Sample records for simple effective model

  1. Valid statistical approaches for analyzing sholl data: Mixed effects versus simple linear models.

    PubMed

    Wilson, Machelle D; Sethi, Sunjay; Lein, Pamela J; Keil, Kimberly P

    2017-03-01

    The Sholl technique is widely used to quantify dendritic morphology. Data from such studies, which typically sample multiple neurons per animal, are often analyzed using simple linear models. However, simple linear models fail to account for intra-class correlation that occurs with clustered data, which can lead to faulty inferences. Mixed effects models account for intra-class correlation that occurs with clustered data; thus, these models more accurately estimate the standard deviation of the parameter estimate, which produces more accurate p-values. While mixed models are not new, their use in neuroscience has lagged behind their use in other disciplines. A review of the published literature illustrates common mistakes in analyses of Sholl data. Analysis of Sholl data collected from Golgi-stained pyramidal neurons in the hippocampus of male and female mice using both simple linear and mixed effects models demonstrates that the p-values and standard deviations obtained using the simple linear models are biased downwards and lead to erroneous rejection of the null hypothesis in some analyses. The mixed effects approach more accurately models the true variability in the data set, which leads to correct inference. Mixed effects models avoid faulty inference in Sholl analysis of data sampled from multiple neurons per animal by accounting for intra-class correlation. Given the widespread practice in neuroscience of obtaining multiple measurements per subject, there is a critical need to apply mixed effects models more widely. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Fun with maths: exploring implications of mathematical models for malaria eradication.

    PubMed

    Eckhoff, Philip A; Bever, Caitlin A; Gerardin, Jaline; Wenger, Edward A

    2014-12-11

    Mathematical analyses and modelling have an important role informing malaria eradication strategies. Simple mathematical approaches can answer many questions, but it is important to investigate their assumptions and to test whether simple assumptions affect the results. In this note, four examples demonstrate both the effects of model structures and assumptions and also the benefits of using a diversity of model approaches. These examples include the time to eradication, the impact of vaccine efficacy and coverage, drug programs and the effects of duration of infections and delays to treatment, and the influence of seasonality and migration coupling on disease fadeout. An excessively simple structure can miss key results, but simple mathematical approaches can still achieve key results for eradication strategy and define areas for investigation by more complex models.

  3. Calculation of tip clearance effects in a transonic compressor rotor

    NASA Technical Reports Server (NTRS)

    Chima, R. V.

    1996-01-01

    The flow through the tip clearance region of a transonic compressor rotor (NASA rotor 37) was computed and compared to aerodynamic probe and laser anemometer data. Tip clearance effects were modeled both by gridding the clearance gap and by using a simple periodicity model across the ungridded gap. The simple model was run with both the full gap height, and with half the gap height to simulate a vena-contracta effect. Comparisons between computed and measured performance maps and downstream profiles were used to validate the models and to assess the effects of gap height on the simple clearance model. Recommendations were made concerning the use of the simple clearance model. Detailed comparisons were made between the gridded clearance gap solution and the laser anemometer data near the tip at two operating points. The computer results agreed fairly well with the data but overpredicted the extent of the casing separation and underpredicted the wake decay rate. The computations were then used to describe the interaction of the tip vortex, the passage shock, and the casing boundary layer.

  4. Microarray-based cancer prediction using soft computing approach.

    PubMed

    Wang, Xiaosheng; Gotoh, Osamu

    2009-05-26

    One of the difficulties in using gene expression profiles to predict cancer is how to effectively select a few informative genes to construct accurate prediction models from thousands or ten thousands of genes. We screen highly discriminative genes and gene pairs to create simple prediction models involved in single genes or gene pairs on the basis of soft computing approach and rough set theory. Accurate cancerous prediction is obtained when we apply the simple prediction models for four cancerous gene expression datasets: CNS tumor, colon tumor, lung cancer and DLBCL. Some genes closely correlated with the pathogenesis of specific or general cancers are identified. In contrast with other models, our models are simple, effective and robust. Meanwhile, our models are interpretable for they are based on decision rules. Our results demonstrate that very simple models may perform well on cancerous molecular prediction and important gene markers of cancer can be detected if the gene selection approach is chosen reasonably.

  5. Simple Tidal Prism Models Revisited

    NASA Astrophysics Data System (ADS)

    Luketina, D.

    1998-01-01

    Simple tidal prism models for well-mixed estuaries have been in use for some time and are discussed in most text books on estuaries. The appeal of this model is its simplicity. However, there are several flaws in the logic behind the model. These flaws are pointed out and a more theoretically correct simple tidal prism model is derived. In doing so, it is made clear which effects can, in theory, be neglected and which can not.

  6. Commentary: Are Three Waves of Data Sufficient for Assessing Mediation?

    ERIC Educational Resources Information Center

    Reichardt, Charles S.

    2011-01-01

    Maxwell, Cole, and Mitchell (2011) demonstrated that simple structural equation models, when used with cross-sectional data, generally produce biased estimates of meditated effects. I extend those results by showing how simple structural equation models can produce biased estimates of meditated effects when used even with longitudinal data. Even…

  7. Institutional Effects in a Simple Model of Educational Production

    ERIC Educational Resources Information Center

    Bishop, John H.; Wobmann, Ludger

    2004-01-01

    This paper presents a model of educational production that tries to make sense of recent evidence on effects of institutional arrangements on student performance. In a simple principal-agent framework, students choose their learning effort to maximize their net benefits, while the government chooses educational spending to maximize its net…

  8. Ultrasound-Guided Vascular Access Simulator for Medical Training: Proposal of a Simple, Economic and Effective Model.

    PubMed

    Fürst, Rafael Vilhena de Carvalho; Polimanti, Afonso César; Galego, Sidnei José; Bicudo, Maria Claudia; Montagna, Erik; Corrêa, João Antônio

    2017-03-01

    To present a simple and affordable model able to properly simulate an ultrasound-guided venous access. The simulation was made using a latex balloon tube filled with water and dye solution implanted in a thawed chicken breast with bones. The presented model allows the simulation of all implant stages of a central catheter. The obtained echogenicity is similar to that observed in human tissue, and the ultrasound identification of the tissues, balloon, needle, wire guide and catheter is feasible and reproducible. The proposed model is simple, economical, easy to manufacture and capable of realistically and effectively simulating an ultrasound-guided venous access.

  9. A Simple Model of Global Aerosol Indirect Effects

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter

    2013-01-01

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.

  10. Simple Elasticity Modeling and Failure Prediction for Composite Flexbeams

    NASA Technical Reports Server (NTRS)

    Makeev, Andrew; Armanios, Erian; OBrien, T. Kevin (Technical Monitor)

    2001-01-01

    A simple 2D boundary element analysis, suitable for developing cost effective models for tapered composite laminates, is presented. Constant stress and displacement elements are used. Closed-form fundamental solutions are derived. Numerical results are provided for several configurations to illustrate the accuracy of the model.

  11. A Practical Model for Forecasting New Freshman Enrollment during the Application Period.

    ERIC Educational Resources Information Center

    Paulsen, Michael B.

    1989-01-01

    A simple and effective model for forecasting freshman enrollment during the application period is presented step by step. The model requires minimal and readily available information, uses a simple linear regression analysis on a personal computer, and provides updated monthly forecasts. (MSE)

  12. A simple model for strong ground motions and response spectra

    USGS Publications Warehouse

    Safak, Erdal; Mueller, Charles; Boatwright, John

    1988-01-01

    A simple model for the description of strong ground motions is introduced. The model shows that response spectra can be estimated by using only four parameters of the ground motion, the RMS acceleration, effective duration and two corner frequencies that characterize the effective frequency band of the motion. The model is windowed band-limited white noise, and is developed by studying the properties of two functions, cumulative squared acceleration in the time domain, and cumulative squared amplitude spectrum in the frequency domain. Applying the methods of random vibration theory, the model leads to a simple analytical expression for the response spectra. The accuracy of the model is checked by using the ground motion recordings from the aftershock sequences of two different earthquakes and simulated accelerograms. The results show that the model gives a satisfactory estimate of the response spectra.

  13. A Simple Mechanical Model for the Isotropic Harmonic Oscillator

    ERIC Educational Resources Information Center

    Nita, Gelu M.

    2010-01-01

    A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels. (Contains 2 figures.)

  14. A Simple Model of Hox Genes: Bone Morphology Demonstration

    ERIC Educational Resources Information Center

    Shmaefsky, Brian

    2008-01-01

    Visual demonstrations of abstract scientific concepts are effective strategies for enhancing content retention (Shmaefsky 2004). The concepts associated with gene regulation of growth and development are particularly complex and are well suited for teaching with visual models. This demonstration provides a simple and accurate model of Hox gene…

  15. Ultrametric distribution of culture vectors in an extended Axelrod model of cultural dissemination.

    PubMed

    Stivala, Alex; Robins, Garry; Kashima, Yoshihisa; Kirley, Michael

    2014-05-02

    The Axelrod model of cultural diffusion is an apparently simple model that is capable of complex behaviour. A recent work used a real-world dataset of opinions as initial conditions, demonstrating the effects of the ultrametric distribution of empirical opinion vectors in promoting cultural diversity in the model. Here we quantify the degree of ultrametricity of the initial culture vectors and investigate the effect of varying degrees of ultrametricity on the absorbing state of both a simple and extended model. Unlike the simple model, ultrametricity alone is not sufficient to sustain long-term diversity in the extended Axelrod model; rather, the initial conditions must also have sufficiently large variance in intervector distances. Further, we find that a scheme for evolving synthetic opinion vectors from cultural "prototypes" shows the same behaviour as real opinion data in maintaining cultural diversity in the extended model; whereas neutral evolution of cultural vectors does not.

  16. Ultrametric distribution of culture vectors in an extended Axelrod model of cultural dissemination

    NASA Astrophysics Data System (ADS)

    Stivala, Alex; Robins, Garry; Kashima, Yoshihisa; Kirley, Michael

    2014-05-01

    The Axelrod model of cultural diffusion is an apparently simple model that is capable of complex behaviour. A recent work used a real-world dataset of opinions as initial conditions, demonstrating the effects of the ultrametric distribution of empirical opinion vectors in promoting cultural diversity in the model. Here we quantify the degree of ultrametricity of the initial culture vectors and investigate the effect of varying degrees of ultrametricity on the absorbing state of both a simple and extended model. Unlike the simple model, ultrametricity alone is not sufficient to sustain long-term diversity in the extended Axelrod model; rather, the initial conditions must also have sufficiently large variance in intervector distances. Further, we find that a scheme for evolving synthetic opinion vectors from cultural ``prototypes'' shows the same behaviour as real opinion data in maintaining cultural diversity in the extended model; whereas neutral evolution of cultural vectors does not.

  17. Perspective: Sloppiness and emergent theories in physics, biology, and beyond.

    PubMed

    Transtrum, Mark K; Machta, Benjamin B; Brown, Kevin S; Daniels, Bryan C; Myers, Christopher R; Sethna, James P

    2015-07-07

    Large scale models of physical phenomena demand the development of new statistical and computational tools in order to be effective. Many such models are "sloppy," i.e., exhibit behavior controlled by a relatively small number of parameter combinations. We review an information theoretic framework for analyzing sloppy models. This formalism is based on the Fisher information matrix, which is interpreted as a Riemannian metric on a parameterized space of models. Distance in this space is a measure of how distinguishable two models are based on their predictions. Sloppy model manifolds are bounded with a hierarchy of widths and extrinsic curvatures. The manifold boundary approximation can extract the simple, hidden theory from complicated sloppy models. We attribute the success of simple effective models in physics as likewise emerging from complicated processes exhibiting a low effective dimensionality. We discuss the ramifications and consequences of sloppy models for biochemistry and science more generally. We suggest that the reason our complex world is understandable is due to the same fundamental reason: simple theories of macroscopic behavior are hidden inside complicated microscopic processes.

  18. Phonon scattering in nanoscale systems: lowest order expansion of the current and power expressions

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2006-04-01

    We use the non-equilibrium Green's function method to describe the effects of phonon scattering on the conductance of nano-scale devices. Useful and accurate approximations are developed that both provide (i) computationally simple formulas for large systems and (ii) simple analytical models. In addition, the simple models can be used to fit experimental data and provide physical parameters.

  19. The Effects of Selected Modelling Parameters on the Computed Optical Frequency Signatures of Naval Platforms

    DTIC Science & Technology

    2009-04-01

    Contrast signature plots for the simple wireframe model with user-defined thermal boundary conditions and an exhaust plume ...boundary conditions but no exhaust plume ................................................................................. 25 A.3. Contrast signature...plots for the simple wireframe model with no user-defined thermal boundary conditions or exhaust plume

  20. Simple analytical model of a thermal diode

    NASA Astrophysics Data System (ADS)

    Kaushik, Saurabh; Kaushik, Sachin; Marathe, Rahul

    2018-05-01

    Recently there is a lot of attention given to manipulation of heat by constructing thermal devices such as thermal diodes, transistors and logic gates. Many of the models proposed have an asymmetry which leads to the desired effect. Presence of non-linear interactions among the particles is also essential. But, such models lack analytical understanding. Here we propose a simple, analytically solvable model of a thermal diode. Our model consists of classical spins in contact with multiple heat baths and constant external magnetic fields. Interestingly the magnetic field is the only parameter required to get the effect of heat rectification.

  1. A Bayesian Model of the Memory Colour Effect.

    PubMed

    Witzel, Christoph; Olkkonen, Maria; Gegenfurtner, Karl R

    2018-01-01

    According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration. Here, we model memory colour effects using prior knowledge about typical colours as priors for the grey adjustments in a Bayesian model. This simple model does not involve any fitting of free parameters. The Bayesian model roughly captured the magnitude of the measured memory colour effect for photographs of objects. To some extent, the model predicted observed differences in memory colour effects across objects. The model could not account for the differences in memory colour effects across different levels of realism in the object images. The Bayesian model provides a particularly simple account of memory colour effects, capturing some of the multiple sources of variation of these effects.

  2. A Bayesian Model of the Memory Colour Effect

    PubMed Central

    Olkkonen, Maria; Gegenfurtner, Karl R.

    2018-01-01

    According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration. Here, we model memory colour effects using prior knowledge about typical colours as priors for the grey adjustments in a Bayesian model. This simple model does not involve any fitting of free parameters. The Bayesian model roughly captured the magnitude of the measured memory colour effect for photographs of objects. To some extent, the model predicted observed differences in memory colour effects across objects. The model could not account for the differences in memory colour effects across different levels of realism in the object images. The Bayesian model provides a particularly simple account of memory colour effects, capturing some of the multiple sources of variation of these effects. PMID:29760874

  3. Simple model to estimate the contribution of atmospheric CO2 to the Earth's greenhouse effect

    NASA Astrophysics Data System (ADS)

    Wilson, Derrek J.; Gea-Banacloche, Julio

    2012-04-01

    We show how the CO2 contribution to the Earth's greenhouse effect can be estimated from relatively simple physical considerations and readily available spectroscopic data. In particular, we present a calculation of the "climate sensitivity" (that is, the increase in temperature caused by a doubling of the concentration of CO2) in the absence of feedbacks. Our treatment highlights the important role played by the frequency dependence of the CO2 absorption spectrum. For pedagogical purposes, we provide two simple models to visualize different ways in which the atmosphere might return infrared radiation back to the Earth. The more physically realistic model, based on the Schwarzschild radiative transfer equations, uses as input an approximate form of the atmosphere's temperature profile, and thus includes implicitly the effect of heat transfer mechanisms other than radiation.

  4. Greenhouse effect: temperature of a metal sphere surrounded by a glass shell and heated by sunlight

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuc H.; Matzner, Richard A.

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the z-axis. This development is a generalization of the simple treatment of the greenhouse effect given by Kittel and Kroemer (1980 Thermal Physics (San Francisco: Freeman)) and can serve as a very simple model demonstrating the much more complex Earth greenhouse effect. Solution of the model problem provides an excellent pedagogical tool at the Junior/Senior undergraduate level.

  5. SimpleBox 4.0: Improving the model while keeping it simple….

    PubMed

    Hollander, Anne; Schoorl, Marian; van de Meent, Dik

    2016-04-01

    Chemical behavior in the environment is often modeled with multimedia fate models. SimpleBox is one often-used multimedia fate model, firstly developed in 1986. Since then, two updated versions were published. Based on recent scientific developments and experience with SimpleBox 3.0, a new version of SimpleBox was developed and is made public here: SimpleBox 4.0. In this new model, eight major changes were implemented: removal of the local scale and vegetation compartments, addition of lake compartments and deep ocean compartments (including the thermohaline circulation), implementation of intermittent rain instead of drizzle and of depth dependent soil concentrations, adjustment of the partitioning behavior for organic acids and bases as well as of the value for enthalpy of vaporization. In this paper, the effects of the model changes in SimpleBox 4.0 on the predicted steady-state concentrations of chemical substances were explored for different substance groups (neutral organic substances, acids, bases, metals) in a standard emission scenario. In general, the largest differences between the predicted concentrations in the new and the old model are caused by the implementation of layered ocean compartments. Undesirable high model complexity caused by vegetation compartments and a local scale were removed to enlarge the simplicity and user friendliness of the model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Simplified aeroelastic modeling of horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Wendell, J. H.

    1982-01-01

    Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.

  7. A simple model of hohlraum power balance and mitigation of SRS

    DOE PAGES

    Albright, Brian J.; Montgomery, David S.; Yin, Lin; ...

    2016-04-01

    A simple energy balance model has been obtained for laser-plasma heating in indirect drive hohlraum plasma that allows rapid temperature scaling and evolution with parameters such as plasma density and composition. Furthermore, this model enables assessment of the effects on plasma temperature of, e.g., adding high-Z dopant to the gas fill or magnetic fields.

  8. Modeling shared resources with generalized synchronization within a Petri net bottom-up approach.

    PubMed

    Ferrarini, L; Trioni, M

    1996-01-01

    This paper proposes a simple and effective way to represent shared resources in manufacturing systems within a Petri net model previously developed. Such a model relies on the bottom-up and modular approach to synthesis and analysis. The designer may define elementary tasks and then connect them with one another with three kinds of connections: self-loops, inhibitor arcs and simple synchronizations. A theoretical framework has been established for the analysis of liveness and reversibility of such models. The generalized synchronization, here formalized, represents an extension of the simple synchronization, allowing the merging of suitable subnets among elementary tasks. It is proved that under suitable, but not restrictive, hypotheses the generalized synchronization may be substituted for a simple one, thus being compatible with all the developed theoretical body.

  9. [Comparison of simple pooling and bivariate model used in meta-analyses of diagnostic test accuracy published in Chinese journals].

    PubMed

    Huang, Yuan-sheng; Yang, Zhi-rong; Zhan, Si-yan

    2015-06-18

    To investigate the use of simple pooling and bivariate model in meta-analyses of diagnostic test accuracy (DTA) published in Chinese journals (January to November, 2014), compare the differences of results from these two models, and explore the impact of between-study variability of sensitivity and specificity on the differences. DTA meta-analyses were searched through Chinese Biomedical Literature Database (January to November, 2014). Details in models and data for fourfold table were extracted. Descriptive analysis was conducted to investigate the prevalence of the use of simple pooling method and bivariate model in the included literature. Data were re-analyzed with the two models respectively. Differences in the results were examined by Wilcoxon signed rank test. How the results differences were affected by between-study variability of sensitivity and specificity, expressed by I2, was explored. The 55 systematic reviews, containing 58 DTA meta-analyses, were included and 25 DTA meta-analyses were eligible for re-analysis. Simple pooling was used in 50 (90.9%) systematic reviews and bivariate model in 1 (1.8%). The remaining 4 (7.3%) articles used other models pooling sensitivity and specificity or pooled neither of them. Of the reviews simply pooling sensitivity and specificity, 41(82.0%) were at the risk of wrongly using Meta-disc software. The differences in medians of sensitivity and specificity between two models were both 0.011 (P<0.001, P=0.031 respectively). Greater differences could be found as I2 of sensitivity or specificity became larger, especially when I2>75%. Most DTA meta-analyses published in Chinese journals(January to November, 2014) combine the sensitivity and specificity by simple pooling. Meta-disc software can pool the sensitivity and specificity only through fixed-effect model, but a high proportion of authors think it can implement random-effect model. Simple pooling tends to underestimate the results compared with bivariate model. The greater the between-study variance is, the more likely the simple pooling has larger deviation. It is necessary to increase the knowledge level of statistical methods and software for meta-analyses of DTA data.

  10. A simple rain attenuation model for earth-space radio links operating at 10-35 GHz

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Yon, K. M.

    1986-01-01

    The simple attenuation model has been improved from an earlier version and now includes the effect of wave polarization. The model is for the prediction of rain attenuation statistics on earth-space communication links operating in the 10-35 GHz band. Simple calculations produce attenuation values as a function of average rain rate. These together with rain rate statistics (either measured or predicted) can be used to predict annual rain attenuation statistics. In this paper model predictions are compared to measured data from a data base of 62 experiments performed in the U.S., Europe, and Japan. Comparisons are also made to predictions from other models.

  11. "Back of the Spoon" Outlook of Coanda Effect

    ERIC Educational Resources Information Center

    Lopez-Arias, T.; Gratton, L. M.; Bon, S.; Oss, S.

    2009-01-01

    The tendency of fluids to follow, in certain conditions, curved profiles is often referred to as the Coanda effect. A simple experiment modeling the common teapot effect, the curling of the liquid around the beak when it is poured, can be used in the classroom to illustrate simple dynamic principles and basic fluid dynamics concepts as well.

  12. Effect of lethality on the extinction and on the error threshold of quasispecies.

    PubMed

    Tejero, Hector; Marín, Arturo; Montero, Francisco

    2010-02-21

    In this paper the effect of lethality on error threshold and extinction has been studied in a population of error-prone self-replicating molecules. For given lethality and a simple fitness landscape, three dynamic regimes can be obtained: quasispecies, error catastrophe, and extinction. Using a simple model in which molecules are classified as master, lethal and non-lethal mutants, it is possible to obtain the mutation rates of the transitions between the three regimes analytically. The numerical resolution of the extended model, in which molecules are classified depending on their Hamming distance to the master sequence, confirms the results obtained in the simple model and shows how an error catastrophe regime changes when lethality is taken in account. (c) 2009 Elsevier Ltd. All rights reserved.

  13. A simple method for assessing occupational exposure via the one-way random effects model.

    PubMed

    Krishnamoorthy, K; Mathew, Thomas; Peng, Jie

    2016-11-01

    A one-way random effects model is postulated for the log-transformed shift-long personal exposure measurements, where the random effect in the model represents an effect due to the worker. Simple closed-form confidence intervals are proposed for the relevant parameters of interest using the method of variance estimates recovery (MOVER). The performance of the confidence bounds is evaluated and compared with those based on the generalized confidence interval approach. Comparison studies indicate that the proposed MOVER confidence bounds are better than the generalized confidence bounds for the overall mean exposure and an upper percentile of the exposure distribution. The proposed methods are illustrated using a few examples involving industrial hygiene data.

  14. Effects of host social hierarchy on disease persistence.

    PubMed

    Davidson, Ross S; Marion, Glenn; Hutchings, Michael R

    2008-08-07

    The effects of social hierarchy on population dynamics and epidemiology are examined through a model which contains a number of fundamental features of hierarchical systems, but is simple enough to allow analytical insight. In order to allow for differences in birth rates, contact rates and movement rates among different sets of individuals the population is first divided into subgroups representing levels in the hierarchy. Movement, representing dominance challenges, is allowed between any two levels, giving a completely connected network. The model includes hierarchical effects by introducing a set of dominance parameters which affect birth rates in each social level and movement rates between social levels, dependent upon their rank. Although natural hierarchies vary greatly in form, the skewing of contact patterns, introduced here through non-uniform dominance parameters, has marked effects on the spread of disease. A simple homogeneous mixing differential equation model of a disease with SI dynamics in a population subject to simple birth and death process is presented and it is shown that the hierarchical model tends to this as certain parameter regions are approached. Outside of these parameter regions correlations within the system give rise to deviations from the simple theory. A Gaussian moment closure scheme is developed which extends the homogeneous model in order to take account of correlations arising from the hierarchical structure, and it is shown that the results are in reasonable agreement with simulations across a range of parameters. This approach helps to elucidate the origin of hierarchical effects and shows that it may be straightforward to relate the correlations in the model to measurable quantities which could be used to determine the importance of hierarchical corrections. Overall, hierarchical effects decrease the levels of disease present in a given population compared to a homogeneous unstructured model, but show higher levels of disease than structured models with no hierarchy. The separation between these three models is greatest when the rate of dominance challenges is low, reducing mixing, and when the disease prevalence is low. This suggests that these effects will often need to be considered in models being used to examine the impact of control strategies where the low disease prevalence behaviour of a model is critical.

  15. Water's hydrogen bonds in the hydrophobic effect: a simple model.

    PubMed

    Xu, Huafeng; Dill, Ken A

    2005-12-15

    We propose a simple analytical model to account for water's hydrogen bonds in the hydrophobic effect. It is based on computing a mean-field partition function for a water molecule in the first solvation shell around a solute molecule. The model treats the orientational restrictions from hydrogen bonding, and utilizes quantities that can be obtained from bulk water simulations. We illustrate the principles in a 2-dimensional Mercedes-Benz-like model. Our model gives good predictions for the heat capacity of hydrophobic solvation, reproduces the solvation energies and entropies at different temperatures with only one fitting parameter, and accounts for the solute size dependence of the hydrophobic effect. Our model supports the view that water's hydrogen bonding propensity determines the temperature dependence of the hydrophobic effect. It explains the puzzling experimental observation that dissolving a nonpolar solute in hot water has positive entropy.

  16. Chemical Kinetics, Heat Transfer, and Sensor Dynamics Revisited in a Simple Experiment

    ERIC Educational Resources Information Center

    Sad, Maria E.; Sad, Mario R.; Castro, Alberto A.; Garetto, Teresita F.

    2008-01-01

    A simple experiment about thermal effects in chemical reactors is described, which can be used to illustrate chemical reactor models, the determination and validation of their parameters, and some simple principles of heat transfer and sensor dynamics. It is based in the exothermic reaction between aqueous solutions of sodium thiosulfate and…

  17. A Simple Probabilistic Combat Model

    DTIC Science & Technology

    2016-06-13

    This page intentionally left blank. 1. INTRODUCTION The Lanchester combat model1 is a simple way to assess the effects of quantity and quality...case model. For the random case, assume R red weapons are allocated to B blue weapons randomly. We are interested in the distribution of weapons...since the initial condition is very close to the break even line. What is more interesting is that the probability density tends to concentrate at

  18. Applying 3-PG, a simple process-based model designed to produce practical results, to data from loblolly pine experiments

    Treesearch

    Joe J. Landsberg; Kurt H. Johnsen; Timothy J. Albaugh; H. Lee Allen; Steven E. McKeand

    2001-01-01

    3-PG is a simple process-based model that requires few parameter values and only readily available input data. We tested the structure of the model by calibrating it against loblolly pine data from the control treatment of the SETRES experiment in Scotland County, NC, then altered the fertility rating to simulate the effects of fertilization. There was excellent...

  19. A Simple Double-Source Model for Interference of Capillaries

    ERIC Educational Resources Information Center

    Hou, Zhibo; Zhao, Xiaohong; Xiao, Jinghua

    2012-01-01

    A simple but physically intuitive double-source model is proposed to explain the interferogram of a laser-capillary system, where two effective virtual sources are used to describe the rays reflected by and transmitted through the capillary. The locations of the two virtual sources are functions of the observing positions on the target screen. An…

  20. A Simple Computer-Aided Three-Dimensional Molecular Modeling for the Octant Rule

    ERIC Educational Resources Information Center

    Kang, Yinan; Kang, Fu-An

    2011-01-01

    The Moffitt-Woodward-Moscowitz-Klyne-Djerassi octant rule is one of the most successful empirical rules in organic chemistry. However, the lack of a simple effective modeling method for the octant rule in the past 50 years has posed constant difficulties for researchers, teachers, and students, particularly the young generations, to learn and…

  1. SIMPL: A Simplified Model-Based Program for the Analysis and Visualization of Groundwater Rebound in Abandoned Mines to Prevent Contamination of Water and Soils by Acid Mine Drainage

    PubMed Central

    Kim, Sung-Min

    2018-01-01

    Cessation of dewatering following underground mine closure typically results in groundwater rebound, because mine voids and surrounding strata undergo flooding up to the levels of the decant points, such as shafts and drifts. SIMPL (Simplified groundwater program In Mine workings using the Pipe equation and Lumped parameter model), a simplified lumped parameter model-based program for predicting groundwater levels in abandoned mines, is presented herein. The program comprises a simulation engine module, 3D visualization module, and graphical user interface, which aids data processing, analysis, and visualization of results. The 3D viewer facilitates effective visualization of the predicted groundwater level rebound phenomenon together with a topographic map, mine drift, goaf, and geological properties from borehole data. SIMPL is applied to data from the Dongwon coal mine and Dalsung copper mine in Korea, with strong similarities in simulated and observed results. By considering mine workings and interpond connections, SIMPL can thus be used to effectively analyze and visualize groundwater rebound. In addition, the predictions by SIMPL can be utilized to prevent the surrounding environment (water and soil) from being polluted by acid mine drainage. PMID:29747480

  2. Finite Feedback Cycling in Structural Equation Models

    ERIC Educational Resources Information Center

    Hayduk, Leslie A.

    2009-01-01

    In models containing reciprocal effects, or longer causal loops, the usual effect estimates assume that any effect touching a loop initiates an infinite cycling of effects around that loop. The real world, in contrast, might permit only finite feedback cycles. I use a simple hypothetical model to demonstrate that if the world permits only a few…

  3. Simple model of a photoacoustic system as a CR circuit

    NASA Astrophysics Data System (ADS)

    Fukuhara, Akiko; Kaneko, Fumitoshi; Ogawa, Naohisa

    2012-05-01

    We introduce the photoacoustic educational system (PAES), by which we can identify which gas causes the greenhouse effect in a classroom (Kaneko et al 2010 J. Chem. Educ. 87 202-4). PAES is an experimental system in which a pulse of infrared (IR) is absorbed into gas as internal energy, an oscillation of pressure (sound) appears, and then we can measure the absorptance of IR by the strength of sound. In this paper, we construct a simple mathematical model for PAES which is equivalent to the CR circuit. The energy absorption of an IR pulse into gas corresponds to the charge of a condenser and the heat diffusion to the outside corresponds to the energy dissipation by electric resistance. We analyse the experimental results by using this simple model, and check its validity. Although the model is simple, it explains phenomena occurring in PAES and can be a good educational resource.

  4. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity.

    PubMed

    Brette, Romain; Gerstner, Wulfram

    2005-11-01

    We introduce a two-dimensional integrate-and-fire model that combines an exponential spike mechanism with an adaptation equation, based on recent theoretical findings. We describe a systematic method to estimate its parameters with simple electrophysiological protocols (current-clamp injection of pulses and ramps) and apply it to a detailed conductance-based model of a regular spiking neuron. Our simple model predicts correctly the timing of 96% of the spikes (+/-2 ms) of the detailed model in response to injection of noisy synaptic conductances. The model is especially reliable in high-conductance states, typical of cortical activity in vivo, in which intrinsic conductances were found to have a reduced role in shaping spike trains. These results are promising because this simple model has enough expressive power to reproduce qualitatively several electrophysiological classes described in vitro.

  5. A simple, analytical, axisymmetric microburst model for downdraft estimation

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.

    1991-01-01

    A simple analytical microburst model was developed for use in estimating vertical winds from horizontal wind measurements. It is an axisymmetric, steady state model that uses shaping functions to satisfy the mass continuity equation and simulate boundary layer effects. The model is defined through four model variables: the radius and altitude of the maximum horizontal wind, a shaping function variable, and a scale factor. The model closely agrees with a high fidelity analytical model and measured data, particularily in the radial direction and at lower altitudes. At higher altitudes, the model tends to overestimate the wind magnitude relative to the measured data.

  6. A simple model for the estimation of rain-induced attenuation along earth-space paths at millimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Dishman, W. K.

    1982-01-01

    A simple attenuation model (SAM) is presented for estimating rain-induced attenuation along an earth-space path. The rain model uses an effective spatial rain distribution which is uniform for low rain rates and which has an exponentially shaped horizontal rain profile for high rain rates. When compared to other models, the SAM performed well in the important region of low percentages of time, and had the lowest percent standard deviation of all percent time values tested.

  7. Comparing and combining process-based crop models and statistical models with some implications for climate change

    NASA Astrophysics Data System (ADS)

    Roberts, Michael J.; Braun, Noah O.; Sinclair, Thomas R.; Lobell, David B.; Schlenker, Wolfram

    2017-09-01

    We compare predictions of a simple process-based crop model (Soltani and Sinclair 2012), a simple statistical model (Schlenker and Roberts 2009), and a combination of both models to actual maize yields on a large, representative sample of farmer-managed fields in the Corn Belt region of the United States. After statistical post-model calibration, the process model (Simple Simulation Model, or SSM) predicts actual outcomes slightly better than the statistical model, but the combined model performs significantly better than either model. The SSM, statistical model and combined model all show similar relationships with precipitation, while the SSM better accounts for temporal patterns of precipitation, vapor pressure deficit and solar radiation. The statistical and combined models show a more negative impact associated with extreme heat for which the process model does not account. Due to the extreme heat effect, predicted impacts under uniform climate change scenarios are considerably more severe for the statistical and combined models than for the process-based model.

  8. Model for quantum effects in stellar collapse

    NASA Astrophysics Data System (ADS)

    Arderucio-Costa, Bruno; Unruh, William G.

    2018-01-01

    We present a simple model for stellar collapse and evaluate the quantum mechanical stress-energy tensor to argue that quantum effects do not play an important role for the collapse of astrophysical objects.

  9. Technical Report 1205: A Simple Probabilistic Combat Model

    DTIC Science & Technology

    2016-07-08

    This page intentionally left blank. 1. INTRODUCTION The Lanchester combat model1 is a simple way to assess the effects of quantity and quality...model. For the random case, assume R red weapons are allocated to B blue weapons randomly. We are interested in the distribution of weapons assigned...the initial condition is very close to the break even line. What is more interesting is that the probability density tends to concentrate at either a

  10. Simple and Inexpensive 3D Printed Filter Fluorometer Designs: User-Friendly Instrument Models for Laboratory Learning and Outreach Activities

    ERIC Educational Resources Information Center

    Porter, Lon A., Jr.; Chapman, Cole A.; Alaniz, Jacob A.

    2017-01-01

    In this work, a versatile and user-friendly selection of stereolithography (STL) files and computer-aided design (CAD) models are shared to assist educators and students in the production of simple and inexpensive 3D printed filter fluorometer instruments. These devices are effective resources for supporting active learners in the exploration of…

  11. Robust optical flow using adaptive Lorentzian filter for image reconstruction under noisy condition

    NASA Astrophysics Data System (ADS)

    Kesrarat, Darun; Patanavijit, Vorapoj

    2017-02-01

    In optical flow for motion allocation, the efficient result in Motion Vector (MV) is an important issue. Several noisy conditions may cause the unreliable result in optical flow algorithms. We discover that many classical optical flows algorithms perform better result under noisy condition when combined with modern optimized model. This paper introduces effective robust models of optical flow by using Robust high reliability spatial based optical flow algorithms using the adaptive Lorentzian norm influence function in computation on simple spatial temporal optical flows algorithm. Experiment on our proposed models confirm better noise tolerance in optical flow's MV under noisy condition when they are applied over simple spatial temporal optical flow algorithms as a filtering model in simple frame-to-frame correlation technique. We illustrate the performance of our models by performing an experiment on several typical sequences with differences in movement speed of foreground and background where the experiment sequences are contaminated by the additive white Gaussian noise (AWGN) at different noise decibels (dB). This paper shows very high effectiveness of noise tolerance models that they are indicated by peak signal to noise ratio (PSNR).

  12. Predicting the cover-up of dead branches using a simple single regressor equation

    Treesearch

    Christopher M. Oswalt; Wayne K. Clatterbuck; E.C. Burkhardt

    2007-01-01

    Information on the effects of branch diameter on branch occlusion is necessary for building models capable of forecasting the effect of management decisions on tree or log grade. We investigated the relationship between branch size and subsequent branch occlusion through diameter growth with special attention toward the development of a simple single regressor equation...

  13. Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables

    PubMed Central

    Rosenblum, Michael; van der Laan, Mark J.

    2010-01-01

    Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymptotically unbiased even when the working model used is arbitrarily misspecified. Furthermore, these estimators are locally efficient. As a special case of our main result, we consider a simple Poisson working model containing only main terms; in this case, we prove the maximum likelihood estimate of the coefficient corresponding to the treatment variable is an asymptotically unbiased estimator of the marginal log rate ratio, even when the working model is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear models. Our results demonstrate one application of targeted maximum likelihood estimation. PMID:20628636

  14. Are V1 Simple Cells Optimized for Visual Occlusions? A Comparative Study

    PubMed Central

    Bornschein, Jörg; Henniges, Marc; Lücke, Jörg

    2013-01-01

    Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex. PMID:23754938

  15. A simple electric circuit model for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lazarou, Stavros; Pyrgioti, Eleftheria; Alexandridis, Antonio T.

    A simple and novel dynamic circuit model for a proton exchange membrane (PEM) fuel cell suitable for the analysis and design of power systems is presented. The model takes into account phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The proposed circuit model includes three resistors to approach adequately these phenomena; however, since for the PEM dynamic performance connection or disconnection of an additional load is of crucial importance, the proposed model uses two saturable inductors accompanied by an ideal transformer to simulate the double layer charging effect during load step changes. To evaluate the effectiveness of the proposed model its dynamic performance under load step changes is simulated. Experimental results coming from a commercial PEM fuel cell module that uses hydrogen from a pressurized cylinder at the anode and atmospheric oxygen at the cathode, clearly verify the simulation results.

  16. Effect of the Four-Step Learning Cycle Model on Students' Understanding of Concepts Related to Simple Harmonic Motion

    ERIC Educational Resources Information Center

    Madu, B. C.

    2012-01-01

    The study explored the efficacy of four-step (4-E) learning cycle approach on students understanding of concepts related to Simple Harmonic Motion (SHM). 124 students (63 for experimental group and 61 for control group) participated in the study. The students' views and ideas in simple Harmonic Achievement test were analyzed qualitatively. The…

  17. Modelling unsupervised online-learning of artificial grammars: linking implicit and statistical learning.

    PubMed

    Rohrmeier, Martin A; Cross, Ian

    2014-07-01

    Humans rapidly learn complex structures in various domains. Findings of above-chance performance of some untrained control groups in artificial grammar learning studies raise questions about the extent to which learning can occur in an untrained, unsupervised testing situation with both correct and incorrect structures. The plausibility of unsupervised online-learning effects was modelled with n-gram, chunking and simple recurrent network models. A novel evaluation framework was applied, which alternates forced binary grammaticality judgments and subsequent learning of the same stimulus. Our results indicate a strong online learning effect for n-gram and chunking models and a weaker effect for simple recurrent network models. Such findings suggest that online learning is a plausible effect of statistical chunk learning that is possible when ungrammatical sequences contain a large proportion of grammatical chunks. Such common effects of continuous statistical learning may underlie statistical and implicit learning paradigms and raise implications for study design and testing methodologies. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Forgetting in immediate serial recall: decay, temporal distinctiveness, or interference?

    PubMed

    Oberauer, Klaus; Lewandowsky, Stephan

    2008-07-01

    Three hypotheses of forgetting from immediate memory were tested: time-based decay, decreasing temporal distinctiveness, and interference. The hypotheses were represented by 3 models of serial recall: the primacy model, the SIMPLE (scale-independent memory, perception, and learning) model, and the SOB (serial order in a box) model, respectively. The models were fit to 2 experiments investigating the effect of filled delays between items at encoding or at recall. Short delays between items, filled with articulatory suppression, led to massive impairment of memory relative to a no-delay baseline. Extending the delays had little additional effect, suggesting that the passage of time alone does not cause forgetting. Adding a choice reaction task in the delay periods to block attention-based rehearsal did not change these results. The interference-based SOB fit the data best; the primacy model overpredicted the effect of lengthening delays, and SIMPLE was unable to explain the effect of delays at encoding. The authors conclude that purely temporal views of forgetting are inadequate. Copyright (c) 2008 APA, all rights reserved.

  19. Design Considerations for Heavily-Doped Cryogenic Schottky Diode Varactor Multipliers

    NASA Technical Reports Server (NTRS)

    Schlecht, E.; Maiwald, F.; Chattopadhyay, G.; Martin, S.; Mehdi, I.

    2001-01-01

    Diode modeling for Schottky varactor frequency multipliers above 500 GHz is presented with special emphasis placed on simple models and fitted equations for rapid circuit design. Temperature- and doping-dependent mobility, resistivity, and avalanche current multiplication and breakdown are presented. Next is a discussion of static junction current, including the effects of tunneling as well as thermionic emission. These results have been compared to detailed measurements made down to 80 K on diodes fabricated at JPL, followed by a discussion of the effect on multiplier efficiency. Finally, a simple model of current saturation in the undepleted active layer suitable for inclusion in harmonic balance simulators is derived.

  20. Influence of collision on the flow through in-vitro rigid models of the vocal folds

    NASA Astrophysics Data System (ADS)

    Deverge, M.; Pelorson, X.; Vilain, C.; Lagrée, P.-Y.; Chentouf, F.; Willems, J.; Hirschberg, A.

    2003-12-01

    Measurements of pressure in oscillating rigid replicas of vocal folds are presented. The pressure upstream of the replica is used as input to various theoretical approximations to predict the pressure within the glottis. As the vocal folds collide the classical quasisteady boundary layer theory fails. It appears however that for physiologically reasonable shapes of the replicas, viscous effects are more important than the influence of the flow unsteadiness due to the wall movement. A simple model based on a quasisteady Bernoulli equation corrected for viscous effect, combined with a simple boundary layer separation model does globally predict the observed pressure behavior.

  1. Simple potential model for interaction of dark particles with massive bodies

    NASA Astrophysics Data System (ADS)

    Takibayev, Nurgali

    2018-01-01

    A simple model for interaction of dark particles with matter based on resonance behavior in a three-body system is proposed. The model describes resonant amplification of effective interaction between two massive bodies at large distances between them. The phenomenon is explained by catalytic action of dark particles rescattering at a system of two heavy bodies which are understood here as the big stellar objects. Resonant amplification of the effective interaction between the two heavy bodies imitates the increase in their mass while their true gravitational mass remains unchanged. Such increased interaction leads to more pronounced gravitational lensing of bypassing light. It is shown that effective interaction between the heavy bodies is changed at larger distances and can transform into repulsive action.

  2. Estimation of surface temperature in remote pollution measurement experiments

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1978-01-01

    A simple algorithm has been developed for estimating the actual surface temperature by applying corrections to the effective brightness temperature measured by radiometers mounted on remote sensing platforms. Corrections to effective brightness temperature are computed using an accurate radiative transfer model for the 'basic atmosphere' and several modifications of this caused by deviations of the various atmospheric and surface parameters from their base model values. Model calculations are employed to establish simple analytical relations between the deviations of these parameters and the additional temperature corrections required to compensate for them. Effects of simultaneous variation of two parameters are also examined. Use of these analytical relations instead of detailed radiative transfer calculations for routine data analysis results in a severalfold reduction in computation costs.

  3. A study of the effect of space-dependent neutronics on stochastically-induced bifurcations in BWR dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Analytis, G.T.

    1995-09-01

    A non-linear one-group space-dependent neutronic model for a finite one-dimensional core is coupled with a simple BWR feed-back model. In agreement with results obtained by the authors who originally developed the point-kinetics version of this model, we shall show numerically that stochastic reactivity excitations may result in limit-cycles and eventually in a chaotic behaviour, depending on the magnitude of the feed-back coefficient K. In the framework of this simple space-dependent model, the effect of the non-linearities on the different spatial harmonics is studied and the importance of the space-dependent effects is exemplified and assessed in terms of the importance ofmore » the higher harmonics. It is shown that under certain conditions, when the limit-cycle-type develop, the neutron spectra may exhibit strong space-dependent effects.« less

  4. Effects of translational and rotational degrees of freedom on properties of the Mercedes–Benz water model

    PubMed Central

    Urbic, T.; Mohoric, T.

    2017-01-01

    Non–equilibrium Monte Carlo and molecular dynamics simulations are used to study the effect of translational and rotational degrees of freedom on the structural and thermodynamic properties of the simple Mercedes–Benz water model. We establish a non–equilibrium steady state where rotational and translational temperatures can be tuned. We separately show that Monte Carlo simulations can be used to study non-equilibrium properties if sampling is performed correctly. By holding one of the temperatures constant and varying the other one, we investigate the effect of faster motion in the corresponding degrees of freedom on the properties of the simple water model. In particular, the situation where the rotational temperature exceeded the translational one is mimicking the effects of microwaves on the water model. A decrease of rotational temperature leads to the higher structural order while an increase causes the structure to be more Lennard–Jones fluid like.

  5. Effects of translational and rotational degrees of freedom on properties of the Mercedes-Benz water model

    NASA Astrophysics Data System (ADS)

    Urbic, T.; Mohoric, T.

    2017-03-01

    Non-equilibrium Monte Carlo and molecular dynamics simulations are used to study the effect of translational and rotational degrees of freedom on the structural and thermodynamic properties of the simple Mercedes-Benz water model. We establish a non-equilibrium steady state where rotational and translational temperatures can be tuned. We separately show that Monte Carlo simulations can be used to study non-equilibrium properties if sampling is performed correctly. By holding one of the temperatures constant and varying the other one, we investigate the effect of faster motion in the corresponding degrees of freedom on the properties of the simple water model. In particular, the situation where the rotational temperature exceeded the translational one is mimicking the effects of microwaves on the water model. A decrease of rotational temperature leads to the higher structural order while an increase causes the structure to be more Lennard-Jones fluid like.

  6. Effects of Most to Least Prompting on Teaching Simple Progression Swimming Skill for Children with Autism

    ERIC Educational Resources Information Center

    Yilmaz, Ilker; Konukman, Ferman; Birkan, Binyamin; Yanardag, Mehmet

    2010-01-01

    Effects of most to least prompting on teaching simple progression swimming skill for children with autism were investigated. A single subject multiple baseline model across subjects with probe conditions was used. Participants were three boys, 9 years old. Data were collected over a 10-week with session three times a week period using the single…

  7. Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JaeHwa Koh; DuckJoo Yoon; Chang H. Oh

    2010-07-01

    An electrolyzer model for the analysis of a hydrogen-production system using a solid oxide electrolysis cell (SOEC) has been developed, and the effects for principal parameters have been estimated by sensitivity studies based on the developed model. The main parameters considered are current density, area specific resistance, temperature, pressure, and molar fraction and flow rates in the inlet and outlet. Finally, a simple model for a high-temperature hydrogen-production system using the solid oxide electrolysis cell integrated with very high temperature reactors is estimated.

  8. Fitting mechanistic epidemic models to data: A comparison of simple Markov chain Monte Carlo approaches.

    PubMed

    Li, Michael; Dushoff, Jonathan; Bolker, Benjamin M

    2018-07-01

    Simple mechanistic epidemic models are widely used for forecasting and parameter estimation of infectious diseases based on noisy case reporting data. Despite the widespread application of models to emerging infectious diseases, we know little about the comparative performance of standard computational-statistical frameworks in these contexts. Here we build a simple stochastic, discrete-time, discrete-state epidemic model with both process and observation error and use it to characterize the effectiveness of different flavours of Bayesian Markov chain Monte Carlo (MCMC) techniques. We use fits to simulated data, where parameters (and future behaviour) are known, to explore the limitations of different platforms and quantify parameter estimation accuracy, forecasting accuracy, and computational efficiency across combinations of modeling decisions (e.g. discrete vs. continuous latent states, levels of stochasticity) and computational platforms (JAGS, NIMBLE, Stan).

  9. A simple formula for the effective complex conductivity of periodic fibrous composites with interfacial impedance and applications to biological tissues

    NASA Astrophysics Data System (ADS)

    Bisegna, Paolo; Caselli, Federica

    2008-06-01

    This paper presents a simple analytical expression for the effective complex conductivity of a periodic hexagonal arrangement of conductive circular cylinders embedded in a conductive matrix, with interfaces exhibiting a capacitive impedance. This composite material may be regarded as an idealized model of a biological tissue comprising tubular cells, such as skeletal muscle. The asymptotic homogenization method is adopted, and the corresponding local problem is solved by resorting to Weierstrass elliptic functions. The effectiveness of the present analytical result is proved by convergence analysis and comparison with finite-element solutions and existing models.

  10. How effective is advertising in duopoly markets?

    NASA Astrophysics Data System (ADS)

    Sznajd-Weron, K.; Weron, R.

    2003-06-01

    A simple Ising spin model which can describe the mechanism of advertising in a duopoly market is proposed. In contrast to other agent-based models, the influence does not flow inward from the surrounding neighbors to the center site, but spreads outward from the center to the neighbors. The model thus describes the spread of opinions among customers. It is shown via standard Monte Carlo simulations that very simple rules and inclusion of an external field-an advertising campaign-lead to phase transitions.

  11. Particle-tracking analysis of contributing areas of public-supply wells in simple and complex flow systems, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Barlow, Paul M.

    1997-01-01

    Steady-state, two- and three-dimensional, ground-water-flow models coupled with particle tracking were evaluated to determine their effectiveness in delineating contributing areas of wells pumping from stratified-drift aquifers of Cape Cod, Massachusetts. Several contributing areas delineated by use of the three-dimensional models do not conform to simple ellipsoidal shapes that are typically delineated by use of two-dimensional analytical and numerical modeling techniques and included discontinuous areas of the water table.

  12. Elucidating the effects of adsorbent flexibility on fluid adsorption using simple models and flat-histogram sampling methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Vincent K., E-mail: vincent.shen@nist.gov; Siderius, Daniel W.

    2014-06-28

    Using flat-histogram Monte Carlo methods, we investigate the adsorptive behavior of the square-well fluid in two simple slit-pore-like models intended to capture fundamental characteristics of flexible adsorbent materials. Both models require as input thermodynamic information about the flexible adsorbent material itself. An important component of this work involves formulating the flexible pore models in the appropriate thermodynamic (statistical mechanical) ensembles, namely, the osmotic ensemble and a variant of the grand-canonical ensemble. Two-dimensional probability distributions, which are calculated using flat-histogram methods, provide the information necessary to determine adsorption thermodynamics. For example, we are able to determine precisely adsorption isotherms, (equilibrium) phasemore » transition conditions, limits of stability, and free energies for a number of different flexible adsorbent materials, distinguishable as different inputs into the models. While the models used in this work are relatively simple from a geometric perspective, they yield non-trivial adsorptive behavior, including adsorption-desorption hysteresis solely due to material flexibility and so-called “breathing” of the adsorbent. The observed effects can in turn be tied to the inherent properties of the bare adsorbent. Some of the effects are expected on physical grounds while others arise from a subtle balance of thermodynamic and mechanical driving forces. In addition, the computational strategy presented here can be easily applied to more complex models for flexible adsorbents.« less

  13. Elucidating the effects of adsorbent flexibility on fluid adsorption using simple models and flat-histogram sampling methods

    NASA Astrophysics Data System (ADS)

    Shen, Vincent K.; Siderius, Daniel W.

    2014-06-01

    Using flat-histogram Monte Carlo methods, we investigate the adsorptive behavior of the square-well fluid in two simple slit-pore-like models intended to capture fundamental characteristics of flexible adsorbent materials. Both models require as input thermodynamic information about the flexible adsorbent material itself. An important component of this work involves formulating the flexible pore models in the appropriate thermodynamic (statistical mechanical) ensembles, namely, the osmotic ensemble and a variant of the grand-canonical ensemble. Two-dimensional probability distributions, which are calculated using flat-histogram methods, provide the information necessary to determine adsorption thermodynamics. For example, we are able to determine precisely adsorption isotherms, (equilibrium) phase transition conditions, limits of stability, and free energies for a number of different flexible adsorbent materials, distinguishable as different inputs into the models. While the models used in this work are relatively simple from a geometric perspective, they yield non-trivial adsorptive behavior, including adsorption-desorption hysteresis solely due to material flexibility and so-called "breathing" of the adsorbent. The observed effects can in turn be tied to the inherent properties of the bare adsorbent. Some of the effects are expected on physical grounds while others arise from a subtle balance of thermodynamic and mechanical driving forces. In addition, the computational strategy presented here can be easily applied to more complex models for flexible adsorbents.

  14. Prediction of quantum interference in molecular junctions using a parabolic diagram: Understanding the origin of Fano and anti- resonances

    NASA Astrophysics Data System (ADS)

    Nozaki, Daijiro; Avdoshenko, Stanislav M.; Sevinçli, Hâldun; Gutierrez, Rafael; Cuniberti, Gianaurelio

    2013-03-01

    Recently the interest in quantum interference (QI) phenomena in molecular devices (molecular junctions) has been growing due to the unique features observed in the transmission spectra. In order to design single molecular devices exploiting QI effects as desired, it is necessary to provide simple rules for predicting the appearance of QI effects such as anti-resonances or Fano line shapes and for controlling them. In this study, we derive a transmission function of a generic molecular junction with a side group (T-shaped molecular junction) using a minimal toy model. We developed a simple method to predict the appearance of quantum interference, Fano resonances or anti- resonances, and its position in the conductance spectrum by introducing a simple graphical representation (parabolic model). Using it we can easily visualize the relation between the key electronic parameters and the positions of normal resonant peaks and anti-resonant peaks induced by quantum interference in the conductance spectrum. We also demonstrate Fano and anti-resonance in T-shaped molecular junctions using a simple tight-binding model. This parabolic model enables one to infer on-site energies of T-shaped molecules and the coupling between side group and main conduction channel from transmission spectra.

  15. Adequate model complexity for scenario analysis of VOC stripping in a trickling filter.

    PubMed

    Vanhooren, H; Verbrugge, T; Boeije, G; Demey, D; Vanrolleghem, P A

    2001-01-01

    Two models describing the stripping of volatile organic contaminants (VOCs) in an industrial trickling filter system are developed. The aim of the models is to investigate the effect of different operating conditions (VOC loads and air flow rates) on the efficiency of VOC stripping and the resulting concentrations in the gas and liquid phases. The first model uses the same principles as the steady-state non-equilibrium activated sludge model Simple Treat, in combination with an existing biofilm model. The second model is a simple mass balance based model only incorporating air and liquid and thus neglecting biofilm effects. In a first approach, the first model was incorporated in a five-layer hydrodynamic model of the trickling filter, using the carrier material design specifications for porosity, water hold-up and specific surface area. A tracer test with lithium was used to validate this approach, and the gas mixing in the filters was studied using continuous CO2 and O2 measurements. With the tracer test results, the biodegradation model was adapted, and it became clear that biodegradation and adsorption to solids can be neglected. On this basis, a simple dynamic mass balance model was built. Simulations with this model reveal that changing the air flow rate in the trickling filter system has little effect on the VOC stripping efficiency at steady state. However, immediately after an air flow rate change, quite high flux and concentration peaks of VOCs can be expected. These phenomena are of major importance for the design of an off-gas treatment facility.

  16. Insights: Simple Models for Teaching Equilibrium and Le Chatelier's Principle.

    ERIC Educational Resources Information Center

    Russell, Joan M.

    1988-01-01

    Presents three models that have been effective for teaching chemical equilibrium and Le Chatelier's principle: (1) the liquid transfer model, (2) the fish model, and (3) the teeter-totter model. Explains each model and its relation to Le Chatelier's principle. (MVL)

  17. Identifying and Evaluating the Relationships that Control a Land Surface Model's Hydrological Behavior

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Mahanama, Sarith P.

    2012-01-01

    The inherent soil moisture-evaporation relationships used in today 's land surface models (LSMs) arguably reflect a lot of guesswork given the lack of contemporaneous evaporation and soil moisture observations at the spatial scales represented by regional and global models. The inherent soil moisture-runoff relationships used in the LSMs are also of uncertain accuracy. Evaluating these relationships is difficult but crucial given that they have a major impact on how the land component contributes to hydrological and meteorological variability within the climate system. The relationships, it turns out, can be examined efficiently and effectively with a simple water balance model framework. The simple water balance model, driven with multi-decadal observations covering the conterminous United States, shows how different prescribed relationships lead to different manifestations of hydrological variability, some of which can be compared directly to observations. Through the testing of a wide suite of relationships, the simple model provides estimates for the underlying relationships that operate in nature and that should be operating in LSMs. We examine the relationships currently used in a number of different LSMs in the context of the simple water balance model results and make recommendations for potential first-order improvements to these LSMs.

  18. Effective moisture penetration depth model for residential buildings: Sensitivity analysis and guidance on model inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Jason; Winkler, Jon

    Moisture buffering of building materials has a significant impact on the building's indoor humidity, and building energy simulations need to model this buffering to accurately predict the humidity. Researchers requiring a simple moisture-buffering approach typically rely on the effective-capacitance model, which has been shown to be a poor predictor of actual indoor humidity. This paper describes an alternative two-layer effective moisture penetration depth (EMPD) model and its inputs. While this model has been used previously, there is a need to understand the sensitivity of this model to uncertain inputs. In this paper, we use the moisture-adsorbent materials exposed to themore » interior air: drywall, wood, and carpet. We use a global sensitivity analysis to determine which inputs are most influential and how the model's prediction capability degrades due to uncertainty in these inputs. We then compare the model's humidity prediction with measured data from five houses, which shows that this model, and a set of simple inputs, can give reasonable prediction of the indoor humidity.« less

  19. Effective moisture penetration depth model for residential buildings: Sensitivity analysis and guidance on model inputs

    DOE PAGES

    Woods, Jason; Winkler, Jon

    2018-01-31

    Moisture buffering of building materials has a significant impact on the building's indoor humidity, and building energy simulations need to model this buffering to accurately predict the humidity. Researchers requiring a simple moisture-buffering approach typically rely on the effective-capacitance model, which has been shown to be a poor predictor of actual indoor humidity. This paper describes an alternative two-layer effective moisture penetration depth (EMPD) model and its inputs. While this model has been used previously, there is a need to understand the sensitivity of this model to uncertain inputs. In this paper, we use the moisture-adsorbent materials exposed to themore » interior air: drywall, wood, and carpet. We use a global sensitivity analysis to determine which inputs are most influential and how the model's prediction capability degrades due to uncertainty in these inputs. We then compare the model's humidity prediction with measured data from five houses, which shows that this model, and a set of simple inputs, can give reasonable prediction of the indoor humidity.« less

  20. Experimental Validation of Lightning-Induced Electromagnetic (Indirect) Coupling to Short Monopole Antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crull, E W; Brown Jr., C G; Perkins, M P

    2008-07-30

    For short monopoles in this low-power case, it has been shown that a simple circuit model is capable of accurate predictions for the shape and magnitude of the antenna response to lightning-generated electric field coupling effects, provided that the elements of the circuit model have accurate values. Numerical EM simulation can be used to provide more accurate values for the circuit elements than the simple analytical formulas, since the analytical formulas are used outside of their region of validity. However, even with the approximate analytical formulas the simple circuit model produces reasonable results, which would improve if more accurate analyticalmore » models were used. This report discusses the coupling analysis approaches taken to understand the interaction between a time-varying EM field and a short monopole antenna, within the context of lightning safety for nuclear weapons at DOE facilities. It describes the validation of a simple circuit model using laboratory study in order to understand the indirect coupling of energy into a part, and the resulting voltage. Results show that in this low-power case, the circuit model predicts peak voltages within approximately 32% using circuit component values obtained from analytical formulas and about 13% using circuit component values obtained from numerical EM simulation. We note that the analytical formulas are used outside of their region of validity. First, the antenna is insulated and not a bare wire and there are perhaps fringing field effects near the termination of the outer conductor that the formula does not take into account. Also, the effective height formula is for a monopole directly over a ground plane, while in the time-domain measurement setup the monopole is elevated above the ground plane by about 1.5-inch (refer to Figure 5).« less

  1. A Simple ELISA Exercise for Undergraduate Biology.

    ERIC Educational Resources Information Center

    Baker, William P.; Moore, Cathy R.

    Understanding of immunological techniques such as the Enzyme Linked Immuno Sorbent Assay (ELISA) is an important part of instructional units in human health, developmental biology, microbiology, and biotechnology. This paper describes a simple ELISA exercise for undergraduate biology that effectively simulates the technique using a paper model.…

  2. A simple algorithm to estimate the effective regional atmospheric parameters for thermal-inertia mapping

    USGS Publications Warehouse

    Watson, K.; Hummer-Miller, S.

    1981-01-01

    A method based solely on remote sensing data has been developed to estimate those meteorological effects which are required for thermal-inertia mapping. It assumes that the atmospheric fluxes are spatially invariant and that the solar, sky, and sensible heat fluxes can be approximated by a simple mathematical form. Coefficients are determined from least-squares method by fitting observational data to our thermal model. A comparison between field measurements and the model-derived flux shows the type of agreement which can be achieved. An analysis of the limitations of the method is also provided. ?? 1981.

  3. Mathematical Modeling for Scrub Typhus and Its Implications for Disease Control.

    PubMed

    Min, Kyung Duk; Cho, Sung Il

    2018-03-19

    The incidence rate of scrub typhus has been increasing in the Republic of Korea. Previous studies have suggested that this trend may have resulted from the effects of climate change on the transmission dynamics among vectors and hosts, but a clear explanation of the process is still lacking. In this study, we applied mathematical models to explore the potential factors that influence the epidemiology of tsutsugamushi disease. We developed mathematical models of ordinary differential equations including human, rodent and mite groups. Two models, including simple and complex models, were developed, and all parameters employed in the models were adopted from previous articles that represent epidemiological situations in the Republic of Korea. The simulation results showed that the force of infection at the equilibrium state under the simple model was 0.236 (per 100,000 person-months), and that in the complex model was 26.796 (per 100,000 person-months). Sensitivity analyses indicated that the most influential parameters were rodent and mite populations and contact rate between them for the simple model, and trans-ovarian transmission for the complex model. In both models, contact rate between humans and mites is more influential than morality rate of rodent and mite group. The results indicate that the effect of controlling either rodents or mites could be limited, and reducing the contact rate between humans and mites is more practical and effective strategy. However, the current level of control would be insufficient relative to the growing mite population. © 2018 The Korean Academy of Medical Sciences.

  4. Model of Market Share Affected by Social Media Reputation

    NASA Astrophysics Data System (ADS)

    Ishii, Akira; Kawahata, Yasuko; Goto, Ujo

    Proposal of market theory to put the effect of social media into account is presented in this paper. The standard market share model in economics is employed as a market theory and the effect of social media is considered quantitatively using the mathematical model for hit phenomena. Using this model, we can estimate the effect of social media in market share as a simple market model simulation using our proposed method.

  5. Simple model of surface roughness for binary collision sputtering simulations

    NASA Astrophysics Data System (ADS)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-02-01

    It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.

  6. Analytical determination of space station response to crew motion and design of suspension system for microgravity experiments

    NASA Technical Reports Server (NTRS)

    Liu, F. C.

    1986-01-01

    The objective of this investigation is to make analytical determination of the acceleration produced by crew motion in an orbiting space station and define design parameters for the suspension system of microgravity experiments. A simple structural model for simulation of the IOC space station is proposed. Mathematical formulation of this model provides the engineers a simple and direct tool for designing an effective suspension system.

  7. Towards a Model for Protein Production Rates

    NASA Astrophysics Data System (ADS)

    Dong, J. J.; Schmittmann, B.; Zia, R. K. P.

    2007-07-01

    In the process of translation, ribosomes read the genetic code on an mRNA and assemble the corresponding polypeptide chain. The ribosomes perform discrete directed motion which is well modeled by a totally asymmetric simple exclusion process (TASEP) with open boundaries. Using Monte Carlo simulations and a simple mean-field theory, we discuss the effect of one or two "bottlenecks" (i.e., slow codons) on the production rate of the final protein. Confirming and extending previous work by Chou and Lakatos, we find that the location and spacing of the slow codons can affect the production rate quite dramatically. In particular, we observe a novel "edge" effect, i.e., an interaction of a single slow codon with the system boundary. We focus in detail on ribosome density profiles and provide a simple explanation for the length scale which controls the range of these interactions.

  8. A Simple Analytic Model for Estimating Mars Ascent Vehicle Mass and Performance

    NASA Technical Reports Server (NTRS)

    Woolley, Ryan C.

    2014-01-01

    The Mars Ascent Vehicle (MAV) is a crucial component in any sample return campaign. In this paper we present a universal model for a two-stage MAV along with the analytic equations and simple parametric relationships necessary to quickly estimate MAV mass and performance. Ascent trajectories can be modeled as two-burn transfers from the surface with appropriate loss estimations for finite burns, steering, and drag. Minimizing lift-off mass is achieved by balancing optimized staging and an optimized path-to-orbit. This model allows designers to quickly find optimized solutions and to see the effects of design choices.

  9. Evidence of complex contagion of information in social media: An experiment using Twitter bots.

    PubMed

    Mønsted, Bjarke; Sapieżyński, Piotr; Ferrara, Emilio; Lehmann, Sune

    2017-01-01

    It has recently become possible to study the dynamics of information diffusion in techno-social systems at scale, due to the emergence of online platforms, such as Twitter, with millions of users. One question that systematically recurs is whether information spreads according to simple or complex dynamics: does each exposure to a piece of information have an independent probability of a user adopting it (simple contagion), or does this probability depend instead on the number of sources of exposure, increasing above some threshold (complex contagion)? Most studies to date are observational and, therefore, unable to disentangle the effects of confounding factors such as social reinforcement, homophily, limited attention, or network community structure. Here we describe a novel controlled experiment that we performed on Twitter using 'social bots' deployed to carry out coordinated attempts at spreading information. We propose two Bayesian statistical models describing simple and complex contagion dynamics, and test the competing hypotheses. We provide experimental evidence that the complex contagion model describes the observed information diffusion behavior more accurately than simple contagion. Future applications of our results include more effective defenses against malicious propaganda campaigns on social media, improved marketing and advertisement strategies, and design of effective network intervention techniques.

  10. Generalized Born Models of Macromolecular Solvation Effects

    NASA Astrophysics Data System (ADS)

    Bashford, Donald; Case, David A.

    2000-10-01

    It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.

  11. The Freter model: a simple model of biofilm formation.

    PubMed

    Jones, Don; Kojouharov, Hristo V; Le, Dung; Smith, Hal

    2003-08-01

    A simple, conceptual model of biofilm formation, due to R. Freter et al. (1983), is studied analytically and numerically in both CSTR and PFR. Two steady state regimes are identified, namely, the complete washout of the microbes from the reactor and the successful colonization of both the wall and bulk fluid. One of these is stable for any particular set of parameter values and sharp and explicit conditions are given for the stability of each. The effects of adding an anti-microbial agent to the CSTR are examined.

  12. Maximum Entropy Discrimination Poisson Regression for Software Reliability Modeling.

    PubMed

    Chatzis, Sotirios P; Andreou, Andreas S

    2015-11-01

    Reliably predicting software defects is one of the most significant tasks in software engineering. Two of the major components of modern software reliability modeling approaches are: 1) extraction of salient features for software system representation, based on appropriately designed software metrics and 2) development of intricate regression models for count data, to allow effective software reliability data modeling and prediction. Surprisingly, research in the latter frontier of count data regression modeling has been rather limited. More specifically, a lack of simple and efficient algorithms for posterior computation has made the Bayesian approaches appear unattractive, and thus underdeveloped in the context of software reliability modeling. In this paper, we try to address these issues by introducing a novel Bayesian regression model for count data, based on the concept of max-margin data modeling, effected in the context of a fully Bayesian model treatment with simple and efficient posterior distribution updates. Our novel approach yields a more discriminative learning technique, making more effective use of our training data during model inference. In addition, it allows of better handling uncertainty in the modeled data, which can be a significant problem when the training data are limited. We derive elegant inference algorithms for our model under the mean-field paradigm and exhibit its effectiveness using the publicly available benchmark data sets.

  13. Calibrating the ECCO ocean general circulation model using Green's functions

    NASA Technical Reports Server (NTRS)

    Menemenlis, D.; Fu, L. L.; Lee, T.; Fukumori, I.

    2002-01-01

    Green's functions provide a simple, yet effective, method to test and calibrate General-Circulation-Model(GCM) parameterizations, to study and quantify model and data errors, to correct model biases and trends, and to blend estimates from different solutions and data products.

  14. Effect of Capillary Tube’s Shape on Capillary Rising Regime for Viscos Fluids

    NASA Astrophysics Data System (ADS)

    Soroush, F.; Moosavi, A.

    2018-05-01

    When properties of the displacing fluid are considered, the rising profile of the penetrating fluid in a capillary tube deviates from its classical Lucas-Washburn profile. Also, shape of capillary tube can affect the rising profile in different aspects. In this article, effect of capillary tube’s shape on the vertical capillary motion in presence of gravity is investigated by considering the properties of the displacing fluid. According to the fact that the differential equation of the capillary rising for a non-simple wall type is very difficult to solve analytically, a finite element simulation model is used for this study. After validation of the simulation model with an experiment that has been done with a simple capillary tube, shape of the capillary tube’s wall is changed in order to understand its effects on the capillary rising and different motion regimes that may appear according to different geometries. The main focus of this article is on the sinusoidal wall shapes and comparing them with a simple wall.

  15. A simple integrated assessment approach to global change simulation and evaluation

    NASA Astrophysics Data System (ADS)

    Ogutu, Keroboto; D'Andrea, Fabio; Ghil, Michael

    2016-04-01

    We formulate and study the Coupled Climate-Economy-Biosphere (CoCEB) model, which constitutes the basis of our idealized integrated assessment approach to simulating and evaluating global change. CoCEB is composed of a physical climate module, based on Earth's energy balance, and an economy module that uses endogenous economic growth with physical and human capital accumulation. A biosphere model is likewise under study and will be coupled to the existing two modules. We concentrate on the interactions between the two subsystems: the effect of climate on the economy, via damage functions, and the effect of the economy on climate, via a control of the greenhouse gas emissions. Simple functional forms of the relation between the two subsystems permit simple interpretations of the coupled effects. The CoCEB model is used to make hypotheses on the long-term effect of investment in emission abatement, and on the comparative efficacy of different approaches to abatement, in particular by investing in low carbon technology, in deforestation reduction or in carbon capture and storage (CCS). The CoCEB model is very flexible and transparent, and it allows one to easily formulate and compare different functional representations of climate change mitigation policies. Using different mitigation measures and their cost estimates, as found in the literature, one is able to compare these measures in a coherent way.

  16. Serial recall of colors: Two models of memory for serial order applied to continuous visual stimuli.

    PubMed

    Peteranderl, Sonja; Oberauer, Klaus

    2018-01-01

    This study investigated the effects of serial position and temporal distinctiveness on serial recall of simple visual stimuli. Participants observed lists of five colors presented at varying, unpredictably ordered interitem intervals, and their task was to reproduce the colors in their order of presentation by selecting colors on a continuous-response scale. To control for the possibility of verbal labeling, articulatory suppression was required in one of two experimental sessions. The predictions were derived through simulation from two computational models of serial recall: SIMPLE represents the class of temporal-distinctiveness models, whereas SOB-CS represents event-based models. According to temporal-distinctiveness models, items that are temporally isolated within a list are recalled more accurately than items that are temporally crowded. In contrast, event-based models assume that the time intervals between items do not affect recall performance per se, although free time following an item can improve memory for that item because of extended time for the encoding. The experimental and the simulated data were fit to an interference measurement model to measure the tendency to confuse items with other items nearby on the list-the locality constraint-in people as well as in the models. The continuous-reproduction performance showed a pronounced primacy effect with no recency, as well as some evidence for transpositions obeying the locality constraint. Though not entirely conclusive, this evidence favors event-based models over a role for temporal distinctiveness. There was also a strong detrimental effect of articulatory suppression, suggesting that verbal codes can be used to support serial-order memory of simple visual stimuli.

  17. Correlation and simple linear regression.

    PubMed

    Eberly, Lynn E

    2007-01-01

    This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.

  18. Spatial interactions in a modified Daisyworld model: Heat diffusivity and greenhouse effects

    NASA Astrophysics Data System (ADS)

    Alberti, T.; Primavera, L.; Vecchio, A.; Lepreti, F.; Carbone, V.

    2015-11-01

    In this work we investigate a modified version of the Daisyworld model, originally introduced by Lovelock and Watson to describe in a simple way the interactions between an Earth-like planet, its biosphere, and the incoming solar radiation. Here a spatial dependency on latitude is included, and both a variable heat diffusivity along latitudes and a simple greenhouse effect description are introduced in the model. We show that the spatial interactions between the variables of the system can locally stabilize the coexistence of the two vegetation types. The feedback on albedo is able to generate equilibrium solutions which can efficiently self-regulate the planet climate, even for values of the solar luminosity relatively far from the current Earth conditions.

  19. Statistical Mechanics of the US Supreme Court

    NASA Astrophysics Data System (ADS)

    Lee, Edward D.; Broedersz, Chase P.; Bialek, William

    2015-07-01

    We build simple models for the distribution of voting patterns in a group, using the Supreme Court of the United States as an example. The maximum entropy model consistent with the observed pairwise correlations among justices' votes, an Ising spin glass, agrees quantitatively with the data. While all correlations (perhaps surprisingly) are positive, the effective pairwise interactions in the spin glass model have both signs, recovering the intuition that ideologically opposite justices negatively influence each another. Despite the competing interactions, a strong tendency toward unanimity emerges from the model, organizing the voting patterns in a relatively simple "energy landscape." Besides unanimity, other energy minima in this landscape, or maxima in probability, correspond to prototypical voting states, such as the ideological split or a tightly correlated, conservative core. The model correctly predicts the correlation of justices with the majority and gives us a measure of their influence on the majority decision. These results suggest that simple models, grounded in statistical physics, can capture essential features of collective decision making quantitatively, even in a complex political context.

  20. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST)

    PubMed Central

    Xu, Chonggang; Gertner, George

    2013-01-01

    Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements. PMID:24143037

  1. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST).

    PubMed

    Xu, Chonggang; Gertner, George

    2011-01-01

    Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements.

  2. Experimental Evaluation of Balance Prediction Models for Sit-to-Stand Movement in the Sagittal Plane

    PubMed Central

    Pena Cabra, Oscar David; Watanabe, Takashi

    2013-01-01

    Evaluation of balance control ability would become important in the rehabilitation training. In this paper, in order to make clear usefulness and limitation of a traditional simple inverted pendulum model in balance prediction in sit-to-stand movements, the traditional simple model was compared to an inertia (rotational radius) variable inverted pendulum model including multiple-joint influence in the balance predictions. The predictions were tested upon experimentation with six healthy subjects. The evaluation showed that the multiple-joint influence model is more accurate in predicting balance under demanding sit-to-stand conditions. On the other hand, the evaluation also showed that the traditionally used simple inverted pendulum model is still reliable in predicting balance during sit-to-stand movement under non-demanding (normal) condition. Especially, the simple model was shown to be effective for sit-to-stand movements with low center of mass velocity at the seat-off. Moreover, almost all trajectories under the normal condition seemed to follow the same control strategy, in which the subjects used extra energy than the minimum one necessary for standing up. This suggests that the safety considerations come first than the energy efficiency considerations during a sit to stand, since the most energy efficient trajectory is close to the backward fall boundary. PMID:24187580

  3. FITPOP, a heuristic simulation model of population dynamics and genetics with special reference to fisheries

    USGS Publications Warehouse

    McKenna, James E.

    2000-01-01

    Although, perceiving genetic differences and their effects on fish population dynamics is difficult, simulation models offer a means to explore and illustrate these effects. I partitioned the intrinsic rate of increase parameter of a simple logistic-competition model into three components, allowing specification of effects of relative differences in fitness and mortality, as well as finite rate of increase. This model was placed into an interactive, stochastic environment to allow easy manipulation of model parameters (FITPOP). Simulation results illustrated the effects of subtle differences in genetic and population parameters on total population size, overall fitness, and sensitivity of the system to variability. Several consequences of mixing genetically distinct populations were illustrated. For example, behaviors such as depression of population size after initial introgression and extirpation of native stocks due to continuous stocking of genetically inferior fish were reproduced. It also was shown that carrying capacity relative to the amount of stocking had an important influence on population dynamics. Uncertainty associated with parameter estimates reduced confidence in model projections. The FITPOP model provided a simple tool to explore population dynamics, which may assist in formulating management strategies and identifying research needs.

  4. Automation effects in a multiloop manual control system

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Mcnally, B. D.

    1986-01-01

    An experimental and analytical study was undertaken to investigate human interaction with a simple multiloop manual control system in which the human's activity was systematically varied by changing the level of automation. The system simulated was the longitudinal dynamics of a hovering helicopter. The automation-systems-stabilized vehicle responses from attitude to velocity to position and also provided for display automation in the form of a flight director. The control-loop structure resulting from the task definition can be considered a simple stereotype of a hierarchical control system. The experimental study was complemented by an analytical modeling effort which utilized simple crossover models of the human operator. It was shown that such models can be extended to the description of multiloop tasks involving preview and precognitive human operator behavior. The existence of time optimal manual control behavior was established for these tasks and the role which internal models may play in establishing human-machine performance was discussed.

  5. Mantle convection and the state of the Earth's interior

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1987-01-01

    During 1983 to 1986 emphasis in the study of mantle convection shifted away from fluid mechanical analysis of simple systems with uniform material properties and simple geometries, toward analysis of the effects of more complicated, presumably more realistic models. The important processes related to mantle convection are considered. The developments in seismology are discussed.

  6. A Simple Geometrical Model for Calculation of the Effective Emissivity in Blackbody Cylindrical Cavities

    NASA Astrophysics Data System (ADS)

    De Lucas, Javier

    2015-03-01

    A simple geometrical model for calculating the effective emissivity in blackbody cylindrical cavities has been developed. The back ray tracing technique and the Monte Carlo method have been employed, making use of a suitable set of coordinates and auxiliary planes. In these planes, the trajectories of individual photons in the successive reflections between the cavity points are followed in detail. The theoretical model is implemented by using simple numerical tools, programmed in Microsoft Visual Basic for Application and Excel. The algorithm is applied to isothermal and non-isothermal diffuse cylindrical cavities with a lid; however, the basic geometrical structure can be generalized to a cylindro-conical shape and specular reflection. Additionally, the numerical algorithm and the program source code can be used, with minor changes, for determining the distribution of the cavity points, where photon absorption takes place. This distribution could be applied to the study of the influence of thermal gradients on the effective emissivity profiles, for example. Validation is performed by analyzing the convergence of the Monte Carlo method as a function of the number of trials and by comparison with published results of different authors.

  7. A cooperation and competition based simple cell receptive field model and study of feed-forward linear and nonlinear contributions to orientation selectivity.

    PubMed

    Bhaumik, Basabi; Mathur, Mona

    2003-01-01

    We present a model for development of orientation selectivity in layer IV simple cells. Receptive field (RF) development in the model, is determined by diffusive cooperation and resource limited competition guided axonal growth and retraction in geniculocortical pathway. The simulated cortical RFs resemble experimental RFs. The receptive field model is incorporated in a three-layer visual pathway model consisting of retina, LGN and cortex. We have studied the effect of activity dependent synaptic scaling on orientation tuning of cortical cells. The mean value of hwhh (half width at half the height of maximum response) in simulated cortical cells is 58 degrees when we consider only the linear excitatory contribution from LGN. We observe a mean improvement of 22.8 degrees in tuning response due to the non-linear spiking mechanisms that include effects of threshold voltage and synaptic scaling factor.

  8. FARSITE: Fire Area Simulator-model development and evaluation

    Treesearch

    Mark A. Finney

    1998-01-01

    A computer simulation model, FARSITE, includes existing fire behavior models for surface, crown, spotting, point-source fire acceleration, and fuel moisture. The model's components and assumptions are documented. Simulations were run for simple conditions that illustrate the effect of individual fire behavior models on two-dimensional fire growth.

  9. Sound transmission through lightweight double-leaf partitions: theoretical modelling

    NASA Astrophysics Data System (ADS)

    Wang, J.; Lu, T. J.; Woodhouse, J.; Langley, R. S.; Evans, J.

    2005-09-01

    This paper presents theoretical modelling of the sound transmission loss through double-leaf lightweight partitions stiffened with periodically placed studs. First, by assuming that the effect of the studs can be replaced with elastic springs uniformly distributed between the sheathing panels, a simple smeared model is established. Second, periodic structure theory is used to develop a more accurate model taking account of the discrete placing of the studs. Both models treat incident sound waves in the horizontal plane only, for simplicity. The predictions of the two models are compared, to reveal the physical mechanisms determining sound transmission. The smeared model predicts relatively simple behaviour, in which the only conspicuous features are associated with coincidence effects with the two types of structural wave allowed by the partition model, and internal resonances of the air between the panels. In the periodic model, many more features are evident, associated with the structure of pass- and stop-bands for structural waves in the partition. The models are used to explain the effects of incidence angle and of the various system parameters. The predictions are compared with existing test data for steel plates with wooden stiffeners, and good agreement is obtained.

  10. Millimeter wave satellite communication studies. Results of the 1981 propagation modeling effort

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Tsolakis, A.; Dishman, W. K.

    1982-01-01

    Theoretical modeling associated with rain effects on millimeter wave propagation is detailed. Three areas of work are discussed. A simple model for prediction of rain attenuation is developed and evaluated. A method for computing scattering from single rain drops is presented. A complete multiple scattering model is described which permits accurate calculation of the effects on dual polarized signals passing through rain.

  11. A gunner model for an AAA tracking task with interrupted observations

    NASA Technical Reports Server (NTRS)

    Yu, C. F.; Wei, K. C.; Vikmanis, M.

    1982-01-01

    The problem of modeling a trained human operator's tracking performance in an anti-aircraft system under various display blanking conditions is discussed. The input to the gunner is the observable tracking error subjected to repeated interruptions (blanking). A simple and effective gunner model was developed. The effect of blanking on the gunner's tracking performance is approached via modeling the observer and controller gains.

  12. Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels

    PubMed Central

    Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J.

    2014-01-01

    This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively “hiding” its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research. PMID:25505378

  13. Investigation of shear damage considering the evolution of anisotropy

    NASA Astrophysics Data System (ADS)

    Kweon, S.

    2013-12-01

    The damage that occurs in shear deformations in view of anisotropy evolution is investigated. It is widely believed in the mechanics research community that damage (or porosity) does not evolve (increase) in shear deformations since the hydrostatic stress in shear is zero. This paper proves that the above statement can be false in large deformations of simple shear. The simulation using the proposed anisotropic ductile fracture model (macro-scale) in this study indicates that hydrostatic stress becomes nonzero and (thus) porosity evolves (increases or decreases) in the simple shear deformation of anisotropic (orthotropic) materials. The simple shear simulation using a crystal plasticity based damage model (meso-scale) shows the same physics as manifested in the above macro-scale model that porosity evolves due to the grain-to-grain interaction, i.e., due to the evolution of anisotropy. Through a series of simple shear simulations, this study investigates the effect of the evolution of anisotropy, i.e., the rotation of the orthotropic axes onto the damage (porosity) evolution. The effect of the evolutions of void orientation and void shape onto the damage (porosity) evolution is investigated as well. It is found out that the interaction among porosity, the matrix anisotropy and void orientation/shape plays a crucial role in the ductile damage of porous materials.

  14. Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels.

    PubMed

    Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J

    2014-01-01

    This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively "hiding" its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research.

  15. Vehicle Surveillance with a Generic, Adaptive, 3D Vehicle Model.

    PubMed

    Leotta, Matthew J; Mundy, Joseph L

    2011-07-01

    In automated surveillance, one is often interested in tracking road vehicles, measuring their shape in 3D world space, and determining vehicle classification. To address these tasks simultaneously, an effective approach is the constrained alignment of a prior model of 3D vehicle shape to images. Previous 3D vehicle models are either generic but overly simple or rigid and overly complex. Rigid models represent exactly one vehicle design, so a large collection is needed. A single generic model can deform to a wide variety of shapes, but those shapes have been far too primitive. This paper uses a generic 3D vehicle model that deforms to match a wide variety of passenger vehicles. It is adjustable in complexity between the two extremes. The model is aligned to images by predicting and matching image intensity edges. Novel algorithms are presented for fitting models to multiple still images and simultaneous tracking while estimating shape in video. Experiments compare the proposed model to simple generic models in accuracy and reliability of 3D shape recovery from images and tracking in video. Standard techniques for classification are also used to compare the models. The proposed model outperforms the existing simple models at each task.

  16. Application of Support Vector Machine to Forex Monitoring

    NASA Astrophysics Data System (ADS)

    Kamruzzaman, Joarder; Sarker, Ruhul A.

    Previous studies have demonstrated superior performance of artificial neural network (ANN) based forex forecasting models over traditional regression models. This paper applies support vector machines to build a forecasting model from the historical data using six simple technical indicators and presents a comparison with an ANN based model trained by scaled conjugate gradient (SCG) learning algorithm. The models are evaluated and compared on the basis of five commonly used performance metrics that measure closeness of prediction as well as correctness in directional change. Forecasting results of six different currencies against Australian dollar reveal superior performance of SVM model using simple linear kernel over ANN-SCG model in terms of all the evaluation metrics. The effect of SVM parameter selection on prediction performance is also investigated and analyzed.

  17. On Diffusive Climatological Models.

    NASA Astrophysics Data System (ADS)

    Griffel, D. H.; Drazin, P. G.

    1981-11-01

    A simple, zonally and annually averaged, energy-balance climatological model with diffusive heat transport and nonlinear albedo feedback is solved numerically. Some parameters of the model are varied, one by one, to find the resultant effects on the steady solution representing the climate. In particular, the outward radiation flux, the insulation distribution and the albedo parameterization are varied. We have found an accurate yet simple analytic expression for the mean annual insolation as a function of latitude and the obliquity of the Earth's rotation axis; this has enabled us to consider the effects of the oscillation of the obliquity. We have used a continuous albedo function which fits the observed values; it considerably reduces the sensitivity of the model. Climatic cycles, calculated by solving the time-dependent equation when parameters change slowly and periodically, are compared qualitatively with paleoclimatic records.

  18. Experimental determination of gap flow-conditioned forces at turbine stages and their effect on the running stability of simple rotors. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wohlrab, R.

    1983-01-01

    Instabilities in turbine operation can be caused by forces which are produced in connection with motions involving the oil film in the bearings. An experimental investigation regarding the characteristics of such forces in the case of three typical steam turbine stages is conducted, taking into account the effect of various parameters. Supplementary kinetic tests are carried out to obtain an estimate of the flow forces which are proportional to the velocity. The measurements are based on the theoretical study of the damping characteristics of a vibrational model. A computational analysis of the effect of the measured fluid forces on the stability characteristics of simple rotor model is also conducted.

  19. Quantifying and Testing Indirect Effects in Simple Mediation Models when the Constituent Paths Are Nonlinear

    ERIC Educational Resources Information Center

    Hayes, Andrew F.; Preacher, Kristopher J.

    2010-01-01

    Most treatments of indirect effects and mediation in the statistical methods literature and the corresponding methods used by behavioral scientists have assumed linear relationships between variables in the causal system. Here we describe and extend a method first introduced by Stolzenberg (1980) for estimating indirect effects in models of…

  20. DEVELOPMENT AND APPLICATION OF POPULATION MODELS TO SUPPORT EPA'S ECOLOGICAL RISK ASSESSMENT PROCESSES FOR PESTICIDES

    EPA Science Inventory

    As part of a broader exploratory effort to develop ecological risk assessment approaches to estimate potential chemical effects on non-target populations, we describe an approach for developing simple population models to estimate the extent to which acute effects on individual...

  1. Chemical Defects, Electronic Structure, and Transport in N-type and P-type Organic Semiconductors: First Principles Theory

    DTIC Science & Technology

    2012-11-29

    of localized states extending into the gap. We also introduced a simple model allowing estimates of the upper limit of the intra-grain mobility in...well as to pentacene , and DATT. This research will be described below. In addition to our work on the electronic structure and charge mobility, we have...stacking distance gives rise to a tail of localized states which act as traps for electrons and holes. We introduced a simple effective Hamiltonian model

  2. The time-dependent response of 3- and 5-layer sandwich beams

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Oleksuk, L. S. S.; Bowles, D. E.

    1992-01-01

    Simple sandwich beam models have been developed to study the effect of the time-dependent constitutive properties of fiber-reinforced polymer matrix composites, considered for use in orbiting precision segmented reflectors, on the overall deformations. The 3- and 5-layer beam models include layers representing the face sheets, the core, and the adhesive. The static elastic deformation response of the sandwich beam models to a midspan point load is studied using the principle of stationary potential energy. In addition to quantitative conclusions, several assumptions are discussed which simplify the analysis for the case of more complicated material models. It is shown that the simple three-layer model is sufficient in many situations.

  3. Age at exposure and attained age variations of cancer risk in the Japanese A-bomb and radiotherapy cohorts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Uwe, E-mail: uwe.schneider@uzh.ch; Walsh, Linda

    Purpose: Phenomenological risk models for radiation-induced cancer are frequently applied to estimate the risk of radiation-induced cancers at radiotherapy doses. Such models often include the effect modification, of the main risk to radiation dose response, by age at exposure and attained age. The aim of this paper is to compare the patterns in risk effect modification by age, between models obtained from the Japanese atomic-bomb (A-bomb) survivor data and models for cancer risks previously reported for radiotherapy patients. Patterns in risk effect modification by age from the epidemiological studies of radiotherapy patients were also used to refine and extend themore » risk effect modification by age obtained from the A-bomb survivor data, so that more universal models can be presented here. Methods: Simple log-linear and power functions of age for the risk effect modification applied in models of the A-bomb survivor data are compared to risks from epidemiological studies of second cancers after radiotherapy. These functions of age were also refined and fitted to radiotherapy risks. The resulting age models provide a refined and extended functional dependence of risk with age at exposure and attained age especially beyond 40 and 65 yr, respectively, and provide a better representation than the currently available simple age functions. Results: It was found that the A-bomb models predict risk similarly to the outcomes of testicular cancer survivors. The survivors of Hodgkin’s disease show steeper variations of risk with both age at exposure and attained age. The extended models predict solid cancer risk increase as a function of age at exposure beyond 40 yr and the risk decrease as a function of attained age beyond 65 yr better than the simple models. Conclusions: The standard functions for risk effect modification by age, based on the A-bomb survivor data, predict second cancer risk in radiotherapy patients for ages at exposure prior to 40 yr and attained ages before 55 yr reasonably well. However, for larger ages, the refined and extended models can be applied to predict the risk as a function of age.« less

  4. Age at exposure and attained age variations of cancer risk in the Japanese A-bomb and radiotherapy cohorts.

    PubMed

    Schneider, Uwe; Walsh, Linda

    2015-08-01

    Phenomenological risk models for radiation-induced cancer are frequently applied to estimate the risk of radiation-induced cancers at radiotherapy doses. Such models often include the effect modification, of the main risk to radiation dose response, by age at exposure and attained age. The aim of this paper is to compare the patterns in risk effect modification by age, between models obtained from the Japanese atomic-bomb (A-bomb) survivor data and models for cancer risks previously reported for radiotherapy patients. Patterns in risk effect modification by age from the epidemiological studies of radiotherapy patients were also used to refine and extend the risk effect modification by age obtained from the A-bomb survivor data, so that more universal models can be presented here. Simple log-linear and power functions of age for the risk effect modification applied in models of the A-bomb survivor data are compared to risks from epidemiological studies of second cancers after radiotherapy. These functions of age were also refined and fitted to radiotherapy risks. The resulting age models provide a refined and extended functional dependence of risk with age at exposure and attained age especially beyond 40 and 65 yr, respectively, and provide a better representation than the currently available simple age functions. It was found that the A-bomb models predict risk similarly to the outcomes of testicular cancer survivors. The survivors of Hodgkin's disease show steeper variations of risk with both age at exposure and attained age. The extended models predict solid cancer risk increase as a function of age at exposure beyond 40 yr and the risk decrease as a function of attained age beyond 65 yr better than the simple models. The standard functions for risk effect modification by age, based on the A-bomb survivor data, predict second cancer risk in radiotherapy patients for ages at exposure prior to 40 yr and attained ages before 55 yr reasonably well. However, for larger ages, the refined and extended models can be applied to predict the risk as a function of age.

  5. Significance of modeling internal damping in the control of structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Inman, D. J.

    1992-01-01

    Several simple systems are examined to illustrate the importance of the estimation of damping parameters in closed-loop system performance and stability. The negative effects of unmodeled damping are particularly pronounced in systems that do not use collocated sensors and actuators. An example is considered for which even the actuators (a tip jet nozzle and flexible hose) for a simple beam produce significant damping which, if ignored, results in a model that cannot yield a reasonable time response using physically meaningful parameter values. It is concluded that correct damping modeling is essential in structure control.

  6. Evaluation of some random effects methodology applicable to bird ringing data

    USGS Publications Warehouse

    Burnham, K.P.; White, Gary C.

    2002-01-01

    Existing models for ring recovery and recapture data analysis treat temporal variations in annual survival probability (S) as fixed effects. Often there is no explainable structure to the temporal variation in S1,..., Sk; random effects can then be a useful model: Si = E(S) + ??i. Here, the temporal variation in survival probability is treated as random with average value E(??2) = ??2. This random effects model can now be fit in program MARK. Resultant inferences include point and interval estimation for process variation, ??2, estimation of E(S) and var (E??(S)) where the latter includes a component for ??2 as well as the traditional component for v??ar(S??\\S??). Furthermore, the random effects model leads to shrinkage estimates, Si, as improved (in mean square error) estimators of Si compared to the MLE, S??i, from the unrestricted time-effects model. Appropriate confidence intervals based on the Si are also provided. In addition, AIC has been generalized to random effects models. This paper presents results of a Monte Carlo evaluation of inference performance under the simple random effects model. Examined by simulation, under the simple one group Cormack-Jolly-Seber (CJS) model, are issues such as bias of ??s2, confidence interval coverage on ??2, coverage and mean square error comparisons for inference about Si based on shrinkage versus maximum likelihood estimators, and performance of AIC model selection over three models: Si ??? S (no effects), Si = E(S) + ??i (random effects), and S1,..., Sk (fixed effects). For the cases simulated, the random effects methods performed well and were uniformly better than fixed effects MLE for the Si.

  7. A simple quantum mechanical treatment of scattering in nanoscale transistors

    NASA Astrophysics Data System (ADS)

    Venugopal, R.; Paulsson, M.; Goasguen, S.; Datta, S.; Lundstrom, M. S.

    2003-05-01

    We present a computationally efficient, two-dimensional quantum mechanical simulation scheme for modeling dissipative electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors. The simulation scheme, which solves the nonequilibrium Green's function equations self consistently with Poisson's equation, treats the effect of scattering using a simple approximation inspired by the "Büttiker probes," often used in mesoscopic physics. It is based on an expansion of the active device Hamiltonian in decoupled mode space. Simulation results are used to highlight quantum effects, discuss the physics of scattering and to relate the quantum mechanical quantities used in our model to experimentally measured low field mobilities. Additionally, quantum boundary conditions are rigorously derived and the effects of strong off-equilibrium transport are examined. This paper shows that our approximate treatment of scattering, is an efficient and useful simulation method for modeling electron transport in nanoscale, silicon-on-insulator transistors.

  8. Action Centered Contextual Bandits.

    PubMed

    Greenewald, Kristjan; Tewari, Ambuj; Klasnja, Predrag; Murphy, Susan

    2017-12-01

    Contextual bandits have become popular as they offer a middle ground between very simple approaches based on multi-armed bandits and very complex approaches using the full power of reinforcement learning. They have demonstrated success in web applications and have a rich body of associated theoretical guarantees. Linear models are well understood theoretically and preferred by practitioners because they are not only easily interpretable but also simple to implement and debug. Furthermore, if the linear model is true, we get very strong performance guarantees. Unfortunately, in emerging applications in mobile health, the time-invariant linear model assumption is untenable. We provide an extension of the linear model for contextual bandits that has two parts: baseline reward and treatment effect. We allow the former to be complex but keep the latter simple. We argue that this model is plausible for mobile health applications. At the same time, it leads to algorithms with strong performance guarantees as in the linear model setting, while still allowing for complex nonlinear baseline modeling. Our theory is supported by experiments on data gathered in a recently concluded mobile health study.

  9. Correlation Imaging Reveals Specific Crowding Dynamics of Kinesin Motor Proteins

    NASA Astrophysics Data System (ADS)

    Miedema, Daniël M.; Kushwaha, Vandana S.; Denisov, Dmitry V.; Acar, Seyda; Nienhuis, Bernard; Peterman, Erwin J. G.; Schall, Peter

    2017-10-01

    Molecular motor proteins fulfill the critical function of transporting organelles and other building blocks along the biopolymer network of the cell's cytoskeleton, but crowding effects are believed to crucially affect this motor-driven transport due to motor interactions. Physical transport models, like the paradigmatic, totally asymmetric simple exclusion process (TASEP), have been used to predict these crowding effects based on simple exclusion interactions, but verifying them in experiments remains challenging. Here, we introduce a correlation imaging technique to precisely measure the motor density, velocity, and run length along filaments under crowding conditions, enabling us to elucidate the physical nature of crowding and test TASEP model predictions. Using the kinesin motor proteins kinesin-1 and OSM-3, we identify crowding effects in qualitative agreement with TASEP predictions, and we achieve excellent quantitative agreement by extending the model with motor-specific interaction ranges and crowding-dependent detachment probabilities. These results confirm the applicability of basic nonequilibrium models to the intracellular transport and highlight motor-specific strategies to deal with crowding.

  10. Modeling procedures for handling qualities evaluation of flexible aircraft

    NASA Technical Reports Server (NTRS)

    Govindaraj, K. S.; Eulrich, B. J.; Chalk, C. R.

    1981-01-01

    This paper presents simplified modeling procedures to evaluate the impact of flexible modes and the unsteady aerodynamic effects on the handling qualities of Supersonic Cruise Aircraft (SCR). The modeling procedures involve obtaining reduced order transfer function models of SCR vehicles, including the important flexible mode responses and unsteady aerodynamic effects, and conversion of the transfer function models to time domain equations for use in simulations. The use of the modeling procedures is illustrated by a simple example.

  11. A Simple "in Vitro" Culture of Freshwater Prawn Embryos for Laboratory Investigations

    ERIC Educational Resources Information Center

    Porntrai, Supaporn; Damrongphol, Praneet

    2008-01-01

    Giant freshwater prawn ("Macrobrachium rosenbergii" De Man) embryos can be cultured "in vitro" to hatching in 15% (v/v) artificial seawater (ASW). This technique can be applied as a bioassay for testing toxicity or for the effects of various substances on embryo development and can be used as a simple and low-cost model for…

  12. Quantifying characteristic growth dynamics in a semiarid grassland ecosystem by predicting short-term NDVI phenology from daily rainfall: a simple 4 parameter coupled-reservoir model

    USDA-ARS?s Scientific Manuscript database

    Predicting impacts of the magnitude and seasonal timing of rainfall pulses in water-limited grassland ecosystems concerns ecologists, climate scientists, hydrologists, and a variety of stakeholders. This report describes a simple, effective procedure to emulate the seasonal response of grassland bio...

  13. Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation

    DOE PAGES

    Burgess, C. P.; Holman, R.; Tasinato, G.

    2016-01-26

    Though simple inflationary models describe the CMB well, their corrections are often plagued by infrared effects that obstruct a reliable calculation of late-time behaviour. Here we adapt to cosmology tools designed to address similar issues in other physical systems with the goal of making reliable late-time inflationary predictions. The main such tool is Open EFTs which reduce in the inflationary case to Stochastic Inflation plus calculable corrections. We apply this to a simple inflationary model that is complicated enough to have dangerous IR behaviour yet simple enough to allow the inference of late-time behaviour. We find corrections to standard Stochasticmore » Inflationary predictions for the noise and drift, and we find these corrections ensure the IR finiteness of both these quantities. The late-time probability distribution, P(Φ), for super-Hubble field fluctuations are obtained as functions of the noise and drift and so these too are IR finite. We compare our results to other methods (such as large-N models) and find they agree when these models are reliable. In all cases we can explore in detail we find IR secular effects describe the slow accumulation of small perturbations to give a big effect: a significant distortion of the late-time probability distribution for the field. But the energy density associated with this is only of order H 4 at late times and so does not generate a dramatic gravitational back-reaction.« less

  14. Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, C. P.; Holman, R.; Tasinato, G.

    Though simple inflationary models describe the CMB well, their corrections are often plagued by infrared effects that obstruct a reliable calculation of late-time behaviour. Here we adapt to cosmology tools designed to address similar issues in other physical systems with the goal of making reliable late-time inflationary predictions. The main such tool is Open EFTs which reduce in the inflationary case to Stochastic Inflation plus calculable corrections. We apply this to a simple inflationary model that is complicated enough to have dangerous IR behaviour yet simple enough to allow the inference of late-time behaviour. We find corrections to standard Stochasticmore » Inflationary predictions for the noise and drift, and we find these corrections ensure the IR finiteness of both these quantities. The late-time probability distribution, P(Φ), for super-Hubble field fluctuations are obtained as functions of the noise and drift and so these too are IR finite. We compare our results to other methods (such as large-N models) and find they agree when these models are reliable. In all cases we can explore in detail we find IR secular effects describe the slow accumulation of small perturbations to give a big effect: a significant distortion of the late-time probability distribution for the field. But the energy density associated with this is only of order H 4 at late times and so does not generate a dramatic gravitational back-reaction.« less

  15. Moisture transfer through the membrane of a cross-flow energy recovery ventilator: Measurement and simple data-driven modeling

    Treesearch

    CR Boardman; Samuel V. Glass

    2015-01-01

    The moisture transfer effectiveness (or latent effectiveness) of a cross-flow, membrane based energy recovery ventilator is measured and modeled. Analysis of in situ measurements for a full year shows that energy recovery ventilator latent effectiveness increases with increasing average relative humidity and surprisingly increases with decreasing average temperature. A...

  16. Expected for acquisition movement exercise is more effective for functional recovery than simple exercise in a rat model of hemiplegia.

    PubMed

    Ikeda, Satoshi; Ohwatashi, Akihiko; Harada, Katsuhiro; Kamikawa, Yurie; Yoshida, Akira

    2013-01-01

    The use of novel rehabilitative approaches for effecting functional recovery following stroke is controversial. Effects of different but effective rehabilitative interventions in the hemiplegic patient are not clear. We studied the effects of different rehabilitative approaches on functional recovery in the rat photochecmical cerebral infarction model. Twenty-four male Wistar rats aged 8 weeks were used. The cranial bone was exposed under deep anesthesia. Rose bengal (20 mg/kg) was injected intravenously, and the sensorimotor area of the cerebral cortex was irradiated transcranially for 20 min with a light beam of 533-nm wavelength. Animals were divided into 3 groups. In the simple-exercise group, treadmill exercise was performed for 20 min every day. In the expected for acquisition movement-training group, beam-walking exercise was done for 20 min daily. The control group was left to recover without additional intervention. Hindlimb function was evaluated with the beam-walking test. Following cerebral infarction, dysfunction of the contralateral extremities was observed. Functional recovery was observed earlier in the expected for acquisition training group than in the other groups. Although rats in the treadmill group recovered more quickly than controls, the beam-walking group had the shortest overall recovery time. Exercise facilitated functional recovery in the rat hemiplegic model, and expected for acquisition exercise was more effective than simple exercise. These findings are considered to have important implications for the future development of clinical rehabilitation programs.

  17. Predictive power of food web models based on body size decreases with trophic complexity.

    PubMed

    Jonsson, Tomas; Kaartinen, Riikka; Jonsson, Mattias; Bommarco, Riccardo

    2018-05-01

    Food web models parameterised using body size show promise to predict trophic interaction strengths (IS) and abundance dynamics. However, this remains to be rigorously tested in food webs beyond simple trophic modules, where indirect and intraguild interactions could be important and driven by traits other than body size. We systematically varied predator body size, guild composition and richness in microcosm insect webs and compared experimental outcomes with predictions of IS from models with allometrically scaled parameters. Body size was a strong predictor of IS in simple modules (r 2  = 0.92), but with increasing complexity the predictive power decreased, with model IS being consistently overestimated. We quantify the strength of observed trophic interaction modifications, partition this into density-mediated vs. behaviour-mediated indirect effects and show that model shortcomings in predicting IS is related to the size of behaviour-mediated effects. Our findings encourage development of dynamical food web models explicitly including and exploring indirect mechanisms. © 2018 John Wiley & Sons Ltd/CNRS.

  18. Modeling Spacecraft Fuel Slosh at Embry-Riddle Aeronautical University

    NASA Technical Reports Server (NTRS)

    Schlee, Keith L.

    2007-01-01

    As a NASA-sponsored GSRP Fellow, I worked with other researchers and analysts at Embry-Riddle Aeronautical University and NASA's ELV Division to investigate the effect of spacecraft fuel slosh. NASA's research into the effects of fuel slosh includes modeling the response in full-sized tanks using equipment such as the Spinning Slosh Test Rig (SSTR), located at Southwest Research Institute (SwRI). NASA and SwRI engineers analyze data taken from SSTR runs and hand-derive equations of motion to identify model parameters and characterize the sloshing motion. With guidance from my faculty advisor, Dr. Sathya Gangadharan, and NASA flight controls analysts James Sudermann and Charles Walker, I set out to automate this parameter identification process by building a simple physical experimental setup to model free surface slosh in a spherical tank with a simple pendulum analog. This setup was then modeled using Simulink and SimMechanics. The Simulink Parameter Estimation Tool was then used to identify the model parameters.

  19. A simple model of the effect of ocean ventilation on ocean heat uptake

    NASA Astrophysics Data System (ADS)

    Nadiga, Balu; Urban, Nathan

    2017-11-01

    Transport of water from the surface mixed layer into the ocean interior is achieved, in large part, by the process of ventilation-a process associated with outcropping isopycnals. Starting from such a configuration of outcropping isopycnals, we derive a simple model of the effect of ventilation on ocean uptake of anomalous radiative forcing. This model can be seen as an improvement of the popular anomaly-diffusing class of energy balance models (AD-EBM) that are routinely employed to analyze and emulate the warming response of both observed and simulated Earth system. We demonstrate that neither multi-layer, nor continuous-diffusion AD-EBM variants can properly represent both surface-warming and the vertical distribution of ocean heat uptake. The new model overcomes this deficiency. The simplicity of the models notwithstanding, the analysis presented and the necessity of the modification is indicative of the role played by processes related to the down-welling branch of global ocean circulation in shaping the vertical distribution of ocean heat uptake.

  20. A simple model for studying rotation errors of gimbal mount axes in laser tracking system based on spherical mirror as a reflection unit

    NASA Astrophysics Data System (ADS)

    Song, Huixu; Shi, Zhaoyao; Chen, Hongfang; Sun, Yanqiang

    2018-01-01

    This paper presents a novel experimental approach and a simple model for verifying that spherical mirror of laser tracking system could lessen the effect of rotation errors of gimbal mount axes based on relative motion thinking. Enough material and evidence are provided to support that this simple model could replace complex optical system in laser tracking system. This experimental approach and model interchange the kinematic relationship between spherical mirror and gimbal mount axes in laser tracking system. Being fixed stably, gimbal mount axes' rotation error motions are replaced by spatial micro-displacements of spherical mirror. These motions are simulated by driving spherical mirror along the optical axis and vertical direction with the use of precision positioning platform. The effect on the laser ranging measurement accuracy of displacement caused by the rotation errors of gimbal mount axes could be recorded according to the outcome of laser interferometer. The experimental results show that laser ranging measurement error caused by the rotation errors is less than 0.1 μm if radial error motion and axial error motion are under 10 μm. The method based on relative motion thinking not only simplifies the experimental procedure but also achieves that spherical mirror owns the ability to reduce the effect of rotation errors of gimbal mount axes in laser tracking system.

  1. Preliminary study of the effect of the turbulent flow field around complex surfaces on their acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Boldman, D.

    1978-01-01

    Fairly extensive measurements have been conducted of the turbulent flow around various surfaces as a basis for a study of the acoustic characteristics involved. In the experiments the flow from a nozzle was directed upon various two-dimensional surface configurations such as the three-flap model. A turbulent flow field description is given and an estimate of the acoustic characteristics is provided. The developed equations are based upon fundamental theories for simple configurations having simple flows. Qualitative estimates are obtained regarding the radiation pattern and the velocity power law. The effect of geometry and turbulent flow distribution on the acoustic emission from simple configurations are discussed.

  2. Development of fetal yawn compared with non-yawn mouth openings from 24-36 weeks gestation.

    PubMed

    Reissland, Nadja; Francis, Brian; Mason, James

    2012-01-01

    Although some research suggests that fetuses yawn, others disagree arguing that is it simple mouth opening. Furthermore there is no developmental account of fetal yawning compared with simple mouth opening. The aim of the present study was to establish in a repeated measures design the development of fetal yawning compared with simple mouth opening. Video recordings were made of the fetal face and upper torso visualized by means of 4D full frontal or facial profile ultrasound recordings. Fifteen healthy fetuses were scanned four times at 24, 28, 32 and 36 weeks gestation. Yawning was distinguished from non-yawning in terms of the length of time it took to reach the apex of the mouth stretch, with yawns being defined as more than 50% of the total time observed. To assess changes in frequency, a Poisson mixed effects model was fitted to the count of number of yawn and simple mouth opening events with age and gender as fixed effects, and person as a random effect. For both yawns and simple mouth openings a smooth varying age effect was significant. The number of yawns observed declined with age from 28 weeks gestation, whereas simple mouth openings were less frequent and the decline was observed from 24 weeks. Gender was not significant either for yawn and simple mouth openings. Yawning can be reliably distinguished from other forms of mouth opening with the potential of using yawning as an index of fetal healthy development.

  3. Modeling the Effects of Beam Size and Flaw Morphology on Ultrasonic Pulse/Echo Sizing of Delaminations in Carbon Composites

    NASA Technical Reports Server (NTRS)

    Margetan, Frank J.; Leckey, Cara A.; Barnard, Dan

    2012-01-01

    The size and shape of a delamination in a multi-layered structure can be estimated in various ways from an ultrasonic pulse/echo image. For example the -6dB contours of measured response provide one simple estimate of the boundary. More sophisticated approaches can be imagined where one adjusts the proposed boundary to bring measured and predicted UT images into optimal agreement. Such approaches require suitable models of the inspection process. In this paper we explore issues pertaining to model-based size estimation for delaminations in carbon fiber reinforced laminates. In particular we consider the influence on sizing when the delamination is non-planar or partially transmitting in certain regions. Two models for predicting broadband sonic time-domain responses are considered: (1) a fast "simple" model using paraxial beam expansions and Kirchhoff and phase-screen approximations; and (2) the more exact (but computationally intensive) 3D elastodynamic finite integration technique (EFIT). Model-to-model and model-to experiment comparisons are made for delaminations in uniaxial composite plates, and the simple model is then used to critique the -6dB rule for delamination sizing.

  4. A simple radiative transfer model of the high latitude mesospheric scattering layer

    NASA Technical Reports Server (NTRS)

    Hummel, J. R.

    1974-01-01

    A simple radiative transfer model of the particle layer found at 85 km over the summer poles is presented. The effects of the layer on the global radiative temperature, the polar region temperature, and the greenhouse effect are discussed. The estimated magnitude of the global radiative temperature change is 3.5 x .001 K to 2.2 x .01 K, depending on the value of the imaginary part of the particle index of refraction. The layer is shown to have a possible secondary influence on the temperature of the polar region while the contribution which the layer makes to the greenhouse effect is shown to be negligible. The imaginary part of the particle index of refraction is shown to be important in determining the attenuation properties of the layer.

  5. Dynamic Characteristics of Simple Cylindrical Hydraulic Engine Mount Utilizing Air Compressibility

    NASA Astrophysics Data System (ADS)

    Nakahara, Kazunari; Nakagawa, Noritoshi; Ohta, Katsutoshi

    A cylindrical hydraulic engine mount with simple construction has been developed. This engine mount has a sub chamber formed by utilizing air compressibility without a diaphragm. A mathematical model of the mount is presented to predict non-linear dynamic characteristics in consideration of the effect of the excitation amplitude on the storage stiffness and loss factor. The mathematical model predicts experimental results well for the frequency responses of the storage stiffness and loss factor over the frequency range of 5 Hz to 60Hz. The effect of air volume and internal pressure on the dynamic characteristics is clarified by the analysis and dynamic characterization testing. The effectiveness of the cylindrical hydraulic engine mount on the reduction of engine shake is demonstrated for riding comfort through on-vehicle testing with a chassis dynamometer.

  6. Maximizing the information learned from finite data selects a simple model

    NASA Astrophysics Data System (ADS)

    Mattingly, Henry H.; Transtrum, Mark K.; Abbott, Michael C.; Machta, Benjamin B.

    2018-02-01

    We use the language of uninformative Bayesian prior choice to study the selection of appropriately simple effective models. We advocate for the prior which maximizes the mutual information between parameters and predictions, learning as much as possible from limited data. When many parameters are poorly constrained by the available data, we find that this prior puts weight only on boundaries of the parameter space. Thus, it selects a lower-dimensional effective theory in a principled way, ignoring irrelevant parameter directions. In the limit where there are sufficient data to tightly constrain any number of parameters, this reduces to the Jeffreys prior. However, we argue that this limit is pathological when applied to the hyperribbon parameter manifolds generic in science, because it leads to dramatic dependence on effects invisible to experiment.

  7. Acoustic Treatment Design Scaling Methods. Volume 2; Advanced Treatment Impedance Models for High Frequency Ranges

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Yu, J.; Kwan, H. W.

    1999-01-01

    The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.

  8. Low Reynolds number two-equation modeling of turbulent flows

    NASA Technical Reports Server (NTRS)

    Michelassi, V.; Shih, T.-H.

    1991-01-01

    A k-epsilon model that accounts for viscous and wall effects is presented. The proposed formulation does not contain the local wall distance thereby making very simple the application to complex geometries. The formulation is based on an existing k-epsilon model that proved to fit very well with the results of direct numerical simulation. The new form is compared with nine different two-equation models and with direct numerical simulation for a fully developed channel flow at Re = 3300. The simple flow configuration allows a comparison free from numerical inaccuracies. The computed results prove that few of the considered forms exhibit a satisfactory agreement with the channel flow data. The model shows an improvement with respect to the existing formulations.

  9. Self-organized criticality in sandpiles - Nature of the critical phenomenon. [dynamic models in phase transition

    NASA Technical Reports Server (NTRS)

    Carlson, J. M.; Chayes, J. T.; Swindle, G. H.; Grannan, E. R.

    1990-01-01

    The scaling behavior of sandpile models is investigated analytically. First, it is shown that sandpile models contain a set of domain walls, referred to as troughs, which bound regions that can experience avalanches. It is further shown that the dynamics of the troughs is governed by a simple set of rules involving birth, death, and coalescence events. A simple trough model is then introduced, and it is proved that the model has a phase transition with the density of the troughs as an order parameter and that, in the thermodynamic limit, the trough density goes to zero at the transition point. Finally, it is shown that the observed scaling behavior is a consequence of finite-size effects.

  10. Comparisons of CTH simulations with measured wave profiles for simple flyer plate experiments

    DOE PAGES

    Thomas, S. A.; Veeser, L. R.; Turley, W. D.; ...

    2016-06-13

    We conducted detailed 2-dimensional hydrodynamics calculations to assess the quality of simulations commonly used to design and analyze simple shock compression experiments. Such simple shock experiments also contain data where dynamic properties of materials are integrated together. We wished to assess how well the chosen computer hydrodynamic code could do at capturing both the simple parts of the experiments and the integral parts. We began with very simple shock experiments, in which we examined the effects of the equation of state and the compressional and tensile strength models. We increased complexity to include spallation in copper and iron and amore » solid-solid phase transformation in iron to assess the quality of the damage and phase transformation simulations. For experiments with a window, the response of both the sample and the window are integrated together, providing a good test of the material models. While CTH physics models are not perfect and do not reproduce all experimental details well, we find the models are useful; the simulations are adequate for understanding much of the dynamic process and for planning experiments. However, higher complexity in the simulations, such as adding in spall, led to greater differences between simulation and experiment. Lastly, this comparison of simulation to experiment may help guide future development of hydrodynamics codes so that they better capture the underlying physics.« less

  11. Simple stochastic model for El Niño with westerly wind bursts

    PubMed Central

    Thual, Sulian; Majda, Andrew J.; Chen, Nan; Stechmann, Samuel N.

    2016-01-01

    Atmospheric wind bursts in the tropics play a key role in the dynamics of the El Niño Southern Oscillation (ENSO). A simple modeling framework is proposed that summarizes this relationship and captures major features of the observational record while remaining physically consistent and amenable to detailed analysis. Within this simple framework, wind burst activity evolves according to a stochastic two-state Markov switching–diffusion process that depends on the strength of the western Pacific warm pool, and is coupled to simple ocean–atmosphere processes that are otherwise deterministic, stable, and linear. A simple model with this parameterization and no additional nonlinearities reproduces a realistic ENSO cycle with intermittent El Niño and La Niña events of varying intensity and strength as well as realistic buildup and shutdown of wind burst activity in the western Pacific. The wind burst activity has a direct causal effect on the ENSO variability: in particular, it intermittently triggers regular El Niño or La Niña events, super El Niño events, or no events at all, which enables the model to capture observed ENSO statistics such as the probability density function and power spectrum of eastern Pacific sea surface temperatures. The present framework provides further theoretical and practical insight on the relationship between wind burst activity and the ENSO. PMID:27573821

  12. A simple model for the effect of flouride ions on remineralization of partly demineralized tooth enamel

    NASA Astrophysics Data System (ADS)

    Christoffersen, J.; Christoffersen, M. R.; Arends, J.

    1984-06-01

    A model is presented for remineralization of partly demineralized tooth enamel, taking the effect of the presence of fluoride ions into account. The model predicts that, in the absence of precipitation of other phases than calcium hydroxyapatite (HAP) and fluroridized HAP, which are assumed to model enamel, there exists a maximum value of the fluoride concentration gradient, above which lesions cannot be successfully repaired.

  13. Neuroleptics as therapeutic compounds stabilizing neuromuscular transmission in amyotrophic lateral sclerosis

    PubMed Central

    Patten, Shunmoogum A.; Aggad, Dina; Martinez, Jose; Tremblay, Elsa; Petrillo, Janet; Armstrong, Gary A.B.; Maios, Claudia; Liao, Meijiang; Ciura, Sorana; Wen, Xiao-Yan; Rafuse, Victor; Ichida, Justin; Zinman, Lorne; Julien, Jean-Pierre; Kabashi, Edor; Robitaille, Richard; Korngut, Lawrence; Parker, J. Alexander

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, fatal disorder with no effective treatment. We used simple genetic models of ALS to screen phenotypically for potential therapeutic compounds. We screened libraries of compounds in C. elegans, validated hits in zebrafish, and tested the most potent molecule in mice and in a small clinical trial. We identified a class of neuroleptics that restored motility in C. elegans and in zebrafish, and the most potent was pimozide, which blocked T-type Ca2+ channels in these simple models and stabilized neuromuscular transmission in zebrafish and enhanced it in mice. Finally, a short randomized controlled trial of sporadic ALS subjects demonstrated stabilization of motility and evidence of target engagement at the neuromuscular junction. Simple genetic models are, thus, useful in identifying promising compounds for the treatment of ALS, such as neuroleptics, which may stabilize neuromuscular transmission and prolong survival in this disease. PMID:29202456

  14. Neuroleptics as therapeutic compounds stabilizing neuromuscular transmission in amyotrophic lateral sclerosis.

    PubMed

    Patten, Shunmoogum A; Aggad, Dina; Martinez, Jose; Tremblay, Elsa; Petrillo, Janet; Armstrong, Gary Ab; La Fontaine, Alexandre; Maios, Claudia; Liao, Meijiang; Ciura, Sorana; Wen, Xiao-Yan; Rafuse, Victor; Ichida, Justin; Zinman, Lorne; Julien, Jean-Pierre; Kabashi, Edor; Robitaille, Richard; Korngut, Lawrence; Parker, J Alexander; Drapeau, Pierre

    2017-11-16

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, fatal disorder with no effective treatment. We used simple genetic models of ALS to screen phenotypically for potential therapeutic compounds. We screened libraries of compounds in C. elegans, validated hits in zebrafish, and tested the most potent molecule in mice and in a small clinical trial. We identified a class of neuroleptics that restored motility in C. elegans and in zebrafish, and the most potent was pimozide, which blocked T-type Ca2+ channels in these simple models and stabilized neuromuscular transmission in zebrafish and enhanced it in mice. Finally, a short randomized controlled trial of sporadic ALS subjects demonstrated stabilization of motility and evidence of target engagement at the neuromuscular junction. Simple genetic models are, thus, useful in identifying promising compounds for the treatment of ALS, such as neuroleptics, which may stabilize neuromuscular transmission and prolong survival in this disease.

  15. Fault-Mechanism Simulator

    ERIC Educational Resources Information Center

    Guyton, J. W.

    1972-01-01

    An inexpensive, simple mechanical model of a fault can be produced to simulate the effects leading to an earthquake. This model has been used successfully with students from elementary to college levels and can be demonstrated to classes as large as thirty students. (DF)

  16. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment

    NASA Astrophysics Data System (ADS)

    Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.

    2017-10-01

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  17. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment.

    PubMed

    Diao, Y L; Sun, W N; He, Y Q; Leung, S W; Siu, Y M

    2017-09-21

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort-the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  18. Cost effectiveness of a pharmacist-led information technology intervention for reducing rates of clinically important errors in medicines management in general practices (PINCER).

    PubMed

    Elliott, Rachel A; Putman, Koen D; Franklin, Matthew; Annemans, Lieven; Verhaeghe, Nick; Eden, Martin; Hayre, Jasdeep; Rodgers, Sarah; Sheikh, Aziz; Avery, Anthony J

    2014-06-01

    We recently showed that a pharmacist-led information technology-based intervention (PINCER) was significantly more effective in reducing medication errors in general practices than providing simple feedback on errors, with cost per error avoided at £79 (US$131). We aimed to estimate cost effectiveness of the PINCER intervention by combining effectiveness in error reduction and intervention costs with the effect of the individual errors on patient outcomes and healthcare costs, to estimate the effect on costs and QALYs. We developed Markov models for each of six medication errors targeted by PINCER. Clinical event probability, treatment pathway, resource use and costs were extracted from literature and costing tariffs. A composite probabilistic model combined patient-level error models with practice-level error rates and intervention costs from the trial. Cost per extra QALY and cost-effectiveness acceptability curves were generated from the perspective of NHS England, with a 5-year time horizon. The PINCER intervention generated £2,679 less cost and 0.81 more QALYs per practice [incremental cost-effectiveness ratio (ICER): -£3,037 per QALY] in the deterministic analysis. In the probabilistic analysis, PINCER generated 0.001 extra QALYs per practice compared with simple feedback, at £4.20 less per practice. Despite this extremely small set of differences in costs and outcomes, PINCER dominated simple feedback with a mean ICER of -£3,936 (standard error £2,970). At a ceiling 'willingness-to-pay' of £20,000/QALY, PINCER reaches 59 % probability of being cost effective. PINCER produced marginal health gain at slightly reduced overall cost. Results are uncertain due to the poor quality of data to inform the effect of avoiding errors.

  19. A simple statistical model for geomagnetic reversals

    NASA Technical Reports Server (NTRS)

    Constable, Catherine

    1990-01-01

    The diversity of paleomagnetic records of geomagnetic reversals now available indicate that the field configuration during transitions cannot be adequately described by simple zonal or standing field models. A new model described here is based on statistical properties inferred from the present field and is capable of simulating field transitions like those observed. Some insight is obtained into what one can hope to learn from paleomagnetic records. In particular, it is crucial that the effects of smoothing in the remanence acquisition process be separated from true geomagnetic field behavior. This might enable us to determine the time constants associated with the dominant field configuration during a reversal.

  20. Modeling error in experimental assays using the bootstrap principle: Understanding discrepancies between assays using different dispensing technologies

    PubMed Central

    Hanson, Sonya M.; Ekins, Sean; Chodera, John D.

    2015-01-01

    All experimental assay data contains error, but the magnitude, type, and primary origin of this error is often not obvious. Here, we describe a simple set of assay modeling techniques based on the bootstrap principle that allow sources of error and bias to be simulated and propagated into assay results. We demonstrate how deceptively simple operations—such as the creation of a dilution series with a robotic liquid handler—can significantly amplify imprecision and even contribute substantially to bias. To illustrate these techniques, we review an example of how the choice of dispensing technology can impact assay measurements, and show how large contributions to discrepancies between assays can be easily understood and potentially corrected for. These simple modeling techniques—illustrated with an accompanying IPython notebook—can allow modelers to understand the expected error and bias in experimental datasets, and even help experimentalists design assays to more effectively reach accuracy and imprecision goals. PMID:26678597

  1. An overview of longitudinal data analysis methods for neurological research.

    PubMed

    Locascio, Joseph J; Atri, Alireza

    2011-01-01

    The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models.

  2. Collaborative Research: failure of RockMasses from Nucleation and Growth of Microscopic Defects and Disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, William

    Over the 21 years of funding we have pursued several projects related to earthquakes, damage and nucleation. We developed simple models of earthquake faults which we studied to understand Gutenburg-Richter scaling, foreshocks and aftershocks, the effect of spatial structure of the faults and its interaction with underlying self organization and phase transitions. In addition we studied the formation of amorphous solids via the glass transition. We have also studied nucleation with a particular concentration on transitions in systems with a spatial symmetry change. In addition we investigated the nucleation process in models that mimic rock masses. We obtained the structuremore » of the droplet in both homogeneous and heterogeneous nucleation. We also investigated the effect of defects or asperities on the nucleation of failure in simple models of earthquake faults.« less

  3. A Note on the Fractal Behavior of Hydraulic Conductivity and Effective Porosity for Experimental Values in a Confined Aquifer

    PubMed Central

    De Bartolo, Samuele; Fallico, Carmine; Veltri, Massimo

    2013-01-01

    Hydraulic conductivity and effective porosity values for the confined sandy loam aquifer of the Montalto Uffugo (Italy) test field were obtained by laboratory and field measurements; the first ones were carried out on undisturbed soil samples and the others by slug and aquifer tests. A direct simple-scaling analysis was performed for the whole range of measurement and a comparison among the different types of fractal models describing the scale behavior was made. Some indications about the largest pore size to utilize in the fractal models were given. The results obtained for a sandy loam soil show that it is possible to obtain global indications on the behavior of the hydraulic conductivity versus the porosity utilizing a simple scaling relation and a fractal model in coupled manner. PMID:24385876

  4. Analysis of hardening behavior of sheet metals by a new simple shear test method taking into account the Bauschinger effect

    NASA Astrophysics Data System (ADS)

    Bang, Sungsik; Rickhey, Felix; Kim, Minsoo; Lee, Hyungyil; Kim, Naksoo

    2013-12-01

    In this study we establish a process to predict hardening behavior considering the Bauschinger effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Bauschinger effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with FEA. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments.

  5. Coupling Climate Models and Forward-Looking Economic Models

    NASA Astrophysics Data System (ADS)

    Judd, K.; Brock, W. A.

    2010-12-01

    Authors: Dr. Kenneth L. Judd, Hoover Institution, and Prof. William A. Brock, University of Wisconsin Current climate models range from General Circulation Models (GCM’s) with millions of degrees of freedom to models with few degrees of freedom. Simple Energy Balance Climate Models (EBCM’s) help us understand the dynamics of GCM’s. The same is true in economics with Computable General Equilibrium Models (CGE’s) where some models are infinite-dimensional multidimensional differential equations but some are simple models. Nordhaus (2007, 2010) couples a simple EBCM with a simple economic model. One- and two- dimensional ECBM’s do better at approximating damages across the globe and positive and negative feedbacks from anthroprogenic forcing (North etal. (1981), Wu and North (2007)). A proper coupling of climate and economic systems is crucial for arriving at effective policies. Brock and Xepapadeas (2010) have used Fourier/Legendre based expansions to study the shape of socially optimal carbon taxes over time at the planetary level in the face of damages caused by polar ice cap melt (as discussed by Oppenheimer, 2005) but in only a “one dimensional” EBCM. Economists have used orthogonal polynomial expansions to solve dynamic, forward-looking economic models (Judd, 1992, 1998). This presentation will couple EBCM climate models with basic forward-looking economic models, and examine the effectiveness and scaling properties of alternative solution methods. We will use a two dimensional EBCM model on the sphere (Wu and North, 2007) and a multicountry, multisector regional model of the economic system. Our aim will be to gain insights into intertemporal shape of the optimal carbon tax schedule, and its impact on global food production, as modeled by Golub and Hertel (2009). We will initially have limited computing resources and will need to focus on highly aggregated models. However, this will be more complex than existing models with forward-looking economic modules, and the initial models will help guide the construction of more refined models that can effectively use more powerful computational environments to analyze economic policies related to climate change. REFERENCES Brock, W., Xepapadeas, A., 2010, “An Integration of Simple Dynamic Energy Balance Climate Models and Ramsey Growth Models,” Department of Economics, University of Wisconsin, Madison, and University of Athens. Golub, A., Hertel, T., etal., 2009, “The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry,” RESOURCE AND ENERGY ECONOMICS, 31, 299-319. Judd, K., 1992, “Projection methods for solving aggregate growth models,” JOURNAL OF ECONOMIC THEORY, 58: 410-52. Judd, K., 1998, NUMERICAL METHODS IN ECONOMICS, MIT Press, Cambridge, Mass. Nordhaus, W., 2007, A QUESTION OF BALANCE: ECONOMIC MODELS OF CLIMATE CHANGE, Yale University Press, New Haven, CT. North, G., R., Cahalan, R., Coakely, J., 1981, “Energy balance climate models,” REVIEWS OF GEOPHYSICS AND SPACE PHYSICS, Vol. 19, No. 1, 91-121, February Wu, W., North, G. R., 2007, “Thermal decay modes of a 2-D energy balance climate model,” TELLUS, 59A, 618-626.

  6. Active disturbance rejection controller for chemical reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I., E-mail: roxana.both@aut.utcluj.ro

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However themore » resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.« less

  7. Towards a social psychology-based microscopic model of driver behavior and decision-making : modifying Lewin's field theory

    DOT National Transportation Integrated Search

    2014-01-01

    Central to effective roadway design is the ability to understand how drivers behave as they traverse a segment of : roadway. While simple and complex microscopic models have been used over the years to analyse driver behaviour, : most models: 1.) inc...

  8. The Variance Reaction Time Model

    ERIC Educational Resources Information Center

    Sikstrom, Sverker

    2004-01-01

    The variance reaction time model (VRTM) is proposed to account for various recognition data on reaction time, the mirror effect, receiver-operating-characteristic (ROC) curves, etc. The model is based on simple and plausible assumptions within a neural network: VRTM is a two layer neural network where one layer represents items and one layer…

  9. Assessing the Impact of Retreat Mechanisms in a Simple Antarctic Ice Sheet Model Using Bayesian Calibration.

    PubMed

    Ruckert, Kelsey L; Shaffer, Gary; Pollard, David; Guan, Yawen; Wong, Tony E; Forest, Chris E; Keller, Klaus

    2017-01-01

    The response of the Antarctic ice sheet (AIS) to changing climate forcings is an important driver of sea-level changes. Anthropogenic climate change may drive a sizeable AIS tipping point response with subsequent increases in coastal flooding risks. Many studies analyzing flood risks use simple models to project the future responses of AIS and its sea-level contributions. These analyses have provided important new insights, but they are often silent on the effects of potentially important processes such as Marine Ice Sheet Instability (MISI) or Marine Ice Cliff Instability (MICI). These approximations can be well justified and result in more parsimonious and transparent model structures. This raises the question of how this approximation impacts hindcasts and projections. Here, we calibrate a previously published and relatively simple AIS model, which neglects the effects of MICI and regional characteristics, using a combination of observational constraints and a Bayesian inversion method. Specifically, we approximate the effects of missing MICI by comparing our results to those from expert assessments with more realistic models and quantify the bias during the last interglacial when MICI may have been triggered. Our results suggest that the model can approximate the process of MISI and reproduce the projected median melt from some previous expert assessments in the year 2100. Yet, our mean hindcast is roughly 3/4 of the observed data during the last interglacial period and our mean projection is roughly 1/6 and 1/10 of the mean from a model accounting for MICI in the year 2100. These results suggest that missing MICI and/or regional characteristics can lead to a low-bias during warming period AIS melting and hence a potential low-bias in projected sea levels and flood risks.

  10. Modeling and simulation of thermally actuated bilayer plates

    NASA Astrophysics Data System (ADS)

    Bartels, Sören; Bonito, Andrea; Muliana, Anastasia H.; Nochetto, Ricardo H.

    2018-02-01

    We present a mathematical model of polymer bilayers that undergo large bending deformations when actuated by non-mechanical stimuli such as thermal effects. The simple model captures a large class of nonlinear bending effects and can be discretized with standard plate elements. We devise a fully practical iterative scheme and apply it to the simulation of folding of several practically useful compliant structures comprising of thin elastic layers.

  11. Rheological Properties of Natural Subduction Zone Interface: Insights from "Digital" Griggs Experiments

    NASA Astrophysics Data System (ADS)

    Ioannidi, P. I.; Le Pourhiet, L.; Moreno, M.; Agard, P.; Oncken, O.; Angiboust, S.

    2017-12-01

    The physical nature of plate locking and its relation to surface deformation patterns at different time scales (e.g. GPS displacements during the seismic cycle) can be better understood by determining the rheological parameters of the subduction interface. However, since direct rheological measurements are not possible, finite element modelling helps to determine the effective rheological parameters of the subduction interface. We used the open source finite element code pTatin to create 2D models, starting with a homogeneous medium representing shearing at the subduction interface. We tested several boundary conditions that mimic simple shear and opted for the one that best describes the Grigg's type simple shear experiments. After examining different parameters, such as shearing velocity, temperature and viscosity, we added complexity to the geometry by including a second phase. This arises from field observations, where shear zone outcrops are often composites of multiple phases: stronger crustal blocks embedded within a sedimentary and/or serpentinized matrix have been reported for several exhumed subduction zones. We implemented a simplified model to simulate simple shearing of a two-phase medium in order to quantify the effect of heterogeneous rheology on stress and strain localization. Preliminary results show different strength in the models depending on the block-to-matrix ratio. We applied our method to outcrop scale block-in-matrix geometries and by sampling at different depths along exhumed former subduction interfaces, we expect to be able to provide effective friction and viscosity of a natural interface. In a next step, these effective parameters will be used as input into seismic cycle deformation models in an attempt to assess the possible signature of field geometries on the slip behaviour of the plate interface.

  12. A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow

    NASA Technical Reports Server (NTRS)

    Oseguera, Rosa M.; Bowles, Roland L.

    1988-01-01

    A simple downburst model is developed for use in batch and real-time piloted simulation studies of guidance strategies for terminal area transport aircraft operations in wind shear conditions. The model represents an axisymmetric stagnation point flow, based on velocity profiles from the Terminal Area Simulation System (TASS) model developed by Proctor and satisfies the mass continuity equation in cylindrical coordinates. Altitude dependence, including boundary layer effects near the ground, closely matches real-world measurements, as do the increase, peak, and decay of outflow and downflow with increasing distance from the downburst center. Equations for horizontal and vertical winds were derived, and found to be infinitely differentiable, with no singular points existent in the flow field. In addition, a simple relationship exists among the ratio of maximum horizontal to vertical velocities, the downdraft radius, depth of outflow, and altitude of maximum outflow. In use, a microburst can be modeled by specifying four characteristic parameters, velocity components in the x, y and z directions, and the corresponding nine partial derivatives are obtained easily from the velocity equations.

  13. Statistical validity of using ratio variables in human kinetics research.

    PubMed

    Liu, Yuanlong; Schutz, Robert W

    2003-09-01

    The purposes of this study were to investigate the validity of the simple ratio and three alternative deflation models and examine how the variation of the numerator and denominator variables affects the reliability of a ratio variable. A simple ratio and three alternative deflation models were fitted to four empirical data sets, and common criteria were applied to determine the best model for deflation. Intraclass correlation was used to examine the component effect on the reliability of a ratio variable. The results indicate that the validity, of a deflation model depends on the statistical characteristics of the particular component variables used, and an optimal deflation model for all ratio variables may not exist. Therefore, it is recommended that different models be fitted to each empirical data set to determine the best deflation model. It was found that the reliability of a simple ratio is affected by the coefficients of variation and the within- and between-trial correlations between the numerator and denominator variables. It was recommended that researchers should compute the reliability of the derived ratio scores and not assume that strong reliabilities in the numerator and denominator measures automatically lead to high reliability in the ratio measures.

  14. Fitting neuron models to spike trains.

    PubMed

    Rossant, Cyrille; Goodman, Dan F M; Fontaine, Bertrand; Platkiewicz, Jonathan; Magnusson, Anna K; Brette, Romain

    2011-01-01

    Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input-output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model.

  15. Modeling of dynamic effects of a low power laser beam

    NASA Technical Reports Server (NTRS)

    Lawrence, George N.; Scholl, Marija S.; Khatib, AL

    1988-01-01

    Methods of modeling some of the dynamic effects involved in laser beam propagation through the atmosphere are addressed with emphasis on the development of simple but accurate models which are readily implemented in a physical optics code. A space relay system with a ground based laser facility is considered as an example. The modeling of such characteristic phenomena as laser output distribution, flat and curved mirrors, diffraction propagation, atmospheric effects (aberration and wind shear), adaptive mirrors, jitter, and time integration of power on target, is discussed.

  16. Attenuation Factors for B(E2) in the Microscopic Description of Multiphonon States ---A Simple Model Analysis---

    NASA Astrophysics Data System (ADS)

    Matsuyanagi, K.

    1982-05-01

    With an exactly solvable O(4) model of Piepenbring, Silvestre-Brac and Szymanski, we demonstrate that the attenuation factor for the B(E2) values, derived by the lowest-order approximation of the multiphonon method, takes excellent care of the kinematical anharmonicity effects, if multiphonon states are defined in the intrinsic subspace orthogonal to the pairing rotation. It is also shown that the other attenuation effect characterizing the interacting boson model is not a dominant effect in the model analysed here.

  17. Effect of self-deflection on a totally asymmetric simple exclusion process with functions of site assignments

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Satori; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2018-04-01

    This study proposes a model of a totally asymmetric simple exclusion process on a single-channel lane with functions of site assignments along the pit lane. The system model attempts to insert a new particle to the leftmost site at a certain probability by randomly selecting one of the empty sites in the pit lane, and reserving it for the particle. Thereafter, the particle is directed to stop at the site only once during its travel. Recently, the system was determined to show a self-deflection effect, in which the site usage distribution biases spontaneously toward the leftmost site, and the throughput becomes maximum when the site usage distribution is slightly biased to the rightmost site. Our exact analysis describes this deflection effect and show a good agreement with simulations.

  18. Development of Fetal Yawn Compared with Non-Yawn Mouth Openings from 24–36 Weeks Gestation

    PubMed Central

    Reissland, Nadja; Francis, Brian; Mason, James

    2012-01-01

    Background Although some research suggests that fetuses yawn, others disagree arguing that is it simple mouth opening. Furthermore there is no developmental account of fetal yawning compared with simple mouth opening. The aim of the present study was to establish in a repeated measures design the development of fetal yawning compared with simple mouth opening. Methodology/Findings Video recordings were made of the fetal face and upper torso visualized by means of 4D full frontal or facial profile ultrasound recordings. Fifteen healthy fetuses were scanned four times at 24, 28, 32 and 36 weeks gestation. Yawning was distinguished from non-yawning in terms of the length of time it took to reach the apex of the mouth stretch, with yawns being defined as more than 50% of the total time observed. To assess changes in frequency, a Poisson mixed effects model was fitted to the count of number of yawn and simple mouth opening events with age and gender as fixed effects, and person as a random effect. For both yawns and simple mouth openings a smooth varying age effect was significant. The number of yawns observed declined with age from 28 weeks gestation, whereas simple mouth openings were less frequent and the decline was observed from 24 weeks. Gender was not significant either for yawn and simple mouth openings. Conclusions/Significance Yawning can be reliably distinguished from other forms of mouth opening with the potential of using yawning as an index of fetal healthy development. PMID:23185638

  19. Income Distribution Over Educational Levels: A Simple Model.

    ERIC Educational Resources Information Center

    Tinbergen, Jan

    An econometric model is formulated that explains income per person in various compartments of the labor market defined by three main levels of education and by education required. The model enables an estimation of the effect of increased access to education on that distribution. The model is based on a production for the economy as a whole; a…

  20. Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.

    2009-01-01

    Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.

  1. Molecular basis of LFER. Modeling of the electronic substituent effect using fragment quantum self-similarity measures.

    PubMed

    Gironés, Xavier; Carbó-Dorca, Ramon; Ponec, Robert

    2003-01-01

    A new approach allowing the theoretical modeling of the electronic substituent effect is proposed. The approach is based on the use of fragment Quantum Self-Similarity Measures (MQS-SM) calculated from domain averaged Fermi Holes as new theoretical descriptors allowing for the replacement of Hammett sigma constants in QSAR models. To demonstrate the applicability of this new approach its formalism was applied to the description of the substituent effect on the dissociation of a broad series of meta and para substituted benzoic acids. The accuracy and the predicting power of this new approach was tested on the comparison with a recent exhaustive study by Sullivan et al. It has been shown that the accuracy and the predicting power of both procedures is comparable, but, in contrast to a five-parameter correlation equation necessary to describe the data in the study, our approach is more simple and, in fact, only a simple one-parameter correlation equation is required.

  2. Psychophysical and perceptual performance in a simulated-scotoma model of human eye injury

    NASA Astrophysics Data System (ADS)

    Brandeis, R.; Egoz, I.; Peri, D.; Sapiens, N.; Turetz, J.

    2008-02-01

    Macular scotomas, affecting visual functioning, characterize many eye and neurological diseases like AMD, diabetes mellitus, multiple sclerosis, and macular hole. In this work, foveal visual field defects were modeled, and their effects were evaluated on spatial contrast sensitivity and a task of stimulus detection and aiming. The modeled occluding scotomas, of different size, were superimposed on the stimuli presented on the computer display, and were stabilized on the retina using a mono Purkinje Eye-Tracker. Spatial contrast sensitivity was evaluated using square-wave grating stimuli, whose contrast thresholds were measured using the method of constant stimuli with "catch trials". The detection task consisted of a triple conjunctive visual search display of: size (in visual angle), contrast and background (simple, low-level features vs. complex, high-level features). Search/aiming accuracy as well as R.T. measures used for performance evaluation. Artificially generated scotomas suppressed spatial contrast sensitivity in a size dependent manner, similar to previous studies. Deprivation effect was dependent on spatial frequency, consistent with retinal inhomogeneity models. Stimulus detection time was slowed in complex background search situation more than in simple background. Detection speed was dependent on scotoma size and size of stimulus. In contrast, visually guided aiming was more sensitive to scotoma effect in simple background search situation than in complex background. Both stimulus aiming R.T. and accuracy (precision targeting) were impaired, as a function of scotoma size and size of stimulus. The data can be explained by models distinguishing between saliency-based, parallel and serial search processes, guiding visual attention, which are supported by underlying retinal as well as neural mechanisms.

  3. Long-term Recurrent Convolutional Networks for Visual Recognition and Description

    DTIC Science & Technology

    2014-11-17

    deep???, are effective for tasks involving sequences, visual and otherwise. We develop a novel recurrent convolutional architecture suitable for large...models which are also recurrent, or “temporally deep”, are effective for tasks involving sequences, visual and otherwise. We develop a novel recurrent...limitation of simple RNN models which strictly integrate state information over time is known as the “vanishing gradient” effect : the ability to

  4. Design of ground test suspension systems for verification of flexible space structures

    NASA Technical Reports Server (NTRS)

    Cooley, V. M.; Juang, J. N.; Ghaemmaghami, P.

    1988-01-01

    A simple model demonstrates the frequency-increasing effects of a simple cable suspension on flexible test article/suspension systems. Two passive suspension designs, namely a negative spring mechanism and a rolling cart mechanism, are presented to alleviate the undesirable frequency-increasing effects. Analysis methods are provided for systems in which the augmentations are applied to both discrete and continuous representations of test articles. The damping analyses are based on friction equivalent viscous damping. Numerical examples are given for comparing the two augmentations with respect to minimizing frequency and damping increases.

  5. A simple daily soil-water balance model for estimating the spatial and temporal distribution of groundwater recharge in temperate humid areas

    USGS Publications Warehouse

    Dripps, W.R.; Bradbury, K.R.

    2007-01-01

    Quantifying the spatial and temporal distribution of natural groundwater recharge is usually a prerequisite for effective groundwater modeling and management. As flow models become increasingly utilized for management decisions, there is an increased need for simple, practical methods to delineate recharge zones and quantify recharge rates. Existing models for estimating recharge distributions are data intensive, require extensive parameterization, and take a significant investment of time in order to establish. The Wisconsin Geological and Natural History Survey (WGNHS) has developed a simple daily soil-water balance (SWB) model that uses readily available soil, land cover, topographic, and climatic data in conjunction with a geographic information system (GIS) to estimate the temporal and spatial distribution of groundwater recharge at the watershed scale for temperate humid areas. To demonstrate the methodology and the applicability and performance of the model, two case studies are presented: one for the forested Trout Lake watershed of north central Wisconsin, USA and the other for the urban-agricultural Pheasant Branch Creek watershed of south central Wisconsin, USA. Overall, the SWB model performs well and presents modelers and planners with a practical tool for providing recharge estimates for modeling and water resource planning purposes in humid areas. ?? Springer-Verlag 2007.

  6. Simple dynamical models capturing the key features of the Central Pacific El Niño.

    PubMed

    Chen, Nan; Majda, Andrew J

    2016-10-18

    The Central Pacific El Niño (CP El Niño) has been frequently observed in recent decades. The phenomenon is characterized by an anomalous warm sea surface temperature (SST) confined to the central Pacific and has different teleconnections from the traditional El Niño. Here, simple models are developed and shown to capture the key mechanisms of the CP El Niño. The starting model involves coupled atmosphere-ocean processes that are deterministic, linear, and stable. Then, systematic strategies are developed for incorporating several major mechanisms of the CP El Niño into the coupled system. First, simple nonlinear zonal advection with no ad hoc parameterization of the background SST gradient is introduced that creates coupled nonlinear advective modes of the SST. Secondly, due to the recent multidecadal strengthening of the easterly trade wind, a stochastic parameterization of the wind bursts including a mean easterly trade wind anomaly is coupled to the simple atmosphere-ocean processes. Effective stochastic noise in the wind burst model facilitates the intermittent occurrence of the CP El Niño with realistic amplitude and duration. In addition to the anomalous warm SST in the central Pacific, other major features of the CP El Niño such as the rising branch of the anomalous Walker circulation being shifted to the central Pacific and the eastern Pacific cooling with a shallow thermocline are all captured by this simple coupled model. Importantly, the coupled model succeeds in simulating a series of CP El Niño that lasts for 5 y, which resembles the two CP El Niño episodes during 1990-1995 and 2002-2006.

  7. Why the Simple View of Reading Is Not Simplistic: Unpacking Component Skills of Reading Using a Direct and Indirect Effect Model of Reading (DIER)

    ERIC Educational Resources Information Center

    Kim, Young-Suk Grace

    2017-01-01

    Pathways of relations of language, cognitive, and literacy skills (i.e., working memory, vocabulary, grammatical knowledge, inference, comprehension monitoring, word reading, and listening comprehension) to reading comprehension were examined by comparing four variations of direct and indirect effects model of reading. Results from 350…

  8. Context-dependent decision-making: a simple Bayesian model

    PubMed Central

    Lloyd, Kevin; Leslie, David S.

    2013-01-01

    Many phenomena in animal learning can be explained by a context-learning process whereby an animal learns about different patterns of relationship between environmental variables. Differentiating between such environmental regimes or ‘contexts’ allows an animal to rapidly adapt its behaviour when context changes occur. The current work views animals as making sequential inferences about current context identity in a world assumed to be relatively stable but also capable of rapid switches to previously observed or entirely new contexts. We describe a novel decision-making model in which contexts are assumed to follow a Chinese restaurant process with inertia and full Bayesian inference is approximated by a sequential-sampling scheme in which only a single hypothesis about current context is maintained. Actions are selected via Thompson sampling, allowing uncertainty in parameters to drive exploration in a straightforward manner. The model is tested on simple two-alternative choice problems with switching reinforcement schedules and the results compared with rat behavioural data from a number of T-maze studies. The model successfully replicates a number of important behavioural effects: spontaneous recovery, the effect of partial reinforcement on extinction and reversal, the overtraining reversal effect, and serial reversal-learning effects. PMID:23427101

  9. Context-dependent decision-making: a simple Bayesian model.

    PubMed

    Lloyd, Kevin; Leslie, David S

    2013-05-06

    Many phenomena in animal learning can be explained by a context-learning process whereby an animal learns about different patterns of relationship between environmental variables. Differentiating between such environmental regimes or 'contexts' allows an animal to rapidly adapt its behaviour when context changes occur. The current work views animals as making sequential inferences about current context identity in a world assumed to be relatively stable but also capable of rapid switches to previously observed or entirely new contexts. We describe a novel decision-making model in which contexts are assumed to follow a Chinese restaurant process with inertia and full Bayesian inference is approximated by a sequential-sampling scheme in which only a single hypothesis about current context is maintained. Actions are selected via Thompson sampling, allowing uncertainty in parameters to drive exploration in a straightforward manner. The model is tested on simple two-alternative choice problems with switching reinforcement schedules and the results compared with rat behavioural data from a number of T-maze studies. The model successfully replicates a number of important behavioural effects: spontaneous recovery, the effect of partial reinforcement on extinction and reversal, the overtraining reversal effect, and serial reversal-learning effects.

  10. Density Driven Removal of Sediment from a Buoyant Muddy Plume

    NASA Astrophysics Data System (ADS)

    Rouhnia, M.; Strom, K.

    2014-12-01

    Experiments were conducted to study the effect of settling driven instabilities on sediment removal from hypopycnal plumes. Traditional approaches scale removal rates with particle settling velocity however, it has been suggested that the removal from buoyant suspensions happens at higher rates. The enhancement of removal is likely due to gravitational instabilities, such as fingering, at two-fluid interface. Previous studies have all sought to suppress flocculation, and no simple model exists to predict the removal rates under the effect of such instabilities. This study examines whether or not flocculation hampers instability formation and presents a simple removal rate model accounting for gravitational instabilities. A buoyant suspension of flocculated Kaolinite overlying a base of clear saltwater was investigated in a laboratory tank. Concentration was continuously measured in both layers with a pair of OBS sensors, and interface was monitored with digital cameras. Snapshots from the video were used to measure finger velocity. Samples of flocculated particles at the interface were extracted to retrieve floc size data using a floc camera. Flocculation did not stop creation of settling-driven fingers. A simple cylinder-based force balance model was capable of predicting finger velocity. Analogy of fingering process of fine grained suspensions to thermal plume formation and the concept of Grashof number enabled us to model finger spacing as a function of initial concentration. Finally, from geometry, the effective cross-sectional area was correlated to finger spacing. Reformulating the outward flux expression was done by substitution of finger velocity, rather than particle settling velocity, and finger area instead of total area. A box model along with the proposed outward flux was used to predict the SSC in buoyant layer. The model quantifies removal flux based on the initial SSC and is in good agreement with the experimental data.

  11. Simple extrapolation method to predict the electronic structure of conjugated polymers from calculations on oligomers

    DOE PAGES

    Larsen, Ross E.

    2016-04-12

    In this study, we introduce two simple tight-binding models, which we call fragment frontier orbital extrapolations (FFOE), to extrapolate important electronic properties to the polymer limit using electronic structure calculations on only a few small oligomers. In particular, we demonstrate by comparison to explicit density functional theory calculations that for long oligomers the energies of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and of the first electronic excited state are accurately described as a function of number of repeat units by a simple effective Hamiltonian parameterized from electronic structure calculations on monomers, dimers and, optionally,more » tetramers. For the alternating copolymer materials that currently comprise some of the most efficient polymer organic photovoltaic devices one can use these simple but rigorous models to extrapolate computed properties to the polymer limit based on calculations on a small number of low-molecular-weight oligomers.« less

  12. Geometry and Reynolds-Number Scaling on an Iced Business-Jet Wing

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Ratvasky, Thomas P.; Thacker, Michael; Barnhart, Billy P.

    2005-01-01

    A study was conducted to develop a method to scale the effect of ice accretion on a full-scale business jet wing model to a 1/12-scale model at greatly reduced Reynolds number. Full-scale, 5/12-scale, and 1/12-scale models of identical airfoil section were used in this study. Three types of ice accretion were studied: 22.5-minute ice protection system failure shape, 2-minute initial ice roughness, and a runback shape that forms downstream of a thermal anti-ice system. The results showed that the 22.5-minute failure shape could be scaled from full-scale to 1/12-scale through simple geometric scaling. The 2-minute roughness shape could be scaled by choosing an appropriate grit size. The runback ice shape exhibited greater Reynolds number effects and could not be scaled by simple geometric scaling of the ice shape.

  13. An Overview of Longitudinal Data Analysis Methods for Neurological Research

    PubMed Central

    Locascio, Joseph J.; Atri, Alireza

    2011-01-01

    The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models. PMID:22203825

  14. Simple linear and multivariate regression models.

    PubMed

    Rodríguez del Águila, M M; Benítez-Parejo, N

    2011-01-01

    In biomedical research it is common to find problems in which we wish to relate a response variable to one or more variables capable of describing the behaviour of the former variable by means of mathematical models. Regression techniques are used to this effect, in which an equation is determined relating the two variables. While such equations can have different forms, linear equations are the most widely used form and are easy to interpret. The present article describes simple and multiple linear regression models, how they are calculated, and how their applicability assumptions are checked. Illustrative examples are provided, based on the use of the freely accessible R program. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.

  15. Statistical Mechanics of US Supreme Court

    NASA Astrophysics Data System (ADS)

    Lee, Edward; Broedersz, Chase; Bialek, William; Biophysics Theory Group Team

    2014-03-01

    We build simple models for the distribution of voting patterns in a group, using the Supreme Court of the United States as an example. The least structured, or maximum entropy, model that is consistent with the observed pairwise correlations among justices' votes is equivalent to an Ising spin glass. While all correlations (perhaps surprisingly) are positive, the effective pairwise interactions in the spin glass model have both signs, recovering some of our intuition that justices on opposite sides of the ideological spectrum should have a negative influence on one another. Despite the competing interactions, a strong tendency toward unanimity emerges from the model, and this agrees quantitatively with the data. The model shows that voting patterns are organized in a relatively simple ``energy landscape,'' correctly predicts the extent to which each justice is correlated with the majority, and gives us a measure of the influence that justices exert on one another. These results suggest that simple models, grounded in statistical physics, can capture essential features of collective decision making quantitatively, even in a complex political context. Funded by National Science Foundation Grants PHY-0957573 and CCF-0939370, WM Keck Foundation, Lewis-Sigler Fellowship, Burroughs Wellcome Fund, and Winston Foundation.

  16. Theory of Auger core-valence-valence processes in simple metals. II. Dynamical and surface effects on Auger line shapes

    NASA Astrophysics Data System (ADS)

    Almbladh, C.-O.; Morales, A. L.

    1989-02-01

    Auger CVV spectra of simple metals are generally believed to be well described by one-electron-like theories in the bulk which account for matrix elements and, in some cases, also static core-hole screening effects. We present here detailed calculations on Li, Be, Na, Mg, and Al using self-consistent bulk wave functions and proper matrix elements. The resulting spectra differ markedly from experiment and peak at too low energies. To explain this discrepancy we investigate effects of the surface and dynamical effects of the sudden disappearance of the core hole in the final state. To study core-hole effects we solve Mahan-Nozières-De Dominicis (MND) model numerically over the entire band. The core-hole potential and other parameters in the MND model are determined by self-consistent calculations of the core-hole impurity. The results are compared with simpler approximations based on the final-state rule due to von Barth and Grossmann. To study surface and mean-free-path effects we perform slab calculations for Al but use a simpler infinite-barrier model in the remaining cases. The model reproduces the slab spectra for Al with very good accuracy. In all cases investigated either the effects of the surface or the effects of the core hole give important modifications and a much improved agreement with experiment.

  17. [Fundamental biological model for trials of wound ballistics].

    PubMed

    Krajsa, J; Hirt, M

    2006-10-01

    The aim of our experiment was the testing of effects of common ammunition on usable and slightly accessible biological tissue thereby to create fundamental simple biological model for trials of wounded ballistic. Like objective tissue was elected biological material - pork and beef hind-limbs, pork head, pork bodily cavity. It was discovered that objective tissue is able to react to singles types of shots in all spectrum results namely simple smooth penetration wound as well as splintery fracture in dependence on kind of using ammunition. Pork hind-limb was evaluated like the most suitable biological material for given object.

  18. Heat pipe life and processing study

    NASA Technical Reports Server (NTRS)

    Antoniuk, D.; Luedke, E. E.

    1979-01-01

    The merit of adding water to the reflux charge in chemically and solvent cleaned aluminum/slab wick/ammonia heat pipes was evaluated. The effect of gas in the performance of three heat pipe thermal control systems was found significant in simple heat pipes, less significant in a modified simple heat pipe model with a short wickless pipe section. Use of gas data for the worst and best heat pipes of the matrix in a variable conductance heat pipe model showed a 3 C increase in the source temperature at full on condition after 20 and 246 years, respectively.

  19. The effects of numerical-model complexity and observation type on estimated porosity values

    USGS Publications Warehouse

    Starn, Jeffrey; Bagtzoglou, Amvrossios C.; Green, Christopher T.

    2015-01-01

    The relative merits of model complexity and types of observations employed in model calibration are compared. An existing groundwater flow model coupled with an advective transport simulation of the Salt Lake Valley, Utah (USA), is adapted for advective transport, and effective porosity is adjusted until simulated tritium concentrations match concentrations in samples from wells. Two calibration approaches are used: a “complex” highly parameterized porosity field and a “simple” parsimonious model of porosity distribution. The use of an atmospheric tracer (tritium in this case) and apparent ages (from tritium/helium) in model calibration also are discussed. Of the models tested, the complex model (with tritium concentrations and tritium/helium apparent ages) performs best. Although tritium breakthrough curves simulated by complex and simple models are very generally similar, and there is value in the simple model, the complex model is supported by a more realistic porosity distribution and a greater number of estimable parameters. Culling the best quality data did not lead to better calibration, possibly because of processes and aquifer characteristics that are not simulated. Despite many factors that contribute to shortcomings of both the models and the data, useful information is obtained from all the models evaluated. Although any particular prediction of tritium breakthrough may have large errors, overall, the models mimic observed trends.

  20. Comparison of rigorous and simple vibrational models for the CO2 gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1977-01-01

    The accuracy of a simple vibrational model for computing the gain in a CO2 gasdynamic laser is assessed by comparing results computed from it with results computed from a rigorous vibrational model. The simple model is that of Anderson et al. (1971), in which the vibrational kinetics are modeled by grouping the nonequilibrium vibrational degrees of freedom into two modes, to each of which there corresponds an equation describing vibrational relaxation. The two models agree fairly well in the computed gain at low temperatures, but the simple model predicts too high a gain at the higher temperatures of current interest. The sources of error contributing to the overestimation given by the simple model are determined by examining the simplified relaxation equations.

  1. Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings.

    PubMed

    Rakowski, Andrzej Z; Nakamura, Toshio; Pazdur, Anna

    2008-10-01

    Radiocarbon concentration in the atmosphere is significantly lower in areas where man-made emissions of carbon dioxide occur. This phenomenon is known as Suess effect, and is caused by the contamination of clean air with non-radioactive carbon from fossil fuel combustion. The effect is more strongly observed in industrial and densely populated urban areas. Measurements of carbon isotope concentrations in a study area can be compared to those from areas of clear air in order to estimate the amount of carbon dioxide emission from fossil fuel combustion by using a simple mathematical model. This can be calculated using the simple mathematical model. The result of the mathematical model followed in this study suggests that the use of annual rings of trees to obtain the secular variations of 14C concentration of atmospheric CO2 can be useful and efficient for environmental monitoring and modeling of the carbon distribution in local scale.

  2. Exploring the role of internal friction in the dynamics of unfolded proteins using simple polymer models.

    PubMed

    Cheng, Ryan R; Hawk, Alexander T; Makarov, Dmitrii E

    2013-02-21

    Recent experiments showed that the reconfiguration dynamics of unfolded proteins are often adequately described by simple polymer models. In particular, the Rouse model with internal friction (RIF) captures internal friction effects as observed in single-molecule fluorescence correlation spectroscopy (FCS) studies of a number of proteins. Here we use RIF, and its non-free draining analog, Zimm model with internal friction, to explore the effect of internal friction on the rate with which intramolecular contacts can be formed within the unfolded chain. Unlike the reconfiguration times inferred from FCS experiments, which depend linearly on the solvent viscosity, the first passage times to form intramolecular contacts are shown to display a more complex viscosity dependence. We further describe scaling relationships obeyed by contact formation times in the limits of high and low internal friction. Our findings provide experimentally testable predictions that can serve as a framework for the analysis of future studies of contact formation in proteins.

  3. Modelling morphology evolution during solidification of IPP in processing conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantani, R., E-mail: rpantani@unisa.it, E-mail: fedesantis@unisa.it, E-mail: vsperanza@unisa.it, E-mail: gtitomanlio@unisa.it; De Santis, F., E-mail: rpantani@unisa.it, E-mail: fedesantis@unisa.it, E-mail: vsperanza@unisa.it, E-mail: gtitomanlio@unisa.it; Speranza, V., E-mail: rpantani@unisa.it, E-mail: fedesantis@unisa.it, E-mail: vsperanza@unisa.it, E-mail: gtitomanlio@unisa.it

    During polymer processing, crystallization takes place during or soon after flow. In most of cases, the flow field dramatically influences both the crystallization kinetics and the crystal morphology. On their turn, crystallinity and morphology affect product properties. Consequently, in the last decade, researchers tried to identify the main parameters determining crystallinity and morphology evolution during solidification In processing conditions. In this work, we present an approach to model flow-induced crystallization with the aim of predicting the morphology after processing. The approach is based on: interpretation of the FIC as the effect of molecular stretch on the thermodynamic crystallization temperature; modelingmore » the molecular stretch evolution by means of a model simple and easy to be implemented in polymer processing simulation codes; identification of the effect of flow on nucleation density and spherulites growth rate by means of simple experiments; determination of the condition under which fibers form instead of spherulites. Model predictions reproduce most of the features of final morphology observed in the samples after solidification.« less

  4. A Self-consistent Cloud Model for Brown Dwarfs and Young Giant Exoplanets: Comparison with Photometric and Spectroscopic Observations

    NASA Astrophysics Data System (ADS)

    Charnay, B.; Bézard, B.; Baudino, J.-L.; Bonnefoy, M.; Boccaletti, A.; Galicher, R.

    2018-02-01

    We developed a simple, physical, and self-consistent cloud model for brown dwarfs and young giant exoplanets. We compared different parametrizations for the cloud particle size, by fixing either particle radii or the mixing efficiency (parameter f sed), or by estimating particle radii from simple microphysics. The cloud scheme with simple microphysics appears to be the best parametrization by successfully reproducing the observed photometry and spectra of brown dwarfs and young giant exoplanets. In particular, it reproduces the L–T transition, due to the condensation of silicate and iron clouds below the visible/near-IR photosphere. It also reproduces the reddening observed for low-gravity objects, due to an increase of cloud optical depth for low gravity. In addition, we found that the cloud greenhouse effect shifts chemical equilibrium, increasing the abundances of species stable at high temperature. This effect should significantly contribute to the strong variation of methane abundance at the L–T transition and to the methane depletion observed on young exoplanets. Finally, we predict the existence of a continuum of brown dwarfs and exoplanets for absolute J magnitude = 15–18 and J-K color = 0–3, due to the evolution of the L–T transition with gravity. This self-consistent model therefore provides a general framework to understand the effects of clouds and appears well-suited for atmospheric retrievals.

  5. The non-linear response of a muscle in transverse compression: assessment of geometry influence using a finite element model.

    PubMed

    Gras, Laure-Lise; Mitton, David; Crevier-Denoix, Nathalie; Laporte, Sébastien

    2012-01-01

    Most recent finite element models that represent muscles are generic or subject-specific models that use complex, constitutive laws. Identification of the parameters of such complex, constitutive laws could be an important limit for subject-specific approaches. The aim of this study was to assess the possibility of modelling muscle behaviour in compression with a parametric model and a simple, constitutive law. A quasi-static compression test was performed on the muscles of dogs. A parametric finite element model was designed using a linear, elastic, constitutive law. A multi-variate analysis was performed to assess the effects of geometry on muscle response. An inverse method was used to define Young's modulus. The non-linear response of the muscles was obtained using a subject-specific geometry and a linear elastic law. Thus, a simple muscle model can be used to have a bio-faithful, biomechanical response.

  6. On the simple random-walk models of ion-channel gate dynamics reflecting long-term memory.

    PubMed

    Wawrzkiewicz, Agata; Pawelek, Krzysztof; Borys, Przemyslaw; Dworakowska, Beata; Grzywna, Zbigniew J

    2012-06-01

    Several approaches to ion-channel gating modelling have been proposed. Although many models describe the dwell-time distributions correctly, they are incapable of predicting and explaining the long-term correlations between the lengths of adjacent openings and closings of a channel. In this paper we propose two simple random-walk models of the gating dynamics of voltage and Ca(2+)-activated potassium channels which qualitatively reproduce the dwell-time distributions, and describe the experimentally observed long-term memory quite well. Biological interpretation of both models is presented. In particular, the origin of the correlations is associated with fluctuations of channel mass density. The long-term memory effect, as measured by Hurst R/S analysis of experimental single-channel patch-clamp recordings, is close to the behaviour predicted by our models. The flexibility of the models enables their use as templates for other types of ion channel.

  7. Time-dependent inhomogeneous jet models for BL Lac objects

    NASA Technical Reports Server (NTRS)

    Marlowe, A. T.; Urry, C. M.; George, I. M.

    1992-01-01

    Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.

  8. Time-dependent inhomogeneous jet models for BL Lac objects

    NASA Astrophysics Data System (ADS)

    Marlowe, A. T.; Urry, C. M.; George, I. M.

    1992-05-01

    Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.

  9. Evaluation of a Linear Cumulative Damage Failure Model for Epoxy Adhesive

    NASA Technical Reports Server (NTRS)

    Richardson, David E.; Batista-Rodriquez, Alicia; Macon, David; Totman, Peter; McCool, Alex (Technical Monitor)

    2001-01-01

    Recently a significant amount of work has been conducted to provide more complex and accurate material models for use in the evaluation of adhesive bondlines. Some of this has been prompted by recent studies into the effects of residual stresses on the integrity of bondlines. Several techniques have been developed for the analysis of bondline residual stresses. Key to these analyses is the criterion that is used for predicting failure. Residual stress loading of an adhesive bondline can occur over the life of the component. For many bonded systems, this can be several years. It is impractical to directly characterize failure of adhesive bondlines under a constant load for several years. Therefore, alternative approaches for predictions of bondline failures are required. In the past, cumulative damage failure models have been developed. These models have ranged from very simple to very complex. This paper documents the generation and evaluation of some of the most simple linear damage accumulation tensile failure models for an epoxy adhesive. This paper shows how several variations on the failure model were generated and presents an evaluation of the accuracy of these failure models in predicting creep failure of the adhesive. The paper shows that a simple failure model can be generated from short-term failure data for accurate predictions of long-term adhesive performance.

  10. Development of mathematical models of environmental physiology

    NASA Technical Reports Server (NTRS)

    Stolwijk, J. A. J.; Mitchell, J. W.; Nadel, E. R.

    1971-01-01

    Selected articles concerned with mathematical or simulation models of human thermoregulation are presented. The articles presented include: (1) development and use of simulation models in medicine, (2) model of cardio-vascular adjustments during exercise, (3) effective temperature scale based on simple model of human physiological regulatory response, (4) behavioral approach to thermoregulatory set point during exercise, and (5) importance of skin temperature in sweat regulation.

  11. An interactive modelling tool for understanding hydrological processes in lowland catchments

    NASA Astrophysics Data System (ADS)

    Brauer, Claudia; Torfs, Paul; Uijlenhoet, Remko

    2016-04-01

    Recently, we developed the Wageningen Lowland Runoff Simulator (WALRUS), a rainfall-runoff model for catchments with shallow groundwater (Brauer et al., 2014ab). WALRUS explicitly simulates processes which are important in lowland catchments, such as feedbacks between saturated and unsaturated zone and between groundwater and surface water. WALRUS has a simple model structure and few parameters with physical connotations. Some default functions (which can be changed easily for research purposes) are implemented to facilitate application by practitioners and students. The effect of water management on hydrological variables can be simulated explicitly. The model description and applications are published in open access journals (Brauer et al, 2014). The open source code (provided as R package) and manual can be downloaded freely (www.github.com/ClaudiaBrauer/WALRUS). We organised a short course for Dutch water managers and consultants to become acquainted with WALRUS. We are now adapting this course as a stand-alone tutorial suitable for a varied, international audience. In addition, simple models can aid teachers to explain hydrological principles effectively. We used WALRUS to generate examples for simple interactive tools, which we will present at the EGU General Assembly. C.C. Brauer, A.J. Teuling, P.J.J.F. Torfs, R. Uijlenhoet (2014a): The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater, Geosci. Model Dev., 7, 2313-2332. C.C. Brauer, P.J.J.F. Torfs, A.J. Teuling, R. Uijlenhoet (2014b): The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrol. Earth Syst. Sci., 18, 4007-4028.

  12. The power to detect linkage in complex disease by means of simple LOD-score analyses.

    PubMed Central

    Greenberg, D A; Abreu, P; Hodge, S E

    1998-01-01

    Maximum-likelihood analysis (via LOD score) provides the most powerful method for finding linkage when the mode of inheritance (MOI) is known. However, because one must assume an MOI, the application of LOD-score analysis to complex disease has been questioned. Although it is known that one can legitimately maximize the maximum LOD score with respect to genetic parameters, this approach raises three concerns: (1) multiple testing, (2) effect on power to detect linkage, and (3) adequacy of the approximate MOI for the true MOI. We evaluated the power of LOD scores to detect linkage when the true MOI was complex but a LOD score analysis assumed simple models. We simulated data from 14 different genetic models, including dominant and recessive at high (80%) and low (20%) penetrances, intermediate models, and several additive two-locus models. We calculated LOD scores by assuming two simple models, dominant and recessive, each with 50% penetrance, then took the higher of the two LOD scores as the raw test statistic and corrected for multiple tests. We call this test statistic "MMLS-C." We found that the ELODs for MMLS-C are >=80% of the ELOD under the true model when the ELOD for the true model is >=3. Similarly, the power to reach a given LOD score was usually >=80% that of the true model, when the power under the true model was >=60%. These results underscore that a critical factor in LOD-score analysis is the MOI at the linked locus, not that of the disease or trait per se. Thus, a limited set of simple genetic models in LOD-score analysis can work well in testing for linkage. PMID:9718328

  13. The power to detect linkage in complex disease by means of simple LOD-score analyses.

    PubMed

    Greenberg, D A; Abreu, P; Hodge, S E

    1998-09-01

    Maximum-likelihood analysis (via LOD score) provides the most powerful method for finding linkage when the mode of inheritance (MOI) is known. However, because one must assume an MOI, the application of LOD-score analysis to complex disease has been questioned. Although it is known that one can legitimately maximize the maximum LOD score with respect to genetic parameters, this approach raises three concerns: (1) multiple testing, (2) effect on power to detect linkage, and (3) adequacy of the approximate MOI for the true MOI. We evaluated the power of LOD scores to detect linkage when the true MOI was complex but a LOD score analysis assumed simple models. We simulated data from 14 different genetic models, including dominant and recessive at high (80%) and low (20%) penetrances, intermediate models, and several additive two-locus models. We calculated LOD scores by assuming two simple models, dominant and recessive, each with 50% penetrance, then took the higher of the two LOD scores as the raw test statistic and corrected for multiple tests. We call this test statistic "MMLS-C." We found that the ELODs for MMLS-C are >=80% of the ELOD under the true model when the ELOD for the true model is >=3. Similarly, the power to reach a given LOD score was usually >=80% that of the true model, when the power under the true model was >=60%. These results underscore that a critical factor in LOD-score analysis is the MOI at the linked locus, not that of the disease or trait per se. Thus, a limited set of simple genetic models in LOD-score analysis can work well in testing for linkage.

  14. A univariate model of river water nitrate time series

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Burt, T. P.

    1999-01-01

    Four time series were taken from three catchments in the North and South of England. The sites chosen included two in predominantly agricultural catchments, one at the tidal limit and one downstream of a sewage treatment works. A time series model was constructed for each of these series as a means of decomposing the elements controlling river water nitrate concentrations and to assess whether this approach could provide a simple management tool for protecting water abstractions. Autoregressive (AR) modelling of the detrended and deseasoned time series showed a "memory effect". This memory effect expressed itself as an increase in the winter-summer difference in nitrate levels that was dependent upon the nitrate concentration 12 or 6 months previously. Autoregressive moving average (ARMA) modelling showed that one of the series contained seasonal, non-stationary elements that appeared as an increasing trend in the winter-summer difference. The ARMA model was used to predict nitrate levels and predictions were tested against data held back from the model construction process - predictions gave average percentage errors of less than 10%. Empirical modelling can therefore provide a simple, efficient method for constructing management models for downstream water abstraction.

  15. Differences in aquatic habitat quality as an impact of one- and two-dimensional hydrodynamic model simulated flow variables

    NASA Astrophysics Data System (ADS)

    Benjankar, R. M.; Sohrabi, M.; Tonina, D.; McKean, J. A.

    2013-12-01

    Aquatic habitat models utilize flow variables which may be predicted with one-dimensional (1D) or two-dimensional (2D) hydrodynamic models to simulate aquatic habitat quality. Studies focusing on the effects of hydrodynamic model dimensionality on predicted aquatic habitat quality are limited. Here we present the analysis of the impact of flow variables predicted with 1D and 2D hydrodynamic models on simulated spatial distribution of habitat quality and Weighted Usable Area (WUA) for fall-spawning Chinook salmon. Our study focuses on three river systems located in central Idaho (USA), which are a straight and pool-riffle reach (South Fork Boise River), small pool-riffle sinuous streams in a large meadow (Bear Valley Creek) and a steep-confined plane-bed stream with occasional deep forced pools (Deadwood River). We consider low and high flows in simple and complex morphologic reaches. Results show that 1D and 2D modeling approaches have effects on both the spatial distribution of the habitat and WUA for both discharge scenarios, but we did not find noticeable differences between complex and simple reaches. In general, the differences in WUA were small, but depended on stream type. Nevertheless, spatially distributed habitat quality difference is considerable in all streams. The steep-confined plane bed stream had larger differences between aquatic habitat quality defined with 1D and 2D flow models compared to results for streams with well defined macro-topographies, such as pool-riffle bed forms. KEY WORDS: one- and two-dimensional hydrodynamic models, habitat modeling, weighted usable area (WUA), hydraulic habitat suitability, high and low discharges, simple and complex reaches

  16. Modeling and predicting historical volatility in exchange rate markets

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2017-04-01

    Volatility modeling and forecasting of currency exchange rate is an important task in several business risk management tasks; including treasury risk management, derivatives pricing, and portfolio risk evaluation. The purpose of this study is to present a simple and effective approach for predicting historical volatility of currency exchange rate. The approach is based on a limited set of technical indicators as inputs to the artificial neural networks (ANN). To show the effectiveness of the proposed approach, it was applied to forecast US/Canada and US/Euro exchange rates volatilities. The forecasting results show that our simple approach outperformed the conventional GARCH and EGARCH with different distribution assumptions, and also the hybrid GARCH and EGARCH with ANN in terms of mean absolute error, mean of squared errors, and Theil's inequality coefficient. Because of the simplicity and effectiveness of the approach, it is promising for US currency volatility prediction tasks.

  17. Cyclic voltammetry modeling of proton transport effects on redox charge storage in conductive materials: application to a TiO2 mesoporous film.

    PubMed

    Kim, Y S; Balland, V; Limoges, B; Costentin, C

    2017-07-21

    Cyclic voltammetry is a particularly useful tool for characterizing charge accumulation in conductive materials. A simple model is presented to evaluate proton transport effects on charge storage in conductive materials associated with a redox process coupled with proton insertion in the bulk material from an aqueous buffered solution, a situation frequently encountered in metal oxide materials. The interplay between proton transport inside and outside the materials is described using a formulation of the problem through introduction of dimensionless variables that allows defining the minimum number of parameters governing the cyclic voltammetry response with consideration of a simple description of the system geometry. This approach is illustrated by analysis of proton insertion in a mesoporous TiO 2 film.

  18. Second-harmonic diffraction from holographic volume grating.

    PubMed

    Nee, Tsu-Wei

    2006-10-01

    The full polarization property of holographic volume-grating enhanced second-harmonic diffraction (SHD) is investigated theoretically. The nonlinear coefficient is derived from a simple atomic model of the material. By using a simple volume-grating model, the SHD fields and Mueller matrices are first derived. The SHD phase-mismatching effect for a thick sample is analytically investigated. This theory is justified by fitting with published experimental SHD data of thin-film samples. The SHD of an existing polymethyl methacrylate (PMMA) holographic 2-mm-thick volume-grating sample is investigated. This sample has two strong coupling linear diffraction peaks and five SHD peaks. The splitting of SHD peaks is due to the phase-mismatching effect. The detector sensitivity and laser power needed to measure these peak signals are quantitatively estimated.

  19. The effect of time-dependent macromolecular crowding on the kinetics of protein aggregation: a simple model for the onset of age-related neurodegenerative disease

    NASA Astrophysics Data System (ADS)

    Minton, Allen

    2014-08-01

    A linear increase in the concentration of "inert" macromolecules with time is incorporated into simple excluded volume models for protein condensation or fibrillation. Such models predict a long latent period during which no significant amount of protein aggregates, followed by a steep increase in the total amount of aggregate. The elapsed time at which these models predict half-conversion of model protein to aggregate varies by less than a factor of two when the intrinsic rate constant for condensation or fibril growth of the protein is varied over many orders of magnitude. It is suggested that this concept can explain why the symptoms of neurodegenerative diseases associated with the aggregation of very different proteins and peptides appear at approximately the same advanced age in humans.

  20. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model.

    PubMed

    Matzarakis, Andreas; Rutz, Frank; Mayer, Helmut

    2010-03-01

    Short- and long-wave radiation flux densities absorbed by people have a significant influence on their energy balance. The heat effect of the absorbed radiation flux densities is parameterised by the mean radiant temperature. This paper presents the physical basis of the RayMan model, which simulates the short- and long-wave radiation flux densities from the three-dimensional surroundings in simple and complex environments. RayMan has the character of a freely available radiation and human-bioclimate model. The aim of the RayMan model is to calculate radiation flux densities, sunshine duration, shadow spaces and thermo-physiologically relevant assessment indices using only a limited number of meteorological and other input data. A comparison between measured and simulated values for global radiation and mean radiant temperature shows that the simulated data closely resemble measured data.

  1. Simple Model of the Circulation.

    ERIC Educational Resources Information Center

    Greenway, Clive A.

    1980-01-01

    Describes a program in BASIC-11 that explores the relationships between various variables in the circulatory system and permits manipulation of several semiindependent variables to model the effects of hemorrhage, drug infusions, etc. A flow chart and accompanying sample printout are provided; the program is listed in the appendix. (CS)

  2. BIOGENIC HYDROCARBON EMISSION INVENTORY FOR THE U.S. USING A SIMPLE FOREST CANOPY MODEL

    EPA Science Inventory

    A biogenic hydrocarbon emission inventory system, developed for acid deposition and regional oxidant modeling, is described, and results for a U.S. emission inventory are presented. or deciduous and coniferous forests, scaling relationships are used to account for canopy effects ...

  3. Biomat development in soil treatment units for on-site wastewater treatment.

    PubMed

    Winstanley, H F; Fowler, A C

    2013-10-01

    We provide a simple mathematical model of the bioremediation of contaminated wastewater leaching into the subsoil below a septic tank percolation system. The model comprises a description of the percolation system's flows, together with equations describing the growth of biomass and the uptake of an organic contaminant concentration. By first rendering the model dimensionless, it can be partially solved, to provide simple insights into the processes which control the efficacy of the system. In particular, we provide quantitative insight into the effect of a near surface biomat on subsoil permeability; this can lead to trench ponding, and thus propagation of effluent further down the trench. Using the computed vadose zone flow field, the model can be simply extended to include reactive transport of other contaminants of interest.

  4. A simple model to estimate the impact of sea-level rise on platform beaches

    NASA Astrophysics Data System (ADS)

    Taborda, Rui; Ribeiro, Mónica Afonso

    2015-04-01

    Estimates of future beach evolution in response to sea-level rise are needed to assess coastal vulnerability. A research gap is identified in providing adequate predictive methods to use for platform beaches. This work describes a simple model to evaluate the effects of sea-level rise on platform beaches that relies on the conservation of beach sand volume and assumes an invariant beach profile shape. In closed systems, when compared with the Inundation Model, results show larger retreats; the differences are higher for beaches with wide berms and when the shore platform develops at shallow depths. The application of the proposed model to Cascais (Portugal) beaches, using 21st century sea-level rise scenarios, shows that there will be a significant reduction in beach width.

  5. The Effect of Primary School Students' Writing Attitudes and Writing Self-Efficacy Beliefs on Their Summary Writing Achievement

    ERIC Educational Resources Information Center

    Bulut, Pinar

    2017-01-01

    In this study, the effect of writing attitude and writing self-efficacy beliefs on the summarization achievement of the 4th grade primary school students was examined using the structural equation modeling. The study employed the relational survey model. The study group constructed by means of simple random sampling method is comprised of 335…

  6. Wall Layers

    DTIC Science & Technology

    1992-01-14

    modes. Nonlinearity 4, 697-726. Campbell, S. A . 1991. The Effects of Symmetry on Low Dimensional Modal Interactions. Ph. D. Thesis. (Theoretical and...et aL; they have a ready for submission entitled " Bifurcation from symmetric heteroclinic cycles with three interacting modes". The purpose of this...simple model for the effects of riblets on the growth and form of eigenstructures is under investigation. This model is a straight-forward extension of

  7. The Effects of Swedish Knife Model on Students' Understanding of the Digestive System

    ERIC Educational Resources Information Center

    Cerrah Ozsevgec, Lale; Artun, Huseyin; Unal, Melike

    2012-01-01

    This study was designed to examine the effect of Swedish Knife Model on students' understanding of digestive system. A simple experimental design (pretest-treatment-posttest) was used in the study and internal comparison of the results of the one group was made. The sample consisted of 40 7th grade Turkish students whose ages range from 13 to 15.…

  8. Measured effects of surface cloth impressions on polar backscatter and comparison with a reflection grating model

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Brush, Edwin F., III; Bridal, S. L.; Holland, Mark R.; Miller, James G.

    1992-01-01

    This paper focuses on the nature of a typical composite surface and its effects on scattering. Utilizing epoxy typical of that in composites and standard composite fabrication methods, a sample with release cloth impressions on its surface is produced. A simple model for the scattering from the surface impressions of this sample is constructed and then polar backscatter measurements are made on the sample and compared with the model predictions.

  9. An optimal control model approach to the design of compensators for simulator delay

    NASA Technical Reports Server (NTRS)

    Baron, S.; Lancraft, R.; Caglayan, A.

    1982-01-01

    The effects of display delay on pilot performance and workload and of the design of the filters to ameliorate these effects were investigated. The optimal control model for pilot/vehicle analysis was used both to determine the potential delay effects and to design the compensators. The model was applied to a simple roll tracking task and to a complex hover task. The results confirm that even small delays can degrade performance and impose a workload penalty. A time-domain compensator designed by using the optimal control model directly appears capable of providing extensive compensation for these effects even in multi-input, multi-output problems.

  10. Multiwell capillarity-based microfluidic device for the study of 3D tumour tissue-2D endothelium interactions and drug screening in co-culture models.

    PubMed

    Virumbrales-Muñoz, María; Ayuso, José María; Olave, Marta; Monge, Rosa; de Miguel, Diego; Martínez-Lostao, Luis; Le Gac, Séverine; Doblare, Manuel; Ochoa, Ignacio; Fernandez, Luis J

    2017-09-20

    The tumour microenvironment is very complex, and essential in tumour development and drug resistance. The endothelium is critical in the tumour microenvironment: it provides nutrients and oxygen to the tumour and is essential for systemic drug delivery. Therefore, we report a simple, user-friendly microfluidic device for co-culture of a 3D breast tumour model and a 2D endothelium model for cross-talk and drug delivery studies. First, we demonstrated the endothelium was functional, whereas the tumour model exhibited in vivo features, e.g., oxygen gradients and preferential proliferation of cells with better access to nutrients and oxygen. Next, we observed the endothelium structure lost its integrity in the co-culture. Following this, we evaluated two drug formulations of TRAIL (TNF-related apoptosis inducing ligand): soluble and anchored to a LUV (large unilamellar vesicle). Both diffused through the endothelium, LUV-TRAIL being more efficient in killing tumour cells, showing no effect on the integrity of endothelium. Overall, we have developed a simple capillary force-based microfluidic device for 2D and 3D cell co-cultures. Our device allows high-throughput approaches, patterning different cell types and generating gradients without specialised equipment. We anticipate this microfluidic device will facilitate drug screening in a relevant microenvironment thanks to its simple, effective and user-friendly operation.

  11. Computational models of the Posner simple and choice reaction time tasks

    PubMed Central

    Feher da Silva, Carolina; Baldo, Marcus V. C.

    2015-01-01

    The landmark experiments by Posner in the late 1970s have shown that reaction time (RT) is faster when the stimulus appears in an expected location, as indicated by a cue; since then, the so-called Posner task has been considered a “gold standard” test of spatial attention. It is thus fundamental to understand the neural mechanisms involved in performing it. To this end, we have developed a Bayesian detection system and small integrate-and-fire neural networks, which modeled sensory and motor circuits, respectively, and optimized them to perform the Posner task under different cue type proportions and noise levels. In doing so, main findings of experimental research on RT were replicated: the relative frequency effect, suboptimal RTs and significant error rates due to noise and invalid cues, slower RT for choice RT tasks than for simple RT tasks, fastest RTs for valid cues and slowest RTs for invalid cues. Analysis of the optimized systems revealed that the employed mechanisms were consistent with related findings in neurophysiology. Our models predict that (1) the results of a Posner task may be affected by the relative frequency of valid and neutral trials, (2) in simple RT tasks, input from multiple locations are added together to compose a stronger signal, and (3) the cue affects motor circuits more strongly in choice RT tasks than in simple RT tasks. In discussing the computational demands of the Posner task, attention has often been described as a filter that protects the nervous system, whose capacity is limited, from information overload. Our models, however, reveal that the main problems that must be overcome to perform the Posner task effectively are distinguishing signal from external noise and selecting the appropriate response in the presence of internal noise. PMID:26190997

  12. Simple model for vibration-translation exchange at high temperatures: effects of multiquantum transitions on the relaxation of a N2 gas flow behind a shock.

    PubMed

    Aliat, A; Vedula, P; Josyula, E

    2011-02-01

    In this paper a simple model is proposed for computation of rate coefficients related to vibration-translation transitions based on the forced harmonic oscillator theory. This model, which is developed by considering a quadrature method, provides rate coefficients that are in very good agreement with those found in the literature for the high temperature regime (≳10,000 K). This model is implemented to study a one-dimensional nonequilibrium inviscid N(2) flow behind a plane shock by considering a state-to-state approach. While the effects of ionization and chemical reactions are neglected in our study, our results show that multiquantum transitions have a great influence on the relaxation of the macroscopic parameters of the gas flow behind the shock, especially on vibrational distributions of high levels. All vibrational states are influenced by multiquantum processes, but the effective number of transitions decreases inversely according to the vibrational quantum number. For the initial conditions considered in this study, excited electronic states are found to be weakly populated and can be neglected in modeling. Moreover, the computing time is considerably reduced with the model described in this paper compared to others found in the literature. ©2011 American Physical Society

  13. Predicting bending stiffness of randomly oriented hybrid panels

    Treesearch

    Laura Moya; William T.Y. Tze; Jerrold E. Winandy

    2010-01-01

    This study was conducted to develop a simple model to predict the bending modulus of elasticity (MOE) of randomly oriented hybrid panels. The modeling process involved three modules: the behavior of a single layer was computed by applying micromechanics equations, layer properties were adjusted for densification effects, and the entire panel was modeled as a three-...

  14. Nature of solidification of nanoconfined organic liquid layers.

    PubMed

    Lang, X Y; Zhu, Y F; Jiang, Q

    2007-01-30

    A simple model is established for solidification of a nanoconfined liquid under nonequilibrium conditions. In terms of this model, the nature of solidification is the conjunct finite size and interface effects, which is directly related to the cooling rate or the relaxation time of the undercooled liquid. The model predictions are consistent with available experimental results.

  15. Using Supply, Demand, and the Cournot Model to Understand Corruption

    ERIC Educational Resources Information Center

    Hayford, Marc D.

    2007-01-01

    The author combines the supply and demand model of taxes with a Cournot model of bribe takers to develop a simple and useful framework for understanding the effect of corruption on economic activity. There are many examples of corruption in both developed and developing countries. Because corruption decreases the level of economic activity and…

  16. Modeling the plant-soil interaction in presence of heavy metal pollution and acidity variations.

    PubMed

    Guala, Sebastián; Vega, Flora A; Covelo, Emma F

    2013-01-01

    On a mathematical interaction model, developed to model metal uptake by plants and the effects on their growth, we introduce a modification which considers also effects on variations of acidity in soil. The model relates the dynamics of the uptake of metals from soil to plants and also variations of uptake according to the acidity level. Two types of relationships are considered: total and available metal content. We suppose simple mathematical assumptions in order to get as simple as possible expressions with the aim of being easily tested in experimental problems. This work introduces modifications to two versions of the model: on the one hand, the expression of the relationship between the metal in soil and the concentration of the metal in plants and, on the other hand, the relationship between the metal in the soil and total amount of the metal in plants. The fine difference of both versions is fundamental at the moment to consider the tolerance and capacity of accumulation of pollutants in the biomass from the soil.

  17. Electrical conductivity of metal powders under pressure

    NASA Astrophysics Data System (ADS)

    Montes, J. M.; Cuevas, F. G.; Cintas, J.; Urban, P.

    2011-12-01

    A model for calculating the electrical conductivity of a compressed powder mass consisting of oxide-coated metal particles has been derived. A theoretical tool previously developed by the authors, the so-called `equivalent simple cubic system', was used in the model deduction. This tool is based on relating the actual powder system to an equivalent one consisting of deforming spheres packed in a simple cubic lattice, which is much easier to examine. The proposed model relates the effective electrical conductivity of the powder mass under compression to its level of porosity. Other physically measurable parameters in the model are the conductivities of the metal and oxide constituting the powder particles, their radii, the mean thickness of the oxide layer and the tap porosity of the powder. Two additional parameters controlling the effect of the descaling of the particle oxide layer were empirically introduced. The proposed model was experimentally verified by measurements of the electrical conductivity of aluminium, bronze, iron, nickel and titanium powders under pressure. The consistency between theoretical predictions and experimental results was reasonably good in all cases.

  18. Brain State Effects on Layer 4 of the Awake Visual Cortex

    PubMed Central

    Zhuang, Jun; Bereshpolova, Yulia; Stoelzel, Carl R.; Huff, Joseph M.; Hei, Xiaojuan; Alonso, Jose-Manuel

    2014-01-01

    Awake mammals can switch between alert and nonalert brain states hundreds of times per day. Here, we study the effects of alertness on two cell classes in layer 4 of primary visual cortex of awake rabbits: presumptive excitatory “simple” cells and presumptive fast-spike inhibitory neurons (suspected inhibitory interneurons). We show that in both cell classes, alertness increases the strength and greatly enhances the reliability of visual responses. In simple cells, alertness also increases the temporal frequency bandwidth, but preserves contrast sensitivity, orientation tuning, and selectivity for direction and spatial frequency. Finally, alertness selectively suppresses the simple cell responses to high-contrast stimuli and stimuli moving orthogonal to the preferred direction, effectively enhancing mid-contrast borders. Using a population coding model, we show that these effects of alertness in simple cells—enhanced reliability, higher gain, and increased suppression in orthogonal orientation—could play a major role at increasing the speed of cortical feature detection. PMID:24623767

  19. The practical use of simplicity in developing ground water models

    USGS Publications Warehouse

    Hill, M.C.

    2006-01-01

    The advantages of starting with simple models and building complexity slowly can be significant in the development of ground water models. In many circumstances, simpler models are characterized by fewer defined parameters and shorter execution times. In this work, the number of parameters is used as the primary measure of simplicity and complexity; the advantages of shorter execution times also are considered. The ideas are presented in the context of constructing ground water models but are applicable to many fields. Simplicity first is put in perspective as part of the entire modeling process using 14 guidelines for effective model calibration. It is noted that neither very simple nor very complex models generally produce the most accurate predictions and that determining the appropriate level of complexity is an ill-defined process. It is suggested that a thorough evaluation of observation errors is essential to model development. Finally, specific ways are discussed to design useful ground water models that have fewer parameters and shorter execution times.

  20. A comparison of simple global kinetic models for coal devolatilization with the CPD model

    DOE PAGES

    Richards, Andrew P.; Fletcher, Thomas H.

    2016-08-01

    Simulations of coal combustors and gasifiers generally cannot incorporate the complexities of advanced pyrolysis models, and hence there is interest in evaluating simpler models over ranges of temperature and heating rate that are applicable to the furnace of interest. In this paper, six different simple model forms are compared to predictions made by the Chemical Percolation Devolatilization (CPD) model. The model forms included three modified one-step models, a simple two-step model, and two new modified two-step models. These simple model forms were compared over a wide range of heating rates (5 × 10 3 to 10 6 K/s) at finalmore » temperatures up to 1600 K. Comparisons were made of total volatiles yield as a function of temperature, as well as the ultimate volatiles yield. Advantages and disadvantages for each simple model form are discussed. In conclusion, a modified two-step model with distributed activation energies seems to give the best agreement with CPD model predictions (with the fewest tunable parameters).« less

  1. A classical density functional theory of ionic liquids.

    PubMed

    Forsman, Jan; Woodward, Clifford E; Trulsson, Martin

    2011-04-28

    We present a simple, classical density functional approach to the study of simple models of room temperature ionic liquids. Dispersion attractions as well as ion correlation effects and excluded volume packing are taken into account. The oligomeric structure, common to many ionic liquid molecules, is handled by a polymer density functional treatment. The theory is evaluated by comparisons with simulations, with an emphasis on the differential capacitance, an experimentally measurable quantity of significant practical interest.

  2. Simple animal models for amyotrophic lateral sclerosis drug discovery.

    PubMed

    Patten, Shunmoogum A; Parker, J Alex; Wen, Xiao-Yan; Drapeau, Pierre

    2016-08-01

    Simple animal models have enabled great progress in uncovering the disease mechanisms of amyotrophic lateral sclerosis (ALS) and are helping in the selection of therapeutic compounds through chemical genetic approaches. Within this article, the authors provide a concise overview of simple model organisms, C. elegans, Drosophila and zebrafish, which have been employed to study ALS and discuss their value to ALS drug discovery. In particular, the authors focus on innovative chemical screens that have established simple organisms as important models for ALS drug discovery. There are several advantages of using simple animal model organisms to accelerate drug discovery for ALS. It is the authors' particular belief that the amenability of simple animal models to various genetic manipulations, the availability of a wide range of transgenic strains for labelling motoneurons and other cell types, combined with live imaging and chemical screens should allow for new detailed studies elucidating early pathological processes in ALS and subsequent drug and target discovery.

  3. Effects of Instruction on Preservice Elementary Teachers' Conceptions of the Causes of Night and Day and the Seasons.

    ERIC Educational Resources Information Center

    Atwood, Ronald K.; Atwood, Virginia A.

    1997-01-01

    Details a study that tests the effectiveness of brief instruction on the causes of night and day and the seasons. Employs simple, inexpensive models. Findings are useful for science teacher educators. Contains 32 references. (DDR)

  4. Modification of the Simons model for calculation of nonradial expansion plumes

    NASA Technical Reports Server (NTRS)

    Boyd, I. D.; Stark, J. P. W.

    1989-01-01

    The Simons model is a simple model for calculating the expansion plumes of rockets and thrusters and is a widely used engineering tool for the determination of spacecraft impingement effects. The model assumes that the density of the plume decreases radially from the nozzle exit. Although a high degree of success has been achieved in modeling plumes with moderate Mach numbers, the accuracy obtained under certain conditions is unsatisfactory. A modification made to the model that allows effective description of nonradial behavior in plumes is presented, and the conditions under which its use is preferred are prescribed.

  5. A Buzzing Bee.

    ERIC Educational Resources Information Center

    Donovan, Edward P.; Barnes, Eb

    1996-01-01

    Presents an activity enabling students of grades four to nine to construct a "Buzzing Bee" model using simple materials. Provides students with the opportunity to explore the concepts of sound and the Doppler effect. (MKR)

  6. Theory of advection-driven long range biotic transport

    USDA-ARS?s Scientific Manuscript database

    We propose a simple mechanistic model to examine the effects of advective flow on the spread of fungal diseases spread by wind-blown spores. The model is defined by a set of two coupled non-linear partial differential equations for spore densities. One equation describes the long-distance advectiv...

  7. The Effect of Error Correlation on Interfactor Correlation in Psychometric Measurement

    ERIC Educational Resources Information Center

    Westfall, Peter H.; Henning, Kevin S. S.; Howell, Roy D.

    2012-01-01

    This article shows how interfactor correlation is affected by error correlations. Theoretical and practical justifications for error correlations are given, and a new equivalence class of models is presented to explain the relationship between interfactor correlation and error correlations. The class allows simple, parsimonious modeling of error…

  8. Oil-Price Shocks: Beyond Standard Aggregate Demand/Aggregate Supply Analysis.

    ERIC Educational Resources Information Center

    Elwood, S. Kirk

    2001-01-01

    Explores the problems of portraying oil-price shocks using the aggregate demand/aggregate supply model. Presents a simple modification of the model that differentiates between production and absorption of goods, which enables it to better reflect the effects of oil-price shocks on open economies. (RLH)

  9. Application and evaluation of high-resolution WRF-CMAQ with simple urban parameterization.

    EPA Science Inventory

    The 2-way coupled WRF-CMAQ meteorology and air quality modeling system is evaluated for high-resolution applications by comparing to a regional air quality field study (Discover-AQ). The model was modified to better account for the effects of urban environments. High-resolution...

  10. An Equilibrium Flow Model of a University Campus.

    ERIC Educational Resources Information Center

    Oliver, Robert M.; Hopkins, David S. P.

    This paper develops a simple deterministic model that relates student admissions and enrollments to the final demand for educated students. It includes the effects of dropout rates and student-teacher ratios on student enrollments and faculty staffing levels. Certain technological requirements are assumed known and given. These, as well as the…

  11. Application and evaluation of high-resolution WRF-CMAQ with simple urban parameterization

    EPA Science Inventory

    The 2-way coupled WRF-CMAQ meteorology and air quality modeling system is evaluated for high-resolution applications by comparing to a regional air quality field study (Discover-AQ). The model was modified to better account for the effects of urban environments. High-resolution...

  12. Effects of video modeling on social initiations by children with autism.

    PubMed

    Nikopoulos, Christos K; Keenan, Michael

    2004-01-01

    We examined the effects of a video modeling intervention on social initiation and play behaviors with 3 children with autism using a multiple baseline across subjects design. Each child watched a videotape showing a typically developing peer, and the experimenter engaged in a simple social interactive play using one toy. For all children, social initiation and reciprocal play skills were enhanced, and these effects were maintained at 1- and 3-month follow-up periods.

  13. Effects of video modeling on social initiations by children with autism.

    PubMed Central

    Nikopoulos, Christos K; Keenan, Michael

    2004-01-01

    We examined the effects of a video modeling intervention on social initiation and play behaviors with 3 children with autism using a multiple baseline across subjects design. Each child watched a videotape showing a typically developing peer, and the experimenter engaged in a simple social interactive play using one toy. For all children, social initiation and reciprocal play skills were enhanced, and these effects were maintained at 1- and 3-month follow-up periods. PMID:15154221

  14. A Simple Effect Size Estimator for Single Case Designs Using WinBUGS

    ERIC Educational Resources Information Center

    Rindskopf, David; Shadish, William; Hedges, Larry

    2012-01-01

    Data from single case designs (SCDs) have traditionally been analyzed by visual inspection rather than statistical models. As a consequence, effect sizes have been of little interest. Lately, some effect-size estimators have been proposed, but most are either (i) nonparametric, and/or (ii) based on an analogy incompatible with effect sizes from…

  15. Population Genetics of Three Dimensional Range Expansions

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim; Nelson, David

    2014-03-01

    We develop a simple model of genetic diversity in growing spherical cell clusters, where the growth is confined to the cluster surface. This kind of growth occurs in cells growing in soft agar, and can also serve as a simple model of avascular tumors. Mutation-selection balance in these radial expansions is strongly influenced by scaling near a neutral, voter model critical point and by the inflating frontier. We develop a scaling theory to describe how the dynamics of mutation-selection balance is cut off by inflation. Genetic drift, i.e., local fluctuations in the genetic diversity, also plays an important role, and can lead to the extinction even of selectively advantageous strains. We calculate this extinction probability, taking into account the effect of rough population frontiers.

  16. An Emphasis on Perception: Teaching Image Formation Using a Mechanistic Model of Vision.

    ERIC Educational Resources Information Center

    Allen, Sue; And Others

    An effective way to teach the concept of image is to give students a model of human vision which incorporates a simple mechanism of depth perception. In this study two almost identical versions of a curriculum in geometrical optics were created. One used a mechanistic, interpretive eye model, and in the other the eye was modeled as a passive,…

  17. Fitting Neuron Models to Spike Trains

    PubMed Central

    Rossant, Cyrille; Goodman, Dan F. M.; Fontaine, Bertrand; Platkiewicz, Jonathan; Magnusson, Anna K.; Brette, Romain

    2011-01-01

    Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input–output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to somatically injected currents, if properly fitted. This requires fitting techniques that are efficient and flexible enough to easily test different candidate models. We present a generic solution, based on the Brian simulator (a neural network simulator in Python), which allows the user to define and fit arbitrary neuron models to electrophysiological recordings. It relies on vectorization and parallel computing techniques to achieve efficiency. We demonstrate its use on neural recordings in the barrel cortex and in the auditory brainstem, and confirm that simple adaptive spiking models can accurately predict the response of cortical neurons. Finally, we show how a complex multicompartmental model can be reduced to a simple effective spiking model. PMID:21415925

  18. Characteristics of aperiodic sequence of slip events caused by interaction between seismic patches and that caused be self-organized stress heterogeneity

    NASA Astrophysics Data System (ADS)

    Kato, N.

    2017-12-01

    Numerical simulations of earthquake cycles are conducted to investigate the origin of complexity of earthquake recurrence. There are two main causes of the complexity. One is self-organized stress heterogeneity due to dynamical effect. The other is the effect of interaction between some fault patches. In the model, friction on the fault is assumed to obey a rate- and state-dependent friction law. Circular patches of velocity-weakening frictional property are assumed on the fault. On the remaining areas of the fault, velocity-strengthening friction is assumed. We consider three models: Single patch model, two-patch model, and three-patch model. In the first model, the dynamical effect is mainly examined. The latter two models take into consideration the effect of interaction as well as the dynamical effect. Complex multiperiodic or aperiodic sequences of slip events occur when slip behavior changes from the seismic to aseismic, and when the degree of interaction between seismic patches is intermediate. The former is observed in all the models, and the latter is observed in the two-patch model and the three-patch model. Evolution of spatial distribution of shear stress on the fault suggests that aperiodicity at the transition from seismic to aseismic slip is caused by self-organized stress heterogeneity. The iteration maps of recurrence intervals of slip events in aperiodic sequences are examined, and they are approximately expressed by simple curves for aperiodicity at the transition from seismic to aseismic slip. In contrast, the iteration maps for aperiodic sequences caused by interaction between seismic patches are scattered and they are not expressed by simple curves. This result suggests that complex sequences caused by different mechanisms may be distinguished.

  19. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 1: Simple VOCs and model PM

    PubMed Central

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y-H.; Jaspers, I.; Jeffries, H. E.

    2013-01-01

    This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound and PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and it exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells) – even if the gas-phase pollutants are not considered likely to partition to the condensed phase: the VOC-modified-PM showed significantly more damage and inflammation to lung cells than did the original PM. Because gases and PM are transported and deposited differently within the atmosphere and the lungs, these results have significant consequences. For example, current US policies for research and regulation of PM do not recognize this “effect modification” phenomena (NAS, 2004). These results present an unambiguous demonstration that – even in these simple mixtures – physical and thermal interactions alone can cause a modification of the distribution of species among the phases of airborne pollution mixtures and can result in a non-toxic phase becoming toxic due to atmospheric thermal processes only. Subsequent work extends the simple results reported here to systems with photochemical transformations of complex urban mixtures and to systems with diesel exhaust produced by different fuels. PMID:23457430

  20. A simple and accurate rule-based modeling framework for simulation of autocrine/paracrine stimulation of glioblastoma cell motility and proliferation by L1CAM in 2-D culture.

    PubMed

    Caccavale, Justin; Fiumara, David; Stapf, Michael; Sweitzer, Liedeke; Anderson, Hannah J; Gorky, Jonathan; Dhurjati, Prasad; Galileo, Deni S

    2017-12-11

    Glioblastoma multiforme (GBM) is a devastating brain cancer for which there is no known cure. Its malignancy is due to rapid cell division along with high motility and invasiveness of cells into the brain tissue. Simple 2-dimensional laboratory assays (e.g., a scratch assay) commonly are used to measure the effects of various experimental perturbations, such as treatment with chemical inhibitors. Several mathematical models have been developed to aid the understanding of the motile behavior and proliferation of GBM cells. However, many are mathematically complicated, look at multiple interdependent phenomena, and/or use modeling software not freely available to the research community. These attributes make the adoption of models and simulations of even simple 2-dimensional cell behavior an uncommon practice by cancer cell biologists. Herein, we developed an accurate, yet simple, rule-based modeling framework to describe the in vitro behavior of GBM cells that are stimulated by the L1CAM protein using freely available NetLogo software. In our model L1CAM is released by cells to act through two cell surface receptors and a point of signaling convergence to increase cell motility and proliferation. A simple graphical interface is provided so that changes can be made easily to several parameters controlling cell behavior, and behavior of the cells is viewed both pictorially and with dedicated graphs. We fully describe the hierarchical rule-based modeling framework, show simulation results under several settings, describe the accuracy compared to experimental data, and discuss the potential usefulness for predicting future experimental outcomes and for use as a teaching tool for cell biology students. It is concluded that this simple modeling framework and its simulations accurately reflect much of the GBM cell motility behavior observed experimentally in vitro in the laboratory. Our framework can be modified easily to suit the needs of investigators interested in other similar intrinsic or extrinsic stimuli that influence cancer or other cell behavior. This modeling framework of a commonly used experimental motility assay (scratch assay) should be useful to both researchers of cell motility and students in a cell biology teaching laboratory.

  1. Modeling Sexual Selection in Túngara Frog and Rationality of Mate Choice.

    PubMed

    Vargas Bernal, Esteban; Sanabria Malagon, Camilo

    2017-12-01

    The males of the species of frogs Engystomops pustulosus produce simple and complex calls to lure females, as a way of intersexual selection. Complex calls lead males to a greater reproductive success than what simple calls do. However, the complex calls are also more attractive to their main predator, the bat Trachops cirrhosus. Therefore, as M. Ryan suggests in (The túngara frog: a study in sexual selection and communication. University of Chicago Press, Chicago, 1985), the complexity of the calls lets the frogs keep a trade-off between reproductive success and predation. In this paper, we verify this trade-off from the perspective of game theory. We first model the proportion of simple calls as a symmetric game of two strategies. We also model the effect of adding a third strategy, males that keep quiet and intercept females, which would play a role of intrasexual selection. Under the assumption that the decision of the males takes into account this trade-off between reproductive success and predation, our model reproduces the observed behavior reported in the literature with minimal assumption on the parameters. From the model with three strategies, we verify that the quiet strategy could only coexists with the simple and complex strategies if the rate at which quiet males intercept females is high, which explains the rarity of the quiet strategy. We conclude that the reproductive strategy of the male frog E. pustulosus is rational.

  2. Propensity to spending of an average consumer over a brief period

    NASA Astrophysics Data System (ADS)

    De Luca, Roberto; Di Mauro, Marco; Falzarano, Angelo; Naddeo, Adele

    2016-08-01

    Understanding consumption dynamics and its impact on the whole economy and welfare within the present economic crisis is not an easy task. Indeed the level of consumer demand for different goods varies with the prices, consumer incomes and demographic factors. Furthermore crisis may trigger different behaviors which result in distortions and amplification effects. In the present work we propose a simple model to quantitatively describe the time evolution over a brief period of the amount of money an average consumer decides to spend, depending on his/her available budget. A simple hydrodynamical analog of the model is discussed. Finally, perspectives of this work are briefly outlined.

  3. A simple model describing the nonlinear dynamics of the dusk/dawn asymmetry in the high-latitude thermospheric flow

    NASA Technical Reports Server (NTRS)

    Gundlach, J. P.; Larsen, M. F.; Mikkelsen, I. S.

    1988-01-01

    A simple nonlinear, axisymmetric, shallow-water numerical model has been used to study the asymmetry in the neutral flow between the dusk and dawn sides of the auroral oval. The results indicate that the Coriolis force and the curvature terms are nearly in balance on the evening side and require only a small pressure gradient to effect adjustment. The result is smaller neutral velocities near dawn and larger velocities near dusk than would be the case for a linearized treatment. A consequence is that more gravity wave energy is produced on the morning side than on the evening side.

  4. Algebraic perturbation theory for dense liquids with discrete potentials

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2007-06-01

    A simple theory for the leading-order correction g1(r) to the structure of a hard-sphere liquid with discrete (e.g., square-well) potential perturbations is proposed. The theory makes use of a general approximation that effectively eliminates four-particle correlations from g1(r) with good accuracy at high densities. For the particular case of discrete perturbations, the remaining three-particle correlations can be modeled with a simple volume-exclusion argument, resulting in an algebraic and surprisingly accurate expression for g1(r) . The structure of a discrete “core-softened” model for liquids with anomalous thermodynamic properties is reproduced as an application.

  5. Using energy budgets to combine ecology and toxicology in a mammalian sentinel species

    NASA Astrophysics Data System (ADS)

    Desforges, Jean-Pierre W.; Sonne, Christian; Dietz, Rune

    2017-04-01

    Process-driven modelling approaches can resolve many of the shortcomings of traditional descriptive and non-mechanistic toxicology. We developed a simple dynamic energy budget (DEB) model for the mink (Mustela vison), a sentinel species in mammalian toxicology, which coupled animal physiology, ecology and toxicology, in order to mechanistically investigate the accumulation and adverse effects of lifelong dietary exposure to persistent environmental toxicants, most notably polychlorinated biphenyls (PCBs). Our novel mammalian DEB model accurately predicted, based on energy allocations to the interconnected metabolic processes of growth, development, maintenance and reproduction, lifelong patterns in mink growth, reproductive performance and dietary accumulation of PCBs as reported in the literature. Our model results were consistent with empirical data from captive and free-ranging studies in mink and other wildlife and suggest that PCB exposure can have significant population-level impacts resulting from targeted effects on fetal toxicity, kit mortality and growth and development. Our approach provides a simple and cross-species framework to explore the mechanistic interactions of physiological processes and ecotoxicology, thus allowing for a deeper understanding and interpretation of stressor-induced adverse effects at all levels of biological organization.

  6. Evaluating the cost effectiveness of environmental projects: Case studies in aerospace and defense

    NASA Technical Reports Server (NTRS)

    Shunk, James F.

    1995-01-01

    Using the replacement technology of high pressure waterjet decoating systems as an example, a simple methodology is presented for developing a cost effectiveness model. The model uses a four-step process to formulate an economic justification designed for presentation to decision makers as an assessment of the value of the replacement technology over conventional methods. Three case studies from major U.S. and international airlines are used to illustrate the methodology and resulting model. Tax and depreciation impacts are also presented as potential additions to the model.

  7. Relaxational effects in radiating stellar collapse

    NASA Astrophysics Data System (ADS)

    Govender, Megan; Maartens, Roy; Maharaj, Sunil D.

    1999-12-01

    Relaxational effects in stellar heat transport can in many cases be significant. Relativistic Fourier-Eckart theory is inherently quasi-stationary, and cannot incorporate these effects. The effects are naturally accounted for in causal relativistic thermodynamics, which provides an improved approximation to kinetic theory. Recent results, based on perturbations of a static star, show that relaxation effects can produce a significant increase in the central temperature and temperature gradient for a given luminosity. We use a simple stellar model that allows for non-perturbative deviations from staticity, and confirms qualitatively the predictions of the perturbative models.

  8. A predictive analytic model for the solar modulation of cosmic rays

    DOE PAGES

    Cholis, Ilias; Hooper, Dan; Linden, Tim

    2016-02-23

    An important factor limiting our ability to understand the production and propagation of cosmic rays pertains to the effects of heliospheric forces, commonly known as solar modulation. The solar wind is capable of generating time- and charge-dependent effects on the spectrum and intensity of low-energy (≲10 GeV) cosmic rays reaching Earth. Previous analytic treatments of solar modulation have utilized the force-field approximation, in which a simple potential is adopted whose amplitude is selected to best fit the cosmic-ray data taken over a given period of time. Making use of recently available cosmic-ray data from the Voyager 1 spacecraft, along withmore » measurements of the heliospheric magnetic field and solar wind, we construct a time-, charge- and rigidity-dependent model of solar modulation that can be directly compared to data from a variety of cosmic-ray experiments. Here, we provide a simple analytic formula that can be easily utilized in a variety of applications, allowing us to better predict the effects of solar modulation and reduce the number of free parameters involved in cosmic-ray propagation models.« less

  9. Fish robotics and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lauder, George

    2010-11-01

    Studying the fluid dynamics of locomotion in freely-swimming fishes is challenging due to difficulties in controlling fish behavior. To provide better control over fish-like propulsive systems we have constructed a variety of fish-like robotic test platforms that range from highly biomimetic models of fins, to simple physical models of body movements during aquatic locomotion. First, we have constructed a series of biorobotic models of fish pectoral fins with 5 fin rays that allow detailed study of fin motion, forces, and fluid dynamics associated with fin-based locomotion. We find that by tuning fin ray stiffness and the imposed motion program we can produce thrust both on the fin outstroke and instroke. Second, we are using a robotic flapping foil system to study the self-propulsion of flexible plastic foils of varying stiffness, length, and trailing edge shape as a means of investigating the fluid dynamic effect of simple changes in the properties of undulating bodies moving through water. We find unexpected non-linear stiffness-dependent effects of changing foil length on self-propelled speed, and as well as significant effects of trailing edge shape on foil swimming speed.

  10. A simplified heat transfer model for predicting temperature change inside food package kept in cold room.

    PubMed

    Raval, A H; Solanki, S C; Yadav, Rajvir

    2013-04-01

    A simple analytical heat flow model for a closed rectangular food package containing fruits or vegetables is proposed for predicting time temperature distribution during transient cooling in a controlled environment cold room. It is based on the assumption of only conductive heat transfer inside a closed food package with effective thermal properties, and convective and radiative heat transfer at the outside of the package. The effective thermal conductivity of the food package is determined by evaluating its effective thermal resistance to heat conduction in the packages. Food packages both as an infinite slab and a finite slab have been investigated. The finite slab solution has been obtained as the product of three infinite slab solutions describe in ASHRAE guide and data book. Time temperature variation has been determined and is presented graphically. The cooling rate and the half cooling time were also obtained. These predicted values, are compared with the experimentally measured values for both the finite and infinite closed packages containing oranges. An excellent agreement between them validated the simple proposed model.

  11. Theoretical study on interaction of cytochrome f and plastocyanin complex by a simple coarse-grained model with molecular crowding effect

    NASA Astrophysics Data System (ADS)

    Nakagawa, Satoshi; Kurniawan, Isman; Kodama, Koichi; Arwansyah, Muhammad Saleh; Kawaguchi, Kazutomo; Nagao, Hidemi

    2018-03-01

    We present a simple coarse-grained model with the molecular crowding effect in solvent to investigate the structure and dynamics of protein complexes including association and/or dissociation processes and investigate some physical properties such as the structure and the reaction rate from the viewpoint of the hydrophobic intermolecular interactions of protein complex. In the present coarse-grained model, a function depending upon the density of hydrophobic amino acid residues in a binding area of the complex is introduced, and the function involves the molecular crowding effect for the intermolecular interactions of hydrophobic amino acid residues between proteins. We propose a hydrophobic intermolecular potential energy between proteins by using the density-dependent function. The present coarse-grained model is applied to the complex of cytochrome f and plastocyanin by using the Langevin dynamics simulation to investigate some physical properties such as the complex structure, the electron transfer reaction rate constant from plastocyanin to cytochrome f and so on. We find that for proceeding the electron transfer reaction, the distance between metals in their active sites is necessary within about 18 Å. We discuss some typical complex structures formed in the present simulation in relation to the molecular crowding effect on hydrophobic interactions.

  12. Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation

    NASA Astrophysics Data System (ADS)

    Ridoux, J.; Lardjane, N.; Monasse, L.; Coulouvrat, F.

    2018-03-01

    Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A{-}M rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine-Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model's approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A{-}M relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.

  13. An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission

    NASA Astrophysics Data System (ADS)

    Aye, S. A.; Heyns, P. S.

    2017-02-01

    This paper proposes an optimal Gaussian process regression (GPR) for the prediction of remaining useful life (RUL) of slow speed bearings based on a novel degradation assessment index obtained from acoustic emission signal. The optimal GPR is obtained from an integration or combination of existing simple mean and covariance functions in order to capture the observed trend of the bearing degradation as well the irregularities in the data. The resulting integrated GPR model provides an excellent fit to the data and improves over the simple GPR models that are based on simple mean and covariance functions. In addition, it achieves a low percentage error prediction of the remaining useful life of slow speed bearings. These findings are robust under varying operating conditions such as loading and speed and can be applied to nonlinear and nonstationary machine response signals useful for effective preventive machine maintenance purposes.

  14. Effect of Stability on Mixing in Open Canopies. Chapter 4

    NASA Technical Reports Server (NTRS)

    Lee, Young-Hee; Mahrt, L.

    2005-01-01

    In open canopies, the within-canopy flux from the ground surface and understory can account for a significant fraction of the total flux above the canopy. This study incorporates the important influence of within-canopy stability on turbulent mixing and subcanopy fluxes into a first-order closure scheme. Toward this goal, we analyze within-canopy eddy-correlation data from the old aspen site in the Boreal Ecosystem - Atmosphere Study (BOREAS) and a mature ponderosa pine site in Central Oregon, USA. A formulation of within-canopy transport is framed in terms of a stability- dependent mixing length, which approaches Monin-Obukhov similarity theory above the canopy roughness sublayer. The new simple formulation is an improvement upon the usual neglect of the influence of within-canopy stability in simple models. However, frequent well-defined cold air drainage within the pine subcanopy inversion reduces the utility of simple models for nocturnal transport. Other shortcomings of the formulation are discussed.

  15. Comparative Climates of the Trappist-1 Planetary System: Results from a Simple Climate-vegetation Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alberti, Tommaso; Carbone, Vincenzo; Lepreti, Fabio

    The recent discovery of the planetary system hosted by the ultracool dwarf star TRAPPIST-1 could open new paths for investigations of the planetary climates of Earth-sized exoplanets, their atmospheres, and their possible habitability. In this paper, we use a simple climate-vegetation energy-balance model to study the climate of the seven TRAPPIST-1 planets and the climate dependence on various factors: the global albedo, the fraction of vegetation that could cover their surfaces, and the different greenhouse conditions. The model allows us to investigate whether liquid water could be maintained on the planetary surfaces (i.e., by defining a “surface water zone (SWZ)”)more » in different planetary conditions, with or without the presence of a greenhouse effect. It is shown that planet TRAPPIST-1d seems to be the most stable from an Earth-like perspective, since it resides in the SWZ for a wide range of reasonable values of the model parameters. Moreover, according to the model, outer planets (f, g, and h) cannot host liquid water on their surfaces, even with Earth-like conditions, entering a snowball state. Although very simple, the model allows us to extract the main features of the TRAPPIST-1 planetary climates.« less

  16. Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow.

    PubMed

    Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael

    2011-10-01

    We present a simple cellular automaton (CA) model for two-lane roads explaining the physics of traffic breakdown, highway capacity, and synchronized flow. The model consists of the rules "acceleration," "deceleration," "randomization," and "motion" of the Nagel-Schreckenberg CA model as well as "overacceleration through lane changing to the faster lane," "comparison of vehicle gap with the synchronization gap," and "speed adaptation within the synchronization gap" of Kerner's three-phase traffic theory. We show that these few rules of the CA model can appropriately simulate fundamental empirical features of traffic breakdown and highway capacity found in traffic data measured over years in different countries, like characteristics of synchronized flow, the existence of the spontaneous and induced breakdowns at the same bottleneck, and associated probabilistic features of traffic breakdown and highway capacity. Single-vehicle data derived in model simulations show that synchronized flow first occurs and then self-maintains due to a spatiotemporal competition between speed adaptation to a slower speed of the preceding vehicle and passing of this slower vehicle. We find that the application of simple dependences of randomization probability and synchronization gap on driving situation allows us to explain the physics of moving synchronized flow patterns and the pinch effect in synchronized flow as observed in real traffic data.

  17. Engineering model for ultrafast laser microprocessing

    NASA Astrophysics Data System (ADS)

    Audouard, E.; Mottay, E.

    2016-03-01

    Ultrafast laser micro-machining relies on complex laser-matter interaction processes, leading to a virtually athermal laser ablation. The development of industrial ultrafast laser applications benefits from a better understanding of these processes. To this end, a number of sophisticated scientific models have been developed, providing valuable insights in the physics of the interaction. Yet, from an engineering point of view, they are often difficult to use, and require a number of adjustable parameters. We present a simple engineering model for ultrafast laser processing, applied in various real life applications: percussion drilling, line engraving, and non normal incidence trepanning. The model requires only two global parameters. Analytical results are derived for single pulse percussion drilling or simple pass engraving. Simple assumptions allow to predict the effect of non normal incident beams to obtain key parameters for trepanning drilling. The model is compared to experimental data on stainless steel with a wide range of laser characteristics (time duration, repetition rate, pulse energy) and machining conditions (sample or beam speed). Ablation depth and volume ablation rate are modeled for pulse durations from 100 fs to 1 ps. Trepanning time of 5.4 s with a conicity of 0.15° is obtained for a hole of 900 μm depth and 100 μm diameter.

  18. A simple microstructure return model explaining microstructure noise and Epps effects

    NASA Astrophysics Data System (ADS)

    Saichev, A.; Sornette, D.

    2014-01-01

    We present a novel simple microstructure model of financial returns that combines (i) the well-known ARFIMA process applied to tick-by-tick returns, (ii) the bid-ask bounce effect, (iii) the fat tail structure of the distribution of returns and (iv) the non-Poissonian statistics of inter-trade intervals. This model allows us to explain both qualitatively and quantitatively important stylized facts observed in the statistics of both microstructure and macrostructure returns, including the short-ranged correlation of returns, the long-ranged correlations of absolute returns, the microstructure noise and Epps effects. According to the microstructure noise effect, volatility is a decreasing function of the time-scale used to estimate it. The Epps effect states that cross correlations between asset returns are increasing functions of the time-scale at which the returns are estimated. The microstructure noise is explained as the result of the negative return correlations inherent in the definition of the bid-ask bounce component (ii). In the presence of a genuine correlation between the returns of two assets, the Epps effect is due to an average statistical overlap of the momentum of the returns of the two assets defined over a finite time-scale in the presence of the long memory process (i).

  19. The Magic Bullet: A Tool for Assessing and Evaluating Learning Potential in Games

    ERIC Educational Resources Information Center

    Becker, Katrin

    2011-01-01

    This paper outlines a simple and effective model that can be used to evaluate and design educational digital games. It also facilitates the formulation of strategies for using existing games in learning contexts. The model categorizes game goals and learning objectives into one or more of four possible categories. An overview of the model is…

  20. BehavePlus fire modeling system, version 5.0: Design and Features

    Treesearch

    Faith Ann Heinsch; Patricia L. Andrews

    2010-01-01

    The BehavePlus fire modeling system is a computer program that is based on mathematical models that describe wildland fire behavior and effects and the fire environment. It is a flexible system that produces tables, graphs, and simple diagrams. It can be used for a host of fire management applications, including projecting the behavior of an ongoing fire, planning...

  1. Effects of Geometric Variations on Lift Augmentation of Simple-plenum-chamber Ground-effect Models

    NASA Technical Reports Server (NTRS)

    Davenport, Edwin E.

    1961-01-01

    Considerable interest has been shown during recent years in ground-effect vehicles. Of the various types proposed, the simple-plenum-chamber vehicle has indicated promise because, although the lift augmentation obtainable appears to be less than that of an annular jet, it may be somewhat less complicated structurally. The present investigation was undertaken to study the effects of some geometric variations upon lift augmentation of a simple plenum chamber within ground proximity. The variables included the ratio inlet area to exit area, plenum-chamber depth, and entrance configuration. An optimum plenum-chamber depth appeared to be between 3 and 10 percent of the plenum-chamber diameter with a ratio of inlet diameter to plenum-chamber diameter of 0.15 for the range of plenum-chamber depths investigated. The most important effect of multiple inlets was the elimination of negative lift augmentation, which was experienced with single sharp-edged inlets, at intermediate heights. Installation of a flared inlet and a turning-vane assembly improved lift augmentation of a single-inlet configuration at intermediate heights.

  2. A simple analytical aerodynamic model of Langley Winged-Cone Aerospace Plane concept

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.

    1994-01-01

    A simple three DOF analytical aerodynamic model of the Langley Winged-Coned Aerospace Plane concept is presented in a form suitable for simulation, trajectory optimization, and guidance and control studies. The analytical model is especially suitable for methods based on variational calculus. Analytical expressions are presented for lift, drag, and pitching moment coefficients from subsonic to hypersonic Mach numbers and angles of attack up to +/- 20 deg. This analytical model has break points at Mach numbers of 1.0, 1.4, 4.0, and 6.0. Across these Mach number break points, the lift, drag, and pitching moment coefficients are made continuous but their derivatives are not. There are no break points in angle of attack. The effect of control surface deflection is not considered. The present analytical model compares well with the APAS calculations and wind tunnel test data for most angles of attack and Mach numbers.

  3. A simple generative model of collective online behavior.

    PubMed

    Gleeson, James P; Cellai, Davide; Onnela, Jukka-Pekka; Porter, Mason A; Reed-Tsochas, Felix

    2014-07-22

    Human activities increasingly take place in online environments, providing novel opportunities for relating individual behaviors to population-level outcomes. In this paper, we introduce a simple generative model for the collective behavior of millions of social networking site users who are deciding between different software applications. Our model incorporates two distinct mechanisms: one is associated with recent decisions of users, and the other reflects the cumulative popularity of each application. Importantly, although various combinations of the two mechanisms yield long-time behavior that is consistent with data, the only models that reproduce the observed temporal dynamics are those that strongly emphasize the recent popularity of applications over their cumulative popularity. This demonstrates--even when using purely observational data without experimental design--that temporal data-driven modeling can effectively distinguish between competing microscopic mechanisms, allowing us to uncover previously unidentified aspects of collective online behavior.

  4. A simple generative model of collective online behavior

    PubMed Central

    Gleeson, James P.; Cellai, Davide; Onnela, Jukka-Pekka; Porter, Mason A.; Reed-Tsochas, Felix

    2014-01-01

    Human activities increasingly take place in online environments, providing novel opportunities for relating individual behaviors to population-level outcomes. In this paper, we introduce a simple generative model for the collective behavior of millions of social networking site users who are deciding between different software applications. Our model incorporates two distinct mechanisms: one is associated with recent decisions of users, and the other reflects the cumulative popularity of each application. Importantly, although various combinations of the two mechanisms yield long-time behavior that is consistent with data, the only models that reproduce the observed temporal dynamics are those that strongly emphasize the recent popularity of applications over their cumulative popularity. This demonstrates—even when using purely observational data without experimental design—that temporal data-driven modeling can effectively distinguish between competing microscopic mechanisms, allowing us to uncover previously unidentified aspects of collective online behavior. PMID:25002470

  5. Conceptual uncertainty in crystalline bedrock: Is simple evaluation the only practical approach?

    USGS Publications Warehouse

    Geier, J.; Voss, C.I.; Dverstorp, B.

    2002-01-01

    A simple evaluation can be used to characterize the capacity of crystalline bedrock to act as a barrier to release radionuclides from a nuclear waste repository. Physically plausible bounds on groundwater flow and an effective transport-resistance parameter are estimated based on fundamental principles and idealized models of pore geometry. Application to an intensively characterized site in Sweden shows that, due to high spatial variability and uncertainty regarding properties of transport paths, the uncertainty associated with the geological barrier is too high to allow meaningful discrimination between good and poor performance. Application of more complex (stochastic-continuum and discrete-fracture-network) models does not yield a significant improvement in the resolution of geological barrier performance. Comparison with seven other less intensively characterized crystalline study sites in Sweden leads to similar results, raising a question as to what extent the geological barrier function can be characterized by state-of-the art site investigation methods prior to repository construction. A simple evaluation provides a simple and robust practical approach for inclusion in performance assessment.

  6. Conceptual uncertainty in crystalline bedrock: Is simple evaluation the only practical approach?

    USGS Publications Warehouse

    Geier, J.; Voss, C.I.; Dverstorp, B.

    2002-01-01

    A simple evaluation can be used to characterise the capacity of crystalline bedrock to act as a barrier to releases of radionuclides from a nuclear waste repository. Physically plausible bounds on groundwater flow and an effective transport-resistance parameter are estimated based on fundamental principles and idealised models of pore geometry. Application to an intensively characterised site in Sweden shows that, due to high spatial variability and uncertainty regarding properties of transport paths, the uncertainty associated with the geological barrier is too high to allow meaningful discrimination between good and poor performance. Application of more complex (stochastic-continuum and discrete-fracture-network) models does not yield a significant improvement in the resolution of geologic-barrier performance. Comparison with seven other less intensively characterised crystalline study sites in Sweden leads to similar results, raising a question as to what extent the geological barrier function can be characterised by state-of-the art site investigation methods prior to repository construction. A simple evaluation provides a simple and robust practical approach for inclusion in performance assessment.

  7. Coloured Rings Produced on Transparent Plates

    ERIC Educational Resources Information Center

    Suhr, Wilfried; Schlichting, H. Joachim

    2007-01-01

    Beautiful colored interference rings can be produced by using transparent plates such as window glass. A simple model explains this effect, which was described by Newton but has almost been forgotten. (Contains 11 figures.)

  8. Recognizing simple polyhedron from a perspective drawing

    NASA Astrophysics Data System (ADS)

    Zhang, Guimei; Chu, Jun; Miao, Jun

    2009-10-01

    Existed methods can't be used for recognizing simple polyhedron. In this paper, three problems are researched. First, a method for recognizing triangle and quadrilateral is introduced based on geometry and angle constraint. Then Attribute Relation Graph (ARG) is employed to describe simple polyhedron and line drawing. Last, a new method is presented to recognize simple polyhedron from a line drawing. The method filters the candidate database before matching line drawing and model, thus the recognition efficiency is improved greatly. We introduced the geometrical characteristics and topological characteristics to describe each node of ARG, so the algorithm can not only recognize polyhedrons with different shape but also distinguish between polyhedrons with the same shape but with different sizes and proportions. Computer simulations demonstrate the effectiveness of the method preliminarily.

  9. Models of globular proteins in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wentzel, Nathaniel James

    Protein crystallization is a continuing area of research. Currently, there is no universal theory for the conditions required to crystallize proteins. A better understanding of protein crystallization will be helpful in determining protein structure and preventing and treating certain diseases. In this thesis, we will extend the understanding of globular proteins in aqueous solutions by analyzing various models for protein interactions. Experiments have shown that the liquid-liquid phase separation curves for lysozyme in solution with salt depend on salt type and salt concentration. We analyze a simple square well model for this system whose well depth depends on salt type and salt concentration, to determine the phase coexistence surfaces from experimental data. The surfaces, calculated from a single Monte Carlo simulation and a simple scaling argument, are shown as a function of temperature, salt concentration and protein concentration for two typical salts. Urate Oxidase from Asperigillus flavus is a protein used for studying the effects of polymers on the crystallization of large proteins. Experiments have determined some aspects of the phase diagram. We use Monte Carlo techniques and perturbation theory to predict the phase diagram for a model of urate oxidase in solution with PEG. The model used includes an electrostatic interaction, van der Waals attraction, and a polymerinduced depletion interaction. The results agree quantitatively with experiments. Anisotropy plays a role in globular protein interactions, including the formation of hemoglobin fibers in sickle cell disease. Also, the solvent conditions have been shown to play a strong role in the phase behavior of some aqueous protein solutions. Each has previously been treated separately in theoretical studies. Here we propose and analyze a simple, combined model that treats both anisotropy and solvent effects. We find that this model qualitatively explains some phase behavior, including the existence of a lower critical point under certain conditions.

  10. Perception of multi-stable dot lattices in the visual periphery: an effect of internal positional noise.

    PubMed

    Põder, Endel

    2011-02-16

    Dot lattices are very simple multi-stable images where the dots can be perceived as being grouped in different ways. The probabilities of grouping along different orientations as dependent on inter-dot distances along these orientations can be predicted by a simple quantitative model. L. Bleumers, P. De Graef, K. Verfaillie, and J. Wagemans (2008) found that for peripheral presentation, this model should be combined with random guesses on a proportion of trials. The present study shows that the probability of random responses decreases with decreasing ambiguity of lattices and is different for bi-stable and tri-stable lattices. With central presentation, similar effects can be produced by adding positional noise to the dots. The results suggest that different levels of internal positional noise might explain the differences between peripheral and central proximity grouping.

  11. A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.

    1990-01-01

    A simple dynamic engine model was developed at the NASA Ames Research Center, Dryden Flight Research Facility, for use in thrust vectoring control law development and real-time aircraft simulation. The simple dynamic engine model of the F404-GE-400 engine (General Electric, Lynn, Massachusetts) operates within the aircraft simulator. It was developed using tabular data generated from a complete nonlinear dynamic engine model supplied by the manufacturer. Engine dynamics were simulated using a throttle rate limiter and low-pass filter. Included is a description of a method to account for axial thrust loss resulting from thrust vectoring. In addition, the development of the simple dynamic engine model and its incorporation into the F-18 high alpha research vehicle (HARV) thrust vectoring simulation. The simple dynamic engine model was evaluated at Mach 0.2, 35,000 ft altitude and at Mach 0.7, 35,000 ft altitude. The simple dynamic engine model is within 3 percent of the steady state response, and within 25 percent of the transient response of the complete nonlinear dynamic engine model.

  12. Charge Transfer Inefficiency in Pinned Photodiode CMOS image sensors: Simple Montecarlo modeling and experimental measurement based on a pulsed storage-gate method

    NASA Astrophysics Data System (ADS)

    Pelamatti, Alice; Goiffon, Vincent; Chabane, Aziouz; Magnan, Pierre; Virmontois, Cédric; Saint-Pé, Olivier; de Boisanger, Michel Breart

    2016-11-01

    The charge transfer time represents the bottleneck in terms of temporal resolution in Pinned Photodiode (PPD) CMOS image sensors. This work focuses on the modeling and estimation of this key parameter. A simple numerical model of charge transfer in PPDs is presented. The model is based on a Montecarlo simulation and takes into account both charge diffusion in the PPD and the effect of potential obstacles along the charge transfer path. This work also presents a new experimental approach for the estimation of the charge transfer time, called pulsed Storage Gate (SG) method. This method, which allows reproduction of a ;worst-case; transfer condition, is based on dedicated SG pixel structures and is particularly suitable to compare transfer efficiency performances for different pixel geometries.

  13. Edge Detection Based On the Characteristic of Primary Visual Cortex Cells

    NASA Astrophysics Data System (ADS)

    Zhu, M. M.; Xu, Y. L.; Ma, H. Q.

    2018-01-01

    Aiming at the problem that it is difficult to balance the accuracy of edge detection and anti-noise performance, and referring to the dynamic and static perceptions of the primary visual cortex (V1) cells, a V1 cell model is established to perform edge detection. A spatiotemporal filter is adopted to simulate the receptive field of V1 simple cells, the model V1 cell is obtained after integrating the responses of simple cells by half-wave rectification and normalization, Then the natural image edge is detected by using static perception of V1 cells. The simulation results show that, the V1 model can basically fit the biological data and has the universality of biology. What’s more, compared with other edge detection operators, the proposed model is more effective and has better robustness

  14. Using the MWC model to describe heterotropic interactions in hemoglobin

    PubMed Central

    Rapp, Olga

    2017-01-01

    Hemoglobin is a classical model allosteric protein. Research on hemoglobin parallels the development of key cooperativity and allostery concepts, such as the ‘all-or-none’ Hill formalism, the stepwise Adair binding formulation and the concerted Monod-Wymann-Changuex (MWC) allosteric model. While it is clear that the MWC model adequately describes the cooperative binding of oxygen to hemoglobin, rationalizing the effects of H+, CO2 or organophosphate ligands on hemoglobin-oxygen saturation using the same model remains controversial. According to the MWC model, allosteric ligands exert their effect on protein function by modulating the quaternary conformational transition of the protein. However, data fitting analysis of hemoglobin oxygen saturation curves in the presence or absence of inhibitory ligands persistently revealed effects on both relative oxygen affinity (c) and conformational changes (L), elementary MWC parameters. The recent realization that data fitting analysis using the traditional MWC model equation may not provide reliable estimates for L and c thus calls for a re-examination of previous data using alternative fitting strategies. In the current manuscript, we present two simple strategies for obtaining reliable estimates for MWC mechanistic parameters of hemoglobin steady-state saturation curves in cases of both evolutionary and physiological variations. Our results suggest that the simple MWC model provides a reasonable description that can also account for heterotropic interactions in hemoglobin. The results, moreover, offer a general roadmap for successful data fitting analysis using the MWC model. PMID:28793329

  15. Modeling of hydrogen-air diffusion flame

    NASA Technical Reports Server (NTRS)

    Isaac, Kakkattukuzhy

    1988-01-01

    The present research objective is to determine the effects of contaminants on extinction limits of simple, well defined, counterflow Hydrogen 2-air diffusion flames, with combustion at 1 atmosphere. Results of extinction studies and other flame characterizations, with appropriate mechanistic modeling (presently underway), will be used to rationalize the observed effects of contamination over a reasonably wide range of diffusion flame conditions. The knowledge gained should help efforts to anticipate the effects of contaminants on combustion processes in Hydrogen 2-fueled scramjets.

  16. Model for large magnetoresistance effect in p–n junctions

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Yang, Dezheng; Si, Mingsu; Shi, Huigang; Xue, Desheng

    2018-06-01

    We present a simple model based on the classic Shockley model to explain the magnetotransport in nonmagnetic p–n junctions. Under a magnetic field, the evaluation of the carrier to compensate Lorentz force establishes the necessary space-charge region distribution. The calculated current–voltage (I–V) characteristics under various magnetic fields demonstrate that the conventional nonmagnetic p–n junction can exhibit an extremely large magnetoresistance effect, which is even larger than that in magnetic materials. Because the large magnetoresistance effect that we discussed is based on the conventional p–n junction device, our model provides new insight into the development of semiconductor magnetoelectronics.

  17. Prediction of rain effects on earth-space communication links operating in the 10 to 35 GHz frequency range

    NASA Technical Reports Server (NTRS)

    Stutzman, Warren L.

    1989-01-01

    This paper reviews the effects of precipitation on earth-space communication links operating the 10 to 35 GHz frequency range. Emphasis is on the quantitative prediction of rain attenuation and depolarization. Discussions center on the models developed at Virginia Tech. Comments on other models are included as well as literature references to key works. Also included is the system level modeling for dual polarized communication systems with techniques for calculating antenna and propagation medium effects. Simple models for the calculation of average annual attenuation and cross-polarization discrimination (XPD) are presented. Calculation of worst month statistics are also presented.

  18. General Blending Models for Data From Mixture Experiments

    PubMed Central

    Brown, L.; Donev, A. N.; Bissett, A. C.

    2015-01-01

    We propose a new class of models providing a powerful unification and extension of existing statistical methodology for analysis of data obtained in mixture experiments. These models, which integrate models proposed by Scheffé and Becker, extend considerably the range of mixture component effects that may be described. They become complex when the studied phenomenon requires it, but remain simple whenever possible. This article has supplementary material online. PMID:26681812

  19. A simple model of fluid flow and electrolyte balance in the body

    NASA Technical Reports Server (NTRS)

    White, R. J.; Neal, L.

    1973-01-01

    The model is basically a three-compartment model, the three compartments being the plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea are the only major solutes considered explicitly. The control of body water and electrolyte distribution is affected via drinking and hormone levels. Basically, the model follows the effect of various oral input water loads on solute and water distribution throughout the body.

  20. Surface roughness effects on the solar reflectance of cool asphalt shingles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Berdahl, Paul; Akbari, Hashem

    2008-02-17

    We analyze the solar reflectance of asphalt roofing shingles that are covered with pigmented mineral roofing granules. The reflecting surface is rough, with a total area approximately twice the nominal area. We introduce a simple analytical model that relates the 'micro-reflectance' of a small surface region to the 'macro-reflectance' of the shingle. This model uses a mean field approximation to account for multiple scattering effects. The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are known. Simple linear averaging works well, with smallmore » corrections to linear averaging derived for highly reflective materials. Reflective base granules and reflective surface coatings aid achievement of high solar reflectance. Other factors that influence the solar reflectance are the size distribution of the granules, coverage of the asphalt substrate, and orientation of the granules as affected by rollers during fabrication.« less

  1. Simple inflationary models in Gauss-Bonnet brane-world cosmology

    NASA Astrophysics Data System (ADS)

    Okada, Nobuchika; Okada, Satomi

    2016-06-01

    In light of the recent Planck 2015 results for the measurement of the cosmic microwave background (CMB) anisotropy, we study simple inflationary models in the context of the Gauss-Bonnet (GB) brane-world cosmology. The brane-world cosmological effect modifies the power spectra of scalar and tensor perturbations generated by inflation and causes a dramatic change for the inflationary predictions of the spectral index (n s) and the tensor-to-scalar ratio (r) from those obtained in the standard cosmology. In particular, the predicted r values in the inflationary models favored by the Planck 2015 results are suppressed due to the GB brane-world cosmological effect, which is in sharp contrast with inflationary scenario in the Randall-Sundrum brane-world cosmology, where the r values are enhanced. Hence, these two brane-world cosmological scenarios are distinguishable. With the dramatic change of the inflationary predictions, the inflationary scenario in the GB brane-world cosmology can be tested by more precise measurements of n s and future observations of the CMB B-mode polarization.

  2. On the dynamics of a human body model.

    NASA Technical Reports Server (NTRS)

    Huston, R. L.; Passerello, C. E.

    1971-01-01

    Equations of motion for a model of the human body are developed. Basically, the model consists of an elliptical cylinder representing the torso, together with a system of frustrums of elliptical cones representing the limbs. They are connected to the main body and each other by hinges and ball and socket joints. Vector, tensor, and matrix methods provide a systematic organization of the geometry. The equations of motion are developed from the principles of classical mechanics. The solution of these equations then provide the displacement and rotation of the main body when the external forces and relative limb motions are specified. Three simple example motions are studied to illustrate the method. The first is an analysis and comparison of simple lifting on the earth and the moon. The second is an elementary approach to underwater swimming, including both viscous and inertia effects. The third is an analysis of kicking motion and its effect upon a vertically suspended man such as a parachutist.

  3. Effect of quantum nuclear motion on hydrogen bonding

    NASA Astrophysics Data System (ADS)

    McKenzie, Ross H.; Bekker, Christiaan; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2014-05-01

    This work considers how the properties of hydrogen bonded complexes, X-H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O-H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 - 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X-H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends.

  4. Heat Transfer Modeling of Jet Vane Thrust Vector Control (TVC) Systems.

    DTIC Science & Technology

    1987-12-01

    Cost and complexity, to include materials, labor , design and fabrication. b. Effectiveness and ability to perform two and three axis control. c...8217 ESTR ’) CALL ESTRGR C C.... SCRS contains the simple-chemical-reaction-model of C combustion, the theoretical basis of which is found in the C book

  5. Stability and control of flexible satellites. II - Control

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Das, A.

    1980-01-01

    It is demonstrated that by monitoring the deformations of the flexible elements of a satellite, the effectiveness of the satellite control system can be increased considerably. A simple model of a flexible satellite was analyzed in the first part of this work. The same model is used here for digital computer simulations.

  6. EFFECT OF RESIDENCE TIME ON ANNUAL EXPORT AND DENITRIFICATION OF NITROGEN IN ESTUARIES: A MODEL ANALYSIS

    EPA Science Inventory

    A simple model of annual average response of an estuary to mean nitrogen loading rate and freshwater residence time was developed and tested. It uses nitrogen inputs from land, deposition from the atmosphere, and first-order calculations of internal loss rate and export to perfor...

  7. Three Essays on Estimating Causal Treatment Effects

    ERIC Educational Resources Information Center

    Deutsch, Jonah

    2013-01-01

    This dissertation is composed of three distinct chapters, each of which addresses issues of estimating treatment effects. The first chapter empirically tests the Value-Added (VA) model using school lotteries. The second chapter, co-authored with Michael Wood, considers properties of inverse probability weighting (IPW) in simple treatment effect…

  8. STRATOP: A Model for Designing Effective Product and Communication Strategies. Paper No. 470.

    ERIC Educational Resources Information Center

    Pessemier, Edgar A.

    The STRATOP algorithm was developed to help planners and proponents find and test effectively designed choice objects and communication strategies. Choice objects can range from complex social, scientific, military, or educational alternatives to simple economic alternatives between assortments of branded convenience goods. Two classes of measured…

  9. A Simple Model for the Cloud Adjacency Effect and the Apparent Bluing of Aerosols Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Wen, Guoyong; Coakley, James A., Jr.; Remer, Lorraine A.; Loeb,Norman G.; Cahalan, Robert F.

    2008-01-01

    In determining aerosol-cloud interactions, the properties of aerosols must be characterized in the vicinity of clouds. Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. The paper provides a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. The enhancement in Rayleigh scattering is estimated using a stochastic cloud model to obtain the radiative flux reflected by broken clouds and comparing this flux with that obtained with the molecules in the atmosphere causing extinction, but no scattering.

  10. The problem with simple lumped parameter models: Evidence from tritium mean transit times

    NASA Astrophysics Data System (ADS)

    Stewart, Michael; Morgenstern, Uwe; Gusyev, Maksym; Maloszewski, Piotr

    2017-04-01

    Simple lumped parameter models (LPMs) based on assuming homogeneity and stationarity in catchments and groundwater bodies are widely used to model and predict hydrological system outputs. However, most systems are not homogeneous or stationary, and errors resulting from disregard of the real heterogeneity and non-stationarity of such systems are not well understood and rarely quantified. As an example, mean transit times (MTTs) of streamflow are usually estimated from tracer data using simple LPMs. The MTT or transit time distribution of water in a stream reveals basic catchment properties such as water flow paths, storage and mixing. Importantly however, Kirchner (2016a) has shown that there can be large (several hundred percent) aggregation errors in MTTs inferred from seasonal cycles in conservative tracers such as chloride or stable isotopes when they are interpreted using simple LPMs (i.e. a range of gamma models or GMs). Here we show that MTTs estimated using tritium concentrations are similarly affected by aggregation errors due to heterogeneity and non-stationarity when interpreted using simple LPMs (e.g. GMs). The tritium aggregation error series from the strong nonlinearity between tritium concentrations and MTT, whereas for seasonal tracer cycles it is due to the nonlinearity between tracer cycle amplitudes and MTT. In effect, water from young subsystems in the catchment outweigh water from old subsystems. The main difference between the aggregation errors with the different tracers is that with tritium it applies at much greater ages than it does with seasonal tracer cycles. We stress that the aggregation errors arise when simple LPMs are applied (with simple LPMs the hydrological system is assumed to be a homogeneous whole with parameters representing averages for the system). With well-chosen compound LPMs (which are combinations of simple LPMs) on the other hand, aggregation errors are very much smaller because young and old water flows are treated separately. "Well-chosen" means that the compound LPM is based on hydrologically- and geologically-validated information, and the choice can be assisted by matching simulations to time series of tritium measurements. References: Kirchner, J.W. (2016a): Aggregation in environmental systems - Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments. Hydrol. Earth Syst. Sci. 20, 279-297. Stewart, M.K., Morgenstern, U., Gusyev, M.A., Maloszewski, P. 2016: Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems, and implications for past and future applications of tritium. Submitted to Hydrol. Earth Syst. Sci., 10 October 2016, doi:10.5194/hess-2016-532.

  11. Historical perspective on lead biokinetic models.

    PubMed Central

    Rabinowitz, M

    1998-01-01

    A historical review of the development of biokinetic model of lead is presented. Biokinetics is interpreted narrowly to mean only physiologic processes happening within the body. Proceeding chronologically, for each epoch, the measurements of lead in the body are presented along with mathematical models in an attempt to trace the convergence of observations from two disparate fields--occupational medicine and radiologic health--into some unified models. Kehoe's early balance studies and the use of radioactive lead tracers are presented. The 1960s saw the joint application of radioactive lead techniques and simple compartmental kinetic models used to establish the exchange rates and residence times of lead in body pools. The applications of stable isotopes to questions of the magnitudes of respired and ingested inputs required the development of a simple three-pool model. During the 1980s more elaborate models were developed. One of their key goals was the establishment of the dose-response relationship between exposure to lead and biologic precursors of adverse health effects. PMID:9860905

  12. Electrode effects in dielectric spectroscopy of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Cirkel, P. A.; van der Ploeg, J. P. M.; Koper, G. J. M.

    1997-02-01

    We present a simple model to account for electrode polarization in colloidal suspensions. Apart from correctly predicting the ω {-3}/{2} dependence for the dielectric permittivity at low frequencies ω, the model provides an explicit dependence of the effect on electrode spacing. The predictions are tested for the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) water-in-oil microemulsion with iso-octane as continuous phase. In particular, the dependence of electrode polarization effects on electrode spacing has been measured and is found to be in accordance with the model prediction. Methods to reduce or account for electrode polarization are briefly discussed.

  13. Effective Biot theory and its generalization to poroviscoelastic models

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Greenhalgh, Stewart; Zhou, Bing; Greenhalgh, Mark

    2018-02-01

    A method is suggested to express the effective bulk modulus of the solid frame of a poroelastic material as a function of the saturated bulk modulus. This method enables effective Biot theory to be described through the use of seismic dispersion measurements or other models developed for the effective saturated bulk modulus. The effective Biot theory is generalized to a poroviscoelastic model of which the moduli are represented by the relaxation functions of the generalized fractional Zener model. The latter covers the general Zener and the Cole-Cole models as special cases. A global search method is described to determine the parameters of the relaxation functions, and a simple deterministic method is also developed to find the defining parameters of the single Cole-Cole model. These methods enable poroviscoelastic models to be constructed, which are based on measured seismic attenuation functions, and ensure that the model dispersion characteristics match the observations.

  14. Cold, warm, and composite (cool) cosmic string models

    NASA Astrophysics Data System (ADS)

    Carter, B.

    1994-01-01

    The dynamical behaviour of a cosmic string is strongly affected by any reduction of the effective string tension T below the constant value, T = m2 say, that typifies a simple, longitudinally Lorentz invariant Goto-Nambu type string model, where m is a fixed mass scale determined by the internal structure of an underlying Nielsen-Olesen type vacuum vortex. Such a reduction of tension occurs in the standard ``warm'' cosmic string model in which the effect of thermal perturbations of a simple Goto-Nambu model is represented by an effective tension T given in terms of the corresponding effective temperature, Θ say, by T2 = m2(m2 - 1/3πΘ2). A qualitatively similar though analytically more complicated tension reduction phenomenon occurs in ``cold'' conducting cosmic string models of the kind whose existence was first proposed by Witten, where the role of the temperature is played by an effective mass or chemical potential μ that is constructed as the scalar magnitude of the energy momentum covector obtained as the gradient of the phase ϕ of a bosonic condensate in the core of the vacuum vortex. The present article describes the construction and essential mechanical properties of a new category of composite ``cool'' cosmic string models that are intermediate between these ``warm'' and ``cold'' limit cases. These composite models are the string analogues of the standard Landau model for a two-constituent finite temperature superfluid, and as such involve two independent currents interpretable as that of the entropy on the one hand and that of the bosonic condensate on the other. It is surmised that the stationary (in particular ring) equilibrium states of such ``cool'' cosmic strings may be of cosmologicl significance.

  15. Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion

    NASA Astrophysics Data System (ADS)

    Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.

    2011-03-01

    A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.

  16. Dosimetry in x-ray-based breast imaging

    PubMed Central

    Dance, David R; Sechopoulos, Ioannis

    2016-01-01

    The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (DBCT). Almost all of the methodology used employs Monte Carlo calculated conversion factors to relate the measurable quantity, generally the incident air kerma, to the MGD. After a review of the size and composition of the female breast, the various mathematical models used are discussed, with particular emphasis on models for mammography. These range from simple geometrical shapes, to the more recent complex models based on patient DBCT examinations. The possibility of patient-specific dose estimates is considered as well as special diagnostic views and the effect of breast implants. Calculations using the complex models show that the MGD for mammography is overestimated by about 30% when the simple models are used. The design and uses of breast-simulating test phantoms for measuring incident air kerma are outlined and comparisons made between patient and phantom-based dose estimates. The most widely used national and international dosimetry protocols for mammography are based on different simple geometrical models of the breast, and harmonisation of these protocols using more complex breast models is desirable. PMID:27617767

  17. Dosimetry in x-ray-based breast imaging

    NASA Astrophysics Data System (ADS)

    Dance, David R.; Sechopoulos, Ioannis

    2016-10-01

    The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (DBCT). Almost all of the methodology used employs Monte Carlo calculated conversion factors to relate the measurable quantity, generally the incident air kerma, to the MGD. After a review of the size and composition of the female breast, the various mathematical models used are discussed, with particular emphasis on models for mammography. These range from simple geometrical shapes, to the more recent complex models based on patient DBCT examinations. The possibility of patient-specific dose estimates is considered as well as special diagnostic views and the effect of breast implants. Calculations using the complex models show that the MGD for mammography is overestimated by about 30% when the simple models are used. The design and uses of breast-simulating test phantoms for measuring incident air kerma are outlined and comparisons made between patient and phantom-based dose estimates. The most widely used national and international dosimetry protocols for mammography are based on different simple geometrical models of the breast, and harmonisation of these protocols using more complex breast models is desirable.

  18. Effect of magnetic field on noncollinear magnetism in classical bilinear-biquadratic Heisenberg model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasrija, Kanika, E-mail: kanikapasrija@iisermohali.ac.in; Kumar, Sanjeev, E-mail: sanjeev@iisermohali.ac.in

    We present a Monte Carlo simulation study of a bilinear-biquadratic Heisenberg model on a two-dimensional square lattice in the presence of an external magnetic field. The study is motivated by the relevance of this simple model to the non-collinear magnetism and the consequent ferroelectric behavior in the recently discovered high-temperature multiferroic, cupric oxide (CuO). We show that an external magnetic field stabilizes a non-coplanar magnetic phase, which is characterized by a finite ferromagnetic moment along the direction of the applied magnetic field and a spiral spin texture if projected in the plane perpendicular to the magnetic field. Real-space analysis highlightsmore » a coexistence of non-collinear regions with ferromagnetic clusters. The results are also supported by simple variational calculations.« less

  19. Deterministic diffusion in flower-shaped billiards.

    PubMed

    Harayama, Takahisa; Klages, Rainer; Gaspard, Pierre

    2002-08-01

    We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form using different schemes, all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of the diffusion coefficent.

  20. Nonequilibrium Green's functions and atom-surface dynamics: Simple views from a simple model system

    NASA Astrophysics Data System (ADS)

    Boström, E.; Hopjan, M.; Kartsev, A.; Verdozzi, C.; Almbladh, C.-O.

    2016-03-01

    We employ Non-equilibrium Green's functions (NEGF) to describe the real-time dynamics of an adsorbate-surface model system exposed to ultrafast laser pulses. For a finite number of electronic orbitals, the system is solved exactly and within different levels of approximation. Specifically i) the full exact quantum mechanical solution for electron and nuclear degrees of freedom is used to benchmark ii) the Ehrenfest approximation (EA) for the nuclei, with the electron dynamics still treated exactly. Then, using the EA, electronic correlations are treated with NEGF within iii) 2nd Born and with iv) a recently introduced hybrid scheme, which mixes 2nd Born self-energies with non-perturbative, local exchange- correlation potentials of Density Functional Theory (DFT). Finally, the effect of a semi-infinite substrate is considered: we observe that a macroscopic number of de-excitation channels can hinder desorption. While very preliminary in character and based on a simple and rather specific model system, our results clearly illustrate the large potential of NEGF to investigate atomic desorption, and more generally, the non equilibrium dynamics of material surfaces subject to ultrafast laser fields.

  1. A simple model of hysteresis behavior using spreadsheet analysis

    NASA Astrophysics Data System (ADS)

    Ehrmann, A.; Blachowicz, T.

    2015-01-01

    Hysteresis loops occur in many scientific and technical problems, especially as field dependent magnetization of ferromagnetic materials, but also as stress-strain-curves of materials measured by tensile tests including thermal effects, liquid-solid phase transitions, in cell biology or economics. While several mathematical models exist which aim to calculate hysteresis energies and other parameters, here we offer a simple model for a general hysteretic system, showing different hysteresis loops depending on the defined parameters. The calculation which is based on basic spreadsheet analysis plus an easy macro code can be used by students to understand how these systems work and how the parameters influence the reactions of the system on an external field. Importantly, in the step-by-step mode, each change of the system state, compared to the last step, becomes visible. The simple program can be developed further by several changes and additions, enabling the building of a tool which is capable of answering real physical questions in the broad field of magnetism as well as in other scientific areas, in which similar hysteresis loops occur.

  2. Effect of Critical Displacement Parameter on Slip Regime at Subduction Fault

    NASA Astrophysics Data System (ADS)

    Muldashev, Iskander; Sobolev, Stephan

    2016-04-01

    It is widely accepted that for the simple fault models value of critical displacement parameter (Dc) in Ruina-Dietrich's rate-and-state friction law is responsible for the transition from stick-slip regime at low Dc to non-seismic creep regime at large Dc. However, neither the value of "transition" Dc parameter nor the character of the transition is known for the realistic subduction zone setting. Here we investigate effect of Dc on regime of slip at subduction faults for two setups, generic model similar to simple shear elastic slider under quasistatic loading and full subduction model with appropriate geometry, stress and temperature distribution similar to the setting at the site of the Great Chile Earthquake of 1960. In our modeling we use finite element numerical technique that employs non-linear elasto-visco-plastic rheology in the entire model domain with rate-and-state plasticity within the fault zone. The model generates spontaneous earthquake sequence. Adaptive time-step integration procedure varies time step from 40 seconds at instability (earthquake), and gradually increases it to 5 years during postseismic relaxation. The technique allows observing the effect of Dc on period, magnitude of earthquakes through the cycles. We demonstrate that our modeling results for the generic model are consistent with the previous theoretical and numeric modeling results. For the full subduction model we obtain transition from non-seismic creep to stick-slip regime at Dc about 20 cm. We will demonstrate and discuss the features of the transition regimes in both generic and realistic subduction models.

  3. Continuum Model for River Networks

    NASA Astrophysics Data System (ADS)

    Giacometti, Achille; Maritan, Amos; Banavar, Jayanth R.

    1995-07-01

    The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic partial differential equation for modeling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.

  4. Demonstration of leapfrogging for implementing nonlinear model predictive control on a heat exchanger.

    PubMed

    Sridhar, Upasana Manimegalai; Govindarajan, Anand; Rhinehart, R Russell

    2016-01-01

    This work reveals the applicability of a relatively new optimization technique, Leapfrogging, for both nonlinear regression modeling and a methodology for nonlinear model-predictive control. Both are relatively simple, yet effective. The application on a nonlinear, pilot-scale, shell-and-tube heat exchanger reveals practicability of the techniques. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Spatial-temporal distribution of a mechanical load resulting from interaction of laser radiation with a barrier (analytic model)

    NASA Astrophysics Data System (ADS)

    Fedyushin, B. T.

    1992-01-01

    The concepts developed earlier are used to propose a simple analytic model describing the spatial-temporal distribution of a mechanical load (pressure, impulse) resulting from interaction of laser radiation with a planar barrier surrounded by air. The correctness of the model is supported by a comparison with experimental results.

  6. Effect of input signal and filter parameters on patterning effect in a semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Hussain, Kamal; Pratap Singh, Satya; Kumar Datta, Prasanta

    2013-11-01

    A numerical investigation is presented to show the dependence of patterning effect (PE) of an amplified signal in a bulk semiconductor optical amplifier (SOA) and an optical bandpass filter based amplifier on various input signal and filter parameters considering both the cases of including and excluding intraband effects in the SOA model. The simulation shows that the variation of PE with input energy has a characteristic nature which is similar for both the cases. However the variation of PE with pulse width is quite different for the two cases, PE being independent of the pulse width when intraband effects are neglected in the model. We find a simple relationship between the PE and the signal pulse width. Using a simple treatment we study the effect of the amplified spontaneous emission (ASE) on PE and find that the ASE has almost no effect on the PE in the range of energy considered here. The optimum filter parameters are determined to obtain an acceptable extinction ratio greater than 10 dB and a PE less than 1 dB for the amplified signal over a wide range of input signal energy and bit-rate.

  7. HIV Treatment and Prevention: A Simple Model to Determine Optimal Investment.

    PubMed

    Juusola, Jessie L; Brandeau, Margaret L

    2016-04-01

    To create a simple model to help public health decision makers determine how to best invest limited resources in HIV treatment scale-up and prevention. A linear model was developed for determining the optimal mix of investment in HIV treatment and prevention, given a fixed budget. The model incorporates estimates of secondary health benefits accruing from HIV treatment and prevention and allows for diseconomies of scale in program costs and subadditive benefits from concurrent program implementation. Data sources were published literature. The target population was individuals infected with HIV or at risk of acquiring it. Illustrative examples of interventions include preexposure prophylaxis (PrEP), community-based education (CBE), and antiretroviral therapy (ART) for men who have sex with men (MSM) in the US. Outcome measures were incremental cost, quality-adjusted life-years gained, and HIV infections averted. Base case analysis indicated that it is optimal to invest in ART before PrEP and to invest in CBE before scaling up ART. Diseconomies of scale reduced the optimal investment level. Subadditivity of benefits did not affect the optimal allocation for relatively low implementation levels. The sensitivity analysis indicated that investment in ART before PrEP was optimal in all scenarios tested. Investment in ART before CBE became optimal when CBE reduced risky behavior by 4% or less. Limitations of the study are that dynamic effects are approximated with a static model. Our model provides a simple yet accurate means of determining optimal investment in HIV prevention and treatment. For MSM in the US, HIV control funds should be prioritized on inexpensive, effective programs like CBE, then on ART scale-up, with only minimal investment in PrEP. © The Author(s) 2015.

  8. The importance of situation-specific encodings: analysis of a simple connectionist model of letter transposition effects

    NASA Astrophysics Data System (ADS)

    Fang, Shin-Yi; Smith, Garrett; Tabor, Whitney

    2018-04-01

    This paper analyses a three-layer connectionist network that solves a translation-invariance problem, offering a novel explanation for transposed letter effects in word reading. Analysis of the hidden unit encodings provides insight into two central issues in cognitive science: (1) What is the novelty of claims of "modality-specific" encodings? and (2) How can a learning system establish a complex internal structure needed to solve a problem? Although these topics (embodied cognition and learnability) are often treated separately, we find a close relationship between them: modality-specific features help the network discover an abstract encoding by causing it to break the initial symmetries of the hidden units in an effective way. While this neural model is extremely simple compared to the human brain, our results suggest that neural networks need not be black boxes and that carefully examining their encoding behaviours may reveal how they differ from classical ideas about the mind-world relationship.

  9. Statistical Power of Alternative Structural Models for Comparative Effectiveness Research: Advantages of Modeling Unreliability.

    PubMed

    Coman, Emil N; Iordache, Eugen; Dierker, Lisa; Fifield, Judith; Schensul, Jean J; Suggs, Suzanne; Barbour, Russell

    2014-05-01

    The advantages of modeling the unreliability of outcomes when evaluating the comparative effectiveness of health interventions is illustrated. Adding an action-research intervention component to a regular summer job program for youth was expected to help in preventing risk behaviors. A series of simple two-group alternative structural equation models are compared to test the effect of the intervention on one key attitudinal outcome in terms of model fit and statistical power with Monte Carlo simulations. Some models presuming parameters equal across the intervention and comparison groups were underpowered to detect the intervention effect, yet modeling the unreliability of the outcome measure increased their statistical power and helped in the detection of the hypothesized effect. Comparative Effectiveness Research (CER) could benefit from flexible multi-group alternative structural models organized in decision trees, and modeling unreliability of measures can be of tremendous help for both the fit of statistical models to the data and their statistical power.

  10. A hierarchy of granular continuum models: Why flowing grains are both simple and complex

    NASA Astrophysics Data System (ADS)

    Kamrin, Ken

    2017-06-01

    Granular materials have a strange propensity to behave as either a complex media or a simple media depending on the precise question being asked. This review paper offers a summary of granular flow rheologies for well-developed or steady-state motion, and seeks to explain this dichotomy through the vast range of complexity intrinsic to these models. A key observation is that to achieve accuracy in predicting flow fields in general geometries, one requires a model that accounts for a number of subtleties, most notably a nonlocal effect to account for cooperativity in the flow as induced by the finite size of grains. On the other hand, forces and tractions that develop on macro-scale, submerged boundaries appear to be minimally affected by grain size and, barring very rapid motions, are well represented by simple rate-independent frictional plasticity models. A major simplification observed in experiments of granular intrusion, which we refer to as the `resistive force hypothesis' of granular Resistive Force Theory, can be shown to arise directly from rate-independent plasticity. Because such plasticity models have so few parameters, and the major rheological parameter is a dimensionless internal friction coefficient, some of these simplifications can be seen as consequences of scaling.

  11. Nonlinear multiplicative dendritic integration in neuron and network models

    PubMed Central

    Zhang, Danke; Li, Yuanqing; Rasch, Malte J.; Wu, Si

    2013-01-01

    Neurons receive inputs from thousands of synapses distributed across dendritic trees of complex morphology. It is known that dendritic integration of excitatory and inhibitory synapses can be highly non-linear in reality and can heavily depend on the exact location and spatial arrangement of inhibitory and excitatory synapses on the dendrite. Despite this known fact, most neuron models used in artificial neural networks today still only describe the voltage potential of a single somatic compartment and assume a simple linear summation of all individual synaptic inputs. We here suggest a new biophysical motivated derivation of a single compartment model that integrates the non-linear effects of shunting inhibition, where an inhibitory input on the route of an excitatory input to the soma cancels or “shunts” the excitatory potential. In particular, our integration of non-linear dendritic processing into the neuron model follows a simple multiplicative rule, suggested recently by experiments, and allows for strict mathematical treatment of network effects. Using our new formulation, we further devised a spiking network model where inhibitory neurons act as global shunting gates, and show that the network exhibits persistent activity in a low firing regime. PMID:23658543

  12. Simple Estimators for the Simple Latent Class Mastery Testing Model. Twente Educational Memorandum No. 19.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    Latent class models for mastery testing differ from continuum models in that they do not postulate a latent mastery continuum but conceive mastery and non-mastery as two latent classes, each characterized by different probabilities of success. Several researchers use a simple latent class model that is basically a simultaneous application of the…

  13. Communication: Simple liquids' high-density viscosity

    NASA Astrophysics Data System (ADS)

    Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-02-01

    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  14. Simple construction and performance of a conical plastic cryocooler

    NASA Technical Reports Server (NTRS)

    Lambert, N.

    1985-01-01

    Low power cryocoolers with conical displacers offer several advantages over stepped displacers. The described fabrication process allows quick and reproducible manufacturing of plastic conical displacer units. This could be of commercial interest, but it also makes systematic optimization feasible by constructing a number of different models. The process allows for a wide range of displacer profiles. Low temperature performance as dominated by regenerator losses, and several effects are discussed. A simple device is described which controls gas flow during expansion.

  15. Influence of parameter changes to stability behavior of rotors

    NASA Technical Reports Server (NTRS)

    Fritzen, C. P.; Nordmann, R.

    1982-01-01

    The occurrence of unstable vibrations in rotating machinery requires corrective measures for improvement of the stability behavior. A simple approximate method is represented to find out the influence of parameter changes to the stability behavior. The method is based on an expansion of the eigenvalues in terms of system parameters. Influence coefficients show the effect of structural modifications. The method first of all was applied to simple nonconservative rotor models. It was approved for an unsymmetric rotor of a test rig.

  16. Assessing the Effectiveness of Ramp-Up During Sonar Operations Using Exposure Models.

    PubMed

    von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A

    2016-01-01

    Ramp-up procedures are used to mitigate the impact of sound on marine mammals. Sound exposure models combined with observations of marine mammals responding to sound can be used to assess the effectiveness of ramp-up procedures. We found that ramp-up procedures before full-level sonar operations can reduce the risk of hearing threshold shifts with marine mammals, but their effectiveness depends strongly on the responsiveness of the animals. In this paper, we investigated the effect of sonar parameters (source level, pulse-repetition time, ship speed) on sound exposure by using a simple analytical model and highlight the mechanisms that limit the effectiveness of ramp-up procedures.

  17. A model for proton-irradiated GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Walker, G. H.; Outlaw, R. A.; Stock, L. V.

    1982-01-01

    A simple model for proton radiation damage in GaAs heteroface solar cells is developed. The model includes the effects of spatial nonuniformity of low energy proton damage. Agreement between the model and experimental proton damage data for GaAs heteroface solar cells is satisfactory. An extension of the model to include angular isotropy, as is appropriate for protons in space, is shown to result in significantly less cell damage than for normal proton incidence.

  18. Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.

    PubMed

    Wang, Jia-Jun

    2012-11-01

    X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  19. FAST TRACK COMMUNICATION: Exact and simple results for the XYZ and strongly interacting fermion chains

    NASA Astrophysics Data System (ADS)

    Fendley, Paul; Hagendorf, Christian

    2010-10-01

    We conjecture exact and simple formulas for some physical quantities in two quantum chains. A classic result of this type is Onsager, Kaufman and Yang's formula for the spontaneous magnetization in the Ising model, subsequently generalized to the chiral Potts models. We conjecture that analogous results occur in the XYZ chain when the couplings obey JxJy + JyJz + JxJz = 0, and in a related fermion chain with strong interactions and supersymmetry. We find exact formulas for the magnetization and gap in the former, and the staggered density in the latter, by exploiting the fact that certain quantities are independent of finite-size effects.

  20. A Simple Model for Immature Retrovirus Capsid Assembly

    NASA Astrophysics Data System (ADS)

    Paquay, Stefan; van der Schoot, Paul; Dragnea, Bogdan

    In this talk I will present simulations of a simple model for capsomeres in immature virus capsids, consisting of only point particles with a tunable range of attraction constrained to a spherical surface. We find that, at sufficiently low density, a short interaction range is sufficient for the suppression of five-fold defects in the packing and causes instead larger tears and scars in the capsid. These findings agree both qualitatively and quantitatively with experiments on immature retrovirus capsids, implying that the structure of the retroviral protein lattice can, for a large part, be explained simply by the effective interaction between the capsomeres. We thank the HFSP for funding under Grant RGP0017/2012.

  1. Why do things fall? How to explain why gravity is not a force

    NASA Astrophysics Data System (ADS)

    Stannard, Warren B.

    2018-03-01

    In most high school physics classes, gravity is described as an attractive force between two masses as formulated by Newton over 300 years ago. Einstein’s general theory of relativity implies that gravitational effects are instead the result of a ‘curvature’ of space-time. However, explaining why things fall without resorting to Newton’s gravitational force can be difficult. This paper introduces some simple graphical and visual analogies and models which are suitable for the introduction of Einstein’s theory of general relativity at a high school level. These models provide an alternative to Newton’s gravitational force and help answer the simple question: why do things fall?

  2. Complex Autocatalysis in Simple Chemistries.

    PubMed

    Virgo, Nathaniel; Ikegami, Takashi; McGregor, Simon

    2016-01-01

    Life on Earth must originally have arisen from abiotic chemistry. Since the details of this chemistry are unknown, we wish to understand, in general, which types of chemistry can lead to complex, lifelike behavior. Here we show that even very simple chemistries in the thermodynamically reversible regime can self-organize to form complex autocatalytic cycles, with the catalytic effects emerging from the network structure. We demonstrate this with a very simple but thermodynamically reasonable artificial chemistry model. By suppressing the direct reaction from reactants to products, we obtain the simplest kind of autocatalytic cycle, resulting in exponential growth. When these simple first-order cycles are prevented from forming, the system achieves superexponential growth through more complex, higher-order autocatalytic cycles. This leads to nonlinear phenomena such as oscillations and bistability, the latter of which is of particular interest regarding the origins of life.

  3. Interaction dynamics of multiple mobile robots with simple navigation strategies

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1989-01-01

    The global dynamic behavior of multiple interacting autonomous mobile robots with simple navigation strategies is studied. Here, the effective spatial domain of each robot is taken to be a closed ball about its mass center. It is assumed that each robot has a specified cone of visibility such that interaction with other robots takes place only when they enter its visibility cone. Based on a particle model for the robots, various simple homing and collision-avoidance navigation strategies are derived. Then, an analysis of the dynamical behavior of the interacting robots in unbounded spatial domains is made. The article concludes with the results of computer simulations studies of two or more interacting robots.

  4. Modeling individual effects in the Cormack-Jolly-Seber Model: A state-space formulation

    USGS Publications Warehouse

    Royle, J. Andrew

    2008-01-01

    In population and evolutionary biology, there exists considerable interest in individual heterogeneity in parameters of demographic models for open populations. However, flexible and practical solutions to the development of such models have proven to be elusive. In this article, I provide a state-space formulation of open population capture-recapture models with individual effects. The state-space formulation provides a generic and flexible framework for modeling and inference in models with individual effects, and it yields a practical means of estimation in these complex problems via contemporary methods of Markov chain Monte Carlo. A straightforward implementation can be achieved in the software package WinBUGS. I provide an analysis of a simple model with constant parameter detection and survival probability parameters. A second example is based on data from a 7-year study of European dippers, in which a model with year and individual effects is fitted.

  5. Dark matter stability and one-loop neutrino mass generation based on Peccei-Quinn symmetry

    NASA Astrophysics Data System (ADS)

    Suematsu, Daijiro

    2018-01-01

    We propose a model which is a simple extension of the KSVZ invisible axion model with an inert doublet scalar. Peccei-Quinn symmetry forbids tree-level neutrino mass generation and its remnant Z_2 symmetry guarantees dark matter stability. The neutrino masses are generated by one-loop effects as a result of the breaking of Peccei-Quinn symmetry through a nonrenormalizable interaction. Although the low energy effective model coincides with an original scotogenic model which contains right-handed neutrinos with large masses, it is free from the strong CP problem.

  6. Development strategy and process models for phased automation of design and digital manufacturing electronics

    NASA Astrophysics Data System (ADS)

    Korshunov, G. I.; Petrushevskaya, A. A.; Lipatnikov, V. A.; Smirnova, M. S.

    2018-03-01

    The strategy of quality of electronics insurance is represented as most important. To provide quality, the processes sequence is considered and modeled by Markov chain. The improvement is distinguished by simple database means of design for manufacturing for future step-by-step development. Phased automation of design and digital manufacturing electronics is supposed. The MatLab modelling results showed effectiveness increase. New tools and software should be more effective. The primary digital model is proposed to represent product in the processes sequence from several processes till the whole life circle.

  7. Simple atmospheric perturbation models for sonic-boom-signature distortion studies

    NASA Technical Reports Server (NTRS)

    Ehernberger, L. J.; Wurtele, Morton G.; Sharman, Robert D.

    1994-01-01

    Sonic-boom propagation from flight level to ground is influenced by wind and speed-of-sound variations resulting from temperature changes in both the mean atmospheric structure and small-scale perturbations. Meteorological behavior generally produces complex combinations of atmospheric perturbations in the form of turbulence, wind shears, up- and down-drafts and various wave behaviors. Differences between the speed of sound at the ground and at flight level will influence the threshold flight Mach number for which the sonic boom first reaches the ground as well as the width of the resulting sonic-boom carpet. Mean atmospheric temperature and wind structure as a function of altitude vary with location and time of year. These average properties of the atmosphere are well-documented and have been used in many sonic-boom propagation assessments. In contrast, smaller scale atmospheric perturbations are also known to modulate the shape and amplitude of sonic-boom signatures reaching the ground, but specific perturbation models have not been established for evaluating their effects on sonic-boom propagation. The purpose of this paper is to present simple examples of atmospheric vertical temperature gradients, wind shears, and wave motions that can guide preliminary assessments of nonturbulent atmospheric perturbation effects on sonic-boom propagation to the ground. The use of simple discrete atmospheric perturbation structures can facilitate the interpretation of the resulting sonic-boom propagation anomalies as well as intercomparisons among varied flight conditions and propagation models.

  8. Cosmic Star Formation: A Simple Model of the SFRD(z)

    NASA Astrophysics Data System (ADS)

    Chiosi, Cesare; Sciarratta, Mauro; D’Onofrio, Mauro; Chiosi, Emanuela; Brotto, Francesca; De Michele, Rosaria; Politino, Valeria

    2017-12-01

    We investigate the evolution of the cosmic star formation rate density (SFRD) from redshift z = 20 to z = 0 and compare it with the observational one by Madau and Dickinson derived from recent compilations of ultraviolet (UV) and infrared (IR) data. The theoretical SFRD(z) and its evolution are obtained using a simple model that folds together the star formation histories of prototype galaxies that are designed to represent real objects of different morphological type along the Hubble sequence and the hierarchical growing of structures under the action of gravity from small perturbations to large-scale objects in Λ-CDM cosmogony, i.e., the number density of dark matter halos N(M,z). Although the overall model is very simple and easy to set up, it provides results that mimic results obtained from highly complex large-scale N-body simulations well. The simplicity of our approach allows us to test different assumptions for the star formation law in galaxies, the effects of energy feedback from stars to interstellar gas, the efficiency of galactic winds, and also the effect of N(M,z). The result of our analysis is that in the framework of the hierarchical assembly of galaxies, the so-called time-delayed star formation under plain assumptions mainly for the energy feedback and galactic winds can reproduce the observational SFRD(z).

  9. Co-digestion of solid waste: Towards a simple model to predict methane production.

    PubMed

    Kouas, Mokhles; Torrijos, Michel; Schmitz, Sabine; Sousbie, Philippe; Sayadi, Sami; Harmand, Jérôme

    2018-04-01

    Modeling methane production is a key issue for solid waste co-digestion. Here, the effect of a step-wise increase in the organic loading rate (OLR) on reactor performance was investigated, and four new models were evaluated to predict methane yields using data acquired in batch mode. Four co-digestion experiments of mixtures of 2 solid substrates were conducted in semi-continuous mode. Experimental methane yields were always higher than the BMP values of mixtures calculated from the BMP of each substrate, highlighting the importance of endogenous production (methane produced from auto-degradation of microbial community and generated solids). The experimental methane productions under increasing OLRs corresponded well to the modeled data using the model with constant endogenous production and kinetics identified at 80% from total batch time. This model provides a simple and useful tool for technical design consultancies and plant operators to optimize the co-digestion and the choice of the OLRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Modelling tidewater glacier calving: from detailed process models to simple calving laws

    NASA Astrophysics Data System (ADS)

    Benn, Doug; Åström, Jan; Zwinger, Thomas; Todd, Joe; Nick, Faezeh

    2017-04-01

    The simple calving laws currently used in ice sheet models do not adequately reflect the complexity and diversity of calving processes. To be effective, calving laws must be grounded in a sound understanding of how calving actually works. We have developed a new approach to formulating calving laws, using a) the Helsinki Discrete Element Model (HiDEM) to explicitly model fracture and calving processes, and b) the full-Stokes continuum model Elmer/Ice to identify critical stress states associated with HiDEM calving events. A range of observed calving processes emerges spontaneously from HiDEM in response to variations in ice-front buoyancy and the size of subaqueous undercuts, and we show that HiDEM calving events are associated with characteristic stress patterns simulated in Elmer/Ice. Our results open the way to developing calving laws that properly reflect the diversity of calving processes, and provide a framework for a unified theory of the calving process continuum.

  11. Mechano-genetic DNA hydrogels as a simple, reconstituted model to probe the effect of active fluctuations on gene transcription

    NASA Astrophysics Data System (ADS)

    Nguyen, Dan; Saleh, Omar

    Active fluctuations - non-directed fluctuations attributable, not to thermal energy, but to non-equilibrium processes - are thought to influence biology by increasing the diffusive motion of biomolecules. Dense DNA regions within cells (i.e. chromatin) are expected to exhibit such phenomena, as they are cross-linked networks that continually experience propagating forces arising from dynamic cellular activity. Additional agitation within these gene-encoding DNA networks could have potential genetic consequences. By changing the local mobility of transcriptional machinery and regulatory proteins towards/from their binding sites, and thereby influencing transcription rates, active fluctuations could prove to be a physical means of modulating gene expression. To begin probing this effect, we construct genetic DNA hydrogels, as a simple, reconstituted model of chromatin, and quantify transcriptional output from these hydrogels in the presence/absence of active fluctuations.

  12. Meteorological adjustment of yearly mean values for air pollutant concentration comparison

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.; Neustadter, H. E.

    1976-01-01

    Using multiple linear regression analysis, models which estimate mean concentrations of Total Suspended Particulate (TSP), sulfur dioxide, and nitrogen dioxide as a function of several meteorologic variables, two rough economic indicators, and a simple trend in time are studied. Meteorologic data were obtained and do not include inversion heights. The goodness of fit of the estimated models is partially reflected by the squared coefficient of multiple correlation which indicates that, at the various sampling stations, the models accounted for about 23 to 47 percent of the total variance of the observed TSP concentrations. If the resulting model equations are used in place of simple overall means of the observed concentrations, there is about a 20 percent improvement in either: (1) predicting mean concentrations for specified meteorological conditions; or (2) adjusting successive yearly averages to allow for comparisons devoid of meteorological effects. An application to source identification is presented using regression coefficients of wind velocity predictor variables.

  13. A simple model of space radiation damage in GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Stith, J. J.; Stock, L. V.

    1983-01-01

    A simple model is derived for the radiation damage of shallow junction gallium arsenide (GaAs) solar cells. Reasonable agreement is found between the model and specific experimental studies of radiation effects with electron and proton beams. In particular, the extreme sensitivity of the cell to protons stopping near the cell junction is predicted by the model. The equivalent fluence concept is of questionable validity for monoenergetic proton beams. Angular factors are quite important in establishing the cell sensitivity to incident particle types and energies. A fluence of isotropic incidence 1 MeV electrons (assuming infinite backing) is equivalent to four times the fluence of normal incidence 1 MeV electrons. Spectral factors common to the space radiations are considered, and cover glass thickness required to minimize the initial damage for a typical cell configuration is calculated. Rough equivalence between the geosynchronous environment and an equivalent 1 MeV electron fluence (normal incidence) is established.

  14. An Information-theoretic Approach to Optimize JWST Observations and Retrievals of Transiting Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Howe, Alex R.; Burrows, Adam; Deming, Drake

    2017-01-01

    We provide an example of an analysis to explore the optimization of observations of transiting hot Jupiters with the James Webb Space Telescope (JWST) to characterize their atmospheres based on a simple three-parameter forward model. We construct expansive forward model sets for 11 hot Jupiters, 10 of which are relatively well characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs of combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.

  15. Relative Biological Effectiveness of HZE Particles for Chromosomal Exchanges and Other Surrogate Cancer Risk Endpoints.

    PubMed

    Cacao, Eliedonna; Hada, Megumi; Saganti, Premkumar B; George, Kerry A; Cucinotta, Francis A

    2016-01-01

    The biological effects of high charge and energy (HZE) particle exposures are of interest in space radiation protection of astronauts and cosmonauts, and estimating secondary cancer risks for patients undergoing Hadron therapy for primary cancers. The large number of particles types and energies that makeup primary or secondary radiation in HZE particle exposures precludes tumor induction studies in animal models for all but a few particle types and energies, thus leading to the use of surrogate endpoints to investigate the details of the radiation quality dependence of relative biological effectiveness (RBE) factors. In this report we make detailed RBE predictions of the charge number and energy dependence of RBE's using a parametric track structure model to represent experimental results for the low dose response for chromosomal exchanges in normal human lymphocyte and fibroblast cells with comparison to published data for neoplastic transformation and gene mutation. RBE's are evaluated against acute doses of γ-rays for doses near 1 Gy. Models that assume linear or non-targeted effects at low dose are considered. Modest values of RBE (<10) are found for simple exchanges using a linear dose response model, however in the non-targeted effects model for fibroblast cells large RBE values (>10) are predicted at low doses <0.1 Gy. The radiation quality dependence of RBE's against the effects of acute doses γ-rays found for neoplastic transformation and gene mutation studies are similar to those found for simple exchanges if a linear response is assumed at low HZE particle doses. Comparisons of the resulting model parameters to those used in the NASA radiation quality factor function are discussed.

  16. Relative Biological Effectiveness of HZE Particles for Chromosomal Exchanges and Other Surrogate Cancer Risk Endpoints

    DOE PAGES

    Cacao, Eliedonna; Hada, Megumi; Saganti, Premkumar B.; ...

    2016-04-25

    The biological effects of high charge and energy (HZE) particle exposures are of interest in space radiation protection of astronauts and cosmonauts, and estimating secondary cancer risks for patients undergoing Hadron therapy for primary cancers. The large number of particles types and energies that makeup primary or secondary radiation in HZE particle exposures precludes tumor induction studies in animal models for all but a few particle types and energies, thus leading to the use of surrogate endpoints to investigate the details of the radiation quality dependence of relative biological effectiveness (RBE) factors. In this report we make detailed RBE predictionsmore » of the charge number and energy dependence of RBE’s using a parametric track structure model to represent experimental results for the low dose response for chromosomal exchanges in normal human lymphocyte and fibroblast cells with comparison to published data for neoplastic transformation and gene mutation. RBE’s are evaluated against acute doses of γ-rays for doses near 1 Gy. Models that assume linear or non-targeted effects at low dose are considered. Modest values of RBE (<10) are found for simple exchanges using a linear dose response model, however in the non-targeted effects model for fibroblast cells large RBE values (>10) are predicted at low doses <0.1 Gy. The radiation quality dependence of RBE’s against the effects of acute doses γ-rays found for neoplastic transformation and gene mutation studies are similar to those found for simple exchanges if a linear response is assumed at low HZE particle doses. Finally, we discuss comparisons of the resulting model parameters to those used in the NASA radiation quality factor function.« less

  17. Relative Biological Effectiveness of HZE Particles for Chromosomal Exchanges and Other Surrogate Cancer Risk Endpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cacao, Eliedonna; Hada, Megumi; Saganti, Premkumar B.

    The biological effects of high charge and energy (HZE) particle exposures are of interest in space radiation protection of astronauts and cosmonauts, and estimating secondary cancer risks for patients undergoing Hadron therapy for primary cancers. The large number of particles types and energies that makeup primary or secondary radiation in HZE particle exposures precludes tumor induction studies in animal models for all but a few particle types and energies, thus leading to the use of surrogate endpoints to investigate the details of the radiation quality dependence of relative biological effectiveness (RBE) factors. In this report we make detailed RBE predictionsmore » of the charge number and energy dependence of RBE’s using a parametric track structure model to represent experimental results for the low dose response for chromosomal exchanges in normal human lymphocyte and fibroblast cells with comparison to published data for neoplastic transformation and gene mutation. RBE’s are evaluated against acute doses of γ-rays for doses near 1 Gy. Models that assume linear or non-targeted effects at low dose are considered. Modest values of RBE (<10) are found for simple exchanges using a linear dose response model, however in the non-targeted effects model for fibroblast cells large RBE values (>10) are predicted at low doses <0.1 Gy. The radiation quality dependence of RBE’s against the effects of acute doses γ-rays found for neoplastic transformation and gene mutation studies are similar to those found for simple exchanges if a linear response is assumed at low HZE particle doses. Finally, we discuss comparisons of the resulting model parameters to those used in the NASA radiation quality factor function.« less

  18. A Bayesian network model for predicting pregnancy after in vitro fertilization.

    PubMed

    Corani, G; Magli, C; Giusti, A; Gianaroli, L; Gambardella, L M

    2013-11-01

    We present a Bayesian network model for predicting the outcome of in vitro fertilization (IVF). The problem is characterized by a particular missingness process; we propose a simple but effective averaging approach which improves parameter estimates compared to the traditional MAP estimation. We present results with generated data and the analysis of a real data set. Moreover, we assess by means of a simulation study the effectiveness of the model in supporting the selection of the embryos to be transferred. © 2013 Elsevier Ltd. All rights reserved.

  19. Optical and X-ray radiation from fast pulsars - Effects of duty cycle and spectral shape

    NASA Technical Reports Server (NTRS)

    Pacini, F.; Salvati, M.

    1987-01-01

    The optical luminosity of PSR 0540 is considerably stronger than what one would have predicted in a simple model developed earlier where the pulses are synchrotron radiation by secondary electrons near the light cylinder. This discrepancy can be eliminated if one incorporates into the model the effects of the large duty cycle and the spectral properties of PSR 0540. It is also shown that the same model can provide a reasonable fit to the observed X-ray fluxes from fast pulsars.

  20. REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits.

    PubMed

    Olivoto, T; Nardino, M; Carvalho, I R; Follmann, D N; Ferrari, M; Szareski, V J; de Pelegrin, A J; de Souza, V Q

    2017-03-22

    Methodologies using restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) in combination with sequential path analysis in maize are still limited in the literature. Therefore, the aims of this study were: i) to use REML/BLUP-based procedures in order to estimate variance components, genetic parameters, and genotypic values of simple maize hybrids, and ii) to fit stepwise regressions considering genotypic values to form a path diagram with multi-order predictors and minimum multicollinearity that explains the relationships of cause and effect among grain yield-related traits. Fifteen commercial simple maize hybrids were evaluated in multi-environment trials in a randomized complete block design with four replications. The environmental variance (78.80%) and genotype-vs-environment variance (20.83%) accounted for more than 99% of the phenotypic variance of grain yield, which difficult the direct selection of breeders for this trait. The sequential path analysis model allowed the selection of traits with high explanatory power and minimum multicollinearity, resulting in models with elevated fit (R 2 > 0.9 and ε < 0.3). The number of kernels per ear (NKE) and thousand-kernel weight (TKW) are the traits with the largest direct effects on grain yield (r = 0.66 and 0.73, respectively). The high accuracy of selection (0.86 and 0.89) associated with the high heritability of the average (0.732 and 0.794) for NKE and TKW, respectively, indicated good reliability and prospects of success in the indirect selection of hybrids with high-yield potential through these traits. The negative direct effect of NKE on TKW (r = -0.856), however, must be considered. The joint use of mixed models and sequential path analysis is effective in the evaluation of maize-breeding trials.

  1. Derivation of flood frequency curves in poorly gauged Mediterranean catchments using a simple stochastic hydrological rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Aronica, G. T.; Candela, A.

    2007-12-01

    SummaryIn this paper a Monte Carlo procedure for deriving frequency distributions of peak flows using a semi-distributed stochastic rainfall-runoff model is presented. The rainfall-runoff model here used is very simple one, with a limited number of parameters and practically does not require any calibration, resulting in a robust tool for those catchments which are partially or poorly gauged. The procedure is based on three modules: a stochastic rainfall generator module, a hydrologic loss module and a flood routing module. In the rainfall generator module the rainfall storm, i.e. the maximum rainfall depth for a fixed duration, is assumed to follow the two components extreme value (TCEV) distribution whose parameters have been estimated at regional scale for Sicily. The catchment response has been modelled by using the Soil Conservation Service-Curve Number (SCS-CN) method, in a semi-distributed form, for the transformation of total rainfall to effective rainfall and simple form of IUH for the flood routing. Here, SCS-CN method is implemented in probabilistic form with respect to prior-to-storm conditions, allowing to relax the classical iso-frequency assumption between rainfall and peak flow. The procedure is tested on six practical case studies where synthetic FFC (flood frequency curve) were obtained starting from model variables distributions by simulating 5000 flood events combining 5000 values of total rainfall depth for the storm duration and AMC (antecedent moisture conditions) conditions. The application of this procedure showed how Monte Carlo simulation technique can reproduce the observed flood frequency curves with reasonable accuracy over a wide range of return periods using a simple and parsimonious approach, limited data input and without any calibration of the rainfall-runoff model.

  2. Effects of land use on lake nutrients: The importance of scale, hydrologic connectivity, and region

    USGS Publications Warehouse

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate

    2015-01-01

    Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales.

  3. Effects of Land Use on Lake Nutrients: The Importance of Scale, Hydrologic Connectivity, and Region

    PubMed Central

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate

    2015-01-01

    Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales. PMID:26267813

  4. A population pharmacokinetic model of valproic acid in pediatric patients with epilepsy: a non-linear pharmacokinetic model based on protein-binding saturation.

    PubMed

    Ding, Junjie; Wang, Yi; Lin, Weiwei; Wang, Changlian; Zhao, Limei; Li, Xingang; Zhao, Zhigang; Miao, Liyan; Jiao, Zheng

    2015-03-01

    Valproic acid (VPA) follows a non-linear pharmacokinetic profile in terms of protein-binding saturation. The total daily dose regarding VPA clearance is a simple power function, which may partially explain the non-linearity of the pharmacokinetic profile; however, it may be confounded by the therapeutic drug monitoring effect. The aim of this study was to develop a population pharmacokinetic model for VPA based on protein-binding saturation in pediatric patients with epilepsy. A total of 1,107 VPA serum trough concentrations at steady state were collected from 902 epileptic pediatric patients aged from 3 weeks to 14 years at three hospitals. The population pharmacokinetic model was developed using NONMEM(®) software. The ability of three candidate models (the simple power exponent model, the dose-dependent maximum effect [DDE] model, and the protein-binding model) to describe the non-linear pharmacokinetic profile of VPA was investigated, and potential covariates were screened using a stepwise approach. Bootstrap, normalized prediction distribution errors and external evaluations from two independent studies were performed to determine the stability and predictive performance of the candidate models. The age-dependent exponent model described the effects of body weight and age on the clearance well. Co-medication with carbamazepine was identified as a significant covariate. The DDE model best fitted the aim of this study, although there were no obvious differences in the predictive performances. The condition number was less than 500, and the precision of the parameter estimates was less than 30 %, indicating stability and validity of the final model. The DDE model successfully described the non-linear pharmacokinetics of VPA. Furthermore, the proposed population pharmacokinetic model of VPA can be used to design rational dosage regimens to achieve desirable serum concentrations.

  5. A Bayesian Attractor Model for Perceptual Decision Making

    PubMed Central

    Bitzer, Sebastian; Bruineberg, Jelle; Kiebel, Stefan J.

    2015-01-01

    Even for simple perceptual decisions, the mechanisms that the brain employs are still under debate. Although current consensus states that the brain accumulates evidence extracted from noisy sensory information, open questions remain about how this simple model relates to other perceptual phenomena such as flexibility in decisions, decision-dependent modulation of sensory gain, or confidence about a decision. We propose a novel approach of how perceptual decisions are made by combining two influential formalisms into a new model. Specifically, we embed an attractor model of decision making into a probabilistic framework that models decision making as Bayesian inference. We show that the new model can explain decision making behaviour by fitting it to experimental data. In addition, the new model combines for the first time three important features: First, the model can update decisions in response to switches in the underlying stimulus. Second, the probabilistic formulation accounts for top-down effects that may explain recent experimental findings of decision-related gain modulation of sensory neurons. Finally, the model computes an explicit measure of confidence which we relate to recent experimental evidence for confidence computations in perceptual decision tasks. PMID:26267143

  6. Popping the Kernel Modeling the States of Matter

    ERIC Educational Resources Information Center

    Hitt, Austin; White, Orvil; Hanson, Debbie

    2005-01-01

    This article discusses how to use popcorn to engage students in model building and to teach them about the nature of matter. Popping kernels is a simple and effective method to connect the concepts of heat, motion, and volume with the different phases of matter. Before proceeding with the activity the class should discuss the nature of scientific…

  7. Analyzing the Cost Efficiency of Academic Departments and Instructional Personnel at State Universities.

    ERIC Educational Resources Information Center

    Norris, Robert G.

    A cost-effectiveness model is presented for academic administrators to use in making evaluation and planning decisions related directly to the instructional activities of academic departments. The advantages seen in the model are that it is simple and flexible, concentrates on balancing income generated by the department to expenses incurred, and…

  8. The Plaque-Antiserum Method: an Assay of Virus Infectivity and an Experimental Model of Virus Infection

    PubMed Central

    De Flora, Silvio

    1974-01-01

    Areas of cytopathic effect can be circumscribed in cell monolayers by adding antiserum to the liquid nutrient medium after adsorption of virus. This procedure represents a simple and reliable tool for the titration of virus infectivity and provides an experimental model for studying some aspects of virus infection. Images PMID:4364462

  9. Computational Modeling of Statistical Learning: Effects of Transitional Probability versus Frequency and Links to Word Learning

    ERIC Educational Resources Information Center

    Mirman, Daniel; Estes, Katharine Graf; Magnuson, James S.

    2010-01-01

    Statistical learning mechanisms play an important role in theories of language acquisition and processing. Recurrent neural network models have provided important insights into how these mechanisms might operate. We examined whether such networks capture two key findings in human statistical learning. In Simulation 1, a simple recurrent network…

  10. A Simple Effect Size Estimator for Single Case Designs Using WinBUGS

    ERIC Educational Resources Information Center

    Rindskopf, David; Shadish, William; Hedges, Larry V.

    2012-01-01

    This conference presentation demonstrates a multilevel model for analyzing single case designs. The model is implemented in the Bayesian program WinBUGS. The authors show how it is possible to estimate a d-statistic like the one in Hedges, Pustejovsky and Shadish (2012) in this program. Results are demonstrated on an example.

  11. Helping Students Assess the Relative Importance of Different Intermolecular Interactions

    ERIC Educational Resources Information Center

    Jasien, Paul G.

    2008-01-01

    A semi-quantitative model has been developed to estimate the relative effects of dispersion, dipole-dipole interactions, and H-bonding on the normal boiling points ("T[subscript b]") for a subset of simple organic systems. The model is based upon a statistical analysis using multiple linear regression on a series of straight-chain organic…

  12. Unpacking Neighborhood Influences on Education Outcomes: Setting the Stage for Future Research. NBER Working Paper No. 16055

    ERIC Educational Resources Information Center

    Harding, David J.; Gennetian, Lisa; Winship, Christopher; Sanbonmatsu, Lisa; Kling, Jeffrey R.

    2010-01-01

    We motivate future neighborhood research through a simple model that considers youth educational outcomes as a function of neighborhood context, neighborhood exposure, individual vulnerability to neighborhood effects, and non-neighborhood educational inputs--with a focus on effect heterogeneity. Research using this approach would require three…

  13. Essays on Experimental Economics and Education

    ERIC Educational Resources Information Center

    Ogawa, Scott Richard

    2013-01-01

    In Chapter 1 I consider three separate explanations for how price affects the usage rate of a purchased product: Screening, signaling, and sunk-cost bias. I propose an experimental design that disentangles the three effects. Furthermore, in order to quantify and compare these effects I introduce a simple structural model and show that the…

  14. Household Choices of Child Labor and Schooling: A Simple Model with Application to Brazil

    ERIC Educational Resources Information Center

    Soares, Rodrigo R.; Kruger, Diana; Berthelon, Matias

    2012-01-01

    This paper argues that conflicting results from previous literature--related to the effect of economic conditions on child labor--derive from different income and substitution effects implicit in different types of income variation. We use agricultural shocks to local economic activity in Brazil (coffee production) to distinguish between increases…

  15. Introducing Valuation Effects-Based External Balance Analysis into the Undergraduate Macroeconomics Curricula: A Simple Framework with Applications

    ERIC Educational Resources Information Center

    Brust, Peter; Jayakumar, Vivekanand

    2012-01-01

    Global imbalances and the sustainability of large U.S. current account deficits have dominated international macroeconomics of late. Pedagogically, a clear disconnect exists between graduate-level open-economy macroeconomics that emphasizes intertemporal current account models and net foreign asset adjustment featuring valuation effects, and,…

  16. [Application of three compartment model and response surface model to clinical anesthesia using Microsoft Excel].

    PubMed

    Abe, Eiji; Abe, Mari

    2011-08-01

    With the spread of total intravenous anesthesia, clinical pharmacology has become more important. We report Microsoft Excel file applying three compartment model and response surface model to clinical anesthesia. On the Microsoft Excel sheet, propofol, remifentanil and fentanyl effect-site concentrations are predicted (three compartment model), and probabilities of no response to prodding, shaking, surrogates of painful stimuli and laryngoscopy are calculated using predicted effect-site drug concentration. Time-dependent changes in these calculated values are shown graphically. Recent development in anesthetic drug interaction studies are remarkable, and its application to clinical anesthesia with this Excel file is simple and helpful for clinical anesthesia.

  17. Do Adaptive Representations of the Item-Position Effect in APM Improve Model Fit? A Simulation Study

    ERIC Educational Resources Information Center

    Zeller, Florian; Krampen, Dorothea; Reiß, Siegbert; Schweizer, Karl

    2017-01-01

    The item-position effect describes how an item's position within a test, that is, the number of previous completed items, affects the response to this item. Previously, this effect was represented by constraints reflecting simple courses, for example, a linear increase. Due to the inflexibility of these representations our aim was to examine…

  18. Assessing the cumulative effects of linear recreation routes on wildlife habitats on the Okanogan and Wenatchee National Forests.

    Treesearch

    William L. Gaines; Peter H. Singleton; Roger C. Ross

    2003-01-01

    We conducted a literature review to document the effects of linear recreation routes on focal wildlife species. We identified a variety of interactions between focal species and roads, motorized trails, and nonmotorized trails. We used the available science to develop simple geographic information system-based models to evaluate the cumulative effects of recreational...

  19. Complex versus simple models: ion-channel cardiac toxicity prediction.

    PubMed

    Mistry, Hitesh B

    2018-01-01

    There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model B net was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the B net model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.

  20. Effect of Winglets on a First-Generation Jet Transport Wing. 2: Pressure and Spanwise Load Distributions for a Semispan Model at High Subsonic Speeds. [in the Langley 8 ft transonic tunnel

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Flechner, S. G.; Jacobs, P. F.

    1977-01-01

    Pressure and spanwise load distributions on a first-generation jet transport semispan model at high subsonic speeds are presented for the basic wing and for configurations with an upper winglet only, upper and lower winglets, and a simple wing-tip extension. Selected data are discussed to show the general trends and effects of the various configurations.

  1. Understanding the complex dynamics of stock markets through cellular automata

    NASA Astrophysics Data System (ADS)

    Qiu, G.; Kandhai, D.; Sloot, P. M. A.

    2007-04-01

    We present a cellular automaton (CA) model for simulating the complex dynamics of stock markets. Within this model, a stock market is represented by a two-dimensional lattice, of which each vertex stands for a trader. According to typical trading behavior in real stock markets, agents of only two types are adopted: fundamentalists and imitators. Our CA model is based on local interactions, adopting simple rules for representing the behavior of traders and a simple rule for price updating. This model can reproduce, in a simple and robust manner, the main characteristics observed in empirical financial time series. Heavy-tailed return distributions due to large price variations can be generated through the imitating behavior of agents. In contrast to other microscopic simulation (MS) models, our results suggest that it is not necessary to assume a certain network topology in which agents group together, e.g., a random graph or a percolation network. That is, long-range interactions can emerge from local interactions. Volatility clustering, which also leads to heavy tails, seems to be related to the combined effect of a fast and a slow process: the evolution of the influence of news and the evolution of agents’ activity, respectively. In a general sense, these causes of heavy tails and volatility clustering appear to be common among some notable MS models that can confirm the main characteristics of financial markets.

  2. Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.; Schreckenberg, Michael

    2011-10-01

    We present a simple cellular automaton (CA) model for two-lane roads explaining the physics of traffic breakdown, highway capacity, and synchronized flow. The model consists of the rules “acceleration,” “deceleration,” “randomization,” and “motion” of the Nagel-Schreckenberg CA model as well as “overacceleration through lane changing to the faster lane,” “comparison of vehicle gap with the synchronization gap,” and “speed adaptation within the synchronization gap” of Kerner's three-phase traffic theory. We show that these few rules of the CA model can appropriately simulate fundamental empirical features of traffic breakdown and highway capacity found in traffic data measured over years in different countries, like characteristics of synchronized flow, the existence of the spontaneous and induced breakdowns at the same bottleneck, and associated probabilistic features of traffic breakdown and highway capacity. Single-vehicle data derived in model simulations show that synchronized flow first occurs and then self-maintains due to a spatiotemporal competition between speed adaptation to a slower speed of the preceding vehicle and passing of this slower vehicle. We find that the application of simple dependences of randomization probability and synchronization gap on driving situation allows us to explain the physics of moving synchronized flow patterns and the pinch effect in synchronized flow as observed in real traffic data.

  3. Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1991--30 June 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigley, T.M.L.; Jones, P.D.

    1994-07-01

    In addition to changes due to variations in greenhouse gas concentrations, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the enhanced greenhouse effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics. To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas concentration changes and other factors. Analyses will be guided bymore » a variety of models, from simple energy balance climate models to ocean General Circulation Models. Appendices A--G contain the following seven papers: (A) Recent global warmth moderated by the effects of the Mount Pinatubo eruption; (B) Recent warming in global temperature series; (C) Correlation methods in fingerprint detection studies; (D) Balancing the carbon budget. Implications for projections of future carbon dioxide concentration changes; (E) A simple model for estimating methane concentration and lifetime variations; (F) Implications for climate and sea level of revised IPCC emissions scenarios; and (G) Sulfate aerosol and climatic change.« less

  4. HIA, the next step: Defining models and roles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putters, Kim

    If HIA is to be an effective instrument for optimising health interests in the policy making process it has to recognise the different contests in which policy is made and the relevance of both technical rationality and political rationality. Policy making may adopt a rational perspective in which there is a systematic and orderly progression from problem formulation to solution or a network perspective in which there are multiple interdependencies, extensive negotiation and compromise, and the steps from problem to formulation are not followed sequentially or in any particular order. Policy problems may be simple with clear causal pathways andmore » responsibilities or complex with unclear causal pathways and disputed responsibilities. Network analysis is required to show which stakeholders are involved, their support for health issues and the degree of consensus. From this analysis three models of HIA emerge. The first is the phases model which is fitted to simple problems and a rational perspective of policymaking. This model involves following structured steps. The second model is the rounds (Echternach) model that is fitted to complex problems and a network perspective of policymaking. This model is dynamic and concentrates on network solutions taking these steps in no particular order. The final model is the 'garbage can' model fitted to contexts which combine simple and complex problems. In this model HIA functions as a problem solver and signpost keeping all possible solutions and stakeholders in play and allowing solutions to emerge over time. HIA models should be the beginning rather than the conclusion of discussion the worlds of HIA and policymaking.« less

  5. Toxin effect on protein biosynthesis in eukaryotic cells: a simple kinetic model.

    PubMed

    Skakauskas, Vladas; Katauskis, Pranas; Skvortsov, Alex; Gray, Peter

    2015-03-01

    A model for toxin inhibition of protein synthesis inside eukaryotic cells is presented. Mitigation of this effect by introduction of an antibody is also studied. Antibody and toxin (ricin) initially are delivered outside the cell. The model describes toxin internalization from the extracellular into the intracellular domain, its transport to the endoplasmic reticulum (ER) and the cleavage inside the ER into the RTA and RTB chains, the release of RTA into the cytosol, inactivation (depurination) of ribosomes, and the effect on translation. The model consists of a set of ODEs which are solved numerically. Numerical results are illustrated by figures and discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Response of Simple, Model Systems to Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, Rodney C.; Lang, Maik

    2015-07-30

    The focus of the research was on the application of high-pressure/high-temperature techniques, together with intense energetic ion beams, to the study of the behavior of simple oxide systems (e.g., SiO 2, GeO 2, CeO 2, TiO 2, HfO 2, SnO 2, ZnO and ZrO 2) under extreme conditions. These simple stoichiometries provide unique model systems for the analysis of structural responses to pressure up to and above 1 Mbar, temperatures of up to several thousands of kelvin, and the extreme energy density generated by energetic heavy ions (tens of keV/atom). The investigations included systematic studies of radiation- and pressure-induced amorphizationmore » of high P-T polymorphs. By studying the response of simple stoichiometries that have multiple structural “outcomes”, we have established the basic knowledge required for the prediction of the response of more complex structures to extreme conditions. We especially focused on the amorphous state and characterized the different non-crystalline structure-types that result from the interplay of radiation and pressure. For such experiments, we made use of recent technological developments, such as the perforated diamond-anvil cell and in situ investigation using synchrotron x-ray sources. We have been particularly interested in using extreme pressures to alter the electronic structure of a solid prior to irradiation. We expected that the effects of modified band structure would be evident in the track structure and morphology, information which is much needed to describe theoretically the fundamental physics of track-formation. Finally, we investigated the behavior of different simple-oxide, composite nanomaterials (e.g., uncoated nanoparticles vs. core/shell systems) under coupled, extreme conditions. This provided insight into surface and boundary effects on phase stability under extreme conditions.« less

  7. Modeling of the laser device for the stress therapy

    NASA Astrophysics Data System (ADS)

    Matveev, Nikolai V.; Shcheglov, Sergey A.; Romanova, Galina E.; Koneva, Ð.¢atiana A.

    2017-05-01

    Recently there is a great interest to the drug-free methods of treatment of various diseases. For example, audiovisual therapy is used for the stress therapy. The main destination of the method is the health care and well-being. Visual content in the given case is formed when laser radiation is passing through the optical mediums and elements. The therapy effect is achieved owing to the color varying and complicated structure of the picture which is produced by the refraction, dispersion effects, diffraction and interference. As the laser source we use three laser sources with wavelengths of 445 nm, 520 nm and 640 nm and the optical power up to 1 W. The beam is guided to the optical element which is responsible for the final image of the dome surface. The dynamic image can be achieved by the rotating of the optical element when the laser beam is static or by scanning the surface of the element. Previous research has shown that the complexity of the image connected to the therapy effect. The image was chosen experimentally in practice. The evaluation was performed using the fractal dimension calculation for the produced image. In this work we model the optical image on the surface formed by the laser sources together with the optical elements. Modeling is performed in two stages. On the first stage we perform the simple modeling taking into account simple geometrical effects and specify the optical models of the sources.

  8. Modeling of air pollution from the power plant ash dumps

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad M.; Balać, Nedeljko

    A simple model of air pollution from power plant ash dumps is presented, with emission rates calculated from the Bagnold formula and transport simulated by the ATDL type model. Moisture effects are accounted for by assumption that there is no pollution on rain days. Annual mean daily sedimentation rates, calculated for the area around the 'Nikola Tesla' power plants near Belgrade for 1987, show reasonably good agreement with observations.

  9. Collinear collision chemistry. II. Energy disposition in reactive collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahan, B.H.

    1974-06-01

    A model describing the mechanics of collinear atom-diatom collisions and previously reported by the author is extended to describe reactive collisions. The model indicates the effects of such factors as the mass distribution and potential energy barriers and wells on the reaction probability and on the distribution of energy among the modes of motion of the products. Simple geometry and trigonometry are sufficient to solve the model.

  10. Spectral Simulations and Abundance Determinations in the Interstellar Medium of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Ferguson, Jason W.

    The narrow emission line spectra of gas illuminated by the nuclear region of active galaxies cannot be described by models involving simple photoionization calculations. In this project we develop the numerical tools necessary to accurately simulate observed spectra from such regions. We begin by developing a compact model hydrogen atom, and show that a moderate number of atomic levels can reproduce the emission of much larger, definitive calculations. We discuss the excitation mechanism of the gas, that is, whether the emission we see is a result of either local shock excitation or direct photoionization by the central source. We show that photoionization plus continuum fluorescence can mimic excitation by shocks, and we suggest an observational test to distinguish between photoionization due to shocks and the central source. We extend to the narrow line region of active galaxies the 'locally optimally-emitting cloud' (LOC) model, wherein the observed spectra are predominantly determined by a simple, yet powerful selection effect. Namely, nature provides the emitting line region with clouds of a vast ensemble of properties, and we observe emission lines from those clouds that are most efficient at emitting them. We have calculated large grids of photoionization models of narrow line clouds for a wide range of gas density and distances from the ionizing source. We show that when coupled to a simple Keplerian velocity field, the LOC naturally reproduces the line width - critical density correlation observed in many narrow line objects. In addition, we calculate classical diagnostic line ratios and use simple LOC integrations over gas density to simulate the radial emission of the narrow lines and compare with observations. The effects of including dust in the simulations is discussed and we show that the more neutral gas is likely to be dusty, while the more highly ionized gas is dust-free. This implies a variety of cloud origins.

  11. The estimation of branching curves in the presence of subject-specific random effects.

    PubMed

    Elmi, Angelo; Ratcliffe, Sarah J; Guo, Wensheng

    2014-12-20

    Branching curves are a technique for modeling curves that change trajectory at a change (branching) point. Currently, the estimation framework is limited to independent data, and smoothing splines are used for estimation. This article aims to extend the branching curve framework to the longitudinal data setting where the branching point varies by subject. If the branching point is modeled as a random effect, then the longitudinal branching curve framework is a semiparametric nonlinear mixed effects model. Given existing issues with using random effects within a smoothing spline, we express the model as a B-spline based semiparametric nonlinear mixed effects model. Simple, clever smoothness constraints are enforced on the B-splines at the change point. The method is applied to Women's Health data where we model the shape of the labor curve (cervical dilation measured longitudinally) before and after treatment with oxytocin (a labor stimulant). Copyright © 2014 John Wiley & Sons, Ltd.

  12. A simple, semi-prescriptive self-assessment model for TQM.

    PubMed

    Warwood, Stephen; Antony, Jiju

    2003-01-01

    This article presents a simple, semi-prescriptive self-assessment model for use in industry as part of a continuous improvement program such as Total Quality Management (TQM). The process by which the model was constructed started with a review of the available literature in order to research TQM success factors. Next, postal surveys were conducted by sending questionnaires to the winning organisations of the Baldrige and European Quality Awards and to a preselected group of enterprising UK organisations. From the analysis of this data, the self-assessment model was constructed to help organisations in their quest for excellence. This work confirmed the findings from the literature, that there are key factors that contribute to the successful implementation of TQM and these have different levels of importance. These key factors, in order of importance, are: effective leadership, the impact of other quality-related programs, measurement systems, organisational culture, education and training, the use of teams, efficient communications, active empowerment of the workforce, and a systems infrastructure to support the business and customer-focused processes. This analysis, in turn, enabled the design of a self-assessment model that can be applied within any business setting. Further work should include the testing and review of this model to ascertain its suitability and effectiveness within industry today.

  13. Analyzing inflammatory response as excitable media

    NASA Astrophysics Data System (ADS)

    Yde, Pernille; Høgh Jensen, Mogens; Trusina, Ala

    2011-11-01

    The regulatory system of the transcription factor NF-κB plays a great role in many cell functions, including inflammatory response. Interestingly, the NF-κB system is known to up-regulate production of its own triggering signal—namely, inflammatory cytokines such as TNF, IL-1, and IL-6. In this paper we investigate a previously presented model of the NF-κB, which includes both spatial effects and the positive feedback from cytokines. The model exhibits the properties of an excitable medium and has the ability to propagate waves of high cytokine concentration. These waves represent an optimal way of sending an inflammatory signal through the tissue as they create a chemotactic signal able to recruit neutrophils to the site of infection. The simple model displays three qualitatively different states; low stimuli leads to no or very little response. Intermediate stimuli leads to reoccurring waves of high cytokine concentration. Finally, high stimuli leads to a sustained high cytokine concentration, a scenario which is toxic for the tissue cells and corresponds to chronic inflammation. Due to the few variables of the simple model, we are able to perform a phase-space analysis leading to a detailed understanding of the functional form of the model and its limitations. The spatial effects of the model contribute to the robustness of the cytokine wave formation and propagation.

  14. Pyrotechnic modeling for the NSI and pin puller

    NASA Technical Reports Server (NTRS)

    Powers, Joseph M.; Gonthier, Keith A.

    1993-01-01

    A discussion concerning the modeling of pyrotechnically driven actuators is presented in viewgraph format. The following topics are discussed: literature search, constitutive data for full-scale model, simple deterministic model, observed phenomena, and results from simple model.

  15. Structure and Dynamics of Solvent Landscapes in Charge-Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Leite, Vitor B. Pereira

    The dynamics of solvent polarization plays a major role in the control of charge transfer reactions. The success of Marcus theory describing the solvent influence via a single collective quadratic polarization coordinate has been remarkable. Onuchic and Wolynes have recently proposed (J. Chem Phys 98 (3) 2218, 1993) a simple model demonstrating how a many-dimensional-complex model composed by several dipole moments (representing solvent molecules or polar groups in proteins) can be reduced under the appropriate limits into the Marcus Model. This work presents a dynamical study of the same model, which is characterized by two parameters, an average dipole-dipole interaction as a term associated with the potential energy landscape roughness. It is shown why the effective potential, obtained using a thermodynamic approach, is appropriate for the dynamics of the system. At high temperatures, the system exhibits effective diffusive one-dimensional dynamics, where the Born-Marcus limit is recovered. At low temperatures, a glassy phase appears with a slow non-self-averaging dynamics. At intermediate temperatures, the concept of equivalent diffusion paths and polarization dependence effects are discussed. This approach is extended to treat more realistic solvent models. Real solvents are discussed in terms of simple parameters described above, and an analysis of how different regimes affect the rate of charge transfer is presented. Finally, these ideas are correlated to analogous problems in other areas.

  16. Free-space optical channel simulator for weak-turbulence conditions.

    PubMed

    Bykhovsky, Dima

    2015-11-01

    Free-space optical (FSO) communication may be severely influenced by the inevitable turbulence effect that results in channel gain fluctuations and fading. The objective of this paper is to provide a simple and effective simulator of the weak-turbulence FSO channel that emulates the influence of the temporal covariance effect. Specifically, the proposed model is based on lognormal distributed samples with a corresponding correlation time. The simulator is based on the solution of the first-order stochastic differential equation (SDE). The results of the provided SDE analysis reveal its efficacy for turbulent channel modeling.

  17. A Simulation Model for Procedure Inference from a Mental Model for a Simple Device.

    DTIC Science & Technology

    1984-05-25

    can flow to, and the indicator lights show where the power is present. According to these results, the critical information is the system topology...show the flow of power into the energon storage system. Maintenance of a collapsed energon ring requires a supply of vector bosons which is...model; in some tasks there is clearly no effect. The device model in that study was developed intuitivIy. But upon examining the model in light of the

  18. BRICK v0.2, a simple, accessible, and transparent model framework for climate and regional sea-level projections

    NASA Astrophysics Data System (ADS)

    Wong, Tony E.; Bakker, Alexander M. R.; Ruckert, Kelsey; Applegate, Patrick; Slangen, Aimée B. A.; Keller, Klaus

    2017-07-01

    Simple models can play pivotal roles in the quantification and framing of uncertainties surrounding climate change and sea-level rise. They are computationally efficient, transparent, and easy to reproduce. These qualities also make simple models useful for the characterization of risk. Simple model codes are increasingly distributed as open source, as well as actively shared and guided. Alas, computer codes used in the geosciences can often be hard to access, run, modify (e.g., with regards to assumptions and model components), and review. Here, we describe the simple model framework BRICK (Building blocks for Relevant Ice and Climate Knowledge) v0.2 and its underlying design principles. The paper adds detail to an earlier published model setup and discusses the inclusion of a land water storage component. The framework largely builds on existing models and allows for projections of global mean temperature as well as regional sea levels and coastal flood risk. BRICK is written in R and Fortran. BRICK gives special attention to the model values of transparency, accessibility, and flexibility in order to mitigate the above-mentioned issues while maintaining a high degree of computational efficiency. We demonstrate the flexibility of this framework through simple model intercomparison experiments. Furthermore, we demonstrate that BRICK is suitable for risk assessment applications by using a didactic example in local flood risk management.

  19. A simple model of the effect of ocean ventilation on ocean heat uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadiga, Balasubramanya T.; Urban, Nathan Mark

    Presentation includes slides on Earth System Models vs. Simple Climate Models; A Popular SCM: Energy Balance Model of Anomalies; On calibrating against one ESM experiment, the SCM correctly captures that ESM's surface warming response with other forcings; Multi-Model Analysis: Multiple ESMs, Single SCM; Posterior Distributions of ECS; However In Excess of 90% of TOA Energy Imbalance is Sequestered in the World Oceans; Heat Storage in the Two Layer Model; Heat Storage in the Two Layer Model; Including TOA Rad. Imbalance and Ocean Heat in Calibration Improves Repr., but Significant Errors Persist; Improved Vertical Resolution Does Not Fix Problem; A Seriesmore » of Expts. Confirms That Anomaly-Diffusing Models Cannot Properly Represent Ocean Heat Uptake; Physics of the Thermocline; Outcropping Isopycnals and Horizontally-Averaged Layers; Local interactions between outcropping isopycnals leads to non-local interactions between horizontally-averaged layers; Both Surface Warming and Ocean Heat are Well Represented With Just 4 Layers; A Series of Expts. Confirms That When Non-Local Interactions are Allowed, the SCMs Can Represent Both Surface Warming and Ocean Heat Uptake; and Summary and Conclusions.« less

  20. CDP++.Italian: Modelling Sublexical and Supralexical Inconsistency in a Shallow Orthography

    PubMed Central

    Perry, Conrad; Ziegler, Johannes C.; Zorzi, Marco

    2014-01-01

    Most models of reading aloud have been constructed to explain data in relatively complex orthographies like English and French. Here, we created an Italian version of the Connectionist Dual Process Model of Reading Aloud (CDP++) to examine the extent to which the model could predict data in a language which has relatively simple orthography-phonology relationships but is relatively complex at a suprasegmental (word stress) level. We show that the model exhibits good quantitative performance and accounts for key phenomena observed in naming studies, including some apparently contradictory findings. These effects include stress regularity and stress consistency, both of which have been especially important in studies of word recognition and reading aloud in Italian. Overall, the results of the model compare favourably to an alternative connectionist model that can learn non-linear spelling-to-sound mappings. This suggests that CDP++ is currently the leading computational model of reading aloud in Italian, and that its simple linear learning mechanism adequately captures the statistical regularities of the spelling-to-sound mapping both at the segmental and supra-segmental levels. PMID:24740261

  1. Charge carrier coherence and Hall effect in organic semiconductors.

    PubMed

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  2. Analyzing C2 Structures and Self-Synchronization with Simple Computational Models

    DTIC Science & Technology

    2011-06-01

    16th ICCRTS “Collective C2 in Multinational Civil-Military Operations” Analyzing C2 Structures and Self- Synchronization with Simple...Self- Synchronization with Simple Computational Models 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...models. The Kuramoto Model, though with some serious limitations, provides a representation of information flow and self- synchronization in an

  3. Neuroendocrine control of seasonal plasticity in the auditory and vocal systems of fish

    PubMed Central

    Forlano, Paul M.; Sisneros, Joseph A.; Rohmann, Kevin N.; Bass, Andrew H.

    2014-01-01

    Seasonal changes in reproductive-related vocal behavior are widespread among fishes. This review highlights recent studies of the vocal plainfin midshipman fish, Porichthys notatus, a neuroethological model system used for the past two decades to explore neural and endocrine mechanisms of vocal-acoustic social behaviors shared with tetrapods. Integrative approaches combining behavior, neurophysiology, neuropharmacology, neuroanatomy, and gene expression methodologies have taken advantage of simple, stereotyped and easily quantifiable behaviors controlled by discrete neural networks in this model system to enable discoveries such as the first demonstration of adaptive seasonal plasticity in the auditory periphery of a vertebrate as well as rapid steroid and neuropeptide effects on vocal physiology and behavior. This simple model system has now revealed cellular and molecular mechanisms underlying seasonal and steroid-driven auditory and vocal plasticity in the vertebrate brain. PMID:25168757

  4. Damage and strength of composite materials: Trends, predictions, and challenges

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin

    1994-01-01

    Research on damage mechanisms and ultimate strength of composite materials relevant to scaling issues will be addressed in this viewgraph presentation. The use of fracture mechanics and Weibull statistics to predict scaling effects for the onset of isolated damage mechanisms will be highlighted. The ability of simple fracture mechanics models to predict trends that are useful in parametric or preliminary designs studies will be reviewed. The limitations of these simple models for complex loading conditions will also be noted. The difficulty in developing generic criteria for the growth of these mechanisms needed in progressive damage models to predict strength will be addressed. A specific example for a problem where failure is a direct consequence of progressive delamination will be explored. A damage threshold/fail-safety concept for addressing composite damage tolerance will be discussed.

  5. Predictability in community dynamics.

    PubMed

    Blonder, Benjamin; Moulton, Derek E; Blois, Jessica; Enquist, Brian J; Graae, Bente J; Macias-Fauria, Marc; McGill, Brian; Nogué, Sandra; Ordonez, Alejandro; Sandel, Brody; Svenning, Jens-Christian

    2017-03-01

    The coupling between community composition and climate change spans a gradient from no lags to strong lags. The no-lag hypothesis is the foundation of many ecophysiological models, correlative species distribution modelling and climate reconstruction approaches. Simple lag hypotheses have become prominent in disequilibrium ecology, proposing that communities track climate change following a fixed function or with a time delay. However, more complex dynamics are possible and may lead to memory effects and alternate unstable states. We develop graphical and analytic methods for assessing these scenarios and show that these dynamics can appear in even simple models. The overall implications are that (1) complex community dynamics may be common and (2) detailed knowledge of past climate change and community states will often be necessary yet sometimes insufficient to make predictions of a community's future state. © 2017 John Wiley & Sons Ltd/CNRS.

  6. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2013-06-01

    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  7. What Works? Toward a New Classification System for Mental Health Supported Accommodation Services: The Simple Taxonomy for Supported Accommodation (STAX-SA).

    PubMed

    McPherson, Peter; Krotofil, Joanna; Killaspy, Helen

    2018-01-24

    Inconsistent terminology and variation in service models have made synthesis of the supported accommodation literature challenging. To overcome this, we developed a brief, categorical taxonomy that aimed to capture the defining features of different supported accommodation models: the simple taxonomy for supported accommodation (STAX-SA). Data from a previous review of existing classification systems were used to develop the taxonomy structure. After initial testing and amendments, the STAX-SA and an existing taxonomy were applied to 132 supported accommodation service descriptions drawn from two systematic reviews and their performance compared. To assess external validity, the STAX-SA was distributed to a sample of supported accommodation managers in England and they were asked to use it to classify their services. The final version of the STAX-SA comprised of five supported accommodation 'types', based on four domains; Staffing location ; Level of support ; Emphasis on move-on ; and Physical setting . The STAX-SA accurately categorized 71.1% ( n = 94) of service descriptions, outperforming the comparison tool, and was not affected by publication date or research design. The STAX-SA effectively discriminated between 'real world' service models in England and 53.2% ( n = 17) of service managers indicated that the taxonomy was ' Very effective ' or ' Extremely effective ' in capturing key characteristics of their service. The STAX-SA is an effective tool for classifying supported accommodation models and represents a promising approach to synthesizing the extant effectiveness literature. The authors recommend the development of reporting guidelines for future supported accommodation publications to facilitate comparison between models.

  8. Seasonal ENSO forecasting: Where does a simple model stand amongst other operational ENSO models?

    NASA Astrophysics Data System (ADS)

    Halide, Halmar

    2017-01-01

    We apply a simple linear multiple regression model called IndOzy for predicting ENSO up to 7 seasonal lead times. The model still used 5 (five) predictors of the past seasonal Niño 3.4 ENSO indices derived from chaos theory and it was rolling-validated to give a one-step ahead forecast. The model skill was evaluated against data from the season of May-June-July (MJJ) 2003 to November-December-January (NDJ) 2015/2016. There were three skill measures such as: Pearson correlation, RMSE, and Euclidean distance were used for forecast verification. The skill of this simple model was than compared to those of combined Statistical and Dynamical models compiled at the IRI (International Research Institute) website. It was found that the simple model was only capable of producing a useful ENSO prediction only up to 3 seasonal leads, while the IRI statistical and Dynamical model skill were still useful up to 4 and 6 seasonal leads, respectively. Even with its short-range seasonal prediction skills, however, the simple model still has a potential to give ENSO-derived tailored products such as probabilistic measures of precipitation and air temperature. Both meteorological conditions affect the presence of wild-land fire hot-spots in Sumatera and Kalimantan. It is suggested that to improve its long-range skill, the simple INDOZY model needs to incorporate a nonlinear model such as an artificial neural network technique.

  9. Contamination of water supplies by volcanic ashfall: A literature review and simple impact modelling

    NASA Astrophysics Data System (ADS)

    Stewart, C.; Johnston, D. M.; Leonard, G. S.; Horwell, C. J.; Thordarson, T.; Cronin, S. J.

    2006-11-01

    Volcanic ash is the most widely-distributed product of explosive volcanic eruptions, and can disrupt vital infrastructure on a large scale. Previous studies of effects of ashfall on natural waters and water supplies have focused mainly on the consequences of increased levels of turbidity (ash suspended in water), acidity and fluoride, with very little attention paid to other contaminants associated with volcanic ash. The aims of this paper are twofold: firstly, to review previous studies of the effects of volcanic ashfall on water supplies and identify information gaps; and secondly, to propose a simple model for predicting effects of ashfall on water supplies using available information on ash composition. We reviewed reported impacts of historic eruptions on water supplies, drawing on case studies from New Zealand, Vanuatu, Argentina, the USA, Costa Rica, Montserrat, Iceland and Guadeloupe. Elevated concentrations of fluoride, iron, sulphate and chloride, as well as turbidity and acidity, have been reported in water supplies. From a public health perspective, the two main issues appear to be: (1) outbreaks of infectious disease caused by the inhibition of disinfection by high levels of suspended ash, and (2) elevated fluoride concentrations. We devised a simple model using volcanic ash leachate composition data to predict effects on receiving waters. Applying this model to the effects of Ruapehu ash, from the 1995/1996 eruptions, suggests that the primary effects of concern are likely to be an increase in acidity (decrease in pH), and increases in concentrations of the metals aluminium, iron and manganese. These metals are not normally considered to pose health risks, and are regulated only by secondary, non-enforceable guidelines. However, exceedences of guideline values for Al, Mn, Fe and pH will cause water to become undrinkable due to a bitter metallic taste and dark colour, and may also cause corrosion, staining and scale deposition problems in water tanks and pipes. Therefore, the main issues following volcanic ashfall of similar composition to Ruapehu ash are likely to be shortages of potable water and damage to distribution systems, rather than risks to public health.

  10. Testing and numerical modeling of hypervelocity impact damaged Space Station multilayer insulation

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1992-01-01

    Results are presented of experiments measuring the degradation of the insulating capabilities of the multilayer insulation (MLI) of the Space Station Freedom, when subjected to hypervelocity impact damage. A simple numerical model was developed for use in an engineering design environment for quick assessment of thermal effect of the impact. The model was validated using results from thermal vacuum tests on MLI with simulated damage. The numerical model results agreed with experimental data.

  11. Electron heating in a Monte Carlo model of a high Mach number, supercritical, collisionless shock

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.

    1987-01-01

    Preliminary work in the investigation of electron injection and acceleration at parallel shocks is presented. A simple model of electron heating that is derived from a unified shock model which includes the effects of an electrostatic potential jump is described. The unified shock model provides a kinetic description of the injection and acceleration of ions and a fluid description of electron heating at high Mach number, supercritical, and parallel shocks.

  12. Nonlinear Constitutive Modeling of Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Xu, Jia; Li, Chao; Wang, Haibo; Zhu, Zhiwen

    2017-12-01

    Nonlinear constitutive modeling of piezoelectric ceramics is discussed in this paper. Van der Pol item is introduced to explain the simple hysteretic curve. Improved nonlinear difference items are used to interpret the hysteresis phenomena of piezoelectric ceramics. The fitting effect of the model on experimental data is proved by the partial least-square regression method. The results show that this method can describe the real curve well. The results of this paper are helpful to piezoelectric ceramics constitutive modeling.

  13. Analytical solution for shear bands in cold-rolled 1018 steel

    NASA Astrophysics Data System (ADS)

    Voyiadjis, George Z.; Almasri, Amin H.; Faghihi, Danial; Palazotto, Anthony N.

    2012-06-01

    Cold-rolled 1018 (CR-1018) carbon steel has been well known for its susceptibility to adiabatic shear banding under dynamic loadings. Analysis of these localizations highly depends on the selection of the constitutive model. To deal with this issue, a constitutive model that takes temperature and strain rate effect into account is proposed. The model is motivated by two physical-based models: the Zerilli and Armstrong and the Voyiadjis and Abed models. This material model, however, incorporates a simple softening term that is capable of simulating the softening behavior of CR-1018 steel. Instability, localization, and evolution of adiabatic shear bands are discussed and presented graphically. In addition, the effect of hydrostatic pressure is illustrated.

  14. Analysis of population mortality kinetics with application to the longevity followup of the Navy's '1,000 aviators'

    NASA Technical Reports Server (NTRS)

    Economos, A. C.; Miquel, J.

    1979-01-01

    A simple physiological model of mortality kinetics is used to assess the intuitive concept that the aging rates of populations are proportional to their mortality rates. It is assumed that the vitality of an individual can be expressed as a simple summation of the weighted functional capacities of its organs and homeostatic systems that are indispensable for survival. It is shown that the mortality kinetics of a population can be derived by a linear transformation of the frequency distribution of vitality, assuming a uniform constant rate of decline of the physiological functions. A simple comparison of two populations is not possible when they have different vitality frequency distributions. Analysis of the data using the model suggests that the differences in decline of survivorship with age between the military pilot population, a medically insured population, and the control population can be accounted for by the effect of physical selection on the vitality frequency distribution of the screened populations.

  15. Too Good to be True? Ideomotor Theory from a Computational Perspective

    PubMed Central

    Herbort, Oliver; Butz, Martin V.

    2012-01-01

    In recent years, Ideomotor Theory has regained widespread attention and sparked the development of a number of theories on goal-directed behavior and learning. However, there are two issues with previous studies’ use of Ideomotor Theory. Although Ideomotor Theory is seen as very general, it is often studied in settings that are considerably more simplistic than most natural situations. Moreover, Ideomotor Theory’s claim that effect anticipations directly trigger actions and that action-effect learning is based on the formation of direct action-effect associations is hard to address empirically. We address these points from a computational perspective. A simple computational model of Ideomotor Theory was tested in tasks with different degrees of complexity. The model evaluation showed that Ideomotor Theory is a computationally feasible approach for understanding efficient action-effect learning for goal-directed behavior if the following preconditions are met: (1) The range of potential actions and effects has to be restricted. (2) Effects have to follow actions within a short time window. (3) Actions have to be simple and may not require sequencing. The first two preconditions also limit human performance and thus support Ideomotor Theory. The last precondition can be circumvented by extending the model with more complex, indirect action generation processes. In conclusion, we suggest that Ideomotor Theory offers a comprehensive framework to understand action-effect learning. However, we also suggest that additional processes may mediate the conversion of effect anticipations into actions in many situations. PMID:23162524

  16. Deformed Calogero-Sutherland model and fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Atai, Farrokh; Langmann, Edwin

    2017-01-01

    The deformed Calogero-Sutherland (CS) model is a quantum integrable system with arbitrary numbers of two types of particles and reducing to the standard CS model in special cases. We show that a known collective field description of the CS model, which is based on conformal field theory (CFT), is actually a collective field description of the deformed CS model. This provides a natural application of the deformed CS model in Wen's effective field theory of the fractional quantum Hall effect (FQHE), with the two kinds of particles corresponding to electrons and quasi-hole excitations. In particular, we use known mathematical results about super-Jack polynomials to obtain simple explicit formulas for the orthonormal CFT basis proposed by van Elburg and Schoutens in the context of the FQHE.

  17. Simple, stable and reliable modeling of gas properties of organic working fluids in aerodynamic designs of turbomachinery for ORC and VCC

    NASA Astrophysics Data System (ADS)

    Kawakubo, T.

    2016-05-01

    A simple, stable and reliable modeling of the real gas nature of the working fluid is required for the aerodesigns of the turbine in the Organic Rankine Cycle and of the compressor in the Vapor Compression Cycle. Although many modern Computational Fluid Dynamics tools are capable of incorporating real gas models, simulations with such a gas model tend to be more time-consuming than those with a perfect gas model and even can be unstable due to the simulation near the saturation boundary. Thus a perfect gas approximation is still an attractive option to stably and swiftly conduct a design simulation. In this paper, an effective method of the CFD simulation with a perfect gas approximation is discussed. A method of representing the performance of the centrifugal compressor or the radial-inflow turbine by means of each set of non-dimensional performance parameters and translating the fictitious perfect gas result to the actual real gas performance is presented.

  18. A model to assess the feasibility of shifting reaction equilibrium by acetone removal in the transamination of ketones using 2-propylamine.

    PubMed

    Tufvesson, Pär; Bach, Christian; Woodley, John M

    2014-02-01

    Acetone removal by evaporation has been proposed as a simple and cheap way to shift the equilibrium in the biocatalytic asymmetric synthesis of optically pure chiral amines, when 2-propylamine is used as the amine donor. However, dependent on the system properties, this may or may not be a suitable strategy. To avoid excessive laboratory work a model was used to assess the process feasibility. The results from the current study show that a simple model of the acetone removal dependence on temperature and sparging gas flowrate can be developed and fits the experimental data well. The model for acetone removal was then coupled to a simple model for biocatalyst kinetics and also for loss of substrate ketone by evaporation. The three models were used to simulate the effects of varying the critical process parameters and reaction equilibrium constants (K eq) as well as different substrate ketone volatilities (Henry's constant). The simulations were used to estimate the substrate losses and also the maximum yield that could be expected. The approach was seen to give a clear indication for which target amines the acetone evaporation strategy would be feasible and for which amines it would not. The study also shows the value of a modeling approach in conceptual process design prior to entering a biocatalyst screening or engineering program to assess the feasibility of a particular process strategy for a given target product. © 2013 Wiley Periodicals, Inc.

  19. A stitch in time saves nine: suture technique does not affect intestinal growth in a young, growing animal model.

    PubMed

    Gurien, Lori A; Wyrick, Deidre L; Smith, Samuel D; Maxson, R Todd

    2016-05-01

    Although this issue remains unexamined, pediatric surgeons commonly use simple interrupted suture for bowel anastomosis, as it is thought to improve intestinal growth postoperatively compared to continuous running suture. However, effects on intestinal growth are unclear. We compared intestinal growth using different anastomotic techniques during the postoperative period in young rats. Young, growing rats underwent small bowel transection and anastomosis using either simple interrupted or continuous running technique. At 7-weeks postoperatively after a four-fold growth, the anastomotic site was resected. Diameters and burst pressures were measured. Thirteen rats underwent anastomosis with simple interrupted technique and sixteen with continuous running method. No differences were found in body weight at first (102.46 vs 109.75g) or second operations (413.85 vs 430.63g). Neither the diameters (0.69 vs 0.79cm) nor burst pressures were statistically different, although the calculated circumference was smaller in the simple interrupted group (2.18 vs 2.59cm; p=0.03). No ruptures occurred at the anastomotic line. This pilot study is the first to compare continuous running to simple interrupted intestinal anastomosis in a pediatric model and showed no difference in growth. Adopting continuous running techniques for bowel anastomosis in young children may lead to faster operative time without affecting intestinal growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ground temperature measurement by PRT-5 for maps experiment

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1978-01-01

    A simple algorithm and computer program were developed for determining the actual surface temperature from the effective brightness temperature as measured remotely by a radiation thermometer called PRT-5. This procedure allows the computation of atmospheric correction to the effective brightness temperature without performing detailed radiative transfer calculations. Model radiative transfer calculations were performed to compute atmospheric corrections for several values of the surface and atmospheric parameters individually and in combination. Polynomial regressions were performed between the magnitudes or deviations of these parameters and the corresponding computed corrections to establish simple analytical relations between them. Analytical relations were also developed to represent combined correction for simultaneous variation of parameters in terms of their individual corrections.

  1. Anharmonic effects in simple physical models: introducing undergraduates to nonlinearity

    NASA Astrophysics Data System (ADS)

    Christian, J. M.

    2017-09-01

    Given the pervasive character of nonlinearity throughout the physical universe, a case is made for introducing undergraduate students to its consequences and signatures earlier rather than later. The dynamics of two well-known systems—a spring and a pendulum—are reviewed when the standard textbook linearising assumptions are relaxed. Some qualitative effects of nonlinearity can be anticipated from symmetry (e.g., inspection of potential energy functions), and further physical insight gained by applying a simple successive-approximation method that might be taught in parallel with courses on classical mechanics, ordinary differential equations, and computational physics. We conclude with a survey of how these ideas have been deployed on programmes at a UK university.

  2. Didactic discussion of stochastic resonance effects and weak signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adair, R.K.

    1996-12-01

    A simple, paradigmatic, model is used to illustrate some general properties of effects subsumed under the label stochastic resonance. In particular, analyses of the transparent model show that (1) a small amount of noise added to a much larger signal can greatly increase the response to the signal, but (2) a weak signal added to much larger noise will not generate a substantial added response. The conclusions drawn from the model illustrate the general result that stochastic resonance effects do not provide an avenue for signals that are much smaller than noise to affect biology. A further analysis demonstrates themore » effects of small signals in the shifting of biologically important chemical equilibria under conditions where stochastic resonance effects are significant.« less

  3. A simple shear limited, single size, time dependent flocculation model

    NASA Astrophysics Data System (ADS)

    Kuprenas, R.; Tran, D. A.; Strom, K.

    2017-12-01

    This research focuses on the modeling of flocculation of cohesive sediment due to turbulent shear, specifically, investigating the dependency of flocculation on the concentration of cohesive sediment. Flocculation is important in larger sediment transport models as cohesive particles can create aggregates which are orders of magnitude larger than their unflocculated state. As the settling velocity of each particle is determined by the sediment size, density, and shape, accounting for this aggregation is important in determining where the sediment is deposited. This study provides a new formulation for flocculation of cohesive sediment by modifying the Winterwerp (1998) flocculation model (W98) so that it limits floc size to that of the Kolmogorov micro length scale. The W98 model is a simple approach that calculates the average floc size as a function of time. Because of its simplicity, the W98 model is ideal for implementing into larger sediment transport models; however, the model tends to over predict the dependency of the floc size on concentration. It was found that the modification of the coefficients within the original model did not allow for the model to capture the dependency on concentration. Therefore, a new term within the breakup kernel of the W98 formulation was added. The new formulation results is a single size, shear limited, and time dependent flocculation model that is able to effectively capture the dependency of the equilibrium size of flocs on both suspended sediment concentration and the time to equilibrium. The overall behavior of the new model is explored and showed align well with other studies on flocculation. Winterwerp, J. C. (1998). A simple model for turbulence induced flocculation of cohesive sediment. .Journal of Hydraulic Research, 36(3):309-326.

  4. Memory-Based Simple Heuristics as Attribute Substitution: Competitive Tests of Binary Choice Inference Models.

    PubMed

    Honda, Hidehito; Matsuka, Toshihiko; Ueda, Kazuhiro

    2017-05-01

    Some researchers on binary choice inference have argued that people make inferences based on simple heuristics, such as recognition, fluency, or familiarity. Others have argued that people make inferences based on available knowledge. To examine the boundary between heuristic and knowledge usage, we examine binary choice inference processes in terms of attribute substitution in heuristic use (Kahneman & Frederick, 2005). In this framework, it is predicted that people will rely on heuristic or knowledge-based inference depending on the subjective difficulty of the inference task. We conducted competitive tests of binary choice inference models representing simple heuristics (fluency and familiarity heuristics) and knowledge-based inference models. We found that a simple heuristic model (especially a familiarity heuristic model) explained inference patterns for subjectively difficult inference tasks, and that a knowledge-based inference model explained subjectively easy inference tasks. These results were consistent with the predictions of the attribute substitution framework. Issues on usage of simple heuristics and psychological processes are discussed. Copyright © 2016 Cognitive Science Society, Inc.

  5. Fire, ice, water, and dirt: A simple climate model

    NASA Astrophysics Data System (ADS)

    Kroll, John

    2017-07-01

    A simple paleoclimate model was developed as a modeling exercise. The model is a lumped parameter system consisting of an ocean (water), land (dirt), glacier, and sea ice (ice) and driven by the sun (fire). In comparison with other such models, its uniqueness lies in its relative simplicity yet yielding good results. For nominal values of parameters, the system is very sensitive to small changes in the parameters, yielding equilibrium, steady oscillations, and catastrophes such as freezing or boiling oceans. However, stable solutions can be found, especially naturally oscillating solutions. For nominally realistic conditions, natural periods of order 100kyrs are obtained, and chaos ensues if the Milankovitch orbital forcing is applied. An analysis of a truncated system shows that the naturally oscillating solution is a limit cycle with the characteristics of a relaxation oscillation in the two major dependent variables, the ocean temperature and the glacier ice extent. The key to getting oscillations is having the effective emissivity decreasing with temperature and, at the same time, the effective ocean albedo decreases with increasing glacier extent. Results of the original model compare favorably to the proxy data for ice mass variation, but not for temperature variation. However, modifications to the effective emissivity and albedo can be made to yield much more realistic results. The primary conclusion is that the opinion of Saltzman [Clim. Dyn. 5, 67-78 (1990)] is plausible that the external Milankovitch orbital forcing is not sufficient to explain the dominant 100kyr period in the data.

  6. Fire, ice, water, and dirt: A simple climate model.

    PubMed

    Kroll, John

    2017-07-01

    A simple paleoclimate model was developed as a modeling exercise. The model is a lumped parameter system consisting of an ocean (water), land (dirt), glacier, and sea ice (ice) and driven by the sun (fire). In comparison with other such models, its uniqueness lies in its relative simplicity yet yielding good results. For nominal values of parameters, the system is very sensitive to small changes in the parameters, yielding equilibrium, steady oscillations, and catastrophes such as freezing or boiling oceans. However, stable solutions can be found, especially naturally oscillating solutions. For nominally realistic conditions, natural periods of order 100kyrs are obtained, and chaos ensues if the Milankovitch orbital forcing is applied. An analysis of a truncated system shows that the naturally oscillating solution is a limit cycle with the characteristics of a relaxation oscillation in the two major dependent variables, the ocean temperature and the glacier ice extent. The key to getting oscillations is having the effective emissivity decreasing with temperature and, at the same time, the effective ocean albedo decreases with increasing glacier extent. Results of the original model compare favorably to the proxy data for ice mass variation, but not for temperature variation. However, modifications to the effective emissivity and albedo can be made to yield much more realistic results. The primary conclusion is that the opinion of Saltzman [Clim. Dyn. 5, 67-78 (1990)] is plausible that the external Milankovitch orbital forcing is not sufficient to explain the dominant 100kyr period in the data.

  7. Econometric model for age- and population-dependent radiation exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.

    1991-01-01

    The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation.

  8. Impact resistance of fiber composites - Energy-absorbing mechanisms and environmental effects

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1985-01-01

    Energy absorbing mechanisms were identified by several approaches. The energy absorbing mechanisms considered are those in unidirectional composite beams subjected to impact. The approaches used include: mechanic models, statistical models, transient finite element analysis, and simple beam theory. Predicted results are correlated with experimental data from Charpy impact tests. The environmental effects on impact resistance are evaluated. Working definitions for energy absorbing and energy releasing mechanisms are proposed and a dynamic fracture progression is outlined. Possible generalizations to angle-plied laminates are described.

  9. Impact resistance of fiber composites: Energy absorbing mechanisms and environmental effects

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1983-01-01

    Energy absorbing mechanisms were identified by several approaches. The energy absorbing mechanisms considered are those in unidirectional composite beams subjected to impact. The approaches used include: mechanic models, statistical models, transient finite element analysis, and simple beam theory. Predicted results are correlated with experimental data from Charpy impact tests. The environmental effects on impact resistance are evaluated. Working definitions for energy absorbing and energy releasing mechanisms are proposed and a dynamic fracture progression is outlined. Possible generalizations to angle-plied laminates are described.

  10. Linear mixed-effects models for within-participant psychology experiments: an introductory tutorial and free, graphical user interface (LMMgui).

    PubMed

    Magezi, David A

    2015-01-01

    Linear mixed-effects models (LMMs) are increasingly being used for data analysis in cognitive neuroscience and experimental psychology, where within-participant designs are common. The current article provides an introductory review of the use of LMMs for within-participant data analysis and describes a free, simple, graphical user interface (LMMgui). LMMgui uses the package lme4 (Bates et al., 2014a,b) in the statistical environment R (R Core Team).

  11. Serial and Free Recall: Common Effects and Common Mechanisms? A Reply to Murdock (2008)

    ERIC Educational Resources Information Center

    Brown, Gordon D. A.; Chater, Nick; Neath, Ian

    2008-01-01

    Reply to comments on an article "Issues With the SIMPLE Model: Comment on Brown, Neath, and Chater" (2007) by Bennet Murdock on the current authors' original article "A temporal ratio model of memory" by Brown, Neath, and Chater. Does a single mechanism underpin serial and free recall? B. Murdock (2008) argued against the claim, embodied in the…

  12. Using airborne laser altimetry to determine fuel models for estimating fire behavior

    Treesearch

    Carl A. Seielstad; Lloyd P. Queen

    2003-01-01

    Airborne laser altimetry provides an unprecedented view of the forest floor in timber fuel types and is a promising new tool for fuels assessments. It can be used to resolve two fuel models under closed canopies and may be effective for estimating coarse woody debris loads. A simple metric - obstacle density - provides the necessary quantification of fuel bed roughness...

  13. Experimental and numerical modeling of shrub crown fire initiation

    Treesearch

    Watcharapong Tachajapong; Jesse Lozano; Shakar Mahalingam; Xiangyang Zhou; David Weise

    2009-01-01

    The transition of fire from dry surface fuels to wet shrub crown fuels was studied using laboratory experiments and a simple physical model to gain a better understanding of the transition process. In the experiments, we investigated the effects of varying vertical distances between surface and crown fuels (crown base height), and of the wind speed on crown fire...

  14. Effects of Response Task and Accessory Stimuli on Redundancy Gain: Tests of the Hemispheric Coactivation Model

    ERIC Educational Resources Information Center

    Miller, Jeff; Van Nes, Fenna

    2007-01-01

    Two experiments tested predictions of the hemispheric coactivation model for redundancy gain (J. O. Miller, 2004). Simple reaction time was measured in divided attention tasks with visual stimuli presented to the left or right of fixation or redundantly to both sides. Experiment 1 tested the prediction that redundancy gain--the decrease in…

  15. Electromechanical Simulation of Actively Controlled Rotordynamic Systems with Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Lin, Reng Rong; Palazzolo, A. B.; Kascak, A. F.; Montague, G.

    1991-01-01

    Theories and tests for incorporating piezoelectric pushers as actuator devices for active vibration control are discussed. It started from a simple model with the assumption of ideal pusher characteristics and progressed to electromechanical models with nonideal pushers. Effects on system stability due to the nonideal characteristics of piezoelectric pushers and other elements in the control loop were investigated.

  16. Magnet Fall inside a Conductive Pipe: Motion and the Role of the Pipe Wall Thickness

    ERIC Educational Resources Information Center

    Donoso, G.; Ladera, C. L.; Martin, P.

    2009-01-01

    Theoretical models and experimental results are presented for the retarded fall of a strong magnet inside a vertical conductive non-magnetic tube. Predictions and experimental results are in good agreement modelling the magnet as a simple magnetic dipole. The effect of varying the pipe wall thickness on the retarding magnetic drag is studied for…

  17. Bayesian model checking: A comparison of tests

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    2018-06-01

    Two procedures for checking Bayesian models are compared using a simple test problem based on the local Hubble expansion. Over four orders of magnitude, p-values derived from a global goodness-of-fit criterion for posterior probability density functions agree closely with posterior predictive p-values. The former can therefore serve as an effective proxy for the difficult-to-calculate posterior predictive p-values.

  18. Sense of Belonging and Persistence in White and African American First-Year Students

    ERIC Educational Resources Information Center

    Hausmann, Leslie R. M.; Ye, Feifei; Schofield, Janet Ward; Woods, Rochelle L.

    2009-01-01

    The authors argue for the inclusion of students' subjective sense of belonging in an integrated model of student persistence (Cabrera et al., J Higher Educ 64:123-139, 1993). The effects of sense of belonging and a simple intervention designed to increase sense of belonging are tested in the context of this model. The intervention increased sense…

  19. Molecular-dynamics simulation of mutual diffusion in nonideal liquid mixtures

    NASA Astrophysics Data System (ADS)

    Rowley, R. L.; Stoker, J. M.; Giles, N. F.

    1991-05-01

    The mutual-diffusion coefficients, D 12, of n-hexane, n-heptane, and n-octane in chloroform were modeled using equilibrium molecular-dynamics (MD) simulations of simple Lennard-Jones (LJ) fluids. Pure-component LJ parameters were obtained by comparison of simulations to experimental self-diffusion coefficients. While values of “effective” LJ parameters are not expected to simulate accurately diverse thermophysical properties over a wide range of conditions, it was recently shown that effective parameters obtained from pure self-diffusion coefficients can accurately model mutual diffusion in ideal, liquid mixtures. In this work, similar simulations are used to model diffusion in nonideal mixtures. The same combining rules used in the previous study for the cross-interaction parameters were found to be adequate to represent the composition dependence of D 12. The effect of alkane chain length on D 12 is also correctly predicted by the simulations. A commonly used assumption in empirical correlations of D 12, that its kinetic portion is a simple, compositional average of the intradiffusion coefficients, is inconsistent with the simulation results. In fact, the value of the kinetic portion of D 12 was often outside the range of values bracketed by the two intradiffusion coefficients for the nonideal system modeled here.

  20. Spatial Evolution of Human Dialects

    NASA Astrophysics Data System (ADS)

    Burridge, James

    2017-07-01

    The geographical pattern of human dialects is a result of history. Here, we formulate a simple spatial model of language change which shows that the final result of this historical evolution may, to some extent, be predictable. The model shows that the boundaries of language dialect regions are controlled by a length minimizing effect analogous to surface tension, mediated by variations in population density which can induce curvature, and by the shape of coastline or similar borders. The predictability of dialect regions arises because these effects will drive many complex, randomized early states toward one of a smaller number of stable final configurations. The model is able to reproduce observations and predictions of dialectologists. These include dialect continua, isogloss bundling, fanning, the wavelike spread of dialect features from cities, and the impact of human movement on the number of dialects that an area can support. The model also provides an analytical form for Séguy's curve giving the relationship between geographical and linguistic distance, and a generalization of the curve to account for the presence of a population center. A simple modification allows us to analytically characterize the variation of language use by age in an area undergoing linguistic change.

  1. Simple turbulence models and their application to boundary layer separation

    NASA Technical Reports Server (NTRS)

    Wadcock, A. J.

    1980-01-01

    Measurements in the boundary layer and wake of a stalled airfoil are presented in two coordinate systems, one aligned with the airfoil chord, the other being conventional boundary layer coordinates. The NACA 4412 airfoil is studied at a single angle of attack corresponding to maximum lift, the Reynolds number based on chord being 1.5 x 10 to the 6th power. Turbulent boundary layer separation occurred at the 85 percent chord position. The two-dimensionality of the flow was documented and the momentum integral equation studied to illustrate the importance of turbulence contributions as separation is approached. The assumptions of simple eddy-viscosity and mixing-length turbulence models are checked directly against experiment. Curvature effects are found to be important as separation is approached.

  2. Implications of Biospheric Energization

    NASA Astrophysics Data System (ADS)

    Budding, Edd; Demircan, Osman; Gündüz, Güngör; Emin Özel, Mehmet

    2016-07-01

    Our physical model relating to the origin and development of lifelike processes from very simple beginnings is reviewed. This molecular ('ABC') process is compared with the chemoton model, noting the role of the autocatalytic tuning to the time-dependent source of energy. This substantiates a Darwinian character to evolution. The system evolves from very simple beginnings to a progressively more highly tuned, energized and complex responding biosphere, that grows exponentially; albeit with a very low net growth factor. Rates of growth and complexity in the evolution raise disturbing issues of inherent stability. Autocatalytic processes can include a fractal character to their development allowing recapitulative effects to be observed. This property, in allowing similarities of pattern to be recognized, can be useful in interpreting complex (lifelike) systems.

  3. Controlling the light shift of the CPT resonance by modulation technique

    NASA Astrophysics Data System (ADS)

    Tsygankov, E. A.; Petropavlovsky, S. V.; Vaskovskaya, M. I.; Zibrov, S. A.; Velichansky, V. L.; Yakovlev, V. P.

    2017-12-01

    Motivated by recent developments in atomic frequency standards employing the effect of coherent population trapping (CPT), we propose a theoretical framework for the frequency modulation spectroscopy of the CPT resonances. Under realistic assumptions we provide simple yet non-trivial analytical formulae for the major spectroscopic signals such as the CPT resonance line and the in-phase/quadrature responses. We discuss the influence of the light shift and, in particular, derive a simple expression for the displacement of the resonance as a function of modulation index. The performance of the model is checked against numerical simulations, the agreement is good to perfect. The obtained results can be used in more general models accounting for light absorption in the thick optical medium.

  4. Conifer ovulate cones accumulate pollen principally by simple impaction.

    PubMed

    Cresswell, James E; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A; Young, Phillipe G; Tabor, Gavin R

    2007-11-13

    In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones.

  5. Conifer ovulate cones accumulate pollen principally by simple impaction

    PubMed Central

    Cresswell, James E.; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A.; Young, Phillipe G.; Tabor, Gavin R.

    2007-01-01

    In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones. PMID:17986613

  6. Cyber Signal/Noise Characteristics and Sensor Models for Early Cyber Indications and Warning

    DTIC Science & Technology

    2005-09-01

    investigating and simulating attack scenarios. The sensors are, in effect , mathematical functions. These functions range from simple functions of...172 8.1.2 Examine each attack scenario or case to derive the cause- effect network for the attack scenario...threat profiles............................ 174 8.1.4 Develop attack profiles by enlarging the cause- effect network of each attack scenario with

  7. A simple model that identifies potential effects of sea-level rise on estuarine and estuary-ecotone habitat locations for salmonids in Oregon, USA

    Treesearch

    Rebecca Flitcroft; Kelly Burnett; Kelly Christiansen

    2013-01-01

    Diadromous aquatic species that cross a diverse range of habitats (including marine, estuarine, and freshwater) face different effects of climate change in each environment. One such group of species is the anadromous Pacific salmon (Oncorhynchus spp.). Studies of the potential effects of climate change on salmonids have focused on both marine and...

  8. Simulation of Combustion Systems with Realistic g-jitter

    NASA Technical Reports Server (NTRS)

    Mell, William E.; McGrattan, Kevin B.; Baum, Howard R.

    2003-01-01

    In this project a transient, fully three-dimensional computer simulation code was developed to simulate the effects of realistic g-jitter on a number of combustion systems. The simulation code is capable of simulating flame spread on a solid and nonpremixed or premixed gaseous combustion in nonturbulent flow with simple combustion models. Simple combustion models were used to preserve computational efficiency since this is meant to be an engineering code. Also, the use of sophisticated turbulence models was not pursued (a simple Smagorinsky type model can be implemented if deemed appropriate) because if flow velocities are large enough for turbulence to develop in a reduced gravity combustion scenario it is unlikely that g-jitter disturbances (in NASA's reduced gravity facilities) will play an important role in the flame dynamics. Acceleration disturbances of realistic orientation, magnitude, and time dependence can be easily included in the simulation. The simulation algorithm was based on techniques used in an existing large eddy simulation code which has successfully simulated fire dynamics in complex domains. A series of simulations with measured and predicted acceleration disturbances on the International Space Station (ISS) are presented. The results of this series of simulations suggested a passive isolation system and appropriate scheduling of crew activity would provide a sufficiently "quiet" acceleration environment for spherical diffusion flames.

  9. On the nature of fast sausage waves in coronal loops

    NASA Astrophysics Data System (ADS)

    Bahari, Karam

    2018-05-01

    The effect of the parameters of coronal loops on the nature of fast sausage waves are investigated. To do this three models of the coronal loop considered, a simple loop model, a current-carrying loop model and a model with radially structured density called "Inner μ" profile. For all the models the Magnetohydrodynamic (MHD) equations solved analytically in the linear approximation and the restoring forces of oscillations obtained. The ratio of the magnetic tension force to the pressure gradient force obtained as a function of the distance from the axis of the loop. In the simple loop model for all values of the loop parameters the fast sausages wave have a mixed nature of Alfvénic and fast MHD waves, in the current-carrying loop model with thick annulus and low density contrast the fast sausage waves can be considered as purely Alfvénic wave in the core region of the loop, and in the "Inner μ" profile for each set of the parameters of the loop the wave can be considered as a purely Alfvénic wave in some regions of the loop.

  10. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria

    PubMed Central

    Hui, Sheng; Silverman, Josh M; Chen, Stephen S; Erickson, David W; Basan, Markus; Wang, Jilong; Hwa, Terence; Williamson, James R

    2015-01-01

    A central aim of cell biology was to understand the strategy of gene expression in response to the environment. Here, we study gene expression response to metabolic challenges in exponentially growing Escherichia coli using mass spectrometry. Despite enormous complexity in the details of the underlying regulatory network, we find that the proteome partitions into several coarse-grained sectors, with each sector's total mass abundance exhibiting positive or negative linear relations with the growth rate. The growth rate-dependent components of the proteome fractions comprise about half of the proteome by mass, and their mutual dependencies can be characterized by a simple flux model involving only two effective parameters. The success and apparent generality of this model arises from tight coordination between proteome partition and metabolism, suggesting a principle for resource allocation in proteome economy of the cell. This strategy of global gene regulation should serve as a basis for future studies on gene expression and constructing synthetic biological circuits. Coarse graining may be an effective approach to derive predictive phenomenological models for other ‘omics’ studies. PMID:25678603

  11. Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation

    NASA Astrophysics Data System (ADS)

    Sakellariou, J. S.; Fassois, S. D.

    2006-11-01

    A stochastic output error (OE) vibration-based methodology for damage detection and assessment (localization and quantification) in structures under earthquake excitation is introduced. The methodology is intended for assessing the state of a structure following potential damage occurrence by exploiting vibration signal measurements produced by low-level earthquake excitations. It is based upon (a) stochastic OE model identification, (b) statistical hypothesis testing procedures for damage detection, and (c) a geometric method (GM) for damage assessment. The methodology's advantages include the effective use of the non-stationary and limited duration earthquake excitation, the handling of stochastic uncertainties, the tackling of the damage localization and quantification subproblems, the use of "small" size, simple and partial (in both the spatial and frequency bandwidth senses) identified OE-type models, and the use of a minimal number of measured vibration signals. Its feasibility and effectiveness are assessed via Monte Carlo experiments employing a simple simulation model of a 6 storey building. It is demonstrated that damage levels of 5% and 20% reduction in a storey's stiffness characteristics may be properly detected and assessed using noise-corrupted vibration signals.

  12. Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.; Bauldry, Shawn

    2011-01-01

    In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of…

  13. Three-Space Interaction in Doubly Sinusoidal Periodic Media

    NASA Astrophysics Data System (ADS)

    Tian-Lin, Dong; Ping, Chen

    2006-06-01

    Three-space-harmonic (3SH) interaction in doubly sinusoidal periodic (DSP) medium is investigated. Associated physical effects such as additional gap, defect state, and indirect gaps, are theoretically and numerically revealed. This simple DSP model can facilitate the understanding and utilizing of a series of effects in rather complicated periodic structures with additional defect or modulation.

  14. Multi-Criteria Decision Making For Determining A Simple Model of Supplier Selection

    NASA Astrophysics Data System (ADS)

    Harwati

    2017-06-01

    Supplier selection is a decision with many criteria. Supplier selection model usually involves more than five main criteria and more than 10 sub-criteria. In fact many model includes more than 20 criteria. Too many criteria involved in supplier selection models sometimes make it difficult to apply in many companies. This research focuses on designing supplier selection that easy and simple to be applied in the company. Analytical Hierarchy Process (AHP) is used to weighting criteria. The analysis results there are four criteria that are easy and simple can be used to select suppliers: Price (weight 0.4) shipment (weight 0.3), quality (weight 0.2) and services (weight 0.1). A real case simulation shows that simple model provides the same decision with a more complex model.

  15. Nonconservative dynamics in long atomic wires

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian; Todorov, Tchavdar N.; Dundas, Daniel

    2014-09-01

    The effect of nonconservative current-induced forces on the ions in a defect-free metallic nanowire is investigated using both steady-state calculations and dynamical simulations. Nonconservative forces were found to have a major influence on the ion dynamics in these systems, but their role in increasing the kinetic energy of the ions decreases with increasing system length. The results illustrate the importance of nonconservative effects in short nanowires and the scaling of these effects with system size. The dependence on bias and ion mass can be understood with the help of a simple pen and paper model. This material highlights the benefit of simple preliminary steady-state calculations in anticipating aspects of brute-force dynamical simulations, and provides rule of thumb criteria for the design of stable quantum wires.

  16. Modelling preventive effectiveness to estimate the equity tipping point: at what coverage can individual preventive interventions reduce socioeconomic disparities in diabetes risk?

    PubMed

    Manuel, D G; Ho, T H; Harper, S; Anderson, G M; Lynch, J; Rosella, L C

    2014-07-01

    Most individual preventive therapies potentially narrow or widen health disparities depending on the difference in community effectiveness across socioeconomic position (SEP). The equity tipping point (defined as the point at which health disparities become larger) can be calculated by varying components of community effectiveness such as baseline risk of disease, intervention coverage and/or intervention efficacy across SEP. We used a simple modelling approach to estimate the community effectiveness of diabetes prevention across SEP in Canada under different scenarios of intervention coverage. Five-year baseline diabetes risk differed between the lowest and highest income groups by 1.76%. Assuming complete coverage across all income groups, the difference was reduced to 0.90% (144 000 cases prevented) with lifestyle interventions and 1.24% (88 100 cases prevented) with pharmacotherapy. The equity tipping point was estimated to be a coverage difference of 30% for preventive interventions (100% and 70% coverage among the highest and lowest income earners, respectively). Disparities in diabetes risk could be measurably reduced if existing interventions were equally adopted across SEP. However, disparities in coverage could lead to increased inequity in risk. Simple modelling approaches can be used to examine the community effectiveness of individual preventive interventions and their potential to reduce (or increase) disparities. The equity tipping point can be used as a critical threshold for disparities analyses.

  17. Effects of crowders on the equilibrium and kinetic properties of protein aggregation

    NASA Astrophysics Data System (ADS)

    Bridstrup, John; Yuan, Jian-Min

    2016-08-01

    The equilibrium and kinetic properties of protein aggregation systems in the presence of crowders are investigated using simple, illuminating models based on mass-action laws. Our model yields analytic results for equilibrium properties of protein aggregates, which fit experimental data of actin and ApoC-II with crowders reasonably well. When the effects of crowders on rate constants are considered, our kinetic model is in good agreement with experimental results for actin with dextran as the crowder. Furthermore, the model shows that as crowder volume fraction increases, the length distribution of fibrils becomes narrower and shifts to shorter values due to volume exclusion.

  18. A NEW SIMPLE DYNAMO MODEL FOR STELLAR ACTIVITY CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoi, N.; Hamba, F.; Schmitt, D.

    2016-06-20

    A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous flow effect on turbulence, it is shown that turbulent cross helicity (velocity–magnetic-field correlation) enters the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. This makes the present model different from the current α –Ω-type models in two main ways. First, in addition to the usual helicity ( α ) and turbulent magnetic diffusivity ( β ) effects, we consider the cross-helicity effect as a key ingredient of the dynamo process. Second, the spatiotemporal evolution of cross helicity is solvedmore » simultaneously with the mean magnetic fields. The basic scenario is as follows. In the presence of turbulent cross helicity, the toroidal field is induced by the toroidal rotation. Then, as in usual models, the α effect generates the poloidal field from the toroidal one. This induced poloidal field produces a turbulent cross helicity whose sign is opposite to the original one (negative production). With this cross helicity of the reversed sign, a reversal in field configuration starts. Eigenvalue analyses of the simplest possible model give a butterfly diagram, which confirms the above scenario and the equatorward migrations, the phase relationship between the cross helicity and magnetic fields. These results suggest that the oscillation of the turbulent cross helicity is a key for the activity cycle. The reversal of the cross helicity is not the result of the magnetic-field reversal, but the cause of the latter. This new model is expected to open up the possibility of the mean-field or turbulence closure dynamo approaches.« less

  19. Examination of multi-model ensemble seasonal prediction methods using a simple climate system

    NASA Astrophysics Data System (ADS)

    Kang, In-Sik; Yoo, Jin Ho

    2006-02-01

    A simple climate model was designed as a proxy for the real climate system, and a number of prediction models were generated by slightly perturbing the physical parameters of the simple model. A set of long (240 years) historical hindcast predictions were performed with various prediction models, which are used to examine various issues of multi-model ensemble seasonal prediction, such as the best ways of blending multi-models and the selection of models. Based on these results, we suggest a feasible way of maximizing the benefit of using multi models in seasonal prediction. In particular, three types of multi-model ensemble prediction systems, i.e., the simple composite, superensemble, and the composite after statistically correcting individual predictions (corrected composite), are examined and compared to each other. The superensemble has more of an overfitting problem than the others, especially for the case of small training samples and/or weak external forcing, and the corrected composite produces the best prediction skill among the multi-model systems.

  20. Deviation of Long-Period Tides from Equilibrium: Kinematics and Geostrophy

    NASA Technical Reports Server (NTRS)

    Egbert, Gary D.; Ray, Richard D.

    2003-01-01

    New empirical estimates of the long-period fortnightly (Mf) tide obtained from TOPEX/Poseidon (T/P) altimeter data confirm significant basin-scale deviations from equilibrium. Elevations in the low-latitude Pacific have reduced amplitude and lag those in the Atlantic by 30 deg or more. These interbasin amplitude and phase variations are robust features that are reproduced by numerical solutions of the shallow-water equations, even for a constant-depth ocean with schematic interconnected rectangular basins. A simplified analytical model for cooscillating connected basins also reproduces the principal features observed in the empirical solutions. This simple model is largely kinematic. Zonally averaged elevations within a simple closed basin would be nearly in equilibrium with the gravitational potential, except for a constant offset required to conserve mass. With connected basins these offsets are mostly eliminated by interbasin mass flux. Because of rotation, this flux occurs mostly in a narrow boundary layer across the mouth and at the western edge of each basin, and geostrophic balance in this zone supports small residual offsets (and phase shifts) between basins. The simple model predicts that this effect should decrease roughly linearly with frequency, a result that is confirmed by numerical modeling and empirical T/P estimates of the monthly (Mm) tidal constituent. This model also explains some aspects of the anomalous nonisostatic response of the ocean to atmospheric pressure forcing at periods of around 5 days.

  1. The Effects of Time Advance Mechanism on Simple Agent Behaviors in Combat Simulations

    DTIC Science & Technology

    2011-12-01

    modeling packages that illustrate the differences between discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat... DES ) models , often referred to as “next-event” (Law and Kelton 2000) or discrete time simulation (DTS), commonly referred to as “time-step.” DTS...discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat models use DTS as their simulation time advance mechanism

  2. Estimating potency for the Emax-model without attaining maximal effects.

    PubMed

    Schoemaker, R C; van Gerven, J M; Cohen, A F

    1998-10-01

    The most widely applied model relating drug concentrations to effects is the Emax model. In practice, concentration-effect relationships often deviate from a simple linear relationship but without reaching a clear maximum because a further increase in concentration might be associated with unacceptable or distorting side effects. The parameters for the Emax model can only be estimated with reasonable precision if the curve shows sign of reaching a maximum, otherwise both EC50 and Emax estimates may be extremely imprecise. This paper provides a solution by introducing a new parameter (S0) equal to Emax/EC50 that can be used to characterize potency adequately even if there are no signs of a clear maximum. Simulations are presented to investigate the nature of the new parameter and published examples are used as illustration.

  3. Electrical Lumped Model Examination for Load Variation of Circulation System

    NASA Astrophysics Data System (ADS)

    Koya, Yoshiharu; Ito, Mitsuyo; Mizoshiri, Isao

    Modeling and analysis of the circulation system enables the characteristic decision of circulation system in the body to be made. So, many models of circulation system have been proposed. But, they are complicated because the models include a lot of elements. Therefore, we proposed a complete circulation model as a lumped electrical circuit, which is comparatively simple. In this paper, we examine the effectiveness of the complete circulation model as a lumped electrical circuit. We use normal, angina pectoris, dilated cardiomyopathy and myocardial infarction for evaluation of the ventricular contraction function.

  4. A simple geometrical model describing shapes of soap films suspended on two rings

    NASA Astrophysics Data System (ADS)

    Herrmann, Felix J.; Kilvington, Charles D.; Wildenberg, Rebekah L.; Camacho, Franco E.; Walecki, Wojciech J.; Walecki, Peter S.; Walecki, Eve S.

    2016-09-01

    We measured and analysed the stability of two types of soap films suspended on two rings using the simple conical frusta-based model, where we use common definition of conical frustum as a portion of a cone that lies between two parallel planes cutting it. Using frusta-based we reproduced very well-known results for catenoid surfaces with and without a central disk. We present for the first time a simple conical frusta based spreadsheet model of the soap surface. This very simple, elementary, geometrical model produces results surprisingly well matching the experimental data and known exact analytical solutions. The experiment and the spreadsheet model can be used as a powerful teaching tool for pre-calculus and geometry students.

  5. Enhancement of orientation gradients during simple shear deformation by application of simple compression

    NASA Astrophysics Data System (ADS)

    Jahedi, Mohammad; Ardeljan, Milan; Beyerlein, Irene J.; Paydar, Mohammad Hossein; Knezevic, Marko

    2015-06-01

    We use a multi-scale, polycrystal plasticity micromechanics model to study the development of orientation gradients within crystals deforming by slip. At the largest scale, the model is a full-field crystal plasticity finite element model with explicit 3D grain structures created by DREAM.3D, and at the finest scale, at each integration point, slip is governed by a dislocation density based hardening law. For deformed polycrystals, the model predicts intra-granular misorientation distributions that follow well the scaling law seen experimentally by Hughes et al., Acta Mater. 45(1), 105-112 (1997), independent of strain level and deformation mode. We reveal that the application of a simple compression step prior to simple shearing significantly enhances the development of intra-granular misorientations compared to simple shearing alone for the same amount of total strain. We rationalize that the changes in crystallographic orientation and shape evolution when going from simple compression to simple shearing increase the local heterogeneity in slip, leading to the boost in intra-granular misorientation development. In addition, the analysis finds that simple compression introduces additional crystal orientations that are prone to developing intra-granular misorientations, which also help to increase intra-granular misorientations. Many metal working techniques for refining grain sizes involve a preliminary or concurrent application of compression with severe simple shearing. Our finding reveals that a pre-compression deformation step can, in fact, serve as another processing variable for improving the rate of grain refinement during the simple shearing of polycrystalline metals.

  6. A novel medical information management and decision model for uncertain demand optimization.

    PubMed

    Bi, Ya

    2015-01-01

    Accurately planning the procurement volume is an effective measure for controlling the medicine inventory cost. Due to uncertain demand it is difficult to make accurate decision on procurement volume. As to the biomedicine sensitive to time and season demand, the uncertain demand fitted by the fuzzy mathematics method is obviously better than general random distribution functions. To establish a novel medical information management and decision model for uncertain demand optimization. A novel optimal management and decision model under uncertain demand has been presented based on fuzzy mathematics and a new comprehensive improved particle swarm algorithm. The optimal management and decision model can effectively reduce the medicine inventory cost. The proposed improved particle swarm optimization is a simple and effective algorithm to improve the Fuzzy interference and hence effectively reduce the calculation complexity of the optimal management and decision model. Therefore the new model can be used for accurate decision on procurement volume under uncertain demand.

  7. An underwater light attenuation scheme for marine ecosystem models.

    PubMed

    Penta, Bradley; Lee, Zhongping; Kudela, Raphael M; Palacios, Sherry L; Gray, Deric J; Jolliff, Jason K; Shulman, Igor G

    2008-10-13

    Simulation of underwater light is essential for modeling marine ecosystems. A new model of underwater light attenuation is presented and compared with previous models. In situ data collected in Monterey Bay, CA. during September 2006 are used for validation. It is demonstrated that while the new light model is computationally simple and efficient it maintains accuracy and flexibility. When this light model is incorporated into an ecosystem model, the correlation between modeled and observed coastal chlorophyll is improved over an eight-year time period. While the simulation of a deep chlorophyll maximum demonstrates the effect of the new model at depth.

  8. Quantum teleportation of nonclassical wave packets: An effective multimode theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benichi, Hugo; Takeda, Shuntaro; Lee, Noriyuki

    2011-07-15

    We develop a simple and efficient theoretical model to understand the quantum properties of broadband continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case of non-Gaussian nonclassical quantum states and we finally back-test our model with recent experimental results.

  9. Inference of epistatic effects in a key mitochondrial protein

    NASA Astrophysics Data System (ADS)

    Nelson, Erik D.; Grishin, Nick V.

    2018-06-01

    We use Potts model inference to predict pair epistatic effects in a key mitochondrial protein—cytochrome c oxidase subunit 2—for ray-finned fishes. We examine the effect of phylogenetic correlations on our predictions using a simple exact fitness model, and we find that, although epistatic effects are underpredicted, they maintain a roughly linear relationship to their true (model) values. After accounting for this correction, epistatic effects in the protein are still relatively weak, leading to fitness valleys of depth 2 N s ≃-5 in compensatory double mutants. Interestingly, positive epistasis is more pronounced than negative epistasis, and the strongest positive effects capture nearly all sites subject to positive selection in fishes, similar to virus proteins evolving under selection pressure in the context of drug therapy.

  10. A new adaptive estimation method of spacecraft thermal mathematical model with an ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Akita, T.; Takaki, R.; Shima, E.

    2012-04-01

    An adaptive estimation method of spacecraft thermal mathematical model is presented. The method is based on the ensemble Kalman filter, which can effectively handle the nonlinearities contained in the thermal model. The state space equations of the thermal mathematical model is derived, where both temperature and uncertain thermal characteristic parameters are considered as the state variables. In the method, the thermal characteristic parameters are automatically estimated as the outputs of the filtered state variables, whereas, in the usual thermal model correlation, they are manually identified by experienced engineers using trial-and-error approach. A numerical experiment of a simple small satellite is provided to verify the effectiveness of the presented method.

  11. Pyroelectric effect in tryglicyne sulphate single crystals - Differential measurement method

    NASA Astrophysics Data System (ADS)

    Trybus, M.

    2018-06-01

    A simple mathematical model of the pyroelectric phenomenon was used to explain the electric response of the TGS (triglycine sulphate) samples in the linear heating process in ferroelectric and paraelectric phases. Experimental verification of mathematical model was realized. TGS single crystals were grown and four electrode samples were fabricated. Differential measurements of the pyroelectric response of two different regions of the samples were performed and the results were compared with data obtained from the model. Experimental results are in good agreement with model calculations.

  12. An empirical model for ocean radar backscatter and its application in inversion routine to eliminate wind speed and direction effects

    NASA Technical Reports Server (NTRS)

    Dome, G. J.; Fung, A. K.; Moore, R. K.

    1977-01-01

    Several regression models were tested to explain the wind direction dependence of the 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data. The models consider the radar backscatter as a harmonic function of wind direction. The constant term accounts for the major effect of wind speed and the sinusoidal terms for the effects of direction. The fundamental accounts for the difference in upwind and downwind returns, while the second harmonic explains the upwind-crosswind difference. It is shown that a second harmonic model appears to adequately explain the angular variation. A simple inversion technique, which uses two orthogonal scattering measurements, is also described which eliminates the effect of wind speed and direction. Vertical polarization was shown to be more effective in determining both wind speed and direction than horizontal polarization.

  13. Strength and stiffness reduction factors for infilled frames with openings

    NASA Astrophysics Data System (ADS)

    Decanini, Luis D.; Liberatore, Laura; Mollaioli, Fabrizio

    2014-09-01

    Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the system. On the other hand, irregular arrangements of the masonry panels may lead to the concentration of damage in some regions, with negative effects; for example soft story mechanisms and shear failures in short columns. Therefore, the presence of infill walls should not be neglected, especially in regions of moderate and high seismicity. To this aim, simple models are available for solid infills walls, such as the diagonal no-tension strut model, while infilled frames with openings have not been adequately investigated. In this study, the effect of openings on the strength and stiffness of infilled frames is investigated by means of about 150 experimental and numerical tests. The main parameters involved are identified and a simple model to take into account the openings in the infills is developed and compared with other models proposed by different researchers. The model, which is based on the use of strength and stiffness reduction factors, takes into account the opening dimensions and presence of reinforcing elements around the opening. An example of an application of the proposed reduction factors is also presented.

  14. A complex speciation–richness relationship in a simple neutral model

    PubMed Central

    Desjardins-Proulx, Philippe; Gravel, Dominique

    2012-01-01

    Speciation is the “elephant in the room” of community ecology. As the ultimate source of biodiversity, its integration in ecology's theoretical corpus is necessary to understand community assembly. Yet, speciation is often completely ignored or stripped of its spatial dimension. Recent approaches based on network theory have allowed ecologists to effectively model complex landscapes. In this study, we use this framework to model allopatric and parapatric speciation in networks of communities. We focus on the relationship between speciation, richness, and the spatial structure of communities. We find a strong opposition between speciation and local richness, with speciation being more common in isolated communities and local richness being higher in more connected communities. Unlike previous models, we also find a transition to a positive relationship between speciation and local richness when dispersal is low and the number of communities is small. We use several measures of centrality to characterize the effect of network structure on diversity. The degree, the simplest measure of centrality, is the best predictor of local richness and speciation, although it loses some of its predictive power as connectivity grows. Our framework shows how a simple neutral model can be combined with network theory to reveal complex relationships between speciation, richness, and the spatial organization of populations. PMID:22957181

  15. Technical note: Harmonizing met-ocean model data via standard web services within small research groups

    NASA Astrophysics Data System (ADS)

    Signell, R. P.; Camossi, E.

    2015-11-01

    Work over the last decade has resulted in standardized web-services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by: (1) making it simple for providers to enable web service access to existing output files; (2) using technology that is free, and that is easy to deploy and configure; and (3) providing tools to communicate with web services that work in existing research environments. We present a simple, local brokering approach that lets modelers continue producing custom data, but virtually aggregates and standardizes the data using NetCDF Markup Language. The THREDDS Data Server is used for data delivery, pycsw for data search, NCTOOLBOX (Matlab®1) and Iris (Python) for data access, and Ocean Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.1 Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the US Government.

  16. The viscosity of magmatic silicate liquids: A model for calculation

    NASA Technical Reports Server (NTRS)

    Bottinga, Y.; Weill, D. F.

    1971-01-01

    A simple model has been designed to allow reasonably accurate calculations of viscosity as a function of temperature and composition. The problem of predicting viscosities of anhydrous silicate liquids has been investigated since such viscosity numbers are applicable to many extrusive melts and to nearly dry magmatic liquids in general. The fluidizing action of water dissolved in silicate melts is well recognized and it is now possible to predict the effect of water content on viscosity in a semiquantitative way. Water was not incorporated directly into the model. Viscosities of anhydrous compositions were calculated, and, where necessary, the effect of added water and estimated. The model can be easily modified to incorporate the effect of water whenever sufficient additional data are accumulated.

  17. Complex food webs prevent competitive exclusion among producer species.

    PubMed

    Brose, Ulrich

    2008-11-07

    Herbivorous top-down forces and bottom-up competition for nutrients determine the coexistence and relative biomass patterns of producer species. Combining models of predator-prey and producer-nutrient interactions with a structural model of complex food webs, I investigated these two aspects in a dynamic food-web model. While competitive exclusion leads to persistence of only one producer species in 99.7% of the simulated simple producer communities without consumers, embedding the same producer communities in complex food webs generally yields producer coexistence. In simple producer communities, the producers with the most efficient nutrient-intake rates increase in biomass until they competitively exclude inferior producers. In food webs, herbivory predominantly reduces the biomass density of those producers that dominated in producer communities, which yields a more even biomass distribution. In contrast to prior analyses of simple modules, this facilitation of producer coexistence by herbivory does not require a trade-off between the nutrient-intake efficiency and the resistance to herbivory. The local network structure of food webs (top-down effects of the number of herbivores and the herbivores' maximum consumption rates) and the nutrient supply (bottom-up effect) interactively determine the relative biomass densities of the producer species. A strong negative feedback loop emerges in food webs: factors that increase producer biomasses also increase herbivory, which reduces producer biomasses. This negative feedback loop regulates the coexistence and biomass patterns of the producers by balancing biomass increases of producers and biomass fluxes to herbivores, which prevents competitive exclusion.

  18. A modeling paradigm for interdisciplinary water resources modeling: Simple Script Wrappers (SSW)

    NASA Astrophysics Data System (ADS)

    Steward, David R.; Bulatewicz, Tom; Aistrup, Joseph A.; Andresen, Daniel; Bernard, Eric A.; Kulcsar, Laszlo; Peterson, Jeffrey M.; Staggenborg, Scott A.; Welch, Stephen M.

    2014-05-01

    Holistic understanding of a water resources system requires tools capable of model integration. This team has developed an adaptation of the OpenMI (Open Modelling Interface) that allows easy interactions across the data passed between models. Capabilities have been developed to allow programs written in common languages such as matlab, python and scilab to share their data with other programs and accept other program's data. We call this interface the Simple Script Wrapper (SSW). An implementation of SSW is shown that integrates groundwater, economic, and agricultural models in the High Plains region of Kansas. Output from these models illustrates the interdisciplinary discovery facilitated through use of SSW implemented models. Reference: Bulatewicz, T., A. Allen, J.M. Peterson, S. Staggenborg, S.M. Welch, and D.R. Steward, The Simple Script Wrapper for OpenMI: Enabling interdisciplinary modeling studies, Environmental Modelling & Software, 39, 283-294, 2013. http://dx.doi.org/10.1016/j.envsoft.2012.07.006 http://code.google.com/p/simple-script-wrapper/

  19. A Simple Climate Model Program for High School Education

    NASA Astrophysics Data System (ADS)

    Dommenget, D.

    2012-04-01

    The future climate change projections of the IPCC AR4 are based on GCM simulations, which give a distinct global warming pattern, with an arctic winter amplification, an equilibrium land sea contrast and an inter-hemispheric warming gradient. While these simulations are the most important tool of the IPCC predictions, the conceptual understanding of these predicted structures of climate change are very difficult to reach if only based on these highly complex GCM simulations and they are not accessible for ordinary people. In this study presented here we will introduce a very simple gridded globally resolved energy balance model based on strongly simplified physical processes, which is capable of simulating the main characteristics of global warming. The model shall give a bridge between the 1-dimensional energy balance models and the fully coupled 4-dimensional complex GCMs. It runs on standard PC computers computing globally resolved climate simulation with 2yrs per second or 100,000yrs per day. The program can compute typical global warming scenarios in a few minutes on a standard PC. The computer code is only 730 line long with very simple formulations that high school students should be able to understand. The simple model's climate sensitivity and the spatial structure of the warming pattern is within the uncertainties of the IPCC AR4 models simulations. It is capable of simulating the arctic winter amplification, the equilibrium land sea contrast and the inter-hemispheric warming gradient with good agreement to the IPCC AR4 models in amplitude and structure. The program can be used to do sensitivity studies in which students can change something (e.g. reduce the solar radiation, take away the clouds or make snow black) and see how it effects the climate or the climate response to changes in greenhouse gases. This program is available for every one and could be the basis for high school education. Partners for a high school project are wanted!

  20. Antibiotics and antibiotic resistance in agroecosystems: State of the science

    USDA-ARS?s Scientific Manuscript database

    We propose a simple causal model depicting relationships involved in dissemination of antibiotics and antibiotic resistance in agroecosystems and potential effects on human health, functioning of natural ecosystems, and agricultural productivity. Available evidence for each causal link is briefly su...

  1. THE EFFECTS OF NITROGEN LOADING AND FRESHWATER RESIDENCE TIME ON THE ESTUARINE ECOSYSTEM

    EPA Science Inventory

    A simple mechanistic model, designed to predict annual average concentrations of total nitrogen (TN) concentrations from nitrogen inputs and freshwater residence time in estuaries, was applied to data for several North American estuaries from previously published literature. The ...

  2. Vision of Fish in Air

    ERIC Educational Resources Information Center

    Colicchia, Giuseppe

    2007-01-01

    The investigation of the focusing in fish eyes, both theoretical and experimental, by using a simple fish eye model, provides an interesting biological context for teaching the introductory principles of optics. Moreover, the students will learn concepts of biology by an approach of cause and effect.

  3. Detecting single-trial EEG evoked potential using a wavelet domain linear mixed model: application to error potentials classification.

    PubMed

    Spinnato, J; Roubaud, M-C; Burle, B; Torrésani, B

    2015-06-01

    The main goal of this work is to develop a model for multisensor signals, such as magnetoencephalography or electroencephalography (EEG) signals that account for inter-trial variability, suitable for corresponding binary classification problems. An important constraint is that the model be simple enough to handle small size and unbalanced datasets, as often encountered in BCI-type experiments. The method involves the linear mixed effects statistical model, wavelet transform, and spatial filtering, and aims at the characterization of localized discriminant features in multisensor signals. After discrete wavelet transform and spatial filtering, a projection onto the relevant wavelet and spatial channels subspaces is used for dimension reduction. The projected signals are then decomposed as the sum of a signal of interest (i.e., discriminant) and background noise, using a very simple Gaussian linear mixed model. Thanks to the simplicity of the model, the corresponding parameter estimation problem is simplified. Robust estimates of class-covariance matrices are obtained from small sample sizes and an effective Bayes plug-in classifier is derived. The approach is applied to the detection of error potentials in multichannel EEG data in a very unbalanced situation (detection of rare events). Classification results prove the relevance of the proposed approach in such a context. The combination of the linear mixed model, wavelet transform and spatial filtering for EEG classification is, to the best of our knowledge, an original approach, which is proven to be effective. This paper improves upon earlier results on similar problems, and the three main ingredients all play an important role.

  4. Hydrogeomorphology explains acidification-driven variation in aquatic biological communities in the Neversink Basin, USA

    USGS Publications Warehouse

    Harpold, Adrian A.; Burns, Douglas A.; Walter, M.T.; Steenhuis, Tammo S.

    2013-01-01

    Describing the distribution of aquatic habitats and the health of biological communities can be costly and time-consuming; therefore, simple, inexpensive methods to scale observations of aquatic biota to watersheds that lack data would be useful. In this study, we explored the potential of a simple “hydrogeomorphic” model to predict the effects of acid deposition on macroinvertebrate, fish, and diatom communities in 28 sub-watersheds of the 176-km2 Neversink River basin in the Catskill Mountains of New York State. The empirical model was originally developed to predict stream-water acid neutralizing capacity (ANC) using the watershed slope and drainage density. Because ANC is known to be strongly related to aquatic biological communities in the Neversink, we speculated that the model might correlate well with biotic indicators of ANC response. The hydrogeomorphic model was strongly correlated to several measures of macroinvertebrate and fish community richness and density, but less strongly correlated to diatom acid tolerance. The model was also strongly correlated to biological communities in 18 sub-watersheds independent of the model development, with the linear correlation capturing the strongly acidic nature of small upland watersheds (2). Overall, we demonstrated the applicability of geospatial data sets and a simple hydrogeomorphic model for estimating aquatic biological communities in areas with stream-water acidification, allowing estimates where no direct field observations are available. Similar modeling approaches have the potential to complement or refine expensive and time-consuming measurements of aquatic biota populations and to aid in regional assessments of aquatic health.

  5. Firing patterns in the adaptive exponential integrate-and-fire model.

    PubMed

    Naud, Richard; Marcille, Nicolas; Clopath, Claudia; Gerstner, Wulfram

    2008-11-01

    For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.

  6. pyhector: A Python interface for the simple climate model Hector

    DOE PAGES

    Willner, Sven N.; Hartin, Corinne; Gieseke, Robert

    2017-04-01

    Here, pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary productionmore » and respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system. The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2.« less

  7. Theoretical aspects of tidal and planetary wave propagation at thermospheric heights

    NASA Technical Reports Server (NTRS)

    Volland, H.; Mayr, H. G.

    1977-01-01

    A simple semiquantitative model is presented which allows analytic solutions of tidal and planetary wave propagation at thermospheric heights. This model is based on perturbation approximation and mode separation. The effects of viscosity and heat conduction are parameterized by Rayleigh friction and Newtonian cooling. Because of this simplicity, one gains a clear physical insight into basic features of atmospheric wave propagation. In particular, we discuss the meridional structures of pressure and horizontal wind (the solutions of Laplace's equation) and their modification due to dissipative effects at thermospheric heights. Furthermore, we solve the equations governing the height structure of the wave modes and arrive at a very simple asymptotic solution valid in the upper part of the thermosphere. That 'system transfer function' of the thermosphere allows one to estimate immediately the reaction of the thermospheric wave mode parameters such as pressure, temperature, and winds to an external heat source of arbitrary temporal and spatial distribution. Finally, the diffusion effects of the minor constituents due to the global wind circulation are discussed, and some results of numerical calculations are presented.

  8. Influence of temperature on the hydrolysis, acidogenesis and methanogenesis in mesophilic anaerobic digestion: parameter identification and modeling application.

    PubMed

    Donoso-Bravo, A; Retamal, C; Carballa, M; Ruiz-Filippi, G; Chamy, R

    2009-01-01

    The effect of temperature on the kinetic parameters involved in the main reactions of the anaerobic digestion process was studied. Batch tests with starch, glucose and acetic acid as substrates for hydrolysis, acidogenesis and methanogenesis, respectively, were performed in a temperature range between 15 and 45 degrees C. First order kinetics was assumed to determine the hydrolysis rate constant, while Monod and Haldane kinetics were considered for acidogenesis and methanogenesis, respectively. The results obtained showed that the anaerobic process is strongly influenced by temperature, with acidogenesis exerting the highest effect. The Cardinal Temperature Model 1 with an inflection point (CTM1) fitted properly the experimental data in the whole temperature range, except for the maximum degradation rate of acidogenesis. A simple case-study assessing the effect of temperature on an anaerobic CSTR performance indicated that with relatively simple substrates, like starch, the limiting reaction would change depending on temperature. However, when more complex substrates are used (e.g. sewage sludge), the hydrolysis might become more quickly into the limiting step.

  9. Detonation product EOS studies: Using ISLS to refine CHEETAH

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Fried, Larry; Hansen, Donald

    2001-06-01

    Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a suite of non-ideal simple fluids and fluid mixtures. Impulsive Stimulated Light Scattering conducted in the diamond-anvil cell offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model CHEETAH. Computational models are systematically improved with each addition of experimental data. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.

  10. Control-structure interaction study for the Space Station solar dynamic power module

    NASA Technical Reports Server (NTRS)

    Cheng, J.; Ianculescu, G.; Ly, J.; Kim, M.

    1991-01-01

    The authors investigate the feasibility of using a conventional PID (proportional plus integral plus derivative) controller design to perform the pointing and tracking functions for the Space Station Freedom solar dynamic power module. Using this simple controller design, the control/structure interaction effects were also studied without assuming frequency bandwidth separation. From the results, the feasibility of a simple solar dynamic control solution with a reduced-order model, which satisfies the basic system pointing and stability requirements, is suggested. However, the conventional control design approach is shown to be very much influenced by the order of reduction of the plant model, i.e., the number of the retained elastic modes from the full-order model. This suggests that, for complex large space structures, such as the Space Station Freedom solar dynamic, the conventional control system design methods may not be adequate.

  11. Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grutzik, Scott Joseph; Reedy, Jr., E. D.

    Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less

  12. Estimation of vegetation cover at subpixel resolution using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Eagleson, Peter S.

    1986-01-01

    The present report summarizes the various approaches relevant to estimating canopy cover at subpixel resolution. The approaches are based on physical models of radiative transfer in non-homogeneous canopies and on empirical methods. The effects of vegetation shadows and topography are examined. Simple versions of the model are tested, using the Taos, New Mexico Study Area database. Emphasis has been placed on using relatively simple models requiring only one or two bands. Although most methods require some degree of ground truth, a two-band method is investigated whereby the percent cover can be estimated without ground truth by examining the limits of the data space. Future work is proposed which will incorporate additional surface parameters into the canopy cover algorithm, such as topography, leaf area, or shadows. The method involves deriving a probability density function for the percent canopy cover based on the joint probability density function of the observed radiances.

  13. Simple analytical model for low-frequency frequency-modulation noise of monolithic tunable lasers.

    PubMed

    Huynh, Tam N; Ó Dúill, Seán P; Nguyen, Lim; Rusch, Leslie A; Barry, Liam P

    2014-02-10

    We employ simple analytical models to construct the entire frequency-modulation (FM)-noise spectrum of tunable semiconductor lasers. Many contributions to the laser FM noise can be clearly identified from the FM-noise spectrum, such as standard Weiner FM noise incorporating laser relaxation oscillation, excess FM noise due to thermal fluctuations, and carrier-induced refractive index fluctuations from stochastic carrier generation in the passive tuning sections. The contribution of the latter effect is identified by noting a correlation between part of the FM-noise spectrum with the FM-modulation response of the passive sections. We pay particular attention to the case of widely tunable lasers with three independent tuning sections, mainly the sampled-grating distributed Bragg reflector laser, and compare with that of a distributed feedback laser. The theoretical model is confirmed with experimental measurements, with the calculations of the important phase-error variance demonstrating excellent agreement.

  14. Applications of the trilinear Hamiltonian with three trapped ions

    NASA Astrophysics Data System (ADS)

    Hablutzel Marrero, Roland Esteban; Ding, Shiqian; Maslennikov, Gleb; Gan, Jaren; Nimmrichter, Stefan; Roulet, Alexandre; Dai, Jibo; Scarani, Valerio; Matsukevich, Dzmitry

    2017-04-01

    The trilinear Hamiltonian a† bc + ab†c† , which describes a nonlinear interaction between harmonic oscillators, can be implemented to study different phenomena ranging from simple quantum models to quantum thermodynamics. We engineer this coupling between three modes of motion of three trapped 171Yb+ ions, where the interaction arises naturally from their mutual (anharmonic) Coulomb repulsion. By tuning our trapping parameters we are able to turn on / off resonant exchange of energy between the modes on demand. We present applications of this Hamiltonian for simulations of the parametric down conversion process in the regime of depleted pump, a simple model of Hawking radiation, and the Tavis-Cummings model. We also discuss the implementation of the quantum absorption refrigerator in such system and experimentally study effects of quantum coherence on its performance. This research is supported by the National Research Foundation, Prime Minister's Office, Singapore and the Ministry of Education, Singapore under the Research Centres of Excellence programme.

  15. Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen

    DOE PAGES

    Grutzik, Scott Joseph; Reedy, Jr., E. D.

    2017-08-04

    Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less

  16. Inhomogeneity and velocity fields effects on scattering polarization in solar prominences

    NASA Astrophysics Data System (ADS)

    Milić, I.; Faurobert, M.

    2015-10-01

    One of the methods for diagnosing vector magnetic fields in solar prominences is the so called "inversion" of observed polarized spectral lines. This inversion usually assumes a fairly simple generative model and in this contribution we aim to study the possible systematic errors that are introduced by this assumption. On two-dimensional toy model of a prominence, we first demonstrate importance of multidimensional radiative transfer and horizontal inhomogeneities. These are able to induce a significant level of polarization in Stokes U, without the need for the magnetic field. We then compute emergent Stokes spectrum from a prominence which is pervaded by the vector magnetic field and use a simple, one-dimensional model to interpret these synthetic observations. We find that inferred values for the magnetic field vector generally differ from the original ones. Most importantly, the magnetic field might seem more inclined than it really is.

  17. Quantitative Modeling of Earth Surface Processes

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.

    This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes.

  18. More details...
  19. Critical Analysis of Different Methods to Retrieve Atmosphere Humidity Profiles from GNSS Radio Occultation Observations

    NASA Astrophysics Data System (ADS)

    Vespe, Francesco; Benedetto, Catia

    2013-04-01

    The huge amount of GPS Radio Occultation (RO) observations currently available thanks to space mission like COSMIC, CHAMP, GRACE, TERRASAR-X etc., have greatly encouraged the research of new algorithms suitable to extract humidity, temperature and pressure profiles of the atmosphere in a more and more precise way. For what concern the humidity profiles in these last years two different approaches have been widely proved and applied: the "Simple" and the 1DVAR methods. The Simple methods essentially determine dry refractivity profiles from temperature analysis profiles and hydrostatic equation. Then the dry refractivity is subtracted from RO refractivity to achieve the wet component. Finally from the wet refractivity is achieved humidity. The 1DVAR approach combines RO observations with profiles given by the background models with both the terms weighted with the inverse of covariance matrix. The advantage of "Simple" methods is that they are not affected by bias due to the background models. We have proposed in the past the BPV approach to retrieve humidity. Our approach can be classified among the "Simple" methods. The BPV approach works with dry atmospheric CIRA-Q models which depend on latitude, DoY and height. The dry CIRA-Q refractivity profile is selected estimating the involved parameters in a non linear least square fashion achieved by fitting RO observed bending angles through the stratosphere. The BPV as well as all the other "Simple" methods, has as drawback the unphysical occurrence of negative "humidity". Thus we propose to apply a modulated weighting of the fit residuals just to minimize the effects of this inconvenient. After a proper tuning of the approach, we plan to present the results of the validation.

  20. Stereoisomeric effects on dynamic viscosity versus pressure and temperature for the system cis- + trans-decalin

    NASA Astrophysics Data System (ADS)

    Miyake, Yasufumi; Boned, Christian; Baylaucq, Antoine; Bessières, David; Zéberg-Mikkelsen, Claus K.; Galliéro, Guillaume; Ushiki, Hideharu

    2007-07-01

    In order to study the influence of stereoisomeric effects on the dynamic viscosity, an extensive experimental study of the viscosity of the binary system composed of the two stereoisomeric molecular forms of decalin - cis and trans - has been carried out for five different mixtures at three temperatures (303.15, 323.15 and 343.15) K and six isobars up to 100 MPa with a falling-body viscometer (a total of 90 points). The experimental relative uncertainty is estimated to be 2%. The variations of dynamic viscosity versus composition are discussed with respect to their behavior due to stereoisomerism. Four different models with a physical and theoretical background are studied in order to investigate how they take the stereoisomeric effect into account through their required model parameters. The evaluated models are based on the hard-sphere scheme, the concepts of the free-volume and the friction theory, and a model derived from molecular dynamics. Overall, a satisfactory representation of the viscosity of this binary system is found for the different models within the considered ( T, p) range taken into account their simplicity. All the models are able to distinguish between the two stereoisomeric decalin compounds. Further, based on the analysis of the model parameters performed on the pure compounds, it has been found that the use of simple mixing rules without introducing any binary interaction parameters are sufficient in order to predict the viscosity of cis + trans-decalin mixtures with the same accuracy in comparison with the experimental values as obtained for the pure compounds. In addition to these models, a semi-empirical self-referencing model and the simple mixing laws of Grunberg-Nissan and Katti-Chaudhri are also applied in the representation of the viscosity behavior of these systems.

  21. Modeling Age-Related Differences in Immediate Memory Using SIMPLE

    ERIC Educational Resources Information Center

    Surprenant, Aimee M.; Neath, Ian; Brown, Gordon D. A.

    2006-01-01

    In the SIMPLE model (Scale Invariant Memory and Perceptual Learning), performance on memory tasks is determined by the locations of items in multidimensional space, and better performance is associated with having fewer close neighbors. Unlike most previous simulations with SIMPLE, the ones reported here used measured, rather than assumed,…

Top