formation with spontaneous cell differentiation. Such systems employ a ``cooperative'' use of resources and maintain a larger growth speed than simple cell systems, which exist in a homogeneous state and behave ``selfishly.'' The relevance of the diversity of chemicals and reaction dynamics to the growth of a multicellular organism is demonstrated. Chaotic biochemical dynamics are found to provide the multipotency of stem cells.

  4. Dynamic Considerations for Control of Closed Life Support Systems

    NASA Technical Reports Server (NTRS)

    Babcock, P. S.; Auslander, D. M.; Spear, R. C.

    1985-01-01

    Reliability of closed life support systems depend on their ability to continue supplying the crew's needs during perturbations and equipment failures. The dynamic considerations interact with the basic static design through the sizing of storages, the specification of excess capacities in processors, and the choice of system initial state. A very simple system flow model was used to examine the possibilities for system failures even when there is sufficient storage to buffer the immediate effects of the perturbation. Two control schemes are shown which have different dynamic consequences in response to component failures.

  5. Characteristics of aperiodic sequence of slip events caused by interaction between seismic patches and that caused be self-organized stress heterogeneity

    NASA Astrophysics Data System (ADS)

    Kato, N.

    2017-12-01

    Numerical simulations of earthquake cycles are conducted to investigate the origin of complexity of earthquake recurrence. There are two main causes of the complexity. One is self-organized stress heterogeneity due to dynamical effect. The other is the effect of interaction between some fault patches. In the model, friction on the fault is assumed to obey a rate- and state-dependent friction law. Circular patches of velocity-weakening frictional property are assumed on the fault. On the remaining areas of the fault, velocity-strengthening friction is assumed. We consider three models: Single patch model, two-patch model, and three-patch model. In the first model, the dynamical effect is mainly examined. The latter two models take into consideration the effect of interaction as well as the dynamical effect. Complex multiperiodic or aperiodic sequences of slip events occur when slip behavior changes from the seismic to aseismic, and when the degree of interaction between seismic patches is intermediate. The former is observed in all the models, and the latter is observed in the two-patch model and the three-patch model. Evolution of spatial distribution of shear stress on the fault suggests that aperiodicity at the transition from seismic to aseismic slip is caused by self-organized stress heterogeneity. The iteration maps of recurrence intervals of slip events in aperiodic sequences are examined, and they are approximately expressed by simple curves for aperiodicity at the transition from seismic to aseismic slip. In contrast, the iteration maps for aperiodic sequences caused by interaction between seismic patches are scattered and they are not expressed by simple curves. This result suggests that complex sequences caused by different mechanisms may be distinguished.

  6. Identifying habitats at risk: simple models can reveal complex ecosystem dynamics.

    PubMed

    Maxwell, Paul S; Pitt, Kylie A; Olds, Andrew D; Rissik, David; Connolly, Rod M

    2015-03-01

    The relationship between ecological impact and ecosystem structure is often strongly nonlinear, so that small increases in impact levels can cause a disproportionately large response in ecosystem structure. Nonlinear ecosystem responses can be difficult to predict because locally relevant data sets can be difficult or impossible to obtain. Bayesian networks (BN) are an emerging tool that can help managers to define ecosystem relationships using a range of data types from comprehensive quantitative data sets to expert opinion. We show how a simple BN can reveal nonlinear dynamics in seagrass ecosystems using ecological relationships sourced from the literature. We first developed a conceptual diagram by cataloguing the ecological responses of seagrasses to a range of drivers and impacts. We used the conceptual diagram to develop a BN populated with values sourced from published studies. We then applied the BN to show that the amount of initial seagrass biomass has a mitigating effect on the level of impact a meadow can withstand without loss, and that meadow recovery can often require disproportionately large improvements in impact levels. This mitigating effect resulted in the middle ranges of impact levels having a wide likelihood of seagrass presence, a situation known as bistability. Finally, we applied the model in a case study to identify the risk of loss and the likelihood of recovery for the conservation and management of seagrass meadows in Moreton Bay, Queensland, Australia. We used the model to predict the likelihood of bistability in 23 locations in the Bay. The model predicted bistability in seven locations, most of which have experienced seagrass loss at some stage in the past 25 years providing essential information for potential future restoration efforts. Our results demonstrate the capacity of simple, flexible modeling tools to facilitate collation and synthesis of disparate information. This approach can be adopted in the initial stages of conservation programs as a low-cost and relatively straightforward way to provide preliminary assessments of.nonlinear dynamics in ecosystems.

  7. Rapid contemporary evolution and clonal food web dynamics

    PubMed Central

    Jones, Laura E.; Becks, Lutz; Ellner, Stephen P.; Hairston, Nelson G.; Yoshida, Takehito; Fussmann, Gregor F.

    2009-01-01

    Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic organisms such as microalgae, cladocerans and rotifers, which frequently dominate freshwater plankton communities, meet these requirements. Multiple clonal lines can coexist within each species over extended periods, until either fixation occurs or a sexual phase reshuffles the genetic material. When clones differ in traits affecting interspecific interactions, within-species clonal dynamics can have major effects on the population dynamics. We first consider a simple predator–prey system with two prey genotypes, parametrized with data from a well-studied experimental system, and explore how the extent of differences in defence against predation within the prey population determine dynamic stability versus instability of the system. We then explore how increased potential for evolution affects the community dynamics in a more general community model with multiple predator and multiple prey genotypes. These examples illustrate how microevolutionary ‘details’ that enhance or limit the potential for heritable phenotypic change can have significant effects on contemporaneous community-level dynamics and the persistence and coexistence of species. PMID:19414472

  8. A model for simulating adaptive, dynamic flows on networks: Application to petroleum infrastructure

    DOE PAGES

    Corbet, Thomas F.; Beyeler, Walt; Wilson, Michael L.; ...

    2017-10-03

    Simulation models can greatly improve decisions meant to control the consequences of disruptions to critical infrastructures. We describe a dynamic flow model on networks purposed to inform analyses by those concerned about consequences of disruptions to infrastructures and to help policy makers design robust mitigations. We conceptualize the adaptive responses of infrastructure networks to perturbations as market transactions and business decisions of operators. We approximate commodity flows in these networks by a diffusion equation, with nonlinearities introduced to model capacity limits. To illustrate the behavior and scalability of the model, we show its application first on two simple networks, thenmore » on petroleum infrastructure in the United States, where we analyze the effects of a hypothesized earthquake.« less

  9. A model for simulating adaptive, dynamic flows on networks: Application to petroleum infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbet, Thomas F.; Beyeler, Walt; Wilson, Michael L.

    Simulation models can greatly improve decisions meant to control the consequences of disruptions to critical infrastructures. We describe a dynamic flow model on networks purposed to inform analyses by those concerned about consequences of disruptions to infrastructures and to help policy makers design robust mitigations. We conceptualize the adaptive responses of infrastructure networks to perturbations as market transactions and business decisions of operators. We approximate commodity flows in these networks by a diffusion equation, with nonlinearities introduced to model capacity limits. To illustrate the behavior and scalability of the model, we show its application first on two simple networks, thenmore » on petroleum infrastructure in the United States, where we analyze the effects of a hypothesized earthquake.« less

  10. Dynamic motion of red blood cells in simple shear flow

    NASA Astrophysics Data System (ADS)

    Sui, Y.; Chew, Y. T.; Roy, P.; Cheng, Y. P.; Low, H. T.

    2008-11-01

    A three-dimensional numerical model is proposed to simulate the dynamic motion of red blood cells (RBCs) in simple shear flow. The RBCs are approximated by ghost cells consisting of Newtonian liquid drops enclosed by Skalak membranes which take into account the membrane shear elasticity and the membrane area incompressibility. The RBCs have an initially biconcave discoid resting shape, and the internal liquid is assumed to have the same physical properties as the matrix fluid. The simulation is based on a hybrid method, in which the immersed boundary concept is introduced into the framework of the lattice Boltzmann method, and a finite element model is incorporated to obtain the forces acting on the nodes of the cell membrane which is discretized into flat triangular elements. The dynamic motion of RBCs is investigated in simple shear flow under a broad range of shear rates. At large shear rates, the cells are found to carry out a swinging motion, in which periodic inclination oscillation and shape deformation superimpose on the membrane tank treading motion. With the shear rate decreasing, the swinging amplitude of the cell increases, and finally triggers a transition to tumbling motion. This is the first direct numerical simulation that predicts both the swinging motion of the RBCs and the shear rate induced transition, which have been observed in a recent experiment. It is also found that as the mode changes from swinging to tumbling, the apparent viscosity of the suspension increases monotonically.

  11. Progress on the Ram Wing Concept with Emphasis on Lateral Dynamics

    DOT National Transportation Integrated Search

    1971-01-01

    Theoretical and experimental efforts conducted at the Transportation Systems Center in the ram wing program are described. Glide Tests were performed using a simple ram wing model operating in an open rectangular trough 50 ft long. Lift drag ratios o...

  12. General model and control of an n rotor helicopter

    NASA Astrophysics Data System (ADS)

    Sidea, A. G.; Yding Brogaard, R.; Andersen, N. A.; Ravn, O.

    2014-12-01

    The purpose of this study was to create a dynamic, nonlinear mathematical model of a multirotor that would be valid for different numbers of rotors. Furthermore, a set of Single Input Single Output (SISO) controllers were implemented for attitude control. Both model and controllers were tested experimentally on a quadcopter. Using the combined model and controllers, simple system simulation and control is possible, by replacing the physical values for the individual systems.

  13. Archetypal dynamics, emergent situations, and the reality game.

    PubMed

    Sulis, William

    2010-07-01

    The classical approach to the modeling of reality is founded upon its objectification. Although successful dealing with inanimate matter, objectification has proven to be much less successful elsewhere, sometimes to the point of paradox. This paper discusses an approach to the modeling of reality based upon the concept of process as formulated within the framework of archetypal dynamics. Reality is conceptualized as an intermingling of information-transducing systems, together with the semantic frames that effectively describe and ascribe meaning to each system, along with particular formal representations of same which constitute the archetypes. Archetypal dynamics is the study of the relationships between systems, frames and their representations and the flow of information among these different entities. In this paper a specific formal representation of archetypal dynamics using tapestries is given, and a dynamics is founded upon this representation in the form of a combinatorial game called a reality game. Some simple examples are presented.

  14. A stochastic evolutionary model generating a mixture of exponential distributions

    NASA Astrophysics Data System (ADS)

    Fenner, Trevor; Levene, Mark; Loizou, George

    2016-02-01

    Recent interest in human dynamics has stimulated the investigation of the stochastic processes that explain human behaviour in various contexts, such as mobile phone networks and social media. In this paper, we extend the stochastic urn-based model proposed in [T. Fenner, M. Levene, G. Loizou, J. Stat. Mech. 2015, P08015 (2015)] so that it can generate mixture models, in particular, a mixture of exponential distributions. The model is designed to capture the dynamics of survival analysis, traditionally employed in clinical trials, reliability analysis in engineering, and more recently in the analysis of large data sets recording human dynamics. The mixture modelling approach, which is relatively simple and well understood, is very effective in capturing heterogeneity in data. We provide empirical evidence for the validity of the model, using a data set of popular search engine queries collected over a period of 114 months. We show that the survival function of these queries is closely matched by the exponential mixture solution for our model.

  15. A coarse-grained biophysical model of sequence evolution and the population size dependence of the speciation rate

    PubMed Central

    Khatri, Bhavin S.; Goldstein, Richard A.

    2015-01-01

    Speciation is fundamental to understanding the huge diversity of life on Earth. Although still controversial, empirical evidence suggests that the rate of speciation is larger for smaller populations. Here, we explore a biophysical model of speciation by developing a simple coarse-grained theory of transcription factor-DNA binding and how their co-evolution in two geographically isolated lineages leads to incompatibilities. To develop a tractable analytical theory, we derive a Smoluchowski equation for the dynamics of binding energy evolution that accounts for the fact that natural selection acts on phenotypes, but variation arises from mutations in sequences; the Smoluchowski equation includes selection due to both gradients in fitness and gradients in sequence entropy, which is the logarithm of the number of sequences that correspond to a particular binding energy. This simple consideration predicts that smaller populations develop incompatibilities more quickly in the weak mutation regime; this trend arises as sequence entropy poises smaller populations closer to incompatible regions of phenotype space. These results suggest a generic coarse-grained approach to evolutionary stochastic dynamics, allowing realistic modelling at the phenotypic level. PMID:25936759

  16. Predator prey oscillations in a simple cascade model of drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berionni, V.; Guercan, Oe. D.

    2011-11-15

    A reduced three shell limit of a simple cascade model of drift wave turbulence, which emphasizes nonlocal interactions with a large scale mode, is considered. It is shown to describe both the well known predator prey dynamics between the drift waves and zonal flows and to reduce to the standard three wave interaction equations. Here, this model is considered as a dynamical system whose characteristics are investigated. The analytical solutions for the purely nonlinear limit are given in terms of the Jacobi elliptic functions. An approximate analytical solution involving Jacobi elliptic functions and exponential growth is computed using scale separationmore » for the case of unstable solutions that are observed when the energy injection rate is high. The fixed points of the system are determined, and the behavior around these fixed points is studied. The system is shown to display periodic solutions corresponding to limit cycle oscillations, apparently chaotic phase space orbits, as well as unstable solutions that grow slowly while oscillating rapidly. The period doubling route to transition to chaos is examined.« less

  17. Dynamic divisive normalization predicts time-varying value coding in decision-related circuits.

    PubMed

    Louie, Kenway; LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W

    2014-11-26

    Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. Copyright © 2014 the authors 0270-6474/14/3416046-12$15.00/0.

  18. Propensity to spending of an average consumer over a brief period

    NASA Astrophysics Data System (ADS)

    De Luca, Roberto; Di Mauro, Marco; Falzarano, Angelo; Naddeo, Adele

    2016-08-01

    Understanding consumption dynamics and its impact on the whole economy and welfare within the present economic crisis is not an easy task. Indeed the level of consumer demand for different goods varies with the prices, consumer incomes and demographic factors. Furthermore crisis may trigger different behaviors which result in distortions and amplification effects. In the present work we propose a simple model to quantitatively describe the time evolution over a brief period of the amount of money an average consumer decides to spend, depending on his/her available budget. A simple hydrodynamical analog of the model is discussed. Finally, perspectives of this work are briefly outlined.

  19. A simple model describing the nonlinear dynamics of the dusk/dawn asymmetry in the high-latitude thermospheric flow

    NASA Technical Reports Server (NTRS)

    Gundlach, J. P.; Larsen, M. F.; Mikkelsen, I. S.

    1988-01-01

    A simple nonlinear, axisymmetric, shallow-water numerical model has been used to study the asymmetry in the neutral flow between the dusk and dawn sides of the auroral oval. The results indicate that the Coriolis force and the curvature terms are nearly in balance on the evening side and require only a small pressure gradient to effect adjustment. The result is smaller neutral velocities near dawn and larger velocities near dusk than would be the case for a linearized treatment. A consequence is that more gravity wave energy is produced on the morning side than on the evening side.

  20. Spatial structures in a simple model of population dynamics for parasite-host interactions

    NASA Astrophysics Data System (ADS)

    Dong, J. J.; Skinner, B.; Breecher, N.; Schmittmann, B.; Zia, R. K. P.

    2015-08-01

    Spatial patterning can be crucially important for understanding the behavior of interacting populations. Here we investigate a simple model of parasite and host populations in which parasites are random walkers that must come into contact with a host in order to reproduce. We focus on the spatial arrangement of parasites around a single host, and we derive using analytics and numerical simulations the necessary conditions placed on the parasite fecundity and lifetime for the population's long-term survival. We also show that the parasite population can be pushed to extinction by a large drift velocity, but, counterintuitively, a small drift velocity generally increases the parasite population.

  1. Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karve, A.A.; Rizwan-uddin; Dorning, J.J.

    1995-09-01

    A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcationmore » occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.« less

  2. Minimal agent based model for financial markets II. Statistical properties of the linear and multiplicative dynamics

    NASA Astrophysics Data System (ADS)

    Alfi, V.; Cristelli, M.; Pietronero, L.; Zaccaria, A.

    2009-02-01

    We present a detailed study of the statistical properties of the Agent Based Model introduced in paper I [Eur. Phys. J. B, DOI: 10.1140/epjb/e2009-00028-4] and of its generalization to the multiplicative dynamics. The aim of the model is to consider the minimal elements for the understanding of the origin of the stylized facts and their self-organization. The key elements are fundamentalist agents, chartist agents, herding dynamics and price behavior. The first two elements correspond to the competition between stability and instability tendencies in the market. The herding behavior governs the possibility of the agents to change strategy and it is a crucial element of this class of models. We consider a linear approximation for the price dynamics which permits a simple interpretation of the model dynamics and, for many properties, it is possible to derive analytical results. The generalized non linear dynamics results to be extremely more sensible to the parameter space and much more difficult to analyze and control. The main results for the nature and self-organization of the stylized facts are, however, very similar in the two cases. The main peculiarity of the non linear dynamics is an enhancement of the fluctuations and a more marked evidence of the stylized facts. We will also discuss some modifications of the model to introduce more realistic elements with respect to the real markets.

  3. Structural versus dynamical origins of mean-field behavior in a self-organized critical model of neuronal avalanches

    NASA Astrophysics Data System (ADS)

    Moosavi, S. Amin; Montakhab, Afshin

    2015-11-01

    Critical dynamics of cortical neurons have been intensively studied over the past decade. Neuronal avalanches provide the main experimental as well as theoretical tools to consider criticality in such systems. Experimental studies show that critical neuronal avalanches show mean-field behavior. There are structural as well as recently proposed [Phys. Rev. E 89, 052139 (2014), 10.1103/PhysRevE.89.052139] dynamical mechanisms that can lead to mean-field behavior. In this work we consider a simple model of neuronal dynamics based on threshold self-organized critical models with synaptic noise. We investigate the role of high-average connectivity, random long-range connections, as well as synaptic noise in achieving mean-field behavior. We employ finite-size scaling in order to extract critical exponents with good accuracy. We conclude that relevant structural mechanisms responsible for mean-field behavior cannot be justified in realistic models of the cortex. However, strong dynamical noise, which can have realistic justifications, always leads to mean-field behavior regardless of the underlying structure. Our work provides a different (dynamical) origin than the conventionally accepted (structural) mechanisms for mean-field behavior in neuronal avalanches.

  4. Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models

    DOE PAGES

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.

    2018-01-09

    Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less

  5. Linear dynamical modes as new variables for data-driven ENSO forecast

    NASA Astrophysics Data System (ADS)

    Gavrilov, Andrey; Seleznev, Aleksei; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander; Kurths, Juergen

    2018-05-01

    A new data-driven model for analysis and prediction of spatially distributed time series is proposed. The model is based on a linear dynamical mode (LDM) decomposition of the observed data which is derived from a recently developed nonlinear dimensionality reduction approach. The key point of this approach is its ability to take into account simple dynamical properties of the observed system by means of revealing the system's dominant time scales. The LDMs are used as new variables for empirical construction of a nonlinear stochastic evolution operator. The method is applied to the sea surface temperature anomaly field in the tropical belt where the El Nino Southern Oscillation (ENSO) is the main mode of variability. The advantage of LDMs versus traditionally used empirical orthogonal function decomposition is demonstrated for this data. Specifically, it is shown that the new model has a competitive ENSO forecast skill in comparison with the other existing ENSO models.

  6. Biology as population dynamics: heuristics for transmission risk.

    PubMed

    Keebler, Daniel; Walwyn, David; Welte, Alex

    2013-02-01

    Population-type models, accounting for phenomena such as population lifetimes, mixing patterns, recruitment patterns, genetic evolution and environmental conditions, can be usefully applied to the biology of HIV infection and viral replication. A simple dynamic model can explore the effect of a vaccine-like stimulus on the mortality and infectiousness, which formally looks like fertility, of invading virions; the mortality of freshly infected cells; and the availability of target cells, all of which impact on the probability of infection. Variations on this model could capture the importance of the timing and duration of different key events in viral transmission, and hence be applied to questions of mucosal immunology. The dynamical insights and assumptions of such models are compatible with the continuum of between- and within-individual risks in sexual violence and may be helpful in making sense of the sparse data available on the association between HIV transmission and sexual violence. © 2012 John Wiley & Sons A/S.

  7. Unfolding and melting of DNA (RNA) hairpins: the concept of structure-specific 2D dynamic landscapes.

    PubMed

    Lin, Milo M; Meinhold, Lars; Shorokhov, Dmitry; Zewail, Ahmed H

    2008-08-07

    A 2D free-energy landscape model is presented to describe the (un)folding transition of DNA/RNA hairpins, together with molecular dynamics simulations and experimental findings. The dependence of the (un)folding transition on the stem sequence and the loop length is shown in the enthalpic and entropic contributions to the free energy. Intermediate structures are well defined by the two coordinates of the landscape during (un)zipping. Both the free-energy landscape model and the extensive molecular dynamics simulations totaling over 10 mus predict the existence of temperature-dependent kinetic intermediate states during hairpin (un)zipping and provide the theoretical description of recent ultrafast temperature-jump studies which indicate that hairpin (un)zipping is, in general, not a two-state process. The model allows for lucid prediction of the collapsed state(s) in simple 2D space and we term it the kinetic intermediate structure (KIS) model.

  8. Assessment of the Structural Conditions of the San Clemente a Vomano Abbey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedettini, Francesco; Alaggio, Rocco; Fusco, Felice

    2008-07-08

    The simultaneous use of a Finite Element (FE) accurate modeling, dynamical tests, model updating and nonlinear analysis are used to describe the integrated approach used by the authors to assess the structural conditions and the seismic vulnerability of an historical masonry structure: the Abbey Church of San Clemente al Vomano, situated in the Notaresco territory (TE, Italy) commissioned by Ermengarda, daughter of the Emperor Ludovico II, and built at the end of IX century together with a monastery to host a monastic community. Dynamical tests 'in operational conditions' and modal identification have been used to perform the FE model validation.more » Both a simple and direct method as the kinematic analysis applied on meaningful sub-structures and a nonlinear 3D dynamic analysis conducted by using the FE model have been used to forecast the seismic performance of the Church.« less

  9. Saddles and dynamics in a solvable mean-field model

    NASA Astrophysics Data System (ADS)

    Angelani, L.; Ruocco, G.; Zamponi, F.

    2003-05-01

    We use the saddle-approach, recently introduced in the numerical investigation of simple model liquids, in the analysis of a mean-field solvable system. The investigated system is the k-trigonometric model, a k-body interaction mean field system, that generalizes the trigonometric model introduced by Madan and Keyes [J. Chem. Phys. 98, 3342 (1993)] and that has been recently introduced to investigate the relationship between thermodynamics and topology of the configuration space. We find a close relationship between the properties of saddles (stationary points of the potential energy surface) visited by the system and the dynamics. In particular the temperature dependence of saddle order follows that of the diffusivity, both having an Arrhenius behavior at low temperature and a similar shape in the whole temperature range. Our results confirm the general usefulness of the saddle-approach in the interpretation of dynamical processes taking place in interacting systems.

  10. Transonic shock-induced dynamics of a flexible wing with a thick circular-arc airfoil

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Dansberry, Bryan E.; Farmer, Moses G.; Eckstrom, Clinton V.; Seidel, David A.; Rivera, Jose A., Jr.

    1991-01-01

    Transonic shock boundary layer oscillations occur on rigid models over a small range of Mach numbers on thick circular-arc airfoils. Extensive tests and analyses of this phenomena have been made in the past but essentially all of them were for rigid models. A simple flexible wing model with an 18 pct. circular arc airfoil was constructed and tested in the Langley Transonic Dynamics Tunnel to study the dynamic characteristics that a wing might have under these circumstances. In the region of shock boundary layer oscillations, buffeting of the first bending mode was obtained. This mode was well separated in frequency from the shock boundary layer oscillations. A limit cycle oscillation was also measured in a third bending like mode, involving wind vertical bending and splitter plate motion, which was in the frequency range of the shock boundary layer oscillations. Several model configurations were tested, and a few potential fixes were investigated.

  11. LOW MACH NUMBER MODELING OF CONVECTION IN HELIUM SHELLS ON SUB-CHANDRASEKHAR WHITE DWARFS. II. BULK PROPERTIES OF SIMPLE MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, A. M.; Zingale, M.; Nonaka, A.

    2016-08-10

    The dynamics of helium shell convection driven by nuclear burning establish the conditions for runaway in the sub-Chandrasekhar-mass, double-detonation model for SNe Ia, as well as for a variety of other explosive phenomena. We explore these convection dynamics for a range of white dwarf core and helium shell masses in three dimensions using the low Mach number hydrodynamics code MAESTRO. We present calculations of the bulk properties of this evolution, including time-series evolution of global diagnostics, lateral averages of the 3D state, and the global 3D state. We find a variety of outcomes, including quasi-equilibrium, localized runaway, and convective runaway.more » Our results suggest that the double-detonation progenitor model is promising and that 3D dynamic convection plays a key role.« less

  12. Higher-Order Extended Lagrangian Born-Oppenheimer Molecular Dynamics for Classical Polarizable Models.

    PubMed

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M N

    2018-02-13

    Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate "shadow" potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.

  13. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  14. Low Mach Number Modeling of Convection in Helium Shells on Sub-Chandrasekhar White Dwarfs. II. Bulk Properties of Simple Models

    DOE PAGES

    Jacobs, A. M.; Zingale, M.; Nonaka, A.; ...

    2016-08-10

    The dynamics of helium shell convection driven by nuclear burning establish the conditions for runaway in the sub-Chandrasekhar-mass, double-detonation model for SNe Ia, as well as for a variety of other explosive phenomena. In this paper, we explore these convection dynamics for a range of white dwarf core and helium shell masses in three dimensions using the low Mach number hydrodynamics code MAESTRO. We present calculations of the bulk properties of this evolution, including time-series evolution of global diagnostics, lateral averages of the 3D state, and the global 3D state. We find a variety of outcomes, including quasi-equilibrium, localized runaway,more » and convective runaway. Finally, our results suggest that the double-detonation progenitor model is promising and that 3D dynamic convection plays a key role.« less

  15. Cellular automaton model for molecular traffic jams

    NASA Astrophysics Data System (ADS)

    Belitsky, V.; Schütz, G. M.

    2011-07-01

    We consider the time evolution of an exactly solvable cellular automaton with random initial conditions both in the large-scale hydrodynamic limit and on the microscopic level. This model is a version of the totally asymmetric simple exclusion process with sublattice parallel update and thus may serve as a model for studying traffic jams in systems of self-driven particles. We study the emergence of shocks from the microscopic dynamics of the model. In particular, we introduce shock measures whose time evolution we can compute explicitly, both in the thermodynamic limit and for open boundaries where a boundary-induced phase transition driven by the motion of a shock occurs. The motion of the shock, which results from the collective dynamics of the exclusion particles, is a random walk with an internal degree of freedom that determines the jump direction. This type of hopping dynamics is reminiscent of some transport phenomena in biological systems.

  16. Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.

    Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less

  17. Principle research on a single mass piezoelectric six-degrees-of-freedom accelerometer.

    PubMed

    Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng

    2013-08-16

    A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work.

  18. Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer

    PubMed Central

    Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng

    2013-01-01

    A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work. PMID:23959243

  19. Gait-force model and inertial measurement unit-based measurements: A new approach for gait analysis and balance monitoring.

    PubMed

    Li, Xinan; Xu, Hongyuan; Cheung, Jeffrey T

    2016-12-01

    This work describes a new approach for gait analysis and balance measurement. It uses an inertial measurement unit (IMU) that can either be embedded inside a dynamically unstable platform for balance measurement or mounted on the lower back of a human participant for gait analysis. The acceleration data along three Cartesian coordinates is analyzed by the gait-force model to extract bio-mechanics information in both the dynamic state as in the gait analyzer and the steady state as in the balance scale. For the gait analyzer, the simple, noninvasive and versatile approach makes it appealing to a broad range of applications in clinical diagnosis, rehabilitation monitoring, athletic training, sport-apparel design, and many other areas. For the balance scale, it provides a portable platform to measure the postural deviation and the balance index under visual or vestibular sensory input conditions. Despite its simple construction and operation, excellent agreement has been demonstrated between its performance and the high-cost commercial balance unit over a wide dynamic range. The portable balance scale is an ideal tool for routine monitoring of balance index, fall-risk assessment, and other balance-related health issues for both clinical and household use.

  20. The importance of planetary rotation period for ocean heat transport.

    PubMed

    Cullum, J; Stevens, D; Joshi, M

    2014-08-01

    The climate and, hence, potential habitability of a planet crucially depends on how its atmospheric and ocean circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modeling the dynamics of atmospheres, while dramatically simplifying the treatment of oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet that has no continental barriers, which is a configuration that dramatically changes the ocean dynamics. Here, the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier--the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability.

  1. Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J. C.; Diamond, P. H.; Xu, X. Q.

    2016-05-15

    A simple model for the generation and amplification of intrinsic axial flow in a linear device, controlled shear decorrelation experiment, is proposed. This model proposes and builds upon a novel dynamical symmetry breaking mechanism, using a simple theory of drift wave turbulence in the presence of axial flow shear. This mechanism does not require complex magnetic field structure, such as shear, and thus is also applicable to intrinsic rotation generation in tokamaks at weak or zero magnetic shear, as well as to linear devices. This mechanism is essentially the self-amplification of the mean axial flow profile, i.e., a modulational instability.more » Hence, the flow development is a form of negative viscosity phenomenon. Unlike conventional mechanisms where the residual stress produces an intrinsic torque, in this dynamical symmetry breaking scheme, the residual stress induces a negative increment to the ambient turbulent viscosity. The axial flow shear is then amplified by this negative viscosity increment. The resulting mean axial flow profile is calculated and discussed by analogy with the problem of turbulent pipe flow. For tokamaks, the negative viscosity is not needed to generate intrinsic rotation. However, toroidal rotation profile gradient is enhanced by the negative increment in turbulent viscosity.« less

  2. Differences in simulated fire spread over Askervein Hill using two advanced wind models and a traditional uniform wind field

    Treesearch

    Jason Forthofer; Bret Butler

    2007-01-01

    A computational fluid dynamics (CFD) model and a mass-consistent model were used to simulate winds on simulated fire spread over a simple, low hill. The results suggest that the CFD wind field could significantly change simulated fire spread compared to traditional uniform winds. The CFD fire spread case may match reality better because the winds used in the fire...

  3. Mixing coarse-grained and fine-grained water in molecular dynamics simulations of a single system.

    PubMed

    Riniker, Sereina; van Gunsteren, Wilfred F

    2012-07-28

    The use of a supra-molecular coarse-grained (CG) model for liquid water as solvent in molecular dynamics simulations of biomolecules represented at the fine-grained (FG) atomic level of modelling may reduce the computational effort by one or two orders of magnitude. However, even if the pure FG model and the pure CG model represent the properties of the particular substance of interest rather well, their application in a hybrid FG/CG system containing varying ratios of FG versus CG particles is highly non-trivial, because it requires an appropriate balance between FG-FG, FG-CG, and CG-CG energies, and FG and CG entropies. Here, the properties of liquid water are used to calibrate the FG-CG interactions for the simple-point-charge water model at the FG level and a recently proposed supra-molecular water model at the CG level that represents five water molecules by one CG bead containing two interaction sites. Only two parameters are needed to reproduce different thermodynamic and dielectric properties of liquid water at physiological temperature and pressure for various mole fractions of CG water in FG water. The parametrisation strategy for the FG-CG interactions is simple and can be easily transferred to interactions between atomistic biomolecules and CG water.

  4. Modeling and Dynamic Analysis of Paralleled of dc/dc Converters with Master-Slave Current Sharing Control

    NASA Technical Reports Server (NTRS)

    Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce

    1996-01-01

    A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.

  5. Inference for finite-sample trajectories in dynamic multi-state site-occupancy models using hidden Markov model smoothing

    USGS Publications Warehouse

    Fiske, Ian J.; Royle, J. Andrew; Gross, Kevin

    2014-01-01

    Ecologists and wildlife biologists increasingly use latent variable models to study patterns of species occurrence when detection is imperfect. These models have recently been generalized to accommodate both a more expansive description of state than simple presence or absence, and Markovian dynamics in the latent state over successive sampling seasons. In this paper, we write these multi-season, multi-state models as hidden Markov models to find both maximum likelihood estimates of model parameters and finite-sample estimators of the trajectory of the latent state over time. These estimators are especially useful for characterizing population trends in species of conservation concern. We also develop parametric bootstrap procedures that allow formal inference about latent trend. We examine model behavior through simulation, and we apply the model to data from the North American Amphibian Monitoring Program.

  6. Time delays, population, and economic development

    NASA Astrophysics Data System (ADS)

    Gori, Luca; Guerrini, Luca; Sodini, Mauro

    2018-05-01

    This research develops an augmented Solow model with population dynamics and time delays. The model produces either a single stationary state or multiple stationary states (able to characterise different development regimes). The existence of time delays may cause persistent fluctuations in both economic and demographic variables. In addition, the work identifies in a simple way the reasons why economics affects demographics and vice versa.

  7. Groundwater dynamics mediate low-flow response to global warming in snow-dominated alpine regions

    Treesearch

    Christina Tague; Gordon E. Grant

    2009-01-01

    In mountain environments, spatial and temporal patterns of snow accumulation and melt are dominant controls on hydrologic responses to climate change. In this paper, we develop a simple conceptual model that links the timing of peak snowmelt with geologically mediated differences in rate of streamflow recession. This model demonstrates that within the western United...

  8. A model for two-dimensional bursty turbulence in magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Servidio, Sergio; Primavera, Leonardo; Carbone, Vincenzo

    2008-01-15

    The nonlinear dynamics of two-dimensional electrostatic interchange modes in a magnetized plasma is investigated through a simple model that replaces the instability mechanism due to magnetic field curvature by an external source of vorticity and mass. Simulations in a cylindrical domain, with a spatially localized and randomized source at the center of the domain, reveal the eruption of mushroom-shaped bursts that propagate radially and are absorbed by the boundaries. Burst sizes and the interburst waiting times exhibit power-law statistics, which indicates long-range interburst correlations, similar to what has been found in sandpile models for avalanching systems. It is shown frommore » the simulations that the dynamics can be characterized by a Yaglom relation for the third-order mixed moment involving the particle number density as a passive scalar and the ExB drift velocity, and hence that the burst phenomenology can be described within the framework of turbulence theory. Statistical features are qualitatively in agreement with experiments of intermittent transport at the edge of plasma devices, and suggest that essential features such as transport can be described by this simple model of bursty turbulence.« less

  9. Molecular-dynamics simulation of mutual diffusion in nonideal liquid mixtures

    NASA Astrophysics Data System (ADS)

    Rowley, R. L.; Stoker, J. M.; Giles, N. F.

    1991-05-01

    The mutual-diffusion coefficients, D 12, of n-hexane, n-heptane, and n-octane in chloroform were modeled using equilibrium molecular-dynamics (MD) simulations of simple Lennard-Jones (LJ) fluids. Pure-component LJ parameters were obtained by comparison of simulations to experimental self-diffusion coefficients. While values of “effective” LJ parameters are not expected to simulate accurately diverse thermophysical properties over a wide range of conditions, it was recently shown that effective parameters obtained from pure self-diffusion coefficients can accurately model mutual diffusion in ideal, liquid mixtures. In this work, similar simulations are used to model diffusion in nonideal mixtures. The same combining rules used in the previous study for the cross-interaction parameters were found to be adequate to represent the composition dependence of D 12. The effect of alkane chain length on D 12 is also correctly predicted by the simulations. A commonly used assumption in empirical correlations of D 12, that its kinetic portion is a simple, compositional average of the intradiffusion coefficients, is inconsistent with the simulation results. In fact, the value of the kinetic portion of D 12 was often outside the range of values bracketed by the two intradiffusion coefficients for the nonideal system modeled here.

  10. NMR signals within the generalized Langevin model for fractional Brownian motion

    NASA Astrophysics Data System (ADS)

    Lisý, Vladimír; Tóthová, Jana

    2018-03-01

    The methods of Nuclear Magnetic Resonance belong to the best developed and often used tools for studying random motion of particles in different systems, including soft biological tissues. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard memoryless Langevin description of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spin-bearing particles in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in an exceedingly simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues. The effect of the trap is demonstrated by introducing a simple model for the generalized diffusion coefficient of the particle.

  11. Population Genetics of Three Dimensional Range Expansions

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim; Nelson, David

    2014-03-01

    We develop a simple model of genetic diversity in growing spherical cell clusters, where the growth is confined to the cluster surface. This kind of growth occurs in cells growing in soft agar, and can also serve as a simple model of avascular tumors. Mutation-selection balance in these radial expansions is strongly influenced by scaling near a neutral, voter model critical point and by the inflating frontier. We develop a scaling theory to describe how the dynamics of mutation-selection balance is cut off by inflation. Genetic drift, i.e., local fluctuations in the genetic diversity, also plays an important role, and can lead to the extinction even of selectively advantageous strains. We calculate this extinction probability, taking into account the effect of rough population frontiers.

  12. Matrix population models from 20 studies of perennial plant populations

    USGS Publications Warehouse

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the "Testing Matrix Models" working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  13. Matrix population models from 20 studies of perennial plant populations

    USGS Publications Warehouse

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the 'Testing Matrix Models' working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  14. The effect of resistance level and stability demands on recruitment patterns and internal loading of spine in dynamic flexion and extension using a simple trunk model.

    PubMed

    Zeinali-Davarani, Shahrokh; Shirazi-Adl, Aboulfazl; Dariush, Behzad; Hemami, Hooshang; Parnianpour, Mohamad

    2011-07-01

    The effects of external resistance on the recruitment of trunk muscles in sagittal movements and the coactivation mechanism to maintain spinal stability were investigated using a simple computational model of iso-resistive spine sagittal movements. Neural excitation of muscles was attained based on inverse dynamics approach along with a stability-based optimisation. The trunk flexion and extension movements between 60° flexion and the upright posture against various resistance levels were simulated. Incorporation of the stability constraint in the optimisation algorithm required higher antagonistic activities for all resistance levels mostly close to the upright position. Extension movements showed higher coactivation with higher resistance, whereas flexion movements demonstrated lower coactivation indicating a greater stability demand in backward extension movements against higher resistance at the neighbourhood of the upright posture. Optimal extension profiles based on minimum jerk, work and power had distinct kinematics profiles which led to recruitment patterns with different timing and amplitude of activation.

  15. Modulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong

    2017-07-01

    The integrable coupled nonlinear Schrödinger equations with four-wave mixing are investigated. We first explore the conditions for modulational instability of continuous waves of this system. Secondly, based on the generalized N -fold Darboux transformation (DT), beak-shaped higher-order rogue waves (RWs) and beak-shaped higher-order rogue wave pairs are derived for the coupled model with attractive interaction in terms of simple determinants. Moreover, we derive the simple multi-dark-dark and kink-shaped multi-dark-dark solitons for the coupled model with repulsive interaction through the generalizing DT. We explore their dynamics and classifications by different kinds of spatial-temporal distribution structures including triangular, pentagonal, 'claw-like' and heptagonal patterns. Finally, we perform the numerical simulations to predict that some dark solitons and RWs are stable enough to develop within a short time. The results would enrich our understanding on nonlinear excitations in many coupled nonlinear wave systems with transition coupling effects.

  16. Collective chemotaxis and segregation of active bacterial colonies

    NASA Astrophysics Data System (ADS)

    Amar, M. Ben

    2016-02-01

    Still recently, bacterial fluid suspensions have motivated a lot of works, both experimental and theoretical, with the objective to understand their collective dynamics from universal and simple rules. Since some species are active, most of these works concern the strong interactions that these bacteria exert on a forced flow leading to instabilities, chaos and turbulence. Here, we investigate the self-organization of expanding bacterial colonies under chemotaxis, proliferation and eventually active-reaction. We propose a simple model to understand and quantify the physical properties of these living organisms which either give cohesion or on the contrary dispersion to the colony. Taking into account the diffusion and capture of morphogens complicates the model since it induces a bacterial density gradient coupled to bacterial density fluctuations and dynamics. Nevertheless under some specific conditions, it is possible to investigate the pattern formation as a usual viscous fingering instability. This explains the similarity and differences of patterns according to the physical bacterial suspension properties and explain the factors which favor compactness or branching.

  17. Particle-based solid for nonsmooth multidomain dynamics

    NASA Astrophysics Data System (ADS)

    Nordberg, John; Servin, Martin

    2018-04-01

    A method for simulation of elastoplastic solids in multibody systems with nonsmooth and multidomain dynamics is developed. The solid is discretised into pseudo-particles using the meshfree moving least squares method for computing the strain tensor. The particle's strain and stress tensor variables are mapped to a compliant deformation constraint. The discretised solid model thus fit a unified framework for nonsmooth multidomain dynamics simulations including rigid multibodies with complex kinematic constraints such as articulation joints, unilateral contacts with dry friction, drivelines, and hydraulics. The nonsmooth formulation allows for impact impulses to propagate instantly between the rigid multibody and the solid. Plasticity is introduced through an associative perfectly plastic modified Drucker-Prager model. The elastic and plastic dynamics are verified for simple test systems, and the capability of simulating tracked terrain vehicles driving on a deformable terrain is demonstrated.

  18. Application of dynamical systems theory to the high angle of attack dynamics of the F-14

    NASA Technical Reports Server (NTRS)

    Jahnke, Craig C.; Culick, Fred E. C.

    1990-01-01

    Dynamical systems theory has been used to study the nonlinear dynamics of the F-14. An eight degree of freedom model that does not include the control system present in operational F-14s has been analyzed. The aerodynamic model, supplied by NASA, includes nonlinearities as functions of the angles of attack and sideslip, the rotation rate, and the elevator deflection. A continuation method has been used to calculate the steady states of the F-14 as continuous functions of the control surface deflections. Bifurcations of these steady states have been used to predict the onset of wing rock, spiral divergence, and jump phenomena which cause the aircraft to enter a spin. A simple feedback control system was designed to eliminate the wing rock and spiral divergence instabilities. The predictions were verified with numerical simulations.

  19. Simple Deterministically Constructed Recurrent Neural Networks

    NASA Astrophysics Data System (ADS)

    Rodan, Ali; Tiňo, Peter

    A large number of models for time series processing, forecasting or modeling follows a state-space formulation. Models in the specific class of state-space approaches, referred to as Reservoir Computing, fix their state-transition function. The state space with the associated state transition structure forms a reservoir, which is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be potentially exploited by the reservoir-to-output readout mapping. The largely "black box" character of reservoirs prevents us from performing a deeper theoretical investigation of the dynamical properties of successful reservoirs. Reservoir construction is largely driven by a series of (more-or-less) ad-hoc randomized model building stages, with both the researchers and practitioners having to rely on a series of trials and errors. We show that a very simple deterministically constructed reservoir with simple cycle topology gives performances comparable to those of the Echo State Network (ESN) on a number of time series benchmarks. Moreover, we argue that the memory capacity of such a model can be made arbitrarily close to the proved theoretical limit.

  20. Dynamics and control of quadcopter using linear model predictive control approach

    NASA Astrophysics Data System (ADS)

    Islam, M.; Okasha, M.; Idres, M. M.

    2017-12-01

    This paper investigates the dynamics and control of a quadcopter using the Model Predictive Control (MPC) approach. The dynamic model is of high fidelity and nonlinear, with six degrees of freedom that include disturbances and model uncertainties. The control approach is developed based on MPC to track different reference trajectories ranging from simple ones such as circular to complex helical trajectories. In this control technique, a linearized model is derived and the receding horizon method is applied to generate the optimal control sequence. Although MPC is computer expensive, it is highly effective to deal with the different types of nonlinearities and constraints such as actuators’ saturation and model uncertainties. The MPC parameters (control and prediction horizons) are selected by trial-and-error approach. Several simulation scenarios are performed to examine and evaluate the performance of the proposed control approach using MATLAB and Simulink environment. Simulation results show that this control approach is highly effective to track a given reference trajectory.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmi, Petja; Sutcliffe, Paul

    The aloof baby Skyrme model is a (2+1)-dimensional theory with solitons that are lightly bound. It is a low-dimensional analogue of a similar Skyrme model in (3+1)- dimensions, where the lightly bound solitons have binding energies comparable to nuclei. A previous study of static solitons in the aloof baby Skyrme model revealed that multi-soliton bound states have a cluster structure, with constituents that preserve their individual identities due to the short-range repulsion and long-range attraction between solitons. Furthermore, there are many different local energy minima that are all well-described by a simple binary species particle model. In this paper wemore » present the first results on soliton dynamics in the aloof baby Skyrme model. Numerical field theory simulations reveal that the lightly bound cluster structure results in a variety of exotic soliton scattering events that are novel in comparison to standard Skyrmion scattering. A dynamical version of the binary species point particle model is shown to provide a good qualitative description of the dynamics.« less

  2. A spring-block analogy for the dynamics of stock indexes

    NASA Astrophysics Data System (ADS)

    Sándor, Bulcsú; Néda, Zoltán

    2015-06-01

    A spring-block chain placed on a running conveyor belt is considered for modeling stylized facts observed in the dynamics of stock indexes. Individual stocks are modeled by the blocks, while the stock-stock correlations are introduced via simple elastic forces acting in the springs. The dragging effect of the moving belt corresponds to the expected economic growth. The spring-block system produces collective behavior and avalanche like phenomena, similar to the ones observed in stock markets. An artificial index is defined for the spring-block chain, and its dynamics is compared with the one measured for the Dow Jones Industrial Average. For certain parameter regions the model reproduces qualitatively well the dynamics of the logarithmic index, the logarithmic returns, the distribution of the logarithmic returns, the avalanche-size distribution and the distribution of the investment horizons. A noticeable success of the model is that it is able to account for the gain-loss asymmetry observed in the inverse statistics. Our approach has mainly a pedagogical value, bridging between a complex socio-economic phenomena and a basic (mechanical) model in physics.

  3. Numerical evidences of universal trap-like aging dynamics

    NASA Astrophysics Data System (ADS)

    Cammarota, Chiara; Marinari, Enzo

    2018-04-01

    Trap models have been initially proposed as toy models for dynamical relaxation in extremely simplified rough potential energy landscapes. Their importance has recently grown considerably thanks to the discovery that the trap-like aging mechanism directly controls the out-of-equilibrium relaxation processes of more sophisticated spin models, that are considered as the solvable counterpart of real disordered systems. Further establishing the connection between these spin models, out-of-equilibrium behavior and the trap like aging mechanism could shed new light on the properties, which are still largely mysterious, for the activated out-of-equilibrium dynamics of disordered systems. In this work we discuss numerical evidence based on the computations of the permanence times of an emergent trap-like aging behavior in a variety of very simple disordered models—developed from the trap model paradigm. Our numerical results are backed by analytic derivations and heuristic discussions. Such exploration reveals some of the tricks needed to reveal the trap behavior in spite of the occurrence of secondary processes, of the existence of dynamical correlations and of strong finite system’s size effects.

  4. Large deflections and vibrations of a tip pulled beam with variable transversal section

    NASA Astrophysics Data System (ADS)

    Kurka, P.; Izuka, J.; Gonzalez, P.; Teixeira, L. H.

    2016-10-01

    The use of long flexible probes in outdoors exploration vehicles, as opposed to short and rigid arms, is a convenient way to grant easier access to regions of scientific interest such as terrain slopes and cliff sides. Longer and taller arms can also provide information from a wider exploration horizon. The drawback of employing long and flexible exploration probes is the fact that its vibration is not easily controlled in real time operation by means of a simple analytic linear dynamic model. The numerical model required to describe the dynamics of a very long and flexible structure is often very large and of slow computational convergence. The present work proposes a simplified numerical model of a long flexible beam with variable cross section, which is statically deflected by a pulling cable. The paper compares the proposed simplified model with experimental data regarding the static and dynamic characteristics of a beam with variable cross section. The simulations show the effectiveness of the simplified dynamic model employed in an active control loop to suppress tip vibrations of the beam.

  5. A subthreshold aVLSI implementation of the Izhikevich simple neuron model.

    PubMed

    Rangan, Venkat; Ghosh, Abhishek; Aparin, Vladimir; Cauwenberghs, Gert

    2010-01-01

    We present a circuit architecture for compact analog VLSI implementation of the Izhikevich neuron model, which efficiently describes a wide variety of neuron spiking and bursting dynamics using two state variables and four adjustable parameters. Log-domain circuit design utilizing MOS transistors in subthreshold results in high energy efficiency, with less than 1pJ of energy consumed per spike. We also discuss the effects of parameter variations on the dynamics of the equations, and present simulation results that replicate several types of neural dynamics. The low power operation and compact analog VLSI realization make the architecture suitable for human-machine interface applications in neural prostheses and implantable bioelectronics, as well as large-scale neural emulation tools for computational neuroscience.

  6. Modeling and Testing of Phase Transition-Based Deployable Systems for Small Body Sample Capture

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco; Backes, Paul; Wilkie, Keats; Giersch, Lou; Quijano, Ubaldo; Keim, Jason; Mukherjee, Rudranarayan

    2009-01-01

    This paper summarizes the modeling, simulation, and testing work related to the development of technology to investigate the potential that shape memory actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface and for sample capture and return. We investigate the structural dynamics and controllability aspects of an adaptive beam carrying an end-effector which, by changing equilibrium phases is able to actively decouple the end-effector dynamics from the spacecraft dynamics during the surface contact phase. Asset delivery and sample capture and return are at the heart of several emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies, such as Titan.

  7. Dynamics of Aqueous Foam Drops

    NASA Technical Reports Server (NTRS)

    Akhatov, Iskander; McDaniel, J. Gregory; Holt, R. Glynn

    2001-01-01

    We develop a model for the nonlinear oscillations of spherical drops composed of aqueous foam. Beginning with a simple mixture law, and utilizing a mass-conserving bubble-in-cell scheme, we obtain a Rayleigh-Plesset-like equation for the dynamics of bubbles in a foam mixture. The dispersion relation for sound waves in a bubbly liquid is then coupled with a normal modes expansion to derive expressions for the frequencies of eigenmodal oscillations. These eigenmodal (breathing plus higher-order shape modes) frequencies are elicited as a function of the void fraction of the foam. A Mathieu-like equation is obtained for the dynamics of the higher-order shape modes and their parametric coupling to the breathing mode. The proposed model is used to explain recently obtained experimental data.

  8. Critical dynamics on a large human Open Connectome network

    NASA Astrophysics Data System (ADS)

    Ódor, Géza

    2016-12-01

    Extended numerical simulations of threshold models have been performed on a human brain network with N =836 733 connected nodes available from the Open Connectome Project. While in the case of simple threshold models a sharp discontinuous phase transition without any critical dynamics arises, variable threshold models exhibit extended power-law scaling regions. This is attributed to fact that Griffiths effects, stemming from the topological or interaction heterogeneity of the network, can become relevant if the input sensitivity of nodes is equalized. I have studied the effects of link directness, as well as the consequence of inhibitory connections. Nonuniversal power-law avalanche size and time distributions have been found with exponents agreeing with the values obtained in electrode experiments of the human brain. The dynamical critical region occurs in an extended control parameter space without the assumption of self-organized criticality.

  9. Overshoot in biological systems modelled by Markov chains: a non-equilibrium dynamic phenomenon.

    PubMed

    Jia, Chen; Qian, Minping; Jiang, Daquan

    2014-08-01

    A number of biological systems can be modelled by Markov chains. Recently, there has been an increasing concern about when biological systems modelled by Markov chains will perform a dynamic phenomenon called overshoot. In this study, the authors found that the steady-state behaviour of the system will have a great effect on the occurrence of overshoot. They showed that overshoot in general cannot occur in systems that will finally approach an equilibrium steady state. They further classified overshoot into two types, named as simple overshoot and oscillating overshoot. They showed that except for extreme cases, oscillating overshoot will occur if the system is far from equilibrium. All these results clearly show that overshoot is a non-equilibrium dynamic phenomenon with energy consumption. In addition, the main result in this study is validated with real experimental data.

  10. Extra permeability is required to model dynamic oxygen measurements: evidence for functional recruitment?

    PubMed Central

    Barrett, Matthew JP; Suresh, Vinod

    2013-01-01

    Neural activation triggers a rapid, focal increase in blood flow and thus oxygen delivery. Local oxygen consumption also increases, although not to the same extent as oxygen delivery. This ‘uncoupling' enables a number of widely-used functional neuroimaging techniques; however, the physiologic mechanisms that govern oxygen transport under these conditions remain unclear. Here, we explore this dynamic process using a new mathematical model. Motivated by experimental observations and previous modeling, we hypothesized that functional recruitment of capillaries has an important role during neural activation. Using conventional mechanisms alone, the model predictions were inconsistent with in vivo measurements of oxygen partial pressure. However, dynamically increasing net capillary permeability, a simple description of functional recruitment, led to predictions consistent with the data. Increasing permeability in all vessel types had the same effect, but two alternative mechanisms were unable to produce predictions consistent with the data. These results are further evidence that conventional models of oxygen transport are not sufficient to predict dynamic experimental data. The data and modeling suggest that it is necessary to include a mechanism that dynamically increases net vascular permeability. While the model cannot distinguish between the different possibilities, we speculate that functional recruitment could have this effect in vivo. PMID:23673433

  11. Structure theorems and the dynamics of nitrogen catabolite repression in yeast

    PubMed Central

    Boczko, Erik M.; Cooper, Terrance G.; Gedeon, Tomas; Mischaikow, Konstantin; Murdock, Deborah G.; Pratap, Siddharth; Wells, K. Sam

    2005-01-01

    By using current biological understanding, a conceptually simple, but mathematically complex, model is proposed for the dynamics of the gene circuit responsible for regulating nitrogen catabolite repression (NCR) in yeast. A variety of mathematical “structure” theorems are described that allow one to determine the asymptotic dynamics of complicated systems under very weak hypotheses. It is shown that these theorems apply to several subcircuits of the full NCR circuit, most importantly to the URE2–GLN3 subcircuit that is independent of the other constituents but governs the switching behavior of the full NCR circuit under changes in nitrogen source. Under hypotheses that are fully consistent with biological data, it is proven that the dynamics of this subcircuit is simple periodic behavior in synchrony with the cell cycle. Although the current mathematical structure theorems do not apply to the full NCR circuit, extensive simulations suggest that the dynamics is constrained in much the same way as that of the URE2–GLN3 subcircuit. This finding leads to the proposal that mathematicians study genetic circuits to find new geometries for which structure theorems may exist. PMID:15814615

  12. Dynamics of prebiotic RNA reproduction illuminated by chemical game theory

    PubMed Central

    Yeates, Jessica A. M.; Hilbe, Christian; Zwick, Martin; Nowak, Martin A.; Lehman, Niles

    2016-01-01

    Many origins-of-life scenarios depict a situation in which there are common and potentially scarce resources needed by molecules that compete for survival and reproduction. The dynamics of RNA assembly in a complex mixture of sequences is a frequency-dependent process and mimics such scenarios. By synthesizing Azoarcus ribozyme genotypes that differ in their single-nucleotide interactions with other genotypes, we can create molecules that interact among each other to reproduce. Pairwise interplays between RNAs involve both cooperation and selfishness, quantifiable in a 2 × 2 payoff matrix. We show that a simple model of differential equations based on chemical kinetics accurately predicts the outcomes of these molecular competitions using simple rate inputs into these matrices. In some cases, we find that mixtures of different RNAs reproduce much better than each RNA type alone, reflecting a molecular form of reciprocal cooperation. We also demonstrate that three RNA genotypes can stably coexist in a rock–paper–scissors analog. Our experiments suggest a new type of evolutionary game dynamics, called prelife game dynamics or chemical game dynamics. These operate without template-directed replication, illustrating how small networks of RNAs could have developed and evolved in an RNA world. PMID:27091972

  13. Dynamics of prebiotic RNA reproduction illuminated by chemical game theory.

    PubMed

    Yeates, Jessica A M; Hilbe, Christian; Zwick, Martin; Nowak, Martin A; Lehman, Niles

    2016-05-03

    Many origins-of-life scenarios depict a situation in which there are common and potentially scarce resources needed by molecules that compete for survival and reproduction. The dynamics of RNA assembly in a complex mixture of sequences is a frequency-dependent process and mimics such scenarios. By synthesizing Azoarcus ribozyme genotypes that differ in their single-nucleotide interactions with other genotypes, we can create molecules that interact among each other to reproduce. Pairwise interplays between RNAs involve both cooperation and selfishness, quantifiable in a 2 × 2 payoff matrix. We show that a simple model of differential equations based on chemical kinetics accurately predicts the outcomes of these molecular competitions using simple rate inputs into these matrices. In some cases, we find that mixtures of different RNAs reproduce much better than each RNA type alone, reflecting a molecular form of reciprocal cooperation. We also demonstrate that three RNA genotypes can stably coexist in a rock-paper-scissors analog. Our experiments suggest a new type of evolutionary game dynamics, called prelife game dynamics or chemical game dynamics. These operate without template-directed replication, illustrating how small networks of RNAs could have developed and evolved in an RNA world.

  14. The finite state projection approach to analyze dynamics of heterogeneous populations

    NASA Astrophysics Data System (ADS)

    Johnson, Rob; Munsky, Brian

    2017-06-01

    Population modeling aims to capture and predict the dynamics of cell populations in constant or fluctuating environments. At the elementary level, population growth proceeds through sequential divisions of individual cells. Due to stochastic effects, populations of cells are inherently heterogeneous in phenotype, and some phenotypic variables have an effect on division or survival rates, as can be seen in partial drug resistance. Therefore, when modeling population dynamics where the control of growth and division is phenotype dependent, the corresponding model must take account of the underlying cellular heterogeneity. The finite state projection (FSP) approach has often been used to analyze the statistics of independent cells. Here, we extend the FSP analysis to explore the coupling of cell dynamics and biomolecule dynamics within a population. This extension allows a general framework with which to model the state occupations of a heterogeneous, isogenic population of dividing and expiring cells. The method is demonstrated with a simple model of cell-cycle progression, which we use to explore possible dynamics of drug resistance phenotypes in dividing cells. We use this method to show how stochastic single-cell behaviors affect population level efficacy of drug treatments, and we illustrate how slight modifications to treatment regimens may have dramatic effects on drug efficacy.

  15. Complexity of life via collective mind

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2004-01-01

    e mind is introduced as a set of simple intelligent units (say, neurons, or interacting agents), which can communicate by exchange of information without explicit global control. Incomplete information is compensated by a sequence of random guesses symmetrically distributed around expectations with prescribed variances. Both the expectations and variances are the invariants characterizing the whole class of agents. These invariants are stored as parameters of the collective mind, while they contribute into dynamical formalism of the agents' evolution, and in particular, into the reflective chains of their nested abstract images of the selves and non-selves. The proposed model consists of the system of stochastic differential equations in the Langevin form representing the motor dynamics, and the corresponding Fokker-Planck equation representing the mental dynamics (Motor dynamics describes the motion in physical space, while mental dynamics simulates the evolution of initial errors in terms of the probability density). The main departure of this model from Newtonian and statistical physics is due to a feedback from the mental to the motor dynamics which makes the Fokker-Planck equation nonlinear. Interpretation of this model from mathematical and physical viewpoints, as well as possible interpretation from biological, psychological, and social viewpoints are discussed. The model is illustrated by the dynamics of a dialog.

  16. Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications

    NASA Astrophysics Data System (ADS)

    Ali, Asghar; Seadawy, Aly R.; Lu, Dianchen

    2018-05-01

    The aim of this article is to construct some new traveling wave solutions and investigate localized structures for fourth-order nonlinear Ablowitz-Kaup-Newell-Segur (AKNS) water wave dynamical equation. The simple equation method (SEM) and the modified simple equation method (MSEM) are applied in this paper to construct the analytical traveling wave solutions of AKNS equation. The different waves solutions are derived by assigning special values to the parameters. The obtained results have their importance in the field of physics and other areas of applied sciences. All the solutions are also graphically represented. The constructed results are often helpful for studying several new localized structures and the waves interaction in the high-dimensional models.

  17. Addressing population heterogeneity and distribution in epidemics models using a cellular automata approach

    PubMed Central

    2014-01-01

    Background The spread of an infectious disease is determined by biological and social factors. Models based on cellular automata are adequate to describe such natural systems consisting of a massive collection of simple interacting objects. They characterize the time evolution of the global system as the emergent behaviour resulting from the interaction of the objects, whose behaviour is defined through a set of simple rules that encode the individual behaviour and the transmission dynamic. Methods An epidemic is characterized trough an individual–based–model built upon cellular automata. In the proposed model, each individual of the population is represented by a cell of the automata. This way of modeling an epidemic situation allows to individually define the characteristic of each individual, establish different scenarios and implement control strategies. Results A cellular automata model to study the time evolution of a heterogeneous populations through the various stages of disease was proposed, allowing the inclusion of individual heterogeneity, geographical characteristics and social factors that determine the dynamic of the desease. Different assumptions made to built the classical model were evaluated, leading to following results: i) for low contact rate (like in quarantine process or low density population areas) the number of infective individuals is lower than other areas where the contact rate is higher, and ii) for different initial spacial distributions of infected individuals different epidemic dynamics are obtained due to its influence on the transition rate and the reproductive ratio of disease. Conclusions The contact rate and spatial distributions have a central role in the spread of a disease. For low density populations the spread is very low and the number of infected individuals is lower than in highly populated areas. The spacial distribution of the population and the disease focus as well as the geographical characteristic of the area play a central role in the dynamics of the desease. PMID:24725804

  18. Addressing population heterogeneity and distribution in epidemics models using a cellular automata approach.

    PubMed

    López, Leonardo; Burguerner, Germán; Giovanini, Leonardo

    2014-04-12

    The spread of an infectious disease is determined by biological and social factors. Models based on cellular automata are adequate to describe such natural systems consisting of a massive collection of simple interacting objects. They characterize the time evolution of the global system as the emergent behaviour resulting from the interaction of the objects, whose behaviour is defined through a set of simple rules that encode the individual behaviour and the transmission dynamic. An epidemic is characterized trough an individual-based-model built upon cellular automata. In the proposed model, each individual of the population is represented by a cell of the automata. This way of modeling an epidemic situation allows to individually define the characteristic of each individual, establish different scenarios and implement control strategies. A cellular automata model to study the time evolution of a heterogeneous populations through the various stages of disease was proposed, allowing the inclusion of individual heterogeneity, geographical characteristics and social factors that determine the dynamic of the desease. Different assumptions made to built the classical model were evaluated, leading to following results: i) for low contact rate (like in quarantine process or low density population areas) the number of infective individuals is lower than other areas where the contact rate is higher, and ii) for different initial spacial distributions of infected individuals different epidemic dynamics are obtained due to its influence on the transition rate and the reproductive ratio of disease. The contact rate and spatial distributions have a central role in the spread of a disease. For low density populations the spread is very low and the number of infected individuals is lower than in highly populated areas. The spacial distribution of the population and the disease focus as well as the geographical characteristic of the area play a central role in the dynamics of the desease.

  19. Probabilistic inference of ecohydrological parameters using observations from point to satellite scales

    NASA Astrophysics Data System (ADS)

    Bassiouni, Maoya; Higgins, Chad W.; Still, Christopher J.; Good, Stephen P.

    2018-06-01

    Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash-Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from < 1 to 15 %. The parameter identifiability was not significantly improved in the more complex seasonal model; however, small differences in parameter values indicate that the annual model may have absorbed dry season dynamics. Parameter estimates were most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted ecohydrological parameters of interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in ecohydrology and provides a simple framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent with soil moisture observations.

  20. Integrating Thermodynamic Models in Geodynamic Simulations: The Example of the Community Software ASPECT

    NASA Astrophysics Data System (ADS)

    Dannberg, J.; Heister, T.; Grove, R. R.; Gassmoeller, R.; Spiegelman, M. W.; Bangerth, W.

    2017-12-01

    Earth's surface shows many features whose genesis can only be understood through the interplay of geodynamic and thermodynamic models. This is particularly important in the context of melt generation and transport: Mantle convection determines the distribution of temperature and chemical composition, the melting process itself is then controlled by the thermodynamic relations and in turn influences the properties and the transport of melt. Here, we present our extension of the community geodynamics code ASPECT, which solves the equations of coupled magma/mantle dynamics, and allows to integrate different parametrizations of reactions and phase transitions: They may alternatively be implemented as simple analytical expressions, look-up tables, or computed by a thermodynamics software. As ASPECT uses a variety of numerical methods and solvers, this also gives us the opportunity to compare different approaches of modelling the melting process. In particular, we will elaborate on the spatial and temporal resolution that is required to accurately model phase transitions, and show the potential of adaptive mesh refinement when applied to melt generation and transport. We will assess the advantages and disadvantages of iterating between fluid dynamics and chemical reactions derived from thermodynamic models within each time step, or decoupling them, allowing for different time step sizes. Beyond that, we will expand on the functionality required for an interface between computational thermodynamics and fluid dynamics models from the geodynamics side. Finally, using a simple example of melting of a two-phase, two-component system, we compare different time-stepping and solver schemes in terms of accuracy and efficiency, in dependence of the time scales of fluid flow and chemical reactions relative to each other. Our software provides a framework to integrate thermodynamic models in high resolution, 3d simulations of coupled magma/mantle dynamics, and can be used as a tool to study links between physical processes and geochemical signals in the Earth.

  1. The importance of correct specification of tribological parameters in dynamical systems modelling

    NASA Astrophysics Data System (ADS)

    Alaci, S.; Ciornei, F. C.; Romanu, I. C.; Ciornei, M. C.

    2018-01-01

    When modelling the behaviour of dynamical systems, the friction phenomenon cannot be neglected. Dry and fluid friction may occur, but dry friction has more severe effects upon the behaviour of the systems, based on the fact that the introduced discontinuities are more important. In the modelling of dynamical systems, dry friction is the main cause of occurrence of the bifurcation phenomenon. These aspects become more complex if, in the case of dry friction, static and dynamic frictions are put forward. The behaviour of a simple dynamical system is studied, consisting in a prismatic body linked to the ground by a spring, placed on a conveyor belt. The theoretical model is described by a nonlinear differential equation which after numerical integration leads to the conclusion that the steady motion of the prism is an un-damped oscillatory motion. The system was qualitatively modelled using specialised software for dynamical analysis. It was impractical to obtain a steady uniform translational motion of a rigid, therefore the conveyor belt was replaced by a metallic disc in uniform rotation motion. The attempts to compare the CAD model to the theoretical model were unsuccessful because the efforts of selecting the tribological parameters directed to the conclusion that the motion of the prism is a damped oscillation. To decide which of the methods depicts reality, a test-rig was assembled and it indicated a sustained oscillation. The conclusion is that the model employed by the dynamical analysis software cannot describe the actual model and a more complex model is required in the description of the friction phenomenon.

  2. A Lagrangian subgrid-scale model with dynamic estimation of Lagrangian time scale for large eddy simulation of complex flows

    NASA Astrophysics Data System (ADS)

    Verma, Aman; Mahesh, Krishnan

    2012-08-01

    The dynamic Lagrangian averaging approach for the dynamic Smagorinsky model for large eddy simulation is extended to an unstructured grid framework and applied to complex flows. The Lagrangian time scale is dynamically computed from the solution and does not need any adjustable parameter. The time scale used in the standard Lagrangian model contains an adjustable parameter θ. The dynamic time scale is computed based on a "surrogate-correlation" of the Germano-identity error (GIE). Also, a simple material derivative relation is used to approximate GIE at different events along a pathline instead of Lagrangian tracking or multi-linear interpolation. Previously, the time scale for homogeneous flows was computed by averaging along directions of homogeneity. The present work proposes modifications for inhomogeneous flows. This development allows the Lagrangian averaged dynamic model to be applied to inhomogeneous flows without any adjustable parameter. The proposed model is applied to LES of turbulent channel flow on unstructured zonal grids at various Reynolds numbers. Improvement is observed when compared to other averaging procedures for the dynamic Smagorinsky model, especially at coarse resolutions. The model is also applied to flow over a cylinder at two Reynolds numbers and good agreement with previous computations and experiments is obtained. Noticeable improvement is obtained using the proposed model over the standard Lagrangian model. The improvement is attributed to a physically consistent Lagrangian time scale. The model also shows good performance when applied to flow past a marine propeller in an off-design condition; it regularizes the eddy viscosity and adjusts locally to the dominant flow features.

  3. Risk-taking behavior in the presence of nonconvex asset dynamics.

    PubMed

    Lybbert, Travis J; Barrett, Christopher B

    2011-01-01

    The growing literature on poverty traps emphasizes the links between multiple equilibria and risk avoidance. However, multiple equilibria may also foster risk-taking behavior by some poor people. We illustrate this idea with a simple analytical model in which people with different wealth and ability endowments make investment and risky activity choices in the presence of known nonconvex asset dynamics. This model underscores a crucial distinction between familiar static concepts of risk aversion and forward-looking dynamic risk responses to nonconvex asset dynamics. Even when unobservable preferences exhibit decreasing absolute risk aversion, observed behavior may suggest that risk aversion actually increases with wealth near perceived dynamic asset thresholds. Although high ability individuals are not immune from poverty traps, they can leverage their capital endowments more effectively than lower ability types and are therefore less likely to take seemingly excessive risks. In general, linkages between behavioral responses and wealth dynamics often seem to run in both directions. Both theoretical and empirical poverty trap research could benefit from making this two-way linkage more explicit.

  4. Universality in survivor distributions: Characterizing the winners of competitive dynamics

    NASA Astrophysics Data System (ADS)

    Luck, J. M.; Mehta, A.

    2015-11-01

    We investigate the survivor distributions of a spatially extended model of competitive dynamics in different geometries. The model consists of a deterministic dynamical system of individual agents at specified nodes, which might or might not survive the predatory dynamics: all stochasticity is brought in by the initial state. Every such initial state leads to a unique and extended pattern of survivors and nonsurvivors, which is known as an attractor of the dynamics. We show that the number of such attractors grows exponentially with system size, so that their exact characterization is limited to only very small systems. Given this, we construct an analytical approach based on inhomogeneous mean-field theory to calculate survival probabilities for arbitrary networks. This powerful (albeit approximate) approach shows how universality arises in survivor distributions via a key concept—the dynamical fugacity. Remarkably, in the large-mass limit, the survivor probability of a node becomes independent of network geometry and assumes a simple form which depends only on its mass and degree.

  5. Approaches for evaluating the effects of bivalve filter feeding on nutrient dynamics in Puget Sound, Washington

    USGS Publications Warehouse

    Konrad, Christopher P.

    2014-01-01

    Marine bivalves such as clams, mussels, and oysters are an important component of the food web, which influence nutrient dynamics and water quality in many estuaries. The role of bivalves in nutrient dynamics and, particularly, the contribution of commercial shellfish activities, are not well understood in Puget Sound, Washington. Numerous approaches have been used in other estuaries to quantify the effects of bivalves on nutrient dynamics, ranging from simple nutrient budgeting to sophisticated numerical models that account for tidal circulation, bioenergetic fluxes through food webs, and biochemical transformations in the water column and sediment. For nutrient management in Puget Sound, it might be possible to integrate basic biophysical indicators (residence time, phytoplankton growth rates, and clearance rates of filter feeders) as a screening tool to identify places where nutrient dynamics and water quality are likely to be sensitive to shellfish density and, then, apply more sophisticated methods involving in-situ measurements and simulation models to quantify those dynamics.

  6. Potential-based dynamical reweighting for Markov state models of protein dynamics.

    PubMed

    Weber, Jeffrey K; Pande, Vijay S

    2015-06-09

    As simulators attempt to replicate the dynamics of large cellular components in silico, problems related to sampling slow, glassy degrees of freedom in molecular systems will be amplified manyfold. It is tempting to augment simulation techniques with external biases to overcome such barriers with ease; biased simulations, however, offer little utility unless equilibrium properties of interest (both kinetic and thermodynamic) can be recovered from the data generated. In this Article, we present a general scheme that harnesses the power of Markov state models (MSMs) to extract equilibrium kinetic properties from molecular dynamics trajectories collected on biased potential energy surfaces. We first validate our reweighting protocol on a simple two-well potential, and we proceed to test our method on potential-biased simulations of the Trp-cage miniprotein. In both cases, we find that equilibrium populations, time scales, and dynamical processes are reliably reproduced as compared to gold standard, unbiased data sets. We go on to discuss the limitations of our dynamical reweighting approach, and we suggest auspicious target systems for further application.

  7. Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Bär, M.; Ebeling, W.; Lindner, B.; Schimansky-Geier, L.

    2012-03-01

    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.

  8. Modeling the electrophoretic separation of short biological molecules in nanofluidic devices

    NASA Astrophysics Data System (ADS)

    Fayad, Ghassan; Hadjiconstantinou, Nicolas

    2010-11-01

    Via comparisons with Brownian Dynamics simulations of the worm-like-chain and rigid-rod models, and the experimental results of Fu et al. [Phys. Rev. Lett., 97, 018103 (2006)], we demonstrate that, for the purposes of low-to-medium field electrophoretic separation in periodic nanofilter arrays, sufficiently short biomolecules can be modeled as point particles, with their orientational degrees of freedom accounted for using partition coefficients. This observation is used in the present work to build a particularly simple and efficient Brownian Dynamics simulation method. Particular attention is paid to the model's ability to quantitatively capture experimental results using realistic values of all physical parameters. A variance-reduction method is developed for efficiently simulating arbitrarily small forcing electric fields.

  9. Flow-induced Flutter of Heart Valves: Experiments with Canonical Models

    NASA Astrophysics Data System (ADS)

    Dou, Zhongwang; Seo, Jung-Hee; Mittal, Rajat

    2017-11-01

    For the better understanding of hemodynamics associated with valvular function in health and disease, the flow-induced flutter of heart valve leaflets is studied using benchtop experiments with canonical valve models. A simple experimental model with flexible leaflets is constructed and a pulsatile pump drives the flow through the leaflets. We quantify the leaflet dynamics using digital image analysis and also characterize the dynamics of the flow around the leaflets using particle imaging velocimetry. Experiments are conducted over a wide range of flow and leaflet parameters and data curated for use as a benchmark for validation of computational fluid-structure interaction models. The authors would like to acknowledge Supported from NSF Grants IIS-1344772, CBET-1511200 and NSF XSEDE Grant TG-CTS100002.

  10. Self-Assembled Magnetic Surface Swimmers: Theoretical Model

    NASA Astrophysics Data System (ADS)

    Aranson, Igor; Belkin, Maxim; Snezhko, Alexey

    2009-03-01

    The mechanisms of self-propulsion of living microorganisms are a fascinating phenomenon attracting enormous attention in the physics community. A new type of self-assembled micro-swimmers, magnetic snakes, is an excellent tool to model locomotion in a simple table-top experiment. The snakes self-assemble from a dispersion of magnetic microparticles suspended on the liquid-air interface and subjected to an alternating magnetic field. Formation and dynamics of these swimmers are captured in the framework of theoretical model coupling paradigm equation for the amplitude of surface waves, conservation law for the density of particles, and the Navier-Stokes equation for hydrodynamic flows. The results of continuum modeling are supported by hybrid molecular dynamics simulations of magnetic particles floating on the surface of fluid.

  11. The Quantum Arnold Transformation for the damped harmonic oscillator: from the Caldirola-Kanai model toward the Bateman model

    NASA Astrophysics Data System (ADS)

    López-Ruiz, F. F.; Guerrero, J.; Aldaya, V.; Cossío, F.

    2012-08-01

    Using a quantum version of the Arnold transformation of classical mechanics, all quantum dynamical systems whose classical equations of motion are non-homogeneous linear second-order ordinary differential equations (LSODE), including systems with friction linear in velocity such as the damped harmonic oscillator, can be related to the quantum free-particle dynamical system. This implies that symmetries and simple computations in the free particle can be exported to the LSODE-system. The quantum Arnold transformation is given explicitly for the damped harmonic oscillator, and an algebraic connection between the Caldirola-Kanai model for the damped harmonic oscillator and the Bateman system will be sketched out.

  12. Use of satellite data and modeling to asses the influence of stratospheric processes on the troposphere

    NASA Technical Reports Server (NTRS)

    Nathan, Terrence R.; Yarger, Douglas N.

    1989-01-01

    The research is comprised of the following tasks: use of simple analytical and numerical models of a coupled troposphere-stratosphere system to examine the effects of radiation and ozone on planetary wave dynamics and the tropospheric circulation; use of satellite data obtained from the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) instrument and Solar Backscattered Ultraviolet (SBUV) experiment, in conjunction with National Meteorological Center (NMC) data, to determine the planetary wave vertical structures, dominant wave spectra, ozone spectra, and time variations in diabatic heating rate; and synthesis of the modeling and observational results to provide a better understanding of the effects that stratospheric processes have on tropospheric dynamics.

  13. A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate.

    PubMed

    Daniels, Charlie J; McLean, Mary A; Schulte, Rolf F; Robb, Fraser J; Gill, Andrew B; McGlashan, Nicholas; Graves, Martin J; Schwaiger, Markus; Lomas, David J; Brindle, Kevin M; Gallagher, Ferdia A

    2016-04-01

    Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  14. Calculation of broadband time histories of ground motion, Part II: Kinematic and dynamic modeling using theoretical Green's functions and comparison with the 1994 northridge earthquake

    USGS Publications Warehouse

    Hartzell, S.; Guatteri, Mariagiovanna; Mai, P.M.; Liu, P.-C.; Fisk, M. R.

    2005-01-01

    In the evolution of methods for calculating synthetic time histories of ground motion for postulated earthquakes, kinematic source models have dominated to date because of their ease of application. Dynamic models, however, which incorporate a physical relationship between important faulting parameters of stress drop, slip, rupture velocity, and rise time, are becoming more accessible. This article compares a class of kinematic models based on the summation of a fractal distribution of subevent sizes with a dynamic model based on the slip-weakening friction law. Kinematic modeling is done for the frequency band 0.2 to 10.0. Hz, dynamic models are calculated from 0.2 to 2.0. Hz. The strong motion data set for the 1994 Northridge earthquake is used to evaluate and compare the synthetic time histories. Source models are propagated to the far field by convolution with 1D and 3D theoretical Green’s functions. In addition, the kinematic model is used to evaluate the importance of propagation path effects: velocity structure, scattering, and nonlinearity. At present, the kinematic model gives a better broadband fit to the Northridge ground motion than the simple slip-weakening dynamic model. In general, the dynamic model overpredicts rise times and produces insufficient shorter-period energy. Within the context of the slip-weakening model, the Northridge ground motion requires a short slip-weakening distance, on the order of 0.15 m or less. A more complex dynamic model including rate weakening or one that allows shorter rise times near the hypocenter may fit the data better.

  15. Generalized Born Models of Macromolecular Solvation Effects

    NASA Astrophysics Data System (ADS)

    Bashford, Donald; Case, David A.

    2000-10-01

    It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.

  16. Nonlinear dynamics in cardiac conduction

    NASA Technical Reports Server (NTRS)

    Kaplan, D. T.; Smith, J. M.; Saxberg, B. E.; Cohen, R. J.

    1988-01-01

    Electrical conduction in the heart shows many phenomena familiar from nonlinear dynamics. Among these phenomena are multiple basins of attraction, phase locking, and perhaps period-doubling bifurcations and chaos. We describe a simple cellular-automation model of electrical conduction which simulates normal conduction patterns in the heart as well as a wide range of disturbances of heart rhythm. In addition, we review the application of percolation theory to the analysis of the development of complex, self-sustaining conduction patterns.

  17. Chaotic Dynamics and Application of LCR Oscillators Sharing Common Nonlinearity

    NASA Astrophysics Data System (ADS)

    Jeevarekha, A.; Paul Asir, M.; Philominathan, P.

    2016-06-01

    This paper addresses the problem of sharing common nonlinearity among nonautonomous and autonomous oscillators. By choosing a suitable common nonlinear element with the driving point characteristics capable of bringing out chaotic motion in a combined system, we obtain identical chaotic states. The dynamics of the coupled system is explored through numerical and experimental studies. Employing the concept of common nonlinearity, a simple chaotic communication system is modeled and its performance is verified through Multisim simulation.

  18. Robot Control Based On Spatial-Operator Algebra

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan

    1992-01-01

    Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily.

  19. Simple stochastic model for El Niño with westerly wind bursts

    PubMed Central

    Thual, Sulian; Majda, Andrew J.; Chen, Nan; Stechmann, Samuel N.

    2016-01-01

    Atmospheric wind bursts in the tropics play a key role in the dynamics of the El Niño Southern Oscillation (ENSO). A simple modeling framework is proposed that summarizes this relationship and captures major features of the observational record while remaining physically consistent and amenable to detailed analysis. Within this simple framework, wind burst activity evolves according to a stochastic two-state Markov switching–diffusion process that depends on the strength of the western Pacific warm pool, and is coupled to simple ocean–atmosphere processes that are otherwise deterministic, stable, and linear. A simple model with this parameterization and no additional nonlinearities reproduces a realistic ENSO cycle with intermittent El Niño and La Niña events of varying intensity and strength as well as realistic buildup and shutdown of wind burst activity in the western Pacific. The wind burst activity has a direct causal effect on the ENSO variability: in particular, it intermittently triggers regular El Niño or La Niña events, super El Niño events, or no events at all, which enables the model to capture observed ENSO statistics such as the probability density function and power spectrum of eastern Pacific sea surface temperatures. The present framework provides further theoretical and practical insight on the relationship between wind burst activity and the ENSO. PMID:27573821

  20. Dynamic analysis and control of lightweight manipulators with flexible parallel link mechanisms

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1991-01-01

    The flexible parallel link mechanism is designed for increased rigidity to sustain the buckling when it carries a heavy payload. Compared to a one link flexible manipulator, a two link flexible manipulator, especially the flexible parallel mechanism, has more complicated characteristics in dynamics and control. The objective of this research is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model. The step response of the analytical model and the TREETOPS model match each other well. The nonlinear dynamics is studied using a sinusoidal excitation. The actuator dynamic effect on a flexible robot was investigated. The effects are explained by the root loci and the Bode plot theoretically and experimentally. For the base performance for the advanced control scheme, a simple decoupled feedback scheme is applied.

  1. Emulation of the MBM-MEDUSA model: exploring the sea level and the basin-to-shelf transfer influence on the system dynamics

    NASA Astrophysics Data System (ADS)

    Ermakov, Ilya; Crucifix, Michel; Munhoven, Guy

    2013-04-01

    Complex climate models require high computational burden. However, computational limitations may be avoided by using emulators. In this work we present several approaches for dynamical emulation (also called metamodelling) of the Multi-Box Model (MBM) coupled to the Model of Early Diagenesis in the Upper Sediment A (MEDUSA) that simulates the carbon cycle of the ocean and atmosphere [1]. We consider two experiments performed on the MBM-MEDUSA that explore the Basin-to-Shelf Transfer (BST) dynamics. In both experiments the sea level is varied according to a paleo sea level reconstruction. Such experiments are interesting because the BST is an important cause of the CO2 variation and the dynamics is potentially nonlinear. The output that we are interested in is the variation of the carbon dioxide partial pressure in the atmosphere over the Pleistocene. The first experiment considers that the BST is fixed constant during the simulation. In the second experiment the BST is interactively adjusted according to the sea level, since the sea level is the primary control of the growth and decay of coral reefs and other shelf carbon reservoirs. The main aim of the present contribution is to create a metamodel of the MBM-MEDUSA using the Dynamic Emulation Modelling methodology [2] and compare the results obtained using linear and non-linear methods. The first step in the emulation methodology used in this work is to identify the structure of the metamodel. In order to select an optimal approach for emulation we compare the results of identification obtained by the simple linear and more complex nonlinear models. In order to identify the metamodel in the first experiment the simple linear regression and the least-squares method is sufficient to obtain a 99,9% fit between the temporal outputs of the model and the metamodel. For the second experiment the MBM's output is highly nonlinear. In this case we apply nonlinear models, such as, NARX, Hammerstein model, and an 'ad-hoc' switching model. After the identification we perform the parameter mapping using spline interpolation and validate the emulator on a new set of parameters. References: [1] G. Munhoven, "Glacial-interglacial rain ratio changes: Implications for atmospheric CO2 and ocean-sediment interaction," Deep-Sea Res Pt II, vol. 54, pp. 722-746, 2007. [2] A. Castelletti et al., "A general framework for Dynamic Emulation Modelling in environmental problems," Environ Modell Softw, vol. 34, pp. 5-18, 2012.

  2. Deducing Electronic Unit Internal Response During a Vibration Test Using a Lumped Parameter Modeling Approach

    NASA Technical Reports Server (NTRS)

    Van Dyke, Michael B.

    2014-01-01

    During random vibration testing of electronic boxes there is often a desire to know the dynamic response of certain internal printed wiring boards (PWBs) for the purpose of monitoring the response of sensitive hardware or for post-test forensic analysis in support of anomaly investigation. Due to restrictions on internally mounted accelerometers for most flight hardware there is usually no means to empirically observe the internal dynamics of the unit, so one must resort to crude and highly uncertain approximations. One common practice is to apply Miles Equation, which does not account for the coupled response of the board in the chassis, resulting in significant over- or under-prediction. This paper explores the application of simple multiple-degree-of-freedom lumped parameter modeling to predict the coupled random vibration response of the PWBs in their fundamental modes of vibration. A simple tool using this approach could be used during or following a random vibration test to interpret vibration test data from a single external chassis measurement to deduce internal board dynamics by means of a rapid correlation analysis. Such a tool might also be useful in early design stages as a supplemental analysis to a more detailed finite element analysis to quickly prototype and analyze the dynamics of various design iterations. After developing the theoretical basis, a lumped parameter modeling approach is applied to an electronic unit for which both external and internal test vibration response measurements are available for direct comparison. Reasonable correlation of the results demonstrates the potential viability of such an approach. Further development of the preliminary approach presented in this paper will involve correlation with detailed finite element models and additional relevant test data.

  3. Modeling and Control of Airport Queueing Dynamics under Severe Flow Restrictions

    NASA Technical Reports Server (NTRS)

    Carr, Francis; Evans, Antony; Clarke, John-Paul; Deron, Eric

    2003-01-01

    Based on field observations and interviews with controllers at BOS and EWR, we identify the closure of local departure fixes as the most severe class of airport departure restrictions. A set of simple queueing dynamics and traffic rules are developed to model departure traffic under such restrictions. The validity of the proposed model is tested via Monte Carlo simulation against 10 hours of actual operations data collected during a case-study at EWR on June 29,2000. In general, the model successfully reproduces the aggregate departure congestion. An analysis of the average error over 40 simulation runs indicates that flow-rate restrictions also significantly impact departure traffic; work is underway to capture these effects. Several applications and what-if scenarios are discussed for future evaluation using the calibrated model.

  4. Improving Memory for Optimization and Learning in Dynamic Environments

    DTIC Science & Technology

    2011-07-01

    algorithm uses simple, in- cremental clustering to separate solutions into memory entries. The cluster centers are used as the models in the memory. This is...entire days of traffic with realistic traffic de - mands and turning ratios on a 32 intersection network modeled on downtown Pittsburgh, Pennsyl- vania...early/tardy problem. Management Science, 35(2):177–191, 1989. [78] Daniel Parrott and Xiaodong Li. A particle swarm model for tracking multiple peaks in

  5. Associative memory in phasing neuron networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, Niketh S; Bochove, Erik J.; Braiman, Yehuda

    2014-01-01

    We studied pattern formation in a network of coupled Hindmarsh-Rose model neurons and introduced a new model for associative memory retrieval using networks of Kuramoto oscillators. Hindmarsh-Rose Neural Networks can exhibit a rich set of collective dynamics that can be controlled by their connectivity. Specifically, we showed an instance of Hebb's rule where spiking was correlated with network topology. Based on this, we presented a simple model of associative memory in coupled phase oscillators.

  6. A Novel Shape Parameterization Approach

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1999-01-01

    This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.

  7. Ultrasensitive dual phosphorylation dephosphorylation cycle kinetics exhibits canonical competition behavior

    NASA Astrophysics Data System (ADS)

    Huang, Qingdao; Qian, Hong

    2009-09-01

    We establish a mathematical model for a cellular biochemical signaling module in terms of a planar differential equation system. The signaling process is carried out by two phosphorylation-dephosphorylation reaction steps that share common kinase and phosphatase with saturated enzyme kinetics. The pair of equations is particularly simple in the present mathematical formulation, but they are singular. A complete mathematical analysis is developed based on an elementary perturbation theory. The dynamics exhibits the canonical competition behavior in addition to bistability. Although widely understood in ecological context, we are not aware of a full range of biochemical competition in a simple signaling network. The competition dynamics has broad implications to cellular processes such as cell differentiation and cancer immunoediting. The concepts of homogeneous and heterogeneous multisite phosphorylation are introduced and their corresponding dynamics are compared: there is no bistability in a heterogeneous dual phosphorylation system. A stochastic interpretation is also provided that further gives intuitive understanding of the bistable behavior inside the cells.

  8. The Response of Simple Polymer Structures Under Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Proud, William; Ellison, Kay; Yapp, Su; Cole, Cloe; Galimberti, Stefano; Institute of Shock Physics Team

    2017-06-01

    The dynamic response of polymeric materials has been widely studied with the effects of degree of crystallinity, strain rate, temperature and sample size being commonly reported. This study uses a simple PMMA structure, a right cylindrical sample, with structural features such as holes. The features are added an varied in a systematic fashion. Samples were dynamically loaded using a Split Hopkinson Pressure Bar up to failure. The resulting stress-strain curves are presented showing the change in sample response. The strain to failure is shown to increase initially with the presence of holes, while failure stress is relatively unaffected. The fracture patterns seen in the failed samples change, with tensile cracks, Hertzian cones, shear effects being dominant for different holes sizes and geometries. The sample were prepared by laser cutting and checked for residual stress before experiment. The data is used to validate predictive model predictions where material, structure and damage are included.. The Institute of Shock Physics acknowledges the support of Imperial College London and the Atomic Weapons Establishment.

  9. Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in the same manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminate plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling) analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.

  10. Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.

  11. Advanced data assimilation in strongly nonlinear dynamical systems

    NASA Technical Reports Server (NTRS)

    Miller, Robert N.; Ghil, Michael; Gauthiez, Francois

    1994-01-01

    Advanced data assimilation methods are applied to simple but highly nonlinear problems. The dynamical systems studied here are the stochastically forced double well and the Lorenz model. In both systems, linear approximation of the dynamics about the critical points near which regime transitions occur is not always sufficient to track their occurrence or nonoccurrence. Straightforward application of the extended Kalman filter yields mixed results. The ability of the extended Kalman filter to track transitions of the double-well system from one stable critical point to the other depends on the frequency and accuracy of the observations relative to the mean-square amplitude of the stochastic forcing. The ability of the filter to track the chaotic trajectories of the Lorenz model is limited to short times, as is the ability of strong-constraint variational methods. Examples are given to illustrate the difficulties involved, and qualitative explanations for these difficulties are provided. Three generalizations of the extended Kalman filter are described. The first is based on inspection of the innovation sequence, that is, the successive differences between observations and forecasts; it works very well for the double-well problem. The second, an extension to fourth-order moments, yields excellent results for the Lorenz model but will be unwieldy when applied to models with high-dimensional state spaces. A third, more practical method--based on an empirical statistical model derived from a Monte Carlo simulation--is formulated, and shown to work very well. Weak-constraint methods can be made to perform satisfactorily in the context of these simple models, but such methods do not seem to generalize easily to practical models of the atmosphere and ocean. In particular, it is shown that the equations derived in the weak variational formulation are difficult to solve conveniently for large systems.

  12. Tracking of Maneuvering Complex Extended Object with Coupled Motion Kinematics and Extension Dynamics Using Range Extent Measurements

    PubMed Central

    Sun, Lifan; Ji, Baofeng; Lan, Jian; He, Zishu; Pu, Jiexin

    2017-01-01

    The key to successful maneuvering complex extended object tracking (MCEOT) using range extent measurements provided by high resolution sensors lies in accurate and effective modeling of both the extension dynamics and the centroid kinematics. During object maneuvers, the extension dynamics of an object with a complex shape is highly coupled with the centroid kinematics. However, this difficult but important problem is rarely considered and solved explicitly. In view of this, this paper proposes a general approach to modeling a maneuvering complex extended object based on Minkowski sum, so that the coupled turn maneuvers in both the centroid states and extensions can be described accurately. The new model has a concise and unified form, in which the complex extension dynamics can be simply and jointly characterized by multiple simple sub-objects’ extension dynamics based on Minkowski sum. The proposed maneuvering model fits range extent measurements very well due to its favorable properties. Based on this model, an MCEOT algorithm dealing with motion and extension maneuvers is also derived. Two different cases of the turn maneuvers with known/unknown turn rates are specifically considered. The proposed algorithm which jointly estimates the kinematic state and the object extension can also be easily implemented. Simulation results demonstrate the effectiveness of the proposed modeling and tracking approaches. PMID:28937629

  13. Frequency and phase synchronization in large groups: Low dimensional description of synchronized clapping, firefly flashing, and cricket chirping

    NASA Astrophysics Data System (ADS)

    Ott, Edward; Antonsen, Thomas M.

    2017-05-01

    A common observation is that large groups of oscillatory biological units often have the ability to synchronize. A paradigmatic model of such behavior is provided by the Kuramoto model, which achieves synchronization through coupling of the phase dynamics of individual oscillators, while each oscillator maintains a different constant inherent natural frequency. Here we consider the biologically likely possibility that the oscillatory units may be capable of enhancing their synchronization ability by adaptive frequency dynamics. We propose a simple augmentation of the Kuramoto model which does this. We also show that, by the use of a previously developed technique [Ott and Antonsen, Chaos 18, 037113 (2008)], it is possible to reduce the resulting dynamics to a lower dimensional system for the macroscopic evolution of the oscillator ensemble. By employing this reduction, we investigate the dynamics of our system, finding a characteristic hysteretic behavior and enhancement of the quality of the achieved synchronization.

  14. The Problem of Auto-Correlation in Parasitology

    PubMed Central

    Pollitt, Laura C.; Reece, Sarah E.; Mideo, Nicole; Nussey, Daniel H.; Colegrave, Nick

    2012-01-01

    Explaining the contribution of host and pathogen factors in driving infection dynamics is a major ambition in parasitology. There is increasing recognition that analyses based on single summary measures of an infection (e.g., peak parasitaemia) do not adequately capture infection dynamics and so, the appropriate use of statistical techniques to analyse dynamics is necessary to understand infections and, ultimately, control parasites. However, the complexities of within-host environments mean that tracking and analysing pathogen dynamics within infections and among hosts poses considerable statistical challenges. Simple statistical models make assumptions that will rarely be satisfied in data collected on host and parasite parameters. In particular, model residuals (unexplained variance in the data) should not be correlated in time or space. Here we demonstrate how failure to account for such correlations can result in incorrect biological inference from statistical analysis. We then show how mixed effects models can be used as a powerful tool to analyse such repeated measures data in the hope that this will encourage better statistical practices in parasitology. PMID:22511865

  15. Dynamic effects of memory in a cobweb model with competing technologies

    NASA Astrophysics Data System (ADS)

    Agliari, Anna; Naimzada, Ahmad; Pecora, Nicolò

    2017-02-01

    We analyze a simple model based on the cobweb demand-supply framework with costly innovators and free imitators and study the endogenous dynamics of price and firms' fractions in a homogeneous good market. The evolutionary selection between technologies depends on a performance measure in which a memory parameter is introduced. The resulting dynamics is then described by a two-dimensional map. In addition to the locally stabilizing effect due to the presence of memory, we show the existence of a double stability threshold which entails for different dynamic scenarios occurring when the memory parameter takes extreme values (i.e. when consideration of the last profit realization prevails or it is too much neglected). The eventuality of different coexisting attractors as well as the structure of the basins of attraction that characterizes the path dependence property of the model with memory is shown. In particular, through global analysis we also illustrate particular bifurcations sequences that may increase the complexity of the related basins of attraction.

  16. Impact of the glass transition on exciton dynamics in polymer thin films

    NASA Astrophysics Data System (ADS)

    Ehrenreich, Philipp; Proepper, Daniel; Graf, Alexander; Jores, Stefan; Boris, Alexander V.; Schmidt-Mende, Lukas

    2017-11-01

    In the development of organic electronics, unlimited design possibilities of conjugated polymers offer a wide variety of mechanical and electronic properties. Thereby, it is crucially important to reveal universal physical characteristics that allow efficient and forward developments of new chemical compounds. In particular for organic solar cells, a deeper understanding of exciton dynamics in polymer films can help to improve the charge generation process further. For this purpose, poly(3-hexylthiophene) (P3HT) is commonly used as a model system, although exciton decay kinetics have found different interpretations. Using temperature-dependent time-resolved photoluminescence spectroscopy in combination with low-temperature spectroscopic ellipsometry, we can show that P3HT is indeed a model system in which excitons follow a simple diffusion/hopping model. Based on our results we can exclude the relevance of hot-exciton emission as well as a dynamic torsional relaxation upon photoexcitation on a ps time scale. Instead, we depict the glass transition temperature of polymers to strongly affect exciton dynamics.

  17. Compliant leg behaviour explains basic dynamics of walking and running

    PubMed Central

    Geyer, Hartmut; Seyfarth, Andre; Blickhan, Reinhard

    2006-01-01

    The basic mechanics of human locomotion are associated with vaulting over stiff legs in walking and rebounding on compliant legs in running. However, while rebounding legs well explain the stance dynamics of running, stiff legs cannot reproduce that of walking. With a simple bipedal spring–mass model, we show that not stiff but compliant legs are essential to obtain the basic walking mechanics; incorporating the double support as an essential part of the walking motion, the model reproduces the characteristic stance dynamics that result in the observed small vertical oscillation of the body and the observed out-of-phase changes in forward kinetic and gravitational potential energies. Exploring the parameter space of this model, we further show that it not only combines the basic dynamics of walking and running in one mechanical system, but also reveals these gaits to be just two out of the many solutions to legged locomotion offered by compliant leg behaviour and accessed by energy or speed. PMID:17015312

  18. Dynamic stability of maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.

    1992-09-01

    Since the occurrence of dynamic instabilities is not acceptable for any commercial maglev systems, it is important to consider the dynamic instability in the development of all maglev systems. This study is to consider the stability of maglev systems based on experimental data, scoping calculations and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on the guideway which consists of double L-shaped aluminum segments attached to a rotating wheel. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev system.

  19. Finite element for rotor/stator interactive forces in general engine dynamic simulation. Part 1: Development of bearing damper element

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Padovan, J.; Fertis, D. G.

    1980-01-01

    A general purpose squeeze-film damper interactive force element was developed, coded into a software package (module) and debugged. This software package was applied to nonliner dynamic analyses of some simple rotor systems. Results for pressure distributions show that the long bearing (end sealed) is a stronger bearing as compared to the short bearing as expected. Results of the nonlinear dynamic analysis, using a four degree of freedom simulation model, showed that the orbit of the rotating shaft increases nonlinearity to fill the bearing clearance as the unbalanced weight increases.

  20. Persistence and stochastic periodicity in the intensity dynamics of a fiber laser during the transition to optical turbulence

    NASA Astrophysics Data System (ADS)

    Carpi, Laura; Masoller, Cristina

    2018-02-01

    Many natural systems display transitions among different dynamical regimes, which are difficult to identify when the data are noisy and high dimensional. A technologically relevant example is a fiber laser, which can display complex dynamical behaviors that involve nonlinear interactions of millions of cavity modes. Here we study the laminar-turbulence transition that occurs when the laser pump power is increased. By applying various data analysis tools to empirical intensity time series we characterize their persistence and demonstrate that at the transition temporal correlations can be precisely represented by a surprisingly simple model.

Top