A Simple Microsoft Excel Method to Predict Antibiotic Outbreaks and Underutilization.
Miglis, Cristina; Rhodes, Nathaniel J; Avedissian, Sean N; Zembower, Teresa R; Postelnick, Michael; Wunderink, Richard G; Sutton, Sarah H; Scheetz, Marc H
2017-07-01
Benchmarking strategies are needed to promote the appropriate use of antibiotics. We have adapted a simple regressive method in Microsoft Excel that is easily implementable and creates predictive indices. This method trends consumption over time and can identify periods of over- and underuse at the hospital level. Infect Control Hosp Epidemiol 2017;38:860-862.
Note: High temperature pulsed solenoid valve.
Shen, Wei; Sulkes, Mark
2010-01-01
We have developed a high temperature pulsed solenoid valve with reliable long term operation to at least 400 degrees C. As in earlier published designs, a needle extension sealing a heated orifice is lifted via solenoid actuation; the solenoid is thermally isolated from the heated orifice region. In this new implementation, superior sealing and reliability were attained by choosing a solenoid that produces considerably larger lifting forces on the magnetically actuated plunger. It is this property that facilitates easily attainable sealing and reliability, albeit with some tradeoff in attainable gas pulse durations. The cost of the solenoid valve employed is quite low and the necessary machining quite simple. Our ultimate level of sealing was attained by making a simple modification to the polished seal at the needle tip. The same sealing tip modification could easily be applied to one of the earlier high T valve designs, which could improve the attainability and tightness of sealing for these implementations.
Chemical Instrumentation for the Visually Handicapped.
ERIC Educational Resources Information Center
Anderson, James L.
1982-01-01
Describes a simple, relatively inexpensive, and easily implemented approach for introducing visually handicapped students to chemical instrumentation via experiments on operational amplifiers as examples of some of the electronic building blocks of chemical instrumentation. The approach is applicable to other chemical instruments having electrical…
WWWinda Orchestrator: a mechanism for coordinating distributed flocks of Java Applets
NASA Astrophysics Data System (ADS)
Gutfreund, Yechezkal-Shimon; Nicol, John R.
1997-01-01
The WWWinda Orchestrator is a simple but powerful tool for coordinating distributed Java applets. Loosely derived from the Linda programming language developed by David Gelernter and Nicholas Carriero of Yale, WWWinda implements a distributed shared object space called TupleSpace where applets can post, read, or permanently store arbitrary Java objects. In this manner, applets can easily share information without being aware of the underlying communication mechanisms. WWWinda is a very useful for orchestrating flocks of distributed Java applets. Coordination event scan be posted to WWWinda TupleSpace and used to orchestrate the actions of remote applets. Applets can easily share information via the TupleSpace. The technology combines several functions in one simple metaphor: distributed web objects, remote messaging between applets, distributed synchronization mechanisms, object- oriented database, and a distributed event signaling mechanisms. WWWinda can be used a s platform for implementing shared VRML environments, shared groupware environments, controlling remote devices such as cameras, distributed Karaoke, distributed gaming, and shared audio and video experiences.
A simple finite element method for non-divergence form elliptic equation
Mu, Lin; Ye, Xiu
2017-03-01
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for non-divergence form elliptic equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
An operational approach to high resolution agro-ecological zoning in West-Africa.
Le Page, Y; Vasconcelos, Maria; Palminha, A; Melo, I Q; Pereira, J M C
2017-01-01
The objective of this work is to develop a simple methodology for high resolution crop suitability analysis under current and future climate, easily applicable and useful in Least Developed Countries. The approach addresses both regional planning in the context of climate change projections and pre-emptive short-term rural extension interventions based on same-year agricultural season forecasts, while implemented with off-the-shelf resources. The developed tools are applied operationally in a case-study developed in three regions of Guinea-Bissau and the obtained results, as well as the advantages and limitations of methods applied, are discussed. In this paper we show how a simple approach can easily generate information on climate vulnerability and how it can be operationally used in rural extension services.
McLachlan, G J; Bean, R W; Jones, L Ben-Tovim
2006-07-01
An important problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. We provide a straightforward and easily implemented method for estimating the posterior probability that an individual gene is null. The problem can be expressed in a two-component mixture framework, using an empirical Bayes approach. Current methods of implementing this approach either have some limitations due to the minimal assumptions made or with more specific assumptions are computationally intensive. By converting to a z-score the value of the test statistic used to test the significance of each gene, we propose a simple two-component normal mixture that models adequately the distribution of this score. The usefulness of our approach is demonstrated on three real datasets.
QUEST - A Bayesian adaptive psychometric method
NASA Technical Reports Server (NTRS)
Watson, A. B.; Pelli, D. G.
1983-01-01
An adaptive psychometric procedure that places each trial at the current most probable Bayesian estimate of threshold is described. The procedure takes advantage of the common finding that the human psychometric function is invariant in form when expressed as a function of log intensity. The procedure is simple, fast, and efficient, and may be easily implemented on any computer.
A distributed Clips implementation: dClips
NASA Technical Reports Server (NTRS)
Li, Y. Philip
1993-01-01
A distributed version of the Clips language, dClips, was implemented on top of two existing generic distributed messaging systems to show that: (1) it is easy to create a coarse-grained parallel programming environment out of an existing language if a high level messaging system is used; and (2) the computing model of a parallel programming environment can be changed easily if we change the underlying messaging system. dClips processes were first connected with a simple master-slave model. A client-server model with intercommunicating agents was later implemented. The concept of service broker is being investigated.
A simple photoionization scheme for characterizing electron and ion spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wituschek, A.; Vangerow, J. von; Grzesiak, J.
We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ∼1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.
VLSI architectures for computing multiplications and inverses in GF(2m)
NASA Technical Reports Server (NTRS)
Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.
1985-01-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
VLSI architectures for computing multiplications and inverses in GF(2-m)
NASA Technical Reports Server (NTRS)
Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.; Reed, I. S.
1983-01-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
VLSI architectures for computing multiplications and inverses in GF(2m).
Wang, C C; Truong, T K; Shao, H M; Deutsch, L J; Omura, J K; Reed, I S
1985-08-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that can be easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. In this paper, a pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal basis representation used together with this multiplier, a pipeline architecture is developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable, and therefore, naturally suitable for VLSI implementation.
Metis: A Pure Metropolis Markov Chain Monte Carlo Bayesian Inference Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, Cameron Russell; Mckigney, Edward Allen
The use of Bayesian inference in data analysis has become the standard for large scienti c experiments [1, 2]. The Monte Carlo Codes Group(XCP-3) at Los Alamos has developed a simple set of algorithms currently implemented in C++ and Python to easily perform at-prior Markov Chain Monte Carlo Bayesian inference with pure Metropolis sampling. These implementations are designed to be user friendly and extensible for customization based on speci c application requirements. This document describes the algorithmic choices made and presents two use cases.
ERIC Educational Resources Information Center
Cooper, Richard P.; Shallice, Tim
2006-01-01
M. Botvinick and D. C. Plaut (see record 2006-12689-009) argued that many of the criticisms of their earlier simple recurrent network (SRN) model of routine sequential action raised by R. P. Cooper and T. Shallice (see record 2006-12689-008) were criticisms of the specific implementation rather than criticisms of the underlying theory. Cooper and…
Brown, A M
2001-06-01
The objective of this present study was to introduce a simple, easily understood method for carrying out non-linear regression analysis based on user input functions. While it is relatively straightforward to fit data with simple functions such as linear or logarithmic functions, fitting data with more complicated non-linear functions is more difficult. Commercial specialist programmes are available that will carry out this analysis, but these programmes are expensive and are not intuitive to learn. An alternative method described here is to use the SOLVER function of the ubiquitous spreadsheet programme Microsoft Excel, which employs an iterative least squares fitting routine to produce the optimal goodness of fit between data and function. The intent of this paper is to lead the reader through an easily understood step-by-step guide to implementing this method, which can be applied to any function in the form y=f(x), and is well suited to fast, reliable analysis of data in all fields of biology.
Using Spatial Correlations of SPDC Sources for Increasing the Signal to Noise Ratio in Images
NASA Astrophysics Data System (ADS)
Ruíz, A. I.; Caudillo, R.; Velázquez, V. M.; Barrios, E.
2017-05-01
We experimentally show that, by using spatial correlations of photon pairs produced by Spontaneous Parametric Down-Conversion, it is possible to increase the Signal to Noise Ratio in images of objects illuminated with those photons; in comparison, objects illuminated with light from a laser present a minor ratio. Our simple experimental set-up was capable to produce an average improvement in signal to noise ratio of 11dB of Parametric Down-Converted light over laser light. This simple method can be easily implemented for obtaining high contrast images of faint objects and for transmitting information with low noise.
ERIC Educational Resources Information Center
Winkel, Annette; Schwarz, Stephan
By carefully considering the special characteristics of two small African scientific and technical (S&T) information systems for research and development (R&D), this report defines a simple and straightforward model which can be easily implemented in similar situations with a minimum of external support. The model is designed to build up a…
Carrió, Pau; López, Oriol; Sanz, Ferran; Pastor, Manuel
2015-01-01
Computational models based in Quantitative-Structure Activity Relationship (QSAR) methodologies are widely used tools for predicting the biological properties of new compounds. In many instances, such models are used as a routine in the industry (e.g. food, cosmetic or pharmaceutical industry) for the early assessment of the biological properties of new compounds. However, most of the tools currently available for developing QSAR models are not well suited for supporting the whole QSAR model life cycle in production environments. We have developed eTOXlab; an open source modeling framework designed to be used at the core of a self-contained virtual machine that can be easily deployed in production environments, providing predictions as web services. eTOXlab consists on a collection of object-oriented Python modules with methods mapping common tasks of standard modeling workflows. This framework allows building and validating QSAR models as well as predicting the properties of new compounds using either a command line interface or a graphic user interface (GUI). Simple models can be easily generated by setting a few parameters, while more complex models can be implemented by overriding pieces of the original source code. eTOXlab benefits from the object-oriented capabilities of Python for providing high flexibility: any model implemented using eTOXlab inherits the features implemented in the parent model, like common tools and services or the automatic exposure of the models as prediction web services. The particular eTOXlab architecture as a self-contained, portable prediction engine allows building models with confidential information within corporate facilities, which can be safely exported and used for prediction without disclosing the structures of the training series. The software presented here provides full support to the specific needs of users that want to develop, use and maintain predictive models in corporate environments. The technologies used by eTOXlab (web services, VM, object-oriented programming) provide an elegant solution to common practical issues; the system can be installed easily in heterogeneous environments and integrates well with other software. Moreover, the system provides a simple and safe solution for building models with confidential structures that can be shared without disclosing sensitive information.
Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions
Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel
2011-01-01
Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment – by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots. PMID:21980274
Smart swarms of bacteria-inspired agents with performance adaptable interactions.
Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel
2011-09-01
Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.
EasyKSORD: A Platform of Keyword Search Over Relational Databases
NASA Astrophysics Data System (ADS)
Peng, Zhaohui; Li, Jing; Wang, Shan
Keyword Search Over Relational Databases (KSORD) enables casual users to use keyword queries (a set of keywords) to search relational databases just like searching the Web, without any knowledge of the database schema or any need of writing SQL queries. Based on our previous work, we design and implement a novel KSORD platform named EasyKSORD for users and system administrators to use and manage different KSORD systems in a novel and simple manner. EasyKSORD supports advanced queries, efficient data-graph-based search engines, multiform result presentations, and system logging and analysis. Through EasyKSORD, users can search relational databases easily and read search results conveniently, and system administrators can easily monitor and analyze the operations of KSORD and manage KSORD systems much better.
NASA Technical Reports Server (NTRS)
Miller, Christopher J.
2011-01-01
A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.
Emission computerized axial tomography from multiple gamma-camera views using frequency filtering.
Pelletier, J L; Milan, C; Touzery, C; Coitoux, P; Gailliard, P; Budinger, T F
1980-01-01
Emission computerized axial tomography is achievable in any nuclear medicine department from multiple gamma camera views. Data are collected by rotating the patient in front of the camera. A simple fast algorithm is implemented, known as the convolution technique: first the projection data are Fourier transformed and then an original filter designed for optimizing resolution and noise suppression is applied; finally the inverse transform of the latter operation is back-projected. This program, which can also take into account the attenuation for single photon events, was executed with good results on phantoms and patients. We think that it can be easily implemented for specific diagnostic problems.
Robot Control Based On Spatial-Operator Algebra
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan
1992-01-01
Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily.
Towards the simplest hydrodynamic lattice-gas model.
Boghosian, Bruce M; Love, Peter J; Meyer, David A
2002-03-15
It has been known since 1986 that it is possible to construct simple lattice-gas cellular automata whose hydrodynamics are governed by the Navier-Stokes equations in two dimensions. The simplest such model heretofore known has six bits of state per site on a triangular lattice. In this work, we demonstrate that it is possible to construct a model with only five bits of state per site on a Kagome lattice. Moreover, the model has a simple, deterministic set of collision rules and is easily implemented on a computer. In this work, we derive the equilibrium distribution function for this lattice-gas automaton and carry out the Chapman-Enskog analysis to determine the form of the Navier-Stokes equations.
A simple white noise analysis of neuronal light responses.
Chichilnisky, E J
2001-05-01
A white noise technique is presented for estimating the response properties of spiking visual system neurons. The technique is simple, robust, efficient and well suited to simultaneous recordings from multiple neurons. It provides a complete and easily interpretable model of light responses even for neurons that display a common form of response nonlinearity that precludes classical linear systems analysis. A theoretical justification of the technique is presented that relies only on elementary linear algebra and statistics. Implementation is described with examples. The technique and the underlying model of neural responses are validated using recordings from retinal ganglion cells, and in principle are applicable to other neurons. Advantages and disadvantages of the technique relative to classical approaches are discussed.
Roughness Measurement of Dental Materials
NASA Astrophysics Data System (ADS)
Shulev, Assen; Roussev, Ilia; Karpuzov, Simeon; Stoilov, Georgi; Ignatova, Detelina; See, Constantin von; Mitov, Gergo
2016-06-01
This paper presents a roughness measurement of zirconia ceramics, widely used for dental applications. Surface roughness variations caused by the most commonly used dental instruments for intraoral grinding and polishing are estimated. The applied technique is simple and utilizes the speckle properties of the scattered laser light. It could be easily implemented even in dental clinic environment. The main criteria for roughness estimation is the average speckle size, which varies with the roughness of zirconia. The algorithm used for the speckle size estimation is based on the normalized autocorrelation approach.
A multi-resolution approach for optimal mass transport
NASA Astrophysics Data System (ADS)
Dominitz, Ayelet; Angenent, Sigurd; Tannenbaum, Allen
2007-09-01
Optimal mass transport is an important technique with numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Motivated by certain problems in image registration and medical image visualization, in this note, we describe a simple gradient descent methodology for computing the optimal L2 transport mapping which may be easily implemented using a multiresolution scheme. We also indicate how the optimal transport map may be computed on the sphere. A numerical example is presented illustrating our ideas.
Pistorio, Salvatore G; Nigudkar, Swati S; Stine, Keith J; Demchenko, Alexei V
2016-10-07
The development of a useful methodology for simple, scalable, and transformative automation of oligosaccharide synthesis that easily interfaces with existing methods is reported. The automated synthesis can now be performed using accessible equipment where the reactants and reagents are delivered by the pump or the autosampler and the reactions can be monitored by the UV detector. The HPLC-based platform for automation is easy to setup and adapt to different systems and targets.
Elements of a next generation time-series ASCII data file format for Earth Sciences
NASA Astrophysics Data System (ADS)
Webster, C. J.
2015-12-01
Data in ASCII comma separated value (CSV) format are recognized as the most simple, straightforward and readable type of data present in the geosciences. Many scientific workflows developed over the years rely on data using this simple format. However, there is a need for a lightweight ASCII header format standard that is easy to create and easy to work with. Current OGC grade XML standards are complex and difficult to implement for researchers with few resources. Ideally, such a format should provide the data in CSV for easy consumption by generic applications such as spreadsheets. The format should use an existing time standard. The header should be easily human readable as well as machine parsable. The metadata format should be extendable to allow vocabularies to be adopted as they are created by external standards bodies. The creation of such a format will increase the productivity of software engineers and scientists because fewer translators and checkers would be required. Data in ASCII comma separated value (CSV) format are recognized as the most simple, straightforward and readable type of data present in the geosciences. Many scientific workflows developed over the years rely on data using this simple format. However, there is a need for a lightweight ASCII header format standard that is easy to create and easy to work with. Current OGC grade XML standards are complex and difficult to implement for researchers with few resources. Ideally, such a format would provide the data in CSV for easy consumption by generic applications such as spreadsheets. The format would use existing time standard. The header would be easily human readable as well as machine parsable. The metadata format would be extendable to allow vocabularies to be adopted as they are created by external standards bodies. The creation of such a format would increase the productivity of software engineers and scientists because fewer translators would be required.
Simplified formulae for the estimation of offshore wind turbines clutter on marine radars.
Grande, Olatz; Cañizo, Josune; Angulo, Itziar; Jenn, David; Danoon, Laith R; Guerra, David; de la Vega, David
2014-01-01
The potential impact that offshore wind farms may cause on nearby marine radars should be considered before the wind farm is installed. Strong radar echoes from the turbines may degrade radars' detection capability in the area around the wind farm. Although conventional computational methods provide accurate results of scattering by wind turbines, they are not directly implementable in software tools that can be used to conduct the impact studies. This paper proposes a simple model to assess the clutter that wind turbines may generate on marine radars. This method can be easily implemented in the system modeling software tools for the impact analysis of a wind farm in a real scenario.
Simplified Formulae for the Estimation of Offshore Wind Turbines Clutter on Marine Radars
Grande, Olatz; Cañizo, Josune; Jenn, David; Danoon, Laith R.; Guerra, David
2014-01-01
The potential impact that offshore wind farms may cause on nearby marine radars should be considered before the wind farm is installed. Strong radar echoes from the turbines may degrade radars' detection capability in the area around the wind farm. Although conventional computational methods provide accurate results of scattering by wind turbines, they are not directly implementable in software tools that can be used to conduct the impact studies. This paper proposes a simple model to assess the clutter that wind turbines may generate on marine radars. This method can be easily implemented in the system modeling software tools for the impact analysis of a wind farm in a real scenario. PMID:24782682
Simple wavefront correction framework for two-photon microscopy of in-vivo brain
Galwaduge, P. T.; Kim, S. H.; Grosberg, L. E.; Hillman, E. M. C.
2015-01-01
We present an easily implemented wavefront correction scheme that has been specifically designed for in-vivo brain imaging. The system can be implemented with a single liquid crystal spatial light modulator (LCSLM), which makes it compatible with existing patterned illumination setups, and provides measurable signal improvements even after a few seconds of optimization. The optimization scheme is signal-based and does not require exogenous guide-stars, repeated image acquisition or beam constraint. The unconstrained beam approach allows the use of Zernike functions for aberration correction and Hadamard functions for scattering correction. Low order corrections performed in mouse brain were found to be valid up to hundreds of microns away from the correction location. PMID:26309763
NASA Astrophysics Data System (ADS)
Pope, Sandi R.; Tolleson, Tonya D.; Williams, R. Jill; Underhill, Russell D.; Deal, S. Todd
1998-06-01
At Georgia Southern University, we offer a sophomore-level introductory biochemistry course that is aimed at nutrition and chemistry education majors. The laboratory portion of this course has long lacked an experimental introduction to enzymes. We have developed a simple enzyme assay utilizing lactase enzyme from crushed LactAid tablets and a 5% lactose solution ("synthetic milk"). In the experiment, the students assay the activity of the enzyme on the "synthetic milk" at pHs of approximately 1, 6, and 8 with the stated goal of determining where lactose functions in the digestive tract. The activity of the lactase may be followed chromatographically or spectrophotometrically. The experiment, which is actually a simple pH assay, is easily implemented in allied health chemistry laboratory courses and readily lends itself to adaptation for more complex kinetic assays in upper-level biochemistry laboratory courses. The experimental details, including a list of required supplies and hints for implementation, are provided.
A new diode laser acupuncture therapy apparatus
NASA Astrophysics Data System (ADS)
Li, Chengwei; Huang, Zhen; Li, Dongyu; Zhang, Xiaoyuan
2006-06-01
Since the first laser-needles acupuncture apparatus was introduced in therapy, this kind of apparatus has been well used in laser biomedicine as its non-invasive, pain- free, non-bacterium, and safetool. The laser acupuncture apparatus in this paper is based on single-chip microcomputer and associated by semiconductor laser technology. The function like traditional moxibustion including reinforcing and reducing is implemented by applying chaos method to control the duty cycle of moxibustion signal, and the traditional lifting and thrusting of acupuncture is implemented by changing power output of the diode laser. The radiator element of diode laser is made and the drive circuit is designed. And chaos mathematic model is used to produce deterministic class stochastic signal to avoid the body adaptability. This function covers the shortages of continuous irradiation or that of simple disciplinary stimulate signal, which is controlled by some simple electronic circuit and become easily adjusted by human body. The realization of reinforcing and reducing of moxibustion is technological innovation in traditional acupuncture coming true in engineering.
Kuntalp, Mehmet; Akar, Orkun
2004-08-01
In many developing countries including Turkey, telemedicine systems are not in wide use due to the high cost and complexity of the required technology. Lack of these systems however has serious implications on patients who live in rural areas. The objective of this paper is to present a simple and economically affordable alternative to the current systems that would allow experts to easily access the medical data of their remote patients over the Internet. The system is developed in client-server architecture with a user-friendly graphical interface and various services are implemented as dynamic web pages based on PHP. The other key features of the system are its powerful security features and platform independency. An academic prototype is implemented and presented to the evaluation of a group of physicians. The results reveal that the system could find acceptance from the medical community and it could be an effective means of providing quality health care in developing countries.
Robust location of optical fiber modes via the argument principle method
NASA Astrophysics Data System (ADS)
Chen, Parry Y.; Sivan, Yonatan
2017-05-01
We implement a robust, globally convergent root search method for transcendental equations guaranteed to locate all complex roots within a specified search domain, based on Cauchy's residue theorem. Although several implementations of the argument principle already exist, ours has several advantages: it allows singularities within the search domain and branch points are not fatal to the method. Furthermore, our implementation is simple and is written in MATLAB, fulfilling the need for an easily integrated implementation which can be readily modified to accommodate the many variations of the argument principle method, each of which is suited to a different application. We apply the method to the step index fiber dispersion relation, which has become topical due to the recent proliferation of high index contrast fibers. We also find modes with permittivity as the eigenvalue, catering to recent numerical methods that expand the radiation of sources using eigenmodes.
The Implementation of Multiple Lifestyle Interventions in Two Organizations
Engbers, L. H.; Van Empelen, P.; De Moes, K. J.; Wittink, H.; Gründemann, R.; van Mechelen, W.
2014-01-01
Objective: To evaluate the implementation of a multicomponent lifestyle intervention at two different worksites. Methods: Data on eight process components were collected by means of questionnaires and interviews. Data on the effectiveness were collected using questionnaires. Results: The program was implemented partly as planned, and 84.0% (max 25) and 85.7% (max 14) of all planned interventions were delivered at the university and hospital, respectively. Employees showed high reach (96.6%) and overall participation (75.1%) but moderate overall satisfaction rates (6.8 ± 1.1). Significant intervention effects were found for days of fruit consumption (β = 0.44 days/week, 95% CI: 0.02 to 0.85) in favor of the intervention group. Conclusions: The study showed successful reach, dose, and maintenance but moderate fidelity and satisfaction. Mainly relatively simple and easily implemented interventions were chosen, which were effective only in improving employees’ days of fruit consumption. PMID:25376415
Oostenveld, Robert; Fries, Pascal; Maris, Eric; Schoffelen, Jan-Mathijs
2011-01-01
This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages.
A Smartphone App to Assist Scalp Localization of Superficial Supratentorial Lesions--Technical Note.
Eftekhar, Behzad
2016-01-01
Neuronavigation is an established technology in neurosurgery. In parts of the world and certain circumstances in which neuronavigation is not easily available or affordable, alternative techniques may be considered. An app to assist scalp localization of superficial supratentorial lesions has been introduced, and its accuracy has been compared with established neuronavigation systems. Sina is a simple smartphone app that overlaps the transparent patients' computed tomography/magnetic resonance images on the background camera. How to use Sina intraoperatively is described. The app was used for scalp localization of the center of the lesions in 11 patients with supratentorial pathologies <3 cm in longest diameter and <2 cm from the cortex. After localization of the lesion using Sina, the center of the lesion was marked on the scalp using standard neuronavigation systems and the deviations were measured. Implementation of Sina for intraoperative scalp localization is simple and practical. The center of the lesions localized by Sina was 10.2 ± 2 mm different from localization done by standard neuronavigation systems. When neuronavigation is not easily available or affordable, Sina can be helpful for scalp localization and preoperative planning of the incision for selected supratentorial pathologies. Copyright © 2016 Elsevier Inc. All rights reserved.
Bacon, Dave; Flammia, Steven T
2009-09-18
The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. This construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.
FERN - a Java framework for stochastic simulation and evaluation of reaction networks.
Erhard, Florian; Friedel, Caroline C; Zimmer, Ralf
2008-08-29
Stochastic simulation can be used to illustrate the development of biological systems over time and the stochastic nature of these processes. Currently available programs for stochastic simulation, however, are limited in that they either a) do not provide the most efficient simulation algorithms and are difficult to extend, b) cannot be easily integrated into other applications or c) do not allow to monitor and intervene during the simulation process in an easy and intuitive way. Thus, in order to use stochastic simulation in innovative high-level modeling and analysis approaches more flexible tools are necessary. In this article, we present FERN (Framework for Evaluation of Reaction Networks), a Java framework for the efficient simulation of chemical reaction networks. FERN is subdivided into three layers for network representation, simulation and visualization of the simulation results each of which can be easily extended. It provides efficient and accurate state-of-the-art stochastic simulation algorithms for well-mixed chemical systems and a powerful observer system, which makes it possible to track and control the simulation progress on every level. To illustrate how FERN can be easily integrated into other systems biology applications, plugins to Cytoscape and CellDesigner are included. These plugins make it possible to run simulations and to observe the simulation progress in a reaction network in real-time from within the Cytoscape or CellDesigner environment. FERN addresses shortcomings of currently available stochastic simulation programs in several ways. First, it provides a broad range of efficient and accurate algorithms both for exact and approximate stochastic simulation and a simple interface for extending to new algorithms. FERN's implementations are considerably faster than the C implementations of gillespie2 or the Java implementations of ISBJava. Second, it can be used in a straightforward way both as a stand-alone program and within new systems biology applications. Finally, complex scenarios requiring intervention during the simulation progress can be modelled easily with FERN.
Tort, Adriano B L; Neto, Waldemar P; Amaral, Olavo B; Kazlauckas, Vanessa; Souza, Diogo O; Lara, Diogo R
2006-10-15
We hereby describe a simple and inexpensive approach to evaluate the position and locomotion of rodents in an arena. The system is based on webcam registering of animal behaviour with subsequent analysis on customized software. Based on black/white differentiation, it provides rapid evaluation of animal position over a period of time, and can be used in a myriad of behavioural tasks in which locomotion, velocity or place preference are variables of interest. A brief review of the results obtained so far with this system and a discussion of other possible applications in behavioural neuroscience are also included. Such a system can be easily implemented in most laboratories and can significantly reduce the time and costs involved in behavioural analysis, especially in developing countries.
Note: A simple image processing based fiducial auto-alignment method for sample registration.
Robertson, Wesley D; Porto, Lucas R; Ip, Candice J X; Nantel, Megan K T; Tellkamp, Friedjof; Lu, Yinfei; Miller, R J Dwayne
2015-08-01
A simple method for the location and auto-alignment of sample fiducials for sample registration using widely available MATLAB/LabVIEW software is demonstrated. The method is robust, easily implemented, and applicable to a wide variety of experiment types for improved reproducibility and increased setup speed. The software uses image processing to locate and measure the diameter and center point of circular fiducials for distance self-calibration and iterative alignment and can be used with most imaging systems. The method is demonstrated to be fast and reliable in locating and aligning sample fiducials, provided here by a nanofabricated array, with accuracy within the optical resolution of the imaging system. The software was further demonstrated to register, load, and sample the dynamically wetted array.
Understanding valence-shell electron-pair repulsion (VSEPR) theory using origami molecular models
NASA Astrophysics Data System (ADS)
Endah Saraswati, Teguh; Saputro, Sulistyo; Ramli, Murni; Praseptiangga, Danar; Khasanah, Nurul; Marwati, Sri
2017-01-01
Valence-shell electron-pair repulsion (VSEPR) theory is conventionally used to predict molecular geometry. However, it is difficult to explore the full implications of this theory by simply drawing chemical structures. Here, we introduce origami modelling as a more accessible approach for exploration of the VSEPR theory. Our technique is simple, readily accessible and inexpensive compared with other sophisticated methods such as computer simulation or commercial three-dimensional modelling kits. This method can be implemented in chemistry education at both the high school and university levels. We discuss the example of a simple molecular structure prediction for ammonia (NH3). Using the origami model, both molecular shape and the scientific justification can be visualized easily. This ‘hands-on’ approach to building molecules will help promote understanding of VSEPR theory.
Oostenveld, Robert; Fries, Pascal; Maris, Eric; Schoffelen, Jan-Mathijs
2011-01-01
This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages. PMID:21253357
Rule Systems for Runtime Verification: A Short Tutorial
NASA Astrophysics Data System (ADS)
Barringer, Howard; Havelund, Klaus; Rydeheard, David; Groce, Alex
In this tutorial, we introduce two rule-based systems for on and off-line trace analysis, RuleR and LogScope. RuleR is a conditional rule-based system, which has a simple and easily implemented algorithm for effective runtime verification, and into which one can compile a wide range of temporal logics and other specification formalisms used for runtime verification. Specifications can be parameterized with data, or even with specifications, allowing for temporal logic combinators to be defined. We outline a number of simple syntactic extensions of core RuleR that can lead to further conciseness of specification but still enabling easy and efficient implementation. RuleR is implemented in Java and we will demonstrate its ease of use in monitoring Java programs. LogScope is a derivation of RuleR adding a simple very user-friendly temporal logic. It was developed in Python, specifically for supporting testing of spacecraft flight software for NASA’s next 2011 Mars mission MSL (Mars Science Laboratory). The system has been applied by test engineers to analysis of log files generated by running the flight software. Detailed logging is already part of the system design approach, and hence there is no added instrumentation overhead caused by this approach. While post-mortem log analysis prevents the autonomous reaction to problems possible with traditional runtime verification, it provides a powerful tool for test automation. A new system is being developed that integrates features from both RuleR and LogScope.
Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations
NASA Astrophysics Data System (ADS)
Kao, Chiu Yen; Osher, Stanley; Qian, Jianliang
2004-05-01
We propose a simple, fast sweeping method based on the Lax-Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of arbitrary static Hamilton-Jacobi equations in any number of spatial dimensions. By using the Lax-Friedrichs numerical Hamiltonian, we can easily obtain the solution at a specific grid point in terms of its neighbors, so that a Gauss-Seidel type nonlinear iterative method can be utilized. Furthermore, by incorporating a group-wise causality principle into the Gauss-Seidel iteration by following a finite group of characteristics, we have an easy-to-implement, sweeping-type, and fast convergent numerical method. However, unlike other methods based on the Godunov numerical Hamiltonian, some computational boundary conditions are needed in the implementation. We give a simple recipe which enforces a version of discrete min-max principle. Some convergence analysis is done for the one-dimensional eikonal equation. Extensive 2-D and 3-D numerical examples illustrate the efficiency and accuracy of the new approach. To our knowledge, this is the first fast numerical method based on discretizing the Hamilton-Jacobi equation directly without assuming convexity and/or homogeneity of the Hamiltonian.
Meta4: a web application for sharing and annotating metagenomic gene predictions using web services.
Richardson, Emily J; Escalettes, Franck; Fotheringham, Ian; Wallace, Robert J; Watson, Mick
2013-01-01
Whole-genome shotgun metagenomics experiments produce DNA sequence data from entire ecosystems, and provide a huge amount of novel information. Gene discovery projects require up-to-date information about sequence homology and domain structure for millions of predicted proteins to be presented in a simple, easy-to-use system. There is a lack of simple, open, flexible tools that allow the rapid sharing of metagenomics datasets with collaborators in a format they can easily interrogate. We present Meta4, a flexible and extensible web application that can be used to share and annotate metagenomic gene predictions. Proteins and predicted domains are stored in a simple relational database, with a dynamic front-end which displays the results in an internet browser. Web services are used to provide up-to-date information about the proteins from homology searches against public databases. Information about Meta4 can be found on the project website, code is available on Github, a cloud image is available, and an example implementation can be seen at.
A low-cost, tunable laser lock without laser frequency modulation
NASA Astrophysics Data System (ADS)
Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.
2015-05-01
Many experiments in optical physics require laser frequency stabilization. This can be achieved by locking to an atomic reference using saturated absorption spectroscopy. Often, the laser frequency is modulated and phase sensitive detection used. This method, while well-proven and robust, relies on expensive components, can introduce an undesirable frequency modulation into the laser, and is not easily frequency tuned. Here, we report a simple locking scheme similar to those implemented previously. We modulate the atomic resonances in a saturated absorption setup with an AC magnetic field created by a single solenoid. The same coil applies a DC field that allows tuning of the lock point. We use an auto-balanced detector to make our scheme more robust against laser power fluctuations and stray magnetic fields. The coil, its driver, and the detector are home-built with simple, cheap components. Our technique is low-cost, simple to setup, tunable, introduces no laser frequency modulation, and only requires one laser. We gratefully acknowledge the financial support of the NSF through Grant # PHY-1206040.
Filtration Isolation of Nucleic Acids: A Simple and Rapid DNA Extraction Method.
McFall, Sally M; Neto, Mário F; Reed, Jennifer L; Wagner, Robin L
2016-08-06
FINA, filtration isolation of nucleic acids, is a novel extraction method which utilizes vertical filtration via a separation membrane and absorbent pad to extract cellular DNA from whole blood in less than 2 min. The blood specimen is treated with detergent, mixed briefly and applied by pipet to the separation membrane. The lysate wicks into the blotting pad due to capillary action, capturing the genomic DNA on the surface of the separation membrane. The extracted DNA is retained on the membrane during a simple wash step wherein PCR inhibitors are wicked into the absorbent blotting pad. The membrane containing the entrapped DNA is then added to the PCR reaction without further purification. This simple method does not require laboratory equipment and can be easily implemented with inexpensive laboratory supplies. Here we describe a protocol for highly sensitive detection and quantitation of HIV-1 proviral DNA from 100 µl whole blood as a model for early infant diagnosis of HIV that could readily be adapted to other genetic targets.
Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes.
Guinovart, Tomàs; Parrilla, Marc; Crespo, Gastón A; Rius, F Xavier; Andrade, Francisco J
2013-09-21
A simple and generalized approach to build electrochemical sensors for wearable devices is presented. Commercial cotton yarns are first turned into electrical conductors through a simple dyeing process using a carbon nanotube ink. These conductive yarns are then partially coated with a suitable polymeric membrane to build ion-selective electrodes. Potentiometric measurements using these yarn-potentiometric sensors are demonstrated. Examples of yarns that can sense pH, K(+) and NH4(+) are presented. In all cases, these sensing yarns show limits of detection and linear ranges that are similar to those obtained with lab-made solid-state ion-selective electrodes. Through the immobilization of these sensors in a band-aid, it is shown that this approach could be easily implemented in a wearable device. Factors affecting the performance of the sensors and future potential applications are discussed.
Optimization of magnet end-winding geometry
NASA Astrophysics Data System (ADS)
Reusch, Michael F.; Weissenburger, Donald W.; Nearing, James C.
1994-03-01
A simple, almost entirely analytic, method for the optimization of stress-reduced magnet-end winding paths for ribbon-like superconducting cable is presented. This technique is based on characterization of these paths as developable surfaces, i.e., surfaces whose intrinsic geometry is flat. The method is applicable to winding mandrels of arbitrary geometry. Computational searches for optimal winding paths are easily implemented via the technique. Its application to the end configuration of cylindrical Superconducting Super Collider (SSC)-type magnets is discussed. The method may be useful for other engineering problems involving the placement of thin sheets of material.
Factorized Runge-Kutta-Chebyshev Methods
NASA Astrophysics Data System (ADS)
O'Sullivan, Stephen
2017-05-01
The second-order extended stability Factorized Runge-Kutta-Chebyshev (FRKC2) explicit schemes for the integration of large systems of PDEs with diffusive terms are presented. The schemes are simple to implement through ordered sequences of forward Euler steps with complex stepsizes, and easily parallelised for large scale problems on distributed architectures. Preserving 7 digits for accuracy at 16 digit precision, the schemes are theoretically capable of maintaining internal stability for acceleration factors in excess of 6000 with respect to standard explicit Runge-Kutta methods. The extent of the stability domain is approximately the same as that of RKC schemes, and a third longer than in the case of RKL2 schemes. Extension of FRKC methods to fourth-order, by both complex splitting and Butcher composition techniques, is also discussed. A publicly available implementation of FRKC2 schemes may be obtained from maths.dit.ie/frkc
NASA Astrophysics Data System (ADS)
Drabik, Timothy J.; Lee, Sing H.
1986-11-01
The intrinsic parallelism characteristics of easily realizable optical SIMD arrays prompt their present consideration in the implementation of highly structured algorithms for the numerical solution of multidimensional partial differential equations and the computation of fast numerical transforms. Attention is given to a system, comprising several spatial light modulators (SLMs), an optical read/write memory, and a functional block, which performs simple, space-invariant shifts on images with sufficient flexibility to implement the fastest known methods for partial differential equations as well as a wide variety of numerical transforms in two or more dimensions. Either fixed or floating-point arithmetic may be used. A performance projection of more than 1 billion floating point operations/sec using SLMs with 1000 x 1000-resolution and operating at 1-MHz frame rates is made.
A technique for measuring petal gloss, with examples from the Namaqualand flora.
Whitney, Heather M; Rands, Sean A; Elton, Nick J; Ellis, Allan G
2012-01-01
The degree of floral gloss varies between species. However, little is known about this distinctive floral trait, even though it could be a key feature of floral biotic and abiotic interactions. One reason for the absence of knowledge is the lack of a simple, repeatable method of gloss measurement that can be used in the field to study floral gloss. A protocol is described for measuring gloss in petal samples collected in the field, using a glossmeter. Repeatability of the technique is assessed. We demonstrate a simple yet highly accurate and repeatable method that can easily be implemented in the field. We also highlight the huge variety of glossiness found within flowers and between species in a sample of spring-blooming flowers collected in Namaqualand, South Africa. We discuss the potential uses of this method and its applications for furthering studies in plant-pollinator interactions. We also discuss the potential functions of gloss in flowers.
Validation of optical codes based on 3D nanostructures
NASA Astrophysics Data System (ADS)
Carnicer, Artur; Javidi, Bahram
2017-05-01
Image information encoding using random phase masks produce speckle-like noise distributions when the sample is propagated in the Fresnel domain. As a result, information cannot be accessed by simple visual inspection. Phase masks can be easily implemented in practice by attaching cello-tape to the plain-text message. Conventional 2D-phase masks can be generalized to 3D by combining glass and diffusers resulting in a more complex, physical unclonable function. In this communication, we model the behavior of a 3D phase mask using a simple approach: light is propagated trough glass using the angular spectrum of plane waves whereas the diffusor is described as a random phase mask and a blurring effect on the amplitude of the propagated wave. Using different designs for the 3D phase mask and multiple samples, we demonstrate that classification is possible using the k-nearest neighbors and random forests machine learning algorithms.
Simple adaptation of the Bridgman high pressure technique for use with liquid media
NASA Astrophysics Data System (ADS)
Colombier, E.; Braithwaite, D.
2007-09-01
We present a simple novel technique to adapt a standard Bridgman cell for the use of a liquid pressure transmitting medium. The technique has been implemented in a compact cell, able to fit in a commercial Quantum Design PPMS system, and would also be easily adaptable to extreme conditions of very low temperatures or high magnetic fields. Several media have been tested and a mix of fluorinert FC84:FC87 has been shown to produce a considerable improvement over the pressure conditions in the standard steatite solid medium, while allowing a relatively easy setup procedure. For optimized hydrostatic conditions, the success rate is about 80% and the maximum pressure achieved so far is 7.1GPa. Results are shown for the heavy fermion system YbAl3 and for NaV6O15, an insulator showing charge order.
Williamson, Mark; Sehjal, Ranjit; Jones, Mark; James, Chris; Smith, Andrew
2018-01-01
With today’s National Health Service (NHS) facing huge financial pressures the healthcare profession cannot afford to carry on spending at the current rate. Individual clinicians should be encouraged to critically appraise their own practices to bring about a more efficient and cost-effective service. The purpose of this project was to analyse the way that carpal tunnel surgery was being performed within our institution and bring about safe changes to practice that reduce expenditure. By critiquing our practices and applying simple changes based around sound evidence an annual saving of over £15 500 to the department was made. The changes instigated are simple, sustainable and safe to implement while providing improved patient satisfaction. They are also easily transferrable across institutions and to other minor hand surgical procedures to afford even greater ongoing savings to the NHS. PMID:29946571
A Simple XML Producer-Consumer Protocol
NASA Technical Reports Server (NTRS)
Smith, Warren; Gunter, Dan; Quesnel, Darcy
2000-01-01
This document describes a simple XML-based protocol that can be used for producers of events to communicate with consumers of events. The protocol described here is not meant to be the most efficient protocol, the most logical protocol, or the best protocol in any way. This protocol was defined quickly and it's intent is to give us a reasonable protocol that we can implement relatively easily and then use to gain experience in distributed event services. This experience will help us evaluate proposals for event representations, XML-based encoding of information, and communication protocols. The next section of this document describes how we represent events in this protocol and then defines the two events that we choose to use for our initial experiments. These definitions are made by example so that they are informal and easy to understand. The following section then proceeds to define the producer-consumer protocol we have agreed upon for our initial experiments.
Williamson, Mark; Sehjal, Ranjit; Jones, Mark; James, Chris; Smith, Andrew
2018-01-01
With today's National Health Service (NHS) facing huge financial pressures the healthcare profession cannot afford to carry on spending at the current rate. Individual clinicians should be encouraged to critically appraise their own practices to bring about a more efficient and cost-effective service. The purpose of this project was to analyse the way that carpal tunnel surgery was being performed within our institution and bring about safe changes to practice that reduce expenditure. By critiquing our practices and applying simple changes based around sound evidence an annual saving of over £15 500 to the department was made. The changes instigated are simple, sustainable and safe to implement while providing improved patient satisfaction. They are also easily transferrable across institutions and to other minor hand surgical procedures to afford even greater ongoing savings to the NHS.
Simple approach to three-color two-photon microscopy by a fiber-optic wavelength convertor.
Li, Kuen-Che; Huang, Lynn L H; Liang, Jhih-Hao; Chan, Ming-Che
2016-11-01
A simple approach to multi-color two-photon microscopy of the red, green, and blue fluorescent indicators was reported based on an ultra-compact 1.03-μm femtosecond laser and a nonlinear fiber. Inside the nonlinear fiber, the 1.03-μm laser pulses were simultaneously blue-shifted to 0.6~0.8 μm and red-shifted to 1.2~1.4 μm region by the Cherenkov radiation and fiber Raman gain effects. The wavelength-shifted 0.6~0.8 μm and 1.2~1.4 μm radiations were co-propagated with the residual non-converted 1.03-μm pulses inside the same nonlinear fiber to form a fiber-output three-color femtosecond source. The application of the multi-wavelength sources on multi-color two-photon fluorescence microscopy were also demonstrated. Overall, due to simple system configuration, convenient wavelength conversion, easy wavelength tunability within the entire 0.7~1.35 μm bio-penetration window and less requirement for high power and bulky light sources, the simple approach to multi-color two-photon microscopy could be widely applicable as an easily implemented and excellent research tool for future biomedical and possibly even clinical applications.
ZeBase: an open-source relational database for zebrafish laboratories.
Hensley, Monica R; Hassenplug, Eric; McPhail, Rodney; Leung, Yuk Fai
2012-03-01
Abstract ZeBase is an open-source relational database for zebrafish inventory. It is designed for the recording of genetic, breeding, and survival information of fish lines maintained in a single- or multi-laboratory environment. Users can easily access ZeBase through standard web-browsers anywhere on a network. Convenient search and reporting functions are available to facilitate routine inventory work; such functions can also be automated by simple scripting. Optional barcode generation and scanning are also built-in for easy access to the information related to any fish. Further information of the database and an example implementation can be found at http://zebase.bio.purdue.edu.
Sampling in the light of Wigner distribution.
Stern, Adrian; Javidi, Bahram
2004-03-01
We propose a new method for analysis of the sampling and reconstruction conditions of real and complex signals by use of the Wigner domain. It is shown that the Wigner domain may provide a better understanding of the sampling process than the traditional Fourier domain. For example, it explains how certain non-bandlimited complex functions can be sampled and perfectly reconstructed. On the basis of observations in the Wigner domain, we derive a generalization to the Nyquist sampling criterion. By using this criterion, we demonstrate simple preprocessing operations that can adapt a signal that does not fulfill the Nyquist sampling criterion. The preprocessing operations demonstrated can be easily implemented by optical means.
Paxman, Rosemary; Stinson, Jake; Dejardin, Anna; McKendry, Rachel A.; Hoogenboom, Bart W.
2012-01-01
Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks. PMID:22778654
Recent Developments on the Turbulence Modeling Resource Website (Invited)
NASA Technical Reports Server (NTRS)
Rumssey, Christopher L.
2015-01-01
The NASA Langley Turbulence Model Resource (TMR) website has been active for over five years. Its main goal of providing a one-stop, easily accessible internet site for up-to-date information on Reynolds-averaged Navier-Stokes turbulence models remains unchanged. In particular, the site strives to provide an easy way for users to verify their own implementations of widely-used turbulence models, and to compare the results from different models for a variety of simple unit problems covering a range of flow physics. Some new features have been recently added to the website. This paper documents the site's features, including recent developments, future plans, and open questions.
NASA Astrophysics Data System (ADS)
Quintavalla, M.; Pozzi, P.; Verhaegen, Michelle; Bijlsma, Hielke; Verstraete, Hans; Bonora, S.
2018-02-01
Adaptive Optics (AO) has revealed as a very promising technique for high-resolution microscopy, where the presence of optical aberrations can easily compromise the image quality. Typical AO systems however, are almost impossible to implement on commercial microscopes. We propose a simple approach by using a Multi-actuator Adaptive Lens (MAL) that can be inserted right after the objective and works in conjunction with an image optimization software allowing for a wavefront sensorless correction. We presented the results obtained on several commercial microscopes among which a confocal microscope, a fluorescence microscope, a light sheet microscope and a multiphoton microscope.
Reliable and accurate extraction of Hamaker constants from surface force measurements.
Miklavcic, S J
2018-08-15
A simple and accurate closed-form expression for the Hamaker constant that best represents experimental surface force data is presented. Numerical comparisons are made with the current standard least squares approach, which falsely assumes error-free separation measurements, and a nonlinear version assuming independent measurements of force and separation are subject to error. The comparisons demonstrate that not only is the proposed formula easily implemented it is also considerably more accurate. This option is appropriate for any value of Hamaker constant, high or low, and certainly for any interacting system exhibiting an inverse square distance dependent van der Waals force. Copyright © 2018 Elsevier Inc. All rights reserved.
Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation
NASA Astrophysics Data System (ADS)
Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah
2018-04-01
The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.
NASA Technical Reports Server (NTRS)
Mclean, David R.; Tuchman, Alan; Potter, William J.
1991-01-01
A C-based artificial intelligence (AI) development effort which is based on a software tools approach is discussed with emphasis on reusability and maintainability of code. The discussion starts with simple examples of how list processing can easily be implemented in C and then proceeds to the implementations of frames and objects which use dynamic memory allocation. The implementation of procedures which use depth first search, constraint propagation, context switching, and blackboard-like simulation environment are described. Techniques for managing the complexity of C-based AI software are noted, especially the object-oriented techniques of data encapsulation and incremental development. Finally, all these concepts are put together by describing the components of planning software called the Planning And Resource Reasoning (PARR) Shell. This shell was successfully utilized for scheduling services of the Tracking and Data Relay Satellite System for the Earth Radiation Budget Satellite since May of 1987 and will be used for operations scheduling of the Explorer Platform in Nov. of 1991.
Bayesian Estimation and Inference Using Stochastic Electronics
Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan; van Schaik, André
2016-01-01
In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream. PMID:27047326
Bayesian Estimation and Inference Using Stochastic Electronics.
Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan; van Schaik, André
2016-01-01
In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream.
Action Centered Contextual Bandits.
Greenewald, Kristjan; Tewari, Ambuj; Klasnja, Predrag; Murphy, Susan
2017-12-01
Contextual bandits have become popular as they offer a middle ground between very simple approaches based on multi-armed bandits and very complex approaches using the full power of reinforcement learning. They have demonstrated success in web applications and have a rich body of associated theoretical guarantees. Linear models are well understood theoretically and preferred by practitioners because they are not only easily interpretable but also simple to implement and debug. Furthermore, if the linear model is true, we get very strong performance guarantees. Unfortunately, in emerging applications in mobile health, the time-invariant linear model assumption is untenable. We provide an extension of the linear model for contextual bandits that has two parts: baseline reward and treatment effect. We allow the former to be complex but keep the latter simple. We argue that this model is plausible for mobile health applications. At the same time, it leads to algorithms with strong performance guarantees as in the linear model setting, while still allowing for complex nonlinear baseline modeling. Our theory is supported by experiments on data gathered in a recently concluded mobile health study.
Simple yet Hidden Counterexamples in Undergraduate Real Analysis
ERIC Educational Resources Information Center
Shipman, Barbara A.; Shipman, Patrick D.
2013-01-01
We study situations in introductory analysis in which students affirmed false statements as true, despite simple counterexamples that they easily recognized afterwards. The study draws attention to how simple counterexamples can become hidden in plain sight, even in an active learning atmosphere where students proposed simple (as well as more…
NASA Astrophysics Data System (ADS)
Yang, Hyun Mo
2015-12-01
Currently, discrete modellings are largely accepted due to the access to computers with huge storage capacity and high performance processors and easy implementation of algorithms, allowing to develop and simulate increasingly sophisticated models. Wang et al. [7] present a review of dynamics in complex networks, focusing on the interaction between disease dynamics and human behavioral and social dynamics. By doing an extensive review regarding to the human behavior responding to disease dynamics, the authors briefly describe the complex dynamics found in the literature: well-mixed populations networks, where spatial structure can be neglected, and other networks considering heterogeneity on spatially distributed populations. As controlling mechanisms are implemented, such as social distancing due 'social contagion', quarantine, non-pharmaceutical interventions and vaccination, adaptive behavior can occur in human population, which can be easily taken into account in the dynamics formulated by networked populations.
Sheng, Xinzhi; Feng, Zhen; Li, Bing
2013-04-20
We proposed and experimentally demonstrated all-optical packet-level time slot assignment scheme with two optical buffers cascaded. The function of time-slot interchange (TSI) was successfully implemented on two and three optical packets at a data rate of 10 Gb/s. Therefore, the functions of TSI on N packets should be implemented easily by the use of N-1 stage optical buffer. On the basis of the above experiment, we carried out the TSI experiment on four packets with the same two-stage experimental setup. Furthermore, packets compression on three optical packets was also carried out with the same experimental setup. The shortest guard time of the packets compression can reach to 13 ns due to the limit of FPGA's control accuracy. Due to the use of the same optical buffer, the proposed scheme has the advantages of simple and scalable configuration, modularization, and easy integration.
An Open Source Web Map Server Implementation For California and the Digital Earth: Lessons Learned
NASA Technical Reports Server (NTRS)
Sullivan, D. V.; Sheffner, E. J.; Skiles, J. W.; Brass, J. A.; Condon, Estelle (Technical Monitor)
2000-01-01
This paper describes an Open Source implementation of the Open GIS Consortium's Web Map interface. It is based on the very popular Apache WWW Server, the Sun Microsystems Java ServIet Development Kit, and a C language shared library interface to a spatial datastore. This server was initially written as a proof of concept, to support a National Aeronautics and Space Administration (NASA) Digital Earth test bed demonstration. It will also find use in the California Land Science Information Partnership (CaLSIP), a joint program between NASA and the state of California. At least one WebMap enabled server will be installed in every one of the state's 58 counties. This server will form a basis for a simple, easily maintained installation for those entities that do not yet require one of the larger, more expensive, commercial offerings.
Tape underlayment rotary-node (TURN) valves for simple on-chip microfluidic flow control
Markov, Dmitry A.; Manuel, Steven; Shor, Leslie M.; Opalenik, Susan R.; Wikswo, John P.; Samson, Philip C.
2013-01-01
We describe a simple and reliable fabrication method for producing multiple, manually activated microfluidic control valves in polydimethylsiloxane (PDMS) devices. These screwdriver-actuated valves reside directly on the microfluidic chip and can provide both simple on/off operation as well as graded control of fluid flow. The fabrication procedure can be easily implemented in any soft lithography lab and requires only two specialized tools – a hot-glue gun and a machined brass mold. To facilitate use in multi-valve fluidic systems, the mold is designed to produce a linear tape that contains a series of plastic rotary nodes with small stainless steel machine screws that form individual valves which can be easily separated for applications when only single valves are required. The tape and its valves are placed on the surface of a partially cured thin PDMS microchannel device while the PDMS is still on the soft-lithographic master, with the master providing alignment marks for the tape. The tape is permanently affixed to the microchannel device by pouring an over-layer of PDMS, to form a full-thickness device with the tape as an enclosed underlayment. The advantages of these Tape Underlayment Rotary-Node (TURN) valves include parallel fabrication of multiple valves, low risk of damaging a microfluidic device during valve installation, high torque, elimination of stripped threads, the capabilities of TURN hydraulic actuators, and facile customization of TURN molds. We have utilized these valves to control microfluidic flow, to control the onset of molecular diffusion, and to manipulate channel connectivity. Practical applications of TURN valves include control of loading and chemokine release in chemotaxis assay devices, flow in microfluidic bioreactors, and channel connectivity in microfluidic devices intended to study competition and predator / prey relationships among microbes. PMID:19859812
Game On, Science - How Video Game Technology May Help Biologists Tackle Visualization Challenges
Da Silva, Franck; Empereur-mot, Charly; Chavent, Matthieu; Baaden, Marc
2013-01-01
The video games industry develops ever more advanced technologies to improve rendering, image quality, ergonomics and user experience of their creations providing very simple to use tools to design new games. In the molecular sciences, only a small number of experts with specialized know-how are able to design interactive visualization applications, typically static computer programs that cannot easily be modified. Are there lessons to be learned from video games? Could their technology help us explore new molecular graphics ideas and render graphics developments accessible to non-specialists? This approach points to an extension of open computer programs, not only providing access to the source code, but also delivering an easily modifiable and extensible scientific research tool. In this work, we will explore these questions using the Unity3D game engine to develop and prototype a biological network and molecular visualization application for subsequent use in research or education. We have compared several routines to represent spheres and links between them, using either built-in Unity3D features or our own implementation. These developments resulted in a stand-alone viewer capable of displaying molecular structures, surfaces, animated electrostatic field lines and biological networks with powerful, artistic and illustrative rendering methods. We consider this work as a proof of principle demonstrating that the functionalities of classical viewers and more advanced novel features could be implemented in substantially less time and with less development effort. Our prototype is easily modifiable and extensible and may serve others as starting point and platform for their developments. A webserver example, standalone versions for MacOS X, Linux and Windows, source code, screen shots, videos and documentation are available at the address: http://unitymol.sourceforge.net/. PMID:23483961
Game on, science - how video game technology may help biologists tackle visualization challenges.
Lv, Zhihan; Tek, Alex; Da Silva, Franck; Empereur-mot, Charly; Chavent, Matthieu; Baaden, Marc
2013-01-01
The video games industry develops ever more advanced technologies to improve rendering, image quality, ergonomics and user experience of their creations providing very simple to use tools to design new games. In the molecular sciences, only a small number of experts with specialized know-how are able to design interactive visualization applications, typically static computer programs that cannot easily be modified. Are there lessons to be learned from video games? Could their technology help us explore new molecular graphics ideas and render graphics developments accessible to non-specialists? This approach points to an extension of open computer programs, not only providing access to the source code, but also delivering an easily modifiable and extensible scientific research tool. In this work, we will explore these questions using the Unity3D game engine to develop and prototype a biological network and molecular visualization application for subsequent use in research or education. We have compared several routines to represent spheres and links between them, using either built-in Unity3D features or our own implementation. These developments resulted in a stand-alone viewer capable of displaying molecular structures, surfaces, animated electrostatic field lines and biological networks with powerful, artistic and illustrative rendering methods. We consider this work as a proof of principle demonstrating that the functionalities of classical viewers and more advanced novel features could be implemented in substantially less time and with less development effort. Our prototype is easily modifiable and extensible and may serve others as starting point and platform for their developments. A webserver example, standalone versions for MacOS X, Linux and Windows, source code, screen shots, videos and documentation are available at the address: http://unitymol.sourceforge.net/.
Simple Technique for Dark-Field Photography of Immunodiffusion Bands
Jensh, Ronald P.; Brent, Robert L.
1969-01-01
A simple dark-field photographic technique was developed which enables laboratory personnel with minimal photographic training to easily record antigen-antibody patterns on immunodiffusion plates. Images PMID:4979944
Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.
Guerrero, Federico Nicolás; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro
2016-06-01
In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.
DAVE: A plug and play model for distributed multimedia application development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mines, R.F.; Friesen, J.A.; Yang, C.L.
1994-07-01
This paper presents a model being used for the development of distributed multimedia applications. The Distributed Audio Video Environment (DAVE) was designed to support the development of a wide range of distributed applications. The implementation of this model is described. DAVE is unique in that it combines a simple ``plug and play`` programming interface, supports both centralized and fully distributed applications, provides device and media extensibility, promotes object reuseability, and supports interoperability and network independence. This model enables application developers to easily develop distributed multimedia applications and create reusable multimedia toolkits. DAVE was designed for developing applications such as videomore » conferencing, media archival, remote process control, and distance learning.« less
PSYCHOACOUSTICS: a comprehensive MATLAB toolbox for auditory testing.
Soranzo, Alessandro; Grassi, Massimo
2014-01-01
PSYCHOACOUSTICS is a new MATLAB toolbox which implements three classic adaptive procedures for auditory threshold estimation. The first includes those of the Staircase family (method of limits, simple up-down and transformed up-down); the second is the Parameter Estimation by Sequential Testing (PEST); and the third is the Maximum Likelihood Procedure (MLP). The toolbox comes with more than twenty built-in experiments each provided with the recommended (default) parameters. However, if desired, these parameters can be modified through an intuitive and user friendly graphical interface and stored for future use (no programming skills are required). Finally, PSYCHOACOUSTICS is very flexible as it comes with several signal generators and can be easily extended for any experiment.
PSYCHOACOUSTICS: a comprehensive MATLAB toolbox for auditory testing
Soranzo, Alessandro; Grassi, Massimo
2014-01-01
PSYCHOACOUSTICS is a new MATLAB toolbox which implements three classic adaptive procedures for auditory threshold estimation. The first includes those of the Staircase family (method of limits, simple up-down and transformed up-down); the second is the Parameter Estimation by Sequential Testing (PEST); and the third is the Maximum Likelihood Procedure (MLP). The toolbox comes with more than twenty built-in experiments each provided with the recommended (default) parameters. However, if desired, these parameters can be modified through an intuitive and user friendly graphical interface and stored for future use (no programming skills are required). Finally, PSYCHOACOUSTICS is very flexible as it comes with several signal generators and can be easily extended for any experiment. PMID:25101013
Extremely simple holographic projection of color images
NASA Astrophysics Data System (ADS)
Makowski, Michal; Ducin, Izabela; Kakarenko, Karol; Suszek, Jaroslaw; Kolodziejczyk, Andrzej; Sypek, Maciej
2012-03-01
A very simple scheme of holographic projection is presented with some experimental results showing good quality image projection without any imaging lens. This technique can be regarded as an alternative to classic projection methods. It is based on the reconstruction real images from three phase iterated Fourier holograms. The illumination is performed with three laser beams of primary colors. A divergent wavefront geometry is used to achieve an increased throw angle of the projection, compared to plane wave illumination. Light fibers are used as light guidance in order to keep the setup as simple as possible and to provide point-like sources of high quality divergent wave-fronts at optimized position against the light modulator. Absorbing spectral filters are implemented to multiplex three holograms on a single phase-only spatial light modulator. Hence color mixing occurs without any time-division methods, which cause rainbow effects and color flicker. The zero diffractive order with divergent illumination is practically invisible and speckle field is effectively suppressed with phase optimization and time averaging techniques. The main advantages of the proposed concept are: a very simple and highly miniaturizable configuration; lack of lens; a single LCoS (Liquid Crystal on Silicon) modulator; a strong resistance to imperfections and obstructions of the spatial light modulator like dead pixels, dust, mud, fingerprints etc.; simple calculations based on Fast Fourier Transform (FFT) easily processed in real time mode with GPU (Graphic Programming).
Liao, Yi-Fang; Tsai, Meng-Li; Yen, Chen-Tung; Cheng, Chiung-Hsiang
2011-02-15
Heat-fusing is a common process for fabricating microwire tetrodes. However, it is time-consuming, and the high-temperature treatment can easily cause the insulation of the microwire to overheat leading to short circuits. We herein provide a simple, fast method to fabricate microwire tetrodes without the heat-fusion process. By increasing the twisting density, we were able to fabricate tetrodes with good rigidity and integrity. This kind of tetrode showed good recording quality, penetrated the brain surface easily, and remained intact after chronic implantation. This method requires only general laboratory tools and is relatively simple even for inexperienced workers. © 2010 Elsevier B.V. All rights reserved.
Sleigh, Alison; Lupson, Victoria; Thankamony, Ajay; Dunger, David B; Savage, David B; Carpenter, T Adrian; Kemp, Graham J
2016-01-11
The growing recognition of diseases associated with dysfunction of mitochondria poses an urgent need for simple measures of mitochondrial function. Assessment of the kinetics of replenishment of the phosphocreatine pool after exercise using (31)P magnetic resonance spectroscopy can provide an in vivo measure of mitochondrial function; however, the wider application of this technique appears limited by complex or expensive MR-compatible exercise equipment and protocols not easily tolerated by frail participants or those with reduced mental capacity. Here we describe a novel in-scanner exercise method which is patient-focused, inexpensive, remarkably simple and highly portable. The device exploits an MR-compatible high-density material (BaSO4) to form a weight which is attached directly to the ankle, and a one-minute dynamic knee extension protocol produced highly reproducible measurements of post-exercise PCr recovery kinetics in both healthy subjects and patients. As sophisticated exercise equipment is unnecessary for this measurement, our extremely simple design provides an effective and easy-to-implement apparatus that is readily translatable across sites. Its design, being tailored to the needs of the patient, makes it particularly well suited to clinical applications, and we argue the potential of this method for investigating in vivo mitochondrial function in new cohorts of growing clinical interest.
NASA Astrophysics Data System (ADS)
Zhou, Haihan; Han, Gaoyi; Xiao, Yaoming; Chang, Yunzhen; Zhai, Hua-Jin
2014-10-01
A simple and low-cost electrochemical codeposition method has been introduced to fabricate polypyrrole/graphene oxide (PPy/GO) nanocomposites and the areal capacitance of conducting polymer/GO composites is reported for the first time. Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) are implemented to determine the PPy/GO nanocomposites are successfully prepared and the interaction between PPy and GO. The as-prepared PPy/GO nanocomposites show the curly sheet-like morphology, superior capacitive behaviors and cyclic stability. Furthermore, the varying deposition time is implemented to investigate the impact of the loading amount on electrochemical behavior of the composites, and a high areal capacitance of 152 mF cm-2 is achieved at 10 mV s-1 CV scan. However, the thicker films caused by the long deposition time would result in larger diffusion resistance of electrolyte ions, consequently exhibit the relatively lower capacitance value at the high current density. The GCD tests indicate moderate deposition time is more suitable for the fast charge/discharge. Considering the very simple and effective synthetic process, the PPy/GO nanocomposites with relatively high areal capacitance are competitive candidate for supercapacitor application, and its capacitive performances can be easily tuned by varying the deposition time.
A Low Cost VLSI Architecture for Spike Sorting Based on Feature Extraction with Peak Search.
Chang, Yuan-Jyun; Hwang, Wen-Jyi; Chen, Chih-Chang
2016-12-07
The goal of this paper is to present a novel VLSI architecture for spike sorting with high classification accuracy, low area costs and low power consumption. A novel feature extraction algorithm with low computational complexities is proposed for the design of the architecture. In the feature extraction algorithm, a spike is separated into two portions based on its peak value. The area of each portion is then used as a feature. The algorithm is simple to implement and less susceptible to noise interference. Based on the algorithm, a novel architecture capable of identifying peak values and computing spike areas concurrently is proposed. To further accelerate the computation, a spike can be divided into a number of segments for the local feature computation. The local features are subsequently merged with the global ones by a simple hardware circuit. The architecture can also be easily operated in conjunction with the circuits for commonly-used spike detection algorithms, such as the Non-linear Energy Operator (NEO). The architecture has been implemented by an Application-Specific Integrated Circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture is well suited for real-time multi-channel spike detection and feature extraction requiring low hardware area costs, low power consumption and high classification accuracy.
A Novel Shape Parameterization Approach
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1999-01-01
This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.
Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in the same manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminate plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling) analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.
Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.
Infinitely dilute partial molar properties of proteins from computer simulation.
Ploetz, Elizabeth A; Smith, Paul E
2014-11-13
A detailed understanding of temperature and pressure effects on an infinitely dilute protein's conformational equilibrium requires knowledge of the corresponding infinitely dilute partial molar properties. Established molecular dynamics methodologies generally have not provided a way to calculate these properties without either a loss of thermodynamic rigor, the introduction of nonunique parameters, or a loss of information about which solute conformations specifically contributed to the output values. Here we implement a simple method that is thermodynamically rigorous and possesses none of the above disadvantages, and we report on the method's feasibility and computational demands. We calculate infinitely dilute partial molar properties for two proteins and attempt to distinguish the thermodynamic differences between a native and a denatured conformation of a designed miniprotein. We conclude that simple ensemble average properties can be calculated with very reasonable amounts of computational power. In contrast, properties corresponding to fluctuating quantities are computationally demanding to calculate precisely, although they can be obtained more easily by following the temperature and/or pressure dependence of the corresponding ensemble averages.
A simple node and conductor data generator for SINDA
NASA Technical Reports Server (NTRS)
Gottula, Ronald R.
1992-01-01
This paper presents a simple, automated method to generate NODE and CONDUCTOR DATA for thermal match modes. The method uses personal computer spreadsheets to create SINDA inputs. It was developed in order to make SINDA modeling less time consuming and serves as an alternative to graphical methods. Anyone having some experience using a personal computer can easily implement this process. The user develops spreadsheets to automatically calculate capacitances and conductances based on material properties and dimensional data. The necessary node and conductor information is then taken from the spreadsheets and automatically arranged into the proper format, ready for insertion directly into the SINDA model. This technique provides a number of benefits to the SINDA user such as a reduction in the number of hand calculations, and an ability to very quickly generate a parametric set of NODE and CONDUCTOR DATA blocks. It also provides advantages over graphical thermal modeling systems by retaining the analyst's complete visibility into the thermal network, and by permitting user comments anywhere within the DATA blocks.
Implementing ISO/IEEE 11073: proposal of two different strategic approaches.
Martínez-Espronceda, M; Serrano, L; Martínez, I; Escayola, J; Led, S; Trigo, J; García, J
2008-01-01
This paper explains the challenges encountered during the ISO/IEEE 11073 standard implementation process. The complexity of the standard and the consequent heavy requirements, which have not encouraged software engineers to adopt the standard. The developing complexity evaluation drives us to propose two possible implementation strategies that cover almost all possible use cases and eases handling the standard by non-expert users. The first one is focused on medical devices (MD) and proposes a low-memory and low-processor usage technique. It is based on message patterns that allow simple functions to generate ISO/IEEE 11073 messages and to process them easily. In this way a framework for MDs can be obtained. Second one is focused on more powerful machines such as data loggers or gateways (aka. computer engines (CE)), which do not have the MDs' memory and processor usage constraints. For CEs a more intelligent and adaptative Plug&Play (P&P) solution is provided. It consists on a general platform that can access to any device supported by the standard. Combining both strategies will cut developing time for applications based on ISO/EEE 11073.
A simple and inexpensive external fixator.
Noor, M A
1988-11-01
A simple and inexpensive external fixator has been designed. It is constructed of galvanized iron pipe and mild steel bolts and nuts. It can easily be manufactured in a hospital workshop with a minimum of tools.
ERIC Educational Resources Information Center
Herald, Christine
2010-01-01
During the month of May, the author's eighth-grade physical science students study the six simple machines through hands-on activities, reading assignments, videos, and notes. At the end of the month, they can easily identify the six types of simple machine: inclined plane, wheel and axle, pulley, screw, wedge, and lever. To conclude this unit,…
High-Temperature Captive Nut Assembly
NASA Technical Reports Server (NTRS)
Marke, M. L.; Charles, J. F.
1982-01-01
High-temperature captive-nut assembly consists of removable nut element that snaps into loose-fitting recesses in shell. Replacement of nut element is easily accomplished with simple handtools. Old nut is pried out and new one pushed into position. Removal is easily accomplished with help of U-shaped tool.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sudip; Swamy, Aravind Krishna; Daniel, Jo S.
2012-08-01
This paper presents a simple and practical approach to obtain the continuous relaxation and retardation spectra of asphalt concrete directly from the complex (dynamic) modulus test data. The spectra thus obtained are continuous functions of relaxation and retardation time. The major advantage of this method is that the continuous form is directly obtained from the master curves which are readily available from the standard characterization tests of linearly viscoelastic behavior of asphalt concrete. The continuous spectrum method offers efficient alternative to the numerical computation of discrete spectra and can be easily used for modeling viscoelastic behavior. In this research, asphalt concrete specimens have been tested for linearly viscoelastic characterization. The linearly viscoelastic test data have been used to develop storage modulus and storage compliance master curves. The continuous spectra are obtained from the fitted sigmoid function of the master curves via the inverse integral transform. The continuous spectra are shown to be the limiting case of the discrete distributions. The continuous spectra and the time-domain viscoelastic functions (relaxation modulus and creep compliance) computed from the spectra matched very well with the approximate solutions. It is observed that the shape of the spectra is dependent on the master curve parameters. The continuous spectra thus obtained can easily be implemented in material mix design process. Prony-series coefficients can be easily obtained from the continuous spectra and used in numerical analysis such as finite element analysis.
Molpher: a software framework for systematic chemical space exploration
2014-01-01
Background Chemical space is virtual space occupied by all chemically meaningful organic compounds. It is an important concept in contemporary chemoinformatics research, and its systematic exploration is vital to the discovery of either novel drugs or new tools for chemical biology. Results In this paper, we describe Molpher, an open-source framework for the systematic exploration of chemical space. Through a process we term ‘molecular morphing’, Molpher produces a path of structurally-related compounds. This path is generated by the iterative application of so-called ‘morphing operators’ that represent simple structural changes, such as the addition or removal of an atom or a bond. Molpher incorporates an optimized parallel exploration algorithm, compound logging and a two-dimensional visualization of the exploration process. Its feature set can be easily extended by implementing additional morphing operators, chemical fingerprints, similarity measures and visualization methods. Molpher not only offers an intuitive graphical user interface, but also can be run in batch mode. This enables users to easily incorporate molecular morphing into their existing drug discovery pipelines. Conclusions Molpher is an open-source software framework for the design of virtual chemical libraries focused on a particular mechanistic class of compounds. These libraries, represented by a morphing path and its surroundings, provide valuable starting data for future in silico and in vitro experiments. Molpher is highly extensible and can be easily incorporated into any existing computational drug design pipeline. PMID:24655571
Molpher: a software framework for systematic chemical space exploration.
Hoksza, David; Skoda, Petr; Voršilák, Milan; Svozil, Daniel
2014-03-21
Chemical space is virtual space occupied by all chemically meaningful organic compounds. It is an important concept in contemporary chemoinformatics research, and its systematic exploration is vital to the discovery of either novel drugs or new tools for chemical biology. In this paper, we describe Molpher, an open-source framework for the systematic exploration of chemical space. Through a process we term 'molecular morphing', Molpher produces a path of structurally-related compounds. This path is generated by the iterative application of so-called 'morphing operators' that represent simple structural changes, such as the addition or removal of an atom or a bond. Molpher incorporates an optimized parallel exploration algorithm, compound logging and a two-dimensional visualization of the exploration process. Its feature set can be easily extended by implementing additional morphing operators, chemical fingerprints, similarity measures and visualization methods. Molpher not only offers an intuitive graphical user interface, but also can be run in batch mode. This enables users to easily incorporate molecular morphing into their existing drug discovery pipelines. Molpher is an open-source software framework for the design of virtual chemical libraries focused on a particular mechanistic class of compounds. These libraries, represented by a morphing path and its surroundings, provide valuable starting data for future in silico and in vitro experiments. Molpher is highly extensible and can be easily incorporated into any existing computational drug design pipeline.
A data transmission method for particle physics experiments based on Ethernet physical layer
NASA Astrophysics Data System (ADS)
Huang, Xi-Ru; Cao, Ping; Zheng, Jia-Jun
2015-11-01
Due to its advantages of universality, flexibility and high performance, fast Ethernet is widely used in readout system design for modern particle physics experiments. However, Ethernet is usually used together with the TCP/IP protocol stack, which makes it difficult to implement readout systems because designers have to use the operating system to process this protocol. Furthermore, TCP/IP degrades the transmission efficiency and real-time performance. To maximize the performance of Ethernet in physics experiment applications, a data readout method based on the physical layer (PHY) is proposed. In this method, TCP/IP is replaced with a customized and simple protocol, which makes it easier to implement. On each readout module, data from the front-end electronics is first fed into an FPGA for protocol processing and then sent out to a PHY chip controlled by this FPGA for transmission. This kind of data path is fully implemented by hardware. From the side of the data acquisition system (DAQ), however, the absence of a standard protocol causes problems for the network related applications. To solve this problem, in the operating system kernel space, data received by the network interface card is redirected from the traditional flow to a specified memory space by a customized program. This memory space can easily be accessed by applications in user space. For the purpose of verification, a prototype system has been designed and implemented. Preliminary test results show that this method can meet the requirements of data transmission from the readout module to the DAQ with an efficient and simple manner. Supported by National Natural Science Foundation of China (11005107) and Independent Projects of State Key Laboratory of Particle Detection and Electronics (201301)
Omics Metadata Management Software v. 1 (OMMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Our application, the Omics Metadata Management Software (OMMS), answers both needs, empowering experimentalists to generate intuitive, consistent metadata, and to perform bioinformatics analyses and information management tasks via a simple and intuitive web-based interface. Several use cases with short-read sequence datasets are provided to showcase the full functionality of the OMMS, from metadata curation tasks, to bioinformatics analyses and results management and downloading. The OMMS can be implemented as a stand alone-package for individual laboratories, or can be configured for web-based deployment supporting geographically dispersed research teams. Our software was developed with open-source bundles, is flexible, extensible and easily installedmore » and run by operators with general system administration and scripting language literacy.« less
An NPARC Turbulence Module with Wall Functions
NASA Technical Reports Server (NTRS)
Zhu, J.; Shih, T.-H.
1997-01-01
The turbulence module recently developed for the NPARC code has been extended to include wall functions. The Van Driest transformation is used so that the wall functions can be applied to both incompressible and compressible flows. The module is equipped with three two-equation K-epsilon turbulence models: Chien, Shih-Lumley and CMOTR models. Details of the wall functions as well as their numerical implementation are reported. It is shown that the inappropriate artificial viscosity in the near-wall region has a big influence on the solution of the wall function approach. A simple way to eliminate this influence is proposed, which gives satisfactory results during the code validation. The module can be easily linked to the NPARC code for practical applications.
Complex amplitude reconstruction by iterative amplitude-phase retrieval algorithm with reference
NASA Astrophysics Data System (ADS)
Shen, Cheng; Guo, Cheng; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun
2018-06-01
Multi-image iterative phase retrieval methods have been successfully applied in plenty of research fields due to their simple but efficient implementation. However, there is a mismatch between the measurement of the first long imaging distance and the sequential interval. In this paper, an amplitude-phase retrieval algorithm with reference is put forward without additional measurements or priori knowledge. It gets rid of measuring the first imaging distance. With a designed update formula, it significantly raises the convergence speed and the reconstruction fidelity, especially in phase retrieval. Its superiority over the original amplitude-phase retrieval (APR) method is validated by numerical analysis and experiments. Furthermore, it provides a conceptual design of a compact holographic image sensor, which can achieve numerical refocusing easily.
On the Quantification of Cellular Velocity Fields.
Vig, Dhruv K; Hamby, Alex E; Wolgemuth, Charles W
2016-04-12
The application of flow visualization in biological systems is becoming increasingly common in studies ranging from intracellular transport to the movements of whole organisms. In cell biology, the standard method for measuring cell-scale flows and/or displacements has been particle image velocimetry (PIV); however, alternative methods exist, such as optical flow constraint. Here we review PIV and optical flow, focusing on the accuracy and efficiency of these methods in the context of cellular biophysics. Although optical flow is not as common, a relatively simple implementation of this method can outperform PIV and is easily augmented to extract additional biophysical/chemical information such as local vorticity or net polymerization rates from speckle microscopy. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Acoustic environmental accuracy requirements for response determination
NASA Technical Reports Server (NTRS)
Pettitt, M. R.
1983-01-01
A general purpose computer program was developed for the prediction of vehicle interior noise. This program, named VIN, has both modal and statistical energy analysis capabilities for structural/acoustic interaction analysis. The analytic models and their computer implementation were verified through simple test cases with well-defined experimental results. The model was also applied in a space shuttle payload bay launch acoustics prediction study. The computer program processes large and small problems with equal efficiency because all arrays are dynamically sized by program input variables at run time. A data base is built and easily accessed for design studies. The data base significantly reduces the computational costs of such studies by allowing the reuse of the still-valid calculated parameters of previous iterations.
NASA Astrophysics Data System (ADS)
Kustova, E. V.; Savelev, A. S.; Kunova, O. V.
2018-05-01
Theoretical models for the vibrational state-resolved Zeldovich reaction are assessed by comparison with the results of quasi-classical trajectory (QCT) calculations. An error in the model of Aliat is corrected; the model is generalized taking into account NO vibrational states. The proposed model is fairly simple and can be easily implemented to the software for non-equilibrium flow modeling. It provides a good agreement with the QCT rate coefficients in the whole range of temperatures and reagent/product vibrational states. The developed models are tested in simulations of vibrational and chemical relaxation of air mixture behind a shock wave. The importance of accounting for excitated NO vibrational states and accurate prediction of Zeldovich reactions rates is shown.
Simple Activity Demonstrates Wind Energy Principles
ERIC Educational Resources Information Center
Roman, Harry T.
2012-01-01
Wind energy is an exciting and clean energy option often described as the fastest-growing energy system on the planet. With some simple materials, teachers can easily demonstrate its key principles in their classroom. (Contains 1 figure and 2 tables.)
Become a Star: Teaching the Process of Design and Implementation of an Intelligent System
ERIC Educational Resources Information Center
Venables, Anne; Tan, Grace
2005-01-01
Teaching future knowledge engineers, the necessary skills for designing and implementing intelligent software solutions required by business, industry and research today, is a very tall order. These skills are not easily taught in traditional undergraduate computer science lectures; nor are the practical experiences easily reinforced in laboratory…
Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology.
Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M B
2015-01-01
This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet.
Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology
Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M. B.
2015-01-01
This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet. PMID:27006940
Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source
NASA Astrophysics Data System (ADS)
Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal
2017-09-01
For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.
Simple and Cooperatively Built Wave Motion Demonstrator
ERIC Educational Resources Information Center
Cortel, Adolf
2006-01-01
Some designs of simple wave demonstration devices have been described in this journal and elsewhere. A new simple model can be built using only dowels, binder clips, and loops of thread. Not only can it be easily assembled, stored, or disassembled, but also all the students in a class can cooperate in its building by connecting successive pieces…
NASA Astrophysics Data System (ADS)
Laban, Shaban; El-Desouky, Aly
2014-05-01
To achieve a rapid, simple and reliable parallel processing of different types of tasks and big data processing on any compute cluster, a lightweight messaging-based distributed applications processing and workflow execution framework model is proposed. The framework is based on Apache ActiveMQ and Simple (or Streaming) Text Oriented Message Protocol (STOMP). ActiveMQ , a popular and powerful open source persistence messaging and integration patterns server with scheduler capabilities, acts as a message broker in the framework. STOMP provides an interoperable wire format that allows framework programs to talk and interact between each other and ActiveMQ easily. In order to efficiently use the message broker a unified message and topic naming pattern is utilized to achieve the required operation. Only three Python programs and simple library, used to unify and simplify the implementation of activeMQ and STOMP protocol, are needed to use the framework. A watchdog program is used to monitor, remove, add, start and stop any machine and/or its different tasks when necessary. For every machine a dedicated one and only one zoo keeper program is used to start different functions or tasks, stompShell program, needed for executing the user required workflow. The stompShell instances are used to execute any workflow jobs based on received message. A well-defined, simple and flexible message structure, based on JavaScript Object Notation (JSON), is used to build any complex workflow systems. Also, JSON format is used in configuration, communication between machines and programs. The framework is platform independent. Although, the framework is built using Python the actual workflow programs or jobs can be implemented by any programming language. The generic framework can be used in small national data centres for processing seismological and radionuclide data received from the International Data Centre (IDC) of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). Also, it is possible to extend the use of the framework in monitoring the IDC pipeline. The detailed design, implementation,conclusion and future work of the proposed framework will be presented.
A simple animal support for convenient weighing
Pan, H.P.; Caslick, J.W.; Harke, D.T.; Decker, D.G.
1965-01-01
A simple animal support constructed of web belts to hold skittish pigs for weighing was developed. The support is easily made, noninjurious to the pigs, and compact, facilitating rapid, accurate weighing. With minor modifications, the support can probably be used in weighing other animals.
Tiled architecture of a CNN-mostly IP system
NASA Astrophysics Data System (ADS)
Spaanenburg, Lambert; Malki, Suleyman
2009-05-01
Multi-core architectures have been popularized with the advent of the IBM CELL. On a finer grain the problems in scheduling multi-cores have already existed in the tiled architectures, such as the EPIC and Da Vinci. It is not easy to evaluate the performance of a schedule on such architecture as historical data are not available. One solution is to compile algorithms for which an optimal schedule is known by analysis. A typical example is an algorithm that is already defined in terms of many collaborating simple nodes, such as a Cellular Neural Network (CNN). A simple node with a local register stack together with a 'rotating wheel' internal communication mechanism has been proposed. Though the basic CNN allows for a tiled implementation of a tiled algorithm on a tiled structure, a practical CNN system will have to disturb this regularity by the additional need for arithmetical and logical operations. Arithmetic operations are needed for instance to accommodate for low-level image processing, while logical operations are needed to fork and merge different data streams without use of the external memory. It is found that the 'rotating wheel' internal communication mechanism still handles such mechanisms without the need for global control. Overall the CNN system provides for a practical network size as implemented on a FPGA, can be easily used as embedded IP and provides a clear benchmark for a multi-core compiler.
Ozdek, Ali; Keseroglu, Kemal
2014-08-01
To define a technique for the practical use of a 16-gauge peripheral venous catheter as an insulated aspiration cautery in endoscopic ear surgery. Retrospective case review. Tertiary referral center. A 16-gauge intravenous catheter was prepared as a cauterization instrument with aspiration. After simple rearrangement of the exterior plastic portion, it was connected to a suction system. With the help of an unipolar cautery, aspiration of the blood and homeostasis was achieved. Hemorrhage of the external ear canal skin after incision can be easily coagulated with this instrument. During follow-up, there were no wound infection, facial nerve paresis, scar formation, and inadvertent burn of the external canal and auricular skin. With the help of this instrument, bleeding control during incision can be easily maintained. It is a simple, easily prepared, and alternative homeostasis technique in endoscopic ear surgery.
Shotput kinematics made simple
NASA Astrophysics Data System (ADS)
Faella, O.; De Luca, R.
2013-11-01
We show that some results in the kinematics of a point particle can be easily recalled by introducing simple definitions. In particular, in the parabolic motion of a particle thrown from a height h above the origin O at an angle θ from the horizontal direction, the optimum angle θ* for reaching the maximum distance Rmax on the ground, measured from the origin, can be found by calculating the inverse tangent of the ratio between the initial velocity V0 and the final velocity Vf. The value of Rmax is itself found to be easily expressed as V0Vf/g, g being the acceleration due to gravity.
Using old technology to implement modern computer-aided decision support for primary diabetes care.
Hunt, D. L.; Haynes, R. B.; Morgan, D.
2001-01-01
BACKGROUND: Implementation rates of interventions known to be beneficial for people with diabetes mellitus are often suboptimal. Computer-aided decision support systems (CDSSs) can improve these rates. The complexity of establishing a fully integrated electronic medical record that provides decision support, however, often prevents their use. OBJECTIVE: To develop a CDSS for diabetes care that can be easily introduced into primary care settings and diabetes clinics. THE SYSTEM: The CDSS uses fax-machine-based optical character recognition software for acquiring patient information. Simple, 1-page paper forms, completed by patients or health practitioners, are faxed to a central location. The information is interpreted and recorded in a database. This initiates a routine that matches the information against a knowledge base so that patient-specific recommendations can be generated. These are formatted and faxed back within 4-5 minutes. IMPLEMENTATION: The system is being introduced into 2 diabetes clinics. We are collecting information on frequency of use of the system, as well as satisfaction with the information provided. CONCLUSION: Computer-aided decision support can be provided in any setting with a fax machine, without the need for integrated electronic medical records or computerized data-collection devices. PMID:11825194
NASA Astrophysics Data System (ADS)
Cartarius, Holger; Musslimani, Ziad H.; Schwarz, Lukas; Wunner, Günter
2018-03-01
The spectral renormalization method was introduced in 2005 as an effective way to compute ground states of nonlinear Schrödinger and Gross-Pitaevskii type equations. In this paper, we introduce an orthogonal spectral renormalization (OSR) method to compute ground and excited states (and their respective eigenvalues) of linear and nonlinear eigenvalue problems. The implementation of the algorithm follows four simple steps: (i) reformulate the underlying eigenvalue problem as a fixed-point equation, (ii) introduce a renormalization factor that controls the convergence properties of the iteration, (iii) perform a Gram-Schmidt orthogonalization process in order to prevent the iteration from converging to an unwanted mode, and (iv) compute the solution sought using a fixed-point iteration. The advantages of the OSR scheme over other known methods (such as Newton's and self-consistency) are (i) it allows the flexibility to choose large varieties of initial guesses without diverging, (ii) it is easy to implement especially at higher dimensions, and (iii) it can easily handle problems with complex and random potentials. The OSR method is implemented on benchmark Hermitian linear and nonlinear eigenvalue problems as well as linear and nonlinear non-Hermitian PT -symmetric models.
Evaluation of the Illumigene Malaria LAMP: A Robust Molecular Diagnostic Tool for Malaria Parasites
Lucchi, Naomi W.; Gaye, Marie; Diallo, Mammadou Alpha; Goldman, Ira F.; Ljolje, Dragan; Deme, Awa Bineta; Badiane, Aida; Ndiaye, Yaye Die; Barnwell, John W.; Udhayakumar, Venkatachalam; Ndiaye, Daouda
2016-01-01
Isothermal nucleic acid amplification assays such as the loop mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to amplify the DNA. To further facilitate the use of LAMP assays in remote settings, simpler sample preparation methods and lyophilized reagents are required. The performance of a commercial malaria LAMP assay (Illumigene Malaria LAMP) was evaluated using two sample preparation workflows (simple filtration prep (SFP)) and gravity-driven filtration prep (GFP)) and pre-dispensed lyophilized reagents. Laboratory and clinical samples were tested in a field laboratory in Senegal and the results independently confirmed in a reference laboratory in the U.S.A. The Illumigene Malaria LAMP assay was easily implemented in the clinical laboratory and gave similar results to a real-time PCR reference test with limits of detection of ≤2.0 parasites/μl depending on the sample preparation method used. This assay reliably detected Plasmodium sp. parasites in a simple low-tech format, providing a much needed alternative to the more complex molecular tests for malaria diagnosis. PMID:27827432
Fukuda, Ikuo
2013-11-07
The zero-multipole summation method has been developed to efficiently evaluate the electrostatic Coulombic interactions of a point charge system. This summation prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large amounts of energetic noise and significant artifacts. The resulting energy function is represented by a constant term plus a simple pairwise summation, using a damped or undamped Coulombic pair potential function along with a polynomial of the distance between each particle pair. Thus, the implementation is straightforward and enables facile applications to high-performance computations. Any higher-order multipole moment can be taken into account in the neutrality principle, and it only affects the degree and coefficients of the polynomial and the constant term. The lowest and second moments correspond respectively to the Wolf zero-charge scheme and the zero-dipole summation scheme, which was previously proposed. Relationships with other non-Ewald methods are discussed, to validate the current method in their contexts. Good numerical efficiencies were easily obtained in the evaluation of Madelung constants of sodium chloride and cesium chloride crystals.
NASA Astrophysics Data System (ADS)
Erdem, S. Sibel; Khan, Shazia; Palanisami, Akilan; Hasan, Tayyaba
2014-10-01
Antibiotic resistance (AR) is increasingly prevalent in low and middle income countries (LMICs), but the extent of the problem is poorly understood. This lack of knowledge is a critical deficiency, leaving local health authorities essentially blind to AR outbreaks and crippling their ability to provide effective treatment guidelines. The crux of the problem is the lack of microbiology laboratory capacity available in LMICs. To address this unmet need, we demonstrate a rapid and simple test of β-lactamase resistance (the most common form of AR) that uses a modified β-lactam structure decorated with two fluorophores quenched due to their close proximity. When the β-lactam core is cleaved by β-lactamase, the fluorophores dequench, allowing assay speeds of 20 min to be obtained with a simple, streamlined protocol. Furthermore, by testing in competition with antibiotics, the β-lactamase-associated antibiotic susceptibility can also be extracted. This assay can be easily implemented into standard lab work flows to provide near real-time information of β-lactamase resistance, both for epidemiological purposes as well as individualized patient care.
Infinitely Dilute Partial Molar Properties of Proteins from Computer Simulation
2015-01-01
A detailed understanding of temperature and pressure effects on an infinitely dilute protein’s conformational equilibrium requires knowledge of the corresponding infinitely dilute partial molar properties. Established molecular dynamics methodologies generally have not provided a way to calculate these properties without either a loss of thermodynamic rigor, the introduction of nonunique parameters, or a loss of information about which solute conformations specifically contributed to the output values. Here we implement a simple method that is thermodynamically rigorous and possesses none of the above disadvantages, and we report on the method’s feasibility and computational demands. We calculate infinitely dilute partial molar properties for two proteins and attempt to distinguish the thermodynamic differences between a native and a denatured conformation of a designed miniprotein. We conclude that simple ensemble average properties can be calculated with very reasonable amounts of computational power. In contrast, properties corresponding to fluctuating quantities are computationally demanding to calculate precisely, although they can be obtained more easily by following the temperature and/or pressure dependence of the corresponding ensemble averages. PMID:25325571
Albuquerque, Fabio; Beier, Paul
2015-01-01
Here we report that prioritizing sites in order of rarity-weighted richness (RWR) is a simple, reliable way to identify sites that represent all species in the fewest number of sites (minimum set problem) or to identify sites that represent the largest number of species within a given number of sites (maximum coverage problem). We compared the number of species represented in sites prioritized by RWR to numbers of species represented in sites prioritized by the Zonation software package for 11 datasets in which the size of individual planning units (sites) ranged from <1 ha to 2,500 km2. On average, RWR solutions were more efficient than Zonation solutions. Integer programming remains the only guaranteed way find an optimal solution, and heuristic algorithms remain superior for conservation prioritizations that consider compactness and multiple near-optimal solutions in addition to species representation. But because RWR can be implemented easily and quickly in R or a spreadsheet, it is an attractive alternative to integer programming or heuristic algorithms in some conservation prioritization contexts.
An executable specification for the message processor in a simple combining network
NASA Technical Reports Server (NTRS)
Middleton, David
1995-01-01
While the primary function of the network in a parallel computer is to communicate data between processors, it is often useful if the network can also perform rudimentary calculations. That is, some simple processing ability in the network itself, particularly for performing parallel prefix computations, can reduce both the volume of data being communicated and the computational load on the processors proper. Unfortunately, typical implementations of such networks require a large fraction of the hardware budget, and so combining networks are viewed as being impractical. The FFP Machine has such a combining network, and various characteristics of the machine allow a good deal of simplification in the network design. Despite being simple in construction however, the network relies on many subtle details to work correctly. This paper describes an executable model of the network which will serve several purposes. It provides a complete and detailed description of the network which can substantiate its ability to support necessary functions. It provides an environment in which algorithms to be run on the network can be designed and debugged more easily than they would on physical hardware. Finally, it provides the foundation for exploring the design of the message receiving facility which connects the network to the individual processors.
CudaChain: an alternative algorithm for finding 2D convex hulls on the GPU.
Mei, Gang
2016-01-01
This paper presents an alternative GPU-accelerated convex hull algorithm and a novel S orting-based P reprocessing A pproach (SPA) for planar point sets. The proposed convex hull algorithm termed as CudaChain consists of two stages: (1) two rounds of preprocessing performed on the GPU and (2) the finalization of calculating the expected convex hull on the CPU. Those interior points locating inside a quadrilateral formed by four extreme points are first discarded, and then the remaining points are distributed into several (typically four) sub regions. For each subset of points, they are first sorted in parallel; then the second round of discarding is performed using SPA; and finally a simple chain is formed for the current remaining points. A simple polygon can be easily generated by directly connecting all the chains in sub regions. The expected convex hull of the input points can be finally obtained by calculating the convex hull of the simple polygon. The library Thrust is utilized to realize the parallel sorting, reduction, and partitioning for better efficiency and simplicity. Experimental results show that: (1) SPA can very effectively detect and discard the interior points; and (2) CudaChain achieves 5×-6× speedups over the famous Qhull implementation for 20M points.
Simulation of Combustion Systems with Realistic g-jitter
NASA Technical Reports Server (NTRS)
Mell, William E.; McGrattan, Kevin B.; Baum, Howard R.
2003-01-01
In this project a transient, fully three-dimensional computer simulation code was developed to simulate the effects of realistic g-jitter on a number of combustion systems. The simulation code is capable of simulating flame spread on a solid and nonpremixed or premixed gaseous combustion in nonturbulent flow with simple combustion models. Simple combustion models were used to preserve computational efficiency since this is meant to be an engineering code. Also, the use of sophisticated turbulence models was not pursued (a simple Smagorinsky type model can be implemented if deemed appropriate) because if flow velocities are large enough for turbulence to develop in a reduced gravity combustion scenario it is unlikely that g-jitter disturbances (in NASA's reduced gravity facilities) will play an important role in the flame dynamics. Acceleration disturbances of realistic orientation, magnitude, and time dependence can be easily included in the simulation. The simulation algorithm was based on techniques used in an existing large eddy simulation code which has successfully simulated fire dynamics in complex domains. A series of simulations with measured and predicted acceleration disturbances on the International Space Station (ISS) are presented. The results of this series of simulations suggested a passive isolation system and appropriate scheduling of crew activity would provide a sufficiently "quiet" acceleration environment for spherical diffusion flames.
Real-Time Processing Library for Open-Source Hardware Biomedical Sensors
Castro-García, Juan A.; Lebrato-Vázquez, Clara
2018-01-01
Applications involving data acquisition from sensors need samples at a preset frequency rate, the filtering out of noise and/or analysis of certain frequency components. We propose a novel software architecture based on open-software hardware platforms which allows programmers to create data streams from input channels and easily implement filters and frequency analysis objects. The performances of the different classes given in the size of memory allocated and execution time (number of clock cycles) were analyzed in the low-cost platform Arduino Genuino. In addition, 11 people took part in an experiment in which they had to implement several exercises and complete a usability test. Sampling rates under 250 Hz (typical for many biomedical applications) makes it feasible to implement filters, sliding windows and Fourier analysis, operating in real time. Participants rated software usability at 70.2 out of 100 and the ease of use when implementing several signal processing applications was rated at just over 4.4 out of 5. Participants showed their intention of using this software because it was percieved as useful and very easy to use. The performances of the library showed that it may be appropriate for implementing small biomedical real-time applications or for human movement monitoring, even in a simple open-source hardware device like Arduino Genuino. The general perception about this library is that it is easy to use and intuitive. PMID:29596394
Real-Time Processing Library for Open-Source Hardware Biomedical Sensors.
Molina-Cantero, Alberto J; Castro-García, Juan A; Lebrato-Vázquez, Clara; Gómez-González, Isabel M; Merino-Monge, Manuel
2018-03-29
Applications involving data acquisition from sensors need samples at a preset frequency rate, the filtering out of noise and/or analysis of certain frequency components. We propose a novel software architecture based on open-software hardware platforms which allows programmers to create data streams from input channels and easily implement filters and frequency analysis objects. The performances of the different classes given in the size of memory allocated and execution time (number of clock cycles) were analyzed in the low-cost platform Arduino Genuino. In addition, 11 people took part in an experiment in which they had to implement several exercises and complete a usability test. Sampling rates under 250 Hz (typical for many biomedical applications) makes it feasible to implement filters, sliding windows and Fourier analysis, operating in real time. Participants rated software usability at 70.2 out of 100 and the ease of use when implementing several signal processing applications was rated at just over 4.4 out of 5. Participants showed their intention of using this software because it was percieved as useful and very easy to use. The performances of the library showed that it may be appropriate for implementing small biomedical real-time applications or for human movement monitoring, even in a simple open-source hardware device like Arduino Genuino. The general perception about this library is that it is easy to use and intuitive.
MAGMA: analysis of two-channel microarrays made easy.
Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph
2007-07-01
The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.
ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos
NASA Astrophysics Data System (ADS)
de Luca, Elisa; Zaccaria, Gian Maria; Hadhoud, Marwa; Rizzo, Giovanna; Ponzini, Raffaele; Morbiducci, Umberto; Santoro, Massimo Mattia
2014-05-01
Heartbeat measurement is important in assesssing cardiac function because variations in heart rhythm can be the cause as well as an effect of hidden pathological heart conditions. Zebrafish (Danio rerio) has emerged as one of the most useful model organisms for cardiac research. Indeed, the zebrafish heart is easily accessible for optical analyses without conducting invasive procedures and shows anatomical similarity to the human heart. In this study, we present a non-invasive, simple, cost-effective process to quantify the heartbeat in embryonic zebrafish. To achieve reproducibility, high throughput and flexibility (i.e., adaptability to any existing confocal microscope system and with a user-friendly interface that can be easily used by researchers), we implemented this method within a software program. We show here that this platform, called ZebraBeat, can successfully detect heart rate variations in embryonic zebrafish at various developmental stages, and it can record cardiac rate fluctuations induced by factors such as temperature and genetic- and chemical-induced alterations. Applications of this methodology may include the screening of chemical libraries affecting heart rhythm and the identification of heart rhythm variations in mutants from large-scale forward genetic screens.
Gubler, Hanspeter; Clare, Nicholas; Galafassi, Laurent; Geissler, Uwe; Girod, Michel; Herr, Guy
2018-06-01
We describe the main characteristics of the Novartis Helios data analysis software system (Novartis, Basel, Switzerland) for plate-based screening and profiling assays, which was designed and built about 11 years ago. It has been in productive use for more than 10 years and is one of the important standard software applications running for a large user community at all Novartis Institutes for BioMedical Research sites globally. A high degree of automation is reached by embedding the data analysis capabilities into a software ecosystem that deals with the management of samples, plates, and result data files, including automated data loading. The application provides a series of analytical procedures, ranging from very simple to advanced, which can easily be assembled by users in very flexible ways. This also includes the automatic derivation of a large set of quality control (QC) characteristics at every step. Any of the raw, intermediate, and final results and QC-relevant quantities can be easily explored through linked visualizations. Links to global assay metadata management, data warehouses, and an electronic lab notebook system are in place. Automated transfer of relevant data to data warehouses and electronic lab notebook systems are also implemented.
Easy ambient sonic-spray ionization mass spectrometry combined with thin-layer chromatography.
Haddad, Renato; Milagre, Humberto M S; Catharino, Rodrigo Ramos; Eberlin, Marcos N
2008-04-15
On-spot detection and analyte characterization on thin-layer chromatography (TLC) plates is performed via ambient desorption/ionization and (tandem) mass spectrometry detection, that is, via easy ambient sonic spray ionization mass spectrometry (EASI-MS). As proof-of-principle cases, mixtures of semipolar nitrogenated compounds as well as pharmaceutical drugs and vegetable oils have been tested. The technique has also been applied to monitor a chemical reaction of synthetic importance. EASI is the simplest and gentlest ambient ionization technique currently available, assisted solely by N2 (or air). It uses no voltages, no electrical discharges; no UV or laser beams, and no high temperature and is most easily implemented in all API mass spectrometers. TLC is also the simplest, fastest, and most easily performed chromatographic technique. TLC plus EASI-MS therefore provide a simple and advantageous combination of chromatographic separation and sensitive detection of the TLC spots as well as on-spot MS or MS/MS characterization. The favorable characteristics of TLC-EASI-MS indicate advantageous applications in several areas such as drug and oil analysis, phytochemistry and synthetic chemistry, forensics via reliable counterfeit detection, and quality control.
Processing MALDI mass spectra to improve mass spectral direct tissue analysis
NASA Astrophysics Data System (ADS)
Norris, Jeremy L.; Cornett, Dale S.; Mobley, James A.; Andersson, Malin; Seeley, Erin H.; Chaurand, Pierre; Caprioli, Richard M.
2007-02-01
Profiling and imaging biological specimens using MALDI mass spectrometry has significant potential to contribute to our understanding and diagnosis of disease. The technique is efficient and high-throughput providing a wealth of data about the biological state of the sample from a very simple and direct experiment. However, in order for these techniques to be put to use for clinical purposes, the approaches used to process and analyze the data must improve. This study examines some of the existing tools to baseline subtract, normalize, align, and remove spectral noise for MALDI data, comparing the advantages of each. A preferred workflow is presented that can be easily implemented for data in ASCII format. The advantages of using such an approach are discussed for both molecular profiling and imaging mass spectrometry.
A generalized algorithm to design finite field normal basis multipliers
NASA Technical Reports Server (NTRS)
Wang, C. C.
1986-01-01
Finite field arithmetic logic is central in the implementation of some error-correcting coders and some cryptographic devices. There is a need for good multiplication algorithms which can be easily realized. Massey and Omura recently developed a new multiplication algorithm for finite fields based on a normal basis representation. Using the normal basis representation, the design of the finite field multiplier is simple and regular. The fundamental design of the Massey-Omura multiplier is based on a design of a product function. In this article, a generalized algorithm to locate a normal basis in a field is first presented. Using this normal basis, an algorithm to construct the product function is then developed. This design does not depend on particular characteristics of the generator polynomial of the field.
Mosely, Jackie A; Stokes, Peter; Parker, David; Dyer, Philip W; Messinis, Antonis M
2018-02-01
A novel method has been developed that enables chemical compounds to be transferred from an inert atmosphere glove box and into the atmospheric pressure ion source of a mass spectrometer whilst retaining a controlled chemical environment. This innovative method is simple and cheap to implement on some commercially available mass spectrometers. We have termed this approach inert atmospheric pressure solids analysis probe ( iASAP) and demonstrate the benefit of this methodology for two air-/moisture-sensitive chemical compounds whose characterisation by mass spectrometry is now possible and easily achieved. The simplicity of the design means that moving between iASAP and standard ASAP is straightforward and quick, providing a highly flexible platform with rapid sample turnaround.
Several steps/day indicators predict changes in anthropometric outcomes: HUB city steps
USDA-ARS?s Scientific Manuscript database
Walking for exercise remains the most frequently reported leisure-time activity, likely because it is simple, inexpensive, and easily incorporated into most people’s lifestyle. Pedometers are simple, convenient, and economical tools that can be used to quantify step-determined physical activity. F...
Time-of-Flight Measurement of the Speed of Sound in Water
ERIC Educational Resources Information Center
Ganci, Salvatore
2016-01-01
A simple setup is designed to investigate a "time-of-flight" measurement of the speed of sound in water. This experiment only requires low cost components and is also very simple to understand by students. It could be easily used as a demonstration experiment.
2011-01-01
Background Laboratory Information Management Systems (LIMS) are an increasingly important part of modern laboratory infrastructure. As typically very sophisticated software products, LIMS often require considerable resources to select, deploy and maintain. Larger organisations may have access to specialist IT support to assist with requirements elicitation and software customisation, however smaller groups will often have limited IT support to perform the kind of iterative development that can resolve the difficulties that biologists often have when specifying requirements. Translational medicine aims to accelerate the process of treatment discovery by bringing together multiple disciplines to discover new approaches to treating disease, or novel applications of existing treatments. The diverse set of disciplines and complexity of processing procedures involved, especially with the use of high throughput technologies, bring difficulties in customizing a generic LIMS to provide a single system for managing sample related data within a translational medicine research setting, especially where limited IT support is available. Results We have designed and developed a LIMS, BonsaiLIMS, around a very simple data model that can be easily implemented using a variety of technologies, and can be easily extended as specific requirements dictate. A reference implementation using Oracle 11 g database and the Python framework, Django is presented. Conclusions By focusing on a minimal feature set and a modular design we have been able to deploy the BonsaiLIMS system very quickly. The benefits to our institute have been the avoidance of the prolonged implementation timescales, budget overruns, scope creep, off-specifications and user fatigue issues that typify many enterprise software implementations. The transition away from using local, uncontrolled records in spreadsheet and paper formats to a centrally held, secured and backed-up database brings the immediate benefits of improved data visibility, audit and overall data quality. The open-source availability of this software allows others to rapidly implement a LIMS which in itself might sufficiently address user requirements. In situations where this software does not meet requirements, it can serve to elicit more accurate specifications from end-users for a more heavyweight LIMS by acting as a demonstrable prototype. PMID:21569484
Bath, Timothy G; Bozdag, Selcuk; Afzal, Vackar; Crowther, Daniel
2011-05-13
Laboratory Information Management Systems (LIMS) are an increasingly important part of modern laboratory infrastructure. As typically very sophisticated software products, LIMS often require considerable resources to select, deploy and maintain. Larger organisations may have access to specialist IT support to assist with requirements elicitation and software customisation, however smaller groups will often have limited IT support to perform the kind of iterative development that can resolve the difficulties that biologists often have when specifying requirements. Translational medicine aims to accelerate the process of treatment discovery by bringing together multiple disciplines to discover new approaches to treating disease, or novel applications of existing treatments. The diverse set of disciplines and complexity of processing procedures involved, especially with the use of high throughput technologies, bring difficulties in customizing a generic LIMS to provide a single system for managing sample related data within a translational medicine research setting, especially where limited IT support is available. We have designed and developed a LIMS, BonsaiLIMS, around a very simple data model that can be easily implemented using a variety of technologies, and can be easily extended as specific requirements dictate. A reference implementation using Oracle 11 g database and the Python framework, Django is presented. By focusing on a minimal feature set and a modular design we have been able to deploy the BonsaiLIMS system very quickly. The benefits to our institute have been the avoidance of the prolonged implementation timescales, budget overruns, scope creep, off-specifications and user fatigue issues that typify many enterprise software implementations. The transition away from using local, uncontrolled records in spreadsheet and paper formats to a centrally held, secured and backed-up database brings the immediate benefits of improved data visibility, audit and overall data quality. The open-source availability of this software allows others to rapidly implement a LIMS which in itself might sufficiently address user requirements. In situations where this software does not meet requirements, it can serve to elicit more accurate specifications from end-users for a more heavyweight LIMS by acting as a demonstrable prototype.
"Time: What Is It that It Can Be Measured?"
ERIC Educational Resources Information Center
Raju, C. K.
2006-01-01
Experiments with the simple pendulum are easy, but its motion is nevertheless confounded with simple harmonic motion. However, refined theoretical models of the pendulum can, today, be easily taught using software like CALCODE. Similarly, the cycloidal pendulum is isochronous only in simplified theory. But what "are" theoretically equal intervals…
Simple colonoscopy reporting system checking the detection rate of colon polyps.
Kim, Jae Hyun; Choi, Youn Jung; Kwon, Hye Jung; Park, Seun Ja; Park, Moo In; Moon, Won; Kim, Sung Eun
2015-08-21
To present a simple colonoscopy reporting system that can be checked easily the detection rate of colon polyps. A simple colonoscopy reporting system Kosin Gastroenterology (KG quality reporting system) was developed. The polyp detection rate (PDR), adenoma detection rate (ADR), serrated polyp detection rate (SDR), and advanced adenoma detection rate (AADR) are easily calculated to use this system. In our gastroenterology center, the PDR, ADR, SDR, and AADR test results from each gastroenterologist were updated, every month. Between June 2014, when the program was started, and December 2014, the overall PDR and ADR in our center were 62.5% and 41.4%, respectively. And the overall SDR and AADR were 7.5% and 12.1%, respectively. We envision that KG quality reporting system can be applied to develop a comprehensive system to check colon polyp detection rates in other gastroenterology centers.
Using template/hotwire cutting to demonstrate moldless composite fabrication
NASA Technical Reports Server (NTRS)
Coleman, J. Mario
1990-01-01
The objective of this experiment is to provide a simple, inexpensive composite fabrication technique which can be easily performed with a minimum of equipment and facilities. This process eliminates expensive female molds and uses only male molds which are easily formed from foam blocks. Once the mold is shaped, it is covered with fiberglass and becomes a structural component of the product.
nSTAT: Open-Source Neural Spike Train Analysis Toolbox for Matlab
Cajigas, I.; Malik, W.Q.; Brown, E.N.
2012-01-01
Over the last decade there has been a tremendous advance in the analytical tools available to neuroscientists to understand and model neural function. In particular, the point process - Generalized Linear Model (PPGLM) framework has been applied successfully to problems ranging from neuro-endocrine physiology to neural decoding. However, the lack of freely distributed software implementations of published PP-GLM algorithms together with problem-specific modifications required for their use, limit wide application of these techniques. In an effort to make existing PP-GLM methods more accessible to the neuroscience community, we have developed nSTAT – an open source neural spike train analysis toolbox for Matlab®. By adopting an Object-Oriented Programming (OOP) approach, nSTAT allows users to easily manipulate data by performing operations on objects that have an intuitive connection to the experiment (spike trains, covariates, etc.), rather than by dealing with data in vector/matrix form. The algorithms implemented within nSTAT address a number of common problems including computation of peri-stimulus time histograms, quantification of the temporal response properties of neurons, and characterization of neural plasticity within and across trials. nSTAT provides a starting point for exploratory data analysis, allows for simple and systematic building and testing of point process models, and for decoding of stimulus variables based on point process models of neural function. By providing an open-source toolbox, we hope to establish a platform that can be easily used, modified, and extended by the scientific community to address limitations of current techniques and to extend available techniques to more complex problems. PMID:22981419
Plug-and-play modules for flexible radiosynthesis
Herman, Henry; Flores, Graciela; Quinn, Kevin; Eddings, Mark; Olma, Sebastian; Moore, Melissa D.; Ding, Huijiang; Bobinski, Krzysztof P.; Wang, Mingwei; Williams, Dirk; Wiliams, Darin; Shen, Clifton Kwang-Fu; Phelps, Michael E.; van Dam, R. Michael
2015-01-01
We present a plug-and-play radiosynthesis platform and accompanying computer software based on modular subunits that can easily and flexibly be configured to implement a diverse range of radiosynthesis protocols. Modules were developed that perform: (i) reagent storage and delivery, (ii) evaporations and sealed reactions, and (iii) cartridge-based purifications. The reaction module incorporates a simple robotic mechanism that removes tubing from the vessel and replaces it with a stopper prior to sealed reactions, enabling the system to withstand high pressures and thus provide tremendous flexibility in choice of solvents and temperatures. Any number of modules can rapidly be connected together using only a few fluidic connections to implement a particular synthesis, and the resulting system is controlled in a semi-automated fashion by a single software interface. Radiosyntheses of 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), 1-[18F]fluoro-4-nitrobenzene ([18F]FNB), and 2′-deoxy-2′-[18F]fluoro-1-β-D-arabinofuranosyl cytosine (D-[18F]FAC) were performed to validate the system and demonstrate its versatility. PMID:23702795
NASA Astrophysics Data System (ADS)
Pogue, Brian W.; Davis, Scott C.; Kanick, Stephen C.; Maytin, Edward V.; Pereira, Stephen P.; Palanisami, Akilan; Hasan, Tayyaba
2016-03-01
Photodynamic therapy can be a highly complex treatment with more than one parameter to control, or in some cases it is easily implemented with little control other than prescribed drug and light values. The role of measured dosimetry as related to clinical adoption has not been as successful as it could have been, and part of this may be from the conflicting goals of advocating for as many measurements as possible for accurate control, versus companies and clinical adopters advocating for as few measurements as possible, to keep it simple. An organized approach to dosimetry selection is required, which shifts from mechanistic measurements in pre-clinical and early phase I trials, towards just those essential dose limiting measurements and a focus on possible surrogate measures in phase II/III trials. This essential and surrogate approach to dosimetry should help successful adoption of clinical PDT if successful. The examples of essential dosimetry points and surrogate dosimetry tools which might be implemented in phase II and higher trials are discussed for solid tissue PDT with verteporfin and skin lesion treatment with aminolevulinc acid.
Fast and precise thermoregulation system in physiological brain slice experiment
NASA Astrophysics Data System (ADS)
Sheu, Y. H.; Young, M. S.
1995-12-01
We have developed a fast and precise thermoregulation system incorporated within a physiological experiment on a brain slice. The thermoregulation system is used to control the temperature of a recording chamber in which the brain slice is placed. It consists of a single-chip microcomputer, a set command module, a display module, and an FLC module. A fuzzy control algorithm was developed and a fuzzy logic controller then designed for achieving fast, smooth thermostatic performance and providing precise temperature control with accuracy to 0.1 °C, from room temperature through 42 °C (experimental temperature range). The fuzzy logic controller is implemented by microcomputer software and related peripheral hardware circuits. Six operating modes of thermoregulation are offered with the system and this can be further extended according to experimental needs. The test results of this study demonstrate that the fuzzy control method is easily implemented by a microcomputer and also verifies that this method provides a simple way to achieve fast and precise high-performance control of a nonlinear thermoregulation system in a physiological brain slice experiment.
Design and prototype tests of a seismic attenuation system for the advanced-LIGO output mode cleaner
NASA Astrophysics Data System (ADS)
Bertolini, A.; DeSalvo, R.; Galli, C.; Gennaro, G.; Mantovani, M.; Márka, S.; Sannibale, V.; Takamori, A.; Torrie, C.
2006-04-01
Both present LIGO and advanced LIGO (Ad-LIGO) will need an output mode cleaner (OMC) to reach the desired sensitivity. We designed a suitable OMC seismically attenuated optical table fitting to the existing vacuum chambers (horizontal access module, HAM chambers). The most straightforward and cost-effective solution satisfying the Ad-LIGO seismic attenuation specifications was to implement a single passive seismic attenuation stage, derived from the 'seismic attenuation system' (SAS) concept. We built and tested prototypes of all critical components. On the basis of these tests and past experience, we expect that the passive attenuation performance of this new design, called HAM-SAS, will match all requirements for the LIGO OMC, and all Ad-LIGO optical tables. Its performance can be improved, if necessary, by implementation of a simple active attenuation loop at marginal additional cost. The design can be easily modified to equip the LIGO basic symmetric chamber (BSC) chambers and leaves space for extensive performance upgrades for future evolutions of Ad-LIGO. Design parameters and prototype test results are presented.
A Comparison of Ffowcs Williams-Hawkings Solvers for Airframe Noise Applications
NASA Technical Reports Server (NTRS)
Lockard, David P.
2002-01-01
This paper presents a comparison between two implementations of the Ffowcs Williams and Hawkings equation for airframe noise applications. Airframe systems are generally moving at constant speed and not rotating, so these conditions are used in the current investigation. Efficient and easily implemented forms of the equations applicable to subsonic, rectilinear motion of all acoustic sources are used. The assumptions allow the derivation of a simple form of the equations in the frequency-domain, and the time-domain method uses the restrictions on the motion to reduce the work required to find the emission time. The comparison between the frequency domain method and the retarded time formulation reveals some of the advantages of the different approaches. Both methods are still capable of predicting the far-field noise from nonlinear near-field flow quantities. Because of the large input data sets and potentially large numbers of observer positions of interest in three-dimensional problems, both codes utilize the message passing interface to divide the problem among different processors. Example problems are used to demonstrate the usefulness and efficiency of the two schemes.
NASA Astrophysics Data System (ADS)
Gutzwiller, David; Gontier, Mathieu; Demeulenaere, Alain
2014-11-01
Multi-Block structured solvers hold many advantages over their unstructured counterparts, such as a smaller memory footprint and efficient serial performance. Historically, multi-block structured solvers have not been easily adapted for use in a High Performance Computing (HPC) environment, and the recent trend towards hybrid GPU/CPU architectures has further complicated the situation. This paper will elaborate on developments and innovations applied to the NUMECA FINE/Turbo solver that have allowed near-linear scalability with real-world problems on over 250 hybrid GPU/GPU cluster nodes. Discussion will focus on the implementation of virtual partitioning and load balancing algorithms using a novel meta-block concept. This implementation is transparent to the user, allowing all pre- and post-processing steps to be performed using a simple, unpartitioned grid topology. Additional discussion will elaborate on developments that have improved parallel performance, including fully parallel I/O with the ADIOS API and the GPU porting of the computationally heavy CPUBooster convergence acceleration module. Head of HPC and Release Management, Numeca International.
A Simple Method for Collecting Airborne Pollen
ERIC Educational Resources Information Center
Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.
2006-01-01
Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…
A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence
ERIC Educational Resources Information Center
Grayson, Scott M.
2012-01-01
A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…
A Novel Method for Discovering Fuzzy Sequential Patterns Using the Simple Fuzzy Partition Method.
ERIC Educational Resources Information Center
Chen, Ruey-Shun; Hu, Yi-Chung
2003-01-01
Discusses sequential patterns, data mining, knowledge acquisition, and fuzzy sequential patterns described by natural language. Proposes a fuzzy data mining technique to discover fuzzy sequential patterns by using the simple partition method which allows the linguistic interpretation of each fuzzy set to be easily obtained. (Author/LRW)
Speededness and Adaptive Testing
ERIC Educational Resources Information Center
van der Linden, Wim J.; Xiong, Xinhui
2013-01-01
Two simple constraints on the item parameters in a response--time model are proposed to control the speededness of an adaptive test. As the constraints are additive, they can easily be included in the constraint set for a shadow-test approach (STA) to adaptive testing. Alternatively, a simple heuristic is presented to control speededness in plain…
Fast T Wave Detection Calibrated by Clinical Knowledge with Annotation of P and T Waves.
Elgendi, Mohamed; Eskofier, Bjoern; Abbott, Derek
2015-07-21
There are limited studies on the automatic detection of T waves in arrhythmic electrocardiogram (ECG) signals. This is perhaps because there is no available arrhythmia dataset with annotated T waves. There is a growing need to develop numerically-efficient algorithms that can accommodate the new trend of battery-driven ECG devices. Moreover, there is also a need to analyze long-term recorded signals in a reliable and time-efficient manner, therefore improving the diagnostic ability of mobile devices and point-of-care technologies. Here, the T wave annotation of the well-known MIT-BIH arrhythmia database is discussed and provided. Moreover, a simple fast method for detecting T waves is introduced. A typical T wave detection method has been reduced to a basic approach consisting of two moving averages and dynamic thresholds. The dynamic thresholds were calibrated using four clinically known types of sinus node response to atrial premature depolarization (compensation, reset, interpolation, and reentry). The determination of T wave peaks is performed and the proposed algorithm is evaluated on two well-known databases, the QT and MIT-BIH Arrhythmia databases. The detector obtained a sensitivity of 97.14% and a positive predictivity of 99.29% over the first lead of the validation databases (total of 221,186 beats). We present a simple yet very reliable T wave detection algorithm that can be potentially implemented on mobile battery-driven devices. In contrast to complex methods, it can be easily implemented in a digital filter design.
Guided Iterative Substructure Search (GI-SSS) - A New Trick for an Old Dog.
Weskamp, Nils
2016-07-01
Substructure search (SSS) is a fundamental technique supported by various chemical information systems. Many users apply it in an iterative manner: they modify their queries to shape the composition of the retrieved hit sets according to their needs. We propose and evaluate two heuristic extensions of SSS aimed at simplifying these iterative query modifications by collecting additional information during query processing and visualizing this information in an intuitive way. This gives the user a convenient feedback on how certain changes to the query would affect the retrieved hit set and reduces the number of trial-and-error cycles needed to generate an optimal search result. The proposed heuristics are simple, yet surprisingly effective and can be easily added to existing SSS implementations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimating monotonic rates from biological data using local linear regression.
Olito, Colin; White, Craig R; Marshall, Dustin J; Barneche, Diego R
2017-03-01
Accessing many fundamental questions in biology begins with empirical estimation of simple monotonic rates of underlying biological processes. Across a variety of disciplines, ranging from physiology to biogeochemistry, these rates are routinely estimated from non-linear and noisy time series data using linear regression and ad hoc manual truncation of non-linearities. Here, we introduce the R package LoLinR, a flexible toolkit to implement local linear regression techniques to objectively and reproducibly estimate monotonic biological rates from non-linear time series data, and demonstrate possible applications using metabolic rate data. LoLinR provides methods to easily and reliably estimate monotonic rates from time series data in a way that is statistically robust, facilitates reproducible research and is applicable to a wide variety of research disciplines in the biological sciences. © 2017. Published by The Company of Biologists Ltd.
Differential equation models for sharp threshold dynamics.
Schramm, Harrison C; Dimitrov, Nedialko B
2014-01-01
We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations. Published by Elsevier Inc.
A space efficient flexible pivot selection approach to evaluate determinant and inverse of a matrix.
Jafree, Hafsa Athar; Imtiaz, Muhammad; Inayatullah, Syed; Khan, Fozia Hanif; Nizami, Tajuddin
2014-01-01
This paper presents new simple approaches for evaluating determinant and inverse of a matrix. The choice of pivot selection has been kept arbitrary thus they reduce the error while solving an ill conditioned system. Computation of determinant of a matrix has been made more efficient by saving unnecessary data storage and also by reducing the order of the matrix at each iteration, while dictionary notation [1] has been incorporated for computing the matrix inverse thereby saving unnecessary calculations. These algorithms are highly class room oriented, easy to use and implemented by students. By taking the advantage of flexibility in pivot selection, one may easily avoid development of the fractions by most. Unlike the matrix inversion method [2] and [3], the presented algorithms obviate the use of permutations and inverse permutations.
A WebGL Tool for Visualizing the Topology of the Sun's Coronal Magnetic Field
NASA Astrophysics Data System (ADS)
Duffy, A.; Cheung, C.; DeRosa, M. L.
2012-12-01
We present a web-based, topology-viewing tool that allows users to visualize the geometry and topology of the Sun's 3D coronal magnetic field in an interactive manner. The tool is implemented using, open-source, mature, modern web technologies including WebGL, jQuery, HTML 5, and CSS 3, which are compatible with nearly all modern web browsers. As opposed to the traditional method of visualization, which involves the downloading and setup of various software packages-proprietary and otherwise-the tool presents a clean interface that allows the user to easily load and manipulate the model, while also offering great power to choose which topological features are displayed. The tool accepts data encoded in the JSON open format that has libraries available for nearly every major programming language, making it simple to generate the data.
The B-dot Earth Average Magnetic Field
NASA Technical Reports Server (NTRS)
Capo-Lugo, Pedro A.; Rakoczy, John; Sanders, Devon
2013-01-01
The average Earth's magnetic field is solved with complex mathematical models based on mean square integral. Depending on the selection of the Earth magnetic model, the average Earth's magnetic field can have different solutions. This paper presents a simple technique that takes advantage of the damping effects of the b-dot controller and is not dependent of the Earth magnetic model; but it is dependent on the magnetic torquers of the satellite which is not taken into consideration in the known mathematical models. Also the solution of this new technique can be implemented so easily that the flight software can be updated during flight, and the control system can have current gains for the magnetic torquers. Finally, this technique is verified and validated using flight data from a satellite that it has been in orbit for three years.
An electrostatic autoresonant ion trap mass spectrometer.
Ermakov, A V; Hinch, B J
2010-01-01
A new method for ion extraction from an anharmonic electrostatic trap is introduced. Anharmonicity is a common feature of electrostatic traps which can be used for small scale spatial confinement of ions, and this feature is also necessary for autoresonant ion extraction. With the aid of ion trajectory simulations, novel autoresonant trap mass spectrometers (ART-MSs) have been designed based on these very simple principles. A mass resolution approximately 60 is demonstrated for the prototypes discussed here. We report also on the pressure dependencies, and the (mV) rf field strength dependencies of the ART-MS sensitivity. Importantly the new MS designs do not require heavy magnets, tight manufacturing tolerances, introduction of buffer gases, high power rf sources, nor complicated electronics. The designs described here are very inexpensive to implement relative to other instruments, and can be easily miniaturized. Possible applications are discussed.
Haddad, Renato; Catharino, Rodrigo Ramos; Marques, Lygia Azevedo; Eberlin, Marcos Nogueira
2008-11-01
Perfume counterfeiting is an illegal worldwide practice that involves huge economic losses and potential consumer risk. EASI is a simple, easily performed and rapidly implemented desorption/ionization technique for ambient mass spectrometry (MS). Herein we demonstrate that EASI-MS allows nearly instantaneous perfume typification and counterfeit detection. Samples are simply sprayed onto a glass rod or paper surface and, after a few seconds of ambient drying, a profile of the most polar components of the perfume is acquired. These components provide unique and reproducible chemical signatures for authentic perfume samples. Counterfeiting is readily recognized since the exact set and relative proportions of the more polar chemicals, sometimes at low concentrations, are unknown or hard to reproduce by the counterfeiters and hence very distinct and variable EASI-MS profiles are observed for the counterfeit samples.
Utilizing Linked Open Data Sources for Automatic Generation of Semantic Metadata
NASA Astrophysics Data System (ADS)
Nummiaho, Antti; Vainikainen, Sari; Melin, Magnus
In this paper we present an application that can be used to automatically generate semantic metadata for tags given as simple keywords. The application that we have implemented in Java programming language creates the semantic metadata by linking the tags to concepts in different semantic knowledge bases (CrunchBase, DBpedia, Freebase, KOKO, Opencyc, Umbel and/or WordNet). The steps that our application takes in doing so include detecting possible languages, finding spelling suggestions and finding meanings from amongst the proper nouns and common nouns separately. Currently, our application supports English, Finnish and Swedish words, but other languages could be included easily if the required lexical tools (spellcheckers, etc.) are available. The created semantic metadata can be of great use in, e.g., finding and combining similar contents, creating recommendations and targeting advertisements.
McFarquhar, Martyn; McKie, Shane; Emsley, Richard; Suckling, John; Elliott, Rebecca; Williams, Stephen
2016-01-01
Repeated measurements and multimodal data are common in neuroimaging research. Despite this, conventional approaches to group level analysis ignore these repeated measurements in favour of multiple between-subject models using contrasts of interest. This approach has a number of drawbacks as certain designs and comparisons of interest are either not possible or complex to implement. Unfortunately, even when attempting to analyse group level data within a repeated-measures framework, the methods implemented in popular software packages make potentially unrealistic assumptions about the covariance structure across the brain. In this paper, we describe how this issue can be addressed in a simple and efficient manner using the multivariate form of the familiar general linear model (GLM), as implemented in a new MATLAB toolbox. This multivariate framework is discussed, paying particular attention to methods of inference by permutation. Comparisons with existing approaches and software packages for dependent group-level neuroimaging data are made. We also demonstrate how this method is easily adapted for dependency at the group level when multiple modalities of imaging are collected from the same individuals. Follow-up of these multimodal models using linear discriminant functions (LDA) is also discussed, with applications to future studies wishing to integrate multiple scanning techniques into investigating populations of interest. PMID:26921716
MedXViewer: an extensible web-enabled software package for medical imaging
NASA Astrophysics Data System (ADS)
Looney, P. T.; Young, K. C.; Mackenzie, Alistair; Halling-Brown, Mark D.
2014-03-01
MedXViewer (Medical eXtensible Viewer) is an application designed to allow workstation-independent, PACS-less viewing and interaction with anonymised medical images (e.g. observer studies). The application was initially implemented for use in digital mammography and tomosynthesis but the flexible software design allows it to be easily extended to other imaging modalities. Regions of interest can be identified by a user and any associated information about a mark, an image or a study can be added. The questions and settings can be easily configured depending on the need of the research allowing both ROC and FROC studies to be performed. The extensible nature of the design allows for other functionality and hanging protocols to be available for each study. Panning, windowing, zooming and moving through slices are all available while modality-specific features can be easily enabled e.g. quadrant zooming in mammographic studies. MedXViewer can integrate with a web-based image database allowing results and images to be stored centrally. The software and images can be downloaded remotely from this centralised data-store. Alternatively, the software can run without a network connection where the images and results can be encrypted and stored locally on a machine or external drive. Due to the advanced workstation-style functionality, the simple deployment on heterogeneous systems over the internet without a requirement for administrative access and the ability to utilise a centralised database, MedXViewer has been used for running remote paper-less observer studies and is capable of providing a training infrastructure and co-ordinating remote collaborative viewing sessions (e.g. cancer reviews, interesting cases).
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Fritz, John Floren
2013-08-27
Minimega is a simple emulytics platform for creating testbeds of networked devices. The platform consists of easily deployable tools to facilitate bringing up large networks of virtual machines including Windows, Linux, and Android. Minimega attempts to allow experiments to be brought up quickly with nearly no configuration. Minimega also includes tools for simple cluster management, as well as tools for creating Linux based virtual machine images.
Teach Battery Technology with Class-Built Wet Cells
ERIC Educational Resources Information Center
Roman, Harry T.
2011-01-01
With some simple metal samples and common household liquids, teachers can build wet cell batteries and use them to teach students about batteries and how they work. In this article, the author offers information that is derived from some simple experiments he conducted in his basement workshop and can easily be applied in the classroom or lab. He…
NASA Technical Reports Server (NTRS)
Tanimoto, T.
1983-01-01
A simple modification of Gilbert's formula to account for slight lateral heterogeneity of the Earth leads to a convenient formula to calculate synthetic long period seismograms. Partial derivatives are easily calculated, thus the formula is suitable for direct inversion of seismograms for lateral heterogeneity of the Earth.
A Simple Band for Gastric Banding.
Broadbent
1993-08-01
The author has noted that flexible gastric bands have occasionally stenosed the gastric stoma or allowed it to dilate. A band was developed using a soft outer silicone rubber tube over a holding mechanism made out of a nylon cable tie passed within the silicone tube. This simple, easily applied band is rigid, resisting scar contracture and dilatation.
A Simple Device for Measuring Static Compliance of Lung-Thorax Combine
ERIC Educational Resources Information Center
Sircar, Sabyasachi
2015-01-01
Explaining the concept of lung compliance remains a challenge to the physiology teacher because it cannot be demonstrated easily in human subjects and all attempts until now have used only simulation models. A simple device is described in the present article to measure the compliance of the "lung-thorax" combine in human subjects with…
Sparse principal component analysis in medical shape modeling
NASA Astrophysics Data System (ADS)
Sjöstrand, Karl; Stegmann, Mikkel B.; Larsen, Rasmus
2006-03-01
Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims at producing easily interpreted models through sparse loadings, i.e. each new variable is a linear combination of a subset of the original variables. One of the aims of using SPCA is the possible separation of the results into isolated and easily identifiable effects. This article introduces SPCA for shape analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA algorithm has been implemented using Matlab and is available for download. The general behavior of the algorithm is investigated, and strengths and weaknesses are discussed. The original report on the SPCA algorithm argues that the ordering of modes is not an issue. We disagree on this point and propose several approaches to establish sensible orderings. A method that orders modes by decreasing variance and maximizes the sum of variances for all modes is presented and investigated in detail.
NASA Technical Reports Server (NTRS)
Maldague, Pierre; Page, Dennis; Chase, Adam
2005-01-01
Activity Plan Generator (APGEN), now at version 5.0, is a computer program that assists in generating an integrated plan of activities for a spacecraft mission that does not oversubscribe spacecraft and ground resources. APGEN generates an interactive display, through which the user can easily create or modify the plan. The display summarizes the plan by means of a time line, whereon each activity is represented by a bar stretched between its beginning and ending times. Activities can be added, deleted, and modified via simple mouse and keyboard actions. The use of resources can be viewed on resource graphs. Resource and activity constraints can be checked. Types of activities, resources, and constraints are defined by simple text files, which the user can modify. In one of two modes of operation, APGEN acts as a planning expert assistant, displaying the plan and identifying problems in the plan. The user is in charge of creating and modifying the plan. In the other mode, APGEN automatically creates a plan that does not oversubscribe resources. The user can then manually modify the plan. APGEN is designed to interact with other software that generates sequences of timed commands for implementing details of planned activities.
Bhartia, Bhavesh; Bacher, Nadav; Jayaraman, Sundaramurthy; Khatib, Salam; Song, Jing; Guo, Shifeng; Troadec, Cedric; Puniredd, Sreenivasa Reddy; Srinivasan, Madapusi Palavedu; Haick, Hossam
2015-07-15
Formation of dense monolayers with proven atmospheric stability using simple fabrication conditions remains a major challenge for potential applications such as (bio)sensors, solar cells, surfaces for growth of biological cells, and molecular, organic, and plastic electronics. Here, we demonstrate a single-step modification of organophosphonic acids (OPA) on 1D and 2D structures using supercritical carbon dioxide (SCCO2) as a processing medium, with high stability and significantly shorter processing times than those obtained by the conventional physisorption-chemisorption method (2.5 h vs 48-60 h).The advantages of this approach in terms of stability and atmospheric resistivity are demonstrated on various 2D materials, such as indium-tin-oxide (ITO) and 2D Si surfaces. The advantage of the reported approach on electronic and sensing devices is demonstrated by Si nanowire field effect transistors (SiNW FETs), which have shown a few orders of magnitude higher electrical and sensing performances, compared with devices obtained by conventional approaches. The compatibility of the reported approach with various materials and its simple implementation with a single reactor makes it easily scalable for various applications.
Tobaruela, Almudena; Rojo, Francisco Javier; García Paez, José María; Bourges, Jean Yves; Herrero, Eduardo Jorge; Millán, Isabel; Alvarez, Lourdes; Cordon, Ángeles; Guinea, Gustavo V
2016-08-01
The aim of this study was to evaluate the variation of hardness with fatigue in calf pericardium, a biomaterial commonly used in bioprosthetic heart valves, and its relationship with the energy dissipated during the first fatigue cycle that has been shown to be a predictor of fatigue-life (García Páez et al., 2006, 2007; Rojo et al., 2010). Fatigue tests were performed in vitro on 24 pericardium specimens cut in a root-to-apex direction. The specimens were subjected to a maximum stress of 1MPa in blocks of 10, 25, 50, 100, 250, 500, 1000 and 1500 cycles. By means of a modified Shore A hardness test procedure, the hardness of the specimen was measured before and after fatigue tests. Results showed a significant correlation of such hardness with fatigue performance and with the energy dissipated in the first cycle of fatigue, a predictor of pericardium durability. The study showed indentation hardness as a simple and reliable indicator of mechanical performance, one which could be easily implemented in improving tissue selection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Raghavendran, Vijayendran; Basso, Thalita Peixoto; da Silva, Juliana Bueno; Basso, Luiz Carlos; Gombert, Andreas Karoly
2017-07-01
Although first-generation fuel ethanol is produced in Brazil from sugarcane-based raw materials with high efficiency, there is still little knowledge about the microbiology, the biochemistry and the molecular mechanisms prevalent in the non-aseptic fermentation environment. Learning-by-doing has hitherto been the strategy to improve the process so far, with further improvements requiring breakthrough technologies. Performing experiments at an industrial scale are often expensive, complicated to set up and difficult to reproduce. Thus, developing an appropriate scaled down system for this process has become a necessity. In this paper, we present the design and demonstration of a simple and effective laboratory-scale system mimicking the industrial process used for first generation (1G) fuel ethanol production in the Brazilian sugarcane mills. We benchmarked this system via the superior phenotype of the Saccharomyces cerevisiae PE-2 strain, compared to other strains from the same species: S288c, baker's yeast, and CEN.PK113-7D. We trust that such a system can be easily implemented in different laboratories worldwide, and will allow a better understanding of the S. cerevisiae strains that can persist and dominate in this industrial, non-aseptic and peculiar environment.
NASA Astrophysics Data System (ADS)
Yang, Rong-Sheng; Tang, Weijuan; Sheng, Huaming; Meng, Fanyu
2018-01-01
Discovery of novel insulin analogs as therapeutics has remained an active area of research. Compared with native human insulin, insulin analog molecules normally incorporate either covalent modifications or amino acid sequence variations. From the drug discovery and development perspective, methods for efficient and detailed characterization of these primary structural changes are very important. In this report, we demonstrate that proteinase K digestion coupled with UPLC-ESI-MS analysis provides a simple and rapid approach to characterize the modifications and sequence variations of insulin molecules. A commercially available proteinase K digestion kit was used to process recombinant human insulin (RHI), insulin glargine, and fluorescein isothiocynate-labeled recombinant human insulin (FITC-RHI) samples. The LC-MS data clearly showed that RHI and insulin glargine samples can be differentiated, and the FITC modifications in all three amine sites of the RHI molecule are well characterized. The end-to-end experiment and data interpretation was achieved within 60 min. This approach is fast and simple, and can be easily implemented in early drug discovery laboratories to facilitate research on more advanced insulin therapeutics. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Yang, Rong-Sheng; Tang, Weijuan; Sheng, Huaming; Meng, Fanyu
2018-05-01
Discovery of novel insulin analogs as therapeutics has remained an active area of research. Compared with native human insulin, insulin analog molecules normally incorporate either covalent modifications or amino acid sequence variations. From the drug discovery and development perspective, methods for efficient and detailed characterization of these primary structural changes are very important. In this report, we demonstrate that proteinase K digestion coupled with UPLC-ESI-MS analysis provides a simple and rapid approach to characterize the modifications and sequence variations of insulin molecules. A commercially available proteinase K digestion kit was used to process recombinant human insulin (RHI), insulin glargine, and fluorescein isothiocynate-labeled recombinant human insulin (FITC-RHI) samples. The LC-MS data clearly showed that RHI and insulin glargine samples can be differentiated, and the FITC modifications in all three amine sites of the RHI molecule are well characterized. The end-to-end experiment and data interpretation was achieved within 60 min. This approach is fast and simple, and can be easily implemented in early drug discovery laboratories to facilitate research on more advanced insulin therapeutics. [Figure not available: see fulltext.
Island custom blocking technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carabetta, R.J.
The technique of Island blocking is being used more frequently since the advent of our new head and neck blocking techniques and the implementation of a newly devised lung protocol. The system presented affords the mould room personnel a quick and accurate means of island block fabrication without the constant remeasuring or subtle shifting to approximate correct placement. The cookie cutter is easily implemented into any department's existing block cutting techniques. The device is easily and inexpensively made either in a machine shop or acquired by contacting the author.
What dynamics can be expected for mixed states in two-slit experiments?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luis, Alfredo; Sanz, Ángel S., E-mail: asanz@iff.csic.es
2015-06-15
Weak-measurement-based experiments (Kocsis et al., 2011) have shown that, at least for pure states, the average evolution of independent photons in Young’s two-slit experiment is in compliance with the trajectories prescribed by the Bohmian formulation of quantum mechanics. But, what happens if the same experiment is repeated assuming that the wave function associated with each particle is different, i.e., in the case of mixed (incoherent) states? This question is investigated here by means of two alternative numerical simulations of Young’s experiment, purposely devised to be easily implemented and tested in the laboratory. Contrary to what could be expected a priori, itmore » is found that even for conditions of maximal mixedness or incoherence (total lack of interference fringes), experimental data will render a puzzling and challenging outcome: the average particle trajectories will still display features analogous to those for pure states, i.e., independently of how mixedness arises, the associated dynamics is influenced by both slits at the same time. Physically this simply means that weak measurements are not able to discriminate how mixedness arises in the experiment, since they only provide information about the averaged system dynamics. - Highlights: • The dynamics associated with mixture states in investigated by means of two simple Young’s two-slit models. • The models are prepared to be easily implemented and tested in the laboratory by means of weak measurements. • Bohmian mechanics has been generalized to encompass statistical mixtures. • Even for conditions of maximal mixedness numerical simulations show that the dynamics is strongly influenced by both slits. • Accordingly, weak measurements are unable to discriminate how mixedness arises in an experiment.« less
Saito, Ryoichi; Koyano, Saho; Dorin, Misato; Higurashi, Yoshimi; Misawa, Yoshiki; Nagano, Noriyuki; Kaneko, Takamasa; Moriya, Kyoji
2015-01-01
We investigated the performance of a phenotypic test, the Carbapenemase Detection Set (MAST-CDS), for the identification of carbapenemase-producing Enterobacteriaceae. Our results indicated that MAST-CDS is rapid, easily performed, simple to interpret, and highly sensitive for the identification of carbapenemase producers, particularly imipenemase producers. Copyright © 2014 Elsevier B.V. All rights reserved.
Extremely Robust and Patternable Electrodes for Copy-Paper-Based Electronics.
Ahn, Jaeho; Seo, Ji-Won; Lee, Tae-Ik; Kwon, Donguk; Park, Inkyu; Kim, Taek-Soo; Lee, Jung-Yong
2016-07-27
We propose a fabrication process for extremely robust and easily patternable silver nanowire (AgNW) electrodes on paper. Using an auxiliary donor layer and a simple laminating process, AgNWs can be easily transferred to copy paper as well as various other substrates using a dry process. Intercalating a polymeric binder between the AgNWs and the substrate through a simple printing technique enhances adhesion, not only guaranteeing high foldability of the electrodes, but also facilitating selective patterning of the AgNWs. Using the proposed process, extremely crease-tolerant electronics based on copy paper can be fabricated, such as a printed circuit board for a 7-segment display, portable heater, and capacitive touch sensor, demonstrating the applicability of the AgNWs-based electrodes to paper electronics.
fluff: exploratory analysis and visualization of high-throughput sequencing data
Georgiou, Georgios
2016-01-01
Summary. In this article we describe fluff, a software package that allows for simple exploration, clustering and visualization of high-throughput sequencing data mapped to a reference genome. The package contains three command-line tools to generate publication-quality figures in an uncomplicated manner using sensible defaults. Genome-wide data can be aggregated, clustered and visualized in a heatmap, according to different clustering methods. This includes a predefined setting to identify dynamic clusters between different conditions or developmental stages. Alternatively, clustered data can be visualized in a bandplot. Finally, fluff includes a tool to generate genomic profiles. As command-line tools, the fluff programs can easily be integrated into standard analysis pipelines. The installation is straightforward and documentation is available at http://fluff.readthedocs.org. Availability. fluff is implemented in Python and runs on Linux. The source code is freely available for download at https://github.com/simonvh/fluff. PMID:27547532
Simas, Rosineide C; Catharino, Rodrigo R; Cunha, Ildenize B S; Cabral, Elaine C; Barrera-Arellano, Daniel; Eberlin, Marcos N; Alberici, Rosana M
2010-04-01
A fast and reliable method is presented for the analysis of vegetable oils. Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is shown to efficiently desorb and ionize the main oil constituents from an inert surface under ambient conditions and to provide comprehensive triacylglyceride (TAG) and free fatty acid (FFA) profiles detected mainly as either [TAG + Na](+) or [FFA-H](-) ions. EASI(+/-)-MS analysis is simple, easily implemented, requires just a tiny droplet of the oil and is performed without any pre-separation or chemical manipulation. It also causes no fragmentation of TAG ions hence diacylglyceride (DAG) and monoacylglyceride (MAG) profiles and contents can also be measured. The EASI(+/-)-MS profiles of TAG and FFA permit authentication and quality control and can be used, for instance, to access levels of adulteration, acidity, oxidation or hydrolysis of vegetable oils in general.
Tomography of a simply magnetized toroidal plasma
NASA Astrophysics Data System (ADS)
Ruggero, BARNI; Stefano, CALDIROLA; Luca, FATTORINI; Claudia, RICCARDI
2018-02-01
Optical emission spectroscopy is a passive diagnostic technique, which does not perturb the plasma state. In particular, in a hydrogen plasma, Balmer-alpha (H α ) emission can be easily measured in the visible range along a line of sight from outside the plasma vessel. Other emission lines in the visible spectral range from hydrogen atoms and molecules can be exploited too, in order to gather complementary pieces of information on the plasma state. Tomography allows us to capture bi-dimensional structures. We propose to adopt an emission spectroscopy tomography for studying the transverse profiles of magnetized plasmas when Abel inversion is not exploitable. An experimental campaign was carried out at the Thorello device, a simple magnetized torus. The characteristics of the profile extraction method, which we implemented for this purpose are discussed, together with a few results concerning the plasma profiles in a simply magnetized torus configuration.
NASA Astrophysics Data System (ADS)
Oproglidis, T. A.; Karatsori, T. A.; Barraud, S.; Ghibaudo, G.; Dimitriadis, C. A.
2018-04-01
In this work, we extend our analytical compact model for nanoscale junctionless triple-gate (JL TG) MOSFETs, capturing carrier transport from drift-diffusion to quasi-ballistic regime. This is based on a simple formulation of the low-field mobility extracted from experimental data using the Y-function method, taking into account the ballistic carrier motion and an increased carrier scattering in process-induced defects near the source/drain regions. The case of a Schottky junction in non-ideal ohmic contact at the drain side was also taken into account by modifying the threshold voltage and ideality factor of the JL transistor. The model is validated with experimental data for n-channel JL TG MOSFETs with channel length varying from 95 down to 25 nm. It can be easily implemented as a compact model for use in Spice circuit simulators.
Towards the engineering of in vitro systems.
Hold, Christoph; Panke, Sven
2009-08-06
Synthetic biology aims at rationally implementing biological systems from scratch. Given the complexity of living systems and our current lack of understanding of many aspects of living cells, this is a major undertaking. The design of in vitro systems can be considerably easier, because they can consist of fewer constituents, are quasi time invariant, their parameter space can be better accessed and they can be much more easily perturbed and then analysed chemically and mathematically. However, even for simplified in vitro systems, following a comprehensively rational design procedure is still difficult. When looking at a comparatively simple system, such as a medium-sized enzymatic reaction network as it is represented by glycolysis, major issues such as a lack of comprehensive enzyme kinetics and of suitable knowledge on crucial design parameters remain. Nevertheless, in vitro systems are very suitable to overcome these obstacles and therefore well placed to act as a stepping stone to engineering living systems.
Improved color constancy in honey bees enabled by parallel visual projections from dorsal ocelli.
Garcia, Jair E; Hung, Yu-Shan; Greentree, Andrew D; Rosa, Marcello G P; Endler, John A; Dyer, Adrian G
2017-07-18
How can a pollinator, like the honey bee, perceive the same colors on visited flowers, despite continuous and rapid changes in ambient illumination and background color? A hundred years ago, von Kries proposed an elegant solution to this problem, color constancy, which is currently incorporated in many imaging and technological applications. However, empirical evidence on how this method can operate on animal brains remains tenuous. Our mathematical modeling proposes that the observed spectral tuning of simple ocellar photoreceptors in the honey bee allows for the necessary input for an optimal color constancy solution to most natural light environments. The model is fully supported by our detailed description of a neural pathway allowing for the integration of signals originating from the ocellar photoreceptors to the information processing regions in the bee brain. These findings reveal a neural implementation to the classic color constancy problem that can be easily translated into artificial color imaging systems.
Assessing the Robustness of Complete Bacterial Genome Segmentations
NASA Astrophysics Data System (ADS)
Devillers, Hugo; Chiapello, Hélène; Schbath, Sophie; El Karoui, Meriem
Comparison of closely related bacterial genomes has revealed the presence of highly conserved sequences forming a "backbone" that is interrupted by numerous, less conserved, DNA fragments. Segmentation of bacterial genomes into backbone and variable regions is particularly useful to investigate bacterial genome evolution. Several software tools have been designed to compare complete bacterial chromosomes and a few online databases store pre-computed genome comparisons. However, very few statistical methods are available to evaluate the reliability of these software tools and to compare the results obtained with them. To fill this gap, we have developed two local scores to measure the robustness of bacterial genome segmentations. Our method uses a simulation procedure based on random perturbations of the compared genomes. The scores presented in this paper are simple to implement and our results show that they allow to discriminate easily between robust and non-robust bacterial genome segmentations when using aligners such as MAUVE and MGA.
Measurement-device-independent quantum coin tossing
NASA Astrophysics Data System (ADS)
Zhao, Liangyuan; Yin, Zhenqiang; Wang, Shuang; Chen, Wei; Chen, Hua; Guo, Guangcan; Han, Zhengfu
2015-12-01
Quantum coin tossing (QCT) is an important primitive of quantum cryptography and has received continuous interest. However, in practical QCT, Bob's detectors can be subjected to detector-side channel attacks launched by dishonest Alice, which will possibly make the protocol completely insecure. Here, we report a simple strategy of a detector-blinding attack based on a recent experiment. To remove all the detector side channels, we present a solution of measurement-device-independent QCT (MDI-QCT). This method is similar to the idea of MDI quantum key distribution (QKD). MDI-QCT is loss tolerant with single-photon sources and has the same bias as the original loss-tolerant QCT under a coherent attack. Moreover, it provides the potential advantage of doubling the secure distance for some special cases. Finally, MDI-QCT can also be modified to fit the weak coherent-state sources. Thus, based on the rapid development of practical MDI-QKD, our proposal can be implemented easily.
Flexible poly(methyl methacrylate)-based neural probe: An affordable implementation
NASA Astrophysics Data System (ADS)
Gasemi, Pejman; Veladi, Hadi; Shahabi, Parviz; Khalilzadeh, Emad
2018-03-01
This research presents a novel technique used to fabricate a deep brain stimulation probe based on a commercial poly(methyl methacrylate) (PMMA) polymer. This technique is developed to overcome the high cost of available probes crucial for chronic stimulation and recording in neural disorders such as Parkinson’s disease and epilepsy. The probe is made of PMMA and its mechanical properties have been customized by controlling the reaction conditions. The polymer is adjusted to be stiff enough to be easily inserted and, on the other hand, soft enough to perform required movements. As cost is one of the issues in the use of neural probes, a simple process is proposed for the production of PMMA neural probes without using expensive equipment and operations, and without compromising performance and quality. An in vivo animal test was conducted to observe the recording capability of a PMMA probe.
Complex Geometric Models of Diffusion and Relaxation in Healthy and Damaged White Matter
Farrell, Jonathan A.D.; Smith, Seth A.; Reich, Daniel S.; Calabresi, Peter A.; van Zijl, Peter C.M.
2010-01-01
Which aspects of tissue microstructure affect diffusion weighted MRI signals? Prior models, many of which use Monte-Carlo simulations, have focused on relatively simple models of the cellular microenvironment and have not considered important anatomic details. With the advent of higher-order analysis models for diffusion imaging, such as high-angular-resolution diffusion imaging (HARDI), more realistic models are necessary. This paper presents and evaluates the reproducibility of simulations of diffusion in complex geometries. Our framework is quantitative, does not require specialized hardware, is easily implemented with little programming experience, and is freely available as open-source software. Models may include compartments with different diffusivities, permeabilities, and T2 time constants using both parametric (e.g., spheres and cylinders) and arbitrary (e.g., mesh-based) geometries. Three-dimensional diffusion displacement-probability functions are mapped with high reproducibility, and thus can be readily used to assess reproducibility of diffusion-derived contrasts. PMID:19739233
Schmidt, Filipp; Weber, Andreas; Schmidt, Thomas
2014-08-21
Most objects can be recognized easily even when they are partly occluded. This also holds when several overlapping objects share the same surface features (self-splitting objects) which is an illustration of the grouping principle of Good Gestalt. We employed outline and filled contour stimuli in a primed flanker task to test whether the processing of self-splitting objects is in accordance with a simple feedforward model. We obtained priming effects in response time and response force for both types of stimuli, even when increasing the number of occluders up to three. The results for outline contours were in full accordance with a feedforward account. This was not the case for the results for filled contours (i.e., for self-splitting objects), especially under conditions of strong occlusion. We conclude that the implementation of the Good Gestalt principle is fast but still based on recurrent processing. © 2014 ARVO.
Wei, Hai-Rui; Lu Long, Gui
2015-01-01
Hybrid quantum gates hold great promise for quantum information processing since they preserve the advantages of different quantum systems. Here we present compact quantum circuits to deterministically implement controlled-NOT, Toffoli, and Fredkin gates between a flying photon qubit and diamond nitrogen-vacancy (NV) centers assisted by microcavities. The target qubits of these universal quantum gates are encoded on the spins of the electrons associated with the diamond NV centers and they have long coherence time for storing information, and the control qubit is encoded on the polarizations of the flying photon and can be easily manipulated. Our quantum circuits are compact, economic, and simple. Moreover, they do not require additional qubits. The complexity of our schemes for universal three-qubit gates is much reduced, compared to the synthesis with two-qubit entangling gates. These schemes have high fidelities and efficiencies, and they are feasible in experiment. PMID:26271899
Performance of Social Network Sensors during Hurricane Sandy
Kryvasheyeu, Yury; Chen, Haohui; Moro, Esteban; Van Hentenryck, Pascal; Cebrian, Manuel
2015-01-01
Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow and derive early-warning sensors, thus improving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioral properties derived from the “friendship paradox”, is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users’ network centrality effectively translate into moderate awareness advantage (up to 26 hours); and that geo-location of users within or outside of the hurricane-affected area plays a significant role in determining the scale of such an advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility to implement a simple “sentiment sensing” technique that can detect and locate disasters. PMID:25692690
Juicy lemons for measuring basic empathic resonance.
Hagenmuller, Florence; Rössler, Wulf; Wittwer, Amrei; Haker, Helene
2014-10-30
Watch or even think of someone biting into a juicy lemon and your saliva will flow. This is a phenomenon of resonance, best described by the Perception-Action Model, where a physiological state in a person is activated through observation of this state in another. Within a broad framework of empathy, including manifold abilities depending on the Perception-Action link, resonance has been proposed as one physiological substrate for empathy. Using 49 healthy subjects, we developed a standardized salivation paradigm to assess empathic resonance at the autonomic level. Our results showed that this physiological resonance correlated positively with self-reported empathic concern. The salivation test, delivered an objective and continuous measure, was simple to implement in terms of setup and instruction, and could not easily be unintentionally biased or intentionally manipulated by participants. Therefore, these advantages make such a test a useful tool for assessing empathy-related abilities in psychiatric populations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
An ICT-Based Platform to Monitor Protocols in the Healthcare Environment.
Rorís, Víctor M Alonso; Gago, Juan M Santos; Sabucedo, Luis Álvarez; Merino, Mateo Ramos; Valero, Javier Sanz
2016-10-01
Procedures from the healthcare domain involve highly critical actions as they may pose a risk for patients' life. Therefore, a large effort is devoted to the standardization in clinical praxis and to the control of quality for these protocols in order to minimize hazards. In this line, this work is compelled to provide an ICT-based support to carry out these controls in a simple and effective manner. Using a methodology based on HACCP and taking advantage of Semantic tools, a holistic platform of services for traceability and control of processes has been designed and implemented. The applied paradigm is based on the use of Control Points as singular points to generate traces using observations and measures relevant for the processes considered. Based on those, it is possible to offer services for advanced querying and knowledge inference. The local deployment just requires regular mobile phones or tablets making this solution cost-effective and easily replicable.
Photographic Image Restoration
NASA Technical Reports Server (NTRS)
Hite, Gerald E.
1991-01-01
Deblurring capabilities would significantly improve the Flight Science Support Office's ability to monitor the effects of lift-off on the shuttle and landing on the orbiter. A deblurring program was written and implemented to extract information from blurred images containing a straight line or edge and to use that information to deblur the image. The program was successfully applied to an image blurred by improper focussing and two blurred by different amounts of blurring. In all cases, the reconstructed modulation transfer function not only had the same zero contours as the Fourier transform of the blurred image but the associated point spread function also had structure not easily described by simple parameterizations. The difficulties posed by the presence of noise in the blurred image necessitated special consideration. An amplitude modification technique was developed for the zero contours of the modulation transfer function at low to moderate frequencies and a smooth filter was used to suppress high frequency noise.
Performance of social network sensors during Hurricane Sandy.
Kryvasheyeu, Yury; Chen, Haohui; Moro, Esteban; Van Hentenryck, Pascal; Cebrian, Manuel
2015-01-01
Information flow during catastrophic events is a critical aspect of disaster management. Modern communication platforms, in particular online social networks, provide an opportunity to study such flow and derive early-warning sensors, thus improving emergency preparedness and response. Performance of the social networks sensor method, based on topological and behavioral properties derived from the "friendship paradox", is studied here for over 50 million Twitter messages posted before, during, and after Hurricane Sandy. We find that differences in users' network centrality effectively translate into moderate awareness advantage (up to 26 hours); and that geo-location of users within or outside of the hurricane-affected area plays a significant role in determining the scale of such an advantage. Emotional response appears to be universal regardless of the position in the network topology, and displays characteristic, easily detectable patterns, opening a possibility to implement a simple "sentiment sensing" technique that can detect and locate disasters.
Fast T Wave Detection Calibrated by Clinical Knowledge with Annotation of P and T Waves
Elgendi, Mohamed; Eskofier, Bjoern; Abbott, Derek
2015-01-01
Background There are limited studies on the automatic detection of T waves in arrhythmic electrocardiogram (ECG) signals. This is perhaps because there is no available arrhythmia dataset with annotated T waves. There is a growing need to develop numerically-efficient algorithms that can accommodate the new trend of battery-driven ECG devices. Moreover, there is also a need to analyze long-term recorded signals in a reliable and time-efficient manner, therefore improving the diagnostic ability of mobile devices and point-of-care technologies. Methods Here, the T wave annotation of the well-known MIT-BIH arrhythmia database is discussed and provided. Moreover, a simple fast method for detecting T waves is introduced. A typical T wave detection method has been reduced to a basic approach consisting of two moving averages and dynamic thresholds. The dynamic thresholds were calibrated using four clinically known types of sinus node response to atrial premature depolarization (compensation, reset, interpolation, and reentry). Results The determination of T wave peaks is performed and the proposed algorithm is evaluated on two well-known databases, the QT and MIT-BIH Arrhythmia databases. The detector obtained a sensitivity of 97.14% and a positive predictivity of 99.29% over the first lead of the validation databases (total of 221,186 beats). Conclusions We present a simple yet very reliable T wave detection algorithm that can be potentially implemented on mobile battery-driven devices. In contrast to complex methods, it can be easily implemented in a digital filter design. PMID:26197321
The Oceanographic Multipurpose Software Environment (OMUSE v1.0)
NASA Astrophysics Data System (ADS)
Pelupessy, Inti; van Werkhoven, Ben; van Elteren, Arjen; Viebahn, Jan; Candy, Adam; Portegies Zwart, Simon; Dijkstra, Henk
2017-08-01
In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE). OMUSE aims to provide a homogeneous environment for existing or newly developed numerical ocean simulation codes, simplifying their use and deployment. In this way, numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales can be easily designed. Rapid development of simulation models is made possible through the creation of simple high-level scripts. The low-level core of the abstraction in OMUSE is designed to deploy these simulations efficiently on heterogeneous high-performance computing resources. Cross-verification of simulation models with different codes and numerical methods is facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments is fostered by allowing complex numerical experiments to be expressed in portable scripts that conform to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules and model components currently included, which range from a simple conceptual quasi-geostrophic solver to the global circulation model POP (Parallel Ocean Program). The uniform access to the codes' simulation state and the extensive automation of data transfer and conversion operations aids the implementation of model couplings. We discuss the types of couplings that can be implemented using OMUSE. We also present example applications that demonstrate the straightforward model initialization and the concurrent use of data analysis tools on a running model. We give examples of multiscale and multiphysics simulations by embedding a regional ocean model into a global ocean model and by coupling a surface wave propagation model with a coastal circulation model.
NASA Astrophysics Data System (ADS)
Pasquini, Lorena; Twyman, Chasca; Wainwright, John
2010-11-01
There has been increasing recognition within systematic conservation planning of the need to include social data alongside biophysical assessments. However, in the approaches to identify potential conservation sites, there remains much room for improvement in the treatment of social data. In particular, few rigorous methods to account for the diversity of less-easily quantifiable social attributes that influence the implementation success of conservation sites (such as willingness to conserve) have been developed. We use a case-study analysis of private conservation areas within the Little Karoo, South Africa, as a practical example of the importance of incorporating social data into the process of selecting potential conservation sites to improve their implementation likelihood. We draw on extensive data on the social attributes of our case study obtained from a combination of survey questionnaires and semi-structured interviews. We discuss the need to determine the social attributes that are important for achieving the chosen implementation strategy by offering four tested examples of important social attributes in the Little Karoo: the willingness of landowners to take part in a stewardship arrangement, their willingness to conserve, their capacity to conserve, and the social capital among private conservation area owners. We then discuss the process of using an implementation likelihood ratio (derived from a combined measure of the social attributes) to assist the choice of potential conservation sites. We conclude by summarizing our discussion into a simple conceptual framework for identifying biophysically-valuable sites which possess a high likelihood that the desired implementation strategy will be realized on them.
Histopathology slide projector: a simple improvisation.
Agarwal, Akhilesh K R; Bhattacharya, Nirjhar
2008-07-01
The ability to examine histopathology and other hematological slides under microscope is a necessary and important service which should be available in every health facility. The slides need to be projected on to a screen. We describe an inexpensive and easily constructed technique for projecting magnified images of slides using a simple microscope. It is effective both for making observations and for use as a teaching aid.
Some Comments On: A Historical Note on the Proof of the Area of a Circle
ERIC Educational Resources Information Center
Naidu, Jaideep T.; Sanford, John F.
2011-01-01
In a recent paper by Wilamowsky et al. [6], an intuitive proof of the area of the circle dating back to the twelfth century was presented. They discuss challenges made to this proof and offer simple rebuttals to these challenges. The alternative solution presented by them is simple and elegant and can be explained rather easily to non-mathematics…
NASA Technical Reports Server (NTRS)
Tanimoto, T.
1984-01-01
A simple modification of Gilbert's formula to account for slight lateral heterogeneity of the earth leads to a convenient formula to calculate synthetic long period seismograms. Partial derivatives are easily calculated, thus the formula is suitable for direct inversion of seismograms for lateral heterogeneity of the earth. Previously announced in STAR as N83-29893
Communication and complexity in a GRN-based multicellular system for graph colouring.
Buck, Moritz; Nehaniv, Chrystopher L
2008-01-01
Artificial Genetic Regulatory Networks (GRNs) are interesting control models through their simplicity and versatility. They can be easily implemented, evolved and modified, and their similarity to their biological counterparts makes them interesting for simulations of life-like systems as well. These aspects suggest they may be perfect control systems for distributed computing in diverse situations, but to be usable for such applications the computational power and evolvability of GRNs need to be studied. In this research we propose a simple distributed system implementing GRNs to solve the well known NP-complete graph colouring problem. Every node (cell) of the graph to be coloured is controlled by an instance of the same GRN. All the cells communicate directly with their immediate neighbours in the graph so as to set up a good colouring. The quality of this colouring directs the evolution of the GRNs using a genetic algorithm. We then observe the quality of the colouring for two different graphs according to different communication protocols and the number of different proteins in the cell (a measure for the possible complexity of a GRN). Those two points, being the main scalability issues that any computational paradigm raises, will then be discussed.
A Simplified Mesh Deformation Method Using Commercial Structural Analysis Software
NASA Technical Reports Server (NTRS)
Hsu, Su-Yuen; Chang, Chau-Lyan; Samareh, Jamshid
2004-01-01
Mesh deformation in response to redefined or moving aerodynamic surface geometries is a frequently encountered task in many applications. Most existing methods are either mathematically too complex or computationally too expensive for usage in practical design and optimization. We propose a simplified mesh deformation method based on linear elastic finite element analyses that can be easily implemented by using commercially available structural analysis software. Using a prescribed displacement at the mesh boundaries, a simple structural analysis is constructed based on a spatially varying Young s modulus to move the entire mesh in accordance with the surface geometry redefinitions. A variety of surface movements, such as translation, rotation, or incremental surface reshaping that often takes place in an optimization procedure, may be handled by the present method. We describe the numerical formulation and implementation using the NASTRAN software in this paper. The use of commercial software bypasses tedious reimplementation and takes advantage of the computational efficiency offered by the vendor. A two-dimensional airfoil mesh and a three-dimensional aircraft mesh were used as test cases to demonstrate the effectiveness of the proposed method. Euler and Navier-Stokes calculations were performed for the deformed two-dimensional meshes.
Using old technology to implement modern computer-aided decision support for primary diabetes care.
Hunt, D L; Haynes, R B; Morgan, D
2001-01-01
Implementation rates of interventions known to be beneficial for people with diabetes mellitus are often suboptimal. Computer-aided decision support systems (CDSSs) can improve these rates. The complexity of establishing a fully integrated electronic medical record that provides decision support, however, often prevents their use. To develop a CDSS for diabetes care that can be easily introduced into primary care settings and diabetes clinics. THE SYSTEM: The CDSS uses fax-machine-based optical character recognition software for acquiring patient information. Simple, 1-page paper forms, completed by patients or health practitioners, are faxed to a central location. The information is interpreted and recorded in a database. This initiates a routine that matches the information against a knowledge base so that patient-specific recommendations can be generated. These are formatted and faxed back within 4-5 minutes. The system is being introduced into 2 diabetes clinics. We are collecting information on frequency of use of the system, as well as satisfaction with the information provided. Computer-aided decision support can be provided in any setting with a fax machine, without the need for integrated electronic medical records or computerized data-collection devices.
Decision Network for Blue Green Solutions to Influence Policy Impact Assessments
NASA Astrophysics Data System (ADS)
Mijic, A.; Theodoropoulos, G.; El Hattab, M. H.; Brown, K.
2017-12-01
Sustainable Urban Drainage Systems (SuDS) deliver ecosystems services that can potentially yield multiple benefits to the urban environment. These benefits can be achieved through optimising SUDS' integration with the local environment and water resources, creating so-called Blue Green Solutions (BGS). The BGS paradigm, however, presents several challenges, in particular quantifying the benefits and creating the scientific evidence-base that can persuade high-level decision-makers and stakeholders to implement BGS at large scale. This work presents the development of the easily implemented and tailored-made approach that allows a robust assessment of the BGS co-benefits, and can influence the types of information that are included in policy impact assessments. The Analytic Network Process approach is used to synthesise the available evidence on the co-benefits of the BGS. The approach enables mapping the interactions between individual BGS selection criteria, and creates a platform to assess the synergetic benefits that arise from components interactions. By working with Government departments and other public and private sector stakeholders, this work has produced a simple decision criteria-based network that will enable the co-benefits and trade-offs of BGS to be quantified and integrated into UK policy appraisals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarti, D.; Hendrix, P.E.; Wilkie, W.L.
1987-01-01
Maturing markets and the accompanying increase in competition, sophistication of customers, and differentiation of products and services have forced companies to focus their marketing efforts on segments in which they can prosper. The experience in these companies has revealed that market segmentation, although simple in concept, is not so easily implemented. It is reasonable to anticipate substantial benefits from additional market segmentation within each of the classes traditionally distinguished in the industry - residential, commercial, and industrial. Segmentation is also likely to prove useful for utilities facing quite different marketing environments, e.g., in terms of demand patterns (number of customers,more » winter- and summer-peaking, etc.), capacity, and degree of regulatory and competitive pressures. Within utilities, those charged with developing and implementing segmentation strategies face some difficult issues. The primary objective of this monograph is to provide some answers to these questions. This monograph is intended to provide utility researchers with a guide to the design and execution of market segmentation research in utility markets. Several composite cases, drawn from actual studies conducted by electric utilities, are used to illustrate the discussion.« less
Fall Prevention: Simple Tips to Prevent Falls
... she can help you brainstorm other fall-prevention strategies. Some solutions are easily installed and relatively inexpensive. Others may require professional help or a larger investment. If you're concerned about the cost, remember ...
Simple Piezoelectric Probe for Detection and Measurement of SO2
ERIC Educational Resources Information Center
Frechette, Michael W.; Fasching, James L.
1973-01-01
Describes a new system for the detection and measurement of sulfur dioxide using a coated piezoelectric crystal. The device is rugged, portable, inexpensive, and should lend itself easily to automation. (JR)
Chaotic behaviour of Zeeman machines at introductory course of mechanics
NASA Astrophysics Data System (ADS)
Nagy, Péter; Tasnádi, Péter
2016-05-01
Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.
McFarquhar, Martyn; McKie, Shane; Emsley, Richard; Suckling, John; Elliott, Rebecca; Williams, Stephen
2016-05-15
Repeated measurements and multimodal data are common in neuroimaging research. Despite this, conventional approaches to group level analysis ignore these repeated measurements in favour of multiple between-subject models using contrasts of interest. This approach has a number of drawbacks as certain designs and comparisons of interest are either not possible or complex to implement. Unfortunately, even when attempting to analyse group level data within a repeated-measures framework, the methods implemented in popular software packages make potentially unrealistic assumptions about the covariance structure across the brain. In this paper, we describe how this issue can be addressed in a simple and efficient manner using the multivariate form of the familiar general linear model (GLM), as implemented in a new MATLAB toolbox. This multivariate framework is discussed, paying particular attention to methods of inference by permutation. Comparisons with existing approaches and software packages for dependent group-level neuroimaging data are made. We also demonstrate how this method is easily adapted for dependency at the group level when multiple modalities of imaging are collected from the same individuals. Follow-up of these multimodal models using linear discriminant functions (LDA) is also discussed, with applications to future studies wishing to integrate multiple scanning techniques into investigating populations of interest. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Bast, Lotus S.; Due, Pernille; Ersbøll, Annette K.; Damsgaard, Mogens T.; Andersen, Anette
2017-01-01
Background: Assessment of implementation is essential for the evaluation of school-based preventive activities. Interventions are more easily implemented in schools if detailed instructional manuals, lesson plans, and materials are provided; however, implementation may also be affected by other factors than the intervention itself--for example,…
Elongated uvula and diagnostic utility of spirometry in upper airway obstruction
Paliwal, Rajiv; Patel, Satish; Patel, Purvesh; Soni, Hiren
2010-01-01
Elongated uvula is relatively an uncommon condition. Upper airway obstruction is often a missed complication of such a rare condition. Clinical presentations of upper airway obstruction often mimic asthma. Hence it is very easily mis-diagnosed as asthma. Spirometry offers a very simple test to diagnose upper airway obstruction very early and easily. Once diagnosed, the management of elongated uvula, almost exclusively, is surgical excision leading to total cure. Here is a case report of such a rare condition. PMID:20539769
Simple circuit for pacing hearts of experimental animals.
Freeman, G L; Colston, J T
1992-06-01
In this paper we describe a simple pacing circuit which can be used to drive the heart over a wide range of rates. The circuit is an astable multivibrator, based on an LM555 integrated circuit. It is powered by a 9-V battery and is small enough for use in rabbits. The circuit is easily constructed and inexpensive, making it attractive for numerous applications in cardiovascular research.
Design of nuclease-based target recycling signal amplification in aptasensors.
Yan, Mengmeng; Bai, Wenhui; Zhu, Chao; Huang, Yafei; Yan, Jiao; Chen, Ailiang
2016-03-15
Compared with conventional antibody-based immunoassay methods, aptasensors based on nucleic acid aptamer have made at least two significant breakthroughs. One is that aptamers are more easily used for developing various simple and rapid homogeneous detection methods by "sample in signal out" without multi-step washing. The other is that aptamers are more easily employed for developing highly sensitive detection methods by using various nucleic acid-based signal amplification approaches. As many substances playing regulatory roles in physiology or pathology exist at an extremely low concentration and many chemical contaminants occur in trace amounts in food or environment, aptasensors for signal amplification contribute greatly to detection of such targets. Among the signal amplification approaches in highly sensitive aptasensors, the nuclease-based target recycling signal amplification has recently become a research focus because it shows easy design, simple operation, and rapid reaction and can be easily developed for homogenous assay. In this review, we summarized recent advances in the development of various nuclease-based target recycling signal amplification with the aim to provide a general guide for the design of aptamer-based ultrasensitive biosensing assays. Copyright © 2015 Elsevier B.V. All rights reserved.
Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation.
Liebermeister, Wolfram; Uhlendorf, Jannis; Klipp, Edda
2010-06-15
Standard rate laws are a key requisite for systematically turning metabolic networks into kinetic models. They should provide simple, general and biochemically plausible formulae for reaction velocities and reaction elasticities. At the same time, they need to respect thermodynamic relations between the kinetic constants and the metabolic fluxes and concentrations. We present a family of reversible rate laws for reactions with arbitrary stoichiometries and various types of regulation, including mass-action, Michaelis-Menten and uni-uni reversible Hill kinetics as special cases. With a thermodynamically safe parameterization of these rate laws, parameter sets obtained by model fitting, sampling or optimization are guaranteed to lead to consistent chemical equilibrium states. A reformulation using saturation values yields simple formulae for rates and elasticities, which can be easily adjusted to the given stationary flux distributions. Furthermore, this formulation highlights the role of chemical potential differences as thermodynamic driving forces. We compare the modular rate laws to the thermodynamic-kinetic modelling formalism and discuss a simplified rate law in which the reaction rate directly depends on the reaction affinity. For automatic handling of modular rate laws, we propose a standard syntax and semantic annotations for the Systems Biology Markup Language. An online tool for inserting the rate laws into SBML models is freely available at www.semanticsbml.org. Supplementary data are available at Bioinformatics online.
Simple Methods and Rational Design for Enhancing Aptamer Sensitivity and Specificity
Kalra, Priya; Dhiman, Abhijeet; Cho, William C.; Bruno, John G.; Sharma, Tarun K.
2018-01-01
Aptamers are structured nucleic acid molecules that can bind to their targets with high affinity and specificity. However, conventional SELEX (Systematic Evolution of Ligands by EXponential enrichment) methods may not necessarily produce aptamers of desired affinity and specificity. Thus, to address these questions, this perspective is intended to suggest some approaches and tips along with novel selection methods to enhance evolution of aptamers. This perspective covers latest novel innovations as well as a broad range of well-established approaches to improve the individual binding parameters (aptamer affinity, avidity, specificity and/or selectivity) of aptamers during and/or post-SELEX. The advantages and limitations of individual aptamer selection methods and post-SELEX optimizations, along with rational approaches to overcome these limitations are elucidated in each case. Further the impact of chosen selection milieus, linker-systems, aptamer cocktails and detection modules utilized in conjunction with target-specific aptamers, on the overall assay performance are discussed in detail, each with its own advantages and limitations. The simple variations suggested are easily available for facile implementation during and/or post-SELEX to develop ultrasensitive and specific assays. Finally, success studies of established aptamer-based assays are discussed, highlighting how they utilized some of the suggested methodologies to develop commercially successful point-of-care diagnostic assays. PMID:29868605
NASA Astrophysics Data System (ADS)
Harne, Ryan L.; Lynd, Danielle T.
2016-08-01
Fixed in spatial distribution, arrays of planar, electromechanical acoustic transducers cannot adapt their wave energy focusing abilities unless each transducer is externally controlled, creating challenges for the implementation and portability of such beamforming systems. Recently, planar, origami-based structural tessellations are found to facilitate great versatility in system function and properties through kinematic folding. In this research we bridge the physics of acoustics and origami-based design to discover that the simple topological reconfigurations of a Miura-ori-based acoustic array yield many orders of magnitude worth of reversible change in wave energy focusing: a potential for acoustic field morphing easily obtained through deployable, tessellated architectures. Our experimental and theoretical studies directly translate the roles of folding the tessellated array to the adaptations in spectral and spatial wave propagation sensitivities for far field energy transmission. It is shown that kinematic folding rules and flat-foldable tessellated arrays collectively provide novel solutions to the long-standing challenges of conventional, electronically-steered acoustic beamformers. While our examples consider sound radiation from the foldable array in air, linear acoustic reciprocity dictates that the findings may inspire new innovations for acoustic receivers, e.g. adaptive sound absorbers and microphone arrays, as well as concepts that include water-borne waves.
Simple Methods and Rational Design for Enhancing Aptamer Sensitivity and Specificity.
Kalra, Priya; Dhiman, Abhijeet; Cho, William C; Bruno, John G; Sharma, Tarun K
2018-01-01
Aptamers are structured nucleic acid molecules that can bind to their targets with high affinity and specificity. However, conventional SELEX (Systematic Evolution of Ligands by EXponential enrichment) methods may not necessarily produce aptamers of desired affinity and specificity. Thus, to address these questions, this perspective is intended to suggest some approaches and tips along with novel selection methods to enhance evolution of aptamers. This perspective covers latest novel innovations as well as a broad range of well-established approaches to improve the individual binding parameters (aptamer affinity, avidity, specificity and/or selectivity) of aptamers during and/or post-SELEX. The advantages and limitations of individual aptamer selection methods and post-SELEX optimizations, along with rational approaches to overcome these limitations are elucidated in each case. Further the impact of chosen selection milieus, linker-systems, aptamer cocktails and detection modules utilized in conjunction with target-specific aptamers, on the overall assay performance are discussed in detail, each with its own advantages and limitations. The simple variations suggested are easily available for facile implementation during and/or post-SELEX to develop ultrasensitive and specific assays. Finally, success studies of established aptamer-based assays are discussed, highlighting how they utilized some of the suggested methodologies to develop commercially successful point-of-care diagnostic assays.
Navigating a Mobile Robot Across Terrain Using Fuzzy Logic
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Howard, Ayanna; Bon, Bruce
2003-01-01
A strategy for autonomous navigation of a robotic vehicle across hazardous terrain involves the use of a measure of traversability of terrain within a fuzzy-logic conceptual framework. This navigation strategy requires no a priori information about the environment. Fuzzy logic was selected as a basic element of this strategy because it provides a formal methodology for representing and implementing a human driver s heuristic knowledge and operational experience. Within a fuzzy-logic framework, the attributes of human reasoning and decision- making can be formulated by simple IF (antecedent), THEN (consequent) rules coupled with easily understandable and natural linguistic representations. The linguistic values in the rule antecedents convey the imprecision associated with measurements taken by sensors onboard a mobile robot, while the linguistic values in the rule consequents represent the vagueness inherent in the reasoning processes to generate the control actions. The operational strategies of the human expert driver can be transferred, via fuzzy logic, to a robot-navigation strategy in the form of a set of simple conditional statements composed of linguistic variables. These linguistic variables are defined by fuzzy sets in accordance with user-defined membership functions. The main advantages of a fuzzy navigation strategy lie in the ability to extract heuristic rules from human experience and to obviate the need for an analytical model of the robot navigation process.
NASA Astrophysics Data System (ADS)
Ladiges, Daniel R.; Sader, John E.
2018-05-01
Nanomechanical resonators and sensors, operated in ambient conditions, often generate low-Mach-number oscillating rarefied gas flows. Cercignani [C. Cercignani, J. Stat. Phys. 1, 297 (1969), 10.1007/BF01007482] proposed a variational principle for the linearized Boltzmann equation, which can be used to derive approximate analytical solutions of steady (time-independent) flows. Here we extend and generalize this principle to unsteady oscillatory rarefied flows and thus accommodate resonating nanomechanical devices. This includes a mathematical approach that facilitates its general use and allows for systematic improvements in accuracy. This formulation is demonstrated for two canonical flow problems: oscillatory Couette flow and Stokes' second problem. Approximate analytical formulas giving the bulk velocity and shear stress, valid for arbitrary oscillation frequency, are obtained for Couette flow. For Stokes' second problem, a simple system of ordinary differential equations is derived which may be solved to obtain the desired flow fields. Using this framework, a simple and accurate formula is provided for the shear stress at the oscillating boundary, again for arbitrary frequency, which may prove useful in application. These solutions are easily implemented on any symbolic or numerical package, such as Mathematica or matlab, facilitating the characterization of flows produced by nanomechanical devices and providing insight into the underlying flow physics.
NASA Astrophysics Data System (ADS)
Milecki, Andrzej; Pelic, Marcin
2016-10-01
This paper presents results of studies of an application of a new method of piezo bender actuators modelling. A special hysteresis simulation model was developed and is presented. The model is based on a geometrical deformation of main hysteresis loop. The piezoelectric effect is described and the history of the hysteresis modelling is briefly reviewed. Firstly, a simple model for main loop modelling is proposed. Then, a geometrical description of the non-saturated hysteresis is presented and its modelling method is introduced. The modelling makes use of the function describing the geometrical shape of the two hysteresis main curves, which can be defined theoretically or obtained by measurement. These main curves are stored in the memory and transformed geometrically in order to obtain the minor curves. Such model was prepared in the Matlab-Simulink software, but can be easily implemented using any programming language and applied in an on-line controller. In comparison to the other known simulation methods, the one presented in the paper is easy to understand, and uses simple arithmetical equations, allowing to quickly obtain the inversed model of hysteresis. The inversed model was further used for compensation of a non-saturated hysteresis of the piezo bender actuator and results have also been presented in the paper.
Accounting for inherent variability of growth in microbial risk assessment.
Marks, H M; Coleman, M E
2005-04-15
Risk assessments of pathogens need to account for the growth of small number of cells under varying conditions. In order to determine the possible risks that occur when there are small numbers of cells, stochastic models of growth are needed that would capture the distribution of the number of cells over replicate trials of the same scenario or environmental conditions. This paper provides a simple stochastic growth model, accounting only for inherent cell-growth variability, assuming constant growth kinetic parameters, for an initial, small, numbers of cells assumed to be transforming from a stationary to an exponential phase. Two, basic, microbial sets of assumptions are considered: serial, where it is assume that cells transform through a lag phase before entering the exponential phase of growth; and parallel, where it is assumed that lag and exponential phases develop in parallel. The model is based on, first determining the distribution of the time when growth commences, and then modelling the conditional distribution of the number of cells. For the latter distribution, it is found that a Weibull distribution provides a simple approximation to the conditional distribution of the relative growth, so that the model developed in this paper can be easily implemented in risk assessments using commercial software packages.
Determination of hydroxyurea in human plasma by HPLC-UV using derivatization with xanthydrol.
Legrand, Tiphaine; Rakotoson, Marie-Georgine; Galactéros, Frédéric; Bartolucci, Pablo; Hulin, Anne
2017-10-01
A simple and rapid high performance liquid chromatography (HPLC) method using ultraviolet (UV) detection was developed to determine hydroxyurea (HU) concentration in plasma sample after derivatization with xanthydrol. Two hundred microliters samples were spiked with methylurea (MeU) as internal standard and proteins were precipitated by adding methanol. Derivatization of HU and MeU was immediately performed by adding 0.02M xanthydrol and 1.5M HCl in order to obtain xanthyl-derivatives of HU and MeU that can be further separated using HPLC and quantified using UV detection at 240nm. Separation was achieved using a C18 column with a mobile phase composed of 20mM ammonium acetate and acetonitrile in gradient elution mode at a flow rate of 1mL/min. The total analysis time did not exceed 18min. The method was found linear from 5 to 400μM and all validation parameters fulfilled the international requirements. Between- and within-run accuracy error ranged from -4.7% to 3.2% and precision was lower than 12.8%. This simple method requires small volume samples and can be easily implemented in most clinical laboratories to develop pharmacokinetics studies of HU and to promote its therapeutic monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.
Don’t make cache too complex: A simple probability-based cache management scheme for SSDs
Cho, Sangyeun; Choi, Jongmoo
2017-01-01
Solid-state drives (SSDs) have recently become a common storage component in computer systems, and they are fueled by continued bit cost reductions achieved with smaller feature sizes and multiple-level cell technologies. However, as the flash memory stores more bits per cell, the performance and reliability of the flash memory degrade substantially. To solve this problem, a fast non-volatile memory (NVM-)based cache has been employed within SSDs to reduce the long latency required to write data. Absorbing small writes in a fast NVM cache can also reduce the number of flash memory erase operations. To maximize the benefits of an NVM cache, it is important to increase the NVM cache utilization. In this paper, we propose and study ProCache, a simple NVM cache management scheme, that makes cache-entrance decisions based on random probability testing. Our scheme is motivated by the observation that frequently written hot data will eventually enter the cache with a high probability, and that infrequently accessed cold data will not enter the cache easily. Owing to its simplicity, ProCache is easy to implement at a substantially smaller cost than similar previously studied techniques. We evaluate ProCache and conclude that it achieves comparable performance compared to a more complex reference counter-based cache-management scheme. PMID:28358897
Don't make cache too complex: A simple probability-based cache management scheme for SSDs.
Baek, Seungjae; Cho, Sangyeun; Choi, Jongmoo
2017-01-01
Solid-state drives (SSDs) have recently become a common storage component in computer systems, and they are fueled by continued bit cost reductions achieved with smaller feature sizes and multiple-level cell technologies. However, as the flash memory stores more bits per cell, the performance and reliability of the flash memory degrade substantially. To solve this problem, a fast non-volatile memory (NVM-)based cache has been employed within SSDs to reduce the long latency required to write data. Absorbing small writes in a fast NVM cache can also reduce the number of flash memory erase operations. To maximize the benefits of an NVM cache, it is important to increase the NVM cache utilization. In this paper, we propose and study ProCache, a simple NVM cache management scheme, that makes cache-entrance decisions based on random probability testing. Our scheme is motivated by the observation that frequently written hot data will eventually enter the cache with a high probability, and that infrequently accessed cold data will not enter the cache easily. Owing to its simplicity, ProCache is easy to implement at a substantially smaller cost than similar previously studied techniques. We evaluate ProCache and conclude that it achieves comparable performance compared to a more complex reference counter-based cache-management scheme.
A Simple Ground-Based Trap For Estimating Densities of Arboreal Leaf Insects
Robert A. Haack; Richard W. Blank
1991-01-01
Describes a trap design to use in collecting larval frass or head capsules for estimating densities of aboveground arthropods. The trap is light, compact, durable, and easily constructed from common inexpensive items.
NASA Technical Reports Server (NTRS)
Velega, D.
1983-01-01
Rubber impressions viewed with optical comparator. Simple mold constructed from aluminum sheet or any other easily shaped material compatible with silicone rubber ingredients. Mold placed over surface to be measured. Newly-mixed silicone rubber compound poured in mold and allowed to cure.
ERIC Educational Resources Information Center
Kim, Hy
1985-01-01
A simple oxygen-collecting device (easily constructed from glass jars and a lid) can show bubbles released by water plants during photosynthesis. Suggestions are given for: (1) testing the collected gas; (2) using various carbon dioxide sources; and (3) measuring respiration. (DH)
Łącki, Mateusz; Damski, Bogdan; Zakrzewski, Jakub
2016-12-02
We show that the critical point of the two-dimensional Bose-Hubbard model can be easily found through studies of either on-site atom number fluctuations or the nearest-neighbor two-point correlation function (the expectation value of the tunnelling operator). Our strategy to locate the critical point is based on the observation that the derivatives of these observables with respect to the parameter that drives the superfluid-Mott insulator transition are singular at the critical point in the thermodynamic limit. Performing the quantum Monte Carlo simulations of the two-dimensional Bose-Hubbard model, we show that this technique leads to the accurate determination of the position of its critical point. Our results can be easily extended to the three-dimensional Bose-Hubbard model and different Hubbard-like models. They provide a simple experimentally-relevant way of locating critical points in various cold atomic lattice systems.
Simple Parametric Model for Airfoil Shape Description
NASA Astrophysics Data System (ADS)
Ziemkiewicz, David
2017-12-01
We show a simple, analytic equation describing a class of two-dimensional shapes well suited for representation of aircraft airfoil profiles. Our goal was to create a description characterized by a small number of parameters with easily understandable meaning, providing a tool to alter the shape with optimization procedures as well as manual tweaks by the designer. The generated shapes are well suited for numerical analysis with 2D flow solving software such as XFOIL.
Is simple nephrectomy truly simple? Comparison with the radical alternative.
Connolly, S S; O'Brien, M Frank; Kunni, I M; Phelan, E; Conroy, R; Thornhill, J A; Grainger, R
2011-03-01
The Oxford English dictionary defines the term "simple" as "easily done" and "uncomplicated". We tested the validity of this terminology in relation to open nephrectomy surgery. Retrospective review of 215 patients undergoing open, simple (n = 89) or radical (n = 126) nephrectomy in a single university-affiliated institution between 1998 and 2002. Operative time (OT), estimated blood loss (EBL), operative complications (OC) and length of stay in hospital (LOS) were analysed. Statistical analysis employed Fisher's exact test and Stata Release 8.2. Simple nephrectomy was associated with shorter OT (mean 126 vs. 144 min; p = 0.002), reduced EBL (mean 729 vs. 859 cc; p = 0.472), lower OC (9 vs. 17%; 0.087), and more brief LOS (mean 6 vs. 8 days; p < 0.001). All parameters suggest favourable outcome for the simple nephrectomy group, supporting the use of this terminology. This implies "simple" nephrectomies are truly easier to perform with less complication than their radical counterpart.
Simple cloning strategy using GFPuv gene as positive/negative indicator.
Miura, Hiromi; Inoko, Hidetoshi; Inoue, Ituro; Tanaka, Masafumi; Sato, Masahiro; Ohtsuka, Masato
2011-09-15
Because construction of expression vectors is the first requisite in the functional analysis of genes, development of simple cloning systems is a major requirement during the postgenomic era. In the current study, we developed cloning vectors for gain- or loss-of-function studies by using the GFPuv gene as a positive/negative indicator of cloning. These vectors allow us to easily detect correct clones and obtain expression vectors from a simple procedure by means of the combined use of the GFPuv gene and a type IIS restriction enzyme. Copyright © 2011 Elsevier Inc. All rights reserved.
Simple measurement of lenticular lens quality for autostereoscopic displays
NASA Astrophysics Data System (ADS)
Gray, Stuart; Boudreau, Robert A.
2013-03-01
Lenticular lens based autostereoscopic 3D displays are finding many applications in digital signage and consumer electronics devices. A high quality 3D viewing experience requires the lenticular lens be properly aligned with the pixels on the display device so that each eye views the correct image. This work presents a simple and novel method for rapidly assessing the quality of a lenticular lens to be used in autostereoscopic displays. Errors in lenticular alignment across the entire display are easily observed with a simple test pattern where adjacent views are programmed to display different colors.
Jaramillo, Juliana; Setamou, Mamoudou; Muchugu, Eric; Chabi-Olaye, Adenirin; Jaramillo, Alvaro; Mukabana, Joseph; Maina, Johnson; Gathara, Simon; Borgemeister, Christian
2013-01-01
Global environmental changes (GEC) such as climate change (CC) and climate variability have serious impacts in the tropics, particularly in Africa. These are compounded by changes in land use/land cover, which in turn are driven mainly by economic and population growth, and urbanization. These factors create a feedback loop, which affects ecosystems and particularly ecosystem services, for example plant-insect interactions, and by consequence agricultural productivity. We studied effects of GEC at a local level, using a traditional coffee production area in greater Nairobi, Kenya. We chose coffee, the most valuable agricultural commodity worldwide, as it generates income for 100 million people, mainly in the developing world. Using the coffee berry borer, the most serious biotic threat to global coffee production, we show how environmental changes and different production systems (shaded and sun-grown coffee) can affect the crop. We combined detailed entomological assessments with historic climate records (from 1929-2011), and spatial and demographic data, to assess GEC's impact on coffee at a local scale. Additionally, we tested the utility of an adaptation strategy that is simple and easy to implement. Our results show that while interactions between CC and migration/urbanization, with its resultant landscape modifications, create a feedback loop whereby agroecosystems such as coffee are adversely affected, bio-diverse shaded coffee proved far more resilient and productive than coffee grown in monoculture, and was significantly less harmed by its insect pest. Thus, a relatively simple strategy such as shading coffee can tremendously improve resilience of agro-ecosystems, providing small-scale farmers in Africa with an easily implemented tool to safeguard their livelihoods in a changing climate.
Jaramillo, Juliana; Setamou, Mamoudou; Muchugu, Eric; Chabi-Olaye, Adenirin; Jaramillo, Alvaro; Mukabana, Joseph; Maina, Johnson; Gathara, Simon; Borgemeister, Christian
2013-01-01
Global environmental changes (GEC) such as climate change (CC) and climate variability have serious impacts in the tropics, particularly in Africa. These are compounded by changes in land use/land cover, which in turn are driven mainly by economic and population growth, and urbanization. These factors create a feedback loop, which affects ecosystems and particularly ecosystem services, for example plant-insect interactions, and by consequence agricultural productivity. We studied effects of GEC at a local level, using a traditional coffee production area in greater Nairobi, Kenya. We chose coffee, the most valuable agricultural commodity worldwide, as it generates income for 100 million people, mainly in the developing world. Using the coffee berry borer, the most serious biotic threat to global coffee production, we show how environmental changes and different production systems (shaded and sun-grown coffee) can affect the crop. We combined detailed entomological assessments with historic climate records (from 1929–2011), and spatial and demographic data, to assess GEC's impact on coffee at a local scale. Additionally, we tested the utility of an adaptation strategy that is simple and easy to implement. Our results show that while interactions between CC and migration/urbanization, with its resultant landscape modifications, create a feedback loop whereby agroecosystems such as coffee are adversely affected, bio-diverse shaded coffee proved far more resilient and productive than coffee grown in monoculture, and was significantly less harmed by its insect pest. Thus, a relatively simple strategy such as shading coffee can tremendously improve resilience of agro-ecosystems, providing small-scale farmers in Africa with an easily implemented tool to safeguard their livelihoods in a changing climate. PMID:23341884
The Projectile Inside the Loop
ERIC Educational Resources Information Center
Varieschi, Gabriele U.
2006-01-01
The loop-the-loop demonstration can be easily adapted to study the kinematics of projectile motion, when the moving body falls inside the apparatus. Video capturing software can be used to reveal peculiar geometrical effects of this simple but educational experiment.
Graphical Understanding of Simple Feedback Systems.
ERIC Educational Resources Information Center
Janvier, Claude; Garancon, Maurice
1989-01-01
Shows that graphs can reveal much about feedback systems that formula conceal, especially as microcomputers can provide complex graphs presented as animations and allow students to interact easily with them. Describes feedback systems, evolution of the system, and phase diagram. (YP)
Deployed Force Waste Management
2004-11-01
Humid Coastal Desert (B3) Cold (C0) (C1) (C2) Severe & Extreme Cold (C3) (C4) Affects effectiveness and efficiency of particular treatment and...surface (eg Spinifex ) Commercially available Easily deployable and some construction by engineers required Simple but specialised
TECHNICAL DESIGN NOTE: Picosecond resolution programmable delay line
NASA Astrophysics Data System (ADS)
Suchenek, Mariusz
2009-11-01
The note presents implementation of a programmable delay line for digital signals. The tested circuit has a subnanosecond delay range programmable with a resolution of picoseconds. Implementation of the circuit was based on low-cost components, easily available on the market.
Hyponatremia in liver cirrhosis: pathophysiological principles of management.
Castello, L; Pirisi, M; Sainaghi, P P; Bartoli, E
2005-02-01
Hyponatremia is common in cirrhosis, where it impairs encephalopathy. It could be either due to excess water, or reduced Na, or a combination of both. The diagnosis can be established with clinical skills aided by simple data like weight, blood pressure and plasma electrolytes. The quantitative estimates of the water surfeit or solute deficit, easily performed with simple formulas and measurements, guide accurate and programmed treatment procedures, avoiding the occurrence of the ominous central pontine myelinolysis.
Bringing numerous methods for expression and promoter analysis to a public cloud computing service.
Polanski, Krzysztof; Gao, Bo; Mason, Sam A; Brown, Paul; Ott, Sascha; Denby, Katherine J; Wild, David L
2018-03-01
Every year, a large number of novel algorithms are introduced to the scientific community for a myriad of applications, but using these across different research groups is often troublesome, due to suboptimal implementations and specific dependency requirements. This does not have to be the case, as public cloud computing services can easily house tractable implementations within self-contained dependency environments, making the methods easily accessible to a wider public. We have taken 14 popular methods, the majority related to expression data or promoter analysis, developed these up to a good implementation standard and housed the tools in isolated Docker containers which we integrated into the CyVerse Discovery Environment, making these easily usable for a wide community as part of the CyVerse UK project. The integrated apps can be found at http://www.cyverse.org/discovery-environment, while the raw code is available at https://github.com/cyversewarwick and the corresponding Docker images are housed at https://hub.docker.com/r/cyversewarwick/. info@cyverse.warwick.ac.uk or D.L.Wild@warwick.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
autokonf - A Configuration Script Generator Implemented in Perl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reus, J F
This paper discusses configuration scripts in general and the scripting language issues involved. A brief description of GNU autoconf is provided along with a contrasting overview of autokonf, a configuration script generator implemented in Perl, whose macros are implemented in Perl, generating a configuration script in Perl. It is very portable, easily extensible, and readily mastered.
An interactive modelling tool for understanding hydrological processes in lowland catchments
NASA Astrophysics Data System (ADS)
Brauer, Claudia; Torfs, Paul; Uijlenhoet, Remko
2016-04-01
Recently, we developed the Wageningen Lowland Runoff Simulator (WALRUS), a rainfall-runoff model for catchments with shallow groundwater (Brauer et al., 2014ab). WALRUS explicitly simulates processes which are important in lowland catchments, such as feedbacks between saturated and unsaturated zone and between groundwater and surface water. WALRUS has a simple model structure and few parameters with physical connotations. Some default functions (which can be changed easily for research purposes) are implemented to facilitate application by practitioners and students. The effect of water management on hydrological variables can be simulated explicitly. The model description and applications are published in open access journals (Brauer et al, 2014). The open source code (provided as R package) and manual can be downloaded freely (www.github.com/ClaudiaBrauer/WALRUS). We organised a short course for Dutch water managers and consultants to become acquainted with WALRUS. We are now adapting this course as a stand-alone tutorial suitable for a varied, international audience. In addition, simple models can aid teachers to explain hydrological principles effectively. We used WALRUS to generate examples for simple interactive tools, which we will present at the EGU General Assembly. C.C. Brauer, A.J. Teuling, P.J.J.F. Torfs, R. Uijlenhoet (2014a): The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater, Geosci. Model Dev., 7, 2313-2332. C.C. Brauer, P.J.J.F. Torfs, A.J. Teuling, R. Uijlenhoet (2014b): The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrol. Earth Syst. Sci., 18, 4007-4028.
In Vitro Spermatogenesis of Gypsy Moth Larvae.
ERIC Educational Resources Information Center
Brown, Judy; Loeb, Marcia J.
1994-01-01
Students establish simple cell developmental cultures to observe the process of spermatogenesis, mitosis, and meiosis in living cells. Using the background information, hints for further exploration, and experimental procedures provided, teachers can easily modify this experiment to suit their students needs. (ZWH)
Using basic, easily attainable GIS data, AGWA provides a simple, direct, and repeatable methodology for hydrologic model setup, execution, and visualization. AGWA experiences activity from over 170 countries. It l has been downloaded over 11,000 times.
Simple Flame Test Techniques Using Cotton Swabs
ERIC Educational Resources Information Center
Sanger, Michael J.; Phelps, Amy J.; Banks, Catherine
2004-01-01
Three alternative methods for performing flame tests using cheaply and easily available cotton swabs are described. These flame tests are useful for chemical demonstrations or laboratory experiments because they are quick and easy to perform with easy cleanup and disposal methods.
wft4galaxy: a workflow testing tool for galaxy.
Piras, Marco Enrico; Pireddu, Luca; Zanetti, Gianluigi
2017-12-01
Workflow managers for scientific analysis provide a high-level programming platform facilitating standardization, automation, collaboration and access to sophisticated computing resources. The Galaxy workflow manager provides a prime example of this type of platform. As compositions of simpler tools, workflows effectively comprise specialized computer programs implementing often very complex analysis procedures. To date, no simple way to automatically test Galaxy workflows and ensure their correctness has appeared in the literature. With wft4galaxy we offer a tool to bring automated testing to Galaxy workflows, making it feasible to bring continuous integration to their development and ensuring that defects are detected promptly. wft4galaxy can be easily installed as a regular Python program or launched directly as a Docker container-the latter reducing installation effort to a minimum. Available at https://github.com/phnmnl/wft4galaxy under the Academic Free License v3.0. marcoenrico.piras@crs4.it. © The Author 2017. Published by Oxford University Press.
Improved spring model-based collaborative indoor visible light positioning
NASA Astrophysics Data System (ADS)
Luo, Zhijie; Zhang, WeiNan; Zhou, GuoFu
2016-06-01
Gaining accuracy with indoor positioning of individuals is important as many location-based services rely on the user's current position to provide them with useful services. Many researchers have studied indoor positioning techniques based on WiFi and Bluetooth. However, they have disadvantages such as low accuracy or high cost. In this paper, we propose an indoor positioning system in which visible light radiated from light-emitting diodes is used to locate the position of receivers. Compared with existing methods using light-emitting diode light, we present a high-precision and simple implementation collaborative indoor visible light positioning system based on an improved spring model. We first estimate coordinate position information using the visible light positioning system, and then use the spring model to correct positioning errors. The system can be employed easily because it does not require additional sensors and the occlusion problem of visible light would be alleviated. We also describe simulation experiments, which confirm the feasibility of our proposed method.
Implementation of an Online Database for Chemical Propulsion Systems
NASA Technical Reports Server (NTRS)
David B. Owen, II; McRight, Patrick S.; Cardiff, Eric H.
2009-01-01
The Johns Hopkins University, Chemical Propulsion Information Analysis Center (CPIAC) has been working closely with NASA Goddard Space Flight Center (GSFC); NASA Marshall Space Flight Center (MSFC); the University of Alabama at Huntsville (UAH); The Johns Hopkins University, Applied Physics Laboratory (APL); and NASA Jet Propulsion Laboratory (JPL) to capture satellite and spacecraft propulsion system information for an online database tool. The Spacecraft Chemical Propulsion Database (SCPD) is a new online central repository containing general and detailed system and component information on a variety of spacecraft propulsion systems. This paper only uses data that have been approved for public release with unlimited distribution. The data, supporting documentation, and ability to produce reports on demand, enable a researcher using SCPD to compare spacecraft easily, generate information for trade studies and mass estimates, and learn from the experiences of others through what has already been done. This paper outlines the layout and advantages of SCPD, including a simple example application with a few chemical propulsion systems from various NASA spacecraft.
Reliable Channel-Adapted Error Correction: Bacon-Shor Code Recovery from Amplitude Damping
NASA Astrophysics Data System (ADS)
Piedrafita, Álvaro; Renes, Joseph M.
2017-12-01
We construct two simple error correction schemes adapted to amplitude damping noise for Bacon-Shor codes and investigate their prospects for fault-tolerant implementation. Both consist solely of Clifford gates and require far fewer qubits, relative to the standard method, to achieve exact correction to a desired order in the damping rate. The first, employing one-bit teleportation and single-qubit measurements, needs only one-fourth as many physical qubits, while the second, using just stabilizer measurements and Pauli corrections, needs only half. The improvements stem from the fact that damping events need only be detected, not corrected, and that effective phase errors arising due to undamped qubits occur at a lower rate than damping errors. For error correction that is itself subject to damping noise, we show that existing fault-tolerance methods can be employed for the latter scheme, while the former can be made to avoid potential catastrophic errors and can easily cope with damping faults in ancilla qubits.
[Shock shape representation of sinus heart rate based on cloud model].
Yin, Wenfeng; Zhao, Jie; Chen, Tiantian; Zhang, Junjian; Zhang, Chunyou; Li, Dapeng; An, Baijing
2014-04-01
The present paper is to analyze the trend of sinus heart rate RR interphase sequence after a single ventricular premature beat and to compare it with the two parameters, turbulence onset (TO) and turbulence slope (TS). Based on the acquisition of sinus rhythm concussion sample, we in this paper use a piecewise linearization method to extract its linear characteristics, following which we describe shock form with natural language through cloud model. In the process of acquisition, we use the exponential smoothing method to forecast the position where QRS wave may appear to assist QRS wave detection, and use template to judge whether current cardiac is sinus rhythm. And we choose some signals from MIT-BIH Arrhythmia Database to detect whether the algorithm is effective in Matlab. The results show that our method can correctly detect the changing trend of sinus heart rate. The proposed method can achieve real-time detection of sinus rhythm shocks, which is simple and easily implemented, so that it is effective as a supplementary method.
Polymorphic improvement of Stillinger-Weber potential for InGaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaowang W.; Jones, Reese E.; Chu, Kevin
A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds andmore » elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here in this paper, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems.« less
Nonlinear least-squares data fitting in Excel spreadsheets.
Kemmer, Gerdi; Keller, Sandro
2010-02-01
We describe an intuitive and rapid procedure for analyzing experimental data by nonlinear least-squares fitting (NLSF) in the most widely used spreadsheet program. Experimental data in x/y form and data calculated from a regression equation are inputted and plotted in a Microsoft Excel worksheet, and the sum of squared residuals is computed and minimized using the Solver add-in to obtain the set of parameter values that best describes the experimental data. The confidence of best-fit values is then visualized and assessed in a generally applicable and easily comprehensible way. Every user familiar with the most basic functions of Excel will be able to implement this protocol, without previous experience in data fitting or programming and without additional costs for specialist software. The application of this tool is exemplified using the well-known Michaelis-Menten equation characterizing simple enzyme kinetics. Only slight modifications are required to adapt the protocol to virtually any other kind of dataset or regression equation. The entire protocol takes approximately 1 h.
Polymorphic improvement of Stillinger-Weber potential for InGaN
NASA Astrophysics Data System (ADS)
Zhou, X. W.; Jones, R. E.; Chu, K.
2017-12-01
A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds and elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems.
Eyler, E E
2011-01-01
A 16-bit digital event sequencer with 50 ns resolution and 50 ns trigger jitter is implemented by using an internal 32-bit timer on a dsPIC30F4013 microcontroller, controlled by an easily modified program written in standard C. It can accommodate hundreds of output events, and adjacent events can be spaced as closely as 1.5 μs. The microcontroller has robust 5 V inputs and outputs, allowing a direct interface to common laboratory equipment and other electronics. A USB computer interface and a pair of analog ramp outputs can be added with just two additional chips. An optional display/keypad unit allows direct interaction with the sequencer without requiring an external computer. Minor additions also allow simple realizations of other complex instruments, including a precision high-voltage ramp generator for driving spectrum analyzers or piezoelectric positioners, and a low-cost proportional integral differential controller and lock-in amplifier for laser frequency stabilization with about 100 kHz bandwidth.
In-situ FPGA debug driven by on-board microcontroller
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Zachary Kent
2009-01-01
Often we are faced with the situation that the behavior of a circuit changes in an unpredictable way when chassis cover is attached or the system is not easily accessible. For instance, in a deployed environment, such as space, hardware can malfunction in unpredictable ways. What can a designer do to ascertain the cause of the problem? Register interrogations only go so far, and sometimes the problem being debugged is register transactions themselves, or the problem lies in FPGA programming. This work provides a solution to this; namely, the ability to drive a JTAG chain via an on-board microcontroller andmore » use a simple clone of the Xilinx Chipscope core without a Xilinx JTAG cable or any external interfaces required. We have demonstrated the functionality of the prototype system using a Xilinx Spartan 3E FPGA and a Microchip PIC18j2550 microcontroller. This paper will discuss the implementation details as well as present case studies describing how the tools have aided satellite hardware development.« less
A simplified controller and detailed dynamics of constant off-time peak current control
NASA Astrophysics Data System (ADS)
Van den Bossche, Alex; Dimitrova, Ekaterina; Valchev, Vencislav; Feradov, Firgan
2017-09-01
A fast and reliable current control is often the base of power electronic converters. The traditional constant frequency peak control is unstable above 50 % duty ratio. In contrast, the constant off-time peak current control (COTCC) is unconditionally stable and fast, so it is worth analyzing it. Another feature of the COTCC is that one can combine a current control together with a current protection. The time dynamics show a zero-transient response, even when the inductor changes in a wide range. It can also be modeled as a special transfer function for all frequencies. The article shows also that it can be implemented in a simple analog circuit using a wide temperature range IC, such as the LM2903, which is compatible with PV conversion and automotive temperature range. Experiments are done using a 3 kW step-up converter. A drawback is still that the principle does not easily fit in usual digital controllers up to now.
Protective Effects of Parent-College Student Communication During the First Semester of College
Small, Meg L.; Morgan, Nicole; Abar, Caitlin; Maggs, Jennifer L.
2011-01-01
Objective Recent studies suggest that parents maintain influence as their adolescents transition into college. Advances in communication technology make frequent communication between parents and college students easy and affordable. This study examines the protective effect of parent-college student communication on student drinking behaviors, estimated peak blood alcohol concentration (eBAC), and serious negative consequences of drinking. Participants Participants were 746 first-year, first-time, full-time students at a large university in the U.S. Methods Participants completed a baseline and 14 daily web-based surveys. Results The amount of time spent communicating with parents on weekend days predicted the number of drinks consumed, heavy drinking, and peak eBAC consistent with a protective within-person effect. No association between communication and serious negative consequences was observed. Conclusions Encouraging parents to communicate with their college students, particularly on weekend days, could be a relatively simple, easily implemented protective process to reduce dangerous drinking behaviors. PMID:21660810
Arduino control of a pulsatile flow rig.
Drost, S; de Kruif, B J; Newport, D
2018-01-01
This note describes the design and testing of a programmable pulsatile flow pump using an Arduino micro-controller. The goal of this work is to build a compact and affordable system that can relatively easily be programmed to generate physiological waveforms. The system described here was designed to be used in an in-vitro set-up for vascular access hemodynamics research, and hence incorporates a gear pump that delivers a mean flow of 900 ml/min in a test flow loop, and a peak flow of 1106 ml/min. After a number of simple identification experiments to assess the dynamic behaviour of the system, a feed-forward control routine was implemented. The resulting system was shown to be able to produce the targeted representative waveform with less than 3.6% error. Finally, we outline how to further increase the accuracy of the system, and how to adapt it to specific user needs. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Versatile single-chip event sequencer for atomic physics experiments
NASA Astrophysics Data System (ADS)
Eyler, Edward
2010-03-01
A very inexpensive dsPIC microcontroller with internal 32-bit counters is used to produce a flexible timing signal generator with up to 16 TTL-compatible digital outputs, with a time resolution and accuracy of 50 ns. This time resolution is easily sufficient for event sequencing in typical experiments involving cold atoms or laser spectroscopy. This single-chip device is capable of triggered operation and can also function as a sweeping delay generator. With one additional chip it can also concurrently produce accurately timed analog ramps, and another one-chip addition allows real-time control from an external computer. Compared to an FPGA-based digital pattern generator, this design is slower but simpler and more flexible, and it can be reprogrammed using ordinary `C' code without special knowledge. I will also describe the use of the same microcontroller with additional hardware to implement a digital lock-in amplifier and PID controller for laser locking, including a simple graphics-based control unit. This work is supported in part by the NSF.
BioPCD - A Language for GUI Development Requiring a Minimal Skill Set.
Alvare, Graham Gm; Roche-Lima, Abiel; Fristensky, Brian
2012-11-01
BioPCD is a new language whose purpose is to simplify the creation of Graphical User Interfaces (GUIs) by biologists with minimal programming skills. The first step in developing BioPCD was to create a minimal superset of the language referred to as PCD (Pythonesque Command Description). PCD defines the core of terminals and high-level nonterminals required to describe data of almost any type. BioPCD adds to PCD the constructs necessary to describe GUI components and the syntax for executing system commands. BioPCD is implemented using JavaCC to convert the grammar into code. BioPCD is designed to be terse and readable and simple enough to be learned by copying and modifying existing BioPCD files. We demonstrate that BioPCD can easily be used to generate GUIs for existing command line programs. Although BioPCD was designed to make it easier to run bioinformatics programs, it could be used in any domain in which many useful command line programs exist that do not have GUI interfaces.
Ecological principles, biodiversity, and the electric utility industry
NASA Astrophysics Data System (ADS)
Temple, Stanley A.
1996-11-01
The synthetic field of conservation biology uses principles derived from many different disciplines to address biodiversity issues. Many of these principles have come from ecology, and two simple ones that seem to relate to many issues involving the utility industry are: (1) “Everything is interconnected” (and should usually stay that way), and (2) “We can never do merely one thing.” The first principle can be applied to both the biotic and physical environments that are impacted by industrial activities. Habitat fragmentation and the loss of physical and biotic connectedness that results are frequently associated with transmission rights-of-way. These problems can be reduced—or even turned into conservation benefits—by careful planning and creative management. The second principle applies to the utility industry's programs to deal with carbon released by burning fossil fuels. Ecological knowledge can allow these programs to contribute to the preservation of biodiversity in addition to addressing a pollution problem. Without careful ecological analyses, industry could easily create new problems while implementing solutions to old ones.
OpenCluster: A Flexible Distributed Computing Framework for Astronomical Data Processing
NASA Astrophysics Data System (ADS)
Wei, Shoulin; Wang, Feng; Deng, Hui; Liu, Cuiyin; Dai, Wei; Liang, Bo; Mei, Ying; Shi, Congming; Liu, Yingbo; Wu, Jingping
2017-02-01
The volume of data generated by modern astronomical telescopes is extremely large and rapidly growing. However, current high-performance data processing architectures/frameworks are not well suited for astronomers because of their limitations and programming difficulties. In this paper, we therefore present OpenCluster, an open-source distributed computing framework to support rapidly developing high-performance processing pipelines of astronomical big data. We first detail the OpenCluster design principles and implementations and present the APIs facilitated by the framework. We then demonstrate a case in which OpenCluster is used to resolve complex data processing problems for developing a pipeline for the Mingantu Ultrawide Spectral Radioheliograph. Finally, we present our OpenCluster performance evaluation. Overall, OpenCluster provides not only high fault tolerance and simple programming interfaces, but also a flexible means of scaling up the number of interacting entities. OpenCluster thereby provides an easily integrated distributed computing framework for quickly developing a high-performance data processing system of astronomical telescopes and for significantly reducing software development expenses.
Polymorphic improvement of Stillinger-Weber potential for InGaN
Zhou, Xiaowang W.; Jones, Reese E.; Chu, Kevin
2017-12-21
A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds andmore » elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here in this paper, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems.« less
Stylized facts in social networks: Community-based static modeling
NASA Astrophysics Data System (ADS)
Jo, Hang-Hyun; Murase, Yohsuke; Török, János; Kertész, János; Kaski, Kimmo
2018-06-01
The past analyses of datasets of social networks have enabled us to make empirical findings of a number of aspects of human society, which are commonly featured as stylized facts of social networks, such as broad distributions of network quantities, existence of communities, assortative mixing, and intensity-topology correlations. Since the understanding of the structure of these complex social networks is far from complete, for deeper insight into human society more comprehensive datasets and modeling of the stylized facts are needed. Although the existing dynamical and static models can generate some stylized facts, here we take an alternative approach by devising a community-based static model with heterogeneous community sizes and larger communities having smaller link density and weight. With these few assumptions we are able to generate realistic social networks that show most stylized facts for a wide range of parameters, as demonstrated numerically and analytically. Since our community-based static model is simple to implement and easily scalable, it can be used as a reference system, benchmark, or testbed for further applications.
Let's Go Off the Grid: Subsurface Flow Modeling With Analytic Elements
NASA Astrophysics Data System (ADS)
Bakker, M.
2017-12-01
Subsurface flow modeling with analytic elements has the major advantage that no grid or time stepping are needed. Analytic element formulations exist for steady state and transient flow in layered aquifers and unsaturated flow in the vadose zone. Analytic element models are vector-based and consist of points, lines and curves that represent specific features in the subsurface. Recent advances allow for the simulation of partially penetrating wells and multi-aquifer wells, including skin effect and wellbore storage, horizontal wells of poly-line shape including skin effect, sharp changes in subsurface properties, and surface water features with leaky beds. Input files for analytic element models are simple, short and readable, and can easily be generated from, for example, GIS databases. Future plans include the incorporation of analytic element in parts of grid-based models where additional detail is needed. This presentation will give an overview of advanced flow features that can be modeled, many of which are implemented in free and open-source software.
Can we recognize horses by their ocular biometric traits using deep convolutional neural networks?
NASA Astrophysics Data System (ADS)
Trokielewicz, Mateusz; Szadkowski, Mateusz
2017-08-01
This paper aims at determining the viability of horse recognition by the means of ocular biometrics and deep convolutional neural networks (deep CNNs). Fast and accurate identification of race horses before racing is crucial for ensuring that exactly the horses that were declared are participating, using methods that are non-invasive and friendly to these delicate animals. As typical iris recognition methods require lot of fine-tuning of the method parameters and high-quality data, CNNs seem like a natural candidate to be applied for recognition thanks to their potentially excellent abilities in describing texture, combined with ease of implementation in an end-to-end manner. Also, with such approach we can easily utilize both iris and periocular features without constructing complicated algorithms for each. We thus present a simple CNN classifier, able to correctly identify almost 80% of the samples in an identification scenario, and give equal error rate (EER) of less than 10% in a verification scenario.
An inexpensive active optical remote sensing instrument for assessing aerosol distributions.
Barnes, John E; Sharma, Nimmi C P
2012-02-01
Air quality studies on a broad variety of topics from health impacts to source/sink analyses, require information on the distributions of atmospheric aerosols over both altitude and time. An inexpensive, simple to implement, ground-based optical remote sensing technique has been developed to assess aerosol distributions. The technique, called CLidar (Charge Coupled Device Camera Light Detection and Ranging), provides aerosol altitude profiles over time. In the CLidar technique a relatively low-power laser transmits light vertically into the atmosphere. The transmitted laser light scatters off of air molecules, clouds, and aerosols. The entire beam from ground to zenith is imaged using a CCD camera and wide-angle (100 degree) optics which are a few hundred meters from the laser. The CLidar technique is optimized for low altitude (boundary layer and lower troposphere) measurements where most aerosols are found and where many other profiling techniques face difficulties. Currently the technique is limited to nighttime measurements. Using the CLidar technique aerosols may be mapped over both altitude and time. The instrumentation required is portable and can easily be moved to locations of interest (e.g. downwind from factories or power plants, near highways). This paper describes the CLidar technique, implementation and data analysis and offers specifics for users wishing to apply the technique for aerosol profiles.
A hybrid interface tracking - level set technique for multiphase flow with soluble surfactant
NASA Astrophysics Data System (ADS)
Shin, Seungwon; Chergui, Jalel; Juric, Damir; Kahouadji, Lyes; Matar, Omar K.; Craster, Richard V.
2018-04-01
A formulation for soluble surfactant transport in multiphase flows recently presented by Muradoglu and Tryggvason (JCP 274 (2014) 737-757) [17] is adapted to the context of the Level Contour Reconstruction Method, LCRM, (Shin et al. IJNMF 60 (2009) 753-778, [8]) which is a hybrid method that combines the advantages of the Front-tracking and Level Set methods. Particularly close attention is paid to the formulation and numerical implementation of the surface gradients of surfactant concentration and surface tension. Various benchmark tests are performed to demonstrate the accuracy of different elements of the algorithm. To verify surfactant mass conservation, values for surfactant diffusion along the interface are compared with the exact solution for the problem of uniform expansion of a sphere. The numerical implementation of the discontinuous boundary condition for the source term in the bulk concentration is compared with the approximate solution. Surface tension forces are tested for Marangoni drop translation. Our numerical results for drop deformation in simple shear are compared with experiments and results from previous simulations. All benchmarking tests compare well with existing data thus providing confidence that the adapted LCRM formulation for surfactant advection and diffusion is accurate and effective in three-dimensional multiphase flows with a structured mesh. We also demonstrate that this approach applies easily to massively parallel simulations.
Kokalj, Meta; Prikeržnik, Marcel; Kreft, Samo
2017-05-01
Rocket is a popular salad vegetable used all over the world and it has many health benefits. However, like with all plant material, there exists a danger of contamination with toxic substances. In the case of rocket, contamination with groundsel has occurred. Groundsel is a common weed in rocket crops, and it contains very toxic pyrrolizidine alkaloids. In our study infrared spectroscopy was used to distinguish groundsel samples from rocket leaves. Infrared spectroscopy is a very simple analytical technique; however, some specific conditions are more easily implemented in industrial environment than others. Some of these conditions and parameters of infrared spectroscopy were explored in detail. We tested for the influence of different parameters of attenuated total reflectance and transmission infrared method. Our results show that a 100 % correct classification can be obtained under conditions most suitable for industry: using fresh samples and parameters that enable fast spectral measurement. Infrared spectroscopy is a fast and easy-to-use method that has been shown to be able to differentiate between rocket and groundsel leaves. Therefore, it could be further studied for implementation in the safety control of rocket salads. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Hu, Fang Q.
1994-01-01
It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converges slowly for high frequency waves. In this paper, we present a fast number solution for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, we show that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, C; Elgorriaga, I; McConaghy, C
2001-07-03
Emerging CMOS and MEMS technologies enable the implementation of a large number of wireless distributed microsensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors should operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. This paper presents a direct-sequence spread-spectrum modem architecture that provides robust communications for wireless sensor networks while dissipating very low power. The modem architecture has been verified in an FPGA implementation that dissipates only 33 mWmore » for both transmission and reception. The implementation can be easily mapped to an ASIC technology, with an estimated power performance of less than 1 mW.« less
A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo
A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).
Towards pattern generation and chaotic series prediction with photonic reservoir computers
NASA Astrophysics Data System (ADS)
Antonik, Piotr; Hermans, Michiel; Duport, François; Haelterman, Marc; Massar, Serge
2016-03-01
Reservoir Computing is a bio-inspired computing paradigm for processing time dependent signals that is particularly well suited for analog implementations. Our team has demonstrated several photonic reservoir computers with performance comparable to digital algorithms on a series of benchmark tasks such as channel equalisation and speech recognition. Recently, we showed that our opto-electronic reservoir computer could be trained online with a simple gradient descent algorithm programmed on an FPGA chip. This setup makes it in principle possible to feed the output signal back into the reservoir, and thus highly enrich the dynamics of the system. This will allow to tackle complex prediction tasks in hardware, such as pattern generation and chaotic and financial series prediction, which have so far only been studied in digital implementations. Here we report simulation results of our opto-electronic setup with an FPGA chip and output feedback applied to pattern generation and Mackey-Glass chaotic series prediction. The simulations take into account the major aspects of our experimental setup. We find that pattern generation can be easily implemented on the current setup with very good results. The Mackey-Glass series prediction task is more complex and requires a large reservoir and more elaborate training algorithm. With these adjustments promising result are obtained, and we now know what improvements are needed to match previously reported numerical results. These simulation results will serve as basis of comparison for experiments we will carry out in the coming months.
Refractive index measurements of single, spherical cells using digital holographic microscopy.
Schürmann, Mirjam; Scholze, Jana; Müller, Paul; Chan, Chii J; Ekpenyong, Andrew E; Chalut, Kevin J; Guck, Jochen
2015-01-01
In this chapter, we introduce digital holographic microscopy (DHM) as a marker-free method to determine the refractive index of single, spherical cells in suspension. The refractive index is a conclusive measure in a biological context. Cell conditions, such as differentiation or infection, are known to yield significant changes in the refractive index. Furthermore, the refractive index of biological tissue determines the way it interacts with light. Besides the biological relevance of this interaction in the retina, a lot of methods used in biology, including microscopy, rely on light-tissue or light-cell interactions. Hence, determining the refractive index of cells using DHM is valuable in many biological applications. This chapter covers the main topics that are important for the implementation of DHM: setup, sample preparation, and analysis. First, the optical setup is described in detail including notes and suggestions for the implementation. Following that, a protocol for the sample and measurement preparation is explained. In the analysis section, an algorithm for the determination of quantitative phase maps is described. Subsequently, all intermediate steps for the calculation of the refractive index of suspended cells are presented, exploiting their spherical shape. In the last section, a discussion of possible extensions to the setup, further measurement configurations, and additional analysis methods are given. Throughout this chapter, we describe a simple, robust, and thus easily reproducible implementation of DHM. The different possibilities for extensions show the diverse fields of application for this technique. Copyright © 2015 Elsevier Inc. All rights reserved.
Accurate prediction of pregnancy viability by means of a simple scoring system.
Bottomley, Cecilia; Van Belle, Vanya; Kirk, Emma; Van Huffel, Sabine; Timmerman, Dirk; Bourne, Tom
2013-01-01
What is the performance of a simple scoring system to predict whether women will have an ongoing viable intrauterine pregnancy beyond the first trimester? A simple scoring system using demographic and initial ultrasound variables accurately predicts pregnancy viability beyond the first trimester with an area under the curve (AUC) in a receiver operating characteristic curve of 0.924 [95% confidence interval (CI) 0.900-0.947] on an independent test set. Individual demographic and ultrasound factors, such as maternal age, vaginal bleeding and gestational sac size, are strong predictors of miscarriage. Previous mathematical models have combined individual risk factors with reasonable performance. A simple scoring system derived from a mathematical model that can be easily implemented in clinical practice has not previously been described for the prediction of ongoing viability. This was a prospective observational study in a single early pregnancy assessment centre during a 9-month period. A cohort of 1881 consecutive women undergoing transvaginal ultrasound scan at a gestational age <84 days were included. Women were excluded if the first trimester outcome was not known. Demographic features, symptoms and ultrasound variables were tested for their influence on ongoing viability. Logistic regression was used to determine the influence on first trimester viability from demographics and symptoms alone, ultrasound findings alone and then from all the variables combined. Each model was developed on a training data set, and a simple scoring system was derived from this. This scoring system was tested on an independent test data set. The final outcome based on a total of 1435 participants was an ongoing viable pregnancy in 885 (61.7%) and early pregnancy loss in 550 (38.3%) women. The scoring system using significant demographic variables alone (maternal age and amount of bleeding) to predict ongoing viability gave an AUC of 0.724 (95% CI = 0.692-0.756) in the training set and 0.729 (95% CI = 0.684-0.774) in the test set. The scoring system using significant ultrasound variables alone (mean gestation sac diameter, mean yolk sac diameter and the presence of fetal heart beat) gave an AUC of 0.873 (95% CI = 0.850-0.897) and 0.900 (95% CI = 0.871-0.928) in the training and the test sets, respectively. The final scoring system using demographic and ultrasound variables together gave an AUC of 0.901 (95% CI = 0.881-0.920) and 0.924 (CI = 0.900-0.947) in the training and the test sets, respectively. After defining the cut-off at which the sensitivity is 0.90 on the training set, this model performed with a sensitivity of 0.92, specificity of 0.73, positive predictive value of 84.7% and negative predictive value of 85.4% in the test set. BMI and smoking variables were a potential omission in the data collection and might further improve the model performance if included. A further limitation is the absence of information on either bleeding or pain in 18% of women. Caution should be exercised before implementation of this scoring system prior to further external validation studies This simple scoring system incorporates readily available data that are routinely collected in clinical practice and does not rely on complex data entry. As such it could, unlike most mathematical models, be easily incorporated into normal early pregnancy care, where women may appreciate an individualized calculation of the likelihood of ongoing pregnancy viability. Research by V.V.B. supported by Research Council KUL: GOA MaNet, PFV/10/002 (OPTEC), several PhD/postdoc & fellow grants; IWT: TBM070706-IOTA3, PhD Grants; IBBT; Belgian Federal Science Policy Office: IUAP P7/(DYSCO, `Dynamical systems, control and optimization', 2012-2017). T.B. is supported by the Imperial Healthcare NHS Trust NIHR Biomedical Research Centre. Not applicable.
A formulation of directivity for earthquake sources using isochrone theory
Spudich, Paul; Chiou, Brian S.J.; Graves, Robert; Collins, Nancy; Somerville, Paul
2004-01-01
A functional form for directivity effects can be derived from isochrone theory, in which the measure of the directivity-induced amplification of an S body wave is c, the isochrone velocity. Ground displacement of the near-, intermediate-, and far-field terms of P and S waves is linear in isochrone velocity for a finite source in a whole space. We have developed an approximation c-tilde-prime of isochrone velocity that can easily be implemented as a predictor of directivity effects in empirical ground motion prediction relations. Typically, for a given fault surface, hypocenter, and site geometry, c-tilde-prime is a simple function of the hypocentral distance, the rupture distance, the crustal shear wave speed in the seismogenic zone, and the rupture velocity. c-tilde-prime typically ranges in the interval 0.44, for rupture away from the station, to about 4, for rupture toward the station. In this version of the theory directivity is independent of period. Additionally, we have created another functional form which is c-tilde-prime modified to include the approximate radiation pattern of a finite fault having a given rake. This functional form can be used to model the spatial variations of fault-parallel and fault-normal horizontal ground motions. The strengths of this formulation are 1) the proposed functional form is based on theory, 2) the predictor is unambiguously defined for all possible site locations and source rakes, and 3) it can easily be implemented for well-studied important previous earthquakes. We compare predictions of our functional form with synthetic ground motions calculated for finite strike-slip and dip-slip faults in the magnitude range 6.5 - 7.5. In general our functional form correlates best with computed fault-normal and fault-parallel motions in the synthetic motions calculated for events with M6.5. Correlation degrades but is still useful for larger events and for the geometric average horizontal motions. We have had limited success applying it to geometrically complicated faults.
Convis: A Toolbox to Fit and Simulate Filter-Based Models of Early Visual Processing
Huth, Jacob; Masquelier, Timothée; Arleo, Angelo
2018-01-01
We developed Convis, a Python simulation toolbox for large scale neural populations which offers arbitrary receptive fields by 3D convolutions executed on a graphics card. The resulting software proves to be flexible and easily extensible in Python, while building on the PyTorch library (The Pytorch Project, 2017), which was previously used successfully in deep learning applications, for just-in-time optimization and compilation of the model onto CPU or GPU architectures. An alternative implementation based on Theano (Theano Development Team, 2016) is also available, although not fully supported. Through automatic differentiation, any parameter of a specified model can be optimized to approach a desired output which is a significant improvement over e.g., Monte Carlo or particle optimizations without gradients. We show that a number of models including even complex non-linearities such as contrast gain control and spiking mechanisms can be implemented easily. We show in this paper that we can in particular recreate the simulation results of a popular retina simulation software VirtualRetina (Wohrer and Kornprobst, 2009), with the added benefit of providing (1) arbitrary linear filters instead of the product of Gaussian and exponential filters and (2) optimization routines utilizing the gradients of the model. We demonstrate the utility of 3d convolution filters with a simple direction selective filter. Also we show that it is possible to optimize the input for a certain goal, rather than the parameters, which can aid the design of experiments as well as closed-loop online stimulus generation. Yet, Convis is more than a retina simulator. For instance it can also predict the response of V1 orientation selective cells. Convis is open source under the GPL-3.0 license and available from https://github.com/jahuth/convis/ with documentation at https://jahuth.github.io/convis/. PMID:29563867
A simple technique for laparoscopic gastrostomy.
Murphy, C; Rosemurgy, A S; Albrink, M H; Carey, L C
1992-05-01
While endoscopically placed gastrostomy tubes are routinely simple, they are not always feasible. Endoscopic technique also does not uniformly secure the tube to the abdominal wall, which presents possible complications, including leakage, accidental early tube removal, intraperitoneal catheter migration and necrosis of the stomach or abdominal wall because of excessive traction. Presented herein is a technique that is rapid, simple and eliminates some of these potential complications. The technique is easily combined with other operative procedures, such as tracheostomy, is done under direct vision, can be performed quickly with intravenous sedation and local anesthetic and is a safe method of tube placement for enteral feeding or gastric decompression.
NASA Astrophysics Data System (ADS)
Vidal, Borja; Lafuente, Juan A.
2016-03-01
A simple technique to avoid color limitations in image capture systems based on chroma key video composition using retroreflective screens and light-emitting diodes (LED) rings is proposed and demonstrated. The combination of an asynchronous temporal modulation onto the background illumination and simple image processing removes the usual restrictions on foreground colors in the scene. The technique removes technical constraints in stage composition, allowing its design to be purely based on artistic grounds. Since it only requires adding a very simple electronic circuit to widely used chroma keying hardware based on retroreflective screens, the technique is easily applicable to TV and filming studios.
Chemistry with Inexpensive Materials: Spray Bottles and Plastic Bags.
ERIC Educational Resources Information Center
Zoltewicz, Susan
1993-01-01
Presents eight chemistry activities that are interesting and involve simple, easily available materials. Topics include mystery writing, valentine hearts, flame tests, evaporation race, buoyancy versus mass, determination of relative masses of gases, mole sample container, and cold and hot packs. (DDR)
USDA-ARS?s Scientific Manuscript database
With the rise of the “Google generation”, consumers can easily access information with a simple click. Unfortunately, this information is not always accurate or honest. This can pose many problems if consumer perception of your product is swayed by erroneous information. Being able to factually a...
USDA-ARS?s Scientific Manuscript database
With the rise of the “Google generation”, consumers can easily access information with a simple click. Unfortunately, this information is not always accurate or honest. This can pose many problems if consumer perception of your product is swayed by erroneous information. Being able to factually a...
Recovery and reuse of cellulase catalyst in an exzymatic cellulose hydrolysis process
Woodward, Jonathan
1989-01-01
A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation.
Spectroscopy on the Overhead Projector.
ERIC Educational Resources Information Center
Solomon, Sally; And Others
1994-01-01
Any overhead projector easily can be converted into a simple spectrometer by placing a piece of diffraction grating over the projecting lens. A detailed description of the apparatus and suggested spectroscopy experiments are included. Demonstrations can utilize solutions of cobalt chloride, potassium permanganate, potassium dichromate, or…
N-Allylation of amines with allyl acetates using chitosan-immobilized palladium
A simple procedure for N-Allylation of allyl Acetates has been developed using a biodegradable and easily recyclable heterogeneous chitosan-supported palladium catalyst. The general methodology, applicable to wide range of substrates, has sustainable features that include a ligan...
An Easy Synthesis of Two Cage Hydrocarbons.
ERIC Educational Resources Information Center
Dong, Dao Cong
1982-01-01
Describes a simple, three-step synthesis of two cage molecules, birdcage hydrocarbon (VIII) and its homologue, the homobirdcage hydrocarbon IX. Indicates that all products are easily purified and formed in high yields in this activity suitable for advanced undergraduate laboratory courses. (Author/JN)
ERIC Educational Resources Information Center
Evans, Dennis H.; And Others
1983-01-01
Cyclic voltammetry is a simple experiment that has become popular in chemical research because it can provide useful information about redox reactions in a form which is easily obtained and interpreted. Discusses principles of the method and illustrates its use in the study of four electrode reactions. (Author/JN)
Scaling of mode shapes from operational modal analysis using harmonic forces
NASA Astrophysics Data System (ADS)
Brandt, A.; Berardengo, M.; Manzoni, S.; Cigada, A.
2017-10-01
This paper presents a new method for scaling mode shapes obtained by means of operational modal analysis. The method is capable of scaling mode shapes on any structure, also structures with closely coupled modes, and the method can be used in the presence of ambient vibration from traffic or wind loads, etc. Harmonic excitation can be relatively easily accomplished by using general-purpose actuators, also for force levels necessary for driving large structures such as bridges and highrise buildings. The signal processing necessary for mode shape scaling by the proposed method is simple and the method can easily be implemented in most measurement systems capable of generating a sine wave output. The tests necessary to scale the modes are short compared to typical operational modal analysis test time. The proposed method is thus easy to apply and inexpensive relative to some other methods for scaling mode shapes that are available in literature. Although it is not necessary per se, we propose to excite the structure at, or close to, the eigenfrequencies of the modes to be scaled, since this provides better signal-to-noise ratio in the response sensors, thus permitting the use of smaller actuators. An extensive experimental activity on a real structure was carried out and the results reported demonstrate the feasibility and accuracy of the proposed method. Since the method utilizes harmonic excitation for the mode shape scaling, we propose to call the method OMAH.
Eutectic salt catalyzed environmentally benign and highly efficient Biginelli reaction.
Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi
2012-01-01
A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications.
Eutectic Salt Catalyzed Environmentally Benign and Highly Efficient Biginelli Reaction
Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi
2012-01-01
A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications. PMID:22649326
Costanzo, Paola; Bonacci, Sonia; Cariati, Luca; Nardi, Monica; Oliverio, Manuela; Procopio, Antonio
2018-04-15
A simple and very environmental friendly microwave assisted method to produce oleacein in good yield starting from the easily available oleuropein is here presented. The methodology is proposed to produce the appropriate amount of hydroxytyrosol derivatives to enrich a commercial oil for an oil which provides beneficial effects on the human health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Products of multiple Fourier series with application to the multiblade transformation
NASA Technical Reports Server (NTRS)
Kunz, D. L.
1981-01-01
A relatively simple and systematic method for forming the products of multiple Fourier series using tensor like operations is demonstrated. This symbolic multiplication can be performed for any arbitrary number of series, and the coefficients of a set of linear differential equations with periodic coefficients from a rotating coordinate system to a nonrotating system is also demonstrated. It is shown that using Fourier operations to perform this transformation make it easily understood, simple to apply, and generally applicable.
Investigation of the ionospheric Faraday rotation for use in orbit corrections
NASA Technical Reports Server (NTRS)
Llewellyn, S. K.; Bent, R. B.; Nesterczuk, G.
1974-01-01
The possibility of mapping the Faraday factors on a worldwide basis was examined as a simple method of representing the conversion factors for any possible user. However, this does not seem feasible. The complex relationship between the true magnetic coordinates and the geographic latitude, longitude, and azimuth angles eliminates the possibility of setting up some simple tables that would yield worldwide results of sufficient accuracy. Tabular results for specific stations can easily be produced or could be represented in graphic form.
The visual display of regulatory information and networks.
Pirson, I; Fortemaison, N; Jacobs, C; Dremier, S; Dumont, J E; Maenhaut, C
2000-10-01
Cell regulation and signal transduction are becoming increasingly complex, with reports of new cross-signalling, feedback, and feedforward regulations between pathways and between the multiple isozymes discovered at each step of these pathways. However, this information, which requires pages of text for its description, can be summarized in very simple schemes, although there is no consensus on the drawing of such schemes. This article presents a simple set of rules that allows a lot of information to be inserted in easily understandable displays.
The Influence of Large-Scale Computing on Aircraft Structural Design.
1986-04-01
the customer in the most cost- effective manner. Computer facility organizations became computer resource power brokers. A good data processing...capabilities generated on other processors can be easily used. This approach is easily implementable and provides a good strategy for using existing...assistance to member nations for the purpose of increasing their scientific and technical potential; - Recommending effective ways for the member nations to
Exorcising the Ghost in the Machine: Synthetic Spectral Data Cubes for Assessing Big Data Algorithms
NASA Astrophysics Data System (ADS)
Araya, M.; Solar, M.; Mardones, D.; Hochfärber, T.
2015-09-01
The size and quantity of the data that is being generated by large astronomical projects like ALMA, requires a paradigm change in astronomical data analysis. Complex data, such as highly sensitive spectroscopic data in the form of large data cubes, are not only difficult to manage, transfer and visualize, but they make traditional data analysis techniques unfeasible. Consequently, the attention has been placed on machine learning and artificial intelligence techniques, to develop approximate and adaptive methods for astronomical data analysis within a reasonable computational time. Unfortunately, these techniques are usually sub optimal, stochastic and strongly dependent of the parameters, which could easily turn into “a ghost in the machine” for astronomers and practitioners. Therefore, a proper assessment of these methods is not only desirable but mandatory for trusting them in large-scale usage. The problem is that positively verifiable results are scarce in astronomy, and moreover, science using bleeding-edge instrumentation naturally lacks of reference values. We propose an Astronomical SYnthetic Data Observations (ASYDO), a virtual service that generates synthetic spectroscopic data in the form of data cubes. The objective of the tool is not to produce accurate astrophysical simulations, but to generate a large number of labelled synthetic data, to assess advanced computing algorithms for astronomy and to develop novel Big Data algorithms. The synthetic data is generated using a set of spectral lines, template functions for spatial and spectral distributions, and simple models that produce reasonable synthetic observations. Emission lines are obtained automatically using IVOA's SLAP protocol (or from a relational database) and their spectral profiles correspond to distributions in the exponential family. The spatial distributions correspond to simple functions (e.g., 2D Gaussian), or to scalable template objects. The intensity, broadening and radial velocity of each line is given by very simple and naive physical models, yet ASYDO's generic implementation supports new user-made models, which potentially allows adding more realistic simulations. The resulting data cube is saved as a FITS file, also including all the tables and images used for generating the cube. We expect to implement ASYDO as a virtual observatory service in the near future.
Microprocessor utilization in search and rescue missions
NASA Technical Reports Server (NTRS)
Schwartz, M.
1977-01-01
The feasibility of performing the same task in real time using microprocessor technology was determined. The least square algorithm was implemented on an Intel 8080 microprocessor. Results indicated that a microprocessor could easily match the IBM implementation in accuracy and be performed inside the time limitations set.
OntologyWidget – a reusable, embeddable widget for easily locating ontology terms
Beauheim, Catherine C; Wymore, Farrell; Nitzberg, Michael; Zachariah, Zachariah K; Jin, Heng; Skene, JH Pate; Ball, Catherine A; Sherlock, Gavin
2007-01-01
Background Biomedical ontologies are being widely used to annotate biological data in a computer-accessible, consistent and well-defined manner. However, due to their size and complexity, annotating data with appropriate terms from an ontology is often challenging for experts and non-experts alike, because there exist few tools that allow one to quickly find relevant ontology terms to easily populate a web form. Results We have produced a tool, OntologyWidget, which allows users to rapidly search for and browse ontology terms. OntologyWidget can easily be embedded in other web-based applications. OntologyWidget is written using AJAX (Asynchronous JavaScript and XML) and has two related elements. The first is a dynamic auto-complete ontology search feature. As a user enters characters into the search box, the appropriate ontology is queried remotely for terms that match the typed-in text, and the query results populate a drop-down list with all potential matches. Upon selection of a term from the list, the user can locate this term within a generic and dynamic ontology browser, which comprises the second element of the tool. The ontology browser shows the paths from a selected term to the root as well as parent/child tree hierarchies. We have implemented web services at the Stanford Microarray Database (SMD), which provide the OntologyWidget with access to over 40 ontologies from the Open Biological Ontology (OBO) website [1]. Each ontology is updated weekly. Adopters of the OntologyWidget can either use SMD's web services, or elect to rely on their own. Deploying the OntologyWidget can be accomplished in three simple steps: (1) install Apache Tomcat [2] on one's web server, (2) download and install the OntologyWidget servlet stub that provides access to the SMD ontology web services, and (3) create an html (HyperText Markup Language) file that refers to the OntologyWidget using a simple, well-defined format. Conclusion We have developed OntologyWidget, an easy-to-use ontology search and display tool that can be used on any web page by creating a simple html description. OntologyWidget provides a rapid auto-complete search function paired with an interactive tree display. We have developed a web service layer that communicates between the web page interface and a database of ontology terms. We currently store 40 of the ontologies from the OBO website [1], as well as a several others. These ontologies are automatically updated on a weekly basis. OntologyWidget can be used in any web-based application to take advantage of the ontologies we provide via web services or any other ontology that is provided elsewhere in the correct format. The full source code for the JavaScript and description of the OntologyWidget is available from . PMID:17854506
OntologyWidget - a reusable, embeddable widget for easily locating ontology terms.
Beauheim, Catherine C; Wymore, Farrell; Nitzberg, Michael; Zachariah, Zachariah K; Jin, Heng; Skene, J H Pate; Ball, Catherine A; Sherlock, Gavin
2007-09-13
Biomedical ontologies are being widely used to annotate biological data in a computer-accessible, consistent and well-defined manner. However, due to their size and complexity, annotating data with appropriate terms from an ontology is often challenging for experts and non-experts alike, because there exist few tools that allow one to quickly find relevant ontology terms to easily populate a web form. We have produced a tool, OntologyWidget, which allows users to rapidly search for and browse ontology terms. OntologyWidget can easily be embedded in other web-based applications. OntologyWidget is written using AJAX (Asynchronous JavaScript and XML) and has two related elements. The first is a dynamic auto-complete ontology search feature. As a user enters characters into the search box, the appropriate ontology is queried remotely for terms that match the typed-in text, and the query results populate a drop-down list with all potential matches. Upon selection of a term from the list, the user can locate this term within a generic and dynamic ontology browser, which comprises the second element of the tool. The ontology browser shows the paths from a selected term to the root as well as parent/child tree hierarchies. We have implemented web services at the Stanford Microarray Database (SMD), which provide the OntologyWidget with access to over 40 ontologies from the Open Biological Ontology (OBO) website 1. Each ontology is updated weekly. Adopters of the OntologyWidget can either use SMD's web services, or elect to rely on their own. Deploying the OntologyWidget can be accomplished in three simple steps: (1) install Apache Tomcat 2 on one's web server, (2) download and install the OntologyWidget servlet stub that provides access to the SMD ontology web services, and (3) create an html (HyperText Markup Language) file that refers to the OntologyWidget using a simple, well-defined format. We have developed OntologyWidget, an easy-to-use ontology search and display tool that can be used on any web page by creating a simple html description. OntologyWidget provides a rapid auto-complete search function paired with an interactive tree display. We have developed a web service layer that communicates between the web page interface and a database of ontology terms. We currently store 40 of the ontologies from the OBO website 1, as well as a several others. These ontologies are automatically updated on a weekly basis. OntologyWidget can be used in any web-based application to take advantage of the ontologies we provide via web services or any other ontology that is provided elsewhere in the correct format. The full source code for the JavaScript and description of the OntologyWidget is available from http://smd.stanford.edu/ontologyWidget/.
Simulating Donnan equilibria based on the Nernst-Planck equation
NASA Astrophysics Data System (ADS)
Gimmi, Thomas; Alt-Epping, Peter
2018-07-01
Understanding ion transport through clays and clay membranes is important for many geochemical and environmental applications. Ion transport is affected by electrostatic forces exerted by charged clay surfaces. Anions are partly excluded from pore water near these surfaces, whereas cations are enriched. Such effects can be modeled by the Donnan approach. Here we introduce a new, comparatively simple way to represent Donnan equilibria in transport simulations. We include charged surfaces as immobile ions in the balance equation and calculate coupled transport of all components, including the immobile charges, with the Nernst-Planck equation. This results in an additional diffusion potential that influences ion transport, leading to Donnan ion distributions while maintaining local charge balance. The validity of our new approach was demonstrated by comparing Nernst-Planck simulations using the reactive transport code Flotran with analytical solutions available for simple Donnan systems. Attention has to be paid to the numerical evaluation of the electrochemical migration term in the Nernst-Planck equation to obtain correct results for asymmetric electrolytes. Sensitivity simulations demonstrate the influence of various Donnan model parameters on simulated anion accessible porosities. It is furthermore shown that the salt diffusion coefficient in a Donnan pore depends on local concentrations, in contrast to the aqueous salt diffusion coefficient. Our approach can be easily implemented into other transport codes. It is versatile and facilitates, for instance, assessing the implications of different activity models for the Donnan porosity.
Olaru, Andrei; Florea, Adina Magda
2014-01-01
In the field of ambient assisted living, the best results are achieved with systems that are less intrusive and more intelligent, that can easily integrate both formal and informal caregivers and that can easily adapt to the changes in the situation of the elderly or disabled person. This paper presents a graph-based representation for context information and a simple and intuitive method for situation recognition. Both the input and the results are easy to visualize, understand and use. Experiments have been performed on several AAL-specific scenarios. PMID:24960085
Angle Defect and Descartes' Theorem
ERIC Educational Resources Information Center
Scott, Paul
2006-01-01
Rene Descartes lived from 1596 to 1650. His contributions to geometry are still remembered today in the terminology "Descartes' plane". This paper discusses a simple theorem of Descartes, which enables students to easily determine the number of vertices of almost every polyhedron. (Contains 1 table and 2 figures.)
Food Choice in the Common Snail (Helix Aspersa).
ERIC Educational Resources Information Center
Gill, John; Howell, Pauline
1985-01-01
The easily obtained common snail shows interesting dietary preferences which can be the source of several simple experiments. Specific student instructions are given for quantitative and comparative studies using cabbage, lettuce, carrot, rutabaga, and onion. Suggestions for laboratory setup and further work are included. (DH)
Genotyping variability of computationally categorized peach microsatellite markers
USDA-ARS?s Scientific Manuscript database
Numerous expressed sequence tag (EST) simple sequence repeat (SSR) primers can be easily mined out. The obstacle to develop them into usable markers is how to optimally select downsized subsets of the primers for genotyping, which accordingly reduces amplification failure and monomorphism often occu...
Portable automatic blood analyzer
NASA Technical Reports Server (NTRS)
Coleman, R. L.
1975-01-01
Analyzer employs chemical-sensing electrodes for determination of blood, gas, and ion concentrations. It is rugged, easily serviced, and comparatively simple to operate. System can analyze up to eight parameters and can be modified to measure other blood constituents including nonionic species, such as urea, glucose, and oxygen.
Tutorial: simulating chromatography with Microsoft Excel Macros.
Kadjo, Akinde; Dasgupta, Purnendu K
2013-04-22
Chromatography is one of the cornerstones of modern analytical chemistry; developing an instinctive feeling for how chromatography works will be invaluable to future generation of chromatographers. Specialized software programs exist that handle and manipulate chromatographic data; there are also some that simulate chromatograms. However, the algorithm details of such software are not transparent to a beginner. In contrast, how spreadsheet tools like Microsoft Excel™ work is well understood and the software is nearly universally available. We show that the simple repetition of an equilibration process at each plate (a spreadsheet row) followed by discrete movement of the mobile phase down by a row, easily automated by a subroutine (a "Macro" in Excel), readily simulates chromatography. The process is readily understood by a novice. Not only does this permit simulation of isocratic and simple single step gradient elution, linear or multistep gradients are also easily simulated. The versatility of a transparent and easily understandable computational platform further enables the simulation of complex but commonly encountered chromatographic scenarios such as the effects of nonlinear isotherms, active sites, column overloading, on-column analyte degradation, etc. These are not as easily simulated by available software. Views of the separation as it develops on the column and as it is seen by an end-column detector are both available in real time. Excel 2010™ also permits a 16-level (4-bit) color gradation of numerical values in a column/row; this permits visualization of a band migrating down the column, much as Tswett may have originally observed, but in a numerical domain. All parameters of relevance (partition constants, elution conditions, etc.) are readily changed so their effects can be examined. Illustrative Excel spreadsheets are given in the Supporting Information; these are easily modified by the user or the user can write his/her own routine. Copyright © 2012 Elsevier B.V. All rights reserved.
Adam, Ahmed
2017-01-01
Objective To describe a simple, novel method to achieve ureteric access in the Cohen crossed reimplanted ureter, which will allow retrograde working access via the conventional transurethral method. Materials and Methods Under cystoscopic vision, suprapubic needle puncture was performed. The needle was directed (bevel facing) towards the desired ureteric orifice (UO). A guidewire (with a floppy-tip) was then inserted into the suprapubic needle passing into the bladder, and then easily passed into the crossed-reimplanted UO. The distal end of the guidewire was then removed through the urethra with cystoscopic grasping forceps. The straightened ureter then easily facilitated ureteroscopy access, retrograde pyelogram studies, and JJ stent insertion in a conventional transurethral method. Results The UO and ureter were aligned in a more conventional orthotopic course, to allow for conventional transurethral working access. Conclusion A novel method to access the Cohen crossed reimplanted ureter was described. All previously published methods of accessing the crossed ureter were critically appraised. PMID:29463976
The ins and outs of breath holding: simple demonstrations of complex respiratory physiology.
Skow, Rachel J; Day, Trevor A; Fuller, Jonathan E; Bruce, Christina D; Steinback, Craig D
2015-09-01
The physiology of breath holding is complex, and voluntary breath-hold duration is affected by many factors, including practice, psychology, respiratory chemoreflexes, and lung stretch. In this activity, we outline a number of simple laboratory activities or classroom demonstrations that illustrate the complexity of the integrative physiology behind breath-hold duration. These activities require minimal equipment and are easily adapted to small-group demonstrations or a larger-group inquiry format where students can design a protocol and collect and analyze data from their classmates. Specifically, breath-hold duration is measured during a number of maneuvers, including after end expiration, end inspiration, voluntary prior hyperventilation, and inspired hyperoxia. Further activities illustrate the potential contribution of chemoreflexes through rebreathing and repeated rebreathing after a maximum breath hold. The outcome measures resulting from each intervention are easily visualized and plotted and can comprise a comprehensive data set to illustrate and discuss complex and integrated cardiorespiratory physiology. Copyright © 2015 The American Physiological Society.
UUI: Reusable Spatial Data Services in Unified User Interface at NASA GES DISC
NASA Technical Reports Server (NTRS)
Petrenko, Maksym; Hegde, Mahabaleshwa; Bryant, Keith; Pham, Long B.
2016-01-01
Unified User Interface (UUI) is a next-generation operational data access tool that has been developed at Goddard Earth Sciences Data and Information Services Center(GES DISC) to provide a simple, unified, and intuitive one-stop shop experience for the key data services available at GES DISC, including subsetting (Simple Subset Wizard -SSW), granule file search (Mirador), plotting (Giovanni), and other legacy spatial data services. UUI has been built based on a flexible infrastructure of reusable web services self-contained building blocks that can easily be plugged into spatial applications, including third-party clients or services, to easily enable new functionality as new datasets and services become available. In this presentation, we will discuss our experience in designing UUI services based on open industry standards. We will also explain how the resulting framework can be used for a rapid development, deployment, and integration of spatial data services, facilitating efficient access and dissemination of spatial data sets.
GANDALF - Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids
NASA Astrophysics Data System (ADS)
Hubber, D. A.; Rosotti, G. P.; Booth, R. A.
2018-01-01
GANDALF is a new hydrodynamics and N-body dynamics code designed for investigating planet formation, star formation and star cluster problems. GANDALF is written in C++, parallelized with both OPENMP and MPI and contains a PYTHON library for analysis and visualization. The code has been written with a fully object-oriented approach to easily allow user-defined implementations of physics modules or other algorithms. The code currently contains implementations of smoothed particle hydrodynamics, meshless finite-volume and collisional N-body schemes, but can easily be adapted to include additional particle schemes. We present in this paper the details of its implementation, results from the test suite, serial and parallel performance results and discuss the planned future development. The code is freely available as an open source project on the code-hosting website github at https://github.com/gandalfcode/gandalf and is available under the GPLv2 license.
Cantrell, Jennifer; Shelley, Donna
2009-12-17
Fax referral services that connect smokers to state quitlines have been implemented in 49 U.S. states and territories and promoted as a simple solution to improving smoker assistance in medical practice. This study is an in-depth examination of the systems-level changes needed to implement and sustain a fax referral program in primary care. The study involved implementation of a fax referral system paired with a chart stamp prompting providers to identify smoking patients, provide advice to quit and refer interested smokers to a state-based fax quitline. Three focus groups (n = 26) and eight key informant interviews were conducted with staff and physicians at two clinics after the intervention. We used the Chronic Care Model as a framework to analyze the data, examining how well the systems changes were implemented and the impact of these changes on care processes, and to develop recommendations for improvement. Physicians and staff described numerous benefits of the fax referral program for providers and patients but pointed out significant barriers to full implementation, including the time-consuming process of referring patients to the Quitline, substantial patient resistance, and limitations in information and care delivery systems for referring and tracking smokers. Respondents identified several strategies for improving integration, including simplification of the referral form, enhanced teamwork, formal assignment of responsibility for referrals, ongoing staff training and patient education. Improvements in Quitline feedback were needed to compensate for clinics' limited internal information systems for tracking smokers. Establishing sustainable linkages to quitline services in clinical sites requires knowledge of existing patterns of care and tailored organizational changes to ensure new systems are prioritized, easily integrated into current office routines, formally assigned to specific staff members, and supported by internal systems that ensure adequate tracking and follow up of smokers. Ongoing staff training and patient self-management techniques are also needed to ease the introduction of new programs and increase their acceptability to smokers.
Modules based on the geochemical model PHREEQC for use in scripting and programming languages
Charlton, Scott R.; Parkhurst, David L.
2011-01-01
The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server—for example, Excel®, Visual Basic®, Python, or MATLAB". PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations.
Modules based on the geochemical model PHREEQC for use in scripting and programming languages
Charlton, S.R.; Parkhurst, D.L.
2011-01-01
The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server-for example, Excel??, Visual Basic??, Python, or MATLAB??. PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations. ?? 2011.
Pinthong, Watthanai; Muangruen, Panya
2016-01-01
Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software. PMID:27547555
Kim, Jeong Hun; Hwang, Ji-Young; Hwang, Ha Ryeon; Kim, Han Seop; Lee, Joong Hoon; Seo, Jae-Won; Shin, Ueon Sang; Lee, Sang-Hoon
2018-01-22
The development of various flexible and stretchable materials has attracted interest for promising applications in biomedical engineering and electronics industries. This interest in wearable electronics, stretchable circuits, and flexible displays has created a demand for stable, easily manufactured, and cheap materials. However, the construction of flexible and elastic electronics, on which commercial electronic components can be mounted through simple and cost-effective processing, remains challenging. We have developed a nanocomposite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) elastomer. To achieve uniform distributions of CNTs within the polymer, an optimized dispersion process was developed using isopropyl alcohol (IPA) and methyl-terminated PDMS in combination with ultrasonication. After vaporizing the IPA, various shapes and sizes can be easily created with the nanocomposite, depending on the mold. The material provides high flexibility, elasticity, and electrical conductivity without requiring a sandwich structure. It is also biocompatible and mechanically stable, as demonstrated by cytotoxicity assays and cyclic strain tests (over 10,000 times). We demonstrate the potential for the healthcare field through strain sensor, flexible electric circuits, and biopotential measurements such as EEG, ECG, and EMG. This simple and cost-effective fabrication method for CNT/PDMS composites provides a promising process and material for various applications of wearable electronics.
ERIC Educational Resources Information Center
Wright, Tony
2003-01-01
Recommends using a simple image, such as the fuzzy atom ball to help students develop a useful understanding of the molecular world. Explains that the image helps students easily grasp ideas about atoms and molecules and leads naturally to more advanced ideas of atomic structure, chemical bonding, and quantum physics. (Author/NB)
Recovery and reuse of cellulase catalyst in an enzymatic cellulose hydrolysis process
Woodward, J.
1987-09-18
A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation. 1 fig., 4 tabs.
On solar thermal electric power capacity sizing
NASA Astrophysics Data System (ADS)
Clark, J. S.
1984-03-01
The commercialization of parabolic dish/generator modules are investigated. Design analysis indicates that a 10 sq m/ three kilowatt generator configuration is simple and easy to maintain, manufacturing is easily adaptable, the demand is already established, the unit is cost effective and the hardware is readily available.
Simple adaptation for dynamic Bogota bag.
Johnson, O Kenneth
2016-01-01
The use of a large Bogota bag tucked well under fascial edges to the colonic gutters and easily made elastic bands from Esmarch bandage provides a dynamic tension system that decreases subsequent trips to theatre and may allow gradual closure of the abdominal wound. © The Author(s) 2015.
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Minnix, Richard B.; Carpenter, D. Rae, Jr., Eds.
1982-01-01
Lasers are useful for demonstrating ray optics, especially in large classrooms where a well-defined, easily-viewed ray is essential. Described is a simple device that converts any laser to a projection oscilloscope (or laser spirograph). Suggestions for using the device (including demonstrating Lissajous figures and conic sections) are provided.…
A Simple Vertical Slab Gel Electrophoresis Apparatus.
ERIC Educational Resources Information Center
Carter, J. B.; And Others
1983-01-01
Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…
Breeding for phytonutrient content; new strategies, pitfalls, and benefits
USDA-ARS?s Scientific Manuscript database
Visible phytonutrient compounds and compounds which are simple to quantify can be easily selected for in breeding populations. Lycopene in tomatoes and watermelon is one such compound, since the amount of red corresponds well with the quantity of lycopene produced. Because of this, breeders have d...
Development of a New Method for Assembling a Bipolar DC Motor as a Teaching Material
NASA Astrophysics Data System (ADS)
Matsumoto, Yuki; Sakaki, Kei; Sakaki, Mamoru
2017-05-01
A simple handmade motor is a commonly used teaching aid for explaining the theory of the DC motor in science classes around the world. Kits that can be used by children to craft a simple motor are commercially available, and videos of assembling these motors are easily found on the internet. Although the design of this motor is simple, it is unipolar, meaning that the rotor consists of a single dipole. Thus, the Lorentz force acts only on one side of the coil per revolution. This decreases the energy conversion efficiency and requires the learners to turn the rotor using their hands in order to initiate rotation.
A step-by-step solution for embedding user-controlled cines into educational Web pages.
Cornfeld, Daniel
2008-03-01
The objective of this article is to introduce a simple method for embedding user-controlled cines into a Web page using a simple JavaScript. Step-by-step instructions are included and the source code is made available. This technique allows the creation of portable Web pages that allow the user to scroll through cases as if seated at a PACS workstation. A simple JavaScript allows scrollable image stacks to be included on Web pages. With this technique, you can quickly and easily incorporate entire stacks of CT or MR images into online teaching files. This technique has the potential for use in case presentations, online didactics, teaching archives, and resident testing.
Leakey, Tatiana I; Zielinski, Jerzy; Siegfried, Rachel N; Siegel, Eric R; Fan, Chun-Yang; Cooney, Craig A
2008-06-01
DNA methylation at cytosines is a widely studied epigenetic modification. Methylation is commonly detected using bisulfite modification of DNA followed by PCR and additional techniques such as restriction digestion or sequencing. These additional techniques are either laborious, require specialized equipment, or are not quantitative. Here we describe a simple algorithm that yields quantitative results from analysis of conventional four-dye-trace sequencing. We call this method Mquant and we compare it with the established laboratory method of combined bisulfite restriction assay (COBRA). This analysis of sequencing electropherograms provides a simple, easily applied method to quantify DNA methylation at specific CpG sites.
Nowak, Michael D.; Smith, Andrew B.; Simpson, Carl; Zwickl, Derrick J.
2013-01-01
Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive analysis of the fossil record of the clade of interest, but there is currently no generally applicable approach for calculating such informative priors. We provide here a simple and easily implemented method that employs fossil data to estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade, which can be used to fit an informative parametric prior probability distribution on a node age. Specifically, our method uses the extant diversity and the stratigraphic distribution of fossil lineages confidently assigned to a clade to fit a branching model of lineage diversification. Conditioning this on a simple model of fossil preservation, we estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade. The likelihood surface of missing history can then be translated into a parametric prior probability distribution on the age of the clade of interest. We show that the method performs well with simulated fossil distribution data, but that the likelihood surface of missing history can at times be too complex for the distribution-fitting algorithm employed by our software tool. An empirical example of the application of our method is performed to estimate echinoid node ages. A simulation-based sensitivity analysis using the echinoid data set shows that node age prior distributions estimated under poor preservation rates are significantly less informative than those estimated under high preservation rates. PMID:23755303
SVGenes: a library for rendering genomic features in scalable vector graphic format.
Etherington, Graham J; MacLean, Daniel
2013-08-01
Drawing genomic features in attractive and informative ways is a key task in visualization of genomics data. Scalable Vector Graphics (SVG) format is a modern and flexible open standard that provides advanced features including modular graphic design, advanced web interactivity and animation within a suitable client. SVGs do not suffer from loss of image quality on re-scaling and provide the ability to edit individual elements of a graphic on the whole object level independent of the whole image. These features make SVG a potentially useful format for the preparation of publication quality figures including genomic objects such as genes or sequencing coverage and for web applications that require rich user-interaction with the graphical elements. SVGenes is a Ruby-language library that uses SVG primitives to render typical genomic glyphs through a simple and flexible Ruby interface. The library implements a simple Page object that spaces and contains horizontal Track objects that in turn style, colour and positions features within them. Tracks are the level at which visual information is supplied providing the full styling capability of the SVG standard. Genomic entities like genes, transcripts and histograms are modelled in Glyph objects that are attached to a track and take advantage of SVG primitives to render the genomic features in a track as any of a selection of defined glyphs. The feature model within SVGenes is simple but flexible and not dependent on particular existing gene feature formats meaning graphics for any existing datasets can easily be created without need for conversion. The library is provided as a Ruby Gem from https://rubygems.org/gems/bio-svgenes under the MIT license, and open source code is available at https://github.com/danmaclean/bioruby-svgenes also under the MIT License. dan.maclean@tsl.ac.uk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, K; Huang, T; Buttler, D
We present the C-Cat Wordnet package, an open source library for using and modifying Wordnet. The package includes four key features: an API for modifying Synsets; implementations of standard similarity metrics, implementations of well known Word Sense Disambiguation algorithms, and an implementation of the Castanet algorithm. The library is easily extendible and usable in many runtime environments. We demonstrate it's use on two standard Word Sense Disambiguation tasks and apply the Castanet algorithm to a corpus.
performance on a low cost, low size, weight, and power (SWAP) computer : a Raspberry Pi Model B. For a comparison of performance, a baseline implementation...improvement factor of 2-3 compared to filtered backprojection. Execution on a single Raspberry Pi is too slow for real-time imaging. However, factorized...backprojection is easily parallelized, and we include a discussion of parallel implementation across multiple Pis .
Applying reconfigurable hardware to the analysis of multispectral and hyperspectral imagery
NASA Astrophysics Data System (ADS)
Leeser, Miriam E.; Belanovic, Pavle; Estlick, Michael; Gokhale, Maya; Szymanski, John J.; Theiler, James P.
2002-01-01
Unsupervised clustering is a powerful technique for processing multispectral and hyperspectral images. Last year, we reported on an implementation of k-means clustering for multispectral images. Our implementation in reconfigurable hardware processed 10 channel multispectral images two orders of magnitude faster than a software implementation of the same algorithm. The advantage of using reconfigurable hardware to accelerate k-means clustering is clear; the disadvantage is the hardware implementation worked for one specific dataset. It is a non-trivial task to change this implementation to handle a dataset with different number of spectral channels, bits per spectral channel, or number of pixels; or to change the number of clusters. These changes required knowledge of the hardware design process and could take several days of a designer's time. Since multispectral data sets come in many shapes and sizes, being able to easily change the k-means implementation for these different data sets is important. For this reason, we have developed a parameterized implementation of the k-means algorithm. Our design is parameterized by the number of pixels in an image, the number of channels per pixel, and the number of bits per channel as well as the number of clusters. These parameters can easily be changed in a few minutes by someone not familiar with the design process. The resulting implementation is very close in performance to the original hardware implementation. It has the added advantage that the parameterized design compiles approximately three times faster than the original.
Solar Hot Water Heating by Natural Convection.
ERIC Educational Resources Information Center
Noble, Richard D.
1983-01-01
Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)
The Adversarial Route Analysis Tool: A Web Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casson, William H. Jr.
2012-08-02
The Adversarial Route Analysis Tool is a type of Google maps for adversaries. It's a web-based Geospatial application similar to Google Maps. It helps the U.S. government plan operations that predict where an adversary might be. It's easily accessible and maintainble and it's simple to use without much training.
ERIC Educational Resources Information Center
de Dios, Miguel; Salgueirino, Veronica; Perez-Lorenzo, Moises; Correa-Duarte, Miguel A.
2012-01-01
An experiment is described to introduce advanced undergraduate students to an exciting area of nanotechnology that incorporates nanoparticles onto carbon nanotubes to produce systems that have valuable technological applications. The synthesis of such material has been easily achieved through a simple three-step procedure. Students explore…
Radiant energy dosimeter for field use
A. Broido; A.W. McMasters
1967-01-01
Thermal radiation measurements in Project Flambeau fires involved a limited number of conventional radiometers located outside the fire periphery. A simple, cheap, easily-fabricated, light-weight, self-contained, rugged dosimeter was desired to withstand a hot fire environment, including a specific energy input of 5,000 cal cm -2, and to record...
ERIC Educational Resources Information Center
Christie, Kathy
2005-01-01
In Physics "critical mass" refers to the minimum amount of fissionable material required to sustain a chain reaction. The adoption of state education policy isn't often equated with this concept, but occasionally solutions and ideas seem to gather around a common problem. If the solution at hand is simple, easily understood, and…
Waterless Condensers for the Teaching Laboratory: An Adaptation of Traditional Glassware
ERIC Educational Resources Information Center
Baum, Erich W.; Esteb, John J.; Wilson, Anne M.
2014-01-01
A simple adaptation of traditional "chemistry kit" condensers for the organic chemistry teaching laboratory is described. These waterless condensers have been employed safely with most solvents. They can be easily fabricated, stored, and used in the same manner as water-cooled condensers. These condensers were utilized in several…
Geospatial application of the Water Erosion Prediction Project (WEPP) model
USDA-ARS?s Scientific Manuscript database
At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillsl...
Math + Science: A Solution. Introductory Investigations. Book 1.
ERIC Educational Resources Information Center
Wiebe, Arthur, Ed.; And Others
Developed for use primarily with middle school age students, this introductory booklet provides a sample of innovative activities that integrate mathematics skills with science processes. The investigations employ a wide variety of readily available and easily understood materials. The 25 activities are sequenced from simple to complex according…
Alternative Analysis of the Michaelis-Menten Equations
ERIC Educational Resources Information Center
Krogstad, Harald E.; Dawed, Mohammed Yiha; Tegegne, Tadele Tesfa
2011-01-01
Courses in mathematical modelling are always in need of simple, illustrative examples. The Michaelis-Menten reaction kinetics equations have been considered to be a basic example of scaling and singular perturbation. However, the leading order approximations do not easily show the expected behaviour, and this note proposes a different perturbation…
Detection of Animal Viruses in Coastal Seawater and Sediments
De Flora, Silvio; De Renzi, Giuseppe P.; Badolati, Giuseppe
1975-01-01
Animal viruses, predominantly enteroviruses, were detected in shallow waters at bottom depths and in clastic marine sediments. Viruses accumulated in sandy and slimy deposits of the sea bottom near the shore and could be easily released into water by means of simple mechanical shaking. Images PMID:170859
A Laboratory Demonstration Illustrating Bioseparations Using Colorful Proteins
ERIC Educational Resources Information Center
Cohen, Theodore M.; Rohs, Amanda E.; Lefebvre, Brian G.
2008-01-01
A simple in class laboratory illustrating the principles of ion exchange chromatography as a bioseparation technique is described. A protein's isoelectric point as a driving force for ion exchange chromatography is easily demonstrated by using combinations of proteins with natural color or fluorescence, such as DsRed2, enhanced green fluorescent…
Using Creative Writing to Teach Exposition/Artistic/Report Writing.
ERIC Educational Resources Information Center
West, William W.
Teachers who restrict their teaching of writing to elements of exposition are likely to fail because there is insufficient content, interest, or challenge in learning simple exposition, and the techniques that contribute to polished exposition are more easily accessible when approached through aesthetic writing. A teaching sequence for using…
Structural Generalizations over Consonants and Vowels in 11-Month-Old Infants
ERIC Educational Resources Information Center
Pons, Ferran; Toro, Juan M.
2010-01-01
Recent research has suggested consonants and vowels serve different roles during language processing. While statistical computations are preferentially made over consonants but not over vowels, simple structural generalizations are easily made over vowels but not over consonants. Nevertheless, the origins of this asymmetry are unknown. Here we…
Analysis and Identification of Acid-Base Indicator Dyes by Thin-Layer Chromatography
ERIC Educational Resources Information Center
Clark, Daniel D.
2007-01-01
Thin-layer chromatography (TLC) is a very simple and effective technique that is used by chemists by different purposes, including the monitoring of the progress of a reaction. TLC can also be easily used for the analysis and identification of various acid-base indicator dyes.
An Experimental Approach to Teaching and Learning Elementary Statistical Mechanics
ERIC Educational Resources Information Center
Ellis, Frank B.; Ellis, David C.
2008-01-01
Introductory statistical mechanics is studied for a simple two-state system using an inexpensive and easily built apparatus. A large variety of demonstrations, suitable for students in high school and introductory university chemistry courses, are possible. This article details demonstrations for exothermic and endothermic reactions, the dynamic…
Preparation of Semiconducting Materials in the Laboratory, Part 3: The One-Penny Photovoltaic Cell
ERIC Educational Resources Information Center
Ibanez, Jorge G.; Finck-Pastrana, Adolfo; Mugica-Barrera, Alejandra; Balderas-Hernandez, Patricia; Ibarguengoitia-Cervantes, Martha E.; Garcia-Pintor, Elizabeth; Hartasanchez-Frenk, Jose Miguel; Bonilla-Jaurez, Cesar E.; Maldonado-Cordero, Casandra; Struck-Garza, Adelwart; Suberbie-Rocha, Felipe
2011-01-01
Copper(I) oxide photoresponsive layers are prepared on copper surfaces (e.g., U.S. pre-1982 pennies) by simple thermal, chemical, and electrochemical procedures. An easily measurable photovoltage (up to 100 mV) is obtained in each case under visible light illumination. (Contains 2 figures.)
ERIC Educational Resources Information Center
Jackson, Carrie
2013-01-01
When school leaders engage with their communities, they develop trusting relationships that support student, staff, and family learning. Digital and social media tools open doors and create opportunities to connect with families and communities in ways that have never been seen before. This article provides three simple ideas that can easily be…
A Performance Support Tool for Cisco Training Program Managers
ERIC Educational Resources Information Center
Benson, Angela D.; Bothra, Jashoda; Sharma, Priya
2004-01-01
Performance support systems can play an important role in corporations by managing and allowing distribution of information more easily. These systems run the gamut from simple paper job aids to sophisticated computer- and web-based software applications that support the entire corporate supply chain. According to Gery (1991), a performance…
High-Tech Inspires the Read/Write Website
ERIC Educational Resources Information Center
Richardson, Will; Mancabelli, Rob
2007-01-01
This article discusses a group of new technologies--blogs, wikis, podcasts, social bookmarking, online photo galleries, and RSS (Real Simple Syndication)--collectively referred to as the Read/Write web. These tools allow users to easily create and publish online content, and are beginning to have a profound impact on curriculum, classroom…
The Power of Professional Preparation
ERIC Educational Resources Information Center
Boone, Elizabeth; Hartzman, Marlene; Mero, Dianne
2005-01-01
Respect. Responsibility. Resourcefulness. These three simple words embody the culture and mission of Duncan Polytechnical High School in Fresno, California. The terms are everywhere: They are painted on corridor walls, printed on posters mounted in every room, emblazoned on surfaces in the cafeteria, and easily verbalized by all of the students…
Sequence analysis reveals genomic factors affecting EST-SSR primer performance and polymorphism
USDA-ARS?s Scientific Manuscript database
Search for simple sequence repeat (SSR) motifs and design of flanking primers in expressed sequence tag (EST) sequences can be easily done at a large scale using bioinformatics programs. However, failed amplification and/or detection, along with lack of polymorphism, is often seen among randomly sel...
Investigating Complexity Using Excel and Visual Basic.
ERIC Educational Resources Information Center
Zetie, K. P.
2001-01-01
Shows how some of the simple ideas in complexity can be investigated using a spreadsheet and a macro written in Visual Basic. Shows how the sandpile model of Bak, Chao, and Wiesenfeld can be simulated and animated. The model produces results that cannot easily be predicted from its properties. (Author/MM)
A simple technique for obtaining future climate data inputs for natural resource models
USDA-ARS?s Scientific Manuscript database
Those conducting impact studies using natural resource models need to be able to quickly and easily obtain downscaled future climate data from multiple models, scenarios, and timescales for multiple locations. This paper describes a method of quickly obtaining future climate data over a wide range o...
Metacarpophalangeal joint arthroscopy: indications revisited.
Choi, Alexander K Y; Chow, Esther C S; Ho, P C; Chow, Y Y
2011-08-01
Arthroscopic surgery has become the gold standard for the diagnosis and treatment of major joint disorders. With advancement in arthroscopic technique, arthroscopy has become feasible in most human joints, even those as small as the finger joints. The metacarpophalangeal joint (MCPJ) can become spacious with simple traction, the intra-articular anatomy is simple, and its major structures can be easily visualized and identified. However, MCPJ arthroscopy has never been popular. This article describes our experience with MCPJ arthroscopy and seeks to establish its role in clinical practice. Copyright © 2011 Elsevier Inc. All rights reserved.
A simple process to achieve microchannels geometries able to produce hydrodynamic cavitation
NASA Astrophysics Data System (ADS)
Qiu, X.; Cherief, W.; Colombet, D.; Ayela, F.
2017-04-01
We present a simple process to perform microchannels in which cavitating two phase flows are easily producible. Up to now, hydrodynamic cavitation ‘on a chip’ was reached with small flow rates inside microchannels whose micromachining had involved a deep reactive ion etching (D-RIE). The process we present here does not require a D-RIE reactor, as it is only funded on a wet etching of silicon. It leads to a so-called microstep profile, and large cavitating flow rates become possible together with moderate pressure drops.
Preservice Teachers' Observations of Children's Learning during Family Math Night
ERIC Educational Resources Information Center
Kurz, Terri L.; Kokic, Ivana Batarelo
2011-01-01
Family math night can easily be implemented into mathematics methodology courses providing an opportunity for field-based learning. Preservice teachers were asked to develop and implement an inquiry-based activity at a family math night event held at a local school with personnel, elementary children and their parents in attendance. This action…
NASA Technical Reports Server (NTRS)
Mclean, David R.; Tuchman, Alan; Potter, William J.
1991-01-01
Recently, many expert systems were developed in a LISP environment and then ported to the real world C environment before the final system is delivered. This situation may require that the entire system be completely rewritten in C and may actually result in a system which is put together as quickly as possible with little regard for maintainability and further evolution. With the introduction of high performance UNIX and X-windows based workstations, a great deal of the advantages of developing a first system in the LISP environment have become questionable. A C-based AI development effort is described which is based on a software tools approach with emphasis on reusability and maintainability of code. The discussion starts with simple examples of how list processing can easily be implemented in C and then proceeds to the implementations of frames and objects which use dynamic memory allocation. The implementation of procedures which use depth first search, constraint propagation, context switching and a blackboard-like simulation environment are described. Techniques for managing the complexity of C-based AI software are noted, especially the object-oriented techniques of data encapsulation and incremental development. Finally, all these concepts are put together by describing the components of planning software called the Planning And Resource Reasoning (PARR) shell. This shell was successfully utilized for scheduling services of the Tracking and Data Relay Satellite System for the Earth Radiation Budget Satellite since May 1987 and will be used for operations scheduling of the Explorer Platform in November 1991.
Introducing keytagging, a novel technique for the protection of medical image-based tests.
Rubio, Óscar J; Alesanco, Álvaro; García, José
2015-08-01
This paper introduces keytagging, a novel technique to protect medical image-based tests by implementing image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. It relies on the association of tags (binary data strings) to stable, semistable or volatile features of the image, whose access keys (called keytags) depend on both the image and the tag content. Unlike watermarking, this technique can associate information to the most stable features of the image without distortion. Thus, this method preserves the clinical content of the image without the need for assessment, prevents eavesdropping and collusion attacks, and obtains a substantial capacity-robustness tradeoff with simple operations. The evaluation of this technique, involving images of different sizes from various acquisition modalities and image modifications that are typical in the medical context, demonstrates that all the aforementioned security measures can be implemented simultaneously and that the algorithm presents good scalability. In addition to this, keytags can be protected with standard Cryptographic Message Syntax and the keytagging process can be easily combined with JPEG2000 compression since both share the same wavelet transform. This reduces the delays for associating keytags and retrieving the corresponding tags to implement the aforementioned measures to only ≃30 and ≃90ms respectively. As a result, keytags can be seamlessly integrated within DICOM, reducing delays and bandwidth when the image test is updated and shared in secure architectures where different users cooperate, e.g. physicians who interpret the test, clinicians caring for the patient and researchers. Copyright © 2015 Elsevier Inc. All rights reserved.
Experimental Verification of Electric Drive Technologies Based on Artificial Intelligence Tools
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed; Kankam, David (Technical Monitor)
2003-01-01
A laboratory implementation of a fuzzy logic-tracking controller using a low cost Motorola MC68HC11E9 microprocessor is described in this report. The objective is to design the most optimal yet practical controller that can be implemented and marketed, and which gives respectable performance, even when the system loads, inertia and parameters are varying. A distinguishing feature of this work is the by-product goal of developing a marketable, simple, functional and low cost controller. Additionally, real-time nonlinearities are not ignored, and a mathematical model is not required. A number of components have been designed, built and tested individually, and in various combinations of hardware and software segments. These components have been integrated with a brushless motor to constitute the drive system. A microprocessor-based FLC is incorporated to provide robust speed and position control. Design objectives that are difficult to express mathematically can be easily incorporated in a fuzzy logic-based controller by linguistic information (in the form of fuzzy IF-THEN rules). The theory and design are tested in the laboratory using a hardware setup. Several test cases have been conducted to confirm the effectiveness of the proposed controller. The results indicate excellent tracking performance for both speed and position trajectories. For the purpose of comparison, a bang-bang controller has been tested. The fuzzy logic controller performs significantly better than the traditional bang-bang controller. The bang-bang controller has been shown to be relatively inaccurate and lacking in robustness. Description of the implementation hardware system is also given.
MPIRUN: A Portable Loader for Multidisciplinary and Multi-Zonal Applications
NASA Technical Reports Server (NTRS)
Fineberg, Samuel A.; Woodrow, Thomas S. (Technical Monitor)
1994-01-01
Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. One method for implementing the message passing portion of these codes is with the new Message Passing Interface (MPI) standard. Unfortunately, this standard only specifies the message passing portion of an application, but does not specify any portable mechanisms for loading an application. MPIRUN was developed to provide a portable means for loading MPI programs, and was specifically targeted at multidisciplinary and multi-zonal applications. Programs using MPIRUN for loading and MPI for message passing are then portable between all machines supported by MPIRUN. MPIRUN is currently implemented for the Intel iPSC/860, TMC CM5, IBM SP-1 and SP-2, Intel Paragon, and workstation clusters. Further, MPIRUN is designed to be simple enough to port easily to any system supporting MPI.
Image space subdivision for fast ray tracing
NASA Astrophysics Data System (ADS)
Yu, Billy T.; Yu, William W.
1999-09-01
Ray-tracing is notorious of its computational requirement. There were a number of techniques to speed up the process. However, a famous statistic indicated that ray-object intersections occupies over 95% of the total image generation time. Thus, it is most beneficial to work on this bottle-neck. There were a number of ray-object intersection reduction techniques and they could be classified into three major categories: bounding volume hierarchies, space subdivision, and directional subdivision. This paper introduces a technique falling into the third category. To further speed up the process, it takes advantages of hierarchy by adopting a MX-CIF quadtree in the image space. This special kind of quadtree provides simple objects allocation and ease of implementation. The text also included a theoretical proof of the expected performance. For ray-polygon comparison, the technique reduces the order of complexity from linear to square-root, O(n) -> O(2(root)n). Experiments with various shape, size and complexity were conducted to verify the expectation. Results shown that computational improvement grew with the complexity of the sceneries. The experimental improvement was more than 90% and it agreed with the theoretical value when the number of polygons exceeded 3000. The more complex was the scene, the more efficient was the acceleration. The algorithm described was implemented in the polygonal level, however, it could be easily enhanced and extended to the object or higher levels.
Hensman, James; Lawrence, Neil D; Rattray, Magnus
2013-08-20
Time course data from microarrays and high-throughput sequencing experiments require simple, computationally efficient and powerful statistical models to extract meaningful biological signal, and for tasks such as data fusion and clustering. Existing methodologies fail to capture either the temporal or replicated nature of the experiments, and often impose constraints on the data collection process, such as regularly spaced samples, or similar sampling schema across replications. We propose hierarchical Gaussian processes as a general model of gene expression time-series, with application to a variety of problems. In particular, we illustrate the method's capacity for missing data imputation, data fusion and clustering.The method can impute data which is missing both systematically and at random: in a hold-out test on real data, performance is significantly better than commonly used imputation methods. The method's ability to model inter- and intra-cluster variance leads to more biologically meaningful clusters. The approach removes the necessity for evenly spaced samples, an advantage illustrated on a developmental Drosophila dataset with irregular replications. The hierarchical Gaussian process model provides an excellent statistical basis for several gene-expression time-series tasks. It has only a few additional parameters over a regular GP, has negligible additional complexity, is easily implemented and can be integrated into several existing algorithms. Our experiments were implemented in python, and are available from the authors' website: http://staffwww.dcs.shef.ac.uk/people/J.Hensman/.
Low-Power Analog Processing for Sensing Applications: Low-Frequency Harmonic Signal Classification
White, Daniel J.; William, Peter E.; Hoffman, Michael W.; Balkir, Sina
2013-01-01
A low-power analog sensor front-end is described that reduces the energy required to extract environmental sensing spectral features without using Fast Fouriér Transform (FFT) or wavelet transforms. An Analog Harmonic Transform (AHT) allows selection of only the features needed by the back-end, in contrast to the FFT, where all coefficients must be calculated simultaneously. We also show that the FFT coefficients can be easily calculated from the AHT results by a simple back-substitution. The scheme is tailored for low-power, parallel analog implementation in an integrated circuit (IC). Two different applications are tested with an ideal front-end model and compared to existing studies with the same data sets. Results from the military vehicle classification and identification of machine-bearing fault applications shows that the front-end suits a wide range of harmonic signal sources. Analog-related errors are modeled to evaluate the feasibility of and to set design parameters for an IC implementation to maintain good system-level performance. Design of a preliminary transistor-level integrator circuit in a 0.13 μm complementary metal-oxide-silicon (CMOS) integrated circuit process showed the ability to use online self-calibration to reduce fabrication errors to a sufficiently low level. Estimated power dissipation is about three orders of magnitude less than similar vehicle classification systems that use commercially available FFT spectral extraction. PMID:23892765
CHEMICAL EVOLUTION LIBRARY FOR GALAXY FORMATION SIMULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitoh, Takayuki R., E-mail: saitoh@elsi.jp
We have developed a software library for chemical evolution simulations of galaxy formation under the simple stellar population (SSP) approximation. In this library, all of the necessary components concerning chemical evolution, such as initial mass functions, stellar lifetimes, yields from Type II and Type Ia supernovae, asymptotic giant branch stars, and neutron star mergers, are compiled from the literature. Various models are pre-implemented in this library so that users can choose their favorite combination of models. Subroutines of this library return released energy and masses of individual elements depending on a given event type. Since the redistribution manner of thesemore » quantities depends on the implementation of users’ simulation codes, this library leaves it up to the simulation code. As demonstrations, we carry out both one-zone, closed-box simulations and 3D simulations of a collapsing gas and dark matter system using this library. In these simulations, we can easily compare the impact of individual models on the chemical evolution of galaxies, just by changing the control flags and parameters of the library. Since this library only deals with the part of chemical evolution under the SSP approximation, any simulation codes that use the SSP approximation—namely, particle-base and mesh codes, as well as semianalytical models—can use it. This library is named “CELib” after the term “Chemical Evolution Library” and is made available to the community.« less
Turning Access into a web-enabled secure information system for clinical trials.
Dongquan Chen; Chen, Wei-Bang; Soong, Mayhue; Soong, Seng-Jaw; Orthner, Helmuth F
2009-08-01
Organizations that have limited resources need to conduct clinical studies in a cost-effective, but secure way. Clinical data residing in various individual databases need to be easily accessed and secured. Although widely available, digital certification, encryption, and secure web server, have not been implemented as widely, partly due to a lack of understanding of needs and concerns over issues such as cost and difficulty in implementation. The objective of this study was to test the possibility of centralizing various databases and to demonstrate ways of offering an alternative to a large-scale comprehensive and costly commercial product, especially for simple phase I and II trials, with reasonable convenience and security. We report a working procedure to transform and develop a standalone Access database into a secure Web-based secure information system. For data collection and reporting purposes, we centralized several individual databases; developed, and tested a web-based secure server using self-issued digital certificates. The system lacks audit trails. The cost of development and maintenance may hinder its wide application. The clinical trial databases scattered in various departments of an institution could be centralized into a web-enabled secure information system. The limitations such as the lack of a calendar and audit trail can be partially addressed with additional programming. The centralized Web system may provide an alternative to a comprehensive clinical trial management system.
A high resolution spatial population database of Somalia for disease risk mapping.
Linard, Catherine; Alegana, Victor A; Noor, Abdisalan M; Snow, Robert W; Tatem, Andrew J
2010-09-14
Millions of Somali have been deprived of basic health services due to the unstable political situation of their country. Attempts are being made to reconstruct the health sector, in particular to estimate the extent of infectious disease burden. However, any approach that requires the use of modelled disease rates requires reasonable information on population distribution. In a low-income country such as Somalia, population data are lacking, are of poor quality, or become outdated rapidly. Modelling methods are therefore needed for the production of contemporary and spatially detailed population data. Here land cover information derived from satellite imagery and existing settlement point datasets were used for the spatial reallocation of populations within census units. We used simple and semi-automated methods that can be implemented with free image processing software to produce an easily updatable gridded population dataset at 100 × 100 meters spatial resolution. The 2010 population dataset was matched to administrative population totals projected by the UN. Comparison tests between the new dataset and existing population datasets revealed important differences in population size distributions, and in population at risk of malaria estimates. These differences are particularly important in more densely populated areas and strongly depend on the settlement data used in the modelling approach. The results show that it is possible to produce detailed, contemporary and easily updatable settlement and population distribution datasets of Somalia using existing data. The 2010 population dataset produced is freely available as a product of the AfriPop Project and can be downloaded from: http://www.afripop.org.
A high resolution spatial population database of Somalia for disease risk mapping
2010-01-01
Background Millions of Somali have been deprived of basic health services due to the unstable political situation of their country. Attempts are being made to reconstruct the health sector, in particular to estimate the extent of infectious disease burden. However, any approach that requires the use of modelled disease rates requires reasonable information on population distribution. In a low-income country such as Somalia, population data are lacking, are of poor quality, or become outdated rapidly. Modelling methods are therefore needed for the production of contemporary and spatially detailed population data. Results Here land cover information derived from satellite imagery and existing settlement point datasets were used for the spatial reallocation of populations within census units. We used simple and semi-automated methods that can be implemented with free image processing software to produce an easily updatable gridded population dataset at 100 × 100 meters spatial resolution. The 2010 population dataset was matched to administrative population totals projected by the UN. Comparison tests between the new dataset and existing population datasets revealed important differences in population size distributions, and in population at risk of malaria estimates. These differences are particularly important in more densely populated areas and strongly depend on the settlement data used in the modelling approach. Conclusions The results show that it is possible to produce detailed, contemporary and easily updatable settlement and population distribution datasets of Somalia using existing data. The 2010 population dataset produced is freely available as a product of the AfriPop Project and can be downloaded from: http://www.afripop.org. PMID:20840751
Speed up of XML parsers with PHP language implementation
NASA Astrophysics Data System (ADS)
Georgiev, Bozhidar; Georgieva, Adriana
2012-11-01
In this paper, authors introduce PHP5's XML implementation and show how to read, parse, and write a short and uncomplicated XML file using Simple XML in a PHP environment. The possibilities for mutual work of PHP5 language and XML standard are described. The details of parsing process with Simple XML are also cleared. A practical project PHP-XML-MySQL presents the advantages of XML implementation in PHP modules. This approach allows comparatively simple search of XML hierarchical data by means of PHP software tools. The proposed project includes database, which can be extended with new data and new XML parsing functions.
The Chebyshev-Legendre method: Implementing Legendre methods on Chebyshev points
NASA Technical Reports Server (NTRS)
Don, Wai Sun; Gottlieb, David
1993-01-01
We present a new collocation method for the numerical solution of partial differential equations. This method uses the Chebyshev collocation points, but because of the way the boundary conditions are implemented, it has all the advantages of the Legendre methods. In particular, L2 estimates can be obtained easily for hyperbolic and parabolic problems.
NASA Astrophysics Data System (ADS)
Powell, Gavin; Markham, Keith C.; Marshall, David
2000-06-01
This paper presents the results of an investigation leading into an implementation of FLIR and LADAR data simulation for use in a multi sensor data fusion automated target recognition system. At present the main areas of application are in military environments but systems can easily be adapted to other areas such as security applications, robotics and autonomous cars. Recent developments have been away from traditional sensor modeling and toward modeling of features that are external to the system, such as atmosphere and part occlusion, to create a more realistic and rounded system. We have implemented such techniques and introduced a means of inserting these models into a highly detailed scene model to provide a rich data set for later processing. From our study and implementation we are able to embed sensor model components into a commercial graphics and animation package, along with object and terrain models, which can be easily used to create a more realistic sequence of images.
Towards energy positive wastewater treatment by sludge treatment using free nitrous acid.
Wang, Qilin; Hao, Xiaodi; Yuan, Zhiguo
2016-02-01
Free nitrous acid (FNA i.e. HNO2) was revealed to be effective in enhancing biodegradability of secondary sludge. Also, nitrite-oxidizing bacteria were found to be more susceptible to FNA than ammonium-oxidizing bacteria. Based on these findings, a novel FNA-based sludge treatment technology is proposed to enhance energy recovery from wastewater/sludge. Energy analysis indicated that the FNA-based technology would make wastewater treatment become an energy generating process (yielding energy at 4 kWh/PE/y; kWh/PE/y: kilowatt hours per population equivalent per year), rather than being a large energy consumer that it is today (consuming energy at 24 kWh/PE/y). Importantly, FNA required for the sludge treatment could be produced as a by-product of wastewater treatment. This proposed FNA-based technology is economically and environmentally attractive, and can be easily implemented in any wastewater treatment plants. It only involves the installation of a simple sludge mixing tank. This article presents the concept of the FNA-based technology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Chur; Kwon, Dohyeon; Kim, Dohyun; Choi, Sun Young; Cha, Sang Jun; Choi, Ki Sun; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon
2017-04-15
We demonstrate a new planar lightwave circuit (PLC)-based device, integrated with a 980/1550 wavelength division multiplexer, an evanescent-field-interaction-based saturable absorber, and an output tap coupler, which can be employed as a multi-functional element in mode-locked fiber lasers. Using this multi-functional PLC device, we demonstrate a simple, robust, low-noise, and polarization-maintaining mode-locked Er-fiber laser. The measured full-width at half-maximum bandwidth is 6 nm centered at 1555 nm, corresponding to 217 fs transform-limited pulse duration. The measured RIN and timing jitter are 0.22% [10 Hz-10 MHz] and 6.6 fs [10 kHz-1 MHz], respectively. Our results show that the non-gain section of mode-locked fiber lasers can be easily implemented as a single PLC chip that can be manufactured by a wafer-scale fabrication process. The use of PLC processes in mode-locked lasers has the potential for higher manufacturability of low-cost and robust fiber and waveguide lasers.
An adaptive technique for a redundant-sensor navigation system.
NASA Technical Reports Server (NTRS)
Chien, T.-T.
1972-01-01
An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. This adaptive system is structured as a multistage stochastic process of detection, identification, and compensation. It is shown that the detection system can be effectively constructed on the basis of a design value, specified by mission requirements, of the unknown parameter in the actual system, and of a degradation mode in the form of a constant bias jump. A suboptimal detection system on the basis of Wald's sequential analysis is developed using the concept of information value and information feedback. The developed system is easily implemented, and demonstrates a performance remarkably close to that of the optimal nonlinear detection system. An invariant transformation is derived to eliminate the effect of nuisance parameters such that the ambiguous identification system can be reduced to a set of disjoint simple hypotheses tests. By application of a technique of decoupled bias estimation in the compensation system the adaptive system can be operated without any complicated reorganization.
The enhancement of friction ridge detail on brass ammunition casings using cold patination fluid.
James, Richard Michael; Altamimi, Mohamad Jamal
2015-12-01
Brass ammunition is commonly found at firearms related crime scenes. For this reason, many studies have focused on evidence that can be obtained from brass ammunition such as DNA, gunshot residue and fingerprints. Latent fingerprints on ammunition can provide good forensic evidence, however; fingerprint development on ammunition casings has proven to be difficult. A method using cold patination fluid is described as a potential tool to enhance friction ridge detail on brass ammunition casings. Current latent fingerprint development methods for brass ammunition have either failed to provide the necessary quality of friction ridge detail or can be very time consuming and require expensive equipment. In this study, the enhancement of fingerprints on live ammunition has been achieved with a good level of detail whilst the development on spent casings has to an extent also been possible. Development with cold patination fluid has proven to be a quick, simple and cost-effective method for fingerprint development on brass ammunition that can be easily implemented for routine police work. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
SimulaTE: simulating complex landscapes of transposable elements of populations.
Kofler, Robert
2018-04-15
Estimating the abundance of transposable elements (TEs) in populations (or tissues) promises to answer many open research questions. However, progress is hampered by the lack of concordance between different approaches for TE identification and thus potentially unreliable results. To address this problem, we developed SimulaTE a tool that generates TE landscapes for populations using a newly developed domain specific language (DSL). The simple syntax of our DSL allows for easily building even complex TE landscapes that have, for example, nested, truncated and highly diverged TE insertions. Reads may be simulated for the populations using different sequencing technologies (PacBio, Illumina paired-ends) and strategies (sequencing individuals and pooled populations). The comparison between the expected (i.e. simulated) and the observed results will guide researchers in finding the most suitable approach for a particular research question. SimulaTE is implemented in Python and available at https://sourceforge.net/projects/simulates/. Manual https://sourceforge.net/p/simulates/wiki/Home/#manual; Test data and tutorials https://sourceforge.net/p/simulates/wiki/Home/#walkthrough; Validation https://sourceforge.net/p/simulates/wiki/Home/#validation. robert.kofler@vetmeduni.ac.at.
The expert surgical assistant. An intelligent virtual environment with multimodal input.
Billinghurst, M; Savage, J; Oppenheimer, P; Edmond, C
1996-01-01
Virtual Reality has made computer interfaces more intuitive but not more intelligent. This paper shows how an expert system can be coupled with multimodal input in a virtual environment to provide an intelligent simulation tool or surgical assistant. This is accomplished in three steps. First, voice and gestural input is interpreted and represented in a common semantic form. Second, a rule-based expert system is used to infer context and user actions from this semantic representation. Finally, the inferred user actions are matched against steps in a surgical procedure to monitor the user's progress and provide automatic feedback. In addition, the system can respond immediately to multimodal commands for navigational assistance and/or identification of critical anatomical structures. To show how these methods are used we present a prototype sinus surgery interface. The approach described here may easily be extended to a wide variety of medical and non-medical training applications by making simple changes to the expert system database and virtual environment models. Successful implementation of an expert system in both simulated and real surgery has enormous potential for the surgeon both in training and clinical practice.
Hoffmann, Stefan A; Wohltat, Christian; Müller, Kristian M; Arndt, Katja M
2017-01-01
For various experimental applications, microbial cultures at defined, constant densities are highly advantageous over simple batch cultures. Due to high costs, however, devices for continuous culture at freely defined densities still experience limited use. We have developed a small-scale turbidostat for research purposes, which is manufactured from inexpensive components and 3D printed parts. A high degree of spatial system integration and a graphical user interface provide user-friendly operability. The used optical density feedback control allows for constant continuous culture at a wide range of densities and offers to vary culture volume and dilution rates without additional parametrization. Further, a recursive algorithm for on-line growth rate estimation has been implemented. The employed Kalman filtering approach based on a very general state model retains the flexibility of the used control type and can be easily adapted to other bioreactor designs. Within several minutes it can converge to robust, accurate growth rate estimates. This is particularly useful for directed evolution experiments or studies on metabolic challenges, as it allows direct monitoring of the population fitness.
Synchronization and Propagation of Global Sleep Spindles
de Souza, Rafael Toledo Fernandes; Gerhardt, Günther Johannes Lewczuk; Schönwald, Suzana Veiga; Rybarczyk-Filho, José Luiz; Lemke, Ney
2016-01-01
Sleep spindles occur thousands of times during normal sleep and can be easily detected by visual inspection of EEG signals. These characteristics make spindles one of the most studied EEG structures in mammalian sleep. In this work we considered global spindles, which are spindles that are observed simultaneously in all EEG channels. We propose a methodology that investigates both the signal envelope and phase/frequency of each global spindle. By analysing the global spindle phase we showed that 90% of spindles synchronize with an average latency time of 0.1 s. We also measured the frequency modulation (chirp) of global spindles and found that global spindle chirp and synchronization are not correlated. By investigating the signal envelopes and implementing a homogeneous and isotropic propagation model, we could estimate both the signal origin and velocity in global spindles. Our results indicate that this simple and non-invasive approach could determine with reasonable precision the spindle origin, and allowed us to estimate a signal speed of 0.12 m/s. Finally, we consider whether synchronization might be useful as a non-invasive diagnostic tool. PMID:26963102
Reale, D V; Parson, J M; Neuber, A A; Dickens, J C; Mankowski, J J
2016-03-01
A stripline gyromagnetic nonlinear transmission line (NLTL) was constructed out of yttrium iron garnet ferrite and tested at charge voltages of 35 kV-55 kV with bias fields ranging from 10 kA/m to 20 kA/m. Typically, high power gyromagnetic NLTLs are constructed in a coaxial geometry. While this approach has many advantages, including a uniform transverse electromagnetic (TEM) mode, simple interconnection between components, and the ability to use oil or pressurized gas as an insulator, the coaxial implementation suffers from complexity of construction, especially when using a solid insulator. By moving to a simpler transmission line geometry, NLTLs can be constructed more easily and arrayed on a single substrate. This work represents a first step in exploring the suitability of various transmission line structures, such as microstrips and coplanar waveguides. The resulting high power microwave (HPM) source operates in ultra high frequency (UHF) band with an average bandwidth of 40.1% and peak rf power from 2 MW to 12.7 MW.
All-in-One Gel-Based Electrochromic Devices: Strengths and Recent Developments
Viñuales, Ana; Rodriguez, Javier; Tena-Zaera, Ramón
2018-01-01
Electrochromic devices (ECDs) have aroused great interest because of their potential applicability in displays and smart systems, including windows, rearview mirrors, and helmet visors. In the last decades, different device structures and materials have been proposed to meet the requirements of commercial applications to boost market entry. To this end, employing simple device architectures and achieving a competitive electrolyte are crucial to accomplish easily implementable, high-performance ECDs. The present review outlines devices comprising gel electrolytes as a single electroactive layer (“all-in-one”) ECD architecture, highlighting some advantages and opportunities they offer over other electrochromic systems. In this context, gel electrolytes not only overcome the drawbacks of liquid and solid electrolytes, such as liquid’s low chemical stability and risk of leaking and soil’s slow switching and lack of transparency, but also exhibit further strengths. These include easier processability, suitability for flexible substrates, and improved stabilization of the chemical species involved in redox processes, leading to better cyclability and opening wide possibilities to extend the electrochromic color palette, as discussed herein. Finally, conclusions and outlook are provided. PMID:29534466
Understanding disease mechanisms with models of signaling pathway activities.
Sebastian-Leon, Patricia; Vidal, Enrique; Minguez, Pablo; Conesa, Ana; Tarazona, Sonia; Amadoz, Alicia; Armero, Carmen; Salavert, Francisco; Vidal-Puig, Antonio; Montaner, David; Dopazo, Joaquín
2014-10-25
Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is one of the main challenges in the analysis of genomic data and is on the basis of the future implementation of precision medicine. Here we propose a simple probabilistic model in which signaling pathways are separated into elementary sub-pathways or signal transmission circuits (which ultimately trigger cell functions) and then transforms gene expression measurements into probabilities of activation of such signal transmission circuits. Using this model, differential activation of such circuits between biological conditions can be estimated. Thus, circuit activation statuses can be interpreted as biomarkers that discriminate among the compared conditions. This type of mechanism-based biomarkers accounts for cell functional activities and can easily be associated to disease or drug action mechanisms. The accuracy of the proposed model is demonstrated with simulations and real datasets. The proposed model provides detailed information that enables the interpretation disease mechanisms as a consequence of the complex combinations of altered gene expression values. Moreover, it offers a framework for suggesting possible ways of therapeutic intervention in a pathologically perturbed system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reale, D. V., E-mail: david.reale@ttu.edu; Parson, J. M.; Neuber, A. A.
2016-03-15
A stripline gyromagnetic nonlinear transmission line (NLTL) was constructed out of yttrium iron garnet ferrite and tested at charge voltages of 35 kV–55 kV with bias fields ranging from 10 kA/m to 20 kA/m. Typically, high power gyromagnetic NLTLs are constructed in a coaxial geometry. While this approach has many advantages, including a uniform transverse electromagnetic (TEM) mode, simple interconnection between components, and the ability to use oil or pressurized gas as an insulator, the coaxial implementation suffers from complexity of construction, especially when using a solid insulator. By moving to a simpler transmission line geometry, NLTLs can be constructedmore » more easily and arrayed on a single substrate. This work represents a first step in exploring the suitability of various transmission line structures, such as microstrips and coplanar waveguides. The resulting high power microwave (HPM) source operates in ultra high frequency (UHF) band with an average bandwidth of 40.1% and peak rf power from 2 MW to 12.7 MW.« less
NASA Astrophysics Data System (ADS)
Aldeek, Fadi; Muhammed, M. A. H.; Mattoussi, Hedi
2013-02-01
We describe the growth and characterization of a set of gold and silver nanoparticles (NPs) as well as fluorescent nanoclusters (NCs) using one-step reduction (in aqueous phase) of Au and Ag precursors in the presence of modular bifunctional ligands. These ligands are made of bidentate (lipoic acid) anchoring groups appended with poly(ethylene glycol) segment, LA-PEG. The particle size can be easily controlled by varying the metal-to-ligand molar ratio during growth. We found that while high metal-to-ligand molar ratios promote the formation of NPs, small size and highly fluorescent NCs are exclusively formed when molar excesses of ligands are used. Both sets of NCs emit in the red to near infrared (NIR) region of the optical spectrum, though the exact location of the emission depends on the material used. The growth strategy further permitted the in-situ functionalization of the NCs with reactive groups (e.g., carboxylic acid or amine), which opens up the opportunity to conjugate these materials to biomolecules using simple to implement coupling chemistries.
Xu, Changping; Wang, Hualei; Jin, Hongli; Feng, Na; Zheng, Xuexing; Cao, Zengguo; Li, Ling; Wang, Jianzhong; Yan, Feihu; Wang, Lina; Chi, Hang; Gai, Weiwei; Wang, Chong; Zhao, Yongkun; Feng, Yan; Wang, Tiecheng; Gao, Yuwei; Lu, Yiyu; Yang, Songtao; Xia, Xianzhu
2016-05-01
Ebola virus (species Zaire ebolavirus) (EBOV) is highly virulent in humans. The largest recorded outbreak of Ebola hemorrhagic fever in West Africa to date was caused by EBOV. Therefore, it is necessary to develop a detection method for this virus that can be easily distributed and implemented. In the current study, we developed a visual assay that can detect EBOV-associated nucleic acids. This assay combines reverse transcription loop-mediated isothermal amplification and nucleic acid strip detection (RT-LAMP-NAD). Nucleic acid amplification can be achieved in a one-step process at a constant temperature (58 °C, 35 min), and the amplified products can be visualized within 2-5 min using a nucleic acid strip detection device. The assay is capable of detecting 30 copies of artificial EBOV glycoprotein (GP) RNA and RNA encoding EBOV GP from 10(2) TCID50 recombinant viral particles per ml with high specificity. Overall, the RT-LAMP-NAD method is simple and has high sensitivity and specificity; therefore, it is especially suitable for the rapid detection of EBOV in African regions.
Entropy-guided switching trimmed mean deviation-boosted anisotropic diffusion filter
NASA Astrophysics Data System (ADS)
Nnolim, Uche A.
2016-07-01
An effective anisotropic diffusion (AD) mean filter variant is proposed for filtering of salt-and-pepper impulse noise. The implemented filter is robust to impulse noise ranging from low to high density levels. The algorithm involves a switching scheme in addition to utilizing the unsymmetric trimmed mean/median deviation to filter image noise while greatly preserving image edges, regardless of impulse noise density (ND). It operates with threshold parameters selected manually or adaptively estimated from the image statistics. It is further combined with the partial differential equations (PDE)-based AD for edge preservation at high NDs to enhance the properties of the trimmed mean filter. Based on experimental results, the proposed filter easily and consistently outperforms the median filter and its other variants ranging from simple to complex filter structures, especially the known PDE-based variants. In addition, the switching scheme and threshold calculation enables the filter to avoid smoothing an uncorrupted image, and filtering is activated only when impulse noise is present. Ultimately, the particular properties of the filter make its combination with the AD algorithm a unique and powerful edge-preservation smoothing filter at high-impulse NDs.
A classification procedure for the effective management of changes during the maintenance process
NASA Technical Reports Server (NTRS)
Briand, Lionel C.; Basili, Victor R.
1992-01-01
During software operation, maintainers are often faced with numerous change requests. Given available resources such as effort and calendar time, changes, if approved, have to be planned to fit within budget and schedule constraints. In this paper, we address the issue of assessing the difficulty of a change based on known or predictable data. This paper should be considered as a first step towards the construction of customized economic models for maintainers. In it, we propose a modeling approach, based on regular statistical techniques, that can be used in a variety of software maintenance environments. The approach can be easily automated, and is simple for people with limited statistical experience to use. Moreover, it deals effectively with the uncertainty usually associated with both model inputs and outputs. The modeling approach is validated on a data set provided by NASA/GSFC which shows it was effective in classifying changes with respect to the effort involved in implementing them. Other advantages of the approach are discussed along with additional steps to improve the results.
iCanPlot: Visual Exploration of High-Throughput Omics Data Using Interactive Canvas Plotting
Sinha, Amit U.; Armstrong, Scott A.
2012-01-01
Increasing use of high throughput genomic scale assays requires effective visualization and analysis techniques to facilitate data interpretation. Moreover, existing tools often require programming skills, which discourages bench scientists from examining their own data. We have created iCanPlot, a compelling platform for visual data exploration based on the latest technologies. Using the recently adopted HTML5 Canvas element, we have developed a highly interactive tool to visualize tabular data and identify interesting patterns in an intuitive fashion without the need of any specialized computing skills. A module for geneset overlap analysis has been implemented on the Google App Engine platform: when the user selects a region of interest in the plot, the genes in the region are analyzed on the fly. The visualization and analysis are amalgamated for a seamless experience. Further, users can easily upload their data for analysis—which also makes it simple to share the analysis with collaborators. We illustrate the power of iCanPlot by showing an example of how it can be used to interpret histone modifications in the context of gene expression. PMID:22393367
Origami by frontal photopolymerization.
Zhao, Zeang; Wu, Jiangtao; Mu, Xiaoming; Chen, Haosen; Qi, H Jerry; Fang, Daining
2017-04-01
Origami structures are of great interest in microelectronics, soft actuators, mechanical metamaterials, and biomedical devices. Current methods of fabricating origami structures still have several limitations, such as complex material systems or tedious processing steps. We present a simple approach for creating three-dimensional (3D) origami structures by the frontal photopolymerization method, which can be easily implemented by using a commercial projector. The concept of our method is based on the volume shrinkage during photopolymerization. By adding photoabsorbers into the polymer resin, an attenuated light field is created and leads to a nonuniform curing along the thickness direction. The layer directly exposed to light cures faster than the next layer; this nonuniform curing degree leads to nonuniform curing-induced volume shrinkage. This further introduces a nonuniform stress field, which drives the film to bend toward the newly formed side. The degree of bending can be controlled by adjusting the gray scale and the irradiation time, an easy approach for creating origami structures. The behavior is examined both experimentally and theoretically. Two methods are also proposed to create different types of 3D origami structures.
A sensitive Faraday rotation setup using triple modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, G.; Abney, J.; Broering, M.
2015-07-15
The utilization of polarized targets in scattering experiments has become a common practice in many major accelerator laboratories. Noble gases are especially suitable for such applications, since they can be easily hyper-polarized using spin exchange or metastable pumping techniques. Polarized helium-3 is a very popular target because it often serves as an effective polarized neutron due to its simple nuclear structure. A favorite cell material to generate and store polarized helium-3 is GE-180, a relatively dense aluminosilicate glass. In this paper, we present a Faraday rotation method, using a new triple modulation technique, where the measurement of the Verdet constantsmore » of SF57 flint glass, pyrex glass, and air was tested. The sensitivity obtained shows that this technique may be implemented in future cell wall characterization and thickness measurements. We also discuss the first ever extraction of the Verdet constant of GE-180 glass for four wavelength values of 632 nm, 773 nm, 1500 nm, and 1547 nm, whereupon the expected 1/λ{sup 2} dependence was observed.« less
Fast and accurate enzyme activity measurements using a chip-based microfluidic calorimeter.
van Schie, Morten M C H; Ebrahimi, Kourosh Honarmand; Hagen, Wilfred R; Hagedoorn, Peter-Leon
2018-03-01
Recent developments in microfluidic and nanofluidic technologies have resulted in development of new chip-based microfluidic calorimeters with potential use in different fields. One application would be the accurate high-throughput measurement of enzyme activity. Calorimetry is a generic way to measure activity of enzymes, but unlike conventional calorimeters, chip-based calorimeters can be easily automated and implemented in high-throughput screening platforms. However, application of chip-based microfluidic calorimeters to measure enzyme activity has been limited due to problems associated with miniaturization such as incomplete mixing and a decrease in volumetric heat generated. To address these problems we introduced a calibration method and devised a convenient protocol for using a chip-based microfluidic calorimeter. Using the new calibration method, the progress curve of alkaline phosphatase, which has product inhibition for phosphate, measured by the calorimeter was the same as that recorded by UV-visible spectroscopy. Our results may enable use of current chip-based microfluidic calorimeters in a simple manner as a tool for high-throughput screening of enzyme activity with potential applications in drug discovery and enzyme engineering. Copyright © 2017. Published by Elsevier Inc.
Ialongo, Cristiano; Pieri, Massimo; Bernardini, Sergio
2017-02-01
Diluting a sample to obtain a measure within the analytical range is a common task in clinical laboratories. However, for urgent samples, it can cause delays in test reporting, which can put patients' safety at risk. The aim of this work is to show a simple artificial neural network that can be used to make it unnecessary to predilute a sample using the information available through the laboratory information system. Particularly, the Multilayer Perceptron neural network built on a data set of 16,106 cardiac troponin I test records produced a correct inference rate of 100% for samples not requiring predilution and 86.2% for those requiring predilution. With respect to the inference reliability, the most relevant inputs were the presence of a cardiac event or surgery and the result of the previous assay. Therefore, such an artificial neural network can be easily implemented into a total automation framework to sensibly reduce the turnaround time of critical orders delayed by the operation required to retrieve, dilute, and retest the sample.
Traverso, Laura; Viterbori, Paola; Usai, Maria Carmen
2015-01-01
Executive function (EF) refers to a set of higher order cognitive processes that control and modulate cognition under continuously changing and multiple task demands. EF plays a central role in early childhood, is associated and predictive of important cognitive achievements and has been recognized as a significant aspect of school readiness. This study examines the efficacy of a group based intervention for 5-year-old children that focuses on basic components of EF (working memory, inhibitory control, cognitive flexibility). The intervention included 12 sessions, lasted 1 month and used low-cost materials. Seventy-five children took part in the study. The results indicate that the children who attended the intervention outperformed controls in simple and more complex EF tasks. Specifically, these children exhibited increased abilities to delay gratification, to control on-going responses, to process and update information, and to manage high cognitive conflict. These results suggest the possibility that this intervention, which may be easily implemented in educational services, can promote EF during preschool period before the entrance in primary school. PMID:25983706
PAQ: Persistent Adaptive Query Middleware for Dynamic Environments
NASA Astrophysics Data System (ADS)
Rajamani, Vasanth; Julien, Christine; Payton, Jamie; Roman, Gruia-Catalin
Pervasive computing applications often entail continuous monitoring tasks, issuing persistent queries that return continuously updated views of the operational environment. We present PAQ, a middleware that supports applications' needs by approximating a persistent query as a sequence of one-time queries. PAQ introduces an integration strategy abstraction that allows composition of one-time query responses into streams representing sophisticated spatio-temporal phenomena of interest. A distinguishing feature of our middleware is the realization that the suitability of a persistent query's result is a function of the application's tolerance for accuracy weighed against the associated overhead costs. In PAQ, programmers can specify an inquiry strategy that dictates how information is gathered. Since network dynamics impact the suitability of a particular inquiry strategy, PAQ associates an introspection strategy with a persistent query, that evaluates the quality of the query's results. The result of introspection can trigger application-defined adaptation strategies that alter the nature of the query. PAQ's simple API makes developing adaptive querying systems easily realizable. We present the key abstractions, describe their implementations, and demonstrate the middleware's usefulness through application examples and evaluation.
Stable lattice Boltzmann model for Maxwell equations in media
NASA Astrophysics Data System (ADS)
Hauser, A.; Verhey, J. L.
2017-12-01
The present work shows a method for stable simulations via the lattice Boltzmann (LB) model for electromagnetic waves (EM) transiting homogeneous media. LB models for such media were already presented in the literature, but they suffer from numerical instability when the media transitions are sharp. We use one of these models in the limit of pure vacuum derived from Liu and Yan [Appl. Math. Model. 38, 1710 (2014), 10.1016/j.apm.2013.09.009] and apply an extension that treats the effects of polarization and magnetization separately. We show simulations of simple examples in which EM waves travel into media to quantify error scaling, stability, accuracy, and time scaling. For conductive media, we use the Strang splitting and check the simulations accuracy at the example of the skin effect. Like pure EM propagation, the error for the static limits, which are constructed with a current density added in a first-order scheme, can be less than 1 % . The presented method is an easily implemented alternative for the stabilization of simulation for EM waves propagating in spatially complex structured media properties and arbitrary transitions.
Sensing Floquet-Majorana fermions via heat transfer
NASA Astrophysics Data System (ADS)
Molignini, Paolo; van Nieuwenburg, Evert; Chitra, R.
2017-09-01
Time periodic modulations of the transverse field in the closed X Y spin-1/2 chain generate a very rich dynamical phase diagram, with a hierarchy of Zn topological phases characterized by differing numbers of Floquet-Majorana modes. This rich phase diagram survives when the system is coupled to dissipative end reservoirs. Circumventing the obstacle of preparing and measuring quasienergy configurations endemic to Floquet-Majorana detection schemes, we show that stroboscopic heat transport and spin density are robust observables to detect both the dynamical phase transitions and Majorana modes in dissipative settings. We find that the heat current provides very clear signatures of these Floquet topological phase transitions. In particular, we observe that the derivative of the heat current, with respect to a control parameter, changes sign at the boundaries separating topological phases with differing nonzero numbers of Floquet-Majorana modes. We present a simple scheme to directly count the number of Floquet-Majorana modes in a phase from the Fourier transform of the local spin density profile. Our results are valid provided the anisotropies are not strong and can be easily implemented in quantum engineered systems.
BioPCD - A Language for GUI Development Requiring a Minimal Skill Set
Alvare, Graham GM; Roche-Lima, Abiel; Fristensky, Brian
2016-01-01
BioPCD is a new language whose purpose is to simplify the creation of Graphical User Interfaces (GUIs) by biologists with minimal programming skills. The first step in developing BioPCD was to create a minimal superset of the language referred to as PCD (Pythonesque Command Description). PCD defines the core of terminals and high-level nonterminals required to describe data of almost any type. BioPCD adds to PCD the constructs necessary to describe GUI components and the syntax for executing system commands. BioPCD is implemented using JavaCC to convert the grammar into code. BioPCD is designed to be terse and readable and simple enough to be learned by copying and modifying existing BioPCD files. We demonstrate that BioPCD can easily be used to generate GUIs for existing command line programs. Although BioPCD was designed to make it easier to run bioinformatics programs, it could be used in any domain in which many useful command line programs exist that do not have GUI interfaces. PMID:27818582
A method for fitting regression splines with varying polynomial order in the linear mixed model.
Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W
2006-02-15
The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.
Evaluation of Cache-based Superscalar and Cacheless Vector Architectures for Scientific Computations
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Carter, Jonathan; Shalf, John; Skinner, David; Ethier, Stephane; Biswas, Rupak; Djomehri, Jahed; VanderWijngaart, Rob
2003-01-01
The growing gap between sustained and peak performance for scientific applications has become a well-known problem in high performance computing. The recent development of parallel vector systems offers the potential to bridge this gap for a significant number of computational science codes and deliver a substantial increase in computing capabilities. This paper examines the intranode performance of the NEC SX6 vector processor and the cache-based IBM Power3/4 superscalar architectures across a number of key scientific computing areas. First, we present the performance of a microbenchmark suite that examines a full spectrum of low-level machine characteristics. Next, we study the behavior of the NAS Parallel Benchmarks using some simple optimizations. Finally, we evaluate the perfor- mance of several numerical codes from key scientific computing domains. Overall results demonstrate that the SX6 achieves high performance on a large fraction of our application suite and in many cases significantly outperforms the RISC-based architectures. However, certain classes of applications are not easily amenable to vectorization and would likely require extensive reengineering of both algorithm and implementation to utilize the SX6 effectively.
Nguyen, D Duc; Ngo, H Hao; Guo, W; Nguyen, T Thanh; Chang, Soon W; Jang, A; Yoon, Yong S
2016-09-01
This paper evaluated a novel pilot scale electrocoagulation (EC) system for improving total phosphorus (TP) removal from municipal wastewater. This EC system was operated in continuous and batch operating mode under differing conditions (e.g. flow rate, initial concentration, electrolysis time, conductivity, voltage) to evaluate correlative phosphorus and electrical energy consumption. The results demonstrated that the EC system could effectively remove phosphorus to meet current stringent discharge standards of less than 0.2mg/L within 2 to 5min. This target was achieved in all ranges of initial TP concentrations studied. It was also found that an increase in conductivity of solution, voltages, or electrolysis time, correlated with improved TP removal efficiency and reduced specific energy consumption. Based on these results, some key economic considerations, such as operating costs, cost-effectiveness, product manufacturing feasibility, facility design and retrofitting, and program implementation are also discussed. This EC process can conclusively be highly efficient in a relatively simple, easily managed, and cost-effective for wastewater treatment system. Copyright © 2016 Elsevier B.V. All rights reserved.
Traverso, Laura; Viterbori, Paola; Usai, Maria Carmen
2015-01-01
Executive function (EF) refers to a set of higher order cognitive processes that control and modulate cognition under continuously changing and multiple task demands. EF plays a central role in early childhood, is associated and predictive of important cognitive achievements and has been recognized as a significant aspect of school readiness. This study examines the efficacy of a group based intervention for 5-year-old children that focuses on basic components of EF (working memory, inhibitory control, cognitive flexibility). The intervention included 12 sessions, lasted 1 month and used low-cost materials. Seventy-five children took part in the study. The results indicate that the children who attended the intervention outperformed controls in simple and more complex EF tasks. Specifically, these children exhibited increased abilities to delay gratification, to control on-going responses, to process and update information, and to manage high cognitive conflict. These results suggest the possibility that this intervention, which may be easily implemented in educational services, can promote EF during preschool period before the entrance in primary school.
Variable selection in subdistribution hazard frailty models with competing risks data
Do Ha, Il; Lee, Minjung; Oh, Seungyoung; Jeong, Jong-Hyeon; Sylvester, Richard; Lee, Youngjo
2014-01-01
The proportional subdistribution hazards model (i.e. Fine-Gray model) has been widely used for analyzing univariate competing risks data. Recently, this model has been extended to clustered competing risks data via frailty. To the best of our knowledge, however, there has been no literature on variable selection method for such competing risks frailty models. In this paper, we propose a simple but unified procedure via a penalized h-likelihood (HL) for variable selection of fixed effects in a general class of subdistribution hazard frailty models, in which random effects may be shared or correlated. We consider three penalty functions (LASSO, SCAD and HL) in our variable selection procedure. We show that the proposed method can be easily implemented using a slight modification to existing h-likelihood estimation approaches. Numerical studies demonstrate that the proposed procedure using the HL penalty performs well, providing a higher probability of choosing the true model than LASSO and SCAD methods without losing prediction accuracy. The usefulness of the new method is illustrated using two actual data sets from multi-center clinical trials. PMID:25042872
Using Pipe Cleaners to Bring the Tree of Life to Life
ERIC Educational Resources Information Center
Halverson, Kristy L.
2010-01-01
Phylogenetic trees, such as the "Tree of Life," are commonly found in biology textbooks and are often used in teaching. Because students often struggle to understand these diagrams, I developed a simple, inexpensive classroom model. Made of pipe cleaners, it is easily manipulated to rotate branches, compare topologies, map complete lineages,…
A Simple Approach for Demonstrating Soil Water Retention and Field Capacity
ERIC Educational Resources Information Center
Howard, A.; Heitman, J. L.; Bowman, D.
2010-01-01
It is difficult to demonstrate the soil water retention relationship and related concepts because the specialized equipment required for performing these measurements is unavailable in most classrooms. This article outlines a low-cost, easily visualized method by which these concepts can be demonstrated in most any classroom. Columns (62.5 cm…
A simple and inexpensive pulsing device for data-recording cameras
David L. Sonderman
1973-01-01
In some areas of forestry and wood utilization research, use of automatic data recording equipment has become commonplace. This research note describes the basic electronic components needed to modify an existing intervalometer into a simplified pulsing device for controlling an automatic data recording camera. The pulsing device is easily assembled and inexpensive,...
Method for the preparation of radon-211
Meyer, Geerd-J.; Lambrecht, Richard M.
1982-01-01
A method for the production of .sup.211 Rn comprising bombarding .sup.209 Bi with .sup.7 Li particles utilizing the nuclear reaction .sup.209 Bi(.sup.7 Li,5n).sup.211 Rn. The method provides a simple spectrum from which .sup.211 Rn can be easily isolated in a highly pure condition.
Your Place in Space: Classroom Experiment on Spatial Location Theory
ERIC Educational Resources Information Center
Bergman, Margo; Mateer, G. Dirk; Reksulak, Michael; Rork, Jonathan C.; Wilson, Rick K.; Zirkle, David
2009-01-01
The authors detail an urban economics experiment that is easily run in the classroom. The experiment has a flexible design that allows the instructor to explore how congestion, zoning, public transportation, and taxation levels determine the bid-rent function. Heterogeneous agents in the experiment compete for land use using a simple auction…
An Alternative Approach to Capacitors in Complex Arrangements
ERIC Educational Resources Information Center
Atkin, Keith
2012-01-01
Examples of capacitive circuits easily reducible to series and parallel combinations abound in the textbooks but students are rarely exposed to examples where such simple procedures are apparently impossible. This paper extends that of a previous contributor by showing how the delta-star theorem of network theory can resolve such difficulties.…
Pendulum Motion and Differential Equations
ERIC Educational Resources Information Center
Reid, Thomas F.; King, Stephen C.
2009-01-01
A common example of real-world motion that can be modeled by a differential equation, and one easily understood by the student, is the simple pendulum. Simplifying assumptions are necessary for closed-form solutions to exist, and frequently there is little discussion of the impact if those assumptions are not met. This article presents a…
Bourne, Tom; De Rijdt, Sylvie; Van Holsbeke, Caroline; Sayasneh, Ahmad; Valentin, Lil; Van Calster, Ben; Timmerman, Dirk
2015-01-01
Abstract The principal aim of the IOTA project has been to develop approaches to the evaluation of adnexal pathology using ultrasound that can be transferred to all examiners. Creating models that use simple, easily reproducible ultrasound characteristics is one approach. PMID:28191150
Predation of Notiophilus (Coleoptera: Carabidae) on Collembola as a Predator-Prey Teaching Model.
ERIC Educational Resources Information Center
Higgins, R. C.
1982-01-01
The carabid beetle (Notiophilus) preys readily on an easily-cultured collembolan in simple experimental conditions. Some features of this predator-prey system are outlined to emphasize its use in biology instruction. Experiments with another potential collembolan are described in the context of developing the method for more advanced studies.…
E-Newsletters: A Simple Way to Integrate Technology with Extension Programming
ERIC Educational Resources Information Center
Erickson, Luke; Hansen, Lyle
2012-01-01
Extension educators can easily include technology in regular programming. Several Extension faculty conducted a survey to determine the overall effectiveness of a electronic newsletter (e-newsletter). Results indicated that this e-newsletter had a wide viral reach, provided strong local impact in terms of confidence and behavior changes, increased…
EPA Pesticide Chemical Search allows a user to easily find the pesticide chemical or active ingredient that they are interested in by using an array of simple to advanced search options. Chemical Search provides a single point of reference for easy access to information previously published in a variety of locations, including various EPA web pages and Regulations.gov.
A Simple Formula for Quantiles on the TI-82/83 Calculator.
ERIC Educational Resources Information Center
Eisner, Milton P.
1997-01-01
The concept of percentile is a fundamental part of every course in basic statistics. Many such courses are now taught to students and require them to have TI-82 or TI-83 calculators. The functions defined in these calculators enable students to easily find the percentiles of a discrete data set. (PVD)
Time to Translate: Deciphering the Codon in the Classroom
ERIC Educational Resources Information Center
Firooznia, Fardad
2015-01-01
I describe and evaluate a fun and simple role-playing exercise that allows students to actively work through the process of translation. This exercise can easily be completed during a 50-minute class period, with time to review the steps and contemplate complications such as the effects of various types of mutations.
System for Odorless Disposal of Human Waste
NASA Technical Reports Server (NTRS)
Jennings, Dave; Lewis, Tod
1987-01-01
Conceptual system provides clean, hygienic storage. Disposal system stores human wastes compactly. Releases no odor or bacteria and requires no dangerous chemicals or unpleasant handling. Stabilizes waste by natural process of biodegradation in which microbial activity eventually ceases and ordors and bacteria reduced to easily contained levels. Simple and reliable and needs little maintenance.
A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope
ERIC Educational Resources Information Center
Wakabayashi, Fumitaka; Hamada, Kiyohito
2006-01-01
Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…
Selective oxidation of alcohols to the corresponding carbonyl products using molecular oxygen is achieved over a simple and easily recyclable 1% Pd/MgO impregnated heterogeneous catalyst in the presence of trifluorotoluene. A variety of activated and non-activated alcohols are ef...
Neurophysiology and Neuroanatomy of Reflexive and Voluntary Saccades in Non-Human Primates
ERIC Educational Resources Information Center
Johnston, Kevin; Everling, Stefan
2008-01-01
A multitude of cognitive functions can easily be tested by a number of relatively simple saccadic eye movement tasks. This approach has been employed extensively with patient populations to investigate the functional deficits associated with psychiatric disorders. Neurophysiological studies in non-human primates performing the same tasks have…
Easily Testable PLA-Based Finite State Machines
1989-03-01
PLATYPUS (20]. Then, justifi- type 1, 4 and 5 can be guaranteed to be testable via cation paths are obtained from the STG using simple logic...next state lines is found, if such a vector par that is gnrt d y the trupt eexists, using PLATYPUS [20]. pair that is generated by the first corrupted
The Use of Percolating Filters in Teaching Ecology.
ERIC Educational Resources Information Center
Gray, N. F.
1982-01-01
Using percolating filters (components of sewage treatment process) reduces problems of organization, avoids damage to habitats, and provides a local study site for field work or rapid collection of biological material throughout the year. Component organisms are easily identified and the habitat can be studied as a simple or complex system.…
The art of writing scientific reports
NASA Technical Reports Server (NTRS)
Norton, F H
1921-01-01
As the purpose of the report is to transmit as smoothly and as easily as possible, certain facts and ideas, to the average person likely to read it, it should be written in a full and simple enough manner to be comprehended by the least tutored, and still not be boring to the more learned readers.
Estimating Stability Class in the Field
Leonidas G. Lavdas
1997-01-01
A simple and easily remembered method is described for estimating cloud ceiling height in the field. Estimating ceiling height provides the means to estimate stability class, a parameter used to help determine Dispersion Index and Low Visibility Occurrence Risk Index, indices used as smoke management aids. Stability class is also used as an input to VSMOKE, an...
PopED lite: An optimal design software for preclinical pharmacokinetic and pharmacodynamic studies.
Aoki, Yasunori; Sundqvist, Monika; Hooker, Andrew C; Gennemark, Peter
2016-04-01
Optimal experimental design approaches are seldom used in preclinical drug discovery. The objective is to develop an optimal design software tool specifically designed for preclinical applications in order to increase the efficiency of drug discovery in vivo studies. Several realistic experimental design case studies were collected and many preclinical experimental teams were consulted to determine the design goal of the software tool. The tool obtains an optimized experimental design by solving a constrained optimization problem, where each experimental design is evaluated using some function of the Fisher Information Matrix. The software was implemented in C++ using the Qt framework to assure a responsive user-software interaction through a rich graphical user interface, and at the same time, achieving the desired computational speed. In addition, a discrete global optimization algorithm was developed and implemented. The software design goals were simplicity, speed and intuition. Based on these design goals, we have developed the publicly available software PopED lite (http://www.bluetree.me/PopED_lite). Optimization computation was on average, over 14 test problems, 30 times faster in PopED lite compared to an already existing optimal design software tool. PopED lite is now used in real drug discovery projects and a few of these case studies are presented in this paper. PopED lite is designed to be simple, fast and intuitive. Simple, to give many users access to basic optimal design calculations. Fast, to fit a short design-execution cycle and allow interactive experimental design (test one design, discuss proposed design, test another design, etc). Intuitive, so that the input to and output from the software tool can easily be understood by users without knowledge of the theory of optimal design. In this way, PopED lite is highly useful in practice and complements existing tools. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ha, Nan; Feike, Til; Back, Hans; Xiao, Haifeng; Bahrs, Enno
2015-11-01
Overuse of nitrogen (N) fertilizer constitutes the major issue of current crop production in China, exerting a substantial effect on global warming through massive emission of greenhouse gas (GHG). Despite the ongoing effort, which includes the promotion of technologically sophisticated N management schemes, farmers' N rates maintain at excessive rates. Therefore the current study tests three simple and easily to apply N fertilizer recommendation strategies, which could be implemented on large scale through the existing agricultural advisory system of China, at comparatively low cost. Building on a detailed crop production dataset of 65 winter wheat (WW) and summer maize (SM) producing farm households of the North China Plain, scenario analysis is applied. The effects of the three N strategies under constant and changing yield levels on product carbon footprint (PCF) and gross margin (GM) are determined for the production condition of every individual farm household. The N fixed rate strategy realized the highest improvement potential in PCF and GM in WW; while the N coefficient strategy performed best in SM. The analysis furthermore revealed that improved N management has a significant positive effect on PCF, but only a marginal and insignificant effect on GM. On the other side, a potential 10% yield loss would have only a marginal effect on PCF, but a detrimental effect on farmers' income. With farmers currently applying excessive N rates as "cheap insurance" against potential N limitation, it will be of vital importance to avoid any yield reductions (caused by N limitation) and respective severe financial losses, when promoting and implementing advanced fertilization strategies. To achieve this, it is furthermore recommended to increase the price of fertilizer, improve the agricultural extensions system, and recognize farmers' fertilizer related decision-making processes as key research areas. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josimović, Boško, E-mail: bosko@iaus.ac.rs; Marić, Igor; Milijić, Saša
2015-02-15
Highlights: • The paper deals with the specific method of multi-criteria evaluation applied in drafting the SEA for the Belgrade WMP. • MCE of the planning solutions, assessed according to 37 objectives of the SEA and four sets of criteria, was presented in the matrix form. • The results are presented in the form of graphs so as to be easily comprehensible to all the participants in the decision-making process. • The results represent concrete contribution proven in practice. - Abstract: Strategic Environmental Assessment (SEA) is one of the key instruments for implementing sustainable development strategies in planning in general;more » in addition to being used in sectoral planning, it can also be used in other areas such as waste management planning. SEA in waste management planning has become a tool for considering the benefits and consequences of the proposed changes in space, also taking into account the capacity of space to sustain the implementation of the planned activities. In order to envisage both the positive and negative implications of a waste management plan for the elements of sustainable development, an adequate methodological approach to evaluating the potential impacts must be adopted and the evaluation results presented in a simple and clear way, so as to allow planners to make relevant decisions as a precondition for the sustainability of the activities planned in the waste management sector. This paper examines the multi-criteria evaluation method for carrying out an SEA for the Waste Management Plan for the city of Belgrade (BWMP). The method was applied to the evaluation of the impacts of the activities planned in the waste management sector on the basis of the environmental and socioeconomic indicators of sustainability, taking into consideration the intensity, spatial extent, probability and frequency of impact, by means of a specific planning approach and simple and clear presentation of the obtained results.« less
Facile preparation of super durable superhydrophobic materials.
Wu, Lei; Zhang, Junping; Li, Bucheng; Fan, Ling; Li, Lingxiao; Wang, Aiqin
2014-10-15
The low stability, complicated and expensive fabrication procedures seriously hinder practical applications of superhydrophobic materials. Here we report an extremely simple method for preparing super durable superhydrophobic materials, e.g., textiles and sponges, by dip coating in fluoropolymers (FPs). The morphology, surface chemical composition, mechanical, chemical and environmental stabilities of the superhydrophobic textiles were investigated. The results show how simple the preparation of super durable superhydrophobic textiles can be! The superhydrophobic textiles outperform their natural counterparts and most of the state-of-the-art synthetic superhydrophobic materials in stability. The intensive mechanical abrasion, long time immersion in various liquids and repeated washing have no obvious influence on the superhydrophobicity. Water drops are spherical in shape on the samples and could easily roll off after these harsh stability tests. In addition, this simple dip coating approach is applicable to various synthetic and natural textiles and can be easily scaled up. Furthermore, the results prove that a two-tier roughness is helpful but not essential with regard to the creation of super durable superhydrophobic textiles. The combination of microscale roughness of textiles and materials with very low surface tension is enough to form super durable superhydrophobic textiles. According to the same procedure, superhydrophobic polyurethane sponges can be prepared, which show high oil absorbency, oil/water separation efficiency and stability. Copyright © 2014 Elsevier Inc. All rights reserved.
Abdulla, Alan; Bahmany, Soma; Wijma, Rixt A; van der Nagel, Bart C H; Koch, Birgit C P
2017-08-15
Contemporary β-lactam antibiotic dosing is debatable in severely ill patients, since the occurrence of pathophysiological changes in critical illness can result in great inter-individual variability. Therapeutic drug monitoring (TDM) is a commonly used dosing strategy to optimize exposure and thereby minimize toxicity and maximize the efficacy. Currently, TDM of β-lactam antibiotics is rarely performed, due to poor availability in clinical practice. We describe an ultrafast Hydrophilic-Interaction Chromatography (HILIC) based UPLC-MS/MS method for the determination of amoxicillin, benzylpenicillin, cefotaxime, cefuroxime, ceftazidime, flucloxacillin, imipenem, meropenem and piperacillin in human plasma. This method involves simple sample preparation steps and was comprehensively validated according to standard FDA guidelines. For all analytes, mean accuracy and precision values were within the acceptance value. The lower and upper limits of quantification were found to be sufficient to cover the therapeutic range for all antibiotics. Finally, the method was successfully applied in a large pharmacokinetic study performed in the intensive care setting, and the feasibility of the analytical procedure was demonstrated in routine clinical practice. To the best of our knowledge, we report here the first HILIC-based UPLC-MS/MS assay for the determination of β-lactam antibiotics in human plasma. This simple, sensitive and ultrafast assay requires small-volume samples and can easily be implemented in clinical laboratories to promote the TDM of β-lactam antibiotics. Copyright © 2017 Elsevier B.V. All rights reserved.
Solares, Santiago D.
2015-11-26
This study introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretationmore » of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tappingmode imaging, for both of which the force curves exhibit the expected features. Lastly, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.« less
Li, Mingjie; Zhou, Ping; Zhao, Zhicheng; Zhang, Jinggang
2016-03-01
Recently, fractional order (FO) processes with dead-time have attracted more and more attention of many researchers in control field, but FO-PID controllers design techniques available for the FO processes with dead-time suffer from lack of direct systematic approaches. In this paper, a simple design and parameters tuning approach of two-degree-of-freedom (2-DOF) FO-PID controller based on internal model control (IMC) is proposed for FO processes with dead-time, conventional one-degree-of-freedom control exhibited the shortcoming of coupling of robustness and dynamic response performance. 2-DOF control can overcome the above weakness which means it realizes decoupling of robustness and dynamic performance from each other. The adjustable parameter η2 of FO-PID controller is directly related to the robustness of closed-loop system, and the analytical expression is given between the maximum sensitivity specification Ms and parameters η2. In addition, according to the dynamic performance requirement of the practical system, the parameters η1 can also be selected easily. By approximating the dead-time term of the process model with the first-order Padé or Taylor series, the expressions for 2-DOF FO-PID controller parameters are derived for three classes of FO processes with dead-time. Moreover, compared with other methods, the proposed method is simple and easy to implement. Finally, the simulation results are given to illustrate the effectiveness of this method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Stable and simple quantitative phase-contrast imaging by Fresnel biprism
NASA Astrophysics Data System (ADS)
Ebrahimi, Samira; Dashtdar, Masoomeh; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Javidi, Bahram
2018-03-01
Digital holographic (DH) microscopy has grown into a powerful nondestructive technique for the real-time study of living cells including dynamic membrane changes and cell fluctuations in nanometer and sub-nanometer scales. The conventional DH microscopy configurations require a separately generated coherent reference wave that results in a low phase stability and a necessity to precisely adjust the intensity ratio between two overlapping beams. In this work, we present a compact, simple, and very stable common-path DH microscope, employing a self-referencing configuration. The microscope is implemented by a diode laser as the source and a Fresnel biprism for splitting and recombining the beams simultaneously. In the overlapping area, linear interference fringes with high contrast are produced. The frequency of the interference pattern could be easily adjusted by displacement of the biprism along the optical axis without a decrease in fringe contrast. To evaluate the validity of the method, the spatial noise and temporal stability of the setup are compared with the common off-axis DH microscope based on a Mach-Zehnder interferometer. It is shown that the proposed technique has low mechanical noise as well as superb temporal stability with sub-nanometer precision without any external vibration isolation. The higher temporal stability improves the capabilities of the microscope for studying micro-object fluctuations, particularly in the case of biological specimens. Experimental results are presented using red blood cells and silica microspheres to demonstrate the system performance.
Solares, Santiago D
2015-01-01
This paper introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.
The IDEA model: A single equation approach to the Ebola forecasting challenge.
Tuite, Ashleigh R; Fisman, David N
2018-03-01
Mathematical modeling is increasingly accepted as a tool that can inform disease control policy in the face of emerging infectious diseases, such as the 2014-2015 West African Ebola epidemic, but little is known about the relative performance of alternate forecasting approaches. The RAPIDD Ebola Forecasting Challenge (REFC) tested the ability of eight mathematical models to generate useful forecasts in the face of simulated Ebola outbreaks. We used a simple, phenomenological single-equation model (the "IDEA" model), which relies only on case counts, in the REFC. Model fits were performed using a maximum likelihood approach. We found that the model performed reasonably well relative to other more complex approaches, with performance metrics ranked on average 4th or 5th among participating models. IDEA appeared better suited to long- than short-term forecasts, and could be fit using nothing but reported case counts. Several limitations were identified, including difficulty in identifying epidemic peak (even retrospectively), unrealistically precise confidence intervals, and difficulty interpolating daily case counts when using a model scaled to epidemic generation time. More realistic confidence intervals were generated when case counts were assumed to follow a negative binomial, rather than Poisson, distribution. Nonetheless, IDEA represents a simple phenomenological model, easily implemented in widely available software packages that could be used by frontline public health personnel to generate forecasts with accuracy that approximates that which is achieved using more complex methodologies. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
A simple rule based model for scheduling farm management operations in SWAT
NASA Astrophysics Data System (ADS)
Schürz, Christoph; Mehdi, Bano; Schulz, Karsten
2016-04-01
For many interdisciplinary questions at the watershed scale, the Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) has become an accepted and widely used tool. Despite its flexibility, the model is highly demanding when it comes to input data. At SWAT's core the water balance and the modeled nutrient cycles are plant growth driven (implemented with the EPIC crop growth model). Therefore, land use and crop data with high spatial and thematic resolution, as well as detailed information on cultivation and farm management practices are required. For many applications of the model however, these data are unavailable. In order to meet these requirements, SWAT offers the option to trigger scheduled farm management operations by applying the Potential Heat Unit (PHU) concept. The PHU concept solely takes into account the accumulation of daily mean temperature for management scheduling. Hence, it contradicts several farming strategies that take place in reality; such as: i) Planting and harvesting dates are set much too early or too late, as the PHU concept is strongly sensitivity to inter-annual temperature fluctuations; ii) The timing of fertilizer application, in SWAT this often occurs simultaneously on the same date in in each field; iii) and can also coincide with precipitation events. Particularly, the latter two can lead to strong peaks in modeled nutrient loads. To cope with these shortcomings we propose a simple rule based model (RBM) to schedule management operations according to realistic farmer management practices in SWAT. The RBM involves simple strategies requiring only data that are input into the SWAT model initially, such as temperature and precipitation data. The user provides boundaries of time periods for operation schedules to take place for all crops in the model. These data are readily available from the literature or from crop variety trials. The RBM applies the dates by complying with the following rules: i) Operations scheduled in the spring planting season and fall harvesting season are temperature dependent. Warmer than usual conditions trigger the setting of respective operations earlier in spring and later in fall to prolong the cropping season. ii) Operations are randomized within a time span ± 5 days around the calculated dates and iii) are only set on days where no rainfall occurs. Advantages offered by the RBM framework are the implementation of farmers undertaking different farming strategies, such as conventional or conservative farming, and the consideration of the prevailing weather conditions on the planting periods, thus the shifting management operations due to climate change will also be considered over the long term. By applying these rules to the available data we were able to establish a simple framework developing more realistic crop management schedules for SWAT which are an improvement over the current PHU concept implemented in SWAT. The outlined framework is easily extendible and adaptable to many other applications in SWAT. Case studies have yet to demonstrate the applicability and the validity of the proposed RBM.
A Simple and Reliable Method of Design for Standalone Photovoltaic Systems
NASA Astrophysics Data System (ADS)
Srinivasarao, Mantri; Sudha, K. Rama; Bhanu, C. V. K.
2017-06-01
Standalone photovoltaic (SAPV) systems are seen as a promoting method of electrifying areas of developing world that lack power grid infrastructure. Proliferations of these systems require a design procedure that is simple, reliable and exhibit good performance over its life time. The proposed methodology uses simple empirical formulae and easily available parameters to design SAPV systems, that is, array size with energy storage. After arriving at the different array size (area), performance curves are obtained for optimal design of SAPV system with high amount of reliability in terms of autonomy at a specified value of loss of load probability (LOLP). Based on the array to load ratio (ALR) and levelized energy cost (LEC) through life cycle cost (LCC) analysis, it is shown that the proposed methodology gives better performance, requires simple data and is more reliable when compared with conventional design using monthly average daily load and insolation.
A simple magic cup to inject excitement and curiosity in physics
NASA Astrophysics Data System (ADS)
Amir, Nazir
2018-05-01
This article highlights a simple demonstration kit that can be easily fabricated in Design & Technology (D&T) workshops to inject excitement and curiosity into students’ learning of physics concepts such as density and optics. Using an ice cream cup from a fast food restaurant and a transparent circular acrylic piece, students can be guided to make a ‘magic’ cup, while at the same time get inquisitive about the physics behind the magic. The project highlights a way of linking physics to D&T in a feasible manner which can motivate and engage students.
Large and pristine films of reduced graphene oxide
Ahn, Sung Il; Kim, Kukjoo; Jung, Jura; Choi, Kyung Cheol
2015-01-01
A new self-assembly concept is introduced to form large and pristine films (15 cm in diameter) of reduced graphene oxide (RGO). The resulting film has different degrees of polarity on its two different sides due to the characteristic nature of the self-assembly process. The RGO film can be easily transferred from a glass substrate onto water and a polymer substrate after injection of water molecules between the RGO film and glass substrate using an electric steamer. The RGO film can also be easily patterned into various shapes with a resolution of around ±10 μm by a simple taping method, which is suitable for mass production of printed electronics at low cost. PMID:26689267
Simple and rapid staining for detection of Entamoeba cysts and other protozoans with fluorochromes.
Kawamoto, F; Mizuno, S; Fujioka, H; Kumada, N; Sugiyama, E; Takeuchi, T; Kobayashi, S; Iseki, M; Yamada, M; Matsumoto, Y
1987-02-01
Three fluorochromes were applied to stain various parasitic protozoans. By double staining with 4',6-diamidino-2-phenylindole and propidium iodide, differentiation of the nuclei from the cytoplasm can easily be achieved within several seconds. The chromatoid bodies in Entamoeba cysts were stained bright red. Plasmodium yoelii at all stages except late trophozoites and young gametocytes was easily identified. In the oocysts of Cryptosporidium sp., the nuclei and cytoplasm of the sporozoites fluoresced bluish white and red, respectively, whereas the residual body appeared blue or green. The third fluorochrome, Calcofluor white M2R, was suitable for detecting the cysts of Entamoeba spp. and Chilomastix mesnili.
Plasmonic Films Can Easily Be Better: Rules and Recipes
2015-01-01
High-quality materials are critical for advances in plasmonics, especially as researchers now investigate quantum effects at the limit of single surface plasmons or exploit ultraviolet- or CMOS-compatible metals such as aluminum or copper. Unfortunately, due to inexperience with deposition methods, many plasmonics researchers deposit metals under the wrong conditions, severely limiting performance unnecessarily. This is then compounded as others follow their published procedures. In this perspective, we describe simple rules collected from the surface-science literature that allow high-quality plasmonic films of aluminum, copper, gold, and silver to be easily deposited with commonly available equipment (a thermal evaporator). Recipes are also provided so that films with optimal optical properties can be routinely obtained. PMID:25950012
Sybil--efficient constraint-based modelling in R.
Gelius-Dietrich, Gabriel; Desouki, Abdelmoneim Amer; Fritzemeier, Claus Jonathan; Lercher, Martin J
2013-11-13
Constraint-based analyses of metabolic networks are widely used to simulate the properties of genome-scale metabolic networks. Publicly available implementations tend to be slow, impeding large scale analyses such as the genome-wide computation of pairwise gene knock-outs, or the automated search for model improvements. Furthermore, available implementations cannot easily be extended or adapted by users. Here, we present sybil, an open source software library for constraint-based analyses in R; R is a free, platform-independent environment for statistical computing and graphics that is widely used in bioinformatics. Among other functions, sybil currently provides efficient methods for flux-balance analysis (FBA), MOMA, and ROOM that are about ten times faster than previous implementations when calculating the effect of whole-genome single gene deletions in silico on a complete E. coli metabolic model. Due to the object-oriented architecture of sybil, users can easily build analysis pipelines in R or even implement their own constraint-based algorithms. Based on its highly efficient communication with different mathematical optimisation programs, sybil facilitates the exploration of high-dimensional optimisation problems on small time scales. Sybil and all its dependencies are open source. Sybil and its documentation are available for download from the comprehensive R archive network (CRAN).
Phase-Contrast versus Off-Axis Illumination: Is a More Complex Microscope Always More Powerful?
ERIC Educational Resources Information Center
Hostounsky, Zdenek; Pelc, Radek
2007-01-01
In this article, a practical demonstration suitable for any biology college classroom is presented. With the examples of a complex biological specimen (slug's radula) and a simple reference specimen (electron microscopical grid imprint in gelatin), both of which can be easily prepared, the capabilities of two imaging modes commonly used in optical…
Protocol for monitoring standing crop in grasslands using visual obstruction
Lakhdar Benkobi; Daniel W. Uresk; Greg Schenbeck; Rudy M. King
2000-01-01
Assessment of standing crop on grasslands using a visual obstruction technique provides valuable information to help plan livestock grazing management and indicate the status of wildlife habitat. The objectives of this study were to: (1) develop a simple regression model using easily measured visual obstruction to estimate standing crop on sandy lowland range sites in...
ERIC Educational Resources Information Center
Shannon, Kyle M.; Gage, Gregory J.; Jankovic, Aleksandra; Wilson, W. Jeffrey; Marzullo, Timothy C.
2014-01-01
The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities…
A Simple Laser Teaching Aid for Transverse Mode Structure Demonstration
ERIC Educational Resources Information Center
Ren, Cheng; Zhang, Shulian
2009-01-01
A teaching aid for demonstrating the transverse mode structure in lasers is described. A novel device called "multi-dimension adjustable combined cat-eye reflector" has been constructed from easily available materials to form a He-Ne laser resonator. By finely adjusting the cat-eye, the boundary conditions of the laser cavity can be altered, which…
A Collar for Marking Big Game Animals
Robert L. Phillips
1970-01-01
A Simple, inexpensive collar made of Armor-tite (a vinyl-coated nylon fabric) was designed for marking white-tailed deer (Odocoileus virginianus) and moose (Alces alces). Field tests showed that the material is easily seen and extrememly durable. It may be suitable for use on other large mammals. The collar can be quickly fitted to individual animals under field...
The EChemPen: A Guiding Hand to Learn Electrochemical Surface Modifications
ERIC Educational Resources Information Center
Valetaud, Mathieu; Loget, Gabriel; Roche, Je´rome; Hu¨sken, Nina; Fattah, Zahra; Badets, Vasilica; Fontaine, Olivier; Zigah, Dodzi
2015-01-01
The Electrochemical Pen (EChemPen) was developed as an attractive tool for learning electrochemistry. The fabrication, principle, and operation of the EChemPen are simple and can be easily performed by students in practical classes. It is based on a regular fountain pen principle, where the electrolytic solution is dispensed at a tip to locally…
The Bear Is Still Singing: Creating Lyrics with Social Studies
ERIC Educational Resources Information Center
Turner, Thomas
2008-01-01
In the author's article in the 1988 premiere issue of "Social Studies and the Young Learner," he suggested that chain songs and rounds, simple folk and summer camp standards, could be easily transformed with lyrics (written by the teacher or students) that contained useful, purposeful social studies content. He argued then, and still does, that…
Making Work: Demonstrating Thermodynamic Concepts with Solar-Powered Wax and Rubber Heat Engines
ERIC Educational Resources Information Center
Appleyard, S. J.
2007-01-01
Construction details are provided for simple heat engines that use candle wax and elastomers as working substances. The engines are constructed using common household materials and can be easily constructed in a school classroom or at home. They work reliably and are useful tools for demonstrating the conversion of heat to mechanical work. They…
ERIC Educational Resources Information Center
Paulins, Paulis; Krauze, Armands; Ozolinsh, Maris; Muiznieks, Andris
2016-01-01
The article focuses on the process of water warming from 0 °C in a glass. An experiment is performed that analyzes the temperature in the top and bottom layers of water during warming. The experimental equipment is very simple and can be easily set up using devices available in schools. The temperature curves obtained from the experiment help us…
The Story of the Calvin Cycle: Bringing Carbon Fixation to Life
ERIC Educational Resources Information Center
Firooznia, Fardad
2007-01-01
A fun, simple, musical role-playing exercise that allows students to actively step through and visualize the biochemical steps of the Calvin cycle. This musical can easily be completed in about 15 minutes with more than enough time during a 50-minute class period to review the steps and clarify the process further.
Measuring Air Density in the Introductory Lab
ERIC Educational Resources Information Center
Calza, G.; Gratton, L. M.; Lopez-Arias, T.; Oss, S.
2010-01-01
The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion--buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the…
Using a High-Speed Camera to Measure the Speed of Sound
ERIC Educational Resources Information Center
Hack, William Nathan; Baird, William H.
2012-01-01
The speed of sound is a physical property that can be measured easily in the lab. However, finding an inexpensive and intuitive way for students to determine this speed has been more involved. The introduction of affordable consumer-grade high-speed cameras (such as the Exilim EX-FC100) makes conceptually simple experiments feasible. Since the…
Theory, construction and operation of simple tensiometers.
Stannard, D.I.
1986-01-01
The tensiometer presented here in detail is suited to diverse on-site applications. Constructed from readily available, inexpensive parts, it can measure as much as 0.85 bar of tension. Design features include a flushing system for removal of entrapped air or mercury, and an easily maintained modular network of nylon manometers and water-supply tubes. -from Author
Optical Experiments Using Mini-Torches with Red, Green and Blue Light Emitting Diodes
ERIC Educational Resources Information Center
Kamata, Masahiro; Matsunaga, Ai
2007-01-01
We have developed two kinds of optical experiments: color mixture and fluorescence, using mini-torches with light emitting diodes (LEDs) that emit three primary colors. Since the tools used in the experiments are simple and inexpensive, students can easily retry and develop the experiments by themselves. As well as giving an introduction to basic…
ERIC Educational Resources Information Center
Parikesit, Gea O. F.
2014-01-01
Shadows can be found easily everywhere around us, so that we rarely find it interesting to reflect on how they work. In order to raise curiosity among students on the optics of shadows, we can display the shadows in 3D, particularly using a stereoscopic set-up. In this paper we describe the optics of stereoscopic shadows using simple schematic…
Mobile Cubesat Command and Control (Mc3) 3-Meter Dish Calibration and Capabilities
2014-06-01
accuracy of this simple calibration is tested by tracking the sun, an easily accessible celestial body. To track the sun, a Systems Tool Kit ( STK ... visually verified. The shadow created by the dish system when it is pointed directly at the sun is symmetrical. If the dish system is not pointed
Using a Simple "Escherichia Coli" Growth Curve Model to Teach the Scientific Method
ERIC Educational Resources Information Center
McKernan, Lisa N.
2015-01-01
The challenge of teaching in the sciences is not only conveying knowledge in the discipline, but also developing essential critical thinking, data analysis, and scientific writing skills. I outline an exercise that can be done easily as part of a microbiology laboratory course. It teaches the nature of the research process, from asking questions…
ERIC Educational Resources Information Center
Warkentien, Siri; Silver, David
2016-01-01
Public schools with impressive records of serving lower-performing students are often overlooked because their average test scores, even when students are growing quickly, are lower than scores in schools that serve higher-performing students. Schools may appear to be doing poorly either because baseline achievement is not easily accounted for or…
ERIC Educational Resources Information Center
Manning, Wendy D.; Longmore, Monica A.; Copp, Jennifer; Giordano, Peggy C.
2014-01-01
The complexity of adolescents' dating and sexual lives is not easily operationalized with simple indicators of dating or sexual activity. While building on prior work that emphasizes the "risky" nature of adolescents' intimate relationships, we assess whether a variety of indicators reflecting the complexity of…
Understanding the Clausius-Clapeyron Equation by Employing an Easily Adaptable Pressure Cooker
ERIC Educational Resources Information Center
Galleano, Monica; Boveris, Alberto; Puntarulo, Susana
2008-01-01
This article describes a simple and inexpensive laboratory exercise developed to understand the effect of pressure on phase equilibrium as described by the Clausius-Clapeyron equation. The only piece of equipment required is a pressure cooker adapted with a pressure gauge and a thermometer in the lid, allowing the measurement of the pressure and…
ERIC Educational Resources Information Center
Erwin, Elizabeth J.; Robinson, Kimberly A.; McGrath, Greg S.; Harney, Corrine J.
2017-01-01
Given the importance of social and emotional competence and confidence in early childhood, there has been growing attention on providing young children deliberate experiences to practice and acquire essential foundational skills for health and well-being. This article shares examples to illustrate how children can easily apply simple tools within…
Use of a rectal snare to remove a hypopharyngeal haemangioma.
Abo-Khatwa, M M; Abouel-Enin, S; Klimach, O; Osborne, J
2007-02-01
We describe in this case report a new technique for treatment of hypopharyngeal haemangioma, using the surgical diathermy snare. The snare was easily introduced through the direct laryngoscope, without any difficulties. The procedure was simple, rapid and involved minimal bleeding. We also discuss the histological types of haemangioma, clinical picture, radiological findings and other modalities of treatment.
A Digital Simulation Program for Health Science Students to Follow Drug Levels in the Body
ERIC Educational Resources Information Center
Stavchansky, Salomon; And Others
1977-01-01
The Rayetheon Scientific Simulation Language (RSSL) program, an easily-used simulation on the CDC/6600 computer at the University of Texas at Austin, offers a simple method of solving differential equations on a digital computer. It is used by undergraduate biopharmaceutics-pharmacokinetics students and graduate students in all areas. (Author/LBH)
Exploring the Public's Sensory Genotypes and Phenotypes through Innovative Practice
ERIC Educational Resources Information Center
Milanowski, Tony
2017-01-01
The genetic diversity contained in a population can be used to engage the audience in an understanding of human genotypes and phenotypes. With a series of simple examples of well-documented sensory phenotypes related to the perception of colour, aromas or food preference, the diversity of the audience can be easily explored. The collecting of…
Vanadium-Catalyzed C(sp3)–H Fluorination Reactions†
Xia, Ji-Bao; Ma, Yuyong; Chen, Chuo
2014-01-01
Vanadium(III) oxide catalyzes the direct fluorination of C(sp3)–H groups with Selectfluor. This reaction is operationally simple. The catalyst and the reaction byproduct can be removed easily by filtration. Using this method, a fluorine atom can be introduced to the tertiary position of 1,4-cineole and L-menthone selectively. PMID:24976971
A Flush Toilet Model for the Transistor
ERIC Educational Resources Information Center
Organtini, Giovanni
2012-01-01
In introductory physics textbooks, diodes working principles are usually well described in a relatively simple manner. According to our experience, they are well understood by students. Even when no formal derivation of the physics laws governing the current flow through a diode is given, the use of this device as a check valve is easily accepted.…
ERIC Educational Resources Information Center
Davis, Matthew
2012-01-01
When it comes to expressing your appreciation to teachers, here's the drill: if the words don't come easily, don't let them get in the way. This guide is full of simple, affordable, straight-from-the-heart actions and gifts that will speak louder than words. And for those who are comfortable putting pen to paper, check out suggestions for written…
Geospatial application of the Water Erosion Prediction Project (WEPP) model
D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot
2013-01-01
At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillslopes and channels can be created and simulated with this GUI. However,...
The Singing Cymbal: Is It Really Photon Momentum?
ERIC Educational Resources Information Center
Collin, Samantha; Etchenique, Nikki; Moore, Thomas R.
2016-01-01
A simple demonstration that is occasionally used in the classroom to show that light carries momentum involves making an orchestral cymbal audibly ring using light from a common photoflash. A metal plate or a piece of foil can also be used; however, it appears that many people use a cymbal because the sound is easily heard at a reasonable…
"The Role of the Unit in Physics and Psychometrics": A Commentary
ERIC Educational Resources Information Center
Dunne, Timothy T.
2011-01-01
The challenge for a discussant of the Humphry article in this issue is that the profundity of the simple insights of the article, and the lucid arguments by which the insights are sustained, might be easily overlooked, undervalued, or misconstrued. At the risk of repeating major inferences already presented, one may note that the article…
Framework to trade optimality for local processing in large-scale wavefront reconstruction problems.
Haber, Aleksandar; Verhaegen, Michel
2016-11-15
We show that the minimum variance wavefront estimation problems permit localized approximate solutions, in the sense that the wavefront value at a point (excluding unobservable modes, such as the piston mode) can be approximated by a linear combination of the wavefront slope measurements in the point's neighborhood. This enables us to efficiently compute a wavefront estimate by performing a single sparse matrix-vector multiplication. Moreover, our results open the possibility for the development of wavefront estimators that can be easily implemented in a decentralized/distributed manner, and in which the estimate optimality can be easily traded for computational efficiency. We numerically validate our approach on Hudgin wavefront sensor geometries, and the results can be easily generalized to Fried geometries.
A simple, low-cost, data logging pendulum built from a computer mouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gintautas, Vadas; Hubler, Alfred
Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in developing countries. We present a low-cost, easy-to-build rotary sensor pendulum using the existing hardware in a ball-type computer mouse. We demonstrate how this apparatus may be used to measure both the frequency and coefficient of damping of a simple physical pendulum. This easily constructed laboratory equipment makes it possible formore » all students to have hands-on experience with one of the most important simple physical systems.« less
NASA Astrophysics Data System (ADS)
Baran, Talat; Yılmaz Baran, Nuray; Menteş, Ayfer
2018-05-01
In this study, we reported production, characterization, and catalytic behavior of two novel heterogeneous palladium(II) and platinum(II) catalysts derived from cellulose biopolymer. In order to eliminate the use of toxic organic or inorganic solvents and to reduce the use of excess energy in the coupling reactions, we have developed a very simple, rapid, and eco-friendly microwave irradiation protocol. The developed microwave-assisted method of Suzuki cross coupling reactions produced excellent reaction yields in the presence of cellulose supported palladium and platinum (II) catalysts. Moreover, the catalysts easily regenerated after simple filtration, and they gave good reusability. This study revealed that the designed catalysts and method provide clean, simple, rapid, and impressive catalytic performance for Suzuki coupling reactions.
TG (Tri-Goniometry) technique: Obtaining perfect angles in Z-plasty planning with a simple ruler.
Görgülü, Tahsin; Olgun, Abdulkerim
2016-03-01
The Z-plasty is used frequently in hand surgery to release post-burn scar contractures. Correct angles and equalization of each limb are the most important parts of the Z-plasty technique. A simple ruler is enough for equalization of limb but a goniometer is needed for accuracy and equalization of angles. Classically, angles of 30°, 45°, 60°, 75°, and 90° are used. These angles are important when elongating a contracture line or decreasing tension. Our method uses only trigonometry coefficients and a simple ruler, which is easily obtained and sterilized, enabling surgeons to perform all types of Z-plasty perfectly without measuring angles using a goniometer. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Research and recommendations for a statewide sign retroreflectivity maintenance program.
DOT National Transportation Integrated Search
2012-04-01
This study evaluated TxDOT's current sign retroreflectivity maintenance practices, assessed their : effectiveness, and recommended statewide sign retroreflectivity maintenance practices that could be easily : and effectively implemented to ensure tha...
Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A
2017-09-15
In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Klara, Kristina; Hou, Ning; Lawman, Allison; Wu, Liheng; Morrill, Drew; Tente, Alfred; Wang, Li-Qiong
2014-01-01
A simple, affordable hydrogen proton exchange membrane (PEM) fuel cell laboratory was developed through a collaborative effort between faculty and undergraduate students at Brown University. It has been incorporated into the introductory chemistry curriculum and successfully implemented in a class of over 500 students per academic year for over 3…
NASA Astrophysics Data System (ADS)
Skoog, R. A.
2007-12-01
Web pages are ubiquitous and accessible, but when compared to stand-alone applications they are limited in capability. The Alaska Volcano Observatory (AVO) Remote Sensing Group has implemented web pages and supporting server software that provide relatively advanced features to any user able to meet basic requirements. Anyone in the world with access to a modern web browser (such as Mozilla Firefox 1.5 or Internet Explorer 6) and reasonable internet connection can fully use the tools, with no software installation or configuration. This allows faculty, staff and students at AVO to perform many aspects of volcano monitoring from home or the road as easily as from the office. Additionally, AVO collaborators such as the National Weather Service and the Anchorage Volcanic Ash Advisory Center are able to use these web tools to quickly assess volcanic events. Capabilities of this web software include (1) ability to obtain accurate measured remote sensing data values on an semi- quantitative compressed image of a large area, (2) to view any data from a wide time range of data swaths, (3) to view many different satellite remote sensing spectral bands and combinations, to adjust color range thresholds, (4) and to export to KML files which are viewable virtual globes such as Google Earth. The technologies behind this implementation are primarily Javascript, PHP, and MySQL which are free to use and well documented, in addition to Terascan, a commercial software package used to extract data from level-0 data files. These technologies will be presented in conjunction with the techniques used to combine them into the final product used by AVO and its collaborators for operational volcanic monitoring.
Examining the architecture of cellular computing through a comparative study with a computer
Wang, Degeng; Gribskov, Michael
2005-01-01
The computer and the cell both use information embedded in simple coding, the binary software code and the quadruple genomic code, respectively, to support system operations. A comparative examination of their system architecture as well as their information storage and utilization schemes is performed. On top of the code, both systems display a modular, multi-layered architecture, which, in the case of a computer, arises from human engineering efforts through a combination of hardware implementation and software abstraction. Using the computer as a reference system, a simplistic mapping of the architectural components between the two is easily detected. This comparison also reveals that a cell abolishes the software–hardware barrier through genomic encoding for the constituents of the biochemical network, a cell's ‘hardware’ equivalent to the computer central processing unit (CPU). The information loading (gene expression) process acts as a major determinant of the encoded constituent's abundance, which, in turn, often determines the ‘bandwidth’ of a biochemical pathway. Cellular processes are implemented in biochemical pathways in parallel manners. In a computer, on the other hand, the software provides only instructions and data for the CPU. A process represents just sequentially ordered actions by the CPU and only virtual parallelism can be implemented through CPU time-sharing. Whereas process management in a computer may simply mean job scheduling, coordinating pathway bandwidth through the gene expression machinery represents a major process management scheme in a cell. In summary, a cell can be viewed as a super-parallel computer, which computes through controlled hardware composition. While we have, at best, a very fragmented understanding of cellular operation, we have a thorough understanding of the computer throughout the engineering process. The potential utilization of this knowledge to the benefit of systems biology is discussed. PMID:16849179
XMOS XC-2 Development Board for Mechanical Control and Data Collection
NASA Technical Reports Server (NTRS)
Jarnot, Robert F.; Bowden, William J.
2011-01-01
The scanning microwave limb sounder (SMLS) will use technological improvements in low-noise mixers to provide precise data on the Earth s atmospheric composition with high spatial resolution. This project focuses on the design and implementation of a realtime control system needed for airborne engineering tests of the SMLS. The system must coordinate the actuation of optical components using four motors with encoder readback, while collecting synchronized telemetric data from a GPS receiver and 3-axis gyrometric system. A graphical user interface for testing the control system was also designed using Python. Although the system could have been implemented with an FPGA(fieldprogrammable gate array)-based setup, a processor development kit manufactured by XMOS was chosen. The XMOS architecture allows parallel execution of multiple tasks on separate threads, making it ideal for this application. It is easily programmed using XC (a subset of C). The necessary communication interfaces were implemented in software, including Ethernet, with significant cost and time reduction compared to an FPGA-based approach. A simple approach to control the chopper, calibration mirror, and gimbal for the airborne SMLS was needed. The XMOS board allows for multiple threads and real-time data acquisition. The XC-2 development kit is an attractive choice for synchronized, real-time, event-driven applications. The XMOS is based on the transputer microprocessor architecture developed for parallel computing, which is being revamped in this new platform. The XMOS device has multiple cores capable of running parallel applications on separate threads. The threads communicate with each other via user-defined channels capable of transmitting data within the device. XMOS provides a C-based development environment using XC, which eliminates the need for custom tool kits associated with FPGA programming. The XC-2 has four cores and necessary hardware for Ethernet I/O.
Examining the architecture of cellular computing through a comparative study with a computer.
Wang, Degeng; Gribskov, Michael
2005-06-22
The computer and the cell both use information embedded in simple coding, the binary software code and the quadruple genomic code, respectively, to support system operations. A comparative examination of their system architecture as well as their information storage and utilization schemes is performed. On top of the code, both systems display a modular, multi-layered architecture, which, in the case of a computer, arises from human engineering efforts through a combination of hardware implementation and software abstraction. Using the computer as a reference system, a simplistic mapping of the architectural components between the two is easily detected. This comparison also reveals that a cell abolishes the software-hardware barrier through genomic encoding for the constituents of the biochemical network, a cell's "hardware" equivalent to the computer central processing unit (CPU). The information loading (gene expression) process acts as a major determinant of the encoded constituent's abundance, which, in turn, often determines the "bandwidth" of a biochemical pathway. Cellular processes are implemented in biochemical pathways in parallel manners. In a computer, on the other hand, the software provides only instructions and data for the CPU. A process represents just sequentially ordered actions by the CPU and only virtual parallelism can be implemented through CPU time-sharing. Whereas process management in a computer may simply mean job scheduling, coordinating pathway bandwidth through the gene expression machinery represents a major process management scheme in a cell. In summary, a cell can be viewed as a super-parallel computer, which computes through controlled hardware composition. While we have, at best, a very fragmented understanding of cellular operation, we have a thorough understanding of the computer throughout the engineering process. The potential utilization of this knowledge to the benefit of systems biology is discussed.
The capture and recreation of 3D auditory scenes
NASA Astrophysics Data System (ADS)
Li, Zhiyun
The main goal of this research is to develop the theory and implement practical tools (in both software and hardware) for the capture and recreation of 3D auditory scenes. Our research is expected to have applications in virtual reality, telepresence, film, music, video games, auditory user interfaces, and sound-based surveillance. The first part of our research is concerned with sound capture via a spherical microphone array. The advantage of this array is that it can be steered into any 3D directions digitally with the same beampattern. We develop design methodologies to achieve flexible microphone layouts, optimal beampattern approximation and robustness constraint. We also design novel hemispherical and circular microphone array layouts for more spatially constrained auditory scenes. Using the captured audio, we then propose a unified and simple approach for recreating them by exploring the reciprocity principle that is satisfied between the two processes. Our approach makes the system easy to build, and practical. Using this approach, we can capture the 3D sound field by a spherical microphone array and recreate it using a spherical loudspeaker array, and ensure that the recreated sound field matches the recorded field up to a high order of spherical harmonics. For some regular or semi-regular microphone layouts, we design an efficient parallel implementation of the multi-directional spherical beamformer by using the rotational symmetries of the beampattern and of the spherical microphone array. This can be implemented in either software or hardware and easily adapted for other regular or semi-regular layouts of microphones. In addition, we extend this approach for headphone-based system. Design examples and simulation results are presented to verify our algorithms. Prototypes are built and tested in real-world auditory scenes.
Ford, Stephen; Illich, Stan; Smith, Lisa; Franklin, Arthur
2006-01-01
To describe the use of personal digital assistants (PDAs) in documenting pharmacists' clinical interventions. Evans Army Community Hospital (EACH), a 78-bed military treatment facility, in Colorado Springs. Pharmacists on staff at EACH. All pharmacists at EACH used PDAs with the pilot software to record interventions for 1 month. The program underwent final design changes and then became the sole source for recording pharmacist interventions. The results of this project are being evaluated every 3 months for the first year and yearly thereafter. Visual CE (Syware Inc. Cambridge, Mass.) software was selected to develop fields for the documentation tool. This software is simple and easy to use, and users can retrieve reports of interventions from both inpatient and outpatient sections. The software needed to be designed so that data entry would only take a few minutes and ad hoc reports could be produced easily. Number of pharmacist interventions reported, time spent in clinical interventions, and outcome of clinical intervention. Implementing a PDA-based system for documenting pharmacist interventions across ambulatory, inpatient, and clinical services dramatically increased reporting during the first 6 months after implementation (August 2004-February 2005). After initial fielding, clinical pharmacists in advanced practice settings (such as disease management clinic, anticoagulation clinic) recognized a need to tailor the program to their specific activities, which resulted in a spin-off program unique to their practice roles. A PDA-based system for documenting clinical interventions at a military treatment facility increased reporting of interventions across all pharmacy points of service. Pharmacy leadership used these data to document the impact of pharmacist interventions on safety and quality of pharmaceutical care provided.
Mounet, Nicolas; Gibertini, Marco; Schwaller, Philippe; Campi, Davide; Merkys, Andrius; Marrazzo, Antimo; Sohier, Thibault; Castelli, Ivano Eligio; Cepellotti, Andrea; Pizzi, Giovanni; Marzari, Nicola
2018-03-01
Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.
NASA Astrophysics Data System (ADS)
Mounet, Nicolas; Gibertini, Marco; Schwaller, Philippe; Campi, Davide; Merkys, Andrius; Marrazzo, Antimo; Sohier, Thibault; Castelli, Ivano Eligio; Cepellotti, Andrea; Pizzi, Giovanni; Marzari, Nicola
2018-02-01
Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.
ERIC Educational Resources Information Center
Tay, Lee Yong; Lim, Cher Ping; Lye, Sze Yee; Ng, Kay Joo; Lim, Siew Khiaw
2011-01-01
This paper analyses how an elementary-level future school in Singapore implements and uses various open-source online platforms, which are easily available online and could be implemented with minimal software cost, for the purpose of teaching and learning. Online platforms have the potential to facilitate students' engagement for independent and…
Simulation system architecture design for generic communications link
NASA Technical Reports Server (NTRS)
Tsang, Chit-Sang; Ratliff, Jim
1986-01-01
This paper addresses a computer simulation system architecture design for generic digital communications systems. It addresses the issues of an overall system architecture in order to achieve a user-friendly, efficient, and yet easily implementable simulation system. The system block diagram and its individual functional components are described in detail. Software implementation is discussed with the VAX/VMS operating system used as a target environment.
Photorefractive optical fuzzy-logic processor based on grating degeneracy
NASA Astrophysics Data System (ADS)
Wu, Weishu; Yang, Changxi; Campbell, Scott; Yeh, Pochi
1995-04-01
A novel optical fuzzy-logic processor using light-induced gratings in photorefractive crystals is proposed and demonstrated. By exploiting grating degeneracy, one can easily implement parallel fuzzy-logic functions in disjunctive normal form.
Mullins, Darragh; Coburn, Derek; Hannon, Louise; Jones, Edward; Clifford, Eoghan; Glavin, Martin
2018-03-01
Wastewater treatment facilities are continually challenged to meet both environmental regulations and reduce running costs (particularly energy and staffing costs). Improving the efficiency of operational monitoring at wastewater treatment plants (WWTPs) requires the development and implementation of appropriate performance metrics; particularly those that are easily measured, strongly correlate to WWTP performance, and can be easily automated, with a minimal amount of maintenance or intervention by human operators. Turbidity is the measure of the relative clarity of a fluid. It is an expression of the optical property that causes light to be scattered and absorbed by fine particles in suspension (rather than transmitted with no change in direction or flux level through a fluid sample). In wastewater treatment, turbidity is often used as an indicator of effluent quality, rather than an absolute performance metric, although correlations have been found between turbidity and suspended solids. Existing laboratory-based methods to measure turbidity for WWTPs, while relatively simple, require human intervention and are labour intensive. Automated systems for on-site measuring of wastewater effluent turbidity are not commonly used, while those present are largely based on submerged sensors that require regular cleaning and calibration due to fouling from particulate matter in fluids. This paper presents a novel, automated system for estimating fluid turbidity. Effluent samples are imaged such that the light absorption characteristic is highlighted as a function of fluid depth, and computer vision processing techniques are used to quantify this characteristic. Results from the proposed system were compared with results from established laboratory-based methods and were found to be comparable. Tests were conducted using both synthetic dairy wastewater and effluent from multiple WWTPs, both municipal and industrial. This system has an advantage over current methods as it provides a multipoint analysis that can be easily repeated for large volumes of wastewater effluent. Although the system was specifically designed and tested for wastewater treatment applications, it could have applications such as in drinking water treatment, and in other areas where fluid turbidity is an important measurement.
The transient divided bar method for laboratory measurements of thermal properties
NASA Astrophysics Data System (ADS)
Bording, Thue S.; Nielsen, Søren B.; Balling, Niels
2016-12-01
Accurate information on thermal conductivity and thermal diffusivity of materials is of central importance in relation to geoscience and engineering problems involving the transfer of heat. Several methods, including the classical divided bar technique, are available for laboratory measurements of thermal conductivity, but much fewer for thermal diffusivity. We have generalized the divided bar technique to the transient case in which thermal conductivity, volumetric heat capacity and thereby also thermal diffusivity are measured simultaneously. As the density of samples is easily determined independently, specific heat capacity can also be determined. The finite element formulation provides a flexible forward solution for heat transfer across the bar, and thermal properties are estimated by inverse Monte Carlo modelling. This methodology enables a proper quantification of experimental uncertainties on measured thermal properties and information on their origin. The developed methodology was applied to various materials, including a standard ceramic material and different rock samples, and measuring results were compared with results applying traditional steady-state divided bar and an independent line-source method. All measurements show highly consistent results and with excellent reproducibility and high accuracy. For conductivity the obtained uncertainty is typically 1-3 per cent, and for diffusivity uncertainty may be reduced to about 3-5 per cent. The main uncertainty originates from the presence of thermal contact resistance associated with the internal interfaces in the bar. These are not resolved during inversion and it is imperative that they are minimized. The proposed procedure is simple and may quite easily be implemented to the many steady-state divided bar systems in operation. A thermally controlled bath, as applied here, may not be needed. Simpler systems, such as applying temperature-controlled water directly from a tap, may also be applied.
A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - I. Theory
Williams, Mark L.; Lee, Deokjung; Choi, Sooyoung
2015-03-04
A new methodology has been developed to treat resonance self-shielding in doubly heterogeneous very high temperature gas-cooled reactor systems in which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. This new method first homogenizes the fuel grain and matrix materials using an analytically derived disadvantage factor from a two-region problem with equivalence theory and intermediate resonance method. This disadvantage factor accounts for spatial self-shielding effects inside each grain within the framework of an infinite array of grains. Then the homogenized fuel compact is self-shielded using a Bondarenko method to accountmore » for interactions between the fuel compact regions in the fuel lattice. In the final form of the equations for actual implementations, the double-heterogeneity effects are accounted for by simply using a modified definition of a background cross section, which includes geometry parameters and cross sections for both the grain and fuel compact regions. With the new method, the doubly heterogeneous resonance self-shielding effect can be treated easily even with legacy codes programmed only for a singly heterogeneous system by simple modifications in the background cross section for resonance integral interpolations. This paper presents a detailed derivation of the new method and a sensitivity study of double-heterogeneity parameters introduced during the derivation. The implementation of the method and verification results for various test cases are presented in the companion paper.« less