A 3T Sodium and Proton Composite Array Breast Coil
Kaggie, Joshua D.; Hadley, J. Rock; Badal, James; Campbell, John R.; Park, Daniel J.; Parker, Dennis L.; Morrell, Glen; Newbould, Rexford D.; Wood, Ali F.; Bangerter, Neal K.
2013-01-01
Purpose The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3T. The secondary objective was to create acceptable proton images with the sodium phased array in place. Methods A novel composite array for combined proton/sodium 3T breast MRI is compared to a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multi-channel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps. Results The composite array coil demonstrates a 2–5x improvement in SNR for sodium imaging and similar SNR for proton imaging when compared to a simple single-loop dual resonant design. Conclusion The improved SNR of the composite array gives breast sodium images of unprecedented quality in reasonable scan times. PMID:24105740
Shadike, Zulipiya; Zhou, Yong -Ning; Chen, Lan -Li; ...
2017-08-30
The intercalation compounds with various electrochemically active or inactive elements in the layered structure have been the subject of increasing interest due to their high capacities, good reversibility, simple structures and ease of synthesis. However, their reversible intercalation/deintercalation redox chemistries in all previous compounds involve a single cationic redox reaction or a cumulative cationic and anionic redox reaction. Here we report an anionic redox only chemistry and structural stabilization of layered sodium chromium sulfide. It is discovered that sulfur in sodium chromium sulfide is electrochemical active undergoing oxidation/reduction of sulfur rather than chromium. Significantly, sodium ions can successfully move outmore » and into without changing its lattice parameter c, which is explained in terms of the occurrence of chromium/sodium vacancy antisite during desodiation and sodiation processes. Here, our present work not only enriches the electrochemistry of layered intercalation compounds, but also extends the scope of investigation on high-capacity electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadike, Zulipiya; Zhou, Yong -Ning; Chen, Lan -Li
The intercalation compounds with various electrochemically active or inactive elements in the layered structure have been the subject of increasing interest due to their high capacities, good reversibility, simple structures and ease of synthesis. However, their reversible intercalation/deintercalation redox chemistries in all previous compounds involve a single cationic redox reaction or a cumulative cationic and anionic redox reaction. Here we report an anionic redox only chemistry and structural stabilization of layered sodium chromium sulfide. It is discovered that sulfur in sodium chromium sulfide is electrochemical active undergoing oxidation/reduction of sulfur rather than chromium. Significantly, sodium ions can successfully move outmore » and into without changing its lattice parameter c, which is explained in terms of the occurrence of chromium/sodium vacancy antisite during desodiation and sodiation processes. Here, our present work not only enriches the electrochemistry of layered intercalation compounds, but also extends the scope of investigation on high-capacity electrodes.« less
CATION EXCHANGE BETWEEN CELLS AND PLASMA OF MAMMALIAN BLOOD
Sheppard, C. W.; Martin, W. R.; Beyl, Gertrude
1951-01-01
Sodium and potassium exchange has been studied in the blood of the sheep, dog, cow, and man. The potassium exchange rate in human cells is practically unaltered by increasing the plasma potassium concentration approximately threefold. Comparing the results in different species the exchange rate for potassium shows a rough correlation with the intracellular amount of the element. Expressed in per cent of the cellular content sodium tends to exchange more rapidly than potassium. In three instances the specific activity curves deviate from the simple exponential behavior of a two compartment system. In the exchange of potassium in canine blood the deviation is caused by the presence of a rapidly exchanging fraction in the buffy coat cells. Such an effect does not account for the inhomogeneity of sodium exchange in human blood. PMID:14824508
Process for vitrification of contaminated sodium oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, H.T.; Mellinger, G.B.
1983-03-01
A glass composition was developed to accommodate 30 wt % sodium oxide and resist devitrification and leaching. An in-can melting process that is compatible with a comtaminated sodium calciner developed by Argonne National Laboratory was tested both on a laboratory and on an engineering scale and found to be viable. The Liquid Metal Fast Breeder Reactor experimental program continues to produce elemental sodium contaminated with radionuclides. This material is presently in temporary storage facilities because the current criterion will not permit alkali metals to be disposed of in shallow land burials. As a first step in treatment, Argonne National Laboratorymore » (ANL) has developed a calciner that will convert the sodium metal to an oxide. In work supported by the U.S. Department of Energy, Pacific Northwest Laboratory (PNL) is developing and demonstrating a process that is compatible with the calciner and facilities at ANL-West for incorporating sodium oxide into a glass. Glass, which normally contains sodium oxide, was chosen as the waste form because it is chemically durable and nondispersible. It is simple to produce, and the technology for incorporating nuclear wastes into glass is well developed.« less
Observations and Models of the Lunar Sodium Exosphere 1988 - 1999
NASA Technical Reports Server (NTRS)
Killen, Rosemary; Sarantos, Menelaos; Hurley, Dana M.; Potter, Andrew E.; Morgan, Thomas H.; Farrell, William M.; Naidu, Shantanu
2012-01-01
Sodium in the lunar exosphere is easily observed from the Earth's surface due to its strong resonance emission lines in the visible region of the spectrum. Although sodium is a trace element, it is easily ejected from the surface by a number of processes. The variation of this exospheric constituent both spatially and temporally can help to constrain these sources and the loss processes and their timescales. Due to a revival of interest in the Moon and its volatiles, observations of the lunar exosphere obtained at the McMath-Pierce solar telescope in 1998 and 1999 have recently been reduced and analyzed. In addition, observations of the lunar sodium exosphere obtained with the Mt. Lemmon Lunar Coronagraph on Mt. Lemmon, Arizona, have also been published. We combine these new data with data previously published and reanalyzed by Sarantos et al. This comprehensive data set will be modeled using both a simple Chamberlain exosphere model and a comprehensive Monte Carlo model.
Determination of niobium in the parts per million range in rocks
Grimaldi, F.S.
1960-01-01
A modified niobium thiocyanate spectrophotometric procedure relatively insensitive to titanium interference is presented. Elements such as tungsten, molybdenum, vanadium, and rhenium, which seriously interfere in the spectrophotometric determination of niobium, are separated by simple sodium hydroxide fusion and leach; iron and magnesium are used as carriers for the niobium. Tolerance limits are given for 28 elements in the spectrophotometric method. Specific application is made to the determination of niobium in the parts per million range in rocks. The granite G-1 contains 0.0022% niobium and the diabase W-1 0.00096% niobium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Momozaki, Y.; Li, M.
This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory,more » the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and Clinch River Breeder Reactor. Among the nonmetallic elements discussed, oxygen is deemed controllable and its concentration in sodium can be maintained in sodium for long reactor life by using cold-trap method. It was concluded that among the cold-trap and getter-trap methods, the use of cold trap is sufficient to achieve oxygen concentration of the order of 1 part per million. Under these oxygen conditions in sodium, the corrosion performance of structural materials such as austenitic stainless steels and ferritic steels will be acceptable at a maximum core outlet sodium temperature of {approx}550 C. In the current sodium compatibility studies, the oxygen concentration in sodium will be controlled and maintained at {approx}1 ppm by controlling the cold trap temperature. The oxygen concentration in sodium in the forced convection sodium loop will be controlled and monitored by maintaining the cold trap temperature in the range of 120-150 C, which would result in oxygen concentration in the range of 1-2 ppm. Uniaxial tensile specimens are being exposed to flowing sodium and will be retrieved and analyzed for corrosion and post-exposure tensile properties. Advanced materials for sodium exposure include austenitic alloy HT-UPS and ferritic-martensitic steels modified 9Cr-1Mo and NF616. Among the nonmetallic elements in sodium, carbon was assessed to have the most influence on structural materials since carbon, as an impurity, is not amenable to control and maintenance by any of the simple purification methods. The dynamic equilibrium value for carbon in sodium systems is dependent on several factors, details of which were discussed in the earlier report. The current sodium compatibility studies will examine the role of carbon concentration in sodium on the carburization-decarburization of advanced structural materials at temperatures up to 650 C. Carbon will be added to the sodium by exposure of carbon-filled iron tubes, which over time will enable carbon to diffuse through iron and dissolve into sodium. The method enables addition of dissolved carbon (without carbon particulates) in sodium that is of interest for materials compatibility evaluation. The removal of carbon from the sodium will be accomplished by exposing carbon-gettering alloys such as refractory metals that have a high partitioning coefficient for carbon and also precipitate carbides, thereby decreasing the carbon concentration in sodium.« less
Metal-Organic Framework-Derived Materials for Sodium Energy Storage.
Zou, Guoqiang; Hou, Hongshuai; Ge, Peng; Huang, Zhaodong; Zhao, Ganggang; Yin, Dulin; Ji, Xiaobo
2018-01-01
Recently, sodium-ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium-ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal-organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF-derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium-ion storage performances of MOF-derived materials, including MOF-derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF-derived materials in electrochemical energy storage are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yao, Dong; Liu, Yi; Zhao, Wujun; Wei, Haotong; Luo, Xintao; Wu, Zhennan; Dong, Chunwei; Zhang, Hao; Yang, Bai
2013-10-21
Despite the developments in the wet chemical synthesis of high-quality semiconductor nanocrystals (NCs) with diverse elemental compositions, telluride NCs are still irreplaceable materials owing to their excellent photovoltaic and thermoelectric performances. Herein we demonstrate the dissolution of elemental tellurium (Te) in a series of alkylamides by sodium borohydride (NaBH4) reduction at relatively low temperature to produce highly reactive precursors for hot-injection synthesis of telluride NCs. The capability to tune the reactivity of Te precursors by selecting injection temperature permits control of NC size over a broad range. The current preparation of Te precursors is simple, economical, and totally phosphine-free, which will promote the commercial synthesis and applications of telluride NCs.
Extraction of rare earth elements from low-grade Bauxite via precipitation reaction
NASA Astrophysics Data System (ADS)
Kusrini, E.; Nurani, Y.; Bahari, ZJ
2018-03-01
The aim of this research was to determine the optimum hydrometallurgical parameters to extract the rare earth elements (REE) from low-grade bauxite through acid leaching and precipitation reaction. REE or lanthanide recovery by a precipitation method with sodium sulphate and sodium phosphate as precipitation agents is reported where the effect of pH and recovery of REE are described. The metal composition of REE in low-grade bauxite after treatment were analyzed by ICP-OES. The total recovery values of REE elements at the first precipitation reaction using sodium sulphate as the precipitation agent at pH 3.5 showed ~68.2% of lanthanum, ~18.9% cerium, and ~7.8% yttrium. Lanthanum was the rare-earth element present at the highest concentration in the low-grade bauxite after the series treatments. An optimum pH of 3.5 for precipitation of rare-earth elements using sodium sulphate was demonstrated where this method is recommended for the extraction of REE elements from low-grade bauxite.
Wang, Hong; Wu, Qi-nan; Wu, Cheng-ying; Fan, Xiu-he; Jiang, Zheng; Gu, Wei; Yue, Wei
2015-01-01
To establish a simple, rapid and efficient method for determination of different inorganic elements in Euryale Semen from different habitats. Inductively coupled plasma-optical emission spectrometry(ICP-OES) was applied to determine inorganic elements in Euryale Semen, and the results were analyzed by principal component analysis. Euryale Semen from different habitats contained the kind of inorganic elements ranging from 22 to 26, including micronutrient elements like Iron, Zinc, Selenium, Copper, Molybdenum, Chrome and Cobalt, as well as macronutrient elements such as Potassium, Calcium, Sodium, Magnesium and Phosphorus. Five factors were extracted and used to comprehensively evaluate Euryale Semen from 20 different habitats covered almost China. The comprehensive function was F = 0. 38828F1 + 0. 25603F2 + 0. 07617F3 + 0. 06860F4 + 0. 04868F5, which resulted in the top three samples coming from Jiangsu Gaoyou, Hunan Xiangxi and Jiangsu Suzhou respectively. The study indicates that ICP-OES is a quick, accurate and sensitive method to determine the contents of inorganic elements in Euryale Semen,which provides scientific and reliable reference for its quality control and safety assessment.
Arulraj, Abraham Daniel; Vijayan, Muthunanthevar; Vasantha, Vairathevar Sivasamy
2015-10-29
An ultrasensitive and highly selective electrochemical sensor for the determination of p-nitrophenol (p-NP) was developed based on electrochemically treated nano polypyrrole/sodium dodecyl sulphate film (ENPPy/SDS film) modified glassy carbon electrode. The nano polypyrrole/sodium dodecyl sulphate film (NPPy/SDS film) was prepared and treated electrochemically in phosphate buffer solution. The surface morphology and elemental analysis of treated and untreated NPPy/SDS film were characterized by FESEM and EDX analysis, respectively. Wettability of polymer films were analysed by contact angle test. The hydrophilic nature of the polymer film decreased after electrochemical treatment. Effect of the pH of electrolyte and thickness of the ENPPy/SDS film on determination of p-NP was optimised by cyclic voltammetry. Under the optimised conditions, the p-NP was determined from the oxidation peak of p-hydroxyaminophenol which was formed from the reduction of p-NP in the reduction segment of cyclic voltammetry. A very good linear detection range (from 0.1 nM to 100 μM) and the best LOD (0.1 nM) were obtained for p-NP with very good selectivity. This detection limit is below to the allowed limit in drinking water, 0.43 μM, proposed by the U.S. Environmental Protection Agency (EPA) and earlier reports. Moreover, ENPPy/SDS film based sensor exhibits high sensitivity (4.4546 μA μM(-1)) to p-NP. Experimental results show that it is a fast and simple sensor for p-NP. Copyright © 2015 Elsevier B.V. All rights reserved.
FUEL ELEMENTS FOR NEUTRONIC REACTORS
Foote, F.G.; Jette, E.R.
1963-05-01
A fuel element for a nuclear reactor is described that consists of a jacket containing a unitary core of fissionable material and a filling of a metal of the group consisting of sodium and sodium-potassium alloys. (AEC)
CALANDRIA TYPE SODIUM GRAPHITE REACTOR
Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.
1964-02-11
A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)
Uechi, Ken; Asakura, Keiko; Ri, Yui; Masayasu, Shizuko; Sasaki, Satoshi
2016-02-01
Several estimation methods for 24-h sodium excretion using spot urine sample have been reported, but accurate estimation at the individual level remains difficult. We aimed to clarify the most accurate method of estimating 24-h sodium excretion with different numbers of available spot urine samples. A total of 370 participants from throughout Japan collected multiple 24-h urine and spot urine samples independently. Participants were allocated randomly into a development and a validation dataset. Two estimation methods were established in the development dataset using the two 24-h sodium excretion samples as reference: the 'simple mean method' estimated by multiplying the sodium-creatinine ratio by predicted 24-h creatinine excretion, whereas the 'regression method' employed linear regression analysis. The accuracy of the two methods was examined by comparing the estimated means and concordance correlation coefficients (CCC) in the validation dataset. Mean sodium excretion by the simple mean method with three spot urine samples was closest to that by 24-h collection (difference: -1.62 mmol/day). CCC with the simple mean method increased with an increased number of spot urine samples at 0.20, 0.31, and 0.42 using one, two, and three samples, respectively. This method with three spot urine samples yielded higher CCC than the regression method (0.40). When only one spot urine sample was available for each study participant, CCC was higher with the regression method (0.36). The simple mean method with three spot urine samples yielded the most accurate estimates of sodium excretion. When only one spot urine sample was available, the regression method was preferable.
Fei, Hailong; Wu, Xiaomin; Li, Huan; Wei, Mingdeng
2014-02-01
A simple and versatile method for preparation of novel sodium intercalated (NH4)2V6O16 is developed via a simple hydrothermal route. It is found that ammonium sodium vanadium bronze displays higher discharge capacity and better rate cyclic stability than ammonium vanadium bronze as lithium-ion battery cathode material because of smaller charge transfer resistance, which would favor superior discharge capacity and rate performance. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Development of cost-effective noncarbon sorbents for Hg(0) removal from coal-fired power plants.
Lee, Joo-Youp; Ju, Yuhong; Keener, Tim C; Varma, Rajender S
2006-04-15
Noncarbonaceous materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea, and active additives such as elemental sulfur, sodium sulfide, and sodium polysulfide to examine their potential as sorbents for the removal of elemental mercury (Hg(0)) vapor at coal-fired utility power plants. A number of sorbent candidates such as amine- silica gel, urea- silica gel, thiol- silica gel, amide-silica gel, sulfur-alumina, sulfur-molecular sieve, sulfur-montmorillonite, sodium sulfide-montmorillonite, and sodium polysulfide-montmorillonite, were synthesized and tested in a lab-scale fixed-bed system under an argon flow for screening purposes at 70 degrees C and/or 140 degrees C. Several functionalized silica materials reported in previous studies to effectively control heavy metals in the aqueous phase showed insignificant adsorption capacities for Hg(0) control in the gas phase, suggesting that mercury removal mechanisms in both phases are different. Among elemental sulfur-, sodium sulfide-, and sodium polysulfide-impregnated inorganic samples, sodium polysulfide-impregnated montmorillonite K 10 showed a moderate adsorption capacity at 70 degrees C, which can be used for sorbent injection prior to the wet FGD system.
Ezzati Nazhad Dolatabadi, Jafar; Hamishehkar, Hamed; de la Guardia, Miguel; Valizadeh, Hadi
2014-01-01
Introduction: Alendronate sodium enhances bone formation and increases osteoblast proliferation and maturation and leads to the inhibition of osteoblast apoptosis. Therefore, a rapid and simple spectrofluorometric method has been developed and validated for the quantitative determination of it. Methods: The procedure is based on the reaction of primary amino group of alendronate with o-phthalaldehyde (OPA) in sodium hydroxide solution. Results: The calibration graph was linear over the concentration range of 0.0-2.4 μM and limit of detection and limit of quantification of the method was 8.89 and 29 nanomolar, respectively. The enthalpy and entropy of the reaction between alendronate sodium and OPA showed that the reaction is endothermic and entropy favored (ΔH = 154.08 kJ/mol; ΔS = 567.36 J/mol K) which indicates that OPA interaction with alendronate is increased at elevated temperature. Conclusion: This simple method can be used as a practical technique for the analysis of alendronate in various samples. PMID:24790897
The Physiology, Biochemistry and Genetics of Survival of Bacteria Subjected to Environmental Stress
1981-11-01
sodium lauryl sulfate , but not to sodtimnl chloride or streptomycin alone. This sensitivity was again transient and capable of... sodium lauryl sulfate but not to sodium chloride or streptomycin alone. This sensitivity was again transient and capable of repair in the name simple...polymyxin B, bacitracin, and sodium lauryl . - 19 sutfate during growth, to ethylenediaminetetraacetic acid and sodium lauryl AUTHOR: 20 sulfate in
Oppenheimer, E.D.; Weisberg, R.A.
1963-02-26
This patent relates to a barrier system for a sodium heavy water reactor capable of insuring absolute separation of the metal and water. Relatively cold D/sub 2/O moderator and reflector is contained in a calandria into which is immersed the fuel containing tubes. The fuel elements are cooled by the sodium which flows within the tubes and surrounds the fuel elements. The fuel containing tubes are surrounded by concentric barrier tubes forming annular spaces through which pass inert gases at substantially atmospheric pressure. Header rooms above and below the calandria are provided for supplying and withdrawing the sodium and inert gases in the calandria region. (AEC)
Zhao, Wei; Zhang, Yan; Li, Quanmin
2008-05-01
Although the determination methods of sodium ceftriaxone has been increasingly reported, these methods have their inherent limits preventing them from being broadly applied in common laboratories. In order to circumvent this problem, a rapid and simple method for the indirect spectrophotometric determination of sodium ceftriaxone is reported. Sodium ceftriaxone was degraded completely in the presence of 0.20 mol/l sodium hydroxide in boiling water bath for 20 min. The thiol group (-SH) of the degradation product (I) of sodium ceftriaxone could reduce cupric to cuprous ions, and the resulting which was precipitated with the thiol group (-SH) of the degradation product (II) at pH 4.0. By determining the residual amount of copper (II), the indirect determination of sodium ceftriaxone can be achieved. Standard curve of sodium ceftriaxone versus the flotation yield of copper(II) showed that sodium ceftriaxone could be determined in low concentrations. The linear range of sodium ceftriaxone was 0.70-32 microg/ml and the detection limit evaluated by calibration curve (3sigma/k) was found to be 0.60 microg/ml. A simple and efficient method was developed and it has been successfully applied to the determination of sodium ceftriaxone in human serum and urine samples, respectively. It is expected that this method will find broad applications in the detection of cephalosporin derivatives with similar structure.
Comparison of Impurities in Charcoal Sorbents Found by Neutron Activation Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doll, Charles G.; Finn, Erin C.; Cantaloub, Michael G.
2013-01-01
Abstract: Neutron activation of gas samples in a reactor often requires a medium to retain sufficient amounts of the gas for analysis. Charcoal is commonly used to adsorb gas and hold it for activation; however, the amount of activated sodium in the charcoal after irradiation swamps most signals of interest. Neutron activation analysis (NAA) was performed on several commonly available charcoal samples in an effort to determine the activation background. The results for several elements, including the dominant sodium element, are reported. It was found that ECN charcoal had the lowest elemental background, containing sodium at 2.65 ± 0.05 ppm,more » as well as trace levels of copper and tungsten.« less
Contemporary Topics in Nutrition. Sodium, Cholesterol/Fat, Refined Sugar/Caloric Sweeteners.
ERIC Educational Resources Information Center
National Dairy Council, Rosemont, IL.
The properties of three critical elements in the human diet are discussed. In the first section, the functions of sodium in the body and in the diet are considered. The relationship between sodium and hypertension is explored, and recommendations from professional health groups on the sodium consumption are presented. In the second section, the…
Inert Reassessment Document for Sodium Molybdate - CAS No. 7631-95-0
Sodium molybdate is a soluble sodium salt form of molybdenum, a naturallyoccurringelement that is present in the earth's crust and in soils at background concentrations of1-2 mgkg. Molybdenum is an essential trace element for virtually all life forms.
Mechanism of sodium and chloride transport in the thin ascending limb of Henle.
Imai, M; Kokko, J P
1976-01-01
Our previous in vitro studies have disclosed that the thin ascending limb of Henle (tALH) possesses some unique membrane characteristics. In those studies we failed to demonstrated active transport of sodium chloride by the tALH, although it was shown that the isotopic permeability to sodium and chloride was unusually high. However, we did not examine the mechanisms by which the apparent high permeation of sodium chloride occurs. Thus the purpose of the present studies was to elucidate the mechanism of sodium chloride transport across the isolated tALH of the rabbit by conducting four different types of studies: (1) comparison of the observed chloride and sodium flux ratios to those predicted by Ussing's equation under imposed salt concentration gradients; (2) kinetic evaluation of chloride and sodium fluxes; (3) examination of the effect of bromide on the kinetics of chloride transport; and (4) experiments to test for the existence of exchange diffusion of chloride. In the first set of studies the predicted and the theoretical flux ratios of sodium were identical in those experiments in which sodium chloride was added either to the perfusate or to the bath. However, the observed chloride flux ratio, lumen-to-bath/bath-to-lumen, was significantly lower than that predicted from Ussing's equation when 100 mM sodium chloride was added to the bath. In the second set of experiments the apparent isotopic permeability for sodium and for chloride was measured under varying perfusate and bath NaCl concentrations. There was no statistical change in the apparent sodium permeability coefficient when the NaCl concentration was raised by varying increments from 85.5 to 309.5 mM. However, permeation of 36Cl decrease significantly with an increase in Cl from 73.6 to 598.6 mM. These events could be explained by a two component chloride transport process consisting of simple diffusion and a saturable facilitated diffusion process with a Vmax = 3.71 neq mm-1 min-1. In the third set of studies it was shown that bromide inhibits transport of chloride and that the magnitude of inhibition is dependent on chloride concentrations. The fourth set of studies ruled out the existence of exchange diffusion. In conclusion, these studies indicate that sodium transport across tALH is by simple passive diffusion, while chloride transport across tALH involves at least two mechanisms: (1) simple passive diffusion; and (2) a specific membrane interaction process (carrier-mediated) which is competitively inhibited by bromide. PMID:993330
Wei, Chengzhen; Cheng, Cheng; Wang, Shanshan; Xu, Yazhou; Wang, Jindi; Pang, Huan
2015-08-01
A simple hydrothermal method has been developed to prepare hexagonal tablet precursors, which are then transformed into porous sodium-doped Ni2P2O7 hexagonal tablets by a simple calcination method. The obtained samples were evaluated as electrode materials for supercapacitors. Electrochemical measurements show that the electrode based on the porous sodium-doped Ni2P2O7 hexagonal tablets exhibits a specific capacitance of 557.7 F g(-1) at a current density of 1.2 A g(-1) . Furthermore, the porous sodium-doped Ni2P2O7 hexagonal tablets were successfully used to construct flexible solid-state hybrid supercapacitors. The device is highly flexible and achieves a maximum energy density of 23.4 Wh kg(-1) and a good cycling stability after 5000 cycles, which confirms that the porous sodium-doped Ni2P2 O7 hexagonal tablets are promising active materials for flexible supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Superconductivity theory applied to the periodic table of the elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elifritz, T.L.
1994-12-31
The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition, is applied to the periodic table of the elements, in order to isolate the essential features of high temperature superconductivity and to predict its occurrence within the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity.
1971-01-01
alloys— sodium — sodium alloya— solder—carbon ateels—chromium steels—silicon steels—tantalum—tantalum alloys—terbium—thallium—thallium alloys—thorium...Praseodymium 45 Rhenium 46 Rhodium 47 Rubidium 48 Ruthenium 4» Samarium 50 Scandium 51 Selenium 52 Silicon 5:i Silver 54 Sodium 55 Strontium 56...Potassium ♦ Sodium 111 Sodium * Potassium 112 Tantalum ♦ Tungsten 113 Thallium + Lead, PbTl| 114 Tin ♦ Bismuth 115 Tin ♦ Indium 116 Tin+ Lead 117
Yabuuchi, Naoaki; Komaba, Shinichi
2014-01-01
Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed. PMID:27877694
Yabuuchi, Naoaki; Komaba, Shinichi
2014-08-01
Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed.
Superconductivity theory applied to the periodic table of the elements
NASA Technical Reports Server (NTRS)
Elifritz, Thomas Lee
1995-01-01
The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition is applied to the periodic table of the elements, in order to isolate the essential features of of high temperature superconductivity and to predict its occurrence with the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lara-García, Hugo A.; Romero-Ibarra, Issis C.; Pfeiffer, Heriberto, E-mail: pfeiffer@iim.unam.mx
Hierarchical growth of cubic ZrO{sub 2} phase was successfully synthesized via a simple hydrothermal process in the presence of different surfactants (cationic, non-ionic and anionic) and sodium hydroxide. The structural and microstructural characterizations of different ZrO{sub 2} powders were performed using various techniques, such as X-ray diffraction, transmission electron microscopy, N{sub 2} adsorption–desorption, scanning electron microscopy and infrared. Results indicated that sodium addition stabilized the cubic ZrO{sub 2} phase by a Na-doping process, independently of the surfactant used. In contrast, microstructural characteristics varied as a function of the surfactant and sodium presence. In addition, water vapor (H{sub 2}O) and carbonmore » dioxide (CO{sub 2}) sorption properties were evaluated on ZrO{sub 2} samples. Results evidenced that sample surface reactivity changed as a function of the sodium content. Finally, this surface reactivity was evaluated on the biodiesel transesterification reaction using the different synthesized samples, obtaining yields of 93%. - Graphical abstract: Hierarchical growth of cubic Na-ZrO{sub 2} phase was synthesized by hydrothermal processes in the presence of surfactants and sodium. Sodium addition stabilized the cubic phase by a Na-doping process, while the microstructural characteristics varied with surfactants. Finally, this surface reactivity was evaluated on the biodiesel transesterification reaction. - Highlights: • Cubic-ZrO{sub 2} phase was synthesized via a simple hydrothermal process. • ZrO{sub 2} structure and microstructures changed as a function of the surfactant. • Cubic-ZrO{sub 2} phase was evaluated on the biodiesel transesterification reaction.« less
Chen, Wei; Deng, Da
2014-11-11
We report a new, low-cost and simple top-down approach, "sodium-cutting", to cut and open nanostructures deposited on a nonplanar surface on a large scale. The feasibility of sodium-cutting was demonstrated with the successfully cutting open of ∼100% carbon nanospheres into nanobowls on a large scale from Sn@C nanospheres for the first time.
NASA Astrophysics Data System (ADS)
Lara-García, Hugo A.; Romero-Ibarra, Issis C.; Pfeiffer, Heriberto
2014-10-01
Hierarchical growth of cubic ZrO2 phase was successfully synthesized via a simple hydrothermal process in the presence of different surfactants (cationic, non-ionic and anionic) and sodium hydroxide. The structural and microstructural characterizations of different ZrO2 powders were performed using various techniques, such as X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, scanning electron microscopy and infrared. Results indicated that sodium addition stabilized the cubic ZrO2 phase by a Na-doping process, independently of the surfactant used. In contrast, microstructural characteristics varied as a function of the surfactant and sodium presence. In addition, water vapor (H2O) and carbon dioxide (CO2) sorption properties were evaluated on ZrO2 samples. Results evidenced that sample surface reactivity changed as a function of the sodium content. Finally, this surface reactivity was evaluated on the biodiesel transesterification reaction using the different synthesized samples, obtaining yields of 93%.
Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Bourdais, Florian, E-mail: florian.lebourdais@cea.fr; Marchand, Benoit, E-mail: florian.lebourdais@cea.fr
2015-03-31
Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of amore » newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.« less
Smith, C.L.; Motooka, J.M.; Willson, W.R.
1984-01-01
Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.
In vivo sodium concentration continuously monitored with fluorescent sensors.
Dubach, J Matthew; Lim, Edward; Zhang, Ning; Francis, Kevin P; Clark, Heather
2011-02-01
Sodium balance is vital to maintaining normal physiological function. Imbalances can occur in a variety of diseases, during certain surgical operations or during rigorous exercise. There is currently no method to continuously monitor sodium concentration in patients who may be susceptible to hyponatremia. Our approach was to design sodium specific fluorescent sensors capable of measuring physiological fluctuations in sodium concentration. The sensors are submicron plasticized polymer particles containing sodium recognition components that are coated with biocompatible poly(ethylene) glycol. Here, the sensors were brought up in saline and placed in the subcutaneous area of the skin of mice by simple injection. The fluorescence was monitored in real time using a whole animal imager to track changes in sodium concentrations. This technology could be used to monitor certain disease states or warn against dangerously low levels of sodium during exercise.
Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay
USDA-ARS?s Scientific Manuscript database
Biodegradable foamlike materials based on a naturally occurring polymer (casein protein) and sodium montmorillonite clay (Na+-MMT) were produced through a simple freeze-drying process. By utilizing DL-glyceraldehyde (GC) as a chemical cross-linking agent, the structural integrity of these new aeroge...
Chemical Kinetics, Heat Transfer, and Sensor Dynamics Revisited in a Simple Experiment
ERIC Educational Resources Information Center
Sad, Maria E.; Sad, Mario R.; Castro, Alberto A.; Garetto, Teresita F.
2008-01-01
A simple experiment about thermal effects in chemical reactors is described, which can be used to illustrate chemical reactor models, the determination and validation of their parameters, and some simple principles of heat transfer and sensor dynamics. It is based in the exothermic reaction between aqueous solutions of sodium thiosulfate and…
Efficacy Profiles of Psychopharmacology: Divalproex Sodium in Conduct Disorder
ERIC Educational Resources Information Center
Khanzode, Leena A.; Saxena, Kirti; Kraemer, Helena; Chang, Kiki; Steiner, Hans
2006-01-01
Little is known about how deeply medication treatment penetrates different levels of the mind/brain system. Psychopathology consists of relatively simple constructs (e.g., anger, irritability), or complex ones (e.g., responsibility). This study examines the efficacy of a specific compound, divalproex sodium (DVPX), on the various levels of…
A Simple Recipe for Whitening Old Newspaper Clippings.
ERIC Educational Resources Information Center
Carter, Henry A.
1995-01-01
Describes a method for experimenting with both whitening and deacidifying old newspaper clippings using sodium borohydride bleaching. Clippings are soaked in distilled water then immersed in sodium borohydride for 15-20 minutes. After rinsing with distilled water, the paper is washed with saturated Ca(OH)2 solution. Readers should not begin…
HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sell, D. A.; Baily, C. E.; Malewitz, T. J.
2016-09-01
A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium aftermore » the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.« less
Development of an X-ray surface analyzer for planetary exploration
NASA Technical Reports Server (NTRS)
Clark, B. C.
1972-01-01
An ultraminiature X-ray fluorescence spectrometer was developed which can obtain data on element composition not provided by present spacecraft instrumentation. The apparatus employs two radioisotope sources (Fe-55 and Cd-109) which irradiate adjacent areas on a soil sample. Fluorescent X-rays emitted by the sample are detected by four thin-window proportional counters. Using pulse-height discrimination, the energy spectra are determined. Virtually all elements above sodium in the periodic table are detected if present at sufficient levels. Minimum detection limits range from 30 ppm to several percent, depending upon the element and the matrix. For most elements, they are below 0.5 percent. Accuracies likewise depend upon the matrix, but are generally better than plus or minus 0.5 percent for all elements of atomic number greater than 14. Elements below sodium are also detected, but as a single group.
NASA Astrophysics Data System (ADS)
Illy, Marie-Claire; Smith, Anna L.; Wallez, Gilles; Raison, Philippe E.; Caciuffo, Roberto; Konings, Rudy J. M.
2017-07-01
Na3.16(2)UV,VI0.84(2)O4 is obtained from the reaction of sodium with uranium dioxide under oxygen potential conditions typical of a sodium-cooled fast nuclear reactor. In the event of a breach of the steel cladding, it would be the dominant reaction product forming at the rim of the mixed (U,Pu)O2 fuel pellets. High-temperature X-ray diffraction measurements show that a distortion of the uranium environment in Na3.16(2)UV,VI0.84(2)O4 results in a strongly anisotropic thermal expansion. A comparison with several related sodium metallates Nan-2Mn+On-1 - including Na3SbO4 and Na3TaO4, whose crystal structures are reported for the first time - has allowed us to assess the role played in the lattice expansion by the Mn+ cation radius and the Na/M ratio. On this basis, the thermomechanical behavior of the title compound is discussed, along with those of several related double oxides of sodium and actinide elements, surrogate elements, or fission products.
Belisle, A.A.; Swineford, D.M.
1988-01-01
A simple, specific procedure was developed for the analysis of organophosphorus and carbamate pesticides in sediment. The wet soil was mixed with anhydrous sodium sulfate to bind water and the residues were column extracted in acetone:methylene chloride (1:l,v/v). Coextracted water was removed by additional sodium sulfate packed below the sample mixture. The eluate was concentrated and analyzed directly by capillary gas chromatography using phosphorus and nitrogen specific detectors. Recoveries averaged 93 % for sediments extracted shortly after spiking, but decreased significantly as the samples aged.
NASA Astrophysics Data System (ADS)
Sabnis, Shweta S.; Dhavale, Nilesh D.; Jadhav, Vijay. Y.; Gandhi, Santosh V.
2008-03-01
A new simple, economical, rapid, precise and accurate method for simultaneous determination of rabeprazole sodium and itopride hydrochloride in capsule dosage form has been developed. The method is based on ratio spectra derivative spectrophotometry. The amplitudes in the first derivative of the corresponding ratio spectra at 231 nm (minima) and 260 nm were selected to determine rabeprazole sodium and itopride hydrochloride, respectively. The method was validated with respect to linearity, precision and accuracy.
Sabnis, Shweta S; Dhavale, Nilesh D; Jadhav, Vijay Y; Gandhi, Santosh V
2008-03-01
A new simple, economical, rapid, precise and accurate method for simultaneous determination of rabeprazole sodium and itopride hydrochloride in capsule dosage form has been developed. The method is based on ratio spectra derivative spectrophotometry. The amplitudes in the first derivative of the corresponding ratio spectra at 231nm (minima) and 260nm were selected to determine rabeprazole sodium and itopride hydrochloride, respectively. The method was validated with respect to linearity, precision and accuracy.
Topouzian, Armenag
1980-01-01
This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.
The apparent solubility of aluminum (III) in Hanford high-level waste.
Reynolds, Jacob G
2012-01-01
The solubility of aluminum in Hanford nuclear waste impacts on the processability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity. Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono-, di- and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH)(4)-H(2)O system, and the NaOH-NaAl(OH)(4)-NaCl-H(2)O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than 2M. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above 2M. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect.
The apparent solubility of aluminum (III) in Hanford high-level waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Jacob G.
2012-12-01
The solubility of aluminum in Hanford nuclear waste impacts on the process ability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity.more » Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono, di and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH{sub 4})H{sub 2}O system, and the NaOH-NaAl(OH{sub 4})NaCl-H{sub 2}O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than two. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include. kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above two. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect.« less
Zhang, Tianjing; Chang, Xiaoyu; Liu, Wanlu; Li, Xiaoxia; Wang, Faxuan; Huang, Liping; Liao, Sha; Liu, Xiuying; Zhang, Yuhong; Zhao, Yi
2017-12-01
Sodium, potassium, calcium, magnesium, zinc, copper and iron are associated with the sequela of hypertension. The most reliable method for testing those elements is by collecting 24-h urine samples. However, this is cumbersome and collection of spot urine is more convenient in some circumstance. The aim of this study was to compare the concentrations of different elements in 24-h urine and spot urine. Data was collected from a sub-study of China Salt Substitute and Stroke Study. 240 participants were recruited randomly from 12 villages in two counties in Ningxia, China. Both spot and 24-h urine specimens were collected from each patient. Routine urine test was conducted, and concentration of elements was measured using microwave digestion and Inductively Coupled Plasma-Optical Emission Spectrometry. Partial correlation analysis and Spearman correlation analysis were used to investigate the concentration of different elements and the relationship between 24- h urine and spot urine. A partial correlation in sodium, potassium, calcium, magnesium and iron was found between paired 24-h urine and spot urine samples except copper and zinc: 0.430, 0.426, 0.550, 0.221 and 0.191 respectively. Spot urine can replace 24-h urine for estimating some of the elements in hypertensive patients with normal renal function. Copyright © 2017 Elsevier GmbH. All rights reserved.
Mitsumata, Hiroshi; Mori, Toshio; Maeda, Tatsuo; Kita, Yoshiyuki; Kohatsu, Osamu
2006-02-01
We have established a simple method for assaying the quantity of soluble bromine in the discharge tubes of an extra-high-pressure mercury discharge lamp. Each discharge tube is destroyed in 5 ml of 10 mM sodium hydroxide, and the recovered sodium hydroxide solution is analyzed by suppressed-ion chromatography using gradient elution. We have clarified that this method can assay less than 1 microg of soluble bromine in a discharge tube.
A simple method to synthesize modified Fe3O4 for the removal of organic pollutants on water surface
NASA Astrophysics Data System (ADS)
Zhu, Ling; Li, Chuanhao; Wang, Juan; Zhang, Hui; Zhang, Jian; Shen, Yuhua; Li, Cun; Wang, Cuiping; Xie, Anjian
2012-06-01
In this article, a simple, economic and environment-friendly approach is explored to prepare Fe3O4 nanoparticles by using air oxidation at room temperature. Furthermore, the Fe3O4 magnetic nanoparticles (MNPs) have been modified with sodium oleate successfully to form super-hydrophobic surfaces. The alkali source played an important role in controlling the morphologies of Fe3O4 MNPs. Either Fe3O4 MNPs or sodium oleate modified Fe3O4 MNPs possessed good magnetic property, and the as-prepared modified Fe3O4 nanoparticles are both hydrophobic and lipophilic. Therefore, Fe3O4/sodium oleate could be dispersed stable in the oil medium and have been applied in the cleanup engine oil from the water surface. It will open up a potential and broad application in wastewater treatment.
Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors.
Yin, Jiao; Qi, Li; Wang, Hongyu
2012-05-01
The lithium-based energy storage technology is currently being considered for electric automotive industry and even electric grid storage. However, the hungry demand for vast energy sources in the modern society will conflict with the shortage of lithium resources on the earth. The first alternative choice may be sodium-related materials. Herein, we propose an electric energy storage system (sodium-ion capacitor) based on porous carbon and sodium titanate nanotubes (Na-TNT, Na(+)-insertion compounds) as positive and negative electrode materials, respectively, in conjunction with Na(+)-containing non-aqueous electrolytes. As a low-voltage (0.1-2 V) sodium insertion nanomaterial, Na-TNT was synthesized via a simple hydrothermal reaction. Compared with bulk sodium titanate, the predominance of Na-TNT is the excellent rate performance, which exactly caters to the need for electrochemical capacitors. The sodium-ion capacitors exhibited desirable energy density and power density (34 Wh kg(-1), 889 W kg(-1)). Furthermore, the sodium-ion capacitors had long cycling life (1000 cycles) and high coulombic efficiency (≈ 98 % after the second cycle). More importantly, the conception of sodium-ion capacitor has been put forward.
A Highly Reversible Room-Temperature Sodium Metal Anode.
Seh, Zhi Wei; Sun, Jie; Sun, Yongming; Cui, Yi
2015-11-25
Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating-stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved over 300 plating-stripping cycles at 0.5 mA cm(-2). The long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium-sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies.
DEVELOPMENT OF NONCARBON SORBENTS FOR HG0 REMOVAL FROM COAL-FIRED POWER PLANTS
Noncarbon materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups, such as amine, amide, thiol, and urea; and active additives, such as elemental sulfur, sodium sulfide, and sodium polysulfide...
Nickel container of highly-enriched uranium bodies and sodium
Zinn, Walter H.
1976-01-01
A fuel element comprises highly a enriched uranium bodies coated with a nonfissionable, corrosion resistant material. A plurality of these bodies are disposed in layers, with sodium filling the interstices therebetween. The entire assembly is enclosed in a fluid-tight container of nickel.
Brandt, H.L.
1962-02-20
A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)
NASA Astrophysics Data System (ADS)
Tittarelli, Francesca; Mobili, Alessandra; Bellezze, Tiziano
2017-08-01
The use of sodium monofluorophosphate (MFP) was experimented as migrator inhibiting treatment against corrosion of reinforced concrete elements induced by chlorides. The results show that sodium monofluorophosphate, applied by surface impregnation, is able to slow down reinforcement corrosion only for reinforcing steel bars with concrete cover not thicker than 1 cm. This limitation is most probably due to the difficulty, with the type of application adopted, in making MFP to reach concentrations high enough to inhibit the corrosive process at greater depths from the impregnation surface.
A Highly Reversible Room-Temperature Sodium Metal Anode
2015-01-01
Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating–stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved over 300 plating–stripping cycles at 0.5 mA cm–2. The long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium–sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies. PMID:27163006
NASA Astrophysics Data System (ADS)
Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun
2017-04-01
Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.
de Nooy, A E; Capitani, D; Masci, G; Crescenzi, V
2000-01-01
Original data are provided demonstrating that the title condensations are simple and versatile methods for the synthesis of hydrogels based on a variety of carboxylated polysaccharides. In this work, the biopolymers considered are sodium hyaluronate and sodium alginate. Nonnatural carboxylated polysaccharides were commercial (carboxymethyl)cellulose or were obtained by carboxymethylation or selective oxidation of primary alcohol groups of scleroglucan and dextran. Hydrogels prepared via the Passerini reaction were transparent, alkali labile materials whereas the transparency of the Ugi gels depended on the polysaccharide, the cross-linker, and the degree of cross-linking. The Ugi gels were stable for several months at a pH ranging from 1.3 to 11 and up to temperatures over 90 degrees C. The structure of the networks was studied by means of 13C CP-MAS and 15N CP-MAS NMR spectroscopy. A quantitative NMR analysis and elemental analysis of the dry gels allowed us to estimate the efficiency of the reactions, i.e., the actual degree of cross-linking, which appeared to be about 80% of theoretical. The influence of added salt and pH on the swelling of several Ugi gels with different degrees of cross-linking was studied in a qualitative manner.
Detection of interstellar sodium hydroxide in self-absorption toward the galactic center
NASA Technical Reports Server (NTRS)
Hollis, J. M.; Rhodes, P. J.
1982-01-01
A weak self-absorbed emission line, which is identified as the J = 4-3 transition of sodium hydroxide, has been detected in the direction of Sgr B2(OH). The correspondingly weak Sgr B2(QH) emission line U75406, previously reported as an unidentified spectral feature by other investigators, is consistent with the J = 3-2 transition of sodium hydroxide. This detection may represent the first evidence of a grain reaction formation mechanism for simple metal hydroxides. The detection of H62 Delta toward Orion A is also reported.
Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery.
Li, Hongbian; Shen, Fei; Luo, Wei; Dai, Jiaqi; Han, Xiaogang; Chen, Yanan; Yao, Yonggang; Zhu, Hongli; Fu, Kun; Hitz, Emily; Hu, Liangbing
2016-01-27
A simple one-step thermal pyrolysis route has been developed to prepare carbon membrane from a natural leaf. The carbonized leaf membrane possesses anisotropic surfaces and internal hierarchical porosity, exhibiting a high specific capacity of 360 mAh/g and a high initial Coulombic efficiency of 74.8% as a binder-free, current-collector-free anode for rechargeable sodium ion batteries. Moreover, large-area carbon membranes with low contact resistance are fabricated by simply stacking and carbonizing leaves, a promising strategy toward large-scale sodium-ion battery developments.
ERIC Educational Resources Information Center
Lang, Patrick T.; Harned, Andrew M.; Wissinger, Jane E.
2011-01-01
A new green oxidation procedure was developed for the undergraduate organic teaching laboratories using Oxone and a catalytic quantity of sodium chloride for the conversion of borneol to camphor. This simple 1 h, room temperature reaction afforded high quality and yield of product, was environmentally friendly, and produced negligible quantities…
Process for making boron nitride using sodium cyanide and boron
Bamberger, Carlos E.
1990-02-06
This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.
Process for making boron nitride using sodium cyanide and boron
Bamberger, Carlos E.
1990-01-01
This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.
Discovery of sodium and potassium vapor in the atmosphere of the moon
NASA Technical Reports Server (NTRS)
Potter, A. E.; Morgan, T. H.
1988-01-01
A ground-based telescopic study of the lunar surface with high resolution spectroscopy has led to the discovery of sodium and potassium vapor 'atmospheres'. The scale height for the sodium atmosphere is 120 + or - 42 km, and for potassium 90 + or - 20 km; these values imply that the effective temperature of the two elements closely approximates that of the lunar surface. The sodium density at the south polar region is similar to that at the subsolar point, indicating widespread distribution of the vapor. The ratio of sodium to potassium densities, at 6 (+ or - 3):1, is close to the lunar surface ratio and suggests that the atmosphere originated in the vaporization of surface minerals.
On the purity assessment of solid sodium borohydride
NASA Astrophysics Data System (ADS)
Botasini, Santiago; Méndez, Eduardo
2012-01-01
Since sodium borohydride has become extensively used as chemical hydrogen storage material in fuel cells, many techniques have been proposed to assess the purity of this substance. However, all of them are developed in aqueous media, where the reagent is unstable. In addition, its hygroscopic nature was difficults in any attempt to make precise quantifications. The present work compares three different methods, namely, voltammetric, titrimetric, and Fourier transformed infrared spectroscopy (FTIR) in order to assess the purity of sodium borohydride, using an expired and a new sodium borohydride samples as references. Our results show that only the FTIR measurements provide a simple and semi-quantitative means to assess the purity of sodium borohydride due to the fact that it is the only one that measures the sample in the solid state. A comparison between the experimental data and theoretical calculation reveals the identification of the absorption bands at 1437 cm-1 of sodium metaborate and 2291 cm-1 of sodium borohydride which represent a good fingerprint for the qualitative assessment of the sample quality.
Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Alon, Leeor; Chang, Gregory; Sodickson, Daniel K.; Regatte, Ravinder R.; Wiggins, Graham C.
2015-01-01
Purpose We describe a 6×2 channel sodium/proton array for knee MRI at 3 Tesla. Multi-element coil arrays are desirable because of well-known signal-to-noise ratio advantages over volume and single-element coils. However, low coil-tissue coupling that is characteristic of coils operating at low frequency can make the potential gains from a phased array difficult to realize. Methods The issue of low coil-tissue coupling in the developed six channel sodium receive array was addressed by implementing 1) a mechanically flexible former to minimize coil-to-tissue distance and reduce the overall diameter of the array and 2) a wideband matching scheme that counteracts preamplifier noise degradation caused by coil coupling and a high quality factor. The sodium array was complemented with a nested proton array to enable standard MRI. Results The wideband matching scheme and tight-fitting mechanical design contributed to greater than 30% central SNR gain on the sodium module over a mono-nuclear sodium birdcage coil, while the performance of the proton module was sufficient for clinical imaging. Conclusion We expect the strategies presented in this work to be generally relevant in high density receive arrays, particularly in x-nuclei or small animal applications, or in those where the array is distant from the targeted tissue. PMID:26502310
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seh, Zhi Wei; Sun, Jie; Sun, Yongming
Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating–stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved overmore » 300 plating–stripping cycles at 0.5 mA cm –2. In this study, the long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium–sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies.« less
Thyssen, G M; Holtkamp, M; Kaulfürst-Soboll, H; Wehe, C A; Sperling, M; von Schaewen, A; Karst, U
2017-06-21
Laser ablation-inductively coupled plasma-optical emission spectroscopy (LA-ICP-OES) is presented as a valuable tool for elemental bioimaging of alkali and earth alkali elements in plants. Whereas LA-ICP-OES is commonly used for micro analysis of solid samples, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has advanced to the gold standard for bioimaging. However, especially for easily excitable and ubiquitous elements such as alkali and earth alkali elements, LA-ICP-OES holds some advantages regarding simultaneous detection, costs, contamination, and user-friendliness. This is demonstrated by determining the calcium, sodium and potassium distribution in tobacco plant stem and leaf petiole tissues. A quantification of the calcium contents in a concentration range up to 1000 μg g -1 using matrix-matched standards is presented as well. The method is directly compared to a LA-ICP-MS approach by analyzing parallel slices of the same samples.
Guo, Shaohua; Yu, Haijun; Jian, Zelang; Liu, Pan; Zhu, Yanbei; Guo, Xianwei; Chen, Mingwei; Ishida, Masayoshi; Zhou, Haoshen
2014-08-01
A layered sodium manganese oxide material (NaMn3 O5 ) is introduced as a novel cathode materials for sodium-ion batteries. Structural characterizations reveal a typical Birnessite structure with lamellar stacking of the synthetic nanosheets. Electrochemical tests reveal a particularly large discharge capacity of 219 mAh g(-1) in the voltage rang of 1.5-4.7 V vs. Na/Na(+) . With an average potential of 2.75 V versus sodium metal, layered NaMn3 O5 exhibits a high energy density of 602 Wh kg(-1) , and also presents good rate capability. Furthermore, the diffusion coefficient of sodium ions in the layered NaMn3 O5 electrode is investigated by using the galvanostatic intermittent titration technique. The results greatly contribute to the development of room-temperature sodium-ion batteries based on earth-abundant elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using a Homemade Flame Photometer to Measure Sodium Concentration in a Sports Drink
ERIC Educational Resources Information Center
LaFratta, Christopher N.; Jain, Swapan; Pelse, Ian; Simoska, Olja; Elvy, Karina
2013-01-01
The purpose of this experiment was to create a simple and inexpensive flame photometer to measure the concentration of sodium in beverages, such as Gatorade. We created a nebulizer using small tubing and sprayed the sample into the base of a Bunsen burner. Adjacent to the flame was a photodiode with a filter specific for the emission of the sodium…
Sakamoto, Ryu; Kashiwagi, Hirotaka; Selvakumar, Sermadurai; Moteki, Shin A; Maruoka, Keiji
2016-07-06
This article describes an efficient method for the introduction of perfluoroalkyl groups into N-acrylamides, 2-isocyanides, olefins, and other heterocycles using perfluoroalkyl radicals that were generated from the reaction between sodium perfluoroalkanesulfinates and a hypervalent iodine(iii) reagent. This approach represents a simple, scalable perfluoroalkylation method under mild and metal-free conditions.
Singh, S P; Rani, D
1999-09-01
To develop a simple diagnostic test to assess sodium status in large ruminants on the basis of the sodium-to-potassium ratio (Na:K) and to determine its relevance. 7 buffalo heifers and 21 lactating, pregnant, and nonpregnant dairy cows and heifers. Buffalo heifers were subjected in 2 experiments to variable dietary sodium intake or sodium depletion and changes in sodium and potassium concentrations; Na:K was simultaneously monitored in various body fluids to study its value for indicating sodium status. Validity of the muzzle secretion test was assessed. Muzzle secretion and urinary Na:K and sodium concentration, but not serum electrolyte concentrations, reflected the sodium status of buffalo heifers in response to the widely variable intake of sodium (0.03 to 0.16% of dry matter [DM]). Progressive sodium depletion during an 11-day period, using saliva deprivation caused reciprocal changes in sodium and potassium concentrations in saliva and muzzle secretion, but not in urine. Decreasing urine sodium concentration was associated with decreasing urine potassium concentration. Saliva, urine, and muzzle secretion Na:K closely reflected the degree of sodium deficit. Buffaloes or dairy cows maintained on optimal sodium intake had muzzle secretion and urine Na:K > 0.30. Muzzle secretion or urine Na:K < 0.20 or < 0.10, respectively, was indicative of sodium deficiency. Analysis of muzzle secretion Na:K, and to a large extent urine Na:K, may be used as a convenient diagnostic tool to assess sodium status in large ruminants. It has accuracy similar to that of saliva Na:K.
Globular Cluster Star Classification: Application to M13
NASA Astrophysics Data System (ADS)
Caimmi, R.
2013-06-01
Starting from recent determination of Fe, O, Na abundances on a restricted sample (N=67) of halo and thick disk stars, a natural and well motivated selection criterion is defined for the classification globular cluster stars. An application is performed to M13 using a sample (N=113) for which Fe, O, Na abundances have been recently inferred from observations. A comparison is made between the current and earlier M13 star classifications. Both O and Na empirical differential abundance distributions are determined for each class and for the whole sample (with the addition of Fe in the last case) and compared with their theoretical counterparts due to cosmic scatter obeying a Gaussian distribution whose parameters are inferred from related subsamples. The occurrence of an agreement between the empirical and theoretical distributions is interpreted as absence of significant chemical evolution and vice versa. The procedure is repeated with regard to four additional classes depending on whether oxygen and sodium abundance is above (stage CE) or below (stage AF) a selected threshold. Both O and Na empirical differential abundance distributions, related to the whole sample, exhibit a linear fit for the AF and CE stage. Within the errors, the oxygen slope for the CE stage is equal and of opposite sign with respect to the sodium slope for AF stage, while the contrary holds when dealing with the oxygen slope for the AF stage with respect to the sodium slope for the CE stage. In the light of simple models of chemical evolution applied to M13, oxygen depletion appears to be mainly turned into sodium enrichment for [O/H]≥-1.35 and [Na/H]≤-1.45, while one or more largely preferred channels occur for [O/H]<-1.35 and [Na/H]>-1.45. In addition, the primordial to the current M13 mass ratio can be inferred from the true sodium yield in units of the sodium solar abundance. Though the above results are mainly qualitative due to large (∓.5 dex) uncertainties in abundance determination, still the exhibited trend is expected to be real. The proposed classification of globular cluster stars may be extended in a twofold manner, namely to: (i) elements other than Na and Fe and (ii) globular clusters other than M13.
Narrow-field imaging of the lunar sodium exosphere
NASA Technical Reports Server (NTRS)
Stern, S. Alan; Flynn, Brian C.
1995-01-01
We present the first results of a new technique for imaging the lunar Na atmosphere. The technique employs high resolution, a narrow bandpass, and specific observing geometry to suppress scattered light and image lunar atmospheric Na I emission down to approximately 50 km altitude. Analysis of four latitudinally dispersed images shows that the lunar Na atmosphere exhibits intersting latitudinal and radial dependencies. Application of a simple Maxwellian collisionless exosphere model indicates that: (1) at least two thermal populations are required to adequately fit the soldium's radial intensity behavior, and (2) the fractional abundances and temperatures of the two components vary systematically with latitude. We conclude that both cold (barometric) and hot (suprathermal) Na may coexist in the lunar atmosphere, either as distinct components or as elements of a continuum of populations ranging in temperature from the local surface temperature up to or exceeding escape energies.
Use of extracts from oyster shell and soil for cultivation of Spirulina maxima.
Jung, Joo-Young; Kim, Sunmin; Lee, Hansol; Kim, Kyochan; Kim, Woong; Park, Min S; Kwon, Jong-Hee; Yang, Ji-Won
2014-12-01
Calcium ion and trace metals play important roles in various metabolisms of photosynthetic organisms. In this study, simple methods were developed to extract calcium ion and micronutrients from oyster shell and common soil, and the prepared extracts were tested as a replacement of the corresponding chemicals that are essential for growth of microalgae. The oyster shell and soil were treated with 0.1 M sodium hydroxide or with 10 % hydrogen peroxide, respectively. The potential application of these natural sources to cultivation was investigated with Spirulina maxima. When compared to standard Zarrouk medium, the Spirulina maxima cultivated in a modified Zarrouk media with elements from oyster shell and soil extract exhibited increases in biomass, chlorophyll, and phycocyanin by 17, 16, and 64 %, respectively. These results indicate that the extracts of oyster shell and soil provide sufficient amounts of calcium and trace metals for successful cultivation of Spirulina maxima.
Massanyi, Peter; Weis, Jan; Lukac, Norbert; Trandzik, Jozef; Bystricka, Judita
2008-04-01
The purpose of this study was to assess concentration of selected elements (cadmium, zinc, copper, sodium and potassium) in rooster and turkey semen and to find possible correlations between these elements. Samples were analyzed on the atomic absorption spectrophotometer. The analysis of cadmium showed that the concentration in rooster is 9.06 +/- 7.70 and in turkey 4.10 +/- 3.59 microg/mL. In zinc 5.25 +/- 1.96 microg/mL in rooster and 3.70 +/- 1.26 microg/mL in turkey were detected. Higher concentration of copper was found in rooster semen (6.79 +/- 6.42 microg/mL) in comparison with turkey semen (4.29 +/- 5.43 microg/mL). The level of sodium (3.96 +/- 1.02 microg/mL; 3.14 +/- 0.85 microg/mL) and potassium (2.88 +/- 0.65 microg/mL; 3.42 +/- 1.41 microg/mL) was very similar in both species. Correlation analysis detected high positive correlation between cadmium and zinc (r = 0.701) in rooster and between sodium and potassium (r = 0.899) in turkey semen.
Effects of nano red elemental selenium on sodium currents in rat dorsal root ganglion neurons.
Yuan, Huijun; Lin, Jiarui; Lan, Tonghan
2006-01-01
Nano red elemental selenium (Nano-Se), was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Se on sodium currents on rat dorsal root ganglion neurons (DRG), using the whole-cell patch clamp method. Nano-Se reversibly decrease the I(Na)(TTX-S) in a concentration-dependent, time-dependent and open-channel block manners without affecting I(Na)(TTX-R). It shifted the steady-state activation and inactivation curves for I(Na) to more negative potentials. In the research of recovery from inactivation, the recovery time constant is longer in the present of Nano-Se. Nano-Se had a weaker inhibitory effect on I(Na), compared with marked decrease caused by selenite which indicated that Nano-Se is less neurotoxic than selenite in short-term/large dose treatments and had similar bio availability to sodium selenite. The results of interaction between the effects of Nano-Se and selenite on sodium currents indicated a negative allosteric interaction between the selenite binding site and the Nano-Se binding site or that they have the same competitive binding site.
A highly reversible room-temperature sodium metal anode
Seh, Zhi Wei; Sun, Jie; Sun, Yongming; ...
2015-11-02
Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating–stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved overmore » 300 plating–stripping cycles at 0.5 mA cm –2. In this study, the long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium–sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies.« less
Samarium and europium beta”-alumina derivatives characterized by XPS
Myhre, Kristian; Meyer, Harry; Du, Miting
2017-01-04
Characterization of sodium, samarium and europium beta -alumina derivatives has been carried out using X-ray photoelectron spectroscopy. Beta -alumina has been widely studied as a material capable of incorporating many different cations into its lattice structure, such as sodium and many of the lanthanide elements. The X-ray photoelectron spectra of samarium and europium in the beta -alumina structure are reported here. Additionally, the spectra of the precursor sodium beta -alumina as well as the europium and samarium trichloride starting materials are presented.
Photoinduced Electron Transfer Based Ion Sensing within an Optical Fiber
Englich, Florian V.; Foo, Tze Cheung; Richardson, Andrew C.; Ebendorff-Heidepriem, Heike; Sumby, Christopher J.; Monro, Tanya M.
2011-01-01
We combine suspended-core microstructured optical fibers with the photoinduced electron transfer (PET) effect to demonstrate a new type of fluorescent optical fiber-dip sensing platform for small volume ion detection. A sensor design based on a simple model PET-fluoroionophore system and small core microstructured optical fiber capable of detecting sodium ions is demonstrated. The performance of the dip sensor operating in a high sodium concentration regime (925 ppm Na+) and for lower sodium concentration environments (18.4 ppm Na+) is explored and future approaches to improving the sensor’s signal stability, sensitivity and selectivity are discussed. PMID:22163712
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1988-01-01
Describes two demonstrations for college level chemistry courses including: "Electrochemical Cells Using Sodium Silicate" and "A Simple, Vivid Demonstration of Selective Precipitation." Lists materials, preparation, procedures, and precautions. (CW)
Mechanism of epithelial lithium transport. Evidence for basolateral Na:Na and Na:Li exchange
1983-01-01
Measurement of transmural sodium fluxes across isolated, ouabain- inhibited turtle colon in the presence of a serosal-to-mucosal sodium gradient shows that in the absence of active transport the amiloride- sensitive cellular path contains at least two routes for the transmural movement of sodium and lithium, one a conductive path and the other a nonconductive, cation-exchange mechanism. The latter transport element can exchange lithium for sodium, and the countertransport of these two cations provides a mechanistic basis for the ability of tight epithelia to actively absorb lithium despite the low affinity of the basolateral Na/K-ATPase for this cation. PMID:6644269
[Synthesis, solubility, lipids-lowering and liver-protection activities of sulfonated formononetin].
Wang, Qiu-ya; Meng, Qing-hua; Zhang, Zun-ting; Tian, Zhen-jun; Liu, Hui
2009-04-01
A water-soluble compound, sodium formononetin-3'-sulfonate with good lipid-lowering and liver-protection activities was synthesized. It was synthesized by sulfonation reaction, and its structure was characterized by IR, NMR and elemental analyses. The solubility of sodium formononetin-3'-sulfonate in water and n-octanol/water partition coefficient were determined by UV spectrophotometry. The lipid-lowering and liver-protection activities of sodium formononetin-3'-sulfonate were tested by using rat's high fat model induce by feeding with high fat food. The results showed that sodium formononetin-3'-sulfonate not only had favorable water, solubility but also had good lipid-lowering and liver-protection activities.
Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat
2009-01-01
Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.
Samiei, Mohammad; Janani, Maryam; Vahdati, Amin; Alemzadeh, Yalda; Bahari, Mahmoud
2017-01-01
The present study evaluated the element distribution in completely set calcium-enriched mixture (CEM) cement after application of 35% carbamide peroxide, 40% hydrogen peroxide and sodium perborate as commercial bleaching agents using an energy-dispersive x-ray microanalysis (EDX) system. The surface structure was also observed using the scanning electron microscope (SEM). Twenty completely set CEM cement samples, measuring 4×4 mm 2 , were prepared in the present in vitro study and randomly divided into 4 groups based on the preparation technique as follows: the control group; 35% carbamide peroxide group in contact for 30-60 min for 4 times; 40% hydrogen peroxide group with contact time of 15-20 min for 3 times; and sodium perborate group, where the powder and liquid were mixed and placed on CEM cement surface 4 times. Data were analyzed at a significance level of 0.05 through the one Way ANOVA and Tukey's post hoc tests. EDX showed similar element distribution of oxygen, sodium, calcium and carbon in CEM cement with the use of carbamide peroxide and hydroxide peroxide; however, the distribution of silicon was different ( P <0.05). In addition, these bleaching agents resulted in significantly higher levels of oxygen and carbon ( P <0.05) and a lower level of calcium ( P <0.05) compared to the control group. SEM of the control group showed plate-like and globular structure. Sodium perborate was similar to control group due to its weak oxidizing properties. Globular structures and numerous woodpecker holes were observed on the even surface on the carbamide peroxide group. The mean elemental distribution of completely set CEM cement was different when exposed to sodium perborate, carbamide peroxide and hydrogen peroxide.
Park, Jin Hee; Li, Xiaofang; Edraki, Mansour; Baumgartl, Thomas; Kirsch, Bernie
2013-06-01
Coal mining wastes in the form of spoils, rejects and tailings deposited on a mine lease can cause various environmental issues including contamination by toxic metals, acid mine drainage and salinity. Dissolution of salt from saline mine spoil, in particular, during rainfall events may result in local or regional dispersion of salts through leaching or in the accumulation of dissolved salts in soil pore water and inhibition of plant growth. The salinity in coal mine environments is from the geogenic salt accumulations and weathering of spoils upon surface exposure. The salts are mainly sulfates and chlorides of calcium, magnesium and sodium. The objective of the research is to investigate and assess the source and mobility of salts and trace elements in various spoil types, thereby predicting the leaching behavior of the salts and trace elements from spoils which have similar geochemical properties. X-ray diffraction analysis, total digestion, sequential extraction and column experiments were conducted to achieve the objectives. Sodium and chloride concentrations best represented salinity of the spoils, which might originate from halite. Electrical conductivity, sodium and chloride concentrations in the leachate decreased sharply with increasing leaching cycles. Leaching of trace elements was not significant in the studied area. Geochemical classification of spoil/waste defined for rehabilitation purposes was useful to predict potential salinity, which corresponded with the classification from cluster analysis based on leaching data of major elements. Certain spoil groups showed high potential salinity by releasing high sodium and chloride concentrations. Therefore, the leaching characteristics of sites having saline susceptible spoils require monitoring, and suitable remediation technologies have to be applied.
NASA Astrophysics Data System (ADS)
Nagaso, Masaru; Komatitsch, Dimitri; Moysan, Joseph; Lhuillier, Christian
2018-01-01
ASTRID project, French sodium cooled nuclear reactor of 4th generation, is under development at the moment by Alternative Energies and Atomic Energy Commission (CEA). In this project, development of monitoring techniques for a nuclear reactor during operation are identified as a measure issue for enlarging the plant safety. Use of ultrasonic measurement techniques (e.g. thermometry, visualization of internal objects) are regarded as powerful inspection tools of sodium cooled fast reactors (SFR) including ASTRID due to opacity of liquid sodium. In side of a sodium cooling circuit, heterogeneity of medium occurs because of complex flow state especially in its operation and then the effects of this heterogeneity on an acoustic propagation is not negligible. Thus, it is necessary to carry out verification experiments for developments of component technologies, while such kind of experiments using liquid sodium may be relatively large-scale experiments. This is why numerical simulation methods are essential for preceding real experiments or filling up the limited number of experimental results. Though various numerical methods have been applied for a wave propagation in liquid sodium, we still do not have a method for verifying on three-dimensional heterogeneity. Moreover, in side of a reactor core being a complex acousto-elastic coupled region, it has also been difficult to simulate such problems with conventional methods. The objective of this study is to solve these 2 points by applying three-dimensional spectral element method. In this paper, our initial results on three-dimensional simulation study on heterogeneous medium (the first point) are shown. For heterogeneity of liquid sodium to be considered, four-dimensional temperature field (three spatial and one temporal dimension) calculated by computational fluid dynamics (CFD) with Large-Eddy Simulation was applied instead of using conventional method (i.e. Gaussian Random field). This three-dimensional numerical experiment yields that we could verify the effects of heterogeneity of propagation medium on waves in Liquid sodium.
Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail
2014-11-12
Room temperature sodium-ion batteries are of great interest for high-energy-density energy storage systems because of low-cost, natural abundance of sodium. Here, we report a novel graphene nanosheets-wrapped phosphorus composite as an anode for high performance sodium-ion batteries though a facile ball-milling of red phosphorus and graphene nanosheets. Not only can the graphene nanosheets significantly improve the electrical conductivity, but they also serve as a buffer layer to accommodate the large volume change of phosphorus in the charge-discharge process. As a result, the graphene wrapped phosphorus composite anode delivers a high reversible capacity of 2077 mAh/g with excellent cycling stability (1700more » mAh/g after 60 cycles) and high Coulombic efficiency (>98%). This simple synthesis approach and unique nanostructure can potentially extend to other electrode materials with unstable solid electrolyte interphases in sodium-ion batteries.« less
Li, Jian; Milne, Robert W.; Nation, Roger L.; Turnidge, John D.; Coulthard, Kingsley; Valentine, Jason
2002-01-01
A simple and sensitive high-performance liquid chromatographic method is described for the determination of colistimethate sodium in plasma and urine. The accuracy and reproducibility was within 10.1 and 11.2% with rat plasma and urine, respectively. Several commonly coadministered antibacterial agents do not interfere with the assay. PMID:12234867
Estimation of Mineral and Trace Element Profile in Bubaline Milk Affected with Subclinical Mastitis.
Singh, Mahavir; Yadav, Poonam; Sharma, Anshu; Garg, V K; Mittal, Dinesh
2017-04-01
The milk samples from buffaloes of Murrah breed at mid lactation stage, reared at an organised dairy farm, were screened for subclinical mastitis based on bacteriological examination and somatic cell count following International Dairy Federation criteria. Milk samples from subclinical mastitis infected and healthy buffaloes were analysed to evaluate physicochemical alterations in terms of protein, fat, pH, electrical conductivity, chloride, minerals (sodium, potassium and calcium) and trace elements (iron, zinc, copper and selenium). In the present study, protein, fat, zinc, iron, calcium and selenium content was significantly lower (P < 0.001), while pH and electrical conductivity were significantly higher in mastitic milk as compared to normal milk. Concentration of electrolytes mainly sodium and chloride significantly increased with higher somatic cell count in mastitic milk and to maintain osmolality; potassium levels decreased proportionately. Correlation matrix revealed significantly positive interdependences of somatic cell count with pH, electrical conductivity, sodium and chloride. However, protein, fat, calcium and potassium were correlated negatively with elevated somatic cell count in mastitic milk. It is concluded that udder infections resulting in elevated somatic cells may alter the mineral and trace element profile of milk, and magnitude of changes may have diagnostic and prognostic value.
Sodium D-line emission from Io - Comparison of observed and theoretical line profiles
NASA Technical Reports Server (NTRS)
Carlson, R. W.; Matson, D. L.; Johnson, T. V.; Bergstralh, J. T.
1978-01-01
High-resolution spectra of the D-line profiles have been obtained for Io's sodium emission cloud. These lines, which are produced through resonance scattering of sunlight, are broad and asymmetric and can be used to infer source and dynamical properties of the sodium cloud. In this paper we compare line profile data with theoretical line shapes computed for several assumed initial velocity distributions corresponding to various source mechanisms. We also examine the consequences of source distributions which are nonuniform over the surface of Io. It is found that the experimental data are compatible with escape of sodium atoms from the leading hemisphere of Io and with velocity distributions characteristic of sputtering processes. Thermal escape and simple models of plasma sweeping are found to be incompatible with the observations.
Technology Study on Piezoelectric Materials
1979-07-20
broken down into five classes: 1) perovskite -type oxides, 2) aqueous solution grown crystals, 3) semiconductive compounds, 4) other oxides and 5...three times that of sodium, sodium would 24 be heated three times as much as water by identical x-rays. " Perovskite -Type Oxides Sixteen of the materials...in Table 1 have the general formula ABD3 which normally have a distorted perovskite , simple cubic structure. The A-type cation at the 12
Dunbar, W E; Schilt, A A
1972-09-01
Seven new hydroxy-substituted 1,10-phenanthroline derivatives have been evaluated as chromogenic reagents for the determination of copper in strongly alkaline solution. The most sensitive of these, 2,9-dimethyl-4,7-dihydroxy-1,10-phenanthroline, has proven to be highly effective in a simple, rapid procedure for determining trace amounts of copper in sodium hydroxide, potassium carbonate, sodium phosphate or ammonium hydroxide.
23Na NUCLEAR MAGNETIC RESONANCE RELAXATION STUDIES OF SODIUM ION INTERACTION WITH SOLUBLE RNA*
James, Thomas L.; Noggle, Joseph H.
1969-01-01
Interactions between 23Na+ and soluble RNA in aqueous solution are studied with the use of 23Na nuclear magnetic resonance. At low concentrations of NaCl, the interactions obey a simple equilibrium model with a formation constant log (Kf)3 = 2.8 ± 0.3. The relaxation rate of the bound sodium is found to be T1B-1 = 222 ± 19 sec-1 compared to that of free sodium T1F-1 = 17.5 sec-1. At high NaCl concentrations, the system deviates from the model, possibly owing to aggregation of the soluble RNA. PMID:5256995
Breit, G.N.; Simmons, E.C.; Goldhaber, M.B.
1985-01-01
A simple procedure for preparing barite samples for chemical and isotopic analysis is described. Sulfate ion, in barite, in the presence of high concentrations of aqueous sodium carbonate, is replaced by carbonate. This replacement forms insoluble carbonates with the cations commonly in barite: Ba, Sr, Ca and Pb. Sulfate is released into the solution by the carbonate replacement and is separated by filtration. The aqueous sulfate can then be reprecipitated for analysis of the sulfur and oxygen isotopes. The cations in the carbonate phase can be dissolved by acidifying the solid residue. Sr can be separated from the solution for Sr isotope analysis by ion-exchange chromatography. The sodium carbonate used contains amounts of Sr which will affect almost all barite 87Sr 86Sr ratios by less than 0.00001 at 1.95?? of the mean. The procedure is preferred over other techniques used for preparing barite samples for the determination of 87Sr 86Sr ratios because it is simple, rapid and enables simultaneous determination of many compositional parameters on the same material. ?? 1985.
Hanna, G M; Lau-Cam, C A
1996-01-01
A simple, accurate, and specific 1H NMR spectroscopic method was developed for the assay of diatrizoate meglumine or the combination diatrizoate meglumine and diatrizoate sodium in commercial solutions for injection. A mixture of injectable solution and sodium acetate, the internal standard, was diluted with D2O and the 1H NMR spectrum of the solution was obtained. Two approaches were used to calculate the drug content, based on the integral values for the -N-CO-CH3 protons of diatrizoic acid at 2.23 ppm, and -N-CH3 protons of meglumine at 2.73 ppm, and the CH3-CO-protons of sodium acetate at 1.9 ppm. Recoveries (mean +/- standard deviation) of diatrizoic acid and meglumine from 10 synthetic mixtures of various amounts of these compounds with a fixed amount of internal standard were 100.3 +/- 0.55% and 100.1 +/- 0.98%, respectively. In addition to providing a direct means of simultaneously assaying diatrizoic acid and meglumine, the proposed NMR method can also be used to identify diatrizoate meglumine and each of its molecular components.
Improvement of vegetables elemental quality by espresso coffee residues.
Cruz, Rebeca; Morais, Simone; Mendes, Eulália; Pereira, José A; Baptista, Paula; Casal, Susana
2014-04-01
Spent coffee grounds (SCG) are usually disposed as common garbage, without specific reuse strategies implemented so far. Due to its recognised richness in bioactive compounds, the effect of SCG on lettuce's macro- and micro-elements was assessed to define its effectiveness for agro industrial reuse. A greenhouse pot experiment was conducted with different amounts of fresh and composted spent coffee, and potassium, magnesium, phosphorous, calcium, sodium, iron, manganese, zinc and copper were analysed. A progressive decrease on all lettuce mineral elements was verified with the increase of fresh spent coffee, except for potassium. In opposition, an increment of lettuce's essential macro-elements was verified when low amounts of composted spent coffee were applied (5%, v/v), increasing potassium content by 40%, manganese by 30%, magnesium by 20%, and sodium by 10%, of nutritional relevance This practical approach offers an alternative reuse for this by-product, extendable to other crops, providing value-added vegetable products. Copyright © 2013 Elsevier Ltd. All rights reserved.
BioMetals: a historical and personal perspective.
Silver, Simon
2011-06-01
Understanding of BioMetals developed basically from a starting point about 60 years ago to current mechanistic understanding of the biological behavior of many metal ions from protein structural and functional studies. Figure 1 shows a Biochemical Periodic Table, element by element, with requirements, roles and biochemistry of the specific ions indicated. With few exceptions, the biology is of the ions formed and not of the elemental state of each. Early BioMetals efforts defined nutritional growth needs for animals, plants and microbes for inorganic "macro-nutrients" such as magnesium, calcium, potassium, sodium, and phosphate and of "micronutrients" such as copper, iron, manganese and zinc. Surprises came early with regard to microbes, for example the finding that Escherichia coli (then and now the standard microbial model) grows happily in the apparent total absence of calcium, sodium, and chloride, which are certainly major animal nutrients. Some elements such as mercury and arsenic are never required by living cells, but are always toxic, often at very low levels. Therefore, the division into nutrient elements and toxic elements came soon. For most inorganic nutrients, excessive amounts can be toxic as well, for example for copper and iron.
Li, Chen; Solomons, Noel W; Scott, Marilyn E; Koski, Kristine G
2016-10-01
Breast milk is the recommended source of nutrients for infant growth, but its adequacy to meet infants' mineral and trace element needs is unknown. We used breast-milk mineral and trace element concentrations of Guatemalan mothers at 3 lactation stages to estimate total daily intakes and to determine whether intakes were associated with early infant growth. In this cross-sectional study, breast-milk samples were collected from Mam-Mayan mothers during transitional (5-17 d, n = 56), early (18-46 d, n = 75), and established (4-6 mo, n = 103) lactation; z scores for weight (WAZ), length (LAZ), and head circumference (HCAZ) were measured. Concentrations of 11 minerals (calcium, potassium, magnesium, sodium, copper, iron, manganese, rubidium, selenium, strontium, and zinc) were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS). WHO equations were used to calculate the estimated energy requirement, which was divided by the energy density of breast milk to estimate daily milk volume, and this number was multiplied by breast-milk mineral concentrations to estimate intakes. Principal component analyses identified clusters of minerals; principal components (PCs) were used in regression analyses for anthropometric outcomes. Estimated breast-milk intakes during established lactation were insufficient to compensate for the lower milk sodium, copper, manganese, and zinc concentrations in male infants and the lower sodium, iron and manganese concentrations in female infants. Estimated intakes of calcium, magnesium, potassium, sodium, and selenium were below the Institute of Medicine Adequate Intake for both sexes at all 3 stages of lactation. In early lactation, multiple linear regressions showed that PC1 (calcium, magnesium, potassium, rubidium, and strontium intakes) was positively associated with WAZ, LAZ, and HCAZ. In established lactation, the same PC with sodium added was positively associated with all 3 anthropometric outcomes; a second PC (PC2: zinc, copper, and selenium intakes) was associated with WAZ and LAZ but not HCAZ. Breast milk may be inadequate in selected minerals and trace elements where higher estimated intakes were associated with greater infant growth. © 2016 American Society for Nutrition.
Effects of chemical elements in the trophic levels of natural salt marshes.
Kamiński, Piotr; Barczak, Tadeusz; Bennewicz, Janina; Jerzak, Leszek; Bogdzińska, Maria; Aleksandrowicz, Oleg; Koim-Puchowska, Beata; Szady-Grad, Małgorzata; Klawe, Jacek J; Woźniak, Alina
2016-06-01
The relationships between the bioaccumulation of Na, K, Ca, Mg, Fe, Zn, Cu, Mn, Co, Cd, and Pb, acidity (pH), salinity (Ec), and organic matter content within trophic levels (water-soil-plants-invertebrates) were studied in saline environments in Poland. Environments included sodium manufactures, wastes utilization areas, dumping grounds, and agriculture cultivation, where disturbed Ca, Mg, and Fe exist and the impact of Cd and Pb is high. We found Zn, Cu, Mn, Co, and Cd accumulation in the leaves of plants and in invertebrates. Our aim was to determine the selectivity exhibited by soil for nutrients and heavy metals and to estimate whether it is important in elucidating how these metals are available for plant/animal uptake in addition to their mobility and stability within soils. We examined four ecological plant groups: trees, shrubs, minor green plants, and water macrophytes. Among invertebrates, we sampled breastplates Malacostraca, small arachnids Arachnida, diplopods Diplopoda, small insects Insecta, and snails Gastropoda. A higher level of chemical elements was found in saline polluted areas (sodium manufactures and anthropogenic sites). Soil acidity and salinity determined the bioaccumulation of free radicals in the trophic levels measured. A pH decrease caused Zn and Cd to increase in sodium manufactures and an increase in Ca, Zn, Cu, Cd, and Pb in the anthropogenic sites. pH increase also caused Na, Mg, and Fe to increase in sodium manufactures and an increase in Na, Fe, Mn, and Co in the anthropogenic sites. There was a significant correlation between these chemical elements and Ec in soils. We found significant relationships between pH and Ec, which were positive in saline areas of sodium manufactures and negative in the anthropogenic and control sites. These dependencies testify that the measurement of the selectivity of cations and their fluctuation in soils provide essential information on the affinity and binding strength in these environments. The chemical elements accumulated in soils and plants; however, further flow is selective and variable. The selectivity exhibited by soil systems for nutrients and heavy metals is important in elucidating how these metals become available for plant/animal uptake and also their mobility and stability in soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Aaron A.; Chamberlin, Clyde E.; Edwards, Matthew K.
This section of the Joint summary technical letter report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2016 (FY16) on the under-sodium viewing (USV) PNNL project 58745, work package AT-16PN230102. This section of the TLR satisfies PNNL’s M3AT-16PN2301025 milestone and is focused on summarizing the design, development, and evaluation of two different phased-array ultrasonic testing (PA-UT) probe designs—a two-dimensional (2D) matrix phased-array probe, and two one-dimensional (1D) linear array probes, referred to as serial number 4 (SN4) engineering test units (ETUs). The 2D probe is a pulse-echo (PE), 32×2, 64-element matrix phased-array ETU. The 1Dmore » probes are 32×1 element linear array ETUs. This TLR also provides the results from a performance demonstration (PD) of in-sodium target detection trials at 260°C using both probe designs. This effort continues the iterative evolution supporting the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor (SFR) inspection system for in-sodium detection and imaging.« less
NASA Astrophysics Data System (ADS)
Wan, Kaidi; Xia, Jun; Vervisch, Luc; Liu, Yingzu; Wang, Zhihua; Cen, Kefa
2018-03-01
The numerical modelling of alkali metal reacting dynamics in turbulent pulverised-coal combustion is discussed using tabulated sodium chemistry in large eddy simulation (LES). A lookup table is constructed from a detailed sodium chemistry mechanism including five sodium species, i.e. Na, NaO, NaO2, NaOH and Na2O2H2, and 24 elementary reactions. This sodium chemistry table contains four coordinates, i.e. the equivalence ratio, the mass fraction of the sodium element, the gas-phase temperature, and a progress variable. The table is first validated against the detailed sodium chemistry mechanism by zero-dimensional simulations. Then, LES of a turbulent pulverised-coal jet flame is performed and major coal-flame parameters compared against experiments. The chemical percolation devolatilisation (CPD) model and the partially stirred reactor (PaSR) model are employed to predict coal pyrolysis and gas-phase combustion, respectively. The response of the five sodium species in the pulverised-coal jet flame is subsequently examined. Finally, a systematic global sensitivity analysis of the sodium lookup table is performed and the accuracy of the proposed tabulated sodium chemistry approach has been calibrated.
Sensitive radioimmunoassay of total thyroxine (T4) in horses using a simple extraction method.
Tangyuenyong, Siriwan; Nambo, Yasuo; Nagaoka, Kentaro; Tanaka, Tomomi; Watanabe, Gen
2017-07-28
Most thyroid hormone determinations in animals are based on immunoassays adapted from those used to test human samples, which may not reflect the actual values of thyroid hormone in horses because of the presence of binding proteins. The aims of the present study were i) to establish a novel radioimmunoassay (RIA) using a more simple and convenient method to separate binding proteins for the measurement of total thyroxine (T4) in horses and ii) to validate the assay by comparing total T4 concentrations in yearling horses raised in different climates. Blood samples were collected from trained yearlings in Hokkaido (temperate climate) and Miyazaki (subtropical climate) in Japan and from adult horses in estrus and diestrus. T4 was extracted from both serum and plasma using modified acid ethanol cryo-precipitation and sodium acetate ethanol methods. Circulating total T4 concentrations were determined by RIA. T4 concentration by sodium acetate ethanol was appropriately detectable rather than sodium salicylate method and was the same as for acid ethanol method. Furthermore, this sodium acetate ethanol method required fewer extraction steps than the other methods. Circulating T4 concentrations in yearlings were 225.98 ± 20.89 ng/ml, which was higher than the previous reference values. With respect to climate, T4 levels in Hokkaido yearlings tended to be higher than those in Miyazaki yearlings throughout the study period. These results indicated that this RIA protocol using a modified sodium acetate ethanol separation technique might be an appropriate tool for specific measurement of total T4 in horses.
Wu, Ying; Jiang, Yu; Shi, Jinan; Gu, Lin; Yu, Yan
2017-06-01
TiO 2 as an anode for sodium-ion batteries (NIBs) has attracted much recent attention, but poor cyclability and rate performance remain problematic owing to the intrinsic electronic conductivity and the sluggish diffusivity of Na ions in the TiO 2 matrix. Herein, a simple process is demonstrated to improve the sodium storage performance of TiO 2 by fabricating a 1D, multichannel, porous binary-phase anatase-TiO 2 -rutile-TiO 2 composite with oxygen-deficient and high grain-boundary density (denoted as a-TiO 2- x /r-TiO 2- x ) via electrospinning and subsequent vacuum treatment. The introduction of oxygen vacancies in the TiO 2 matrix enables enhanced intrinsic electronic conductivity and fast sodium-ion diffusion kinetics. The porous structure offers easy access of the liquid electrolyte and a short transport path of Na + through the pores toward the TiO 2 nanoparticle. Furthermore, the high density of grain boundaries between the anatase TiO 2 and rutile TiO 2 offer more interfaces for a novel interfacial storage. The a-TiO 2- x /r-TiO 2- x shows excellent long cycling stability (134 mAh g -1 at 10 C after 4500 cycles) and superior rate performance (93 mAh g -1 after 4500 cycles at 20 C) for sodium-ion batteries. This simple and effective process could serve as a model for the modification of other materials applied in energy storage systems and other fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A simple finite element method for non-divergence form elliptic equation
Mu, Lin; Ye, Xiu
2017-03-01
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for non-divergence form elliptic equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
NASA Astrophysics Data System (ADS)
Zárate, Francisco; Cornejo, Alejandro; Oñate, Eugenio
2018-07-01
This paper extends to three dimensions (3D), the computational technique developed by the authors in 2D for predicting the onset and evolution of fracture in a finite element mesh in a simple manner based on combining the finite element method and the discrete element method (DEM) approach (Zárate and Oñate in Comput Part Mech 2(3):301-314, 2015). Once a crack is detected at an element edge, discrete elements are generated at the adjacent element vertexes and a simple DEM mechanism is considered in order to follow the evolution of the crack. The combination of the DEM with simple four-noded linear tetrahedron elements correctly captures the onset of fracture and its evolution, as shown in several 3D examples of application.
A Simple Secondary Amine Synthesis: Reductive Amination Using Sodium Triacetoxyborohydride
NASA Astrophysics Data System (ADS)
Carlson, Merle W.; Ciszewski, James T.; Bhatti, Micah M.; Swanson, Wesley F.; Wilson, Anne M.
2000-02-01
We present a reductive amination experiment for a second-semester organic chemistry class. It utilizes an imine intermediate and sodium triacetoxyborohydride, a mild reducing agent. The progress of the reaction is followed by TLC as the starting materials (the aldehyde and primary amine), the imine intermediate, and the secondary amine product are visible under ultraviolet light. This experiment provides an introduction to the observation of intermediates, the synthesis of amines, and the concept of mild reducing agents.
Doll, Stephanie; Woolum, Karen; Kumar, Krishan
2016-09-01
A simple and rapid nonradioactive iodide labeling/radiolabeling method for peptides, using an inexpensive oxidizing agent such as sodium hypochlorite and a cyclic peptide, cRGDyK (cyclo Arg-Gly-Asp-d-Tyr-Lys), was developed in this work. Labeling reaction was optimized by conducting experiments under variable ratios of the reagents, the reaction times, and the pH. The study demonstrated that radiolabeling of the cyclic peptide was fast and pH independent. Monoiodinated and di-iodinated cRGDyK were formed under all conditions and varied with the ratio of the reagents and the reaction time. Total percent of the iodinated cRGDyK (monoiodinated and di-iodinated cRGDyK) varied between 44 and 100 depending on the reaction conditions. Excess cyclic peptide over equal molar ratio of sodium iodide and sodium hypochlorite yielded in predominant amounts of monoiodinated cRGDyK, ie, >60% under 2:1:1 ratio and ~88% under 5:1:1 ratio of cRGDyK:sodium iodide:sodium hypochlorite. Copyright © 2016 John Wiley & Sons, Ltd.
Ward, Martin R; Copeland, Gary W; Alexander, Andrew J
2011-09-21
We report the observation of non-photochemical laser-induced nucleation (NPLIN) of sodium chlorate from its melt using nanosecond pulses of light at 1064 nm. The fraction of samples that nucleate is shown to depend linearly on the peak power density of the laser pulses. Remarkably, we observe that most samples are nucleated by the laser back into the enantiomorph (dextrorotatory or levorotatory) of the solid prior to melting. We do not observe a significant dependence on polarization of the light, and we put forward symmetry arguments that rule out an optical Kerr effect mechanism. Our observations of retention of chirality can be explained by decomposition of small amounts of the sodium chlorate to form sodium chloride, which provide cavities for retention of clusters of sodium chlorate even 18 °C above the melting point. These clusters remain sub-critical on cooling, but can be activated by NPLIN via an isotropic polarizability mechanism. We have developed a heterogeneous model of NPLIN in cavities, which reproduces the experimental data using simple physical data available for sodium chlorate.
Alginate/sodium caseinate aqueous-core capsules: a pH-responsive matrix.
Ben Messaoud, Ghazi; Sánchez-González, Laura; Jacquot, Adrien; Probst, Laurent; Desobry, Stéphane
2015-02-15
Alginate capsules have several applications. Their functionality depends considerably on their permeability, chemical and mechanical stability. Consequently, the creation of composite system by addition of further components is expected to control mechanical and release properties of alginate capsules. Alginate and alginate-sodium caseinate composite liquid-core capsules were prepared by a simple extrusion. The influence of the preparation pH and sodium caseinate concentration on capsules physico-chemical properties was investigated. Results showed that sodium caseinate influenced significantly capsules properties. As regards to the membrane mechanical stability, composite capsules prepared at pH below the isoelectric point of sodium caseinate exhibited the highest surface Young's modulus, increasing with protein content, explained by potential electrostatic interactions between sodium caseinate amino-groups and alginate carboxylic group. The kinetic of cochineal red A release changed significantly for composite capsules and showed a pH-responsive release. Sodium caseinate-dye mixture studied by absorbance and fluorescence spectroscopy confirmed complex formation at pH 2 by electrostatic interactions between sodium caseinate tryptophan residues and cochineal red sulfonate-groups. Consequently, the release mechanism was explained by membrane adsorption process. This global approach is useful to control release mechanism from macro and micro-capsules by incorporating guest molecules which can interact with the entrapped molecule under specific conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Tomato (Solanum lycopersicum) fruit quality and yield are highly dependent on adequate uptake of nutrients. Potassium, magnesium and calcium are essential elements that influence fruit quality traits such as color, uniformity of ripening, hollow fruit, fruit shape, firmness, and acidity. Sodium is n...
Petit, Eddy; Miele, Philippe; Demirci, Umit B
2016-07-21
Catalyzed hydrolysis of sodium borohydride generates up to four molecules of hydrogen, but contrary to what has been reported so far, the humidified evolved gas is not pure hydrogen. Elemental and spectroscopic analyses show, for the first time, that borate by-products pollute the stream as well as the vessel. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hegrová, Jitka; Steiner, Oliver; Goessler, Walter; Tanda, Stefan; Anděl, Petr
2017-09-01
A comprehensive overview of the influence of transport on the environment is presented in this study. The complex analysis of soil and needle samples provides an extensive set of data, which presents elemental contamination of the environment near roads. Traffic pollution (including winter road treatment) has a significant negative influence on our environment. Besides sodium and chlorine from winter maintenance many other elements are emitted into the environment. Three possible sources of contamination are assumed for environmental contamination evaluation: car emission, winter maintenance and abrasion from breaks and clutches. The chemical analysis focused on the description of samples from inorganic point of view. The influence of the contamination potential on the sodium and chlorine content in the samples of 1st year-old and 2nd year-old needles of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) is discussed. Additional soil samples were taken from each sampling site and analyzed to get insight in the sodium and chlorine distribution. Statistical evaluation was used for interpretation of complex interaction patterns between element concentrations in different aged needles based on localities character including distance from the road and element concentration in soils. This species of needles were chosen because of its heightened sensitivity towards salinization. The study was conducted in different parts of the Czech Republic. The resulting database is a source of valuable information about the influence of transport on the environment.
1986-05-14
PA IA 50 mg lipoic acid 50 mP --- TABLE 2. Estimated maximum cell concentrations based upon the elemental composition of the growth medium. In medium...Added amount per liter Tartaric acid 0.37 g Succinic acid 0.37 g Sodium acetate 0.05 g Sodium nitrate 0.17 g Monopotassium phosphate 0.69 g Sodium...Distilled water I liter ) Alternatively, 0.03 g ascorbic acid *±) Stock solution of 2.7 g/L FeC13 and 1.9 g/L Quinic acid ***) Mineral medium (pH 6.5 w/KOH
Iranifam, Mortaza; Kharameh, Merhnaz Khabbaz
2014-09-01
A simple and sensitive chemiluminescence (CL) method has been developed for the determination of ampicillin sodium at submicromolar levels. The method is based on the inhibitory effect of ampicillin sodium on the cupric oxide nanoparticles (CuO NPs)-luminol-H2 O2 CL reaction. Experimental parameters affecting CL inhibition including concentrations of CuO NPs, luminol, H2 O2 and NaOH were optimized. Under optimum conditions, the calibration plot was linear in the analyte concentration range 4.0 × 10(-7) -4.0 × 10(-6) mol/L. The limit of detection was 2.6 × 10(-7) mol/L and the relative standard deviation (RSD) for six replicate determinations of 1 × 10(-6) mol/L ampicillin sodium was 4.71%. Also, X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were employed to characterize the CuO NPs. The utility of the proposed method was demonstrated by determining ampicillin sodium in pharmaceutical preparation. Copyright © 2013 John Wiley & Sons, Ltd.
Natural precursor based hydrothermal synthesis of sodium carbide for reactor applications
NASA Astrophysics Data System (ADS)
Swapna, M. S.; Saritha Devi, H. V.; Sebastian, Riya; Ambadas, G.; Sankararaman, S.
2017-12-01
Carbides are a class of materials with high mechanical strength and refractory nature which finds a wide range of applications in industries and nuclear reactors. The existing synthesis methods of all types of carbides have problems in terms of use of toxic chemical precursors, high-cost, etc. Sodium carbide (Na2C2) which is an alkali metal carbide is the least explored one and also that there is no report of low-cost and low-temperature synthesis of sodium carbide using the eco-friendly, easily available natural precursors. In the present work, we report a simple low-cost, non-toxic hydrothermal synthesis of refractory sodium carbide using the natural precursor—Pandanus. The formation of sodium carbide along with boron carbide is evidenced by the structural and morphological characterizations. The sample thus synthesized is subjected to field emission scanning electron microscopy (FESEM), x-ray powder diffraction (XRD), ultraviolet (UV)—visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, and photoluminescent (PL) spectroscopic techniques.
Summary of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kendrick, R. D.; Spence, E. J.; Nornberg, M. D.; Forest, C. B.
2001-10-01
A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ~100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ~ 15 m/s. A gaussian grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.
Design of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kendrick, R. D.; Bayliss, R. A.; Forest, C. B.; Nornberg, M. D.; O'Connell, R.; Spence, E. J.
2003-10-01
A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ˜100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ˜ 15 m/s. A grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.
Process for removing polychlorinated and polybrominated biphenyls from oils
Orlett, M.J.
The invention is a relatively simple and inexpensive process for detoxifying oils contaminated with PCBs and/or PBBs. The process is especially suitable for processing lubricating oils containing such contaminants. In one aspect of the invention, the contaminated lubricating oil is contacted with a particulate reagent comprising adsorbent particles carrying a dispersion of metallic sodium. The solid sodium reagent converts the PCB and/or PBB contaminants to environmentally acceptable products and also converts various sodium-reactive additives normally present in lubricating oil to reaction products. The adsorbent reagent retains most of the products and is easily separated from the detoxified oil. The detoxified oil may be fortified with various additives functionally equivalent to those removed during detoxification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, S.D.; Dearing, J.F.
An understanding of conditions that may cause sodium boiling and boiling propagation that may lead to dryout and fuel failure is crucial in liquid-metal fast-breeder reactor safety. In this study, the SABRE-2P subchannel analysis code has been used to analyze the ultimate transient of the in-core W-1 Sodium Loop Safety Facility experiment. This code has a 3-D simple nondynamic boiling model which is able to predict the flow instability which caused dryout. In other analyses dryout has been predicted for out-of-core test bundles and so this study provides additional confirmation of the model.
Realizable feed-element patterns for multibeam reflector antenna analysis
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.; Cramer, P., Jr.; Woo, K.; Lee, S. W.
1981-01-01
The radiation pattern of a feed element is approximately described by a simple function (cos theta) to the q power. For a given element spacing of the feed array, simple formulas for estimating the practical value of q when the element is an open-ended rectangular waveguide, an open-ended circular waveguide, a pyramidal horn, or a cigar antenna are given.
Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries.
Lao, Mengmeng; Zhang, Yu; Luo, Wenbin; Yan, Qingyu; Sun, Wenping; Dou, Shi Xue
2017-12-01
Sodium-ion batteries (SIBs) are considered as promising alternatives to lithium-ion batteries owing to the abundant sodium resources. However, the limited energy density, moderate cycling life, and immature manufacture technology of SIBs are the major challenges hindering their practical application. Recently, numerous efforts are devoted to developing novel electrode materials with high specific capacities and long durability. In comparison with carbonaceous materials (e.g., hard carbon), partial Group IVA and VA elements, such as Sn, Sb, and P, possess high theoretical specific capacities for sodium storage based on the alloying reaction mechanism, demonstrating great potential for high-energy SIBs. In this review, the recent research progress of alloy-type anodes and their compounds for sodium storage is summarized. Specific efforts to enhance the electrochemical performance of the alloy-based anode materials are discussed, and the challenges and perspectives regarding these anode materials are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis and characterization of WO3 nanowires and metal nanoparticle-WO3 nanowire composites
NASA Astrophysics Data System (ADS)
Szabó, Mária; Pusztai, Péter; Leino, Anne-Riikka; Kordás, Krisztián; Kónya, Zoltán; Kukovecz, Ákos
2013-07-01
Tungsten-trioxide nanowire bundles were prepared using a simple hydrothermal method. Sodium-tungstate was used as precursor and sodium-sulfate as structure directing agent. All the reflections of the X-ray diffractogram of the synthesized wires belong to the hexagonal phase of the tungsten trioxide. The nanowires were successfully decorated with metal nanoparticles by wet impregnation. The TEM investigation showed that using different metal precursors resulted in different particle sizes and coverage on the surface.
NASA Astrophysics Data System (ADS)
Ulrich, A.; Ott, N.; Tournier-Fillon, A.; Homazava, N.; Schmutz, P.
2011-07-01
The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.
Nonvolatile Ionic Two-Terminal Memory Device
NASA Technical Reports Server (NTRS)
Williams, Roger M.
1990-01-01
Conceptual solid-state memory device nonvolatile and erasable and has only two terminals. Proposed device based on two effects: thermal phase transition and reversible intercalation of ions. Transfer of sodium ions between source of ions and electrical switching element increases or decreases electrical conductance of element, turning switch "on" or "off". Used in digital computers and neural-network computers. In neural networks, many small, densely packed switches function as erasable, nonvolatile synaptic elements.
Intraurban Variation of Fine Particle Elemental Concentrations in New York City.
Ito, Kazuhiko; Johnson, Sarah; Kheirbek, Iyad; Clougherty, Jane; Pezeshki, Grant; Ross, Zev; Eisl, Holger; Matte, Thomas D
2016-07-19
Few past studies have collected and analyzed within-city variation of fine particulate matter (PM2.5) elements. We developed land-use regression (LUR) models to characterize spatial variation of 15 PM2.5 elements collected at 150 street-level locations in New York City during December 2008-November 2009: aluminum, bromine, calcium, copper, iron, potassium, manganese, sodium, nickel, lead, sulfur, silicon, titanium, vanadium, and zinc. Summer- and winter-only data available at 99 locations in the subsequent 3 years, up to November 2012, were analyzed to examine variation of LUR results across years. Spatial variation of each element was modeled in LUR including six major emission indicators: boilers burning residual oil; traffic density; industrial structures; construction/demolition (these four indicators in buffers of 50 to 1000 m), commercial cooking based on a dispersion model; and ship traffic based on inverse distance to navigation path weighted by associated port berth volume. All the elements except sodium were associated with at least one source, with R(2) ranging from 0.2 to 0.8. Strong source-element associations, persistent across years, were found for residual oil burning (nickel, zinc), near-road traffic (copper, iron, and titanium), and ship traffic (vanadium). These emission source indicators were also significant and consistent predictors of PM2.5 concentrations across years.
Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system instability.
Sang Cho, Jung; Um, Seung-Hoon; Su Yoo, Dong; Chung, Yong-Chae; Hye Chung, Shin; Lee, Jeong-Cheol; Rhee, Sang-Hoon
2014-07-01
The effect of substituting sodium for calcium on enhanced osteoconductivity of hydroxyapatite was newly investigated. Sodium-substituted hydroxyapatite was synthesized by reacting calcium hydroxide and phosphoric acid with sodium nitrate followed by sintering. As a control, pure hydroxyapatite was prepared under identical conditions, but without the addition of sodium nitrate. Substitution of calcium with sodium in hydroxyapatite produced the structural vacancies for carbonate ion from phosphate site and hydrogen ion from hydroxide site of hydroxyapatite after sintering. The total system energy of sodium-substituted hydroxyapatite with structural defects calculated by ab initio methods based on quantum mechanics was much higher than that of hydroxyapatite, suggesting that the sodium-substituted hydroxyapatite was energetically less stable compared with hydroxyapatite. Indeed, sodium-substituted hydroxyapatite exhibited higher dissolution behavior of constituent elements of hydroxyapatite in simulated body fluid (SBF) and Tris-buffered deionized water compared with hydroxyapatite, which directly affected low-crystalline hydroxyl-carbonate apatite forming capacity by increasing the degree of apatite supersaturation in SBF. Actually, sodium-substituted hydroxyapatite exhibited markedly improved low-crystalline hydroxyl-carbonate apatite forming capacity in SBF and noticeably higher osteoconductivity 4 weeks after implantation in calvarial defects of New Zealand white rabbits compared with hydroxyapatite. In addition, there were no statistically significant differences between hydroxyapatite and sodium-substituted hydroxyapatite on cytotoxicity as determined by BCA assay. Taken together, these results indicate that sodium-substituted hydroxyapatite with structural defects has promising potential for use as a bone grafting material due to its enhanced osteoconductivity compared with hydroxyapatite. © 2013 Wiley Periodicals, Inc.
2010-07-30
TUNGSTEN ALLOYS ON THE GROWTH OF SELECTED MICROORGANISMS WITH ENVIROMENTAL SIGNIFICANCE 5a. Contract Number: 5b. Grant Number: 5c. Program Element...lower tolerances. Interestingly, bacteria cultivated from the environment displayed only minor delays and reduction in growth relative to pure...settings where nutrients may be limited. 15. SUBJECT TERMS Tungsten, sodium tungstate, microbial growth , environmental microbiology, bacteria , Shewanella
The Synthesis and Characterization of Some Rare Earth Arsenides.
1987-09-10
particular, handling contaminants such as sodium , calcium and potassium can be monitored as well as hydrogen and oxygen content from oxide and hydroxide...trace quantities. Exceptional sensitivities (ppm) can be obtained for easily ionizable elements such as sodium , calcium, potassium, etc. This method of...holmium then reacts with the silica container wall, forming silicide and oxide products. The Nd melt reacts with the container as well. In the longer
Post-Test Analysis of a 10-Year Sodium Heat Pipe Life Test
NASA Technical Reports Server (NTRS)
Rosenfeld, John H.; Locci, Ivan E.; Sanzi, James L.; Hull, David R.; Geng, Steven M.
2011-01-01
High-temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, Stirling cycle heat sources; and with the resurgence of space nuclear power both as reactor heat removal elements and as radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly, long-term materials compatibility is being evaluated through the use of high-temperature life test heat pipes. Thermacore, Inc., has carried out a sodium heat pipe 10-year life test to establish long-term operating reliability. Sodium heat pipes have demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 87,000 hr (10 years) at nearly 700 C. These life test results have demonstrated the potential for high-temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and post-test analysis of the heat pipe and sodium working fluid are described. Lessons learned and future life test plans are also discussed.
NASA Technical Reports Server (NTRS)
Rosenfeld, John, H; Minnerly, Kenneth, G; Dyson, Christopher, M.
2012-01-01
High-temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, Stirling cycle heat sources; and with the resurgence of space nuclear power both as reactor heat removal elements and as radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly, long-term materials compatibility is being evaluated through the use of high-temperature life test heat pipes. Thermacore, Inc., has carried out a sodium heat pipe 10-year life test to establish long-term operating reliability. Sodium heat pipes have demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 87,000 hr (10 yr) at nearly 700 C. These life test results have demonstrated the potential for high-temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and post-test analysis of the heat pipe and sodium working fluid are described.
Numerical simulation of double‐diffusive finger convection
Hughes, Joseph D.; Sanford, Ward E.; Vacher, H. Leonard
2005-01-01
A hybrid finite element, integrated finite difference numerical model is developed for the simulation of double‐diffusive and multicomponent flow in two and three dimensions. The model is based on a multidimensional, density‐dependent, saturated‐unsaturated transport model (SUTRA), which uses one governing equation for fluid flow and another for solute transport. The solute‐transport equation is applied sequentially to each simulated species. Density coupling of the flow and solute‐transport equations is accounted for and handled using a sequential implicit Picard iterative scheme. High‐resolution data from a double‐diffusive Hele‐Shaw experiment, initially in a density‐stable configuration, is used to verify the numerical model. The temporal and spatial evolution of simulated double‐diffusive convection is in good agreement with experimental results. Numerical results are very sensitive to discretization and correspond closest to experimental results when element sizes adequately define the spatial resolution of observed fingering. Numerical results also indicate that differences in the molecular diffusivity of sodium chloride and the dye used to visualize experimental sodium chloride concentrations are significant and cause inaccurate mapping of sodium chloride concentrations by the dye, especially at late times. As a result of reduced diffusion, simulated dye fingers are better defined than simulated sodium chloride fingers and exhibit more vertical mass transfer.
Enhancement of anticorrosion property of 304 stainless steel using silane coatings
NASA Astrophysics Data System (ADS)
Akhtar, Sultan; Matin, Asif; Madhan Kumar, A.; Ibrahim, Ahmed; Laoui, Tahar
2018-05-01
In the present work, silane coatings based on glycidoxypropyltrimethoxysilane/methyltrimethoxysilane (GPTMS/MTMS) and silica nanoparticles were prepared by a sol-gel method. A simple dip-coating method was applied for film deposition and the effect of immersion time and number of immersion cycles on corrosion behavior of 304 stainless steel (SS) was investigated. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS) was used to study the surface morphology and elemental composition of the modified surfaces. The corrosion behavior of the coated and uncoated SS substrates was studied by potentiodynamic polarization and electrochemical impedance spectroscopy in 0.6 M sodium chloride solution. Our results showed that the presence of coatings improved the anti-corrosion property of SS substrates. The coating with a dipping time of 10 min and 3 dipping cycles exhibited the best protection efficiency compared to other coatings and the uncoated substrate. SEM/EDS findings and contact angle measurements supported the conclusions drawn from the corrosion study.
The Space Shuttle Columbia Accident Investigation and Reconstruction: Two Years Later
NASA Technical Reports Server (NTRS)
McDanels, Steven J.
2005-01-01
The Space Shuttle Columbia was lost during re-entry over two years ago. Since the release of the official materials-related findings in August of 2003, additional testing and analysis of select pieces of debris has continued. Microanalytical techniques, including EMPA, ESCA, and x-ray elemental dot mapping, were employed during the initial investigation; the results related the microstructural characteristics of deposit layers to the breach location in the leading edge of the left wing. Such characteristics included deposition order, composition, and distribution. Subsequent to the original efforts, new analytical data and information, not available at the time of the primary investigation, has been generated. This data was obtained via a low-vacuum SEM, fitted not only with a light-element EDS detector, but an XRF tube as well. Essentially, for elements up to sodium, classic EDS was utilized; above sodium, XRF was used. Predominantly, the elements of interest were aluminum, titanium, chromium, iron, nickel, and copper. The findings of both old and new data are compared, and their application to the overall accident investigation detailed.
ter Maaten, J C; Bakker, S J; Serné, E H; ter Wee, P M; Donker, A J; Gans, R O
1999-10-01
Insulin induces sodium retention by increasing distal tubular sodium reabsorption. Opposite effects of insulin to offset insulin-induced sodium retention are supposedly increases in glomerular filtration rate (GFR) and decreases in proximal tubular sodium reabsorption. Defects in these opposing effects could link insulin resistance to blood-pressure elevation and salt sensitivity. We assessed the relationship between the effects of sequential physiological and supraphysiological insulin dosages (50 and 150 mU/kg/h) on renal sodium handling, and insulin sensitivity and salt sensitivity using the euglycaemic clamp technique and clearances of [131I]hippuran, [125I]iothalamate, sodium, and lithium in 20 normal subjects displaying a wide range of insulin sensitivity. Time-control experiments were performed in the same subjects. Salt sensitivity was determined using a diet method. During the successive insulin infusions, GFR increased by 5.9% (P = 0.003) and 10.9% (P<0.001), while fractional sodium excretion decreased by 34 and 50% (both P<0.001). Distal tubular sodium reabsorption increased and proximal tubular sodium reabsorption decreased. Insulin sensitivity correlated with changes in GFR during physiological (r = 0.60, P = 0.005) and supraphysiological (r = 0.58, P = 0.007) hyperinsulinaemia, but not with changes in proximal tubular sodium reabsorption. Salt sensitivity correlated with changes in proximal tubular sodium reabsorption (r = 0.49, P = 0.028), but not in GFR, during physiological hyperinsulinaemia. Neither insulin sensitivity or salt sensitivity correlated with changes in overall fractional sodium excretion. Insulin sensitivity and salt sensitivity correlate with changes in different elements of renal sodium handling, but not with overall sodium excretion, during insulin infusion. The relevance for blood pressure regulation remains to be proved.
Bhatt, Nejal M.; Chavada, Vijay D.; Sanyal, Mallika; Shrivastav, Pranav S.
2014-01-01
Objective. Three sensitive, selective, and precise spectrophotometric methods based on manipulation of ratio spectra, have been developed and validated for the determination of diclofenac sodium and pantoprazole sodium. Materials and Methods. The first method is based on ratio spectra peak to peak measurement using the amplitudes at 251 and 318 nm; the second method involves the first derivative of the ratio spectra (Δλ = 4 nm) using the peak amplitudes at 326.0 nm for diclofenac sodium and 337.0 nm for pantoprazole sodium. The third is the method of mean centering of ratio spectra using the values at 318.0 nm for both the analytes. Results. All the three methods were linear over the concentration range of 2.0–24.0 μg/mL for diclofenac sodium and 2.0–20.0 μg/mL for pantoprazole sodium. The methods were validated according to the ICH guidelines and accuracy, precision, repeatability, and robustness are found to be within the acceptable limit. The results of single factor ANOVA analysis indicated that there is no significant difference among the developed methods. Conclusions. The developed methods provided simple resolution of this binary combination from laboratory mixtures and pharmaceutical preparations and can be conveniently adopted for routine quality control analysis. PMID:24701171
Yaghoubian, Arezou; de Virgilio, Christian; Dauphine, Christine; Lewis, Roger J; Lin, Matthew
2007-09-01
Simple admission laboratory values can be used to classify patients with necrotizing soft-tissue infection (NSTI) into high and low mortality risk groups. Chart review. Public teaching hospital. All patients with NSTI from 1997 through 2006. Variables analyzed included medical history, admission vital signs, laboratory values, and microbiologic findings. Data analyses included univariate and classification and regression tree analyses. Mortality. One hundred twenty-four patients were identified with NSTI. The overall mortality rate was 21 of 124 (17%). On univariate analysis, factors associated with mortality included a history of cancer (P = .03), intravenous drug abuse (P < .001), low systolic blood pressure on admission (P = .03), base deficit (P = .009), and elevated white blood cell count (P = .06). On exploratory classification and regression tree analysis, admission serum lactate and sodium levels were predictors of mortality, with a sensitivity of 100%, specificity of 28%, positive predictive value of 23%, and negative predictive value of 100%. A serum lactate level greater than or equal to 54.1 mg/dL (6 mmol/L) alone was associated with a 32% mortality, whereas a serum sodium level greater than or equal to 135 mEq/L combined with a lactate level less than 54.1 mg/dL was associated with a mortality of 0%. Mortality for NSTIs remains high. A simple model, using admission serum lactate and serum sodium levels, may help identify patients at greatest risk for death.
Gollapudi, Prakash Rao; Mohammed, Imran; Pittala, Sandeep R; Kotha, Arjun Reddy; Reddycherla, Naga Raju; Ginjupally, Dhanunjaya Rao
2018-04-01
Fluorescein sodium is one of the fluorophores that is used in the resection of intracranial lesions. It is commonly used along with a customized microscope, which is expensive and not available universally. In this study, we describe a simple, inexpensive method for better visualization of intracranial and spinal cord lesions with fluorescein. After a test dose, 20 mg/kg of fluorescein sodium was administered intravenously at the time of intubation. A blue light source was used before resection for precise localization of the intracranial lesions after durotomy. Most of the resection was done under the white light, while the blue light was used intermittently to delineate the pathologic tissue from the normal tissue and to ensure safe maximal resection. The intensity of fluorescein staining under white light and blue light was noted. The study comprised 40 cases of gliomas, meningiomas, abscesses, spinal cord tumors, and cerebellopontine angle lesions. Thirty-five lesions showed good fluorescence under the blue light, which helped us achieve better resection of the pathologic lesions. Fluorescein sodium is a safe dye; it can be used to aid in precise localization and safe maximal resection of the pathologic tissue with the help of a blue light source at any center with challenged resources. The blue light enhances the fluorescence and visualization of the pathologic tissue, and this technique can be adopted by any surgeon without much difficulty even with a basic neurosurgical setup. Copyright © 2018 Elsevier Inc. All rights reserved.
Obsidian sources characterized by neutron-activation analysis.
Gordus, A A; Wright, G A; Griffin, J B
1968-07-26
Concentrations of elements such as manganese, scandium, lanthanum, rubidium, samarium, barium, and zirconium in obsidian samples from different flows show ranges of 1000 percent or more, whereas the variation in element content in obsidian samples from a single flow appears to be less than 40 percent. Neutron-activation analysis of these elements, as well as of sodium and iron, provides a means of identifying the geologic source of an archeological artifact of obsidian.
Water quality of streams and springs, Green River Basin, Wyoming
DeLong, L.L.
1986-01-01
Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)
Ma, Yan-Rong; Zhou, Yan; Zhang, Guo-Qiang; Rao, Zhi; Huang, Jing; Wei, Yu-hui; Wu, Xin-An
2014-01-01
The study aims to establish a method for simultaneous determination of repaglinide and pravastatin sodium in rat plasma by LC-MS/MS and to study its pharmacokinetic interactions. Eighteen male SD rats were divided into repaglinide group, pravastatin sodium group and co-administration group. Blood samples were collected at different times after oral administration. Repaglinide and pravastatin sodium in rat plasma were separated by Agilent HC-C18 with the mobile phase consisting of methanol-0.1% formic acid (80 : 20). Detection and quantification were performed by using ESI-MS. The detector was operated in selected Reaction-monitoring mode at m/z 453.3-->230.1 for repaglinide, m/z 447.2-->327.4 for pravastatin sodium and m/z 285.1-->192.9 for diazepam as the internal standard. The calibration curve obtained was linear (R2>0.99) over the concentration range of 9.77-10,000 ng.mL-1 for repaglinide and 4.88-625 ng.mL-1 for pravastatin sodium. Compared with the single administration group, Cmax and AUC0-6h of repaglinide increased significantly (P<0.05) and tmax of pravastatin sodium prolonged (P<0.05) in co-administration group. The method is found to be simple, sensitive and accurate for determining the concentration of repaglinide and pravastatin sodium in rat plasma. There exists pharmacokinetic interactions in the co-administration of repaglinide and pravastatin sodium.
2014-10-01
approved it in 1995 for this indication. Also, it is used in conjunction with lithium or carbamazepine to prevent recurrent manic or depressive...TITLE: A Double Blind Trial of Divalproex Sodium for Affective L ability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL...NUMBER Liability and Alcohol Use Following Traumatic Brain Injury 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d
The Blue Bottle Experiment--Simple Demonstration of Self-Organization.
ERIC Educational Resources Information Center
Adamcikova, L'ubica; Sevcik, Peter
1998-01-01
Explains a way of observing pattern formation in the Blue Bottle chemistry demonstration by pouring a solution containing sodium hydroxide, glucose, and dye into a Petri dish and placing the dish on an overhead projector. (WRM)
Interaction of a sodium ion with the water liquid-vapor interface
NASA Technical Reports Server (NTRS)
Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)
1989-01-01
Molecular dynamics results are presented for the density profile of a sodium ion near the water liquid-vapor interface at 320 K. These results are compared with the predictions of a simple dielectric model for the interaction of a monovalent ion with this interface. The interfacial region described by the model profile is too narrow and the profile decreases too abruptly near the solution interface. Thus, the simple model does not provide a satisfactory description of the molecular dynamics results for ion positions within two molecular diameters from the solution interface where appreciable ion concentrations are observed. These results suggest that surfaces associated with dielectric models of ionic processes at aqueous solution interfaces should be located at least two molecular diameters inside the liquid phase. A free energy expense of about 2 kcal/mol is required to move the ion within two molecular layers of the free water liquid-vapor interface.
Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass
NASA Astrophysics Data System (ADS)
Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard
2013-06-01
The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant CQ ∝ |Vzz| and the asymmetry parameter ηQ that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.
Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass.
Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard
2013-06-26
The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant C(Q) is proportional to |V(zz)| and the asymmetry parameter η(Q) that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.
Ethiraj, Revathi; Thiruvengadam, Ethiraj; Sampath, Venkattapuram Saravanan; Vahid, Abdul; Raj, Jithin
2014-01-01
A simple, selective, and stability indicating spectroscopic method has been selected and validated for the assay of ceftriaxone sodium in the powder for injection dosage forms. Proposed method is based on the measurement of absorbance of ceftriaxone sodium in aqueous medium at 241 nm. The method obeys Beer's law in the range of 5–50 μg/mL with correlation coefficient of 0.9983. Apparent molar absorptivity and Sandell's sensitivity were found to be 2.046 × 103 L mol−1 cm−1 and 0.02732 μg/cm2/0.001 absorbance units. This study indicated that ceftriaxone sodium was degraded in acid medium and also underwent oxidative degradation. Percent relative standard deviation associated with all the validation parameters was less than 2, showing compliance with acceptance criteria of Q2 (R1), International Conference on Harmonization (2005) guidelines. Then the proposed method was successfully applied to the determination of ceftriaxone sodium in sterile preparation and results were comparable with reported methods. PMID:27355020
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gondal, M. A., E-mail: magondal@kfupm.edu.sa; Baig, Umair; Dastageer, M. A.
A detection system based on laser induced breakdown spectroscopy (LIBS) was built using 266 nm wavelength pulsed laser from the fourth harmonic of Nd:YAG laser, 500 mm spectrograph and gated ICCD camera with built-in delay generator. The LIBS system was used to study the elemental composition in coffee available in the local market of Saudi Arabia for the detection of elements in coffee samples. The LIBS spectrum of coffee sample revealed the presence magnesium, calcium, aluminum, copper, sodium, barium, bromine, cobalt, chromium, cerium manganese and molybdenum. Atomic transition line of sodium is used to study the parametric dependence of LIBSmore » signal. The study of the dependence of LIBS signal on the laser pulse energy is proven to be linear and the dependence of LIBS signal on the time delay between the excitation and data acquisition showed a typical increase, a peak value and a decrease with the optimum excitation – acquisition delay at 400 ns.« less
Analysis of human nails by laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Hosseinimakarem, Zahra; Tavassoli, Seyed Hassan
2011-05-01
Laser-induced breakdown spectroscopy (LIBS) is applied to analyze human fingernails using nanosecond laser pulses. Measurements on 45 nail samples are carried out and 14 key species are identified. The elements detected with the present system are: Al, C, Ca, Fe, H, K, Mg, N, Na, O, Si, Sr, Ti as well as CN molecule. Sixty three emission lines have been identified in the spectrum that are dominated by calcium lines. A discriminant function analysis is used to discriminate among different genders and age groups. This analysis demonstrates efficient discrimination among these groups. The mean concentration of each element is compared between different groups. Correlation between concentrations of elements in fingernails is calculated. A strong correlation is found between sodium and potassium while calcium and magnesium levels are inversely correlated. A case report on high levels of sodium and potassium in patients with hyperthyroidism is presented. It is shown that LIBS could be a promising technique for the analysis of nails and therefore identification of health problems.
Alkali metal vapors - Laser spectroscopy and applications
NASA Technical Reports Server (NTRS)
Stwalley, W. C.; Koch, M. E.
1980-01-01
The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.
Comparative Behaviour of Nitrite and Nitrate for the Protection of Rebar Corrosion
NASA Astrophysics Data System (ADS)
Ahmad, Altaf; Kumar, Anil
2017-10-01
Corrosion of rebar steel due to environmental causes has been studied through various approaches, and among the protection techniques use of inhibitors has gained encouragement. Nitrites and nitrates of sodium have gained sufficient scientific coverage. Recently, nitrites and nitrates of calcium have been verified in some studies, which, however, needs further experimentation through different angles. Simple polarization technique has been utilized in the present study to compare inhibitive efficiency of these salts of sodium and calcium, which indicate that calcium salts are more efficient.
NASA Astrophysics Data System (ADS)
Kokorina, Alina A.; Goryacheva, Irina Y.; Sapelkin, Andrei V.; Sukhorukov, Gleb B.
2018-04-01
Photoluminescent (PL) carbon nanoparticles (CNPs) have been synthesized by one-step microwave irradiation from water solution of sodium dextran sulfate (DSS) as the sole carbon source. Microwave (MW) method is very simple and cheap and it provides fast synthesis of CNPs. We have varied synthesis time for obtaining high luminescent CNPs. The synthesized CNPs exhibit excitation-dependent photoluminescent. Final CNPs water solution has a blue- green luminescence. CNPs have low cytotoxicity, good photostability and can be potentially suitable candidates for bioimaging, analysis or analytical tests.
Burns, M S; File, D M
1986-11-01
Secondary ion mass spectrometry (SIMS) is a surface analytical technique with high sensitivity for elemental detection and microlocalization capabilities within the micrometre range. Quantitative analysis of epoxy resins and gelatin have been reported (Burns-Bellhorn & File, 1979). We report here the first application of this technique to quantitative microlocalization in the context of a physiological problem--analyses of sodium, potassium and calcium in normal and galactose-induced cataract in rat lens. It is known that during the development of galactose-induced cataract the whole lens content of potassium is decreased, sodium is increased and, in late stages, calcium concentration increases. Whether these alterations in diffusible ions occur homogeneously or heterogeneously is not known. Standard curves were generated from epoxy resins containing known concentrations of sodium, potassium or calcium organometallic compounds using the Cameca IMS 300 Secondary Ion Mass Spectrometer. Normal and cataractous lenses were prepared by freezing in isopentane in a liquid nitrogen bath followed by freeze-drying at -30 degrees C. After dry embedding in epoxy resin, 10 microns thick sections of lens were pressure mounted on silicon wafers, overcoated with gold, and ion emission measured under the same instrumental conditions used to obtain the standard curves. Quantitative analysis of an area 27 microns in diameter, or a total analysed volume of 1.1 microns3, was performed by using a mechanical aperture in the ion optical system. Ion images provided qualitative microanalysis with a lateral resolution of 1 micron. Control rat lenses gave values for sodium and potassium content with a precision of +/- 17% or less. These values were compared to flame photometry and atomic absorption measurements of normal lenses and were accurate within 25%. Analysis of serum and blood also gave accurate and precise measurements of these elements. Normal rat lenses had a gradient of sodium, and, to a lesser degree, of potassium from the cortex to the nucleus. Development of galactose-induced cataract was heterogeneous by morphological criteria, beginning at the lens equator and spreading from the cortex into the nucleus. However, the loss of potassium and increase in sodium concentration occurred at early stages in both the cortex and nucleus cells, possibly because these cells are interconnected by gap junctions. There is a local alteration in elemental content prior to morphologically demonstrable cataract formation.(ABSTRACT TRUNCATED AT 400 WORDS)
Secondary power-producing cell. [electrodes contain same two elements in different proportions
Fischer, A.K.
1971-10-26
This cell consists of an anode and a cathode containing the same two elements in different proportions and an electrolyte which contains ions of the element which is to be transported through it. The electrodes consist of chromium, iron, lithium, sodium, cadmium, copper, or zinc and phosphorus, selenium, tellurium, sulfur, arsenic, or nitrogen. A method to heat the cathode in the regeneration cycle to transfer the electronegative component to the anode is provided. (RWR)
Biodegradable Pectin/clay Aerogels
USDA-ARS?s Scientific Manuscript database
Biodegradable, foamlike materials based on renewable pectin and sodium montmorillonite clay were fabricated through a simple, environmentally friendly freeze-drying process. Addition of multivalent cations (Ca2+ and Al3+) resulted in apparent crosslinking of the polymer, and enhancement of aerogel p...
Determination of Components in Beverages by Thin-Layer Chromatography.
ERIC Educational Resources Information Center
Ma, Yinfa; Yeung, Edward S.
1990-01-01
Described is a simple and interesting chromatography experiment using three different fluorescence detection principles for the determination of caffeine, saccharin and sodium benzoate in beverages. Experimental procedures and an analysis and discussion of the results are included. (CW)
FORMING CHONDRULES IN IMPACT SPLASHES. II. VOLATILE RETENTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dullemond, Cornelis Petrus; Harsono, Daniel; Stammler, Sebastian Markus
2016-11-20
Solving the mystery of the origin of chondrules is one of the most elusive goals in the field of meteoritics. Recently, the idea of planet(esimal) collisions releasing splashes of lava droplets, long considered out of favor, has been reconsidered as a possible origin of chondrules by several papers. One of the main problems with this idea is the lack of quantitative and simple models that can be used to test this scenario by directly comparing to the many known observables of chondrules. In Paper I of this series, we presented a simple thermal evolution model of a spherically symmetric expandingmore » cloud of molten lava droplets that is assumed to emerge from a collision between two planetesimals. The production of lava could be either because the two planetesimals were already in a largely molten (or almost molten) state due to heating by {sup 26}Al, or due to impact jetting at higher impact velocities. In the present paper, number II of this series, we use this model to calculate whether or not volatile elements such as Na and K will remain abundant in these droplets or whether they will get depleted due to evaporation. The high density of the droplet cloud (e.g., small distance between adjacent droplets) causes the vapor to quickly reach saturation pressure and thus shuts down further evaporation. We show to what extent, and under which conditions, this keeps the abundances of these elements high, as is seen in chondrules. We find that for most parameters of our model (cloud mass, expansion velocity, initial temperature) the volatile elements Mg, Si, and Fe remain entirely in the chondrules. The Na and K abundances inside the droplets will initially stay mostly at their initial values due to the saturation of the vapor pressure, but at some point start to drop due to the cloud expansion. However, as soon as the temperature starts to decrease, most or all of the vapor recondenses again. At the end, the Na and K elements retain most of their initial abundances, albeit occasionally somewhat reduced, depending on the parameters of the expanding cloud model. These findings appear to be qualitatively consistent with the analysis of Semarkona Type II chondrules by Hewins et al. who found evidence for sodium evaporation followed by recondensation.« less
Monosodium glutamate for simple photometric iron analysis
NASA Astrophysics Data System (ADS)
Prasetyo, E.
2018-01-01
Simple photometric method for iron analysis using monosodium glutamate (MSG) was proposed. The method could be used as an alternative method, which was technically simple, economic, quantitative, readily available, scientifically sound and environmental friendly. Rapid reaction of iron (III) with glutamate in sodium chloride-hydrochloric acid buffer (pH 2) to form red-brown complex was served as a basis in the photometric determination, which obeyed the range of iron (III) concentration 1.6 - 80 µg/ml. This method could be applied to determine iron concentration in soil with satisfactory results (accuracy and precision) compared to other photometric and atomic absorption spectrometry results.
Quantitation of twelve metals in tequila and mezcal spirits as authenticity parameters.
Ceballos-Magańa, Silvia Guillermina; Jurado, José Marcos; Martín, María Jesús; Pablos, Fernando
2009-02-25
In this paper the differentiation of silver, gold, aged and extra-aged tequila and mezcal has been carried out according to their metal content. Aluminum, barium, calcium, copper, iron, magnesium, manganese, potassium, sodium, strontium, zinc, and sulfur were determined by inductively coupled plasma optical emission spectrometry. The concentrations found for each element in the samples were used as chemical descriptors for characterization purposes. Principal component analysis, linear discriminant analysis and artificial neural networks were applied to differentiate types of tequila and mezcal. Using probabilistic neural networks 100% of success in the classification was obtained for silver, gold, extra-aged tequila and mezcal. In the case of aged tequila 90% of samples were successfully classified. Sodium, potassium, calcium, sulfur, magnesium, iron, strontium, copper and zinc were the most discriminant elements.
Oh, Seung-Min; Myung, Seung-Taek; Yoon, Chong Seung; Lu, Jun; Hassoun, Jusef; Scrosati, Bruno; Amine, Khalil; Sun, Yang-Kook
2014-03-12
While much research effort has been devoted to the development of advanced lithium-ion batteries for renewal energy storage applications, the sodium-ion battery is also of considerable interest because sodium is one of the most abundant elements in the Earth's crust. In this work, we report a sodium-ion battery based on a carbon-coated Fe3O4 anode, Na[Ni0.25Fe0.5Mn0.25]O2 layered cathode, and NaClO4 in fluoroethylene carbonate and ethyl methanesulfonate electrolyte. This unique battery system combines an intercalation cathode and a conversion anode, resulting in high capacity, high rate capability, thermal stability, and much improved cycle life. This performance suggests that our sodium-ion system is potentially promising power sources for promoting the substantial use of low-cost energy storage systems in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, N.; Lorcet, H.; Beauchamp, F.
2012-07-01
Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, amore » functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)« less
Iron and boron removal from sodium silicate using complexation methods
NASA Astrophysics Data System (ADS)
Wahyuningsih, S.; Suharty, N. S.; Pramono, E.; Ramelan, A. H.; Sasongko, B.; Dewi, A. O. T.; Hidayat, R.; Sulistyono, E.; Handayani, M.; Firdiyono, F.
2018-05-01
Silica purification of other materials is needed to improve the purity of silica that suitable for solar cells requirement. The silica is obtained from roasting of sand minerals in sodium silicate form. Iron (Fe) and boron (B) are an impurity that must be separated to obtain high pure silica. Separation of Fe and B used complexation methods. Chitosan-EDTA is used to remove Fe component and curcumin is used to remove B component. The elemental analysis with Atomic Absorption Spectrophotometer (AAS) showed the amount of Fe in sodium silicate decreased after binding to Chitosan EDTA. The contact duration between sodium silicate and chitosan-EDTA at baseline did not affect the results. Then the removal of B from sodium silicate using curcumin was done under basic conditions. B-Curcumin complexes were known from the wavelength number shifts of O-H, C-O, and C = O vibrational in the IR spectrum. The results showed that the optimum concentration of curcumin for removal B was 2 × 10-7 M.
Zhang, Zhigang; Li, Xiaobing; Wang, Hongbin; Guo, Changming; Gao, Li; Liu, Lei; Gao, Ruifeng; Zhang, Yi; Li, Peng; Wang, Zhe; Li, Yanfei; Liu, Guowen
2011-12-01
Serum concentrations of sodium, potassium, magnesium, and iron were measured in dairy cows with subclinical ketosis. Compared with healthy cows, the subclinically ketotic cows had significantly higher levels of non-esterified fatty acids and β-hydroxybutirate in serum and significantly lower levels of blood glucose (p < 0.01). No significant differences were observed, suggesting that the mineral elements measured are not involved in the pathogenesis of subclinical ketosis.
Solid electrolytes strengthened by metal dispersions
Lauf, Robert J.; Morgan, Chester S.
1983-01-01
An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.
Solid electrolytes strengthened by metal dispersions
Lauf, R.J.; Morgan, C.S.
1981-10-05
An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.
McLean, Rachael; Hoek, Janet; Hedderley, Duncan
2012-05-01
Dietary sodium reduction is a cost-effective public health intervention to reduce chronic disease. In response to calls for further research into front-of-pack labelling systems, we examined how alternative sodium nutrition label formats and nutrition claims influenced consumers' choice behaviour and whether consumers with or without a diagnosis of hypertension differed in their choice patterns. An anonymous online experiment in which participants viewed ten choice sets featuring three fictitious brands of baked beans with varied label formats and nutritional profiles (high and low sodium) and indicated which brand in each set they would purchase if shopping for this product. Participants were recruited from New Zealand's largest online nationwide research panel. Five hundred people with self-reported hypertension and 191 people without hypertension aged 18 to 79 years. The addition of a front-of-pack label increased both groups' ability to discriminate between products with high and low sodium, while the Traffic Light label enabled better identification of the high-sodium product. Both front-of-pack formats enhanced discrimination in the presence of a reduced salt claim, but the Traffic Light label also performed better than the Percentage Daily Intake label in moderating the effect of the claim for the high-sodium product. Front-of-pack labels, particularly those with simple visual cues, enhance consumers' ability to discriminate between high- and low-sodium products, even when those products feature nutrition claims.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jianying; Dann, Geoffrey P.; Shi, Tujin
2012-03-10
Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for highly efficient biological sample extraction; however, SDS presents a significant challenge to LC-MS-based proteomic analyses due to its severe interference with reversed-phase LC separations and electrospray ionization interfaces. This study reports a simple SDS-assisted proteomic sample preparation method facilitated by a novel peptide-level SDS removal protocol. After SDS-assisted protein extraction and digestion, SDS was effectively (>99.9%) removed from peptides through ion substitution-mediated DS- precipitation with potassium chloride (KCl) followed by {approx}10 min centrifugation. Excellent peptide recovery (>95%) was observed for less than 20 {mu}g of peptides.more » Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage from this SDS-assisted protocol was comparable to or better than those obtained from other standard proteomic preparation methods in both mammalian tissues and bacterial samples. These results suggest that this SDS-assisted protocol is a practical, simple, and broadly applicable proteomic sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... a finite tolerance is not necessary to ensure that there is a reasonable certainty that no harm will... integral part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... a finite tolerance is not necessary to ensure that there is a reasonable certainty that no harm will... composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed in 40 CFR 723.250(d...
Yuan, Chenpei; Wu, Qiong; Shao, Qi; Li, Qiang; Gao, Bo; Duan, Qian; Wang, Heng-Guo
2018-05-01
Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotubes (CNTs) has been successfully synthesized by a simple vacuum filtration strategy. The obtained flexible and free-standing film could be directly used as the binder-, additive- and current collector-free cathode for lithium ion batteries (LIBs) and sodium ion batteries (SIBs). Benefitting from the synergistic effect provided by the aromatic carbonyl compound and CNTs, the flexible organic cathode shows excellent lithium and sodium storage properties, including high reversible capacity (∼150 mAh g -1 at 50 mA g -1 for LIBs and 57.8 mAh g -1 at 25 mA g -1 for SIBs), excellent cycling stability (over 500 cycles for LIBs and 300 cycles for SIBs) and good rate capability (48 mAh g -1 even at 2000 mA g -1 for LIBs and 48 mAh g -1 even at 1000 mA g -1 for SIBs). In view of the simple preparation process and excellent performance, the proposed strategy might open new avenues for the design of high-performance flexible organic electrode for the application in energy storage and conversion. Copyright © 2018 Elsevier Inc. All rights reserved.
Chorny, Michael; Levy, Daniel; Schumacher, Ilana; Lichaa, Chaim; Gruzman, Boris; Livshits, Oleg; Lomnicky, Yossi
2003-04-24
Benoxinate is a local anaesthetic used for ophthalmic applications. The aim of this study was to develop a rapid and simple stability-indicating method for the determination of benoxinate formulated for ophthalmic use, evaluate its long-term stability and identify its major degradation product. Benoxinate was eluted on a 10 microm Spherisorb phenyl column, 250 x 3.2 mm, with a mobile phase consisting of acetonitrile-buffer (pH 3.5) (35:65, v/v), pumped at 0.8 ml min(-1) flow rate. The buffer was composed of sodium dihydrogen phosphate (50 mM), sodium hydrogen sulfate (2.5 mM) and 1-heptanesulfonic acid sodium salt (5 mM). The analyte was quantified spectrophotometrically at 308 nm. The chromatograms of benoxinate formulations obtained by this method showed benoxinate (t = 4.5 min) well resolved from its degradation product (t = 2.3 min), which was separately identified by means of HPLC-MS as 4-amino-3-butoxybenzoic acid. The assay was demonstrated to have high accuracy, precision and linearity. The method was implemented in investigating the long-term stability of benoxinate 0.4% ophthalmic solutions. The method was found to be simple, quick and selective in determining benoxinate concentrations in fresh and aged preparations.
A RP-HPLC method for quantification of diclofenac sodium released from biological macromolecules.
Bhattacharya, Shiv Sankar; Banerjee, Subham; Ghosh, Ashoke Kumar; Chattopadhyay, Pronobesh; Verma, Anurag; Ghosh, Amitava
2013-07-01
Interpenetrating network (IPN) microbeads of sodium carboxymethyl locust bean gum (SCMLBG) and sodium carboxymethyl cellulose (SCMC) containing diclofenac sodium (DS), a nonsteroidal anti-inflammatory drug, were prepared by single water-in-water (w/w) emulsion gelation process using AlCl3 as cross-linking agent in a complete aqueous environment. Pharmacokinetic study of these IPN microbeads was then carried out by a simple and feasible high-performance liquid chromatographic method with UV detection which was developed and validated for the quantification of diclofenac sodium in rabbit plasma. The chromatographic separation was carried out in a Hypersil BDS, C18 column (250 mm × 4.6 mm; 5 m). The mobile phase was a mixture of acetonitrile and methanol (70:30, v/v) at a flow rate of 1.0 ml/min. The UV detection was set at 276 nm. The extraction recovery of diclofenac sodium in plasma of three quality control (QC) samples was ranged from 81.52% to 95.29%. The calibration curve was linear in the concentration range of 20-1000 ng/ml with the correlation coefficient (r(2)) above 0.9951. The method was specific and sensitive with the limit of quantification of 20 ng/ml. In stability tests, diclofenac sodium in rabbit plasma was stable during storage and assay procedure. Copyright © 2013. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Foy, Barry G.
1977-01-01
Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)
Synthesis of Fire-Extinguishing Dawsonites
NASA Technical Reports Server (NTRS)
Altman, R. L.
1982-01-01
Simple nonaqueous process synthesizes sodium or potassium, dawsonites effective against hydrocarbon fuel fires. Fire-extinguishing alkali metal dawsonites are prepared using a finely-pulverized equimolar mixture of hydrogen carbonate, or carbonates and aluminum hydroxide heated for 1 to 6 hours under carbon dioxide pressure.
ERIC Educational Resources Information Center
Delaney, Michael F.; And Others
1985-01-01
Describes a simple and reliable new quantitative analysis experiment using liquid chromatography for the determinaiton of caffeine, saccharin, and sodium benzoate in beverages. Background information, procedures used, and typical results obtained are provided. (JN)
Keidan, Ilan; Sidi, Avner; Ben-Menachem, Erez; Derazne, Estela; Berkenstadt, Haim
2015-11-01
Intravenous catheters are ubiquitous among modern medical management of patients, yet misplaced or tissued cannulas can result in serious iatrogenic injury due to infiltration or extravasation of injectate. Prevention is difficult, and currently few reliable tests exist to confirm intravascular placement of catheters in awake spontaneously breathing patients. Twenty conscious spontaneously breathing healthy volunteers were injected with 50 mL normal saline and 50 mL 4.2%, or 50 mL 2.1%, or 20 mL 4.2% sodium bicarbonate in a random order. A blinded anesthetist observed continuous sampling of exhaled carbon dioxide and was asked to differentiate between the sodium bicarbonate and saline injections. Peak increase in measured exhaled carbon dioxide was also calculated. Exhaled carbon dioxide increased significantly in participants injected with intravenous sodium bicarbonate. Mean peak increase was 7.4 mm Hg (±2.1 mm Hg) for 50 mL 4.2% sodium bicarbonate, 4.7 mm Hg (±2.5 mm Hg) for 20 mL 4.2% sodium bicarbonate, and 3.5 mm Hg (±1. 8 mm Hg) for 50 mL 2.1% sodium bicarbonate. The blinded observer correctly identified the injection as sodium bicarbonate or normal saline in every instance. Intravenous injection of dilute sodium bicarbonate with exhaled carbon dioxide monitoring reliably confirms correct intravascular placement of a catheter. A transient increase of exhaled carbon dioxide by 10% or more is an objective and reliable confirmation of intravascular location of the catheter. We recommend using 20 mL of 4.2% sodium bicarbonate to minimize the mEq dose of sodium bicarbonate required. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhange, Deu S.; Ali, Ghulam; Kim, Ji-Young; Chung, Kyung Yoon; Nam, Kyung-Wan
2017-10-01
Due to their abundance and environmentally benign nature, iron and titanium present as the most attractive potential elements for use in rechargeable sodium-ion batteries (SIBs). Accordingly, two structurally different Fe and Ti based compounds, stoichiometric NaFeTiO4 and sodium deficient NaxFexTi2-xO4 (where x = 0.9, and 0.8), are explored as anode materials for SIBs. Their structure and sodium storage capacity are systematically investigated by using combined structural and electrochemical analysis. Rietveld refinement analysis reveals that the sodium deficiency leads to the structural transformation from a single-tunnel structure (NaFeTiO4) to a zigzag-type double-tunnel structure (Na0.9Fe0.9Ti1.1O4 and Na0.8Fe0.8Ti1.2O4). The series of sodium deficient compounds bears systematic sodium ion vacancies in their structure up to 20%. Sodium deficiency in the NaxFexTi2-xO4 logically provides additional space for accommodating the excess sodium ions as such the NaxFexTi2-xO4 compounds with higher level of sodium deficiency show higher specific capacities than the stoichiometric NaFeTiO4. All the compounds exhibited very good electrochemical cycling stability, with minimal capacity loss during cycling. The present approach is a model example of improvement in the sodium storage capacity of the anode materials by tuning the chemical composition, and could facilitate the performance improvement of known or new electrode materials for SIBs.
Anubala, S; Sekar, R; Nagaiah, K
2014-06-01
A simple, fast and efficient non-aqueous capillary electrophoresis method (NACE) was developed for the simultaneous determination of three major bioactive curcuminoids (CMNs) in Curcuma longa rhizomes and its herbal products. Good separation, resolution and reproducibility were achieved with the background electrolyte (BGE) consisting a mixture of 15.0 mM sodium tetraborate and 7.4 mM sodium hydroxide (NaOH) in 2:10:15 (v/v/v) of water, 1-propanol, and methanol. The influences of background electrolyte, sodium hydroxide, water, sodium dodecyl sulfate and hydroxylpropyl-β-cyclodextrin on separations were investigated. The separation was carried out in a fused-silica capillary tube with reverse polarity. Hydrodynamic injection of 25mbar for 12s was used for injecting samples and a voltage of 28 kV was applied for separation. The ultrasonication method was used for the extraction of CMNs from the turmeric herbal products and the extract was filtered and directly injected without any further treatments. The limits of detection and quantification were less than 5.0 and 14.6 µg/ml respectively for all CMNs. The percentage recoveries for CMNs were >97.2% (%RSD, <2.62). The results obtained by the method were compared with existing spectrophotometric and HPLC methods. The related compounds in the extract did not interfere in the determination of CMNs. The proposed NACE method is better than existing chromatographic and electrophoretic methods in terms of simple electrophoretic medium, fast analysis and good resolution. Copyright © 2014 Elsevier B.V. All rights reserved.
Panichev, Alexander M; Seryodkin, Ivan V; Kalinkin, Yuri N; Makarevich, Raisa A; Stolyarova, Tatiana A; Sergievich, Alexander A; Khoroshikh, Pavel P
2017-12-18
The mineral and chemical composition of the liquid and lithogenous substances, consumed by the wild ungulate animals, at the kudurs of the Teletskoye Lake, Gorny Altai, Russia, was studied. It was investigated that all examined kudurits are argillous-aleurolitic and get in the interval from 1 to 100 μm with the predominance of the fraction 10 μm. By the mineral composition, the lithogenous kudurits present the quartz-feldspathic-hydromicaceous-chloritic mineral formations with the large content of the quartz particles (20-43%) and sodium-containing plagioclases (albite, 15-32 wt%). The lithogenous kudurits are the products of the reconstitution of the metamorphic cleaving stones as a result of the glacier abrasive effect, subsequent its aqueous deposits and then eolation in the subaerial conditions. The fontinal waters consumed at the kudurs are subsaline chloride-hydrocarbonate-sodium and sulphated-hydrocarbonate-calcium types. It essentially differs by the increased content of rare-earth elements in reference to the lake water. The acid (HCl, pH-1) extracts from the kudurits more actively extract calcium (10-35% of the gross contents; sodium extracts at the level of 1-3%). The most fluent in the microelements composition are Cu, Be, Sr, Co, Cd, Pb, Sc, Y and rare-earth elements. The transit of all these elements into the dissoluted form fluctuates about 10% from the gross contents. The reason of geophagy is related to tendency of herbivores to absorb mineralized subsoils enriched by the biologically accessible forms of rare-earth elements, arisen as a result of vital activity of specific microflora.
Estimation of salivary sodium, potassium, calcium, phosphorus and urea in type II diabetic patients.
Shirzaiy, Masoumeh; Heidari, Fatemeh; Dalirsani, Zohreh; Dehghan, Javid
2015-01-01
Diabetes mellitus is an endocrine disease due to insufficiency production of insulin that is associated with altered quantity and quality in salivary secretion. Alteration in saliva can reflect the changes in patients' blood. The collection of saliva is easy therefore; the assessment of saliva is suitable for screening tests of large population. The study aimed at evaluate some elements in diabetic patients' saliva. A total of 25 diabetic patients and age-sex matched control group enrolled into the study. Absorbance spectrophotometer technique was used for assessment of some salivary elements. The assessment of saliva showed that diabetics had unstimulated salivary flow rate of 0.18 ± 0.14 mL/min compared to 0.30 ± 0.12 mL/min for healthy individuals (P<0.01). Secretion of potassium and urea to saliva was significantly higher in diabetics compared to healthy group (P<0.05). In contrast calcium, sodium and phosphorus concentration was not significantly different in two groups. The level of salivary urea, potassium and phosphorus was significantly elevated in diabetic males compared to healthy males and the level of salivary calcium in diabetic females was significantly reduced compared to healthy females (P<0.05). There was not any significant difference in salivary sodium of healthy and diabetic persons according to gender (P>0.05). The finding showed that there were some alterations in salivary elements in diabetic patients even in well-controlled subjects compared to healthy group. Moreover, some salivary elements concentrations were various in diabetic and healthy subjects regarding to the sex. Assessment of salivary composition could be beneficial in oral health evaluation. Copyright © 2013 Diabetes India. Published by Elsevier Ltd. All rights reserved.
A simple finite element method for linear hyperbolic problems
Mu, Lin; Ye, Xiu
2017-09-14
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for linear hyperbolic problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
NASA Astrophysics Data System (ADS)
Pirveysian, Mahtab; Ghiaci, Mehran
2018-01-01
A very simple, one pot method was used for preparation of sulfur functionalized graphene oxide (GO-SOxR) with sodium sulfide and water in reflux condition. The elemental analysis data showed high sulfur content up to 15%. EDS and XPS analysis also proved introduction of sulfur element. To make the sorbent more efficient operationally, the GO-SOxR was coated with a mesoporous shell of TiO2 or SiO2. The prepared sorbents were characterized by SEM, TEM, TGA, XPS, XRD, IR and EDS. GO-SOxR@TiO2 and GO-SOxR@SiO2 composites were tested for removal of Pb(II), Cd(II), Ni(II) and Zn(II) as heavy metal ions from aqueous solution in batch method. Adsorption of the heavy metal ions was studied kinetically, and the adsorption capacities of GO-SOxR, GO-SOxR@TiO2, and GO-SOxR@SiO2 were evaluated using equilibrium adsorption isotherms, and compared to other adsorbents used for removal of these heavy metals. Kinetic studies showed that the experimental data was fitted with pseudo second order model. The adsorption capacity of GO was significantly improved by sulfur functionalization and TiO2 coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrov, Vesselin, E-mail: vesselin@uctm.edu; Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp
2012-12-15
A suitable relationship between free-cation polarizability and electronegativity of elements in different valence states and with the most common coordination numbers has been searched on the basis of the similarity in physical nature of both quantities. In general, the cation polarizability increases with decreasing element electronegativity. A systematic periodic change in the polarizability against the electronegativity has been observed in the isoelectronic series. It has been found that generally the optical basicity increases and the single bond strength of simple oxides decreases with decreasing the electronegativity. The observed trends have been discussed on the basis of electron donation ability ofmore » the oxide ions and type of chemical bonding in simple oxides. - Graphical abstract: This figure shows the single bond strength of simple oxides as a function of element electronegativity. A remarkable correlation exists between these independently obtained quantities. High values of electronegativity correspond to high values of single bond strength and vice versa. It is obvious that the observed trend in this figure is closely related to the type of chemical bonding in corresponding oxide. Highlights: Black-Right-Pointing-Pointer A suitable relationship between free-cation polarizability and electronegativity of elements was searched. Black-Right-Pointing-Pointer The cation polarizability increases with decreasing element electronegativity. Black-Right-Pointing-Pointer The single bond strength of simple oxides decreases with decreasing the electronegativity. Black-Right-Pointing-Pointer The observed trends were discussed on the basis of type of chemical bonding in simple oxides.« less
2013-10-01
acutely manic bipolar patients, and the FDA approved it in 1995 for this indication. Also, it is used in conjunction with lithium or carbamazepine to...0652 TITLE: A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury...and Alcohol Use Following Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-2-0652 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR
2010-10-01
comparable to lithium in treating acutely manic bipolar patients, and the FDA approved it in 1995 for this indication. Also, it is used in conjunction with...A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL INVESTIGATOR...Lability and Alcohol Use Following Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-08-2-0652 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S
AMTEC flight experiment progress and plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, M.L.; Dobbs, M.; Giglio, J.
1997-12-31
An experiment is being developed to validate the performance of AMTEC technology in the space microgravity environment. A group of AMTEC cells have been fabricated and assembled into an experiment module and instrumented for operation. The experiment is manifested as a Hitchhiker payload on STS-88 now planned for flight in July 1998. The AMTEC cells will be operated in space for up to ten days. The microgravity developed distribution of the sodium working fluid will be frozen in place before the cells are returned to Earth. Upon return the cells will be destructively evaluated to determine the location of themore » sodium and to assure that the sodium has been properly controlled by the sodium control elements. This paper describes the experiment purpose, status, and plans for the flight operations and data analysis. An overview of how this experiment fits into the overall AMTEC development is also provided.« less
How sodium arsenite improve amyloid β-induced memory deficit?
Nassireslami, Ehsan; Nikbin, Parmida; Amini, Elham; Payandemehr, Borna; Shaerzadeh, Fatemeh; Khodagholi, Fariba; Yazdi, Behnoosh Bonakdar; Kebriaeezadeh, Abbas; Taghizadeh, Ghorban; Sharifzadeh, Mohammad
2016-09-01
Evidence has shown that arsenic exposure, besides its toxic effects results in impairment of learning and memory, but its molecular mechanisms are not fully understood. In the present study, we examined sodium arsenite (1, 5, 10, 100nM) effects on contextual and tone memory of male rats in Pavlovian fear conditioning paradigm alone and in co-administration with β-amyloid. We detected changes in the level of caspase-3, nuclear factor kappa-B (NF-κB), cAMP response element-binding (CREB), heme oxygenase-1 and NF-E2-related factor-2 (Nrf2) by Western blot. Sodium arsenite in high doses induced significant memory impairment 9 and 16days after infusion. By contrast, low doses of sodium arsenite attenuate memory deficit in Aβ injected rats after 16days. Our data revealed that treatment with high concentration of sodium arsenite increased caspase-3 cleavage and NF-κB level, 9days after injection. Whereas, low doses of sodium arsenite cause Nrf2 and HO-1 activation and increased CREB phosphorylation in the hippocampus. These findings suggest the concentration dependent effects of sodium arsenite on contextual and tone memory. Moreover, it seems that the neuroprotective effects of ultra-low concentrations of sodium arsenite on Aβ-induced memory impairment is mediated via an increase Nrf2, HO-1 and CREB phosphorylation levels and decrease caspase-3 and NF-κB amount. Copyright © 2016. Published by Elsevier Inc.
A Simple Tubular Reactor Experiment.
ERIC Educational Resources Information Center
Hudgins, Robert R.; Cayrol, Bertrand
1981-01-01
Using the hydrolysis of crystal violet dye by sodium hydroxide as an example, the theory, apparatus, and procedure for a laboratory demonstration of tubular reactor behavior are described. The reaction presented can occur at room temperature and features a color change to reinforce measured results. (WB)
40 CFR 721.4740 - Alkali metal nitrites.
Code of Federal Regulations, 2010 CFR
2010-07-01
... periodic classification of chemical elements) lithium, sodium, potassium, rubidium, cesium, and francium... defined in 40 CFR 721.3) containing amines. (b) [Reserved] [58 FR 27944, May 12, 1993, as amended at 58 FR...
40 CFR 721.4740 - Alkali metal nitrites.
Code of Federal Regulations, 2011 CFR
2011-07-01
... periodic classification of chemical elements) lithium, sodium, potassium, rubidium, cesium, and francium... defined in 40 CFR 721.3) containing amines. (b) [Reserved] [58 FR 27944, May 12, 1993, as amended at 58 FR...
Communication: Simple liquids' high-density viscosity
NASA Astrophysics Data System (ADS)
Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.
2018-02-01
This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.
NASA Astrophysics Data System (ADS)
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-01
We report on a sodium D2 resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-15
We report on a sodium D(2) resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
Simplified thermochemistry of oxygen in lithium and sodium for liquid metal cooling systems
NASA Technical Reports Server (NTRS)
Tower, L. K.
1972-01-01
Plots of oxygen chemical potential against composition of lithium-oxygen solutions and sodium-oxygen solutions for a range of temperature were constructed. For each liquid metal two such plots were prepared. For one plot ideal solution behavior was assumed. For the other plot, existing solubility limit data for oxygen in the liquid metal were used to determine a first-order term for departure from ideality. The use of the plots in evaluating the oxygen gettering capability of refractory metals in liquid metal cooling systems is illustrated by a simple example involving lithium, oxygen, and hafnium.
Magnetic Eigenmodes in the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Nornberg, M. D.; Bayliss, R. A.; Forest, C. B.; Kendrick, R. D.; O'Connell, R.; Spence, E. J.
2002-11-01
A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of 100, and understand the role of fluid turbulence in current generation. Magnetic field generation is only possible for specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from the water experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities of 15 m/s. A gaussian grid of 66 Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. A pair of magnetic field coils produce a roughly uniform field inside the sphere with a centerline field strength of 100 gauss. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Aaron A.; Larche, Michael R.; Mathews, Royce
2015-09-01
This Technical Letter Report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2015 on the under-sodium viewing (USV) PNNL project 58745, Work Package AT-15PN230102. This TLR satisfies PNNL’s M3AT-15PN2301027 milestone, and is focused on summarizing the design, development, and evaluation of a two-dimensional matrix phased-array probe referred to as serial number 3 (SN3). In addition, this TLR also provides the results from a performance demonstration of in-sodium target detection trials at 260°C using a one-dimensional 22-element linear array developed in FY14 and referred to as serial number 2 (SN2).
NASA Astrophysics Data System (ADS)
Ammar, Abdelaziz; Cros, Christian; Pouchard, Michel; Jaussaud, Nicolas; Bassat, Jean-Marc; Villeneuve, Gérard; Duttine, Mathieu; Ménétrier, Michel; Reny, Edouard
2004-05-01
The clathrate form of silicon, Si 136 (otherwise known as Si 34), having a residual sodium content as low as 35 ppm (i.e., x˜0.0058 in Na xSi 136), has been prepared by thermal decomposition of NaSi under high vacuum, followed by several other treatments under vacuum, and completed by repeated reactions with iodine. The residual amount of sodium has been determined by a combination of analytic and spectroscopic methods involving XRD, electron probe microanalysis, atomic absorption, NMR and EPR. This latter technique proved to be very appropriate to the characterisation of very diluted sodium atoms in such clathrate structure and to the quantitative determination of its residual concentration.
Sullivan, Thomas E.; Pardini, John A.
1978-01-01
A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated.
Sodium metasomatism along the Melones fault zone, Sierra Nevada foothills, California, USA
Albino, G.V.
1995-01-01
Albitite, locally aegirine- and riebeckite-bearing, formed as a result of sodium metasomatism of felsic dykes and argillites along the Melones Fault Zone near Jamestown, California. Pyrite, magnetite, hematite and titanite are common in small amounts in altered dykes. The dykes were originally plagioclase-hornblende porphyritic, and had major and trace element abundances typical of calc-alkaline rocks, whereas they now have Na2O contents as high as 11.40%. Mass balance calculations indicate that alteration involved addition of large amounts of sodium, and the removal of SiO2 and K2O. Textural preservation, combined with volume factors calculated from specific gravity and whole rock analytical data, indicate that Na-metasomatism was essentially isovolumetric. -from Author
Heat pipe heat transport system for the Stirling Space Power Converter (SSPC)
NASA Technical Reports Server (NTRS)
Alger, Donald L.
1992-01-01
Life issues relating to a sodium heat pipe heat transport system are described. The heat pipe system provides heat, at a temperature of 1050 K, to a 50 kWe Stirling engine/linear alternator power converter called the Stirling Space Power Converter (SSPC). The converter is being developed under a National Aeronautics and Space Administration program. Since corrosion of heat pipe materials in contact with sodium can impact the life of the heat pipe, a literature review of sodium corrosion processes was performed. It was found that the impurity reactions, primarily oxygen, and dissolution of alloy elements were the two corrosion process likely to be operative in the heat pipe. Approaches that are being taken to minimize these corrosion processes are discussed.
Jindal, A. B.; Wasnik, M. N.; Nair, Hema A.
2010-01-01
Modification of polymers by covalent attachment of thiol bearing pendant groups is reported to impart many beneficial properties to them. Hence in the present study, sodium alginate–cysteine conjugate was synthesized by carbodiimide mediated coupling under varying reaction conditions and the derivatives characterized for thiol content. The thiolated alginate species synthesized had bound thiol content ranging from 247.8±11.03–324.54±10.107 ΅mol/g of polymer depending on the reaction conditions. Matrix tablets based on sodium alginate-cysteine conjugate and native sodium alginate containing tramadol hydrochloride as a model drug were prepared and mucoadhesive strength and in vitro drug release from the tablets were compared. Tablets containing 75 mg sodium alginate-cysteine conjugate could sustain release of 10 mg of model drug for 3 h, whereas 90% of the drug was released within 1 h from corresponding tablets prepared using native sodium alginate. An approximately 2-fold increase in the minimal detachment force of the tablets from an artificial mucin film was observed for sodium alginate–cysteine conjugate as compared to native sodium alginate. In vitro cytotoxicity studies in L-929 mouse fibroblast cells studied using an MTT assay revealed that at low concentrations of polymer, sodium alginate–cysteine conjugate was less toxic to L-929 mouse fibroblast cell line when compared to native sodium alginate. Hence, thiolation is found to be a simple route to improving polymer performance. The combination of improved controlled drug release and mucoadhesive properties coupled with the low toxicity of these new excipients builds up immense scope for the use of thiolated polymers in mucoadhesive drug delivery systems. PMID:21969750
2011-01-10
in Fig. 4, we discuss a procedure of transmutation from the simple -particle chiral element to the conjugated gammadion chiral metamaterial. The...the transmutation from the simple -particle chiral element to the conjugated gammadion chiral metamaterial. The procedure shows how the magnetic or
Simple Elasticity Modeling and Failure Prediction for Composite Flexbeams
NASA Technical Reports Server (NTRS)
Makeev, Andrew; Armanios, Erian; OBrien, T. Kevin (Technical Monitor)
2001-01-01
A simple 2D boundary element analysis, suitable for developing cost effective models for tapered composite laminates, is presented. Constant stress and displacement elements are used. Closed-form fundamental solutions are derived. Numerical results are provided for several configurations to illustrate the accuracy of the model.
Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles.
Bhakta, Snehasis; Dixit, Chandra K; Bist, Itti; Jalil, Karim Abdel; Suib, Steven L; Rusling, James F
2016-07-01
Understanding of the synthesis kinetics and our ability to modulate medium conditions allowed us to generate nanoparticles via an ultra-fast process. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as precursor and 50% ethanol and sodium hydroxide catalyst. Synthesis is performed under gentle conditions at 20 °C for 20 min Long synthesis time and catalyst-associated drawbacks are most crucial in silica nanoparticle synthesis. We have addressed both these bottlenecks by replacing the conventional Stober catalyst, ammonium hydroxide, with sodium hydroxide. We have reduced the overall synthesis time from 20 to 1/3 h, ~60-fold decrease, and obtained highly monodispersed nanoparticles with 5-fold higher surface area than Stober particles. We have demonstrated that the developed NPs with ~3-fold higher silane can be used as efficient probes for biosensor applications.
Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing
2012-01-01
A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041
A mini-type hydrogen generator from aluminum for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Wang, Er-Dong; Shi, Peng-Fei; Du, Chun-Yu; Wang, Xiao-Rui
A safe and simple hydrogen generator, which produced hydrogen by chemical reaction of aluminum and sodium hydroxide solution, was proposed for proton exchange membrane fuel cells. The effects of concentration, dropping rate and initial temperature of sodium hydroxide solution on hydrogen generation rate were investigated. The results showed that about 38 ml min -1 of hydrogen generation rate was obtained with 25 wt.% concentration and 0.01 ml s -1 dropping rate of sodium hydroxide solution. The cell fueled by hydrogen from the generator exhibited performance improvement at low current densities, which was mainly due to the humidified hydrogen reduced the protonic resistivity of the proton exchange membrane. The hydrogen generator could stably operate a single cell under 500 mA for nearly 5 h with about 77% hydrogen utilization ratio.
Rapidly Synthesized, Few-Layered Pseudocapacitive SnS2 Anode for High-Power Sodium Ion Batteries.
Thangavel, Ranjith; Samuthira Pandian, Amaresh; Ramasamy, Hari Vignesh; Lee, Yun-Sung
2017-11-22
The abundance of sodium resources has recently motivated the investigation of sodium ion batteries (SIBs) as an alternative to commercial lithium ion batteries. However, the low power and low capacity of conventional sodium anodes hinder their practical realization. Although most research has concentrated on the development of high-capacity sodium anodes, anodes with a combination of high power and high capacity have not been widely realized. Herein, we present a simple microwave irradiation technique for obtaining few-layered, ultrathin two-dimensional SnS 2 over graphene sheets in a few minutes. SnS 2 possesses a large number of active surface sites and exhibits high-capacity, rapid sodium ion storage kinetics induced by quick, nondestructive pseudocapacitance. Enhanced sodium ion storage at a high current density (12 A g -1 ), accompanied by high reversibility and high stability, was demonstrated. Additionally, a rationally designed sodium ion full cell coupled with SnS 2 //Na 3 V 2 (PO 4 ) 3 exhibited exceptional performance with high initial Coulombic efficiency (99%), high capacity, high stability, and a retention of ∼53% of the initial capacity even after the current density was increased by a factor of 140. In addition, a high specific energy of ∼140 Wh kg -1 and an ultrahigh specific power of ∼8.3 kW kg -1 (based on the mass of both the anode and cathode) were observed. Because of its outstanding performance and rapid synthesis, few-layered SnS 2 could be a promising candidate for practical realization of high-power SIBs.
Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z
2015-02-10
Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.
Binding of an adatom to a simple metal surface
NASA Technical Reports Server (NTRS)
Huntington, H. B.; Turk, L. A.; White, W. W., III
1975-01-01
The density functional formalism of Hohenberg and Kohn is used to investigate the energies, charge densities and forces which hold an adatom on the surface of a simple metal. The valence wavefunction of the adatom is fitted to the Herman-Skillman solutions at large distance and is simplified somewhat in the core region. The field of the ion is represented by the Ashcroft pseudopotential. For the metal the jellium model is used. Detailed calculations are carried out for a sodium adatom on a sodium surface. Simply juxtaposing adatom and surface gives a binding energy of about 1/3 eV. This value is approximately twice the surface energy per atom in the close-packed plane. Charge redistributions as determined variationally increase the binding energy by about 10%. The equilibrium distance for the adatom turns out to be 1.66 A from the surface, as compared with 1.52 A, the observed value for one-half the distance between the close-packed planes.
Saponification reaction system: a detailed mass transfer coefficient determination.
Pečar, Darja; Goršek, Andreja
2015-01-01
The saponification of an aromatic ester with an aqueous sodium hydroxide was studied within a heterogeneous reaction medium in order to determine the overall kinetics of the selected system. The extended thermo-kinetic model was developed compared to the previously used simple one. The reaction rate within a heterogeneous liquid-liquid system incorporates a chemical kinetics term as well as mass transfer between both phases. Chemical rate constant was obtained from experiments within a homogeneous medium, whilst the mass-transfer coefficient was determined separately. The measured thermal profiles were then the bases for determining the overall reaction-rate. This study presents the development of an extended kinetic model for considering mass transfer regarding the saponification of ethyl benzoate with sodium hydroxide within a heterogeneous reaction medium. The time-dependences are presented for the mass transfer coefficient and the interfacial areas at different heterogeneous stages and temperatures. The results indicated an important role of reliable kinetic model, as significant difference in k(L)a product was obtained with extended and simple approach.
Porous carbon-free SnSb anodes for high-performance Na-ion batteries
NASA Astrophysics Data System (ADS)
Choi, Jeong-Hee; Ha, Choong-Wan; Choi, Hae-Young; Seong, Jae-Wook; Park, Cheol-Min; Lee, Sang-Min
2018-05-01
A simple melt-spinning/chemical-etching process is developed to create porous carbon-free SnSb anodes. Sodium ion batteries (SIBs) incorporating these anodes exhibit excellent electrochemical performances by accomodating large volume changes during repeated cycling. The porous carbon-free SnSb anode produced by the melt-spinning/chemical-etching process shows a high reversible capacity of 481 mAh g-1, high ICE of 80%, stable cyclability with a high capacity retention of 99% after 100 cycles, and a fast rate capability of 327 mAh g-1 at 4C-rate. Ex-situ X-ray diffraction and high resolution-transmission electron microscopy analyses demonstrate that the synthesized porous carbon-free SnSb anodes involve the highly reversible reaction with sodium through the conversion and recombination reactions during sodiation/desodiation process. The novel and simple melt-spinning/chemical-etching synthetic process represents a technological breakthrough in the commercialization of Na alloy-able anodes for SIBs.
Rapid determination of minoxidil in human plasma using ion-pair HPLC.
Zarghi, A; Shafaati, A; Foroutan, S M; Khoddam, A
2004-10-29
A rapid, simple and sensitive ion-pair high-performance liquid chromatography (HPLC) method has been developed for quantification of minoxidil in plasma. The assay enables the measurement of minoxidil for therapeutic drug monitoring with a minimum detectable limit of 0.5 ng ml(-1). The method involves simple, one-step extraction procedure and analytical recovery was complete. The separation was performed on an analytical 150 x 4.6 mm i.d. microbondapak C18 column. The wavelength was set at 281 nm. The mobile phase was a mixture of 0.01 M sodium dihydrogen phosphate buffer and acetonitrile (60:40, v/v) containing 2.5 mM sodium dodecyl sulphate adjusted to pH 3.5 at a flow rate of 1 ml/min. The column temperature was set at 50 degrees C. The calibration curve was linear over the concentration range 2-100 ng ml(-1). The coefficients of variation for inter-day and intra-day assay were found to be less than 8%.
[Affinity of the elements in group VI of the periodic table to tumors and organs].
Ando, A; Hisada, K; Ando, I
1976-10-01
In order to investigate the tumor affinity radioisotopes, chromium (51Cr), molybdenum (99Mo), tungsten (181W), selenium (75Se) and tellurium (127mTe)--the elements of group VI in the periodic table--were examined, using the rats which were subcutaneously transplanted with Yoshida sarcoma. Seven preprarations, sodium chromate (Na251CrO4), chromium chloride (51CrCl3), normal ammonium molybdate ((NH4)299MoO7), sodium tungstate (Na2181WO4), sodium selenate (Na275SeO4), sodium selenite (Na275SeO3) and tellurous acid (H2127mTeO3) were injected intravenously to each group of tumor bearing rats. These rats were sacrificed at various periods after injection of each preparation: 3 hours, 24 hours and 48 hours in all preparations. The radioactivities of the tumor, blood, muscle, liver, kidney and spleen were measured by a well-type scintillation counter, and retention values (in every tissue including the tumor) were calculated in percent of administered dose per g-tissue weight. All of seven preparations did not have any affinity for malignant tumor. Na251CrO4 and H2127mTeO3 had some affinity for the kidneys, and Na275SeO3 had some affinity for the liver. Na2181WO4 and (NH4)299MoO4 disappeared very rapidly from the blood and soft tissue, and about seventy-five percent of radioactivity was excreted in urine within first 3 hours.
Gross, Cory T; McIntyre, Sally M; Houk, R S
2009-06-15
Solution samples with matrix concentrations above approximately 0.1% generally present difficulties for analysis by inductively coupled plasma mass spectrometry (ICP-MS) because of cone clogging and matrix effects. Flow injection (FI) is coupled to ICP-MS to reduce deposition from samples such as 1% sodium salts (as NaCl) and seawater (approximately 3% dissolved salts). Surprisingly, matrix effects are also less severe during flow injection, at least for some matrix elements on the particular instrument used. Sodium chloride at 1% Na and undiluted seawater cause only 2 to 29% losses of signal for typical analyte elements. A heavy matrix element (Bi) at 0.1% also induces only approximately 14% loss of analyte signal. However, barium causes a much worse matrix effect, that is, approximately 90% signal loss at 5000 ppm Na. Also, matrix effects during FI are much more severe when a grounded metal shield is inserted between the load coil and the torch, which is the most common mode of operation for the particular ICP-MS device used.
Ratio of Sodium to Potassium in the Mercurian Exosphere
NASA Technical Reports Server (NTRS)
Potter, A. E.; Anderson, C. M.; Killen, R. M.; Morgan, T. H.
2001-01-01
Sodium (Na) and Potassium (K) atoms can be seen in the exosphere of Mercury and the Moon because they are extremely efficient at scattering sunlight. These species must be derived from surface materials, so that we might expect the ratio of sodium to potassium to reflect the ratio of these elements in the surface crust. This expectation is approximately born out for the Moon, where the ratio of sodium to potassium in the lunar exosphere averages to be about 6, not too far from the ratio in lunar rocks of 2 to 7. However, the ratio in the Mercury exosphere was found to be in the range 80 to 190, and at least once, as high as 400. The sodium and potassium atoms seen in the Mercury exosphere represent a balance between production from the surface and loss to space. Only if the production efficiencies and loss rates for Na and K were equal, would the ratio of Na to K in the exosphere reflect the ratio in the surface rocks. Since a value of 100 or more for the ratio of sodium to potassium in the surface rocks seems very unlikely, the high values of the observed ratios suggests that either production efficiencies or loss processes for the two elements are not equivalent. It does not seem likely that source processes should be different on the Moon and Mercury by an order of magnitude. This suggests that loss processes rather than source processes are the cause of the difference between the two. The major loss processes for sodium and potassium on Mercury are radiation pressure and trapping of photoions by the solar wind. Radiation pressure can reach 50-70% of surface gravity, and can sweep sodium and potassium atoms off the planet, provided they are sufficiently hot. Photoionization followed by trapping of the ions in the solar wind is the other major loss process. Photoions are accelerated to keV energies in the magnetosphere, and may either intercept the magnetopause, and be lost from the planet, or impact the planetary surface. Ions that impact the surface are neutralized, and are then available for resupply to the exosphere. The loss efficiency depends on characteristics of the magnetosphere that determine the fraction of the ions that are recycled by neutralization on the surface. Over the preceding decade, we have collected sodium and potassium data for Mercury at irregular intervals. We analyzed these data to extract values for the Na/K ratio at a variety of conditions on Mercury. Additional information is contained in the original extended abstract.
Lee, Kyung J.; Park, Seong-Beom; Lee, Inah
2014-01-01
Learning theories categorize learning systems into elemental and contextual systems, the former being processed by non-hippocampal regions and the latter being processed in the hippocampus. A set of complex stimuli such as a visual background is often considered a contextual stimulus and simple sensory stimuli such as pure tone and light are considered elemental stimuli. However, this elemental-contextual categorization scheme has only been tested in limited behavioral paradigms and it is largely unknown whether it can be generalized across different learning situations. By requiring rats to respond differently to a common object in association with various types of sensory cues including contextual and elemental stimuli, we tested whether different types of elemental and contextual sensory stimuli depended on the hippocampus to different degrees. In most rats, a surrounding visual background and a tactile stimulus served as contextual (hippocampal dependent) and elemental (non-hippocampal dependent) stimuli, respectively. However, simple tone and light stimuli frequently used as elemental cues in traditional experiments required the hippocampus to varying degrees among rats. Specifically, one group of rats showed a normal contextual bias when both contextual and elemental cues were present. These rats effectively switched to using elemental cues when the hippocampus was inactivated. The other group showed a strong contextual bias (and hippocampal dependence) because these rats were not able to use elemental cues when the hippocampus was unavailable. It is possible that the latter group of rats might have interpreted the elemental cues (light and tone) as background stimuli and depended more on the hippocampus in associating the cues with choice responses. Although exact mechanisms underlying these individual variances are unclear, our findings recommend a caution for adopting a simple sensory stimulus as a non-hippocampal sensory cue only based on the literature. PMID:24982624
Distribution, movement, and evolution of the volatile elements in the lunar regolith
NASA Technical Reports Server (NTRS)
Gibson, E. K., Jr.
1975-01-01
The abundances and distributions of carbon, nitrogen, and sulfur in lunar soils are reviewed. Carbon and nitrogen have a predominantly extra-lunar origin in lunar soils and breccias, while sulfur is mostly indigeneous to the moon. The lunar processes which effect the movement, distribution, and evolution of carbon, nitrogen, and sulfur, along with the volatile alkali elements sodium, potassium, and rubidium during regolith processes are discussed. Possible mechanisms which may result in the addition to or loss from the moon of these volatile elements are considered.
Studier, E H; Viele, D P; Sevick, S H
1991-01-01
1. Analysis of nitrogen, sodium, calcium, magnesium, iron, and potassium levels in big brown bat guano throughout much of the summer roosting period was performed. 2. Based on the tenet that low, non-variable levels of an element in feces indicate dietary inadequacy for that element, female big brown bats are routinely and severely stressed for calcium and may become stressed for iron by the end of the summer. Similar elemental stresses, although not as severe, exist for males.
Chem 13 News, Number 72, November 1975.
ERIC Educational Resources Information Center
Friesen, R. J., Ed.; And Others
This newsletter contains student experiments and demonstrations suitable for secondary chemistry instruction as well as laboratory safety tips, book reviews and several activities involving the chemistry of winemaking and crime detection. Articles include those on carbon disulfide bonding, the electrolysis of sodium chloride, a simple and accurate…
A Simple Vertical Slab Gel Electrophoresis Apparatus.
ERIC Educational Resources Information Center
Carter, J. B.; And Others
1983-01-01
Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Minnix, Richard B.; Carpenter, D. Rae
1985-01-01
Describes these tools for physics teaching: (1) stick with calibrations for measuring student reaction time; (2) compact high-pressure sodium lamps used to demonstrate spectra; (3) air pumps for fish tanks providing simple inexpensive motors; (4) a rotating manometer for measuring centripetal force; and (5) an apparatus for checking conservation…
Liu, Yingchun; Sun, Guoxiang; Wang, Yan; Yang, Lanping; Yang, Fangliang
2015-06-01
Micellar electrokinetic chromatography fingerprinting combined with quantification was successfully developed and applied to monitor the quality consistency of Weibizhi tablets, which is a classical compound preparation used to treat gastric ulcers. A background electrolyte composed of 57 mmol/L sodium borate, 21 mmol/L sodium dodecylsulfate and 100 mmol/L sodium hydroxide was used to separate compounds. To optimize capillary electrophoresis conditions, multivariate statistical analyses were applied. First, the most important factors influencing sample electrophoretic behavior were identified as background electrolyte concentrations. Then, a Box-Benhnken design response surface strategy using resolution index RF as an integrated response was set up to correlate factors with response. RF reflects the effective signal amount, resolution, and signal homogenization in an electropherogram, thus, it was regarded as an excellent indicator. In fingerprint assessments, simple quantified ratio fingerprint method was established for comprehensive quality discrimination of traditional Chinese medicines/herbal medicines from qualitative and quantitative perspectives, by which the quality of 27 samples from the same manufacturer were well differentiated. In addition, the fingerprint-efficacy relationship between fingerprints and antioxidant activities was established using partial least squares regression, which provided important medicinal efficacy information for quality control. The present study offered an efficient means for monitoring Weibizhi tablet quality consistency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tondreau, Aaron M.; Scott, Brian L.; Boncella, James M.
We explored ligand-induced reduction of ferrous alkyl complexes via homolytic cleavage of the alkyl fragment with simple chelating diphosphines. The reactivities of the sodium salts of diphenylmethane, phenyl(trimethylsilyl)methane, or diphenyl(trimethylsilyl)methane were explored in their reactivity with (py) 4FeCl 2. Furthermore, we prepared a series of monoalkylated salts of the type (py) 2FeRCl and characterized from the addition of 1 equiv of the corresponding alkyl sodium species. These complexes are isostructural and have similar magnetic properties. The double alkylation of (py) 4FeCl 2 resulted in the formation of tetrahedral high-spin iron complexes with the sodium salts of diphenylmethane and phenyl(trimethylsilyl)methane thatmore » readily decomposed. A bis(cyclohexadienyl) sandwich complex was formed with the addition of 2 equiv of the tertiary alkyl species sodium diphenyl(trimethylsilyl)methane. The addition of chelating phosphines to (py) 2FeRCl resulted in the overall transfer of Fe(I) chloride concurrent with loss of pyridine and alkyl radical. (dmpe) 2FeCl was synthesized via addition of 1 equiv of sodium diphenyl(trimethylsilyl)methane, whereas the addition of 2 equiv of the sodium compound to (dmpe) 2FeCl 2 gave the reduced Fe(0) nitrogen complex (dmpe) 2Fe(N 2). Our results demonstrate that iron–alkyl homolysis can be used to afford clean, low-valent iron complexes without the use of alkali metals.« less
NASA Astrophysics Data System (ADS)
Stefanovsky, S. V.; Stefanovsky, O. I.; Kadyko, M. I.; Nikonov, B. S.
2018-03-01
Sodium aluminum (iron) phosphate glass ceramics containing of up to 20 wt.% rare earth (RE) oxides simulating pyroprocessing waste were produced by melting at 1250 °C followed by either quenching or slow cooling to room temperature. The iron-free glass-ceramics were composed of major glass and minor phosphotridymite and monazite. The iron-bearing glass-ceramics were composed of major glass and minor monazite and Na-Al-Fe orthophosphate at low waste loadings (5-10 wt.%) and major orthophosphate and minor monazite as well as interstitial glass at high waste loadings (15-20 wt.%). Slowly cooled samples contained higher amount of crystalline phases than quenched ones. Monazite is major phase for REs. Leach rates from the materials of major elements (Na, Al, Fe, P) are 10-5-10-7 g cm-2 d-1, RE elements - lower than 10-5 g cm-2 d-1.
Dumouchelle, Denise H.; Stelzer, Erin A.
2014-01-01
Microcystin concentrations were correlated to cyanobacteria biovolumes, and to concentrations of one ion (sodium) and three trace elements (molybdenum, antimony, and lithium). Concentrations of toxin genes (mcyE) determined by qPCR were consistently low forMicrocystis and consistently high for Planktothrix throughout both sampling years. Concentrations of cyanobacteria found by qPCR were correlated to microcystin concentrations, cyanobacteria biovolumes, selected nutrient concentrations, and other parameters. Results from qRT-PCR assays showed that toxin gene expression was predominantly from the genus Planktothrix, and concentrations of the RNA transcript varied throughout the two sampling years. A number of conditions that may play a role in the dominance ofPlanktothrix and the production of microcystin were identified including water temperature; low-light transmission; low concentrations of silica and manganese; and relatively high concentrations of sodium, sulfate, and the trace elements of strontium, vanadium, and boron.
A simple method to design non-collision relative orbits for close spacecraft formation flying
NASA Astrophysics Data System (ADS)
Jiang, Wei; Li, JunFeng; Jiang, FangHua; Bernelli-Zazzera, Franco
2018-05-01
A set of linearized relative motion equations of spacecraft flying on unperturbed elliptical orbits are specialized for particular cases, where the leader orbit is circular or equatorial. Based on these extended equations, we are able to analyze the relative motion regulation between a pair of spacecraft flying on arbitrary unperturbed orbits with the same semi-major axis in close formation. Given the initial orbital elements of the leader, this paper presents a simple way to design initial relative orbital elements of close spacecraft with the same semi-major axis, thus preventing collision under non-perturbed conditions. Considering the mean influence of J 2 perturbation, namely secular J 2 perturbation, we derive the mean derivatives of orbital element differences, and then expand them to first order. Thus the first order expansion of orbital element differences can be added to the relative motion equations for further analysis. For a pair of spacecraft that will never collide under non-perturbed situations, we present a simple method to determine whether a collision will occur when J 2 perturbation is considered. Examples are given to prove the validity of the extended relative motion equations and to illustrate how the methods presented can be used. The simple method for designing initial relative orbital elements proposed here could be helpful to the preliminary design of the relative orbital elements between spacecraft in a close formation, when collision avoidance is necessary.
Kang, Shin Sook; Kang, Eun Hee; Kim, Seon Ok; Lee, Moo Song; Hong, Changgi D; Kim, Soon Bae
2012-03-01
Sodium intake is an important issue for patients with chronic kidney disease (CKD). The two most widely used methods to measure sodium are 24-h urinary sodium excretion (24HUNa), which can be difficult to perform routinely, and sodium intake by dietary recall, which can be inaccurate. This study evaluated use of the mean value of three spot urinary sodium (UNa) concentrations to estimate daily sodium intake in patients with CKD. This cross-sectional study enrolled 305 patients with CKD, none of whom were on dialysis, who visited the nephrology clinic at the Asan Medical Center (Seoul, Korea). We performed three spot UNa tests, three calculations of the UNa/creatinine (UCr) ratio, one measurement of 24HUNa, and one measurement of sodium intake by dietary recall. The 24HUNa and mean spot UNa values were significantly lower in patients with more advanced CKD (P = 0.006 and P < 0.001, respectively). One-time spot UNa was significantly higher in the evening than in the morning for patients with stage III, IV, or V CKD. Total sodium intake, but not sodium nutrient density (milligrams of sodium per 1000 kcal), was significantly different for patients with different stages of CKD (P = 0.001). The correlation coefficient between 24HUNa and mean spot UNa was 0.477 (95% confidence interval [CI] 0.384-0.562, P < 0.001), slightly higher than that between 24HUNa excretion and mean spot UNa/UCr (r = 0.313, 95% CI 0.207-0.465, P < 0.001). There was a linear relation between spot UNa and 24HUNa: mean spot UNa = 0.27 × 24HUNa + 60. Therefore, a 24HUNa excretion of 87 mEq (sodium intake 2 g/d) corresponded to a mean spot UNa level of 83 mEq/L. The correlation coefficient between sodium intake and mean spot UNa was 0.435 (95% CI 0.336-0.524, P < 0.001), significantly higher than that between sodium intake and mean spot UNa/UCr (r = 0.197, 95% CI 0.091-0.301, P = 0.001). Mean spot UNa tended to be better correlated with 24HUNa than with sodium intake. Mean spot UNa is a simple and effective method that can be used to monitor sodium intake in patients with CKD. A daily intake of 2 g of sodium corresponds to a mean spot UNa level of approximately 83 mEq/L in patients with CKD. Copyright © 2012 Elsevier Inc. All rights reserved.
Barkla, Bronwyn J; Vera-Estrella, Rosario; Raymond, Carolyn
2016-05-10
Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. In this study, we carry out large-scale complementary quantitative proteomic studies using both a label (DIGE) and label-free (GeLC-MS) approach to identify salt-responsive proteins in the EBC extract. Additionally we perform an ionomics analysis (ICP-MS) to follow changes in the amounts of 27 different elements. Using these methods, we were able to identify 54 proteins and nine elements that showed statistically significant changes in the EBC from salt-treated plants. GO enrichment analysis identified a large number of transport proteins but also proteins involved in photosynthesis, primary metabolism and Crassulacean acid metabolism (CAM). Validation of results by western blot, confocal microscopy and enzyme analysis helped to strengthen findings and further our understanding into the role of these specialized cells. As expected EBC accumulated large quantities of sodium, however, the most abundant element was chloride suggesting the sequestration of this ion into the EBC vacuole is just as important for salt tolerance. This single-cell type omics approach shows that epidermal bladder cells of M. crystallinum are metabolically active modified trichomes, with primary metabolism supporting cell growth, ion accumulation, compatible solute synthesis and CAM. Data are available via ProteomeXchange with identifier PXD004045.
Li, Xiuyan; Cheng, Ruojie; Shi, Huijie; Tang, Bo; Xiao, Hanshuang; Zhao, Guohua
2016-03-05
A simple and highly sensitive aptamer-based colorimetric sensor was developed for selective detection of Microcystin-LR (MC-LR). The aptamer (ABA) was employed as recognition element which could bind MC-LR with high-affinity, while gold nanoparticles (AuNPs) worked as sensing materials whose plasma resonance absorption peaks red shifted upon binding of the targets at a high concentration of sodium chloride. With the addition of MC-LR, the random coil aptamer adsorbed on Au NPs altered into regulated structure to form MC-LR-aptamer complexes and broke away from the surface of Au NPs, leading to the aggregation of AuNPs, and the color converted from red to blue due to the interparticle plasmon coupling. Results showed that our aptamer-based colorimetric sensor exhibited rapid and sensitive detection performance for MC-LR with linear range from 0.5 nM to 7.5 μM and the detection limit reached 0.37 nM. Meanwhile, the pollutants usually coexisting with MC-LR in pollutant water samples had not demonstrated disturbance for detecting of MC-LR. The mechanism was also proposed suggesting that high affinity interaction between aptamer and MC-LR significantly enhanced the sensitivity and selectivity for MC-LR detection. Besides, the established method was utilized in analyzing real water samples and splendid sensitivity and selectivity were obtained as well. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khashaba, Pakinaz Y.; Ali, Hassan Refat H.; El-Wekil, Mohamed M.
2018-02-01
A simple and non-destructive FTIR method was used to determine certain proton pump inhibitors (PPIs) in binary and ternary mixtures. Proton pump inhibitors (PPIs); omeprazole (OMZ), esomeprazole (EZM), lansoprazole (LAN), pantoprazole sodium (PAN sodium) and rabeprazole sodium (RAB sodium) in binary mixture with domperidone (DOM) and ternary mixture of OMZ, clarithromycin (CLM) and tinidazole (TNZ) were determined in the solid-state by FTIR spectroscopy for the first time. The method was validated according to ICH-guidelines where linearity was ranged from 20 to 850 μg/g and 20-360 μg/g for PPIs and DOM, respectively in binary mixtures and 10-400, 100-8000 and 150-14,000 μg/g for OMZ, CLM and TNZ, respectively. Limits of detection were found to be 6-100 and 9-100 μg/g for PPIs and DOM, respectively and 4, 40 and 50 μg/g for OMZ, CLM and TNZ, respectively. The method was applied successfully for determination of the cited drugs in their respective pharmaceutical dosage forms.
NASA Astrophysics Data System (ADS)
Mohamed, Heba M.
2015-02-01
Itopride hydrochloride (IT) and Rabeprazole sodium (RB) are co-formulated together for the treatment of gastro-esophageal reflux disease. Three simple, specific and accurate spectrophotometric methods were applied and validated for simultaneous determination of Itopride hydrochloride (IT) and Rabeprazole sodium (RB) namely; constant center (CC), ratio difference (RD) and mean centering of ratio spectra (MCR) spectrophotometric methods. Linear correlations were obtained in range of 10-110 μg/μL for Itopride hydrochloride and 4-44 μg/mL for Rabeprazole sodium. No preliminary separation steps were required prior the analysis of the two drugs using the proposed methods. Specificity was investigated by analyzing the synthetic mixtures containing the two cited drugs and their capsules dosage form. The obtained results were statistically compared with those obtained by the reported method, no significant difference was obtained with respect to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for IT and RB.
Mohamed, Heba M
2015-02-05
Itopride hydrochloride (IT) and Rabeprazole sodium (RB) are co-formulated together for the treatment of gastro-esophageal reflux disease. Three simple, specific and accurate spectrophotometric methods were applied and validated for simultaneous determination of Itopride hydrochloride (IT) and Rabeprazole sodium (RB) namely; constant center (CC), ratio difference (RD) and mean centering of ratio spectra (MCR) spectrophotometric methods. Linear correlations were obtained in range of 10-110μg/μL for Itopride hydrochloride and 4-44μg/mL for Rabeprazole sodium. No preliminary separation steps were required prior the analysis of the two drugs using the proposed methods. Specificity was investigated by analyzing the synthetic mixtures containing the two cited drugs and their capsules dosage form. The obtained results were statistically compared with those obtained by the reported method, no significant difference was obtained with respect to accuracy and precision. The three methods were validated in accordance with ICH guidelines and can be used for quality control laboratories for IT and RB. Copyright © 2014 Elsevier B.V. All rights reserved.
Carpizo, Katherine H; Saran, Madeleine J; Huang, Weibiao; Ishida, Kenji; Roostaeian, Jason; Bischoff, David; Huang, Catherine K; Rudkin, George H; Yamaguchi, Dean T; Miller, Timothy A
2008-02-01
Surface topography is important in the creation of a scaffold for tissue engineering. Chemical etching of poly(l-lactide-co-glycolide) with sodium hydroxide has been shown to enhance adhesion and function of numerous cell types. The authors investigated the effects of sodium hydroxide pretreatment of three-dimensional poly(l-lactide-co-glycolide) scaffolds on the adhesion, differentiation, and proliferation of MC3T3-E1 murine preosteoblasts. MC3T3-E1 cells were seeded onto three-dimensional poly(l-lactide-co-glycolide) scaffolds with and without 1 M sodium hydroxide pretreatment. Cells were then cultured in osteogenic medium and harvested at varying time points for RNA extraction. Quantitative real-time reverse-transcriptase polymerase chain reaction was performed to measure mRNA expression of several osteogenic marker genes. In addition, cell numbers were determined at varying time points during the culture period. All experiments were performed in triplicate. Pretreatment of three-dimensional poly(l-lactide-co-glycolide) scaffolds with sodium hydroxide resulted in statistically significant up-regulation of mRNA expression of alkaline phosphatase, bone sialoprotein, osteocalcin, and vascular endothelial growth factor during the first 10 days of culture. Histologic analysis demonstrated a striking increase in mineralized cell matrix deposition in the sodium hydroxide-treated group. Cell number was statistically higher in the sodium hydroxide-treated group immediately after cell seeding, suggesting improved adhesion. During the first 24 hours of culture, cells grew faster in the control group than in the sodium hydroxide-treated group. Chemical etching of poly(l-lactide-co-glycolide) scaffolds with sodium hydroxide strongly influences the behavior of MC3T3-E1 preosteoblasts in vitro by enhancing adhesion and differentiation and slowing proliferation. Sodium hydroxide treatment may represent a simple and inexpensive way of improving scaffolds for use in bone tissue engineering.
How Surface Composition and Meteoroid Impacts Mediate Sodium and Potassium in the Lunar Exosphere
NASA Technical Reports Server (NTRS)
Colaprete, A.; Sarantos, M.; Wooden, D. H.; Stubbs, T. J.; Cook, A. M.; Shirley, M.
2016-01-01
Despite being trace constituents of the lunar exosphere, sodium and potassium are the most readily observed species due to their bright line emission. Measurements of these species by the Ultraviolet and Visible Spectrometer (UVS) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) have revealed unambiguous temporal and spatial variations indicative of a strong role for meteoroid bombardment and surface composition in determining the composition and local time dependence of the Moon's exosphere. Observations show distinct lunar day (monthly) cycles for both species as well as an annual cycle for sodium. The first continuous measurements for potassium show a more repeatable variation across lunations and an enhancement over KREEP (Potassium Rare Earth Elements and Phosphorus) surface regions, revealing a strong dependence on surface composition.
Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage.
Wu, Zhen-Yue; Ma, Chao; Bai, Yu-Lin; Liu, Yu-Si; Wang, Shi-Feng; Wei, Xiao; Wang, Kai-Xue; Chen, Jie-Sheng
2018-04-03
The development of sustainable and low cost electrode materials for sodium-ion batteries has attracted considerable attention. In this work, a carbon composite material decorated with in situ generated ZnS nanoparticles has been prepared via a simple pyrolysis of the rubber powder from dumped tires. Upon being used as an anode material for sodium-ion batteries, the carbon composite shows a high reversible capacity and rate capability. A capacity as high as 267 mA h g-1 is still retained after 100 cycles at a current density of 50 mA g-1. The well dispersed ZnS nanoparticles in carbon significantly enhance the electrochemical performance. The carbon composites derived from the rubber powder are proposed as promising electrode materials for low-cost, large-scale energy storage devices. This work provides a new and effective method for the reuse of dumped tires, contributing to the recycling of valuable waste resources.
Quantitative estimation of itopride hydrochloride and rabeprazole sodium from capsule formulation.
Pillai, S; Singhvi, I
2008-09-01
Two simple, accurate, economical and reproducible UV spectrophotometric methods and one HPLC method for simultaneous estimation of two component drug mixture of itopride hydrochloride and rabeprazole sodium from combined capsule dosage form have been developed. First developed method involves formation and solving of simultaneous equations using 265.2 nm and 290.8 nm as two wavelengths. Second method is based on two wavelength calculation, wavelengths selected for estimation of itopride hydrochloride was 278.0 nm and 298.8 nm and for rabeprazole sodium 253.6 nm and 275.2 nm. Developed HPLC method is a reverse phase chromatographic method using phenomenex C(18) column and acetonitrile: phosphate buffer (35:65 v/v) pH 7.0 as mobile phase. All developed methods obey Beer's law in concentration range employed for respective methods. Results of analysis were validated statistically and by recovery studies.
Quantitative Estimation of Itopride Hydrochloride and Rabeprazole Sodium from Capsule Formulation
Pillai, S.; Singhvi, I.
2008-01-01
Two simple, accurate, economical and reproducible UV spectrophotometric methods and one HPLC method for simultaneous estimation of two component drug mixture of itopride hydrochloride and rabeprazole sodium from combined capsule dosage form have been developed. First developed method involves formation and solving of simultaneous equations using 265.2 nm and 290.8 nm as two wavelengths. Second method is based on two wavelength calculation, wavelengths selected for estimation of itopride hydrochloride was 278.0 nm and 298.8 nm and for rabeprazole sodium 253.6 nm and 275.2 nm. Developed HPLC method is a reverse phase chromatographic method using phenomenex C18 column and acetonitrile: phosphate buffer (35:65 v/v) pH 7.0 as mobile phase. All developed methods obey Beer's law in concentration range employed for respective methods. Results of analysis were validated statistically and by recovery studies. PMID:21394269
Yin, Fuxing; Liu, Zhengjun; Yang, Shuang; Shan, Zhenzhen; Zhao, Yan; Feng, Yuting; Zhang, Chengwei; Bakenov, Zhumabay
2017-10-17
The aqueous sodium-ion battery (ASIB) is one of the promising new energy storage systems owing to the abundant resources of sodium as well as efficiency and safety of electrolyte. Herein, we report an ASIB system with Na 4 Mn 9 O 18 /carbon nanotube (NMO/CNT) as cathode, metal Zn as anode and a novel Na + /Zn 2+ mixed ion as electrolyte. The NMO/CNT with microspherical structure is prepared by a simple spray-drying method. The prepared battery delivers a high reversible specific capacity and stable cyclability. Furthermore, the battery displays a stable reversible discharge capacity of 53.2 mAh g -1 even at a high current rate of 4 C after 150 cycles. Our results confirm that the NMO/CNT composite is a promising electrode cathode material for ASIBs.
Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface.
Hirama, Hirotada; Kambe, Taisuke; Aketagawa, Kyouhei; Ota, Taku; Moriguchi, Hiroyuki; Torii, Toru
2013-01-15
We report a simple method for forming monodispersed, uniformly shaped gel microbeads with precisely controlled sizes. The basis of our method is the placement of monodispersed sodium alginate droplets, formed by a microfluidic device, on an agarose slab gel containing a high-osmotic-pressure gelation agent (CaCl(2) aq.): (1) the droplets are cross-linked (gelated) due to the diffusion of the gelation agent from the agarose slab gel to the sodium alginate droplets and (2) the droplets simultaneously shrink to a fraction of their original size (<100 μm in diameter) due to the diffusion of water molecules from the sodium alginate droplets to the agarose slab gel. We verified the mass transfer mechanism between the droplet and the agarose slab gel. This method circumvents the limitations of gel microbead formation, such as the need to prepare microchannels of various sizes, microchannel clogging, and the deformation of the produced gel microbeads.
Chen, Yuan; Liu, Yang; Wang, Xin; Li, Kai; Chen, Pu
2014-01-01
The growing field of silicon solar cells requires a substantial reduction in the cost of semiconductor grade silicon, which has been mainly produced by the rod-based Siemens method. Because silicon can react with almost all of the elements and form a number of alloys at high temperatures, it is highly desired to obtain high purity crystalline silicon at relatively low temperatures through low cost process. Here we report a fast, complete and inexpensive reduction method for converting sodium hexafluorosilicate into silicon at a relatively low reaction temperature (∼200°C). This temperature could be further decreased to less than 180°C in combination with an electrochemical approach. The residue sodium fluoride is dissolved away by pure water and hydrochloric acid solution in later purifying processes below 15°C. High purity silicon in particle form can be obtained. The relative simplicity of this method might lead to a low cost process in producing high purity silicon. PMID:25153509
NASA Astrophysics Data System (ADS)
Vaalma, Christoph; Buchholz, Daniel; Passerini, Stefano
2017-10-01
Sodium-ion batteries are regarded as a complementary drop-in technology to lithium-ion batteries because they promise lower cost and a higher degree of environmental friendliness. Among other reasons, these benefits come from the use of manganese-based materials, whose stabilization via cation substitution is intensively studied to improve the electrochemical performance. Although multiple elements have been considered as substituent, surprisingly, boron has not been reported for layered sodium-ion cathode materials up to date. Our investigation of layered Na2/3B0.11Mn0.89O2 reveals an unexpectedly good electrochemical performance, with charge and discharge capacities of more than 175 mAh g-1 at 10 mA g-1 and 135 mAh g-1 at 500 mA g-1. The measured capacities are among the highest ever reported for sodium-based layered oxides in the potential range of 4.0-2.0 V vs. Na/Na+.
Sodium Handling Technology and Engineering Design of the Madison Dynamo Experiment.
NASA Astrophysics Data System (ADS)
Kendrick, R.; Forest, C. B.; O'Connell, R.; Wright, A.; Robinson, K.
1998-11-01
A new liquid metal MHD experiment is being constructed at the University of Wisconsin to test several key predictions of dynamo theory: magnetic instabilities driven by sheared flow, the effects of turbulence on current generation, and the back-reaction of the self-generated magnetic field on the fluid motion which brings saturation. This presentation describes the engineering design of the experiment, which is a 0.5 m radius spherical vessel, filled with liquid sodium at 150 degrees Celsius. The experiment is designed to achieve a magnetic Reynolds number in excess of 100, which requires approximately 80 Hp of mechanical drive, producing flow velocities in sodium of 15 m/s through impellers. Handling liquid sodium offers a number of technical challenges, but routine techniques have been developed over the past several decades for safely handling large quantities for the fast breeder reactor. The handling strategy is discussed, technical details concerning seals and pressurazation are presented, and safety elements are highlighted.
Initial operation with sodium in the Madison Dynamo Experiment.
NASA Astrophysics Data System (ADS)
Kendrick, R.; Spence, Ej; Forest, C. B.; O'Connell, R.; Nornberg, Md; Canary, Hw; Wright, A.; Robinson, K.
1999-11-01
A new liquid metal MHD experiment has been constructed at the University of Wisconsin to test several key predictions of dynamo theory: magnetic instabilities driven by sheared flow, the effects of turbulence on current generation, and the back-reaction of the self-generated magnetic field on the fluid motion which brings saturation. This presentation describes the engineering design of the experiment, which is a 0.5 m radius spherical vessel, filled with liquid sodium at 150 ^circC. The experiment is designed to achieve a magnetic Reynolds number in excess of 100, which requires approximately 80 Hp of mechanical drive, producing flow velocities in sodium of 15 m/s through impellers. Handling liquid sodium offers a number of technical challenges, but routine techniques have been developed over the past several decades for safely handling large quantities for the fast breeder reactor. The handling strategy is discussed, technical details concerning seals and pressurization are presented, and safety elements are highlighted.
Importance of intrinsic properties of dense caseinate dispersions for structure formation.
Manski, Julita M; van Riemsdijk, Lieke E; van der Goot, Atze J; Boom, Remko M
2007-11-01
Rheological measurements of dense calcium caseinate and sodium caseinate dispersions (> or =15%) provided insight into the factors determining shear-induced structure formation in caseinates. Calcium caseinate at a sufficiently high concentration (30%) was shown to form highly anisotropic structures during shearing and concurrent enzymatic cross-linking. In contrast, sodium caseinate formed isotropic structures using similar processing conditions. The main difference between the two types of caseinates is the counterion present, and as a consequence, the size of structural elements and their interactions. The rheological behavior of calcium caseinate and sodium caseinate reflected these differences, yielding non-monotonic and shear thinning flow behavior for calcium caseinate whereas sodium caseinate behaved only slightly shear thinning. It appears that the intrinsic properties of the dense caseinate dispersions, which are reflected in their rheological behavior, affect the structure formation that was found after applying shear. Therefore, rheological measurements are useful to obtain an indication of the structure formation potential of caseinate dispersions.
Analysis of some elements in primary enamel during postnatal mineralization.
Sabel, Nina; Klinberg, Gunilla; Nietzsche, Sandor; Robertson, Agneta; Odelius, Hans; Norén, Jörgen G
2009-01-01
The primary teeth start to mineralize in utero and continue development and maturation during the first year of life.The aim of this study was to investigate the concentrations of some elements, C, F, Na, Mg, Cl, K and Sr, by secondary ion mass spectrometry (SIMS) in human primary incisors at different stages of mineralization.The teeth derived from an autopsy material from children who had died in sudden infant death.The buccal enamel of specimens from the ages 1, 2, 3, 4, 6 and 19 months, respectively, was analyzed. It was evident that posteruptive effects play an important role in composition of the outermost parts of the enamel. Before the tooth erupts, the concentrations of the elements vary with the maturation grade of the mineralization in the enamel. Sodium was the element with the highest concentration of the measured elements and chlorine was the element of lowest concentration.The 19 month old specimen, considered as the only mature and erupted tooth, showed to differ from the other specimens.The concentration of fluorine, in the 19 month old specimen's outermost surface, is readily seen higher compared with the other specimens at this depth zone. In the 19 month old specimen the concentration of carbon is lower. Potassium, sodium and chlorine have higher concentrations, in general, in the 19 month old specimen compared with the immature specimens. The thickness of the enamel during mineralization was calculated from data from SIMS.The thickness of the buccal enamel of primary incisors seemed to be fully developed between 3-4 months after birth, reaching a thickness of 350-400 microm.
Elemental analysis of urinary calculi by laser induced plasma spectroscopy.
Fang, Xiao; Ahmad, S Rafi; Mayo, Mike; Iqbal, Syed
2005-12-01
Laser induced plasma spectroscopy (LIPS) has been applied to analyse and identify elemental constituents of urinary calculi. Measurements on seven different urinary stone samples were conducted and the concentrations of some key elemental species were estimated. The elements detected with the present system were: Calcium, Magnesium, Sodium, Samarium, Potassium and Lead. Absolute concentrations of the species were derived from pre-calibration of the system for each element. Their concentrations were found to be widely different in different samples. It was observed that the samples containing a significant amount of lead have large proportion of calcium. It has been established that LIPS would allow real time clinic measurements of elemental contents and the concentrations in the biomaterials without sample preparation. The technique has the potential for routine clinic applications in urological disorder diagnosis.
Li, Mei; Ma, Chao; Zhu, Qian-Cheng; Xu, Shu-Mao; Wei, Xiao; Wu, Yong-Min; Tang, Wei-Ping; Wang, Kai-Xue; Chen, Jie-Sheng
2017-04-11
Sodium-ion batteries have attracted considerable attention in recent years. In order to promote the practical application of sodium-ion batteries, the electrochemical performances, such as specific capacity, reversibility, and rate capability of the anode materials, should be further improved. In this work, a Fe 2 O 3 /C composite with a well-ordered mesoporous structure is prepared via a facile co-impregnation method by using mesoporous silica SBA-15 as a hard template. When used as an anode material for sodium-ion batteries, the well-ordered mesoporous structure ensures fast mass transport kinetics. The presence of nano-sized Fe 2 O 3 particles confined within the carbon walls significantly enhances the specific capacity of the composite. The carbon walls in the composite act not only as an active material contributing to the specific capacity, but also as a conductive matrix improving the cycling stability of Fe 2 O 3 nanoparticles. As a result, the well-ordered mesoporous Fe 2 O 3 /C composite exhibits high specific capacity, excellent cycleability, and high rate capability. It is proposed that this simple co-impregnation method is applicable for the preparation of well-ordered mesoporous transition oxide/carbon composite electrode materials for high performance sodium-ion and lithium-ion batteries.
Hlova, Ihor; Goldston, Jennifer F.; Gupta, Shalabh; ...
2017-05-30
Solid-state mechanochemical synthesis of alane (AlH 3) starting from sodium hydride (NaH) and aluminum chloride (AlCl 3) has been achieved at room temperature. The transformation pathway of this solid-state reaction was controlled by a stepwise addition of AlCl 3 to the initial reaction mixture that contained sodium hydride in excess of stoichiometric amount. As in the case of previously investigated LiH–AlCl 3 system, complete selectivity was achieved whereby formation of unwanted elemental aluminum was fully suppressed, and AlH 3 was obtained in quantitative yield. Reaction progress during each step was investigated by means of solid-state NMR and powder X-ray diffraction,more » which revealed that the overall reaction proceeds through a series of intermediate alanates that may be partially chlorinated. The NaH–AlCl 3 system presents some subtle differences compared to LiH–AlCl 3 system particularly with respect to optimal concentrations needed during one of the reaction stages. Based on the results, we postulate that high local concentrations of NaH may stabilize chlorine-containing derivatives and prevent decomposition into elemental aluminum with hydrogen evolution. As a result, complete conversion with quantitative yield of alane was confirmed by both SSNMR and hydrogen desorption analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hlova, Ihor; Goldston, Jennifer F.; Gupta, Shalabh
Solid-state mechanochemical synthesis of alane (AlH 3) starting from sodium hydride (NaH) and aluminum chloride (AlCl 3) has been achieved at room temperature. The transformation pathway of this solid-state reaction was controlled by a stepwise addition of AlCl 3 to the initial reaction mixture that contained sodium hydride in excess of stoichiometric amount. As in the case of previously investigated LiH–AlCl 3 system, complete selectivity was achieved whereby formation of unwanted elemental aluminum was fully suppressed, and AlH 3 was obtained in quantitative yield. Reaction progress during each step was investigated by means of solid-state NMR and powder X-ray diffraction,more » which revealed that the overall reaction proceeds through a series of intermediate alanates that may be partially chlorinated. The NaH–AlCl 3 system presents some subtle differences compared to LiH–AlCl 3 system particularly with respect to optimal concentrations needed during one of the reaction stages. Based on the results, we postulate that high local concentrations of NaH may stabilize chlorine-containing derivatives and prevent decomposition into elemental aluminum with hydrogen evolution. As a result, complete conversion with quantitative yield of alane was confirmed by both SSNMR and hydrogen desorption analysis.« less
Killer smog of London, 50 years on: particle properties and oxidative capacity.
Whittaker, Andy; BéruBé, Kelly; Jones, Tim; Maynard, Robert; Richards, Roy
2004-12-01
Total suspended particulate (TSP) samples collected on glass fibre filters in London before (1955) and after (1958-1974) the Clean Air Act was examined for physicochemical characteristics and oxidative capacity. High-resolution microscopy identified most of the material as soot with smelter spheres, fly ash (FA), sodium chloride and calcium sulphate particles. Image analysis (IA) was used to show that most of the soot aggregates were less than 1 microm in size and contained chains of individual particles of 10-50 nm. Speed mapping of large agglomerates of the historic particles confirmed that the samples were enriched with soot probably derived from a sulphur-rich coal called nutty slack which was used extensively at this time. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to examine elemental composition. Meaningful quantitation of certain elements (Mg, Al and Zn) proved impossible because they were in high quantities in the glass fibre filters. However, high quantities of Fe>Pb>Cu>Mn>V>As were detected which may explain in part the bioreactivity of the samples. Using a simple in vitro test of oxidative capacity (plasmid assay), one historic particulate sample (1958) showed three times the activity of a modern-day diesel exhaust particle (DEP) sample but ten times less activity than a modern-day urban ambient particle collection. Such studies are continuing to link particle physicochemical properties and bioreactivity with a wider range of the samples collected between 1955 and 74 and how such historic samples compare with present-day London ambient particles.
A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite
NASA Astrophysics Data System (ADS)
Zhang, Yi-min; Wang, Li-na; Chen, De-sheng; Wang, Wei-jing; Liu, Ya-hui; Zhao, Hong-xin; Qi, Tao
2018-02-01
An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200°C, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively.
Mannermaa, J P; Muttonen, E; Yliruusi, J; Juppo, A
1992-01-01
The effect of sterilization on the number of particles released from five different types of rubber stoppers, as well as on their surface roughness and elemental composition before and after sterilization is described. The stoppers were immersed in 200 ml of 0.9% sodium chloride solution in conical flasks. The number of particles released into the sodium chloride solution was measured by Coulter Counter. The surface roughness and the elemental composition of the stoppers were determined by SEM/EDX. All measurements were made both before and after sterilization at 121 degrees C to F0 15 mins. The number of particles released from a stopper during sterilization varies considerably between different stoppers and even between different batches of the same stopper. The only non-siliconized stopper in this study performed well. The absence of surface siliconization may have contributed to this performance. The scanning electron micrographs revealed well the differences in the surface roughness of the stoppers. The sterilization generally increases the surface roughness of the samples. The x-ray microanalysis revealed that the elemental composition of the stoppers may vary not only between different types of stoppers but also between different batches of the same stopper.
New Theoretical Model of Nerve Conduction in Unmyelinated Nerves
Akaishi, Tetsuya
2017-01-01
Nerve conduction in unmyelinated fibers has long been described based on the equivalent circuit model and cable theory. However, without the change in ionic concentration gradient across the membrane, there would be no generation or propagation of the action potential. Based on this concept, we employ a new conductive model focusing on the distribution of voltage-gated sodium ion channels and Coulomb force between electrolytes. Based on this new model, the propagation of the nerve conduction was suggested to take place far before the generation of action potential at each channel. We theoretically showed that propagation of action potential, which is enabled by the increasing Coulomb force produced by inflowing sodium ions, from one sodium ion channel to the next sodium channel would be inversely proportionate to the density of sodium channels on the axon membrane. Because the longitudinal number of sodium ion channel would be proportionate to the square root of channel density, the conduction velocity of unmyelinated nerves is theoretically shown to be proportionate to the square root of channel density. Also, from a viewpoint of equilibrium state of channel importation and degeneration, channel density was suggested to be proportionate to axonal diameter. Based on these simple basis, conduction velocity in unmyelinated nerves was theoretically shown to be proportionate to the square root of axonal diameter. This new model would also enable us to acquire more accurate and understandable vision on the phenomena in unmyelinated nerves in addition to the conventional electric circuit model and cable theory. PMID:29081751
Tondreau, Aaron M.; Scott, Brian L.; Boncella, James M.
2016-05-23
We explored ligand-induced reduction of ferrous alkyl complexes via homolytic cleavage of the alkyl fragment with simple chelating diphosphines. The reactivities of the sodium salts of diphenylmethane, phenyl(trimethylsilyl)methane, or diphenyl(trimethylsilyl)methane were explored in their reactivity with (py) 4FeCl 2. Furthermore, we prepared a series of monoalkylated salts of the type (py) 2FeRCl and characterized from the addition of 1 equiv of the corresponding alkyl sodium species. These complexes are isostructural and have similar magnetic properties. The double alkylation of (py) 4FeCl 2 resulted in the formation of tetrahedral high-spin iron complexes with the sodium salts of diphenylmethane and phenyl(trimethylsilyl)methane thatmore » readily decomposed. A bis(cyclohexadienyl) sandwich complex was formed with the addition of 2 equiv of the tertiary alkyl species sodium diphenyl(trimethylsilyl)methane. The addition of chelating phosphines to (py) 2FeRCl resulted in the overall transfer of Fe(I) chloride concurrent with loss of pyridine and alkyl radical. (dmpe) 2FeCl was synthesized via addition of 1 equiv of sodium diphenyl(trimethylsilyl)methane, whereas the addition of 2 equiv of the sodium compound to (dmpe) 2FeCl 2 gave the reduced Fe(0) nitrogen complex (dmpe) 2Fe(N 2). Our results demonstrate that iron–alkyl homolysis can be used to afford clean, low-valent iron complexes without the use of alkali metals.« less
A simple finite element method for the Stokes equations
Mu, Lin; Ye, Xiu
2017-03-21
The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in primal velocity-pressure formulation and is so simple such that both velocity and pressure are approximated by piecewise constant functions. Implementation issues as well as error analysis are investigated. A basis for a divergence free subspace of the velocity field is constructed so that the original saddle point problem can be reduced to a symmetric and positive definite system with much fewer unknowns. The numerical experiments indicate that the method is accurate.
A simple finite element method for the Stokes equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in primal velocity-pressure formulation and is so simple such that both velocity and pressure are approximated by piecewise constant functions. Implementation issues as well as error analysis are investigated. A basis for a divergence free subspace of the velocity field is constructed so that the original saddle point problem can be reduced to a symmetric and positive definite system with much fewer unknowns. The numerical experiments indicate that the method is accurate.
Estimating the Wavelength of Sodium Emission in Flame--The Easy Way
ERIC Educational Resources Information Center
Wahab, M. Farooq
2009-01-01
Simple "box spectroscopes" are not new. Different methods of building them at home using cheap diffraction gratings have been described. However, their use has often been confined to looking at street lights, discharge tubes, and enjoying the beautiful spectra of various lamps. Construction of the box spectroscope usually involves a narrow slit…
An Educational Model for Disruption of Bacteria for Protein Studies.
ERIC Educational Resources Information Center
Bhaduri, Saumya; Demchick, Paul H.
1984-01-01
A simple, rapid, and safe method has been developed for disrupting bacterial cells for protein studies. The method involved stepwise treatment of cells with acetone and with sodium dodecyl sulfate solution to allow extraction of cellular proteins for analysis by polyacrylamide gel electrophoresis. Applications for instructional purposes are noted.…
ERIC Educational Resources Information Center
Silva, Clesia C.; Silva, Ricardo O.; Navarro, Daniela M. A. F.; Navarro, Marcelo
2009-01-01
An experimental project aimed at identifying stable reaction intermediates is described. Initially, the studied reaction appears to involve the simple hydrolysis, by aqueous sodium hydroxide, of methyl 3,5-dinitrobenzoate dissolved in dimethyl sulfoxide. On mixing the substrates, however, the reaction mixture unexpectedly turns an intense red in…
Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope
ERIC Educational Resources Information Center
Lumetta, Gregg J.; Arcia, Edgar
2016-01-01
A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as…
Dissolving Carboxylic Acids and Primary Amines on the Overhead Projector
ERIC Educational Resources Information Center
Solomon, Sally D.; Rutkowsky, Susan A.
2010-01-01
Liquid carboxylic acids (or primary amines) with limited solubility in water are dissolved by addition of aqueous sodium hydroxide (or hydrochloric acid) on the stage of an overhead projector using simple glassware and very small quantities of chemicals. This effective and colorful demonstration can be used to accompany discussions of the…
Raza, Asad; Zia-Ul-Haq, Muhammad
2011-01-01
Two simple, fast, and accurate spectrophotometric methods for the determination of alendronate sodium are described. The methods are based on charge-transfer complex formation of the drug with two π-electron acceptors 7,7,7,8-tetracyanoquinodimethane (TCNQ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in acetonitrile and methanol medium. The methods are followed spectrophotometrically by measuring the maximum absorbance at 840 nm and 465 nm, respectively. Under the optimized experimental conditions, the calibration curves showed a linear relationship over the concentration ranges of 2-10 μg mL(-1) and 2-12 μg mL(-1), respectively. The optimal reactions conditions values such as the reagent concentration, heating time, and stability of reaction product were determined. No significant difference was obtained between the results of newly proposed methods and the B.P. Titrimetric procedures. The charge transfer approach using TCNQ and DDQ procedures described in this paper is simple, fast, accurate, precise, and extraction-free.
Raza, Asad; Zia-ul-Haq, Muhammad
2011-01-01
Two simple, fast, and accurate spectrophotometric methods for the determination of alendronate sodium are described. The methods are based on charge-transfer complex formation of the drug with two π-electron acceptors 7,7,7,8-tetracyanoquinodimethane (TCNQ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in acetonitrile and methanol medium. The methods are followed spectrophotometrically by measuring the maximum absorbance at 840 nm and 465 nm, respectively. Under the optimized experimental conditions, the calibration curves showed a linear relationship over the concentration ranges of 2–10 μg mL−1 and 2–12 μg mL−1, respectively. The optimal reactions conditions values such as the reagent concentration, heating time, and stability of reaction product were determined. No significant difference was obtained between the results of newly proposed methods and the B.P. Titrimetric procedures. The charge transfer approach using TCNQ and DDQ procedures described in this paper is simple, fast, accurate, precise, and extraction-free. PMID:21760789
In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures.
Fu, Wei; Du, Fei-Hu; Su, Juan; Li, Xin-Hao; Wei, Xiao; Ye, Tian-Nan; Wang, Kai-Xue; Chen, Jie-Sheng
2014-04-14
Stacking various two-dimensional atomic crystals on top of each other is a feasible approach to create unique multilayered heterostructures with desired properties. Herein for the first time, we present a controlled preparation of large-area graphene/MoS2 heterostructures via a simple heating procedure on Mo-oleate complex coated sodium sulfate under N2 atmosphere. Through a direct in situ catalytic reaction, graphene layer has been uniformly grown on the MoS2 film formed by the reaction of Mo species with Species, which is from the carbothermal reduction of sodium sulfate. Due to the excellent graphene "painting" on MoS2 atomic layers, the significantly shortened lithium ion diffusion distance and the markedly enhanced electronic conductivity, these multilayered graphene/MoS2 heterostructures exhibit high specific capacity, unprecedented rate performance and outstanding cycling stability, especially at a high current density, when used as an anode material for lithium batteries. This work provides a simple but efficient route for the controlled fabrication of large-area multilayered graphene/metal sulfide heterostructures with promising applications in battery manufacture, electronics or catalysis.
In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures
Fu, Wei; Du, Fei-Hu; Su, Juan; Li, Xin-Hao; Wei, Xiao; Ye, Tian-Nan; Wang, Kai-Xue; Chen, Jie-Sheng
2014-01-01
Stacking various two-dimensional atomic crystals on top of each other is a feasible approach to create unique multilayered heterostructures with desired properties. Herein for the first time, we present a controlled preparation of large-area graphene/MoS2 heterostructures via a simple heating procedure on Mo-oleate complex coated sodium sulfate under N2 atmosphere. Through a direct in situ catalytic reaction, graphene layer has been uniformly grown on the MoS2 film formed by the reaction of Mo species with S pecies, which is from the carbothermal reduction of sodium sulfate. Due to the excellent graphene “painting” on MoS2 atomic layers, the significantly shortened lithium ion diffusion distance and the markedly enhanced electronic conductivity, these multilayered graphene/MoS2 heterostructures exhibit high specific capacity, unprecedented rate performance and outstanding cycling stability, especially at a high current density, when used as an anode material for lithium batteries. This work provides a simple but efficient route for the controlled fabrication of large-area multilayered graphene/metal sulfide heterostructures with promising applications in battery manufacture, electronics or catalysis. PMID:24728289
In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures
NASA Astrophysics Data System (ADS)
Fu, Wei; Du, Fei-Hu; Su, Juan; Li, Xin-Hao; Wei, Xiao; Ye, Tian-Nan; Wang, Kai-Xue; Chen, Jie-Sheng
2014-04-01
Stacking various two-dimensional atomic crystals on top of each other is a feasible approach to create unique multilayered heterostructures with desired properties. Herein for the first time, we present a controlled preparation of large-area graphene/MoS2 heterostructures via a simple heating procedure on Mo-oleate complex coated sodium sulfate under N2 atmosphere. Through a direct in situ catalytic reaction, graphene layer has been uniformly grown on the MoS2 film formed by the reaction of Mo species with S pecies, which is from the carbothermal reduction of sodium sulfate. Due to the excellent graphene ``painting'' on MoS2 atomic layers, the significantly shortened lithium ion diffusion distance and the markedly enhanced electronic conductivity, these multilayered graphene/MoS2 heterostructures exhibit high specific capacity, unprecedented rate performance and outstanding cycling stability, especially at a high current density, when used as an anode material for lithium batteries. This work provides a simple but efficient route for the controlled fabrication of large-area multilayered graphene/metal sulfide heterostructures with promising applications in battery manufacture, electronics or catalysis.
Life Enhancement of Naval Systems through Advanced Materials.
1982-05-12
sulfate ( eutectic at 575*C) and nickel sulfate-sodium sulfate ( eutectic at 670 0 C) systems. Cobalt and nickel sulfate are thermally unstable and undergo a...large scale commercial usage. Table IV-l - Ion implantation parameters Implanted Elements - Virtually any element from hydrogen to uranium can be...readily attainable by oxidation of the up to 1% sulfur allowed inI Navy fuel. Therefore, cobalt and nickel sulfate are formed by reaction of the 30 Fig. V-1
Jiang, Ying; Zhang, Yue; Banks, Charles; Heaven, Sonia; Longhurst, Philip
2017-11-15
The requirement of trace elements (TE) in anaerobic digestion process is widely documented. However, little is understood regarding the specific requirement of elements and their critical concentrations under different operating conditions such as substrate characterisation and temperature. In this study, a flask batch trial using fractional factorial design is conducted to investigate volatile fatty acids (VFA) anaerobic degradation rate under the influence of the individual and combined effect of six TEs (Co, Ni, Mo, Se, Fe and W). The experiment inoculated with food waste digestate, spiked with sodium acetate and sodium propionate both to 10 g/l. This is followed by the addition of a selection of the six elements in accordance with a 2 6-2 fractional factorial principle. The experiment is conducted in duplicate and the degradation of VFA is regularly monitored. Factorial effect analysis on the experimental results reveals that within these experimental conditions, Se has a key role in promoting the degradation rates of both acetic and propionic acids; Mo and Co are found to have a modest effect on increasing propionic acid degradation rate. It is also revealed that Ni shows some inhibitory effects on VFA degradation, possibly due to its toxicity. Additionally, regression coefficients for the main and second order effects are calculated to establish regression models for VFA degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Colaprete, A; Sarantos, M; Wooden, D H; Stubbs, T J; Cook, A M; Shirley, M
2016-01-15
Despite being trace constituents of the lunar exosphere, sodium and potassium are the most readily observed species due to their bright line emission. Measurements of these species by the Ultraviolet and Visible Spectrometer (UVS) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) have revealed unambiguous temporal and spatial variations indicative of a strong role for meteoroid bombardment and surface composition in determining the composition and local time dependence of the Moon's exosphere. Observations show distinct lunar day (monthly) cycles for both species as well as an annual cycle for sodium. The first continuous measurements for potassium show a more repeatable variation across lunations and an enhancement over KREEP (Potassium Rare Earth Elements and Phosphorus) surface regions, revealing a strong dependence on surface composition. Copyright © 2016, American Association for the Advancement of Science.
Elemental composition of four farmed fish produced in Portugal.
Lourenço, Helena M; Afonso, Cláudia; Anacleto, Patrícia; Martins, Maria F; Nunes, Maria L; Lino, Ana R
2012-11-01
Farmed gilthead sea bream (Sparus aurata), European sea bass (Dicentrarchus labrax), rainbow trout (Oncorhynchus mykiss) and turbot (Psetta maxima) produced in Portugal were analysed in order to characterize their elemental composition. Atomic absorption (flame and cold vapour) and molecular absorption spectrometry techniques were used to determine all the studied elements. Similar patterns of macro, trace and ultra trace elements were observed for all fish species. The main elements were potassium (K), sodium (Na), phosphorus (P), magnesium (Mg) and calcium (Ca), followed by zinc (Zn), iron (Fe), copper (Cu), chromium (Cr), manganese (Mn) and nickel (Ni). Cadmium (Cd), mercury (Hg) and lead (Pb) concentrations, obtained in this study, allow concluding that these species do not present a hazard for human consumption. In addition, they contain almost all essential elements at concentrations sufficient to suit the dietary reference intake. Nevertheless, P. maxima nutritious trace element content is relatively low compared with the other three species.
Major inorganic elements in tap water samples in Peninsular Malaysia.
Azrina, A; Khoo, H E; Idris, M A; Amin, I; Razman, M R
2011-08-01
Quality drinking water should be free from harmful levels of impurities such as heavy metals and other inorganic elements. Samples of tap water collected from 24 locations in Peninsular Malaysia were determined for inorganic element content. Minerals and heavy metals were analysed by spectroscopy methods, while non-metal elements were analysed using test kits. Minerals and heavy metals determined were sodium, magnesium, potassium, calcium, chromium, manganese, iron, nickel, copper, zinc, arsenic, cadmium and lead while the non-metal elements were fluoride, chloride, nitrate and sulphate. Most of the inorganic elements found in the samples were below the maximum permitted levels recommended by inter-national drinking water standard limits, except for iron and manganese. Iron concentration of tap water from one of the locations was higher than the standard limit. In general, tap water from different parts of Peninsular Malaysia had low concentrations of heavy metals and inorganic elements.
Post-Formation Sodium Loss on the Moon: A Bulk Estimate
NASA Technical Reports Server (NTRS)
Saxena, P.; Killen, R. M.; Airapetian, V.; Petro, N. E.; Mandell, A. M.
2018-01-01
The Moon and Earth are generally similar in terms of composition, but there exist variations in the abundance of certain elements among the two bodies. These differences are a likely consequence of differing physical evolution of the two bodies over the solar system's history. While previous works have assumed this may be due to conditions during the Moonâ€"TM"s formation, we explore the likelihood that the observed depletion in Sodium in lunar samples may be partially due to post-formation mechanisms. Solar effects, loss from a primordial atmosphere and impacts are some of the dominant post-formation mechanisms that we examine. We describe how our past and current modeling efforts indicate that a significant fraction of the observed depletion of sodium in lunar samples relative to a bulk silicate earth composition may have been due to solar activity, atmospheric loss and impacts. Using profiles of sodium abundances from lunar crustal samples may thus serve as a powerful tool towards exploring conditions on the Moon's surface throughout solar system history. Conditions on the Moon immediately after formation may still be recorded in the lunar crust and may provide a window towards interpreting observations from some of the first rocky exoplanets that will be most amenable to characterization. Potential spatial variation of sodium in the lunar crust may be a relevant consideration for future sample return efforts. Sodium Depletion in the Lunar Crust: Lunar
On the origin of alkali metals in Europa exosphere
NASA Astrophysics Data System (ADS)
Ozgurel, Ozge; Pauzat, Françoise; Ellinger, Yves; Markovits, Alexis; Mousis, Olivier; LCT, LAM
2016-10-01
At a time when Europa is considered as a plausible habitat for the development of an early form of life, of particular concern is the origin of neutral sodium and potassium atoms already detected in its exosphere (together with magnesium though in smaller abundance), since these atoms are known to be crucial for building the necessary bricks of prebiotic species. However their origin and history are still poorly understood. The most likely sources could be exogenous and result from the contamination produced by Io's intense volcanism and/or by meteoritic bombardment. These sources could also be endogenous if these volatile elements originate directly from Europa's icy mantle. Here we explore the possibility that neutral sodium and potassium atoms were delivered to the satellite's surface via the upwelling of ices formed in contact with the hidden ocean. These metallic elements would have been transferred as ions to the ocean at early epochs after Europa's formation, by direct contact of water with the rocky core. During Europa's subsequent cooling, the icy layers formed at the top of the ocean would have kept trapped the sodium and potassium, allowing their future progression to the surface and final identification in the exosphere of the satellite. To support this scenario, we have used chemistry numerical models based on first principle periodic density functional theory (DFT). These models are shown to be well adapted to the description of compact ice and are capable to describe the trapping and neutralization of the initial ions in the ice matrix. The process is found relevant for all the elements considered, alkali metals like Na and K, as well as for Mg and probably for Ca, their respective abundances depending essentially of their solubility and chemical capabilities to blend with water ices.
Extreme hyperphosphatemia and hypocalcemic coma associated with phosphate enema.
Hsu, Heng Jung; Wu, Mai-Szu
2008-01-01
Fleet enema (sodium phosphate, C.B. Fleet Co., Inc., Lynchburg, Virginia) is widely used for bowel preparation or constipation relief in the hospital and over the counter. The potential risks, including hyperphosphatemia and hypocalcemic coma should be kept in mind of primary care physician. The patients with older age, bowel obstruction, small intestinal disorders, poor gut motility, and renal disease are contraindicated or should be administered with caution. We present a patient with old age and chronic renal failure who developed severe hyperphosphatemia and hypocalcemic tetany with coma after sodium phosphate enema. We recommend the use of alternative enema preparations, such as simple tap water or saline solution enemas, which can prevent fatal complications in high risk patients.
Use of Tricaine Methanesulfonate (MS222) for Euthanasia of Reptiles
Conroy, CJ; Papenfuss, T; Parker, J; Hahn, NE
2009-01-01
Tricaine methanesulfonate (MS222) injected into the intracoelomic cavity of reptiles was evaluated as a chemical euthanasia method. Three western fence lizards, 2 desert iguanas, 4 garter snakes, and 6 geckos were euthanized by intracoelomic injection of 250 to 500 mg/kg of 0.7% to 1% sodium-bicarbonate–buffered MS222 solution followed by intracoelomic injection of 0.1 to 1.0 ml unbuffered 50% (v/v) MS222 solution. A simple 2-stage protocol for euthanasia of reptiles by using MS222 is outlined. In addition, the conditions for safe use of MS222 are discussed. MS222 offers an alternative to sodium pentobarbital for euthanasia of reptiles. PMID:19245747
System and method for authentication of goods
Kaish, Norman; Fraser, Jay; Durst, David I.
1999-01-01
An authentication system comprising a medium having a plurality of elements, the elements being distinctive, detectable and disposed in an irregular pattern or having an intrinsic irregularity. Each element is characterized by a determinable attribute distinct from a two-dimensional coordinate representation of simple optical absorption or simple optical reflection intensity. An attribute and position of the plurality of elements, with respect to a positional reference is detected. A processor generates an encrypted message including at least a portion of the attribute and position of the plurality of elements. The encrypted message is recorded in physical association with the medium. The elements are preferably dichroic fibers, and the attribute is preferably a polarization or dichroic axis, which may vary over the length of a fiber. An authentication of the medium based on the encrypted message may be authenticated with a statistical tolerance, based on a vector mapping of the elements of the medium, without requiring a complete image of the medium and elements to be recorded.
Preliminary analysis on the water quality index (WQI) of irradiated basic filter elements
NASA Astrophysics Data System (ADS)
Arif Abu Bakar, Asyraf; Muhamad Pauzi, Anas; Aziz Mohamed, Abdul; Syima Sharifuddin, Syazrin; Mohamad Idris, Faridah
2018-01-01
Simple water filtration system is needed in times of extreme floods. Clean water for sanitation at evacuation centres is essential and its production is possible by using the famous simple filtration system consisting of empty bottle and filter elements (sands, gravels, cotton/coffee filter). This research intends to study the effects of irradiated filter elements on the filtration effectiveness through experiments. The filter elements will be irradiated with gamma and neutron radiation using the facilities available at Malaysia Nuclear Agency. The filtration effectiveness is measured using the water quality index (WQI) that is developed in this study to reflect the quality of filtered water. The WQI of the filtered water using the system with irradiated filter elements is then compared with that of the system with non-irradiated filter elements. This preliminary analysis only focus on filtration element of silica sand. Results shows very nominal variation in in WQI after filtered by non-irradiated, gamma and neutron filter element (silica sand), where the hypothesis could not be affirmed.
Salt taste preference, sodium intake and gastric cancer in China.
Zhang, Zhiyong; Zhang, Xiefu
2011-01-01
The risk factors mostly strongly associated with gastric cancer are gastric bacteria Helicobacter pylori and diet. By using a case-control study among residents in China, we examined the association between sodium intake, presence of H,pylori, and gastric cancer risk. A population-based case-control study including 235 cases and 410 controls were used. Potential risk factors of gastric cancer were interview for cases and controls by questionnaire, salt taste preference was measured for all subjects, and IgG antibodies to H,pylori was used for H.pylori infection. Risk measures were calculated using unconditional logistic regression. H.pylori infection and smoking increased the risk of gastric cancer, with the OR(95%CI) of 1.91(1.32-2.79) and 1.47(1.05- 2.05), respectively. Dietary sodium intake independently increased the risk of gastric cancer. Participants with the highest sodium intake(>5g/day) had a high gastric cancer risk [OR(95%CI)= 3.78(1.74-5.44)]. Participants with the salt taste preference at 7.3g/L and ≥ 14.6g/L showed higher risk of gastric cancer [OR(95%) for 7.3g/L and ≥ 14.6g/L were 5.36(2.72-10.97) and 4.75(2.43-8.85), respectively]. A significantly interaction was found between salt taste preference and H.pylori infection (p=0.037). Salt taste preference was significantly correlated with sodium intake (Correlation coefficient=0.46, p< 0.001). Salt taste preference test could be a simple way to evaluate an inherited characteristic of sodium intake, and our study confirms the gastric cancer is associated with sodium intake and H.pylori.
NASA Astrophysics Data System (ADS)
Shaari, N.; Kamarudin, S. K.; Basri, S.; Shyuan, L. K.; Masdar, M. S.; Nordin, D.
2018-03-01
The high methanol crossover and high cost of Nafion® membrane are the major challenges for direct methanol fuel cell application. With the aim of solving these problems, a non-Nafion polymer electrolyte membrane with low methanol permeability and high proton conductivity based on the sodium alginate (SA) polymer as the matrix and sulfonated graphene oxide (SGO) as an inorganic filler (0.02-0.2 wt%) was prepared by a simple solution casting technique. The strong electrostatic attraction between -SO3H of SGO and the sodium alginate polymer increased the mechanical stability, optimized the water absorption and thus inhibited the methanol crossover in the membrane. The optimum properties and performances were presented by the SA/SGO membrane with a loading of 0.2 wt% SGO, which gave a proton conductivity of 13.2 × 10-3 Scm-1, and the methanol permeability was 1.535 × 10-7 cm2 s-1 at 25 °C, far below that of Nafion (25.1 × 10-7 cm2 s-1) at 25 °C. The mechanical properties of the sodium alginate polymer in terms of tensile strength and elongation at break were improved by the addition of SGO.
SINEs of progress: Mobile element applications to molecular ecology.
Ray, David A
2007-01-01
Mobile elements represent a unique and under-utilized set of tools for molecular ecologists. They are essentially homoplasy-free characters with the ability to be genotyped in a simple and efficient manner. Interpretation of the data generated using mobile elements can be simple compared to other genetic markers. They exist in a wide variety of taxa and are useful over a wide selection of temporal ranges within those taxa. Furthermore, their mode of evolution instills them with another advantage over other types of multilocus genotype data: the ability to determine loci applicable to a range of time spans in the history of a taxon. In this review, I discuss the application of mobile element markers, especially short interspersed elements (SINEs), to phylogenetic and population data, with an emphasis on potential applications to molecular ecology.
USDA-ARS?s Scientific Manuscript database
Salts are naturally present in soils, and many salt elements are essential nutrients for plants. The most common soluble salts in soil include major cations of sodium (Na+), magnesium (Mg2+), calcium (Ca2+), potassium (K+), and anions of chloride (Cl-), sulfate (SO42-), bicarbonate (HCO3-) and carbo...
Eshghi, Hossein; Seyedi, Seyed Mohammad; Zarei, Elaheh Rahimi
2011-01-01
Ferric hydrogensulfate catalyzed the synthesis of 5-substituted 1H-tetrazoles via [2 + 3] cycloaddition of nitriles and sodium azide. This method has the advantages of high yields, simple methodology, and easy workup. The catalyst can be recovered by simple filtration and reused delivering good yields. Also, ferric hydrogensulfate catalyzed the hydrolysis of nitriles to primary amides under aqueous conditions. Various aliphatic and aromatic nitriles converted to the corresponding amides in good yields without any contamination with carboxylic acids. PMID:24052817
NASA Astrophysics Data System (ADS)
Li, Libo; Yang, Xueying; Gao, Guanxiong; Wang, Wentao; You, Jun
2017-11-01
CuIn(Se x S1- x )2 thin film is prepared by the electrodeposition method for the absorption layer of the solar cell. The CuIn(Se x S1- x )2 films are characterized by cyclic voltammetry measurement for the reduction of copper, indium, selenium and sulfur in selenium and sulfur in aqueous solutions with sodium citrate and without sodium citrate. In the four cases, the defined reduction process for every single element is obtained and it is observed that sodium citrate changes the reduction potentials. A linear relationship between the current density of the reduction peak and (scan rate v)1/2 for copper and indium is achieved, indicating that the process is diffusion controlled. The diffusion coefficients of copper and indium ions are calculated. The diffusional coefficient D value of copper is higher than that of indium, and this is the reason why the deposition rate of copper is higher. When four elements are co-deposited in the aqueous solution with sodium citrate, the quaternary compound of CuIn(Se x S1- x )2 is deposited together with Cu3Se2 impure phases after annealing, as found by XRD spectra. Morphology is observed by SEM and AFM. The chemical state of the films components is analyzed by XPS. The UV-Visible spectrophotometer and electrochemistry workstation are employed to measure the photoelectric properties. The results show that the smooth, uniform and compact CuIn(Se x S1- x )2 film is a semiconductor with a band gap of 1.49 eV and a photovoltaic conversion efficiency of 0.45%.
Hamidizadeh, Nasrin; Simaeetabar, Shima; Handjani, Farhad; Ranjbar, Sara; Moghadam, Mohammad Gohari; Parvizi, Mohammad Mahdi
2017-01-01
Some skin diseases are incurable and modern medicine can only control them. In addition, alternative treatment remedies including balneotherapy can be effective in improving skin conditions. However, there are only a limited number of studies on particular mineral or trace elements of mineral sources that have been identified in Iran. In this respect, the amount of minerals and trace elements in Mamasani thermal source, Fars Province, Iran, was measured using electrochemical, titration, and spectrophotometric methods and evaluated. The amount of minerals and trace elements in Mamasani thermal source, Fars Province, Iran, was measured using electrochemical, titration, and spectrophotometric methods. The concentrations of natural gases such as H 2 S and NO 3 in Mamasani thermal source were measured to be 22.10 mg/L and 42.79 mg/L, respectively. The source also contained major ions such as chloride, sulfate, sodium, calcium, magnesium, potassium, and carbonate. Due to the high concentration of chloride, sulfate, and sodium ions in comparison with other major ions, the water source is also classified as sulfide water. The existing trace elements in this thermal water source are iron, zinc, copper, selenium, cobalt, chromium, boron, silisium, aluminum, magnesium, and molybdenum. We concluded that bathing in this source could be beneficial. As nitrate concentration is close to the highest standard concentration for drinking water, it can be used in chronic dermatitis, psoriasis, burns, and allergy. Furthermore, the antibacterial and antifungal effects of sulfur-containing water in this source can be helpful in the treatment of leg ulcers, tinea versicolor, tinea corporis, and tinea capitis.
Bayat, I; Etehadiyan, M; Ansar, M
1995-01-01
Concentration of trace elements in Nescafé, Fariman sugar, and Sadaf turmeric and mercury content in cancerous blood were determined by radiochemical, neutron activation analysis. By this separation method levels of 110mAg, 198Au, 203Hg, 76Se, 51Cr, 24Na, 42K, 99Mo, 122Sb, 82Br, 59Fe, 60Co were measured without interference in the gamma spectroscopy. A nondestructive method has also been used for the analysis of sodium, potassium, and bromine.
Structural Stability and Electronic Properties of Na2C6O6 for a Rechargeable Sodium-ion Battery
NASA Astrophysics Data System (ADS)
Yamashita, Tomoki; Fujii, Akihiro; Momida, Hiroyoshi; Oguchi, Tamio
2014-03-01
Sodium-ion batteries have been explored as a promising alternative to lithium-ion batteries owing to a significant advantage of a natural abundance of sodium. Recently, it has been reported that disodium rhodizonate, Na2C6O6, exhibit good electrochemical properties and cycle performance as a minor-metal free organic cathode for sodium-ion batteries. However, its crystal structures during discharge/charge cycle still remain unclear. In this work, we theoretically propose feasible crystal structures of Na2+xC6O6 using first principles calculations. A structural phase transition has been found: Na4C6O6 has a different C6O6 packing arrangement from Na2C6O6. Electronic structures of Na2+xC6O6 during discharge/charge cycle are also discussed. Our predictions could be the key to understanding the discharge/charge process of Na2C6O6. Supported by MEXT program ``Elements Strategy Initiative to Form Core Rersearch Center'' (since 2012), MEXT; Ministry of Education Culture, Sports, Science and Technology, Japan.
Galyean, A A; Behr, M R; Cash, K J
2018-01-21
Nanosensors present a biological monitoring method that is biocompatible, reversible, and nano-scale, and they offer many advantages over traditional organic indicators. Typical ionophore-based nanosensors incorporate nile-blue derivative pH indicators but suffer from photobleaching while quantum dot alternatives pose a potential toxicity risk. In order to address this challenge, sodium selective nanosensors containing carbon dots and a pH-sensitive quencher molecule were developed based on an ion-exchange theory and a decoupled recognition element from the pH indicator. Carbon dots were synthesized and integrated into nanosensors containing a pH-indicator, an analyte-binding ligand (ionophore), and a charge-balancing additive. These nanosensors are ion-selective against potassium (selectivity coefficient of 0.4) and lithium (selectivity coefficient of 0.9). Reversible nanosensor response to sodium is also demonstrated. The carbon dot nanosensors are resistant to changes in optical properties for at least 12 h and display stable selectivity to physiologically-relevant sodium (alpha = 0.5 of 200 mM NaCl) for a minimum of 6 days.
Evolution in an Afternoon: Rapid Natural Selection and Adaptation of Bacterial Populations
ERIC Educational Resources Information Center
Delpech, Roger
2009-01-01
This paper describes a simple, rapid and low-cost technique for growing bacteria (or other microbes) in an environmental gradient, in order to determine the tolerance of the microbial population to varying concentrations of sodium chloride ions, and suggests how the evolutionary response of a microbial population to the selection pressure of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romander, C.M.
The potential hazard of HCDA-generated missiles is analyzed, and the current status of the potential hazards of sodium fires is summarized. Simple analyses are performed to determine lower bounds on the HCDA energetics required to generate missiles that could reach the secondary containment structure of a 1000-MWe LMFBR. The potential missiles considered include the vessel head, components mounted on the head, and conrol rods.
Indanthrone dye revisited after sixty years.
Kotwica, Kamil; Bujak, Piotr; Wamil, Damian; Materna, Mariusz; Skorka, Lukasz; Gunka, Piotr A; Nowakowski, Robert; Golec, Barbara; Luszczynska, Beata; Zagorska, Malgorzata; Pron, Adam
2014-10-09
Indanthrone, an old, insoluble dye can be converted into a solution processable, self-assembling and electroluminescent organic semiconductor, namely tetraoctyloxydinaptho[2,3-a:2',3'-h]phenazine (P-C8), in a simple one-pot process consisting of the reduction of the carbonyl group by sodium dithionite followed by the substitution with solubility inducing groups under phase transfer catalysis conditions.
NASA Astrophysics Data System (ADS)
Wei, Kai; Li, Min; Jiang, Changchun; Wei, Ling; Zheng, Wenjia; Li, Wenru; Ma, Xiaoyu; Zhou, Luchun; Jin, Kai; Bo, Yong; Zuo, Junwei; Wang, Pengyuan; Cheng, Feng; Zhang, Xiaojun; Chen, Donghong; Deng, Jijiang; Gao, Yang; Shen, Yu; Bian, Qi; Yao, Ji; Huang, Jiang; Dong, Ruoxi; Deng, Keran; Peng, Qinjun; Rao, Changhui; Xu, Zuyan; Zhang, Yudong
2016-07-01
During 2014-2016, the Laser guide star (LGS) adaptive optics (AO) system observation campaign has been carried out on Lijiang 1.8 meter telescope. During the campaign, two generation LGS AO systems have been developed and installed. In 2014, a long-pulsed solid Sodium prototype laser with 20W@400Hz, a beam transfer optical (BTO) system, and a laser launch telescope (LLT) with 300mm diameter were mounted onto the telescope and moved with telescope azimuth journal. At the same time, a 37-elements compact LGS AO system had been mounted on the Bent-Cassegrain focus and got its first light on observing HIP43963 (mV= 8.18mv) and reached Sr=0.27 in J Band after LGS AO compensation. In 2016, the solid Sodium laser has been upgrade to stable 32W@800Hz while D2a plus D2b repumping is used to increase the photon return, and a totally new LGS AO system with 164-elements Deformable Mirror, Linux Real Time Controller, inner closed loop Tip/tilt mirror, Multiple-PMT tracking detector is established and installed on the telescope. And the throughput for the BTO/LLT is improved nearly 20%. The campaign process, the performance of the two LGS AO systems especially the latter one, the characteristics of the BTO/LLT system and the result are present in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauger, Amber M.; Hallen, Richard T.
2012-09-15
Tank waste on the Hanford Site contains radioactive elements that need to be removed from solution prior to disposal. One effective way to do this is to precipitate the radioactive elements with manganese solids, produced by permanganate oxidation. When added to tank waste, the permanganate reacts quickly producing manganese (IV) dioxide precipitate. Because of the speed of the reaction it is difficult to tell what exactly is happening. Individual reactions using non-radioactive reductants found in the tanks were done to determine reaction kinetics, what permanganate was reduced to, and what oxidation products were formed. In this project sodium formate, sodiummore » nitrite, glycolic acid, glycine, and sodium oxalate were studied using various concentrations of reductant in alkaline sodium hydroxide solutions. It was determined that formate reacted the quickest, followed by glycine and glycolic acid. Oxalate and nitrite did not appear to react with the permanganate solutions. The products of the oxidation reaction were examined. Formate was oxidized to carbonate and water. Glycolic acid was oxidized slower producing oxalate and water. Glycine reactions formed some ammonia in solution, oxalate, and water. The research reported by Amber Gauger in this report was part of a DOE ERULF student intern program at Pacific Northwest National Laboratory under the direction of Richard Hallen in the summer of 2000.« less
NASA Astrophysics Data System (ADS)
Nemade, Kailash; Waghuley, Sandeep
2017-05-01
The synthesis of stable superoxide is still great challenge for the researchers working in the field of materials science. Through this letter, we report the novel and simple synthesis approach for the preparation of stable sodium superoxide (NaO2) nanoparticles. NaO2 nanoparticles were prepared by a spray pyrolysis technique, under oxygen rich environment for gas sensing application. The texture characterizations show that as-obtained NaO2 nanoparticles have high structural purity. Most importantly, NaO2 nanoparticles exhibits higher sensing response, shorter response time and recovery time, low operating temperature and good stability during sensing of liquefied petroleum gas (LPG). The main accomplishment of present work is that as-fabricated sensor has low operating temperature (423 K), which is below auto-ignition temperature of LPG. The gas sensing mechanism of NaO2 nanoparticles was discussed without the conventional oxygen bridging mechanism. Through this short communication, LPG sensing application of stable sodium superoxide nanoparticle is explored.
Li, Yingzhi; Zhao, Xin; Xu, Qian; Zhang, Qinghua; Chen, Dajun
2011-05-17
A porous and mat-like polyaniline/sodium alginate (PANI/SA) composite with excellent electrochemical properties was polymerized in an aqueous solution with sodium sulfate as a template. Ultraviolet-visible spectra, X-ray diffraction pattern, and Fourier transform infrared spectra were employed to characterize the PANI/SA composite, indicating that the PANI/SA composite was successfully prepared. The PANI/SA nanofibers with uniform diameters from 50 to 100 nm can be observed on scanning electron microscopy. Cyclic voltammetry and galvanostatic charge/discharge tests were carried out to investigate the electrochemical properties. The PANI/SA nanostructure electrode exhibits an excellent specific capacitance as high as 2093 F g(-1), long cycle life, and fast reflect of oxidation/reduction on high current changes. The remarkable electrochemical characteristic is attributed to the nanostructured electrode materials, which generates a high electrode/electrolyte contact area and short path lengths for electronic transport and electrolyte ion. The approach is simple and can be easily extended to fabricate nanostructural composites for supercapacitor electrode materials.
Li, Jian [Marietta, GA; Chai, Xin Sheng [Atlanta, GA; Zhu, Junyoung [Marietta, GA
2008-06-24
The present invention is a rapid method of determining the concentration of the major components in a chemical stream. The present invention is also a simple, low cost, device of determining the in-situ concentration of the major components in a chemical stream. In particular, the present invention provides a useful method for simultaneously determining the concentrations of sodium hydroxide, sodium sulfide and sodium carbonate in aqueous kraft pulping liquors through use of an attenuated total reflectance (ATR) tunnel flow cell or optical probe capable of producing a ultraviolet absorbency spectrum over a wavelength of 190 to 300 nm. In addition, the present invention eliminates the need for manual sampling and dilution previously required to generate analyzable samples. The inventive method can be used in Kraft pulping operations to control white liquor causticizing efficiency, sulfate reduction efficiency in green liquor, oxidation efficiency for oxidized white liquor and the active and effective alkali charge to kraft pulping operations.
Stark widths regularities within spectral series of sodium isoelectronic sequence
NASA Astrophysics Data System (ADS)
Trklja, Nora; Tapalaga, Irinel; Dojčinović, Ivan P.; Purić, Jagoš
2018-02-01
Stark widths within spectral series of sodium isoelectronic sequence have been studied. This is a unique approach that includes both neutrals and ions. Two levels of problem are considered: if the required atomic parameters are known, Stark widths can be calculated by some of the known methods (in present paper modified semiempirical formula has been used), but if there is a lack of parameters, regularities enable determination of Stark broadening data. In the framework of regularity research, Stark broadening dependence on environmental conditions and certain atomic parameters has been investigated. The aim of this work is to give a simple model, with minimum of required parameters, which can be used for calculation of Stark broadening data for any chosen transitions within sodium like emitters. Obtained relations were used for predictions of Stark widths for transitions that have not been measured or calculated yet. This system enables fast data processing by using of proposed theoretical model and it provides quality control and verification of obtained results.
NASA Astrophysics Data System (ADS)
Ding, Ling; Zhang, Ruixue; Fan, Louzhen
2013-02-01
A simple and facile electrochemical route was developed for the shape-selective synthesis of large-scaled series of ZnO microstructures, including petal, flower, sphere, nest and clew aggregates of ZnO laminas at room temperature. This route is based on sodium citrate-directed crystallization. In the system, sodium citrate can greatly promote ZnO to nucleate and directly grow by selectively capping the specific ZnO facets because of its excellent adsorption ability. The morphology of ZnO is tuned by readily adjusting the concentration of sodium citrate and the electrodeposition time. Among the series structures, the remarkable ZnO nestlike structure can be used as a container to hold not only the interlaced ZnO laminas but also Ag nanoparticles in the center. The special heterostructures of nestlike ZnO holding Ag nanoparticles were found to display the superior properties on the surface-enhanced Raman scattering. This work has signified an important methodology to produce a wide assortment of desired microstructures of ZnO.
Chu, Chenxiao; Yang, Jing; Zhang, Qianqian; Wang, Nana; Niu, Feier; Xu, Xuena; Yang, Jian; Fan, Weiliu; Qian, Yitai
2017-12-20
Flower-like assembly of ultrathin nanosheets composed of anatase and bronze TiO 2 embedded in carbon is successfully synthesized by a simple solvothermal reaction, followed with a high-temperature annealing. As an anode material in sodium-ion batteries, this composite exhibits outstanding electrochemical performances. It delivers a reversible capacity of 120 mA h g -1 over 6000 cycles at 10 C. Even at 100 C, there is still a capacity of 104 mA h g -1 . Besides carbon matrix and hierarchical structure, abundant interfaces between anatase and bronze greatly enhance the performance by offering additional sites for reversible Na + storage and improving the charge-transfer kinetics. The interface enhancements are confirmed by discharge/charge profiles, rate performances, electrochemical impedance spectra, and first-principle calculations. These results offer a new pathway to upgrade the performances of anode materials in sodium-ion batteries.
Organic acids in naturally colored surface waters
Lamar, William L.; Goerlitz, D.F.
1966-01-01
Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.
Identification of a Second Substrate-binding Site in Solute-Sodium Symporters*
Li, Zheng; Lee, Ashley S. E.; Bracher, Susanne; Jung, Heinrich; Paz, Aviv; Kumar, Jay P.; Abramson, Jeff; Quick, Matthias; Shi, Lei
2015-01-01
The structure of the sodium/galactose transporter (vSGLT), a solute-sodium symporter (SSS) from Vibrio parahaemolyticus, shares a common structural fold with LeuT of the neurotransmitter-sodium symporter family. Structural alignments between LeuT and vSGLT reveal that the crystallographically identified galactose-binding site in vSGLT is located in a more extracellular location relative to the central substrate-binding site (S1) in LeuT. Our computational analyses suggest the existence of an additional galactose-binding site in vSGLT that aligns to the S1 site of LeuT. Radiolabeled galactose saturation binding experiments indicate that, like LeuT, vSGLT can simultaneously bind two substrate molecules under equilibrium conditions. Mutating key residues in the individual substrate-binding sites reduced the molar substrate-to-protein binding stoichiometry to ∼1. In addition, the related and more experimentally tractable SSS member PutP (the Na+/proline transporter) also exhibits a binding stoichiometry of 2. Targeting residues in the proposed sites with mutations results in the reduction of the binding stoichiometry and is accompanied by severely impaired translocation of proline. Our data suggest that substrate transport by SSS members requires both substrate-binding sites, thereby implying that SSSs and neurotransmitter-sodium symporters share common mechanistic elements in substrate transport. PMID:25398883
SIMPLIFIED SODIUM GRAPHITE REACTOR SYSTEM
Dickinson, R.W.
1963-03-01
This patent relates to a nuclear power reactor comprising a reactor vessel, shielding means positioned at the top of said vessel, means sealing said reactor vessel to said shielding means, said vessel containing a quantity of sodium, a core tank, unclad graphite moderator disposed in said tank, means including a plurality of process tubes traversing said tank for isolating said graphite from said sodium, fuel elements positioned in said process tubes, said core tank being supported in spaced relation to the walls and bottom of said reactor vessel and below the level of said sodium, neutron shielding means positioned adjacent said core tank between said core tank and the walls of said vessel, said neutron shielding means defining an annuiar volume adjacent the inside wall of said reactor vessel, inlet plenum means below said core tank for providing a passage between said annular volume and said process tubes, heat exchanger means removably supported from the first-named shielding means and positioned in said annular volume, and means for circulating said sodium over said neutron shielding means down through said heat exchanger, across said inlet plenum and upward through said process tubes, said last-named means including electromagnetic pumps located outside said vessel and supported on said vessel wall between said heat exchanger means and said inlet plenum means. (AEC)
A simple method for the quantitative determination of elemental sulfur on oxidized sulfide minerals is described. Extraction of elemental sulfur in perchloroethylene and subsequent analysis with high-performance liquid chromatography were used to ascertain the total elemental ...
Characterization of Mineral Nutrients in National Plant Germplasm System (NPGS) Tomato Varieties
USDA-ARS?s Scientific Manuscript database
Tomato (Solanum lycopersicum) fruit quality and yield are highly dependent on adequate uptake of nutrients. Potassium, magnesium and calcium are essential elements that influence fruit quality traits such as color, uniformity of ripening, hollow fruit, fruit shape, firmness, and acidity. Sodium is...
THE MULTIELEMENTAL ANALYSIS OF DRINKING WATER USING PROTON-INDUCED X-RAY EMISSION (PIXE)
A new, rapid, and economical method for the multielemental analysis of drinking water samples is described. The concentrations of 76 elements heavier than aluminum are determined using proton-induced x-ray emission (PIXE) technology. The concentration of sodium is evaluated using...
Variation in Macro and Trace Elements in Progression of Type 2 Diabetes
2014-01-01
Macro elements are the minerals of which the body needs more amounts and are more important than any other elements. Trace elements constitute a minute part of the living tissues and have various metabolic characteristics and functions. Trace elements participate in tissue and cellular and subcellular functions; these include immune regulation by humoral and cellular mechanisms, nerve conduction, muscle contractions, membrane potential regulations, and mitochondrial activity and enzyme reactions. The status of micronutrients such as iron and vanadium is higher in type 2 diabetes. The calcium, magnesium, sodium, chromium, cobalt, iodine, iron, selenium, manganese, and zinc seem to be low in type 2 diabetes while elements such as potassium and copper have no effect. In this review, we emphasized the status of macro and trace elements in type 2 diabetes and its advantages or disadvantages; this helps to understand the mechanism, progression, and prevention of type 2 diabetes due to the lack and deficiency of different macro and trace elements. PMID:25162051
Bello-Guerrero, Jorge Alberto; Cruz-Santiago, César Alberto; Luna-Martínez, Javier
2016-01-01
Up to 93% of patients undergoing abdominal surgery will develop intra-abdominal adhesions with the subsequent morbidity that they represent. Various substances have been tested for the prevention of adhesions with controversial results; the aim of our study is to compare the capability of pirfenidone in adhesion prevention against sodium hyaluronate/carboxymethylcellulose. A randomized, prospective, longitudinal experimental study with Winstar rats. They were divided into 3 groups. The subjects underwent an exploratory laparotomy and they had a 4cm(2) cecal abrasion. The first group received saline on the cecal abrasion, and groups 2 and 3 received pirfenidone and sodium hyaluronate/carboxymethylcellulose respectively. All rats were sacrificed on the 21st day after surgery and the presence of adhesions was evaluated with the modified Granat scale. Simple frequency, central tendency and dispersion measures were recorded. For the statistical analysis we used Fisher's test. To evaluate adhesions we used the Granat's modified scale. The control group had a median adhesion formation of 3 (range 0-4). The pirfenidone group had 1.5 (range 0-3), and the sodium hyaluronate/carboxymethylcellulose group had 0 (range 0-1). There was a statistically significant difference to favor sodium hyaluronate/carboxymethylcellulose against saline and pirfenidone (P<0.009 and P<.022 respectively). The use of sodium hyaluronate/carboxymethylcellulose is effective for the prevention of intra-abdominal adhesions. More experimental studies are needed in search for the optimal adhesion prevention drug. Copyright © 2015 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
Yanamandra, R.; Vadla, C. S.; Puppala, U. M.; Patro, B.; Murthy, Y. L. N.; Parimi, A. R.
2012-01-01
A rapid, simple, sensitive and selective analytical method was developed by using reverse phase ultra performance liquid chromatographic technique for the simultaneous estimation of bambuterol hydrochloride and montelukast sodium in combined tablet dosage form. The developed method is superior in technology to conventional high performance liquid chromatography with respect to speed, resolution, solvent consumption, time, and cost of analysis. Elution time for the separation was 6 min and ultra violet detection was carried out at 210 nm. Efficient separation was achieved on BEH C18 sub-2-μm Acquity UPLC column using 0.025% (v/v) trifluoro acetic acid in water and acetonitrile as organic solvent in a linear gradient program. Resolutions between bambuterol hydrochloride and montelukast sodium were found to be more than 31. The active pharmaceutical ingredient was extracted from tablet dosage from using a mixture of methanol, acetonitrile and water as diluent. The calibration graphs were linear for bambuterol hydrochloride and montelukast sodium in the range of 6.25-37.5 μg/ml. The percentage recoveries for bambuterol hydrochloride and montelukast sodium were found to be in the range of 99.1-100.0% and 98.0-101.6%, respectively. The test solution was found to be stable for 7 days when stored in the refrigerator between 2-8°. Developed UPLC method was validated as per International Conference on Harmonization specifications for method validation. This method can be successfully employed for simultaneous estimation of bambuterol hydrochloride and montelukast sodium in bulk drugs and formulations. PMID:23325991
Rubidium, sodium and ouabain interactions on the influx of rubidium in rat red blood cells
Beaugé, L. A.; Ortíz, Olga
1970-01-01
1. The activation curve of rubidium influx by external rubidium in rat red cells showed an inflexion at a concentration around 0·2 mM. This inflexion point was displaced to the right by ouabain. 2. The removal of sodium from the external solution changed the characteristics of the activation curve of rubidium influx. At external rubidium below 0·5 mM the uptake increased whereas above that concentration there was marked reduction. Thus the sodium-free effect on rubidium uptake is dependent on the external rubidium concentration. 3. With 0·25 mM rubidium, the relationship between increase of rubidium influx and reduction of external sodium followed a more or less exponential function. All the increment was ouabain-sensitive. 4. With a rubidium concentration above 0·5 mM the reduction of the rubidium uptake, as sodium was removed, followed curves of complex shape. With 10 mM rubidium, when sodium was reduced from 5 mM to zero, there was an increase instead of a further reduction. These results suggest interactions of several effects. 5. The ouabain sensitivity of the rubidium influx in rat red cells is smaller than in other systems studied up to now. The dose—response curve was shifted to the right as the rubidium concentration increased and a plateau was obtained with rubidium only below 1 mM at 10-5 M ouabain. When plotted as a percentage of the maximal inhibition the points fell into the theoretical curve following a simple one reactant/one site reaction. 6. Ouabain inhibition seems to be a complex function of at least three variables: the concentration of the glycoside, the concentration of sodium and the concentration of rubidium. When sodium was absent, 10 μM rubidium was able to prevent, to a great extent, the inhibition produced by 10-5 and 10-4 M ouabain. PMID:5499809
Directions for computational mechanics in automotive crashworthiness
NASA Technical Reports Server (NTRS)
Bennett, James A.; Khalil, T. B.
1993-01-01
The automotive industry has used computational methods for crashworthiness since the early 1970's. These methods have ranged from simple lumped parameter models to full finite element models. The emergence of the full finite element models in the mid 1980's has significantly altered the research direction. However, there remains a need for both simple, rapid modeling methods and complex detailed methods. Some directions for continuing research are discussed.
Directions for computational mechanics in automotive crashworthiness
NASA Astrophysics Data System (ADS)
Bennett, James A.; Khalil, T. B.
1993-08-01
The automotive industry has used computational methods for crashworthiness since the early 1970's. These methods have ranged from simple lumped parameter models to full finite element models. The emergence of the full finite element models in the mid 1980's has significantly altered the research direction. However, there remains a need for both simple, rapid modeling methods and complex detailed methods. Some directions for continuing research are discussed.
NASA Technical Reports Server (NTRS)
Drake, Jeremy J.; Lambert, David L.
1994-01-01
Sodium abundances have been determined for eight weak G-band giants whose atmospheres are greatly enriched with products of the CN-cycling H-burning reactions. Systematic errors are minimized by comparing the weak G-band giants to a sample of similar but normal giants. If, further, Ca is selected as a reference element, model atmosphere-related errors should largely be removed. For the weak-G-band stars (Na/Ca) = 0.16 +/- 0.01, which is just possibly greater than the result (Na/Ca) = 0.10 /- 0.03 from the normal giants. This result demonstrates that the atmospheres of the weak G-band giants are not seriously contaminated with products of ON cycling.
NASA Astrophysics Data System (ADS)
Chen, LeuJen; Kim, Seong Heon; Lee, Alfred K. H.; de Lozanne, Alex
2012-01-01
We describe a new type of circuit designed for driving piezoelectric positioners that rely on the stick-slip phenomenon. The circuit can be used for inertial positioners that have only one piezoelectric element (or multiple elements that are moved simultaneously) or for designs using a sequential movement of independent piezoelectric elements. A relay switches the piezoelectric elements between a high voltage source and ground, thus creating a fast voltage step followed by a slow ramp produced by the exponential discharging of the piezoelectric elements through a series resistor. A timing cascade is generated by having each relay power the next relay in the sequence. This design is simple and inexpensive. While it was developed for scanning probe microscopes, it may be useful for any piezoelectric motor based on a fast jump followed by a slow relaxation.
Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L.
2013-01-01
Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail ‘neck’, are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the ‘outer ion’ site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies shows that this site forms a previously unknown determinant of CaV high affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. PMID:24120938
Saffar, Saber; Abdullah, Amir
2014-03-01
Vibration amplitude of transducer's elements is the influential parameters in the performance of high power airborne ultrasonic transducers to control the optimum vibration without material yielding. The vibration amplitude of elements of provided high power airborne transducer was determined by measuring temperature of the provided high power airborne transducer transducer's elements. The results showed that simple thermocouples can be used both to measure the vibration amplitude of transducer's element and an indicator to power transmission to the air. To verify our approach, the power transmission to the air has been investigated by other common method experimentally. The experimental results displayed good agreement with presented approach. Copyright © 2013 Elsevier B.V. All rights reserved.
Crystal structure of simple metals at high pressures
NASA Astrophysics Data System (ADS)
Degtyareva, Olga
2010-09-01
The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structures found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.
Yuan, Zong-Xiang; Chen, Hai-Bin; Li, Shao-Jun; Huang, Xiao-Wei; Mo, Yu-Huan; Luo, Yi-Ni; He, Sheng-Nan; Deng, Xiang-Fa; Lu, Guo-Dong; Jiang, Yue-Ming
2016-07-01
Manganese (Mn) overexposure induced neurological damages, which could be potentially protected by sodium para-aminosalicylic acid (PAS-Na). In this study, we systematically detected the changes of divalent metal elements in most of the organs and analyzed the distribution of the metals in Mn-exposed rats and the protection by PAS-Na. Sprague Dawley (SD) rats received intraperitoneal injections of 15mg/kg MnCl2·4H2O (5d/week for 3 weeks), followed by subcutaneous (back) injections of PAS-Na (100 and 200mg/kg, everyday for 5 weeks). The concentrations of Mn and other metal elements [Iron (Fe), Copper (Cu), Zinc (Zn), Magnesium (Mg), Calcium (Ca)] in major organs (liver, spleen, kidney, thighbone and iliac bone, cerebral cortex, hippocampus and testes) and blood by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results showed that Mn overexposure significantly increased Mn in most organs, Fe and Zn in liver, Fe and Mg in blood; however decreased Fe, Cu, Zn, Mg and Ca in cortex, Cu and Zn in kidney, Cu and Mg in iliac bone, and Zn in blood. In contrast, PAS-Na treatment restored most changes particularly in cortex. In conclusion, excessive Mn exposure disturbed the balance of other metal elements but PAS-Na post-treatments could restore these alterations. Copyright © 2016 Elsevier GmbH. All rights reserved.
Wahba, Marwa I
2018-03-01
The poor mechanical stability of chitosan has long impeded its industrial utilization as an immobilization carrier. In this study, the mechanical properties of chitosan beads were greatly improved through utilizing the slow rate of the sodium bicarbonate-induced chitosan gelation and combining it with the chemical cross-linking action of glutaraldehyde (GA). The GA-treated sodium bicarbonate-gelled chitosan beads exhibited much better mechanical properties and up to 2.45-fold higher observed activity of the immobilized enzyme (β-D-galactosidase (β-gal)) when compared to the GA-treated sodium tripolyphosphate (TPP)-gelled chitosan beads. The differences between the sodium bicarbonate-gelled and the TPP-gelled chitosan beads were proven visually and also via scanning electron microscopy, elemental analysis, and differential scanning calorimetry. Moreover, the optimum pH, the optimum temperature, the apparent K m , and the apparent V max of the β-gals immobilized onto the two aforementioned types of chitosan beads were determined and compared. A reusability study was also performed. This study proved the superiority of the sodium bicarbonate-gelled chitosan beads as they retained 72.22 ± 4.57% of their initial observed activity during the 13 th reusability cycle whereas the TPP-gelled beads lost their activity during the first four reusability cycles, owing to their fragmentation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:347-361, 2018. © 2017 American Institute of Chemical Engineers.
1977-02-01
oxides and their mixtures, arsenides, borides, bromides , carbides , chlorides , fluoride s, nitride s, phosphides, silicides , sulfides , tellurides...ivity of alkali elements (lithium , sodium , potassium , rubi- dium , ces ium , and francium) and contains recomme nded reference values generated
ORGANIZATION II, NOVA SCIENCE UNIT 3.
ERIC Educational Resources Information Center
Broward County Schools, Fort Lauderdale, FL.
THE ORGANIZATION OF THE NATURE OF SCIENCE IS EMPHASIZED THROUGH A FOCUS ON CHEMICAL REACTIONS. SIMILARITIES OF THE REACTIONS OF THE HALOGENS WITH THE ALKALI METALS OF LITHIUM, SODIUM, POTASSIUM, AND HYDROGEN ARE INTRODUCED TO THE STUDENT. STUDENTS ARE INTRODUCED TO THE PERIODIC TABLE OF ELEMENTS WHICH EMPHASIZES THE ORGANIZATION OF CHEMICAL…
Elsayed, Amani; Al-Remawi, Mayyas; Qinna, Nidal; Farouk, Asim; Al-Sou'od, Khaldoun A; Badwan, Adnan A
2011-09-01
The present work explores the possibility of formulating an oral insulin delivery system using nanoparticulate complexes made from the interaction between biodegradable, natural polymer called chitosan and anionic surfactant called sodium lauryl sulfate (SLS). The interaction between chitosan and SLS was confirmed by Fourier transform infrared spectroscopy. The nanoparticles were prepared by simple gelation method under aqueous-based conditions. The nanoparticles were stable in simulated gastric fluids and could protect the encapsulated insulin from the GIT enzymes. Additionally, the in vivo results clearly indicated that the insulin-loaded nanoparticles could effectively reduce the blood glucose level in a diabetic rat model. However, additional formulation modifications are required to improve insulin oral bioavailability.
NASA Astrophysics Data System (ADS)
Liang, Lijiao; Zhen, Shujun; Huang, Chengzhi
2017-02-01
A highly selective method was presented for colorimetric determination of melamine using uracil 5‧-triphosphate sodium modified gold nanoparticles (UTP-Au NPs) in this paper. Specific hydrogen-bonding interaction between uracil base (U) and melamine resulted in the aggregation of AuNPs, displaying variations of localized surface plasmon resonance (LSPR) features such as color change from red to blue and enhanced localized surface plasmon resonance light scattering (LSPR-LS) signals. Accordingly, the concentration of melamine could be quantified based on naked eye or a spectrometric method. This method was simple, inexpensive, environmental friendly and highly selective, which has been successfully used for the detection of melamine in pretreated liquid milk products with high recoveries.
Green Synthesis of Silver Nanoparticles Using Sodium Alginate and Lignosulphonic Acid Blends
NASA Astrophysics Data System (ADS)
Thakur, Amrita; Reddy, Giridhar
2017-08-01
A simple method based on the principles of green chemistry has been developed to synthesize stable silver nanoparticles (AgNP) for possible biomedical applications. Blend of sodium alginate (SA) and lignosulphonic acid (LS) prepared in the ratio of 80/20 mass percent respectively was used as reducing and stabilizing agent. This blend is biocompatible and has shown drug release ability under physiological conditions. Use of blend has an added advantage as LS has the ability to reduce silver while the blend matrix acts as a stabilizing agent. Effect of precursor concentration (AgNO3) and temperature was investigated. Progress of synthesis was monitored using UV-Vis spectroscopy. Higher temperature and lower silver nitrate concentration showed better synthesis of AgNP.
Sensitive determination of carbohydrates by fluorimetric method with Ce(IV) and sodium triphosphate.
Yang, Jinghe; Cao, Xihui; Sun, Changxia; Wu, Xia; Li, Lei
2004-05-01
A new simple and sensitive fluorimetric method for the determination of carbohydrates is described. The method is based on the reaction between carbohydrates and Ce(IV) in the presence of sulfuric acid. All the reductive carbohydrates can be detected indirectly by the fluorescence of Ce(III) produced. The addition of sodium triphate enhances the sensitivity of the method by more than 10-folds. Under optimum conditions, an excellent linear relationship was obtained between the fluorescence intensity and the concentration of carbohydrates. The limits of detection lie in the range of 9.3 x 10(-10) - 1.3 x 10(-9) mol/L. As compared to the normal fluorimetric method, the proposed method is faster and more sensitive.
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Anderson, W. J.
1983-01-01
Rolling element bearings are a precision, yet simple, machine element of great utility. A brief history of rolling element bearings is reviewed and the type of rolling element bearings, their geometry and kinematics, as well as the materials they are made from and the manufacturing processes they involve are described. Unloaded and unlubricated rolling element bearings, loaded but unlubricated rolling element bearings and loaded and lubricated rolling element bearings are considered. The recognition and understanding of elastohydrodynamic lubrication covered, represents one of the major development in rolling element bearings.
A simple modification to the Elemental Analyzer coupled to Isotope Ratio Mass-Spectrometer (EA-IRMS) setup is described. This modification allows the users to measure nitrous oxide (N2O) and carbon dioxide (CO2) by injecting the gases directly into an online injector placed befor...
A Coupling Strategy of FEM and BEM for the Solution of a 3D Industrial Crack Problem
NASA Astrophysics Data System (ADS)
Kouitat Njiwa, Richard; Taha Niane, Ngadia; Frey, Jeremy; Schwartz, Martin; Bristiel, Philippe
2015-03-01
Analyzing crack stability in an industrial context is challenging due to the geometry of the structure. The finite element method is effective for defect-free problems. The boundary element method is effective for problems in simple geometries with singularities. We present a strategy that takes advantage of both approaches. Within the iterative solution procedure, the FEM solves a defect-free problem over the structure while the BEM solves the crack problem over a fictitious domain with simple geometry. The effectiveness of the approach is demonstrated on some simple examples which allow comparison with literature results and on an industrial problem.
Akhlaq, Muhammad; Khan, Gul Majid; Jan, Syed Umer; Wahab, Abdul; Hussain, Abid; Nawaz, Asif; Abdelkader, Hamdy
2014-11-01
Diclofenac sodium (DCL-Na) conventional oral tablets exhibit serious side effects when given for a longer period leading to noncompliance. Controlled release matrix tablets of diclofenac sodium were formulated using simple blending (F-1), solvent evaporation (F-2) and co-precipitation techniques (F-3). Ethocel® Standard 7 FP Premium Polymer (15%) was used as a release controlling agent. Drug release study was conducted in 7.4 pH phosphate buffer solutions as dissolution medium in vitro. Pharmacokinetic parameters were evaluated using albino rabbits. Solvent evaporation technique was found to be the best release controlling technique thereby prolonging the release rate up to 24 hours. Accelerated stability studies of the optimized test formulation (F-2) did not show any significant change (p<0.05) in the physicochemical characteristics and release rate when stored for six months. A simple and rapid method was developed for DCL-Na active moiety using HPLC-UV at 276nm. The optimized test tablets (F-2) significantly (p<0.05) exhibited peaks plasma concentration (cmax=237.66±1.98) and extended the peak time (tmax=4.63±0.24). Good in-vitro in vivo correlation was found (R(2)=0.9883) against drug absorption and drug release. The study showed that once-daily controlled release matrix tablets of DCL-Na were successfully developed using Ethocel® Standard 7 FP Premium.
Camp Pendleton Saves 91% in Parking Lot Lighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-01-01
Case study describes how Camp Pendleton Marine Corps Base replaced high-pressure sodium (HPS) fixtures in one parking lot with high-efficiency induction fixtures for 91% savings in energy use and $5,700 in cost savings annually. This parking lot is estimated to have a simple payback of 2.9 years. Sitewide up-grades yielded annual savings of 1 million kWh.
Contrast discrimination, non-uniform patterns and change blindness.
Scott-Brown, K C; Orbach, H S
1998-01-01
Change blindness--our inability to detect large changes in natural scenes when saccades, blinks and other transients interrupt visual input--seems to contradict psychophysical evidence for our exquisite sensitivity to contrast changes. Can the type of effects described as 'change blindness' be observed with simple, multi-element stimuli, amenable to psychophysical analysis? Such stimuli, composed of five mixed contrast elements, elicited a striking increase in contrast increment thresholds compared to those for an isolated element. Cue presentation prior to the stimulus substantially reduced thresholds, as for change blindness with natural scenes. On one hand, explanations for change blindness based on abstract and sketchy representations in short-term visual memory seem inappropriate for this low-level image property of contrast where there is ample evidence for exquisite performance on memory tasks. On the other hand, the highly increased thresholds for mixed contrast elements, and the decreased thresholds when a cue is present, argue against any simple early attentional or sensory explanation for change blindness. Thus, psychophysical results for very simple patterns cannot straightforwardly predict results even for the slightly more complicated patterns studied here. PMID:9872004
Zeitoun, Ramsey I; Goudie, Marcus J; Zwier, Jacob; Mahawilli, David; Burns, Mark A
2011-12-07
Nanolitre droplets in microfluidic devices can be used to perform thousands of independent chemical and biological experiments while minimizing reagents, cost and time. However, the absence of simple and versatile methods capable of controlling the contents of these nanolitre chemical systems limits their scientific potential. To address this, we have developed a method that is simple to fabricate and can continuously control nanolitre chemical systems by integrating a time-resolved convective flow signal across a permeable membrane wall. With this method, we can independently control the volume and concentration of nanolitre-sized drops without ever directly contacting the fluid. Transport occurring in these systems was also analyzed and thoroughly characterized. We achieved volumetric fluid introduction and removal rates ranging from 0.23 to 4.0 pL s(-1). Furthermore, we expanded this method to perform chemical processes. We precipitated silver chloride using a flow signal of sodium chloride and silver nitrate droplets. From there, we were able to separate sodium chloride reactants with a water flow signal, and dissolve silver chloride solids with an ammonia hydroxide flow signal. Finally, we demonstrate the potential to deliver large molecules and perform physical processes like crystallization and particle packing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Shengwei; Yu Jiaguo
Bi{sub 2}WO{sub 6} hierarchical multilayered flower-like assemblies are fabricated on a large scale by a simple hydrothermal method in the presence of polymeric poly(sodium 4-styrenesulfonate). Such 3D Bi{sub 2}WO{sub 6} assemblies are constructed from orderly arranged 2D layers, which are further composed of a large number of interconnected nanoplates with a mean side length of ca. 50 nm. The bimodal mesopores associated with such hierarchical assembly exhibit peak mesopore size of ca. 4 nm for the voids within a layer, and peak mesopore size of ca. 40 nm corresponding to the interspaces between stacked layers, respectively. The formation process ismore » discussed on the basis of the results of time-dependent experiments, which support a novel 'coupled cooperative assembly and localized ripening' formation mechanism. More interestingly, we have noticed that the collective effect related to such hierarchical assembly induces a significantly enhanced optical absorbance in the UV-visible region. This work may shed some light on the design of complex architectures and exploitation of their potential applications. - Graphical abstract: Bi{sub 2}WO{sub 6} hierarchical multilayered flower-like assemblies are fabricated on a large scale by a simple hydrothermal method in the presence of polymeric poly(sodium 4-styrenesulfonate)« less
Laponite as carrier for controlled in vitro delivery of dexamethasone in vitreous humor models.
Fraile, José M; Garcia-Martin, Elena; Gil, Cristina; Mayoral, José A; Pablo, Luis E; Polo, Vicente; Prieto, Esther; Vispe, Eugenio
2016-11-01
Laponite clay is able to retain dexamethasone by simple physisorption, presumably accomplished by hydrogen bonding formation and/or complexation with sodium counterions, as shown by solid state NMR. The physisorption can be somehow modulated by changing the solvent in the adsorption process. This simple system is able to deliver dexamethasone in a controlled manner to solutions used as models for vitreous humor. The proven biocompatibility of laponite as well as its transparency in the gel state, together with the simplicity of the preparation method, makes this system suitable for future in vivo tests of ophthalmic treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Hamidizadeh, Nasrin; Simaeetabar, Shima; Handjani, Farhad; Ranjbar, Sara; Moghadam, Mohammad Gohari; Parvizi, Mohammad Mahdi
2017-01-01
INTRODUCTION: Some skin diseases are incurable and modern medicine can only control them. In addition, alternative treatment remedies including balneotherapy can be effective in improving skin conditions. However, there are only a limited number of studies on particular mineral or trace elements of mineral sources that have been identified in Iran. In this respect, the amount of minerals and trace elements in Mamasani thermal source, Fars Province, Iran, was measured using electrochemical, titration, and spectrophotometric methods and evaluated. MATERIALS AND METHODS: The amount of minerals and trace elements in Mamasani thermal source, Fars Province, Iran, was measured using electrochemical, titration, and spectrophotometric methods. RESULTS: The concentrations of natural gases such as H2S and NO3 in Mamasani thermal source were measured to be 22.10 mg/L and 42.79 mg/L, respectively. The source also contained major ions such as chloride, sulfate, sodium, calcium, magnesium, potassium, and carbonate. Due to the high concentration of chloride, sulfate, and sodium ions in comparison with other major ions, the water source is also classified as sulfide water. The existing trace elements in this thermal water source are iron, zinc, copper, selenium, cobalt, chromium, boron, silisium, aluminum, magnesium, and molybdenum. CONCLUSION: We concluded that bathing in this source could be beneficial. As nitrate concentration is close to the highest standard concentration for drinking water, it can be used in chronic dermatitis, psoriasis, burns, and allergy. Furthermore, the antibacterial and antifungal effects of sulfur-containing water in this source can be helpful in the treatment of leg ulcers, tinea versicolor, tinea corporis, and tinea capitis. PMID:29296611
Chowdhury, Manjurul Islam; Hasan, Maimuna; Islam, Mohammad Safiqul; Sarwar, Md Shahid; Amin, Mohammad Nurul; Uddin, S M Naim; Rahaman, Md Zahedur; Banik, Sujan; Hussain, Md Saddam; Yokota, Kazushige; Hasnat, Abul
2017-01-01
Genetic and neurobiological factors are considered to be the major causes of mood and mental disorders. However, over the past few years, increased levels of serum malondialdehyde and altered levels of various non-enzymatic antioxidants and essential minerals involved in abnormal functional activity have been identified as major contributing factors to the pathogenesis of several neurological disorders. The aim of this study was to determine the levels of the serum lipid peroxidation product malondialdehyde (MDA), antioxidants (vitamin A, E and C), macro-minerals (calcium, potassium and sodium) and trace elements (zinc, iron and selenium) in patients with bipolar disorder and to explore their role in disease progression. This is a prospective case-control study that evaluated 55 patients with bipolar disorder and 55 healthy volunteers matched by age and sex. Serum MDA levels were determined by UV spectrophotometry as a marker of lipid peroxidation. RP-HPLC was employed to investigate the serum vitamin A and E concentrations, whereas UV spectrophotometry was used to quantify levels of vitamin C. Serum macro-minerals and trace elements were analyzed by atomic absorption spectroscopy (AAS). Statistical analysis was performed with independent sample t-tests and Pearson's correlation test. We found significantly higher concentrations of MDA (p<0.05) and significantly lower concentrations of antioxidants (vitamin A, E and C) (p<0.05) in the patient group compared with control group. Regarding trace elements and macro-minerals, lower concentrations of zinc, calcium, iron, selenium, sodium and potassium were found in the patient group compared with control subjects (p<0.05). Our study suggests that high serum MDA concentrations and low serum concentrations of antioxidants, macro-minerals and trace elements are strongly associated with bipolar disorder. Copyright © 2016 Elsevier GmbH. All rights reserved.
Kılıç Altun, Serap; Dinç, Hikmet; Temamoğulları, Füsun Karaçal; Paksoy, Nilgün
2018-01-01
Maternal breast milk is a unique biological matrix that contains essential micronutrients. Potentially heavy metals may also affect infants' health and growth through maternal breast milk. The purpose of this study was to determine and compare the essential elements and heavy metals of maternal breast milk of nursery mothers residing in Şanlıurfa province, Turkey. Maternal breast milk concentrations of sodium, magnesium, phosphorus, potassium, calcium, iron, copper, zinc, arsenic, and lead were analyzed in a random sample of the first time in urban and suburban nursery Turkish mothers ( n : 42). Eight essential elements and two heavy metals were analyzed using ICP-MS after microwave digestion. For bivariate analyses of variables, we use nonparametric Spearman's correlation coefficient test. The mean concentrations of essential elements and heavy metals were as follows: sodium 330 ± 417 mg/L, magnesium 32.6 ± 15.5 mg/L, phosphorus 156 ± 46.2 mg/L, potassium 488 ± 146 mg/L, calcium 193 ± 53.2 mg/L, iron 1.65 ± 1.43 mg/L, copper 0.54 ± 0.46 mg/L, zinc 2.89 ± 3.23 mg/L, arsenic < 1 μ g/L, and lead < 1 μ g/L. Concentrations of heavy metals in maternal breast milk may have the important implication that it is not affected by environmental pollution in this province. This study provides reliable information about maternal breast milk concentrations of nursery mothers residing in Şanlıurfa, Turkey, and also compares the relations between essential elements and socioeconomic conditions, residing areas, and using copper equipment for food preparation of which some have not previously been reported.
2018-01-01
Maternal breast milk is a unique biological matrix that contains essential micronutrients. Potentially heavy metals may also affect infants' health and growth through maternal breast milk. The purpose of this study was to determine and compare the essential elements and heavy metals of maternal breast milk of nursery mothers residing in Şanlıurfa province, Turkey. Maternal breast milk concentrations of sodium, magnesium, phosphorus, potassium, calcium, iron, copper, zinc, arsenic, and lead were analyzed in a random sample of the first time in urban and suburban nursery Turkish mothers (n: 42). Eight essential elements and two heavy metals were analyzed using ICP-MS after microwave digestion. For bivariate analyses of variables, we use nonparametric Spearman's correlation coefficient test. The mean concentrations of essential elements and heavy metals were as follows: sodium 330 ± 417 mg/L, magnesium 32.6 ± 15.5 mg/L, phosphorus 156 ± 46.2 mg/L, potassium 488 ± 146 mg/L, calcium 193 ± 53.2 mg/L, iron 1.65 ± 1.43 mg/L, copper 0.54 ± 0.46 mg/L, zinc 2.89 ± 3.23 mg/L, arsenic < 1 μg/L, and lead < 1 μg/L. Concentrations of heavy metals in maternal breast milk may have the important implication that it is not affected by environmental pollution in this province. This study provides reliable information about maternal breast milk concentrations of nursery mothers residing in Şanlıurfa, Turkey, and also compares the relations between essential elements and socioeconomic conditions, residing areas, and using copper equipment for food preparation of which some have not previously been reported. PMID:29849639
The molecular basis of ethylene signalling in Arabidopsis
NASA Technical Reports Server (NTRS)
Woeste, K.; Kieber, J. J.; Evans, M. L. (Principal Investigator)
1998-01-01
The simple gas ethylene profoundly influences plants at nearly every stage of growth and development. In the past ten years, the use of a genetic approach, based on the triple response phenotype, has been a powerful tool for investigating the molecular events that underlie these effects. Several fundamental elements of the pathway have been described: a receptor with homology to bacterial two-component histidine kinases (ETR1), elements of a MAP kinase cascade (CTR1) and a putative transcription factor (EIN3). Taken together, these elements can be assembled into a simple, linear model for ethylene signalling that accounts for most of the well-characterized ethylene mediated responses.
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Palou, Jaime J.
2003-01-01
In early 2001, three of the space shuttle orbiters were found to have a sodium carbonate contaminant on the wing leading edge and nose cap. These parts are made of a reinforced carbon/carbon material protected by silicon carbide (SiC) and a glass coating. The glass coating is known as Type A and is primarily sodium silicate with particles of SiC. NASA Glenn Research Center's Environmental Durability Branch was asked to determine the chemistry of this deposit formation and assess any possible detrimental effects. At low temperatures, the reverse reaction is favorable. Previous studies of the corrosion of glass show that carbon dioxide in the presence of water does form sodium carbonate on sodium silicate glass (ref. 1). It is quite likely that a similar scenario exists for the orbiter wing leading edge. All three orbiters that formed sodium carbonate were exposed to rain. This formation of sodium carbonate was duplicated in the laboratory. The Type A glass, which coats the wing leading edge and nose cap, was made in a freestanding form and exposed to water in two separate experiments. In one set of experiments, the coating was placed in a petri dish filled with water. As the water evaporated, sodium carbonate formed. In another case, water was slowly dripped on the coating and sodium carbonate formed. The sodium carbonate was detected by chemical analysis and, in some cases, xray diffraction showed a hydrated sodium carbonate. The next step was to examine possible detrimental effects of this sodium carbonate. There are three likely scenarios for the sodium carbonate deposit: (1) it may be removed with a simple rinse, (2) it may remain and flow back into the Type A glass after heating during reentry, or (3) it may remain and flow onto unprotected SiC and/or other parts after heating during reentry. The effect of case 1 is to remove the Na2O constituent from the Type A glass, thus decreasing its effectiveness as a sealant. Even so, overall, it is probably the best approach and was used by the NASA Kennedy Space Center when the deposits were first observed. The effect of case 2 is minimal and would actually restore the the Type A glass to its composition before carbonate formation. However, the problem with allowing the carbonate to remain leads to the third scenario, the deposit flowing onto other parts. A series of tests were conducted on unprotected SiC, and minimal effects were found in the short-term, but other ceramic and metal parts could be damaged by the molten sodium carbonate and would require close monitoring.
NASA Astrophysics Data System (ADS)
Wu, Feng; Luo, Rui; Xie, Man; Li, Li; Zhang, Xiaoxiao; Zhao, Luzi; Zhou, Jiahui; Wang, KangKang; Chen, Renjie
2017-09-01
Porous carbon-mediated nanocrystallite anatase TiO2 composites are synthesized successfully via a simple dilatory hydrolysis-calcination method. The structural and morphological characterizations reveal that carbon-mediated TiO2 with a carbon content of 9.9 wt % (C2-TiO2) shows a combination of mesoporous and macroporous structures with a pore volume of 0.20 cm3 g-1 and surface area of 40.3 m2 g-1. Notably, C2-TiO2 delivered enhanced electrochemical performances of a high charge capacity of 259 mA h g-1 at 0.1 C and a high rate performance of 110 mA h g-1 after 150 cycles, even at 1 C. A significant decrease is also observed in the electrochemical impedance of the carbon-mediated samples, which explains superior electrochemical performance. Compared with the bare anatase TiO2 (B-TiO2), improved sodium storage capabilities of carbon-mediated samples are attributed to the participation of carbon to form a symbiotic structure with TiO2, which not only increases pore volume of the samples but serves as highly conductive network to provide a Na+ diffusion path during the insertion/de-insertion of sodium ions. All of these encouraging results suggest that carbon-mediated TiO2 has a great potential for improving sodium insertion capabilities with a facile and low-cost synthesis process.
Development and evaluation of in situ gel of pregabalin
Madan, Jyotsana R; Adokar, Bhushan R; Dua, Kamal
2015-01-01
Aim and Background: Pregabalin (PRG), an analog of gamma-aminobutyric acid, reduces the release of many neurotransmitters, including glutamate, and noradrenaline. It is used for the treatment of epilepsy; simple and complex partial convulsion. The present research work aims to ensure a high drug absorption by retarding the advancement of PRG formulation through the gastrointestinal tract. The work aims to design a controlled release PRG formulation which is administered as liquid and further gels in the stomach and floats in gastric juice. Materials and Methods: In situ gelling formulations were prepared using sodium alginate, calcium chloride, sodium citrate, hydroxypropyl methylcellulose (HPMC) K100M, and sodium bicarbonate. The prepared formulations were evaluated for solution viscosity, drug content, in vitro gelling studies, gel strength, and in vitro drug release. The final formulation was optimized using a 32 full factorial design. Results: The formulation containing 2.5% w/v sodium alginate and 0.2% w/v calcium chloride were considered optimum since it showed minimum floating lag time (18 s), optimum viscosity (287.3 cps), and gel strength (4087.17 dyne/cm2). The optimized formulation follows Korsmeyer-Peppas kinetic model with n value 0.3767 representing Fickian diffusion mechanism of drug release. Conclusion: Floating in situ gelling system of PRG can be formulated using sodium alginate as a gelling polymer and calcium chloride as a complexing agent to control the drug release for about 12 h for the treatment of epilepsy. PMID:26682193
Ghanem, Mashhour M; Abu-Lafi, Saleh A; Hallak, Hussein O
2013-01-01
A simple, specific, accurate, and stability-indicating method was developed and validated for the quantitative determination of menadione sodium bisulfite in the injectable solution formulation. The method is based on zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) coupled with a photodiode array detector. The desired separation was achieved on the ZIC-HILIC column (250 mm × 4.6 mm, 5 μm) at 25°C temperature. The optimized mobile phase consisted of an isocratic solvent mixture of 200mM ammonium acetate (NH4AC) solution and acetonitrile (ACN) (20:80; v/v) pH-adjusted to 5.7 by glacial acetic acid. The mobile phase was fixed at 0.5 ml/min and the analytes were monitored at 261 nm using a photodiode array detector. The effects of the chromatographic conditions on the peak retention, peak USP tailing factor, and column efficiency were systematically optimized. Forced degradation experiments were carried out by exposing menadione sodium bisulfite standard and the injectable solution formulation to thermal, photolytic, oxidative, and acid-base hydrolytic stress conditions. The degradation products were well-resolved from the main peak and the excipients, thus proving that the method is a reliable, stability-indicating tool. The method was validated as per ICH and USP guidelines (USP34/NF29) and found to be adequate for the routine quantitative estimation of menadione sodium bisulfite in commercially available menadione sodium bisulfite injectable solution dosage forms.
Babsky, Andriy M; Topper, Stephen; Zhang, Hong; Gao, Yong; James, Judy R; Hekmatyar, Shahryar K; Bansal, Navin
2008-03-01
The mechanism of water and sodium apparent diffusion coefficient (ADC) changes in rat skeletal muscle during global ischemia was examined by in vivo 1H and 23Na magnetic resonance spectroscopy (MRS). The ADCs of Na+ and water are expected to have similar characteristics because sodium is present as an aqua-cation in tissue. The shift reagent, TmDOTP5(-), was used to separate intra- and extracellular sodium (Na+i and Na+e, respectively) signals. Water, total tissue sodium (Na+t), Na+i, and Na+e ADCs were measured before and 1, 2, 3, and 4 hr after ischemia. Contrary to the general perception, Na+i and Na+e ADCs were identical before ischemia. Thus, ischemia-induced changes in Na+e ADC cannot be explained by a simple change in the size of relative intracellular or extracellular space. Na+t and Na+e ADCs decreased after 2-4 hr of ischemia, while water and Na+i ADC remained unchanged. The correlation between Na+t and Na+e ADCs was observed because of high Na+e concentration. Similarly, the correlation between water and Na+i ADCs was observed because cells occupy 80% of the tissue space in the skeletal muscle. Ischemia also caused an increase in the Na+i and an equal decrease in Na+e signal intensity due to cessation of Na+/K+-ATPase function. (c) 2008 Wiley-Liss, Inc.
Singh, R P; Nie, X; Singh, M; Coffin, R; Duplessis, P
2002-01-01
Phenolic compounds from plant tissues inhibit reverse transcription-polymerase chain reaction (RT-PCR). Multiple-step protocols using several additives to inhibit polyphenolic compounds during nucleic acid extraction are common, but time consuming and laborious. The current research highlights that the inclusion of 0.65 to 0.70% of sodium sulphite in the extraction buffer minimizes the pigmentation of nucleic acid extracts and improves the RT-PCR detection of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in potato (Solanum tuberosum) tubers and Prune dwarf virus (PDV) and Prunus necrotic ringspot virus (PNRSV) in leaves and bark in the sweet cherry (Prunus avium) tree. Substituting sodium sulphite in the nucleic acid extraction buffer eliminated the use of proteinase K during extraction. Reagents phosphate buffered saline (PBS)-Tween 20 and polyvinylpyrrolidone (PVP) were also no longer required during RT or PCR phase. The resultant nucleic acid extracts were suitable for both duplex and multiplex RT-PCR. This simple and less expensive nucleic acid extraction protocol has proved very effective for potato cv. Russet Norkotah, which contains a high amount of polyphenolics. Comparing commercially available RNA extraction kits (Catrimox and RNeasy), the sodium sulphite based extraction protocol yielded two to three times higher amounts of RNA, while maintaining comparable virus detection by RT-PCR. The sodium sulphite based extraction protocol was equally effective in potato tubers, and in leaves and bark from the cherry tree.
Bulk dimensional nanocomposites for thermoelectric applications
Nolas, George S
2014-06-24
Thermoelectric elements may be used for heat sensors, heat pumps, and thermoelectric generators. A quantum-dot or nano-scale grain size polycrystalline material the effects of size-quantization are present inside the nanocrystals. A thermoelectric element composed of densified Groups IV-VI material, such as calcogenide-based materials are doped with metal or chalcogenide to form interference barriers form along grains. The dopant used is either silver or sodium. These chalcogenide materials form nanoparticles of highly crystal grains, and may specifically be between 1- and 100 nm. The compound is densified by spark plasma sintering.
Imaging elemental distribution and ion transport in cultured cells with ion microscopy.
Chandra, S; Morrison, G H
1985-06-28
Both elemental distribution and ion transport in cultured cells have been imaged by ion microscopy. Morphological and chemical information was obtained with a spatial resolution of approximately 0.5 micron for sodium, potassium, calcium, and magnesium in freeze-fixed, cryofractured, and freeze-dried normal rat kidney cells and Chinese hamster ovary cells. Ion transport was successfully demonstrated by imaging Na+-K+ fluxes after the inhibition of Na+- and K+ -dependent adenosine triphosphatase with ouabain. This method allows measurements of elemental (isotopic) distribution to be related to cell morphology, thereby providing the means for studying ion distribution and ion transport under different physiological, pathological, and toxicological conditions in cell culture systems.
Lipowicz, Michelle; Garcia, Antonio
2015-01-01
The use of saliva sampling as a minimally-invasive means for drug testing and monitoring physiology is a subject of great interest to researchers and clinicians. This study describes a new optical method based on non-axially symmetric focusing of light using an oblate spheroid sample chamber. The device is simple, lightweight, low cost and is easily attached to several different brands/models of smartphones (Apple, Samsung, HTC and Nokia) for the measurement of sodium ion levels at physiologically-relevant saliva concentrations. The sample and fluorescent reagent solutions are placed in a specially-designed, lightweight device that excludes ambient light and concentrates 470-nm excitation light, from a low-power photodiode, within the sample through non-axially-symmetric refraction. The study found that smartphone cameras and post-image processing quantitated sodium ion concentration in water over the range of 0.5–10 mM, yielding best-fit regressions of the data that agree well with a data regression of microplate luminometer results. The data suggest that fluorescence can be used for the measurement of salivary sodium ion concentrations in low-resource or point-of-care settings. With further fluorescent assay testing, the device may find application in a variety of enzymatic or chemical assays. PMID:28955016
A Na+ Superionic Conductor for Room-Temperature Sodium Batteries
NASA Astrophysics Data System (ADS)
Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li
2016-08-01
Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10-3 S cm-1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.
Alarfaj, Nawal A; El-Tohamy, Maha F
2016-01-01
A highly selective, sensitive, accurate, and reproducible luminescence procedure for determination of antifungal drug tolnaftate was developed. The introduced method was based on the formation of Europa Universalis III (Eu(III))-tolnaftate complex using sodium sulfite as a deoxygenated agent in the presence of acetate buffer (pH = 6) and micellar solution of anionic surfactant sodium dodecyl sulfate. The optimum conditions (effect of pH, buffer, surfactant, Eu(III), and sodium sulfite concentrations) for the luminescence signal were investigated and optimized. The luminescence signals were recorded at λex = 270 nm and λem = 460 nm. The method has a good linear response (0.2-130 μg/mL(-1)) between the luminescence intensity and the concentrations of the drug (r = 0.999), with a LOD 0.07 μg/mL(-1) and LOQ 0.2 μg/mL(-1). The luminescence signals of Eu (III)-tolnaftate-sodium dodecyl sulfate were found to be 200-fold more sensitive without the presence of micelle solution. The interferences of some additives, metals, amino acids, sugars, and other related pharmacological action drugs were examined and no interference was recorded. The proposed method was used for quick and simple determination of tolnaftate in its pharmaceuticals and biological fluids.
A Na+ Superionic Conductor for Room-Temperature Sodium Batteries
Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li
2016-01-01
Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10−3 S cm−1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor. PMID:27572915
Thermal Stratification Analysis for Sodium Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, James; Anderson, Mark; Baglietto, Emilio
The sodium fast reactor (SFR) is the most mature reactor concept of all the generation-IV nuclear systems and is a promising reactor design that is currently under development by several organizations. The majority of sodium fast reactor designs utilize a pool type arrangement which incorporates the primary coolant pumps and intermediate heat exchangers within the sodium pool. These components typically protrude into the pool thus reducing the risk and severity of a loss of coolant accidents. To further ensure safe operation under even the most severe transients a more comprehensive understanding of key thermal hydraulic phenomena in this pool ismore » desired. One of the key technology gaps identified for SFR safety is determining the extent and the effects of thermal stratification developing in the pool during postulated accident scenarios such as a protected or unprotected loss of flow incident. In an effort to address these issues, detailed flow models of transient stratification in the pool during an accident can be developed. However, to develop the calculation models, and ensure they can reproduce the underlying physics, highly spatially resolved data is needed. This data can be used in conjunction with advanced computational fluid dynamic calculations to aid in the development of simple reduced dimensional models for systems codes such as SAM and SAS4A/SASSYS-1.« less
Li, Daohao; Sun, Yuanyuan; Chen, Shuai; Yao, Jiuyong; Zhang, Yuhui; Xia, Yanzhi; Yang, Dongjiang
2018-05-08
The nanostructured metal sulfides have been reported as promising anode materials for sodium-ion batteries (SIBs) due to their high theoretical capacities but have suffered from the unsatisfactory electronic conductivity and poor structural stability during a charge/discharge process, thus limiting their applications. Herein, the one-dimensional (1D) porous FeS/carbon fibers (FeS/CFs) micro/nanostructures are fabricated through facile pyrolysis of double-helix-structured Fe-carrageenan fibers. The FeS nanoparticles are in situ formed by interacting with sulfur-containing group of natural material ι-carrageenan and uniformly embedded in the unique 1D porous carbon fibrous matrix, significantly enhancing the sodium-ion storage performance. The obtained FeS/CFs with optimized sodium storage performance benefits from the appropriate carbon content (20.9 wt %). The composite exhibits high capacity and excellent cycling stability (283 mAh g -1 at current density of 1 A g -1 after 400 cycles) and rate performance (247 mAh g -1 at 5 A g -1 ). This work provides a simple strategy to construct 1D porous FeS/CFs micro/nanostructures as high-performance anode materials for SIBs via a unique sustainable and environmentally friendly way.
A Na(+) Superionic Conductor for Room-Temperature Sodium Batteries.
Song, Shufeng; Duong, Hai M; Korsunsky, Alexander M; Hu, Ning; Lu, Li
2016-08-30
Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10(-3) S cm(-1). We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.
WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL
The Wellhead Analytic Element Model (WhAEM) demonstrates a new technique for the definition of time-of-travel capture zones in relatively simple geohydrologic settings. he WhAEM package includes an analytic element model that uses superposition of (many) analytic solutions to gen...
[Study on the determination of 28 inorganic elements in sunflower seeds by ICP-OES/ICP-MS].
Liu, Hong-Wei; Qin, Zong-Hui; Xie, Hua-Lin; Cao, Shu
2013-01-01
The present paper describes a simple method for the determination of trace elements in sunflower seeds by using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma spectrometry (ICP-MS). HNO3 + H2O2 were used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The contents of 10 trace elements (Al, B, Ca, Fe, K, Mg, Na, Si, P and S) in sunflower seeds were determined by ICP-OES while 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sr, Sn, Sb, Ti, V and Zn) were determined by ICP-MS. The rice reference material (GBW10045) was used as standard reference materials. The results showed a good agreement between measured and certified values for all analytes. The concentrations of necessary micro elements Ca, K, Mg, P and S were higher. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of sunflower seeds.
Crystal structure of simple metals at high pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degtyareva, Olga
2010-10-22
The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structuresmore » found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.« less
Local anesthetic inhibition of a bacterial sodium channel
Lee, Sora; Goodchild, Samuel J.
2012-01-01
Recent structural breakthroughs with the voltage-gated sodium channel from Arcobacter butzleri suggest that such bacterial channels may provide a structural platform to advance the understanding of eukaryotic sodium channel gating and pharmacology. We therefore set out to determine whether compounds known to interact with eukaryotic NaVs could also inhibit the bacterial channel from Bacillus halodurans and NaChBac and whether they did so through similar mechanisms as in their eukaryotic homologues. The data show that the archetypal local anesthetic (LA) lidocaine inhibits resting NaChBac channels with a dissociation constant (Kd) of 260 µM, and channels displayed a left-shifted steady-state inactivation gating relationship in the presence of the drug. Extracellular application of QX-314 to expressed NaChBac channels had no effect on sodium current, whereas internal exposure via injection of a bolus of the quaternary derivative rapidly reduced sodium conductance, consistent with a hydrophilic cytoplasmic access pathway to an internal binding site. However, the neutral derivative benzocaine applied externally inhibited NaChBac channels, suggesting that hydrophobic pathways can also provide drug access to inhibit channels. Alternatively, ranolazine, a putative preopen state blocker of eukaryotic NaVs, displayed a Kd of 60 µM and left-shifted the NaChBac activation-voltage relationship. In each case, block enhanced entry into the inactivated state of the channel, an effect that is well described by a simple kinetic scheme. The data suggest that although significant differences exist, LA block of eukaryotic NaVs also occurs in bacterial sodium channels and that NaChBac shares pharmacological homology to the resting state of vertebrate NaV homologues. PMID:22641643
NASA Astrophysics Data System (ADS)
Krishna Kumar, S.; Hari Babu, S.; Eswar Rao, P.; Selvakumar, S.; Thivya, C.; Muralidharan, S.; Jeyabal, G.
2017-09-01
Water quality of Tiruvallur Taluk of Tiruvallur district, Tamil Nadu, India has been analysed to assess its suitability in relation to domestic and agricultural uses. Thirty water samples, including 8 surface water (S), 22 groundwater samples [15 shallow ground waters (SW) and 7 deep ground waters (DW)], were collected to assess the various physico-chemical parameters such as Temperature, pH, Electrical conductivity (EC), Total dissolved solids (TDS), cations (Ca, Mg, Na, K), anions (CO3, HCO3, Cl, SO4, NO3, PO4) and trace elements (Fe, Mn, Zn). Various irrigation water quality diagrams and parameters such as United states salinity laboratory (USSL), Wilcox, sodium absorption ratio (SAR), sodium percentage (Na %), Residual sodium carbonate (RSC), Residual Sodium Bicarbonate (RSBC) and Kelley's ratio revealed that most of the water samples are suitable for irrigation. Langelier Saturation Index (LSI) values suggest that the water is slightly corrosive and non-scale forming in nature. Gibbs plot suggests that the study area is dominated by evaporation and rock-water dominance process. Piper plot indicates the chemical composition of water, chiefly controlled by dissolution and mixing of irrigation return flow.
NASA Astrophysics Data System (ADS)
Hilder, Matthias; Howlett, Patrick C.; Saurel, Damien; Gonzalo, Elena; Armand, Michel; Rojo, Teófilo; Macfarlane, Douglas R.; Forsyth, Maria
2017-05-01
A saturated solution of 2.3 M sodium bis(fluorosulfonyl)imide in trimethyl iso-butyl phosphonium bis(fluorosulfonyl)imide ionic liquid shows a high conductivity (0.94 mScm-1 at 50 °C), low ion association, and a wide operational temperature window (-71 °C-305 °C) making it a promising electrolyte for sodium battery applications. Cycling with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode display excellent performance at 50 °C outperforming conventional organic solvent based electrolytes in terms of capacities (at C/10) and long term cycle stability (at C/2). Post analysis of the electrolyte shows no measurable changes while the sodium metal anode and the cathode surface shows the presence of electrolyte specific elements after cycling, suggesting the formation of a stabilizing solid electrolyte interface. Additionally, cycling changes the topography and particle morphology of the cathode. Thus, the electrolyte properties and cell performance match or outperform previously reported results with the additional benefit of replacing the hazardous and flammable organic solvent solutions commonly employed.
Kinetic Analysis of Drug Release from Compounded Slow-release Capsules of Liothyronine Sodium (T3).
Bakhteyar, Hamid; Cassone, Clayton; Kohan, Hamed Gilzad; Sani, Shabnam N
2017-01-01
The purpose of this study was to formulate extemporaneously compounded Liothyronine Sodium (T3) slow-release capsules and to evaluate their in vitro drug release performance. Twenty-one formulations containing T3 (7.5 µg) with various compositions of two different grades of Methocel E4M and K100M premium (30% to 90%), and/or SimpleCap/Lactose (10% to 70%) were examined. Quality assessment of the capsules was conducted by standard quality control criteria of the United States Pharmacopeia (i.e., weight variation, content uniformity) to ensure their compliance. The dissolution release profile of the formulations was evaluated using United States Pharmacopeia Apparatus type II (paddle method) at a speed of 50 rpm and temperature of 37°C in phosphate buffered saline media ( pH = 7.2 to 7.4). Aliquots from the media were taken periodically up to 24 hours and analyzed using a validated enzyme-linked immunosorbent assay method. The cumulative percentage of drug release for each formulation was fitted to eleven major release kinetic equations to determine the best-fit model of drug release, as well as the mechanism of release. Assay sensitivity was as low as 1 ng/mL and the optimal calibration range was found to be between 0 ng/mL and 7.5 ng/mL, which corresponded well with the average physiological plasma concentrations of T3. Liothyronine sodium with either SimpleCap (100%) or Methocel E4M (100%) exhibited slowrelease kinetic patterns of Peppas and Zero Order, respectively. The formulation with SimpleCap (100%) had a higher percentage of drug release (as compared to 100% Methocel E4M) within the first four hours; this formulation released 80% of the drug within 12 hours when the release was plateaued thereafter. The formulation with 30% Methocel E4M and 70% SimpleCap released 100% of the drug within the initial 12 hours and exhibited a Zero Order slow-release kinetic pattern. In general, the release kinetic rate of the formulations containing Methocel K100M appeared to be slower than Methocel E4M. This alteration may be due to a higher molecular weight and apparent viscosity of Methocel K100M. While most of the formulations were fitted to a slow-release kinetic pattern, several others including Methocel E4M 100%, 30% Methocel E4M+ 70% Simple Cap, 40% Methocel K100M+ 60% SimpleCap, 50% Methocel K100M+ 50% SimpleCap, 30% Methocel E4M+ 70% Lactose, 90% Methocel E4M+ 10% Lactose, 40% Methocel K100M+ 60% Lactose, and 50% Methocel K100M+ 50% Lactose followed an ideal slow-release kinetic pattern of Zero Order or Higuchi. The results of this study successfully demonstrated the optiomal composition of slow-release compounded capsules of T3. Future studies are warranted to evaluate the in vivo performance of the optimal formulations and to establish an in vitro-in vivo correlation. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Bader, M S H
2005-05-20
A novel hybrid system combining liquid-phase precipitation (LPP) and membrane distillation (MD) is integrated for the treatment of the INEEL sodium-bearing liquid waste. The integrated system provides a "full separation" approach that consists of three main processing stages. The first stage is focused on the separation and recovery of nitric acid from the bulk of the waste stream using vacuum membrane distillation (VMD). In the second stage, polyvalent cations (mainly TRU elements and their fission products except cesium along with aluminum and other toxic metals) are separated from the bulk of monovalent anions and cations (dominantly sodium nitrate) by a front-end LPP. In the third stage, MD is used first to concentrate sodium nitrate to near saturation followed by a rear-end LPP to precipitate and separate sodium nitrate along with the remaining minor species from the bulk of the aqueous phase. The LPP-MD hybrid system uses a small amount of an additive and energy to carry out the treatment, addresses multiple critical species, extracts an economic value from some of waste species, generates minimal waste with suitable disposal paths, and offers rapid deployment. As such, the LPP-MD could be a valuable tool for multiple needs across the DOE complex where no effective or economic alternatives are available.
NASA Astrophysics Data System (ADS)
Ozer, Demet; Köse, Dursun A.; Sahin, Onur; Oztas, Nursen A.
2018-04-01
Three boric acid mediated metal organic frameworks were synthesized by solution method with using succinic acid, fumaric acid and acetylene dicarboxylic acid as a ligand source and sodium as a metal source. The complexes were characterized by FT-IR, powder XRD, elemental analyses and single crystal measurements. The complexes with the formula, C4H18B2Na2O14, C4H16B2Na2O14 and C4H14B2Na2O14 were successfully obtained. BET surface area of complexes were calculated and found as 13.474 m2/g for catena-(tetrakis(μ2-hydroxo)-(μ2-trihydrogen borate)-(μ2-succinato)-di-sodium boric acid solvate), 1.692 m2/g for catena-(tetrakis(μ2-hydroxo)-(μ2-trihydrogen borate)-(μ2-fumarato)-di-sodium boric acid solvate) and 5.600 m2/g for catena-(tetrakis(μ2-hydroxo)-(μ2-trihydrogen borate)-(μ2-acetylenedicarboxylato)-di-sodium boric acid solvate). Hydrogen storage capacities of the complexes were also studied at 77 K 1 bar pressure and found as 0.108%, 0.033%, 0.021% by mass. When different ligands were used, the pore volume, pore width and surface area of the obtained complexes were changed. As a consequence, hydrogen storage capacities also changed.
Three New Low-Energy Resonances in the 22Ne(p, γ )23Na Reaction
NASA Astrophysics Data System (ADS)
Cavanna, Francesca; Depalo, Rosanna
The neon-sodium (NeNa) cycle drives the synthesis of the elements between 20Ne and 27Al, through a series of proton capture reactions that start from 20Ne, to end with sodium synthesis. This cycle is active in red giant stars (RGB), asymptotic giant branch stars (AGB), in novae as well as in type Ia supernovae. In order to reproduce the observed elemental abundances, the cross sections of the reactions involved in the nucleosynthesis process should be accurately known. The 22Ne(p, γ )23Na reaction rate was very uncertain because of a large number of unobserved resonances lying in the Gamow window. For proton energies below 400 keV, in the literature there were only upper limits for the resonance strengths. A new direct study of the 22Ne(p, γ )23Na reaction has been performed at the Laboratory for Underground Nuclear Astrophysics (LUNA) in Gran Sasso using a windowless gas target and two high-purity germanium detectors. Several resonances have been observed for the first time in a direct experiment.
CONSTRUCTION OF A SMALL AUTOMATED CORONAGRAPH FOR OBSERVATIONS OF THE LUNAR Na EXOSPHERE
NASA Astrophysics Data System (ADS)
Tucker, Roy; Morgan, T. H.; Killen, R. M.
2013-10-01
We report on the final optical and mechanical design and the construction and initial testing of a small coronagraph at the Winer Observatory, near Sonoita, Arizona. The coronagraph includes a narrow band filter and low-light level camera to observe lunar exospheric sodium in the resonance lines of that element near 590 nm. Without the use of a coronagraph, the signal from sodium would be lost against light scattered by the Earth’s atmosphere and scattered light in the telescope. The design uses Commercial Off the Shelf Technology (COTS), and our goal is to obtain observations while the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission is still in orbit.
Thermoelectric energy conversion with solid electrolytes
NASA Astrophysics Data System (ADS)
Cole, T.
1983-09-01
The alkali metal thermoelectric converter (AMTEC) is a device for the direct conversion of heat to electrical energy. The sodium ion conductor beta-double prime-alumina is used to form a high-temperature regenerative concentration cell for elemental sodium. An AMTEC of mature design should have an efficiency of 20 to 40 percent, a power density of 0.5 kilowatt per kilogram or more, no moving parts, low maintenance requirements, high durability, and efficiency independent of size. It should be usable with high-temperature combustion, nuclear, or solar heat sources. Experiments have demonstrated the feasibility of the AMTEC and confirmed the theoretical analysis of the device. A wide range of applications from aerospace power to utility power plants appears possible.
Thermoelectric energy conversion with solid electrolytes.
Cole, T
1983-09-02
The alkali metal thermoelectric converter (AMTEC) is a device for the direct conversion of heat to electrical energy. The sodium ion conductor beta"- alumina is used to form a high-temperature regenerative concentration cell for elemental sodium. An AMTEC of mature design should have an efficiency of 20 to 40 percent, a power density of 0.5 kilowatt per kilogram or more, no moving parts, low maintenance requirements, high durability, and efficiency independent of size. It should be usable with high-temperature combustion, nuclear, or solar heat sources. Experiments have demonstrated the feasibility of the AMTEC and confirmed the theoretical analysis of the device. A wide range of applications from aerospace power to utility power plants appears possible.
Rapid Pinhole Growth in the F160BW Filter
NASA Astrophysics Data System (ADS)
Biretta, J.; Verner, E.
2009-03-01
The WFPC2 Filter F160BW, also known as WOOD's filter, was designed to transmit UV emission around 150nm and strongly block all other wavelengths. The filter has a unique construction where a thin film of sodium metal serves as the spectral element. However, sodium is a highly unstable and reactive metal, which makes the filter susceptible to changes over time. Herein we report a rapidly growing pinhole in the filter located in the field of view of the WF2 CCD. Observers requiring a high rejection of out-of-band light (i.e. red leak) should take note of this feature, and avoid the affected region in the field-of-view.
Dependence of sodium laser guide star photon return on the geomagnetic field
NASA Astrophysics Data System (ADS)
Moussaoui, N.; Holzlöhner, R.; Hackenberg, W.; Bonaccini Calia, D.
2009-07-01
Aims: The efficiency of optical pumping that increases the backscatter emission of mesospheric sodium atoms in continuous wave (cw) laser guide stars (LGSs) can be significantly reduced and, in the worst case, eliminated by the action of the geomagnetic field. Our goal is to present an estimation of this effect for several telescope sites. Methods: Sodium atoms precess around magnetic field lines that cycle the magnetic quantum number, reducing the effectiveness of optical pumping. Our method is based on calculating the sodium magnetic sublevel populations in the presence of the geomagnetic field and on experimental measurements of radiance return from sodium LGS conducted at the Starfire optical range (SOR). Results: We propose a relatively simple semi-empirical formula for estimating the effect of the geomagnetic field on enhancing the LGSs photon return due to optical pumping with a circularly polarized cw single-frequency laser beam. Starting from the good agreement between our calculations and the experimental measurements for the geomagnetic field effect, and in order to more realistically estimate the sodium LGSs photon return, we introduce the effect of the distance to the mesospheric sodium layer and the atmospheric attenuation. The combined effect of these three factors is calculated for several telescope sites. Conclusions: In calculating the return flux of LGSs, only the best return conditions are often assumed, relying on strong optical pumping with circularly polarized lasers. However, one can only obtain this optimal return along one specific laser orientation on the sky, where the geomagnetic field lines are parallel to the laser beam. For most of the telescopes, the optimum can be obtained at telescope orientations beyond the observation limit. For the telescopes located close to the geomagnetic pole, the benefit of the optical pumping is much more important than for telescopes located close to the geomagnetic equator.
Kong, Ji-Sook; Lee, Yeon-Kyung; Kim, Mi Kyung; Choi, Mi-Kyeong; Heo, Young-Ran; Hyun, Taisun; Kim, Sun Mee; Lyu, Eun-Soon; Oh, Se-Young; Park, Hae-Ryun; Rhee, Moo-Yong; Ro, Hee-Kyong; Song, Mi Kyung
2018-01-01
This study was conducted to develop an equation for estimation of 24-h urinary-sodium excretion that can serve as an alternative to 24-h dietary recall and 24-h urine collection for normotensive Korean adults. In total, data on 640 healthy Korean adults aged 19 to 69 years from 4 regions of the country were collected as a training set. In order to externally validate the equation developed from that training set, 200 subjects were recruited independently as a validation set. Due to heterogeneity by gender, we constructed a gender-specific equation for estimation of 24-h urinary-sodium excretion by using a multivariable linear regression model and assessed the performance of the developed equation in validation set. The best model consisted of age, body weight, dietary behavior ('eating salty food', 'Kimchi consumption', 'Korean soup or stew consumption', 'soy sauce or red pepper paste consumption'), and smoking status in men, and age, body weight, dietary behavior ('salt preference', 'eating salty food', 'checking sodium content for processed foods', 'nut consumption'), and smoking status in women, respectively. When this model was tested in the external validation set, the mean bias between the measured and estimated 24-h urinary-sodium excretion from Bland-Altman plots was -1.92 (95% CI: -113, 110) mmol/d for men and -1.51 (95% CI: -90.6, 87.6) mmol/d for women. The cut-points of sodium intake calculated based on the equations were ≥4,000 mg/d for men and ≥3,500 mg/d for women, with 89.8 and 76.6% sensitivity and 29.3 and 64.2% specificity, respectively. In this study, a habitual 24-hour urinary-sodium-excretion-estimation model of normotensive Korean adults based on anthropometric and lifestyle factors was developed and showed feasibility for an asymptomatic population.
Choi, Mi-Kyeong; Heo, Young-Ran; Hyun, Taisun; Kim, Sun Mee; Lyu, Eun-Soon; Oh, Se-Young; Park, Hae-Ryun; Rhee, Moo-Yong; Ro, Hee-Kyong; Song, Mi Kyung
2018-01-01
This study was conducted to develop an equation for estimation of 24-h urinary-sodium excretion that can serve as an alternative to 24-h dietary recall and 24-h urine collection for normotensive Korean adults. In total, data on 640 healthy Korean adults aged 19 to 69 years from 4 regions of the country were collected as a training set. In order to externally validate the equation developed from that training set, 200 subjects were recruited independently as a validation set. Due to heterogeneity by gender, we constructed a gender-specific equation for estimation of 24-h urinary-sodium excretion by using a multivariable linear regression model and assessed the performance of the developed equation in validation set. The best model consisted of age, body weight, dietary behavior (‘eating salty food’, ‘Kimchi consumption’, ‘Korean soup or stew consumption’, ‘soy sauce or red pepper paste consumption’), and smoking status in men, and age, body weight, dietary behavior (‘salt preference’, ‘eating salty food’, ‘checking sodium content for processed foods’, ‘nut consumption’), and smoking status in women, respectively. When this model was tested in the external validation set, the mean bias between the measured and estimated 24-h urinary-sodium excretion from Bland-Altman plots was -1.92 (95% CI: -113, 110) mmol/d for men and -1.51 (95% CI: -90.6, 87.6) mmol/d for women. The cut-points of sodium intake calculated based on the equations were ≥4,000 mg/d for men and ≥3,500 mg/d for women, with 89.8 and 76.6% sensitivity and 29.3 and 64.2% specificity, respectively. In this study, a habitual 24-hour urinary-sodium-excretion-estimation model of normotensive Korean adults based on anthropometric and lifestyle factors was developed and showed feasibility for an asymptomatic population. PMID:29447201
Biogeochemical variability of plants at native and altered sites, San Juan Basin, New Mexico
Gough, L.P.; Severson, R.C.
1981-01-01
The San Juan Basin is becoming a major energy resource region. The anticipated increase in strip mining for coal can be expected to alter the geochemical and biogeochemical environment. because such activities destroy the native vegetation communities, rearrange the rock strata, and disrupt natural soil development. This study investigated the variability in the biogeochemistry of native plant species at both undisturbed and altered sites and assessed the importance of the observed differences. Three studies are involved in this investigation: Study 1, the biogeochemical variability of native species found at sites throughout that part of the basin underlain by economically recoverable coal; Study 2, the biogeochemical variability of native species growing on soils considered favorable for use in the topsoiling of spoil areas; and Study 3, the biogeochemical variability of native species on rehabilitated sites at the San Juan coal mine. Summary statistics for concentrations of 35 elements (and ash yield) are reported in Study 1 for galleta grass, broom snakeweed, and fourwing saltbush. The concentrations of manganese, molybdenum, nickel, and uranium (and possibly iron and selenium) in galleta show regional patterns, with the highest values generally found in the south-central region and western edge of the study area. Differences in the concentration of elements between species was generally subtle (less than a factor of two) except for the following: ash yield of saltbush was two times that of the other plants; boron in snakeweed and saltbush was four times greater than in galleta; iron in galleta was two times greater than in saltbush; and, calcium, magnesium, potassium, phosphorus, and sulfur were generally highest in saltbush. Summary statistics (including the 95-percent expected range) for concentrations of 35 elements (and ash yield) are reported from Study 2 for galleta and broom snakeweed growing on the Sheppard, Shiprock, and Doak soil association. Significant regional (greater than 10 km) variation for aluminum, iron, sulfur, vanadium, and zirconium in galleta are reported; however, for most elements, a significant proportion of the variation in the data was measured locally (less than 0.1 km). This variation indicates that samples of galleta and snakeweed taken more than 10 km apart vary, in their element composition, little more than plants sampled as close together as 0.1 km. The concentrations of 35 elements (and ash yield) in alkali sacaton and fourwing saltbush, which were collected on a rehabilitation plot at the San Juan mine (Study 3), are compared with those of control samples of similar material from native sites from throughout the ,an Juan Basin. Concentrations of aluminum, arsenic, boron, cobalt, copper, fluorine, iron, lead, manganese, sodium, and uranium in samples of saltbush growing over spoil generally exceed the levels of these elements in control samples. For many elements, concentrations in mine samples are from two to five times higher 1 han concentrations in the control samples. Sodium concentrations i saltbush, however, were 100 times higher in mine samples than in control samples. This high concentration reflects a corresponding : OO-fold increase in the extractable sodium levels in spoil material s compared to C-horizon control samples. Sampled plants from the l1ine area, spaced relatively close together (5 m (meters) or less), vary greatly in their element compositions, apparently in response 1 J the heterogenous composition and element availability of the l1ine soils. Topsoiling to a depth of 20 cm (centimeters) does little to meliorate the uptake of elements from spoil by saltbush.
NASA Technical Reports Server (NTRS)
Delano, J. W.; Mcguire, J.
1992-01-01
Six varieties of lunar volcanic glass are known to occur within the Apollo 17 sample collection. Investigations have shown that 25 volatile elements are known to be concentrated on the exterior surfaces of individual volcanic glass spheres. Since bulk analyses of volcanic glass provide an integrated abundance of an element on and with the glass spherules, other methods must be relied on to determine the interior abundance of an element. The interior abundance of an element with a volcanic glass sphere establishes the abundance of that element in the melt at the time of quench. The current study is part of a comprehensive attempt to measure the abundance of three volatile elements (Na, S, and K) within representative spheres of the 25 varieties of lunar volcanic glass currently known to exist at the Apollo landing sites. Comparison of the measured abundances of these elements within the interiors of individual glasses with bulk analyses and crystalline mare basalts will furnish new constraints on the geochemical behavior of volatile elements during lunar mare volcanism.
Ajitomi, Atsushi; Taba, Satoshi; Ajitomi, Yoshino; Kinjo, Misa; Sekine, Ken-taro
2018-01-01
We tested a formulation composed of a mixture of Bidens pilosa var. radiata extract (BPE) and nematode-trapping fungi for its effects on Meloidogyne incognita. In earlier evaluations of the effects of plant extracts on the hyphal growth of 5 species of nematode-trapping fungi with different capture organs (traps), the growth of all species was slightly inhibited. However, an investigation on the number of capture organs and nematode-trapping rates revealed that Arthrobotrys dactyloides formed significantly more rings and nematode traps than those of the control. An evaluation of simple mixed formulations prepared using sodium alginate showed that nematodes were captured with all formulations tested. The simple mixed formulation showed a particularly high capture rate. Furthermore, in a pot test, although the effects of a single formulation made from the fungus or plant extract were acceptable, the efficacy of the simple mixed formulation against M. incognita root-knot formation was particularly high. PMID:29311429
Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J
2013-01-01
A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and effective for the determination of high levels of sulfites in dried fruits.
Sodium sulfate - Deposition and dissolution of silica
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.
1989-01-01
The hot-corrosion process for SiO2-protected materials involves deposition of Na2SO4 and dissolution of the protective SiO2 scale. Dew points for Na2SO4 deposition are calculated as a function of pressure, sodium content, and sulfur content. Expected dissolution regimes for SiO2 are calculated as a function of Na2SO4 basicity. Controlled-condition burner-rig tests on quartz verify some of these predicted dissolution regimes. The basicity of Na2SO4 is not always a simple function of P(SO3). Electrochemical measurements of an (Na2O) show that carbon creates basic conditions in Na2SO4, which explains the extensive corrosion of SiO2-protected materials containing carbon, such as SiC.
NASA Astrophysics Data System (ADS)
Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.
2017-10-01
We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.
Trace element partitioning during the retorting of Julia Creek oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, J.H.; Dale, L.S.; Chapman, J.f.
1987-05-01
A bulk sample of oil shale from the Julia Creek deposit in Queensland was retorted under Fischer assay conditions at temperatures ranging from 250 to 550 /sup 0/C. The distributions of the trace elements detected in the shale oil and retort water were determined at each temperature. Oil distillation commenced at 300 /sup 0/C and was essentially complete at 500 /sup 0/C. A number of trace elements were progressively mobilized with increasing retort temperature up to 450 /sup 0/C. The following trace elements partitioned mainly to the oil: vanadium, arsenic, selenium, iron, nickel, titanium, copper, cobalt, and aluminum. Elements thatmore » also partitioned to the retort waters included arsenic, selenium, chlorine, and bromine. Element mobilization is considered to be caused by the volatilization of organometallic compounds, sulfide minerals, and sodium halides present in the oil shale. The results have important implications for shale oil refining and for the disposal of retort waters. 22 references, 5 tables.« less
The Nonlinear Dynamic Response of an Elastic-Plastic Thin Plate under Impulsive Loading,
1987-06-11
Among those numerical methods, the finite element method is the most effective one. The method presented in this paper is an " influence function " numerical...computational time is much less than the finite element method. Its precision is higher also. II. Basic Assumption and the Influence Function of a Simple...calculation. Fig. 1 3 2. The Influence function of a Simple Supported Plate The motion differential equation of a thin plate can be written as DV’w+ _.eluq() (1
NASA Astrophysics Data System (ADS)
Mahanta, Upakul; Goswami, Aruna; Duorah, Hiralal; Duorah, Kalpana
2017-08-01
Elemental abundance patterns of globular cluster stars can provide important clues for understanding cluster formation and early chemical evolution. The origin of the abundance patterns, however, still remains poorly understood. We have studied the impact of p-capture reaction cycles on the abundances of oxygen, sodium and aluminium considering nuclear reaction cycles of carbon-nitrogen-oxygen-fluorine, neon-sodium and magnesium-aluminium in massive stars in stellar conditions of temperature range 2×107 to 10×107 K and typical density of 102 gm cc-1. We have estimated abundances of oxygen, sodium and aluminium with respect to Fe, which are then assumed to be ejected from those stars because of rotation reaching a critical limit. These ejected abundances of elements are then compared with their counterparts that have been observed in some metal-poor evolved stars, mainly giants and red giants, of globular clusters M3, M4, M13 and NGC 6752. We observe an excellent agreement with [O/Fe] between the estimated and observed abundance values for globular clusters M3 and M4 with a correlation coefficient above 0.9 and a strong linear correlation for the remaining two clusters with a correlation coefficient above 0.7. The estimated [Na/Fe] is found to have a correlation coefficient above 0.7, thus implying a strong correlation for all four globular clusters. As far as [Al/Fe] is concerned, it also shows a strong correlation between the estimated abundance and the observed abundance for globular clusters M13 and NGC 6752, since here also the correlation coefficient is above 0.7 whereas for globular cluster M4 there is a moderate correlation found with a correlation coefficient above 0.6. Possible sources of these discrepancies are discussed.
Li, Pei; Zhang, Jing; Zhu, Yuanfang; Liu, Ming; Xuan, Jin
2015-11-01
Renin synthesis and release is the rate-limiting step in the renin-angiotensin system, because cyclic adenosine monophosphate (cAMP) has been identified as dominant pathway for renin gene expression, and cAMP response element-binding protein (CREB) is found in the human and mouse renin promoter. This study aimed to evaluate the role of CREB in expression of the renin gene. We created conditional deletion of CREB in mice with low-sodium diet, specifically in renin cells of the kidney. To assess the effect of CREB on renin expression, immunostaining of renin was used in samples from wild-type mice and mice with gene knock-down of CREB. Cyclic AMP response element-binding-protein-binding protein (CBP) and p300 were measured in cultured renin cells of the mice, and RNA detection was done with real-time polymerase chain reaction. With low-sodium diet, renin was expressed along the whole wall of the afferent glomerular arterioles in wild-type mice, while there was no increase or even decrease in renin expression in CREB-specific deletion mice; RNA level of renin in cultured cells decreased by 50% with single knock-down of CREB, CBP, or p300, and decreased 70% with triple knock-down of CREB, CBP, and p300. This study found that CREB was important for renin synthesis and the role of CREB can be achieved through the recruitment of co-activators CBP and p300.
Aldosterone alters the chromatin structure of the murine endothelin-1 gene.
Welch, Amanda K; Jeanette Lynch, I; Gumz, Michelle L; Cain, Brian D; Wingo, Charles S
2016-08-15
Aldosterone increases sodium reabsorption in the renal collecting duct and systemic blood pressure. Paradoxically, aldosterone also induces transcription of the endothelin-1 (Edn1) gene to increase protein (ET-1) levels, which inhibits sodium reabsorption. Here we investigated changes in the chromatin structure of the Edn1 gene of collecting duct cell lines in response to aldosterone treatment. The Edn1 gene has a CpG island that encompasses the transcription start site and four sites in the 5' regulatory region previously linked to transcriptional regulation. The chromatin structure of the Edn1 gene was investigated using a quantitative PCR-based DNaseI hypersensitivity assay in murine hepatocyte (AML12), renal cortical collecting duct (mpkCCDC14), outer medullary collecting duct1 (OMCD1), and inner medullary collecting duct-3 (IMCD-3) cell lines. The CpG island was uniformly accessible. One calcium-responsive NFAT element remained at low chromatin accessibility in all cell lines under all conditions tested. However, the second calcium responsive NFAT element located at -1563bp upstream became markedly more accessible in IMCD-3 cells exposed to aldosterone. Importantly, one established aldosterone hormone response element HRE at -671bp relative to the transcription start site was highly accessible, and another HRE (-551bp) became more accessible in aldosterone-treated IMCD-3 and OMCD1 cells. The evidence supports a model in which aldosterone activation of the mineralocorticoid receptor (MR) results in the MR-hormone complex binding at HRE at -671bp to open chromatin structure around other regulatory elements in the Edn1 gene. Published by Elsevier Inc.
Sodium-ion supercapacitors based on nanoporous pyroproteins containing redox-active heteroatoms
NASA Astrophysics Data System (ADS)
Cho, Se Youn; Yoon, Hyeon Ji; Kim, Na Rae; Yun, Young Soo; Jin, Hyoung-Joon
2016-10-01
Nanostructured carbon-based materials fabricated via simple methods from renewable bio-resources have great potential in rechargeable energy storage systems. In this study, nanoporous pyroproteins containing a large amount of redox-active heteroatoms (H-NPs) were fabricated from silk fibroin by an in situ carbonization/activation method. The H-NPs have a large surface area of ∼3050 m2 g-1, which is mainly comprised of nanometer-scale pores. Also, these H-NPs have oxygen and nitrogen heteroatoms of 17.4 wt% and 2.9 wt%, respectively. Synergistic sodium ion storage behaviors originate from electrochemical double layer capacitance and pseudocapacitance, leading to very high electrochemical performances of H-NPs in aqueous and non-aqueous electrolyte systems. Sodium-ion supercapacitors (NISs) based on commercial graphite//H-NPs show a high specific power of ∼1900 W kg-1 at ∼77 Wh kg-1. Also, NISs based on commercial hard carbon//H-NPs exhibit a high specific energy of ∼217 Wh kg-1 at ∼42 W kg-1. In addition, outstanding cycling performances over 30,000 cycles are achieved for symmetric NISs.
Physics and chemistry of sulfur lakes on Io
NASA Technical Reports Server (NTRS)
Lunine, J. I.; Stevenson, D. J.
1985-01-01
Based on data from Loki and other hot spot regions, a model for a convecting sulfur lake that is heated from below is constructed. Temperature profiles and fluxes in the silicate and sulfur regions are consistent with the observed Loki highest-temperature component and excess flux. Evaporatin of sulfur sets a strong upper limit on the lake surface temperature, and the intermediate temperature in the Loki region is identified with sulfur vapor condensing primarily along lake shores. Simple models of sulfur vapor transport can be used to match the Voyager IRIS data, assuming sulfur vapor condensed on the shore radiates like a blackbody. The 1 - 100 year lifetime of such a lake in steady state implies that long-term earth-based observations interpreted with this model could detect variations in the Loki thermal output. The sodium-sulfur phase diagram is also presented and used to show that evaporated lakes may leave behind sodium-rich residue which could supply the torus with sodium. Finally, uncertainties in the model are assessed, including the lack of sulfur emission features in the Loki spectrum.
Daemi, Hamed; Barikani, Mehdi; Barmar, Mohammad
2014-05-01
A number of different ionic aqueous polyurethane dispersions (PUDs) were synthesized based on NCO-terminated prepolymers. Two different anionic and cationic polyurethane samples were synthesized using dimethylol propionic acid and N-methyldiethanolamine emulsifiers, respectively. Then, proper amounts of PUDs and sodium alginate were mixed to obtain a number of aqueous polyurethane dispersions-sodium alginate (PUD/SA) elastomers. The chemical structure, thermal, morphological, thermo-mechanical and mechanical properties, and hydrophilicity content of the prepared samples were studied by FTIR, EDX, DSC, TGA, SEM, DMTA, tensile testing and contact angle techniques. The cationic polyurethanes and their blends with sodium alginate showed excellent miscibility and highly stretchable properties, while the samples containing anionic polyurethanes and alginate illustrated a poor compatibility and no significant miscibility. The morphology of alginate particles shifted from nanoparticles to microparticles by changing the nature of PUDs from cationic to anionic types. The final cationic elastomers not only showed better mechanical properties but also were formulated easier than anionic samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Pang, Qiang; Zhao, Yingying; Yu, Yanhao; Bian, Xiaofei; Wang, Xudong; Wei, Yingjin; Gao, Yu; Chen, Gang
2018-02-22
The size and conductivity of the electrode materials play a significant role in the kinetics of sodium-ion batteries. Various characterizations reveal that size-controllable VS 4 nanoparticles can be successfully anchored on the surface of graphene sheets (GSs) by a simple cationic-surfactant-assisted hydrothermal method. When used as an electrode material for sodium-ion batteries, these VS 4 @GS nanocomposites show large specific capacity (349.1 mAh g -1 after 100 cycles), excellent long-term stability (84 % capacity retention after 1200 cycles), and high rate capability (188.1 mAh g -1 at 4000 mA g -1 ). A large proportion of the capacity was contributed by capacitive processes. This remarkable electrochemical performance was attributed to synergistic interactions between nanosized VS 4 particles and a highly conductive graphene network, which provided short diffusion pathways for Na + ions and large contact areas between the electrolyte and electrode, resulting in considerably improved electrochemical kinetic properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gamma Rhythm Simulations in Alzheimer's Disease
NASA Astrophysics Data System (ADS)
Montgomery, Samuel; Perez, Carlos; Ullah, Ghanim
The different neural rhythms that occur during the sleep-wake cycle regulate the brain's multiple functions. Memory acquisition occurs during fast gamma rhythms during consciousness, while slow oscillations mediate memory consolidation and erasure during sleep. At the neural network level, these rhythms are generated by the finely timed activity within excitatory and inhibitory neurons. In Alzheimer's Disease (AD) the function of inhibitory neurons is compromised due to an increase in amyloid beta (A β) leading to elevated sodium leakage from extracellular space in the hippocampus. Using a Hodgkin-Huxley formalism, heightened sodium leakage current into inhibitory neurons is observed to compromise functionality. Using a simple two neuron system it was observed that as the conductance of the sodium leakage current is increased in inhibitory neurons there is a significant decrease in spiking frequency regarding the membrane potential. This triggers a significant increase in excitatory spiking leading to aberrant network behavior similar to that seen in AD patients. The next step is to extend this model to a larger neuronal system with varying synaptic densities and conductance strengths as well as deterministic and stochastic drives.
Wearable Platform for Real-time Monitoring of Sodium in Sweat.
McCaul, Margaret; Porter, Adam; Barrett, Ruairi; White, Paddy; Stroiescu, Florien; Wallace, Gordon; Diamond, Dermot
2018-06-19
A fully integrated and wearable platform for harvesting and analysing sweat sodium concentration in real time during exercise has been developed and tested. The platform was largely produced using 3D printing, which greatly simplifies fabrication and operation compared to previous versions generated with traditional production techniques. The 3D printed platform doubles the capacity of the sample storage reservoir to about 1.3 ml, reduces the assembly time and provides simple and precise component alignment and contact of the integrated solid-state ion-selective and reference electrodes with the sorbent material. The sampling flowrate in the device can be controlled by introducing threads to enhance wicking of sweat from the skin, across the electrodes to the storage area. The platform was characterised in the lab and in exercise trials over a period of about 60 minutes continuous monitoring. Sweat sodium concentration was found to rise initially to approximately 17 mM and decline gradually over the period of the trial to about 11-12 mM. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Saha, Suman; Majumder, Sambrita; Das, Sushovan; Das, Tapan Kumar; Bhattacharyya, Anjan; Roy, Sankhajit
2018-04-01
A laboratory experiment was conducted to investigate the effect of pH on the persistence and the dissipation of the new readymix formulation of bispyribac sodium and metamifop. The experiment was conducted in water of three different pH viz. 4.0, 7.0 and 9.2. The spiking level of both the compounds in water was 1.0 and 2.0 µg/mL. The residues were extracted by a simple, quick and reliable method and quantified by liquid chromatography tandem mass spectrometry (LC-MS/MS). The method was justified based on the recovery study, which was > 85%. The dissipation of both compounds followed first order kinetics. The half-life values ranged between 19.86-36.29 and 9.92-19.69 days for bispyribac sodium and metamifop, respectively. The pH of water has a prominent effect on degradation of both the compounds. The rate of dissipation of both the compounds was highest in water of acidic pH followed by neutral and alkaline pH.
Dai, Lei; Nadeau, Ben; An, Xingye; Cheng, Dong; Long, Zhu; Ni, Yonghao
2016-01-01
Dual-function hydrogels, possessing both stimuli-responsive and self-healing properties, have recently attracted attention of both chemists and materials scientists. Here we report a new paradigm using natural polymer (guar gum, GG) and sodium borohydride (NaBH4), for the preparation of silver nanoparticles (AgNPs)-containing smart hydrogels in a simple, fast and economical way. NaBH4 performs as a reducing agent for AgNPs synthesis using silver nitrate (AgNO3) as the precursor. Meanwhile, sodium metaborate (NaBO2) (from NaBH4) behaves as a cross-linking agent between GG molecular chains. The AgNPs/GG hydrogels with excellent viscoelastic properties can be obtained within 3 min at room temperature without the addition of other cross-linkers. The resultant AgNPs/GG hydrogels are flowable and injectable, and they possess excellent pH/thermal responsive properties. Additionally, they exhibit rapid self-healing capacity. This work introduces a facile and scale-up way to prepare a class of hydrogels that can have great potential to biomedical and other industrial applications. PMID:27819289
Simple method for self-referenced and lable-free biosensing by using a capillary sensing element.
Liu, Yun; Chen, Shimeng; Liu, Qiang; Liu, Zigeng; Wei, Peng
2017-05-15
We demonstrated a simple method for self-reference and label free biosensing based on a capillary sensing element and common optoelectronic devices. The capillary sensing element is illuminated by a light-emitting diode (LED) light source and detected by a webcam. Part of gold film that deposited on the tubing wall is functionalized to carry on the biological information in the excited SPR modes. The end face of the capillary was monitored and separate regions of interest (ROIs) were selected as the measurement channel and the reference channel. In the ROIs, the biological information can be accurately extracted from the image by simple image processing. Moreover, temperature fluctuation, bulk RI fluctuation, light source fluctuation and other factors can be effectively compensated during detection. Our biosensing device has a sensitivity of 1145%/RIU and a resolution better than 5.287 × 10 -4 RIU, considering a 0.79% noise level. We apply it for concanavalin A (Con A) biological measurement, which has an approximately linear response to the specific analyte concentration. This simple method provides a new approach for multichannel SPR sensing and reference-compensated calibration of SPR signal for label-free detection.
Shoeibi, Sara; Mashreghi, Mohammad
2017-01-01
Microorganisms are capable of synthesizing metal nanoparticles, and specifically Enterococcus faecalis bacteria were tested for its ability to synthesize selenium nanoparticles (Se-NPs) from sodium selenite. The biosynthesized Se-NPs were spherical in shape with the size range of 29-195nm. Also, the TEM microscopy showed the accumulation of nano-structures as extracellular deposits. The ability of the bacteria to tolerate high levels of toxic selenite was studied by changing with different concentrations of sodium selenite (0.19mM-2.97mM). Also, the effect of Se-NPs was studied on the growth profile of number of pathogenic Gram-positive and -negative bacteria. High concentrations of sodium selenite in the medium led to the production of small amounts of selenium nanostructures by bacteria. In addition, Se-NPs can be used as an anti-staphylococcal element to effectively prevent and treat S. aureus infections. Copyright © 2016 Elsevier GmbH. All rights reserved.
Friction and Wear of Iron in Corrosive Media
NASA Technical Reports Server (NTRS)
Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.
1982-01-01
Friction and wear experiments were conducted with elemental iron exposed to various corrosive media including two acids, base, and a salt. Studies involved various concentrations of nitric and sulfuric acids, sodium hydroxide, and sodium chloride. Load and reciprocating sliding speed were kept constant. With the base NaOH an increase in normality beyond 0.01 N resulted in a decrease in both friction and wear. X-ray photoelectron spectroscopy (XPS) analysis of the surface showed a decreasing concentration of ferric oxide (Fe2O3) on the iron surface with increasing NaOH concentration. With nitric acid (HNO3) friction decreased in solutions to 0.05 N, beyond which no further change in friction was observed. The concentration of Fe2O3 on the surface continued to increase with increasing normality. XPS analysis revealed the presence of sulfates in addition of Fe2O3 on surfaces exposed to sulfuric acid and iron chlorides but no sodium on surfaces exposed to NaCl.
Recent Progress in Iron-Based Electrode Materials for Grid-Scale Sodium-Ion Batteries.
Fang, Yongjin; Chen, Zhongxue; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi
2018-03-01
Grid-scale energy storage batteries with electrode materials made from low-cost, earth-abundant elements are needed to meet the requirements of sustainable energy systems. Sodium-ion batteries (SIBs) with iron-based electrodes offer an attractive combination of low cost, plentiful structural diversity and high stability, making them ideal candidates for grid-scale energy storage systems. Although various iron-based cathode and anode materials have been synthesized and evaluated for sodium storage, further improvements are still required in terms of energy/power density and long cyclic stability for commercialization. In this Review, progress in iron-based electrode materials for SIBs, including oxides, polyanions, ferrocyanides, and sulfides, is briefly summarized. In addition, the reaction mechanisms, electrochemical performance enhancements, structure-composition-performance relationships, merits and drawbacks of iron-based electrode materials for SIBs are discussed. Such iron-based electrode materials will be competitive and attractive electrodes for next-generation energy storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Saxena, P.; Killen, R. M.; Petro, N. E.; Airapetian, V.; Mandell, A.
2017-12-01
While the Moon and Earth are generally similar in terms of composition, there exist variations in the abundance of certain elements among the two bodies. These differences are a likely consequence of differing physical evolution of the two bodies over the solar system's history. We describe how our past and current modeling efforts indicate that a significant fraction of the initial sodium budget of the Moon may have been depleted and transported from the lunar surface since the Moon's formation. Using profiles of sodium abundances from lunar crustal samples may thus serve as a powerful tool towards exploring conditions on the Moon's surface throughout solar system history. Additionally, conditions on the Moon immediately after formation may still be recorded in the lunar crust and may provide a window towards interpreting observations from some of the first rocky exoplanets that will be most amenable to characterization.
NASA Astrophysics Data System (ADS)
Gwiazda, A.; Banas, W.; Sekala, A.; Foit, K.; Hryniewicz, P.; Kost, G.
2015-11-01
Process of workcell designing is limited by different constructional requirements. They are related to technological parameters of manufactured element, to specifications of purchased elements of a workcell and to technical characteristics of a workcell scene. This shows the complexity of the design-constructional process itself. The results of such approach are individually designed workcell suitable to the specific location and specific production cycle. Changing this parameters one must rebuild the whole configuration of a workcell. Taking into consideration this it is important to elaborate the base of typical elements of a robot kinematic chain that could be used as the tool for building Virtual modelling of kinematic chains of industrial robots requires several preparatory phase. Firstly, it is important to create a database element, which will be models of industrial robot arms. These models could be described as functional primitives that represent elements between components of the kinematic pairs and structural members of industrial robots. A database with following elements is created: the base kinematic pairs, the base robot structural elements, the base of the robot work scenes. The first of these databases includes kinematic pairs being the key component of the manipulator actuator modules. Accordingly, as mentioned previously, it includes the first stage rotary pair of fifth stage. This type of kinematic pairs was chosen due to the fact that it occurs most frequently in the structures of industrial robots. Second base consists of structural robot elements therefore it allows for the conversion of schematic structures of kinematic chains in the structural elements of the arm of industrial robots. It contains, inter alia, the structural elements such as base, stiff members - simple or angular units. They allow converting recorded schematic three-dimensional elements. Last database is a database of scenes. It includes elements of both simple and complex: simple models of technological equipment, conveyors models, models of the obstacles and like that. Using these elements it could be formed various production spaces (robotized workcells), in which it is possible to virtually track the operation of an industrial robot arm modelled in the system.
Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L
2014-01-23
Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail "neck", are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the "outer ion" site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. © 2013. Published by Elsevier Ltd. All rights reserved.
An Overview of Long Duration Sodium Heat Pipe Tests
NASA Astrophysics Data System (ADS)
Rosenfeld, John H.; Ernst, Donald M.; Lindemuth, James E.; Sanzi, James L.; Geng, Steven M.; Zuo, Jon
2004-02-01
High temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, and Stirling cycle heat sources; with the resurgence of space nuclear power, additional applications include reactor heat removal elements and radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly long-term materials compatibility is being evaluated through the use of high temperature life test heat pipes. Thermacore, Inc. has carried out several sodium heat pipe life tests to establish long term operating reliability. Four sodium heat pipes have recently demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A 316L stainless steel heat pipe with a sintered porous nickel wick structure and an integral brazed cartridge heater has successfully operated at 650C to 700C for over 115,000 hours without signs of failure. A second 316L stainless steel heat pipe with a specially-designed Inconel 601 rupture disk and a sintered nickel powder wick has demonstrated over 83,000 hours at 600C to 650C with similar success. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 41,000 hours at nearly 700C. A hybrid (i.e. gas-fired and solar) heat pipe with a Haynes 230 envelope and a sintered porous nickel wick structure was operated for about 20,000 hours at nearly 700C without signs of degradation. These life test results collectively have demonstrated the potential for high temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and test results are described for each of these sodium heat pipes. Lessons learned and future life test plans are also discussed.
An Overview of Long Duration Sodium Heat Pipe Tests
NASA Technical Reports Server (NTRS)
Rosenfeld, John H.; Ernst, Donald M.; Lindemuth, James E.; Sanzi, James L.; Geng, Steven M.; Zuo, Jon
2004-01-01
High temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, and Stirling cycle heat sources; with the resurgence of space nuclear power, additional applications include reactor heat removal elements and radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly long-term materials compatibility is being evaluated through the use of high temperature life test heat pipes. Thermacore International, Inc., has carried out several sodium heat pipe life tests to establish long term operating reliability. Four sodium heat pipes have recently demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A 3l6L stainless steel heat pipe with a sintered porous nickel wick structure and an integral brazed cartridge heater has successfully operated at 650 to 700 C for over 115,000 hours without signs of failure. A second 3l6L stainless steel heat pipe with a specially-designed Inconel 60 I rupture disk and a sintered nickel powder wick has demonstrated over 83,000 hours at 600 to 650 C with similar success. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 41 ,000 hours at nearly 700 0c. A hybrid (i.e. gas-fired and solar) heat pipe with a Haynes 230 envelope and a sintered porous nickel wick structure was operated for about 20,000 hours at nearly 700 C without signs of degradation. These life test results collectively have demonstrated the potential for high temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability, Detailed design specifications, operating hi story, and test results are described for each of these sodium heat pipes. Lessons learned and future life test plans are also discussed.
Mechanisms of lower body negative pressure-induced syncope
NASA Astrophysics Data System (ADS)
Davrath, Linda Ruble
Although extensively investigated, the mechanisms of post-spaceflight orthostatic intolerance have not been elucidated. The working hypothesis was that a markedly reduced left ventricular end-systolic volume (LVESV) would be achieved during progressive, presyncopal-limited LBNP and would cause bradycardia and a fall in blood pressure, thus triggering syncope. Eight healthy men, age 25.1 ± 1.3 years, volunteered for the study. Subjects were exposed to graded levels of LBNP on two separate occasions. Changes in left ventricular end-diastolic volume and LVESV were measured, using two-dimensional echocardiography, at each stage of LBNP from rest to presyncope. Plasma venous blood samples were withdrawn at the end of each stage of the LBNP protocol for the measurement of plasma venous catecholamines and plasma renin activity (PRA). Catecholamines were analyzed by HPLC with electro-chemical detection, and PRA was determined by radioimmunoassay. All subjects reached presyncope during the LBNP. LVESV decreased by 28% at presyncope with no evidence of ventricular cavity obliteration. Norepinephrine (NE) increased by 44% from rest to presyncope, but no epinephrine surge was detected (35% increase from rest to presyncope). These data indicate that it is possible to initiate syncope with only a 28% decrease in LVESV, and that sympatho-inhibition and bradycardia are not required elements for syncope to occur. To investigate the effect of moderate sodium restriction on cardiovascular hemodynamics and orthostatic tolerance, presyncopal LBNP testing was performed. Urinary sodium excretion was significantly higher on the normal-sodium diet when compared with the sodium-restricted diet, but urinary potassium was not different. Cumulative stress index (655 ± 460 on normal-sodium diet vs. 639 ± 388 on sodium-restricted diet) scores were not different. Cardiac volumes, blood pressure and total peripheral resistance were not different at any stage of the LBNP between the diets, nor were plasma catecholamine levels. Heart rate was significantly higher at presyncope on the sodium-restricted diet. Plasma renin activity was significantly higher during sodium restriction at rest, and during all stages of LBNP. Moderate dietary sodium restriction was not accompanied by apparent plasma volume reduction (hematocrit, body weight change), and did not appear to be detrimental to orthostatic function.
CMOS Active-Pixel Image Sensor With Simple Floating Gates
NASA Technical Reports Server (NTRS)
Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.
1996-01-01
Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.
Salmi, Zakaria; Benzarti, Karim; Chehimi, Mohamed M
2013-11-05
We describe a simple, off-the-beaten-path strategy for making clay/polymer nanocomposites through tandem diazonium salt interface chemistry and radical photopolymerization. Prior to photopolymerization, sodium montmorillonite (MMT) was ion exchanged with N,N'-dimethylbenzenediazonium cation (DMA) from the tetrafluoroborate salt precursor. DMA acts as a hydrogen donor for benzophenone in solution; this pair of co-initiators permits us to photopolymerize glycidyl methacrylate (GMA) between the lamellae of the diazonium-modified clay, therefore providing intercalated MMT-PGMA nanocomposites with an onset of exfoliation. This work conclusively provides a new approach for bridging reactive and functional polymers to layered nanomaterials via aryl diazonium salts in a simple, fast, efficient cation-exchange approach.
Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Norris, Jody R.; Gamper, Merry E.; Hallberg, Laura L.
2004-01-01
As part of the Yellowstone River Basin National Water Quality Assessment study, ground-water samples were collected from Quaternary unconsolidated-deposit and lower Tertiary aquifers in the Bighorn Basin of Wyoming and Montana from 1999 to 2001. Samples from 54 wells were analyzed for physical characteristics, major ions, trace elements, nutrients, dissolved organic carbon, radionuclides, pesticide compounds, and volatile organic compounds (VOCs) to evaluate current water-quality conditions in both aquifers. Water-quality samples indicated that waters generally were suitable for most uses, and that natural conditions, rather than the effects of human activities, were more likely to limit uses of the waters. Waters in both types of aquifers generally were highly mineralized, and total dissolved-solids concentrations frequently exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 500 milligrams per liter (mg/L). Because of generally high mineralization, waters from nearly one-half of the samples from Quaternary aquifers and more than one-half of the samples from lower Tertiary aquifers were not classified as fresh (dissolved-solids concentration were not less than 1,000 mg/L). The anions sulfate, fluoride, and chloride were measured in some ground-water samples at concentrations greater than SMCLs. Most waters from the Quaternary aquifers were classified as very hard (hardness greater than 180 mg/L), but hardness varied much more in waters from the lower Tertiary aquifers and ranged from soft (less than 60 mg/L) to very hard (greater than 180 mg/L). Major-ion chemistry varied with dissolved-solids concentrations. In both types of aquifers, the predominant anion changes from bicarbonate to sulfate with increasing dissolved-solids concentrations. Samples from Quaternary aquifers with fresh waters generally were calcium-bicarbonate, calcium-sodium-bicarbonate, and calcium-sodium-sulfate-bicarbonate type waters, whereas samples with larger concentrations generally were calcium-sodium-sulfate, calcium-sulfate, or sodium-sulfate-type waters. In the lower Tertiary aquifers, samples with fresh waters generally were sodium-bicarbonate or sodium-bicarbonate-sulfate type waters, whereas samples with larger concentrations were sodium-sulfate or calcium-sodium-sulfate types. Concentrations of most trace elements in both types of aquifers generally were small and most were less than applicable USEPA standards. The trace elements that most often did not meet USEPA secondary drinking-water standards were iron and manganese. In fact, the SMCL for manganese was the most frequently exceeded standard; 68 percent of the samples from the Quaternary aquifers and 31 percent of the samples from the lower Tertiary aquifers exceeded the manganese standard. Geochemical conditions may control manganese in both aquifers as concentrations in Quaternary aquifers were negatively correlated with dissolved oxygen concentrations and concentrations in lower Tertiary aquifers decreased with increasing pH. Elevated nitrate concentrations, in addition to detection of pesticides and VOCs in both aquifers, indicated some effects of human activities on ground-water quality. Nitrate concentrations in 36 percent of the wells in Quaternary aquifers and 28 percent of the wells in lower Tertiary aquifers were greater than 1 mg/L, which may indicate ground-water contamination from human sources. The USEPA drinking-water Maximum Contaminant Level (MCL) for nitrate, 10 mg/L, was exceeded in 8 percent of samples collected from Quaternary aquifers and 3 percent from lower Tertiary aquifers. Nitrate concentrations in Quaternary aquifers were positively correlated with the percentage of cropland and other agricultural land (non-cropland), and negatively correlated with rangeland and riparian land. In the lower Tertiary aquifers, nitrate concentrations only were correlated with the percentage of cropland. Concentratio
Steudel, Ralf; Steudel, Yana
2013-02-25
The sodium-sulfur (NAS) battery is a candidate for energy storage and load leveling in power systems, by using the reversible reduction of elemental sulfur by sodium metal to give a liquid mixture of polysulfides (Na(2)S(n)) at approximately 320°C. We investigated a large number of reactions possibly occurring in such sodium polysulfide melts by using density functional calculations at the G3X(MP2)/B3LYP/6-31+G(2df,p) level of theory including polarizable continuum model (PCM) corrections for two polarizable phases, to obtain geometric and, for the first time, thermodynamic data for the liquid sodium-sulfur system. Novel reaction sequences for the electrochemical reduction of elemental sulfur are proposed on the basis of their Gibbs reaction energies. We suggest that the primary reduction product of S(8) is the radical anion S(8)(˙-), which decomposes at the operating temperature of NAS batteries exergonically to the radicals S(2)(˙-) and S(3)(˙-) together with the neutral species S(6) and S(5), respectively. In addition, S(8)(˙-) is predicted to disproportionate exergonically to S(8) and S(8)(2-) followed by the dissociation of the latter into two S(4)(˙-) radical ions. By recombination reactions of these radicals various polysulfide dianions can in principle be formed. However, polysulfide dianions larger than S(4)(2-) are thermally unstable at 320°C and smaller dianions as well as radical monoanions dominate in Na(2)S(n) (n=2-5) melts instead. The reverse reactions are predicted to take place when the NAS battery is charged. We show that ion pairs of the types NaS(2)˙, NaS(n)(-), and Na(2)S(n) can be expected at least for n=2 and 3 in NAS batteries, but are unlikely in aqueous sodium polysulfide except at high concentrations. The structures of such radicals and anions with up to nine sulfur atoms are reported, because they are predicted to play a key role in the electrochemical reduction process. A large number of isomerization, disproportionation, and sulfurization reactions of polysulfide mono- and dianions have been investigated in the gas phase and in a polarizable continuum, and numerous reaction enthalpies as well as Gibbs energies are reported. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assessment of groundwater quality from Bankura I and II Blocks, Bankura District, West Bengal, India
NASA Astrophysics Data System (ADS)
Nag, S. K.; Das, Shreya
2017-10-01
Hydrochemical evaluation of groundwater has been conducted in Bankura I and II Blocks to analyze and determining groundwater quality in the area. Thirty-six groundwater samples were analyzed for their physical and chemical properties using standard laboratory methods. The constituents have the following ranges in the water: pH 6.4-8.6, electrical conductivity 80-1900 μS/cm, total hardness 30-730 mg/l, TDS 48-1001 mg/l, Ca2+ 4.2-222.6 mg/l, Na+ 2.33-103.33 mg/l, Mg2+ 1.56-115.36 mg/l, K+ 0.67-14 mg/l and Fe BDL-2.53 mg/l, {HCO}3^{ - } 48.8-1000.4 mg/l, Cl- 5.6-459.86 mg/l and {SO}4^{ = } BDL-99.03 mg/l. Results also show that bicarbonate ions ( {HCO}3^{ - } ) dominate the other anions (Cl- and {SO}4^{2 - } ). Sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium carbonate (RSC), magnesium adsorption ratio (MAR), total hardness (TH), and permeability index (PI) were calculated as derived parameters, to investigate the ionic toxicity. Concerned chemical parameters when plotted in the U.S. Salinity diagram indicate that waters are of C1-S1, C2-S1 and C3-S1 types, i.e., low salinity and low sodium which is good for irrigation. The values of Sodium Adsorption Ratio indicate that the groundwater of the area falls under the category of low sodium hazard. So, there is neither salinity nor toxicity problem of irrigation water, and hence the ground water can safely be used for long-term irrigation. The chemical parameters when plotted in Piper's trilinear diagram are found to concentrate in the central and west central part of the diamond-shaped field. Based on the analytical results, groundwater in the area is found to be generally fresh and hard to very hard. The abundance of the major ions is as follows: HCO3 > Cl > SO4 and Ca > Na > Mg > K > Fe. Results also show that bicarbonate ions ( {HCO}3^{ - } ) dominate the other anions (Cl- and {SO}4^{2 - } ). According to Gibbs diagrams samples fall in the rock dominance field and the chemical quality of groundwater is related to the lithology of the area. The alkaline earth elements (Ca and Mg) occur in greater abundance than alkaline elements (Na and K). A comparative study of our analytical results with the WHO standards of drinking water indicate that the present waters are also good for drinking purposes.
Measuring ITS deployment and integration
DOT National Transportation Integrated Search
1999-01-01
A consistent and simple methodology was developed to assess both the level of deployment of individual ITS elements and the level of integration between these elements. This method is based on the metropolitan ITS infrastructure, a blueprint defined ...
NASA Astrophysics Data System (ADS)
Zhang, Xiukui; Wu, Ping; Jiang, Li; Zhang, Xiaofang; Shi, Hongxia; Zhu, Xiaoshu; Wei, Shaohua; Zhou, Yiming
2018-06-01
Herein, a very simple and cost-effective solid state reaction method is employed to obtain, for the first time, the antimony nanoparticles embedded within reduced graphene oxide matrices (designated as Sb/rGO). By directly grinding antimony chloride and sodium hydroxide together at room temperature in the presence of graphene oxide (GO), Sb4O5Cl2 precursor was quickly obtained, which is evenly incorporated in the graphene oxide matrices. After subsequent chemical reduction by NaBH4, the Sb/rGO composite was successfully synthesized. The as-prepared Sb/rGO composite consists of uniform Sb nanoparticles of sub-20 nm, all of which have been wrapped in and protected by the rGO matrices. The Sb nanoparticles serve as a sufficient sodium ion reservoir while the rGO matrices provide highly efficient pathways for transport of sodium ions and electrons. Moreover, the volume expansion of Sb during sodiation can be buffered in the rGO matrices. As a result, the Sb/rGO composite exhibits excellent electrochemical performance in sodium-ion batteries (SIBs), including an enhanced cycling stability with a highly reversible charge capacity of 455 mA h g-1 after 45 cycles at 100 mA g-1, and a coulombic efficiency exceeding 98% during cycling. The findings in the present work pave the way to not only synthesize the designated promising electrode materials for high performance SIBs, but also thoroughly understand the solid-state reaction.
Ma, Ming-Guo
2012-01-01
Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of hierarchically nanosized HA with flower-like structure assembled from nanosheets consisting of nanorod building blocks. The HA with the hierarchical nanostructure was formed via a soft-template assisted self-assembly mechanism. The hierarchically nanostructured HA has a good biocompatibility and essentially no in-vitro cytotoxicity. PMID:22619527
Determination of trace elements in triglycine sulfate solutions
NASA Technical Reports Server (NTRS)
Tadros, Shawky H.
1993-01-01
Ten elements were divided into 2 groups. The elements in the first group included iron, nickel, chromium, manganese, copper, and gold. The elements in the second group included zinc, cobalt, lead, cadmium, and gold. Five ppm of each element in each group was spiked in a 1 percent triglycine sulfate (TGS) solution. Glycine was removed with 1-naphthyl isocyanate in ether medium. The glycine derivative 1-naphthyl isocyanate glycine was removed by filtration, and the filtrates were analyzed for the different elements. Analysis of these elements was performed by using the 5100 Perkin-Elmer Atomic Absorption Spectrophotometer. The result of these experiments was the observation that there was a decrease in the concentration of chromium and gold, which was interpreted to be due to the chelation of these elements by the derivative 1-naphthyl isocyanate glycine. Further research is needed to determine the concentration of other elements in triglycine sulfate (TGS) solutions. These elements will include lithium, sodium, rubidium, magnesium, calcium, strontium, barium, aluminum, and silicon. These are the most likely elements to be found in the sulfuric acid used in manufacturing the TGS crystal. Moreover, we will extend our research to investigate the structural formula of the violet colored chelated compounds, which had been formed by interaction of the derivative 1-naphthyl isocyanate glycine with the different elements, such as gold, chromium.
Effect of Vanadium and Sodium Compounds on Accelerated Oxidation of Nickel-Base Alloys.
The product of the reaction between V2O5 and the substrates is dependent upon the alloying elements present in the alloy. In the absence of alloying...reaction appears to be a glass . The study is related to corrosion inhibitions in vanadium containing fuels in gas turbines. (Modified author abstract)
Acoustic transducer with damping means
Smith, Richard W.; Adamson, Gerald E.
1976-11-02
An ultrasonic transducer specifically suited to high temperature sodium applications is described. A piezoelectric active element is joined to the transducer faceplate by coating the faceplate and juxtaposed active element face with wetting agents specifically compatible with the bonding procedure employed to achieve the joint. The opposite face of the active element is fitted with a backing member designed to assure continued electrical continuity during adverse operating conditions which can result in the fracturing of the active element. The fit is achieved employing a spring-loaded electrode operably arranged to electrically couple the internal transducer components, enclosed in a hermetically sealed housing, to accessory components normally employed in transducer applications. Two alternative backing members are taught for assuring electrical continuity. The first employs a resilient, discrete multipoint contact electrode in electrical communication with the active element face. The second employs a resilient, elastomeric, electrically conductive, damped member in electrical communication with the active element face in a manner to effect ring-down of the transducer. Each embodiment provides continued electrical continuity within the transducer in the event the active element fractures, while the second provides the added benefit of damping.
Writer's cramp: increased dorsal premotor activity during intended writing.
Delnooz, Cathérine C S; Helmich, Rick C; Medendorp, W P; Van de Warrenburg, Bart P C; Toni, Ivan
2013-03-01
Simple writer's cramp (WC) is a task-specific form of dystonia, characterized by abnormal movements and postures of the hand during writing. It is extremely task-specific, since dystonic symptoms can occur when a patient uses a pencil for writing, but not when it is used for sharpening. Maladaptive plasticity, loss of inhibition, and abnormal sensory processing are important pathophysiological elements of WC. However, it remains unclear how those elements can account for its task-specificity. We used fMRI to isolate cerebral alterations associated with the task-specificity of simple WC. Subjects (13 simple WC patients, 20 matched controls) imagined grasping a pencil to either write with it or sharpen it. On each trial, we manipulated the pencil's position and the number of imagined movements, while monitoring variations in motor output with electromyography. We show that simple WC is characterized by abnormally increased activity in the dorsal premotor cortex (PMd) when imagined actions are specifically related to writing. This cerebral effect was independent from the known deficits in dystonia in generating focal motor output and in processing somatosensory feedback. This abnormal activity of the PMd suggests that the task-specific element of simple WC is primarily due to alterations at the planning level, in the computations that transform a desired action outcome into the motor commands leading to that action. These findings open the way for testing the therapeutic value of interventions that take into account the computational substrate of task-specificity in simple WC, e.g. modulations of PMd activity during the planning phase of writing. Copyright © 2011 Wiley Periodicals, Inc.
A simple model of fluid flow and electrolyte balance in the body
NASA Technical Reports Server (NTRS)
White, R. J.; Neal, L.
1973-01-01
The model is basically a three-compartment model, the three compartments being the plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea are the only major solutes considered explicitly. The control of body water and electrolyte distribution is affected via drinking and hormone levels. Basically, the model follows the effect of various oral input water loads on solute and water distribution throughout the body.
Whitcomb, David C; Ermentrout, G Bard
2004-08-01
To develop a simple, physiologically based mathematical model of pancreatic duct cell secretion using experimentally derived parameters that generates pancreatic fluid bicarbonate concentrations of >140 mM after CFTR activation. A new mathematical model was developed simulating a duct cell within a proximal pancreatic duct and included a sodium-2-bicarbonate cotransporter (NBC) and sodium-potassium pump (NaK pump) on a chloride-impermeable basolateral membrane, CFTR on the luminal membrane with 0.2 to 1 bicarbonate to chloride permeability ratio. Chloride-bicarbonate antiporters (Cl/HCO3 AP) were added or subtracted from the basolateral (APb) and luminal (APl) membranes. The model was integrated over time using XPPAUT. This model predicts robust, NaK pump-dependent bicarbonate secretion with opening of the CFTR, generates and maintains pancreatic fluid secretion with bicarbonate concentrations >140 mM, and returns to basal levels with CFTR closure. Limiting CFTR permeability to bicarbonate, as seen in some CFTR mutations, markedly inhibited pancreatic bicarbonate and fluid secretion. A simple CFTR-dependent duct cell model can explain active, high-volume, high-concentration bicarbonate secretion in pancreatic juice that reproduces the experimental findings. This model may also provide insight into why CFTR mutations that predominantly affect bicarbonate permeability predispose to pancreatic dysfunction in humans.
Yu, Shengbing; Zhu, Binghui; Lv, Fen; Li, Shaoxiao; Huang, Weixiong
2012-10-15
A rapid method for determination of sodium cyclamate in foods and beverages was developed. Sodium cyclamate was converted to N,N-dichloridecyclohexylamine by reaction with sodium hypochlorite under acid condition. N,N-dichloridecyclohexylamine was subsequently extracted by n-hexane and determined by gas chromatography. Conditions such as derivatization time, the concentration of sodium hypochlorite and sulphuric acid were optimised. Amino acids, aliphatic amines, and food additives such as preservatives, dyes and sweeteners showed no interference for quantification of cyclamate. The correlation coefficient of calibration curve was 0.9993 in the range of 5.0-250mg/L. The limits of detection (LOD) and limits of quantification (LOQ) were calculated as three or ten times the signal-to-noise ratio (S/N), respectively. The LOD and LOQ for yellow wine and fruit juice were 0.05 and 0.2mg/L, respectively. The LOD and LOQ for cake and preserved fruit were 0.25 and 0.8mg/kg, respectively. The intra-day and inter-day RSD were 0.28% and 1.1% (n=5), respectively. The method was successfully applied for determination of cyclamate in yellow wine, cake, fruit juice and preserved fruit. This method was simple, fast, and sensitive. It was suitable for the determination of cyclamate in foods and beverages for safety and quality control inspections. Copyright © 2012 Elsevier Ltd. All rights reserved.
Galach, Magda; Antosiewicz, Stefan; Baczynski, Daniel; Wankowicz, Zofia; Waniewski, Jacek
2013-02-01
In spite of many peritoneal tests proposed, there is still a need for a simple and reliable new approach for deriving detailed information about peritoneal membrane characteristics, especially those related to fluid transport. The sequential peritoneal equilibration test (sPET) that includes PET (glucose 2.27%, 4 h) followed by miniPET (glucose 3.86%, 1 h) was performed in 27 stable continuous ambulatory peritoneal dialysis patients. Ultrafiltration volumes, glucose absorption, ratio of concentration in dialysis fluid to concentration in plasma (D/P), sodium dip (Dip D/P Sodium), free water fraction (FWF60) and the ultrafiltration passing through small pores at 60 min (UFSP60), were calculated using clinical data. Peritoneal transport parameters were estimated using the three-pore model (3p model) and clinical data. Osmotic conductance for glucose was calculated from the parameters of the model. D/P creatinine correlated with diffusive mass transport parameters for all considered solutes, but not with fluid transport characteristics. Hydraulic permeability (L(p)S) correlated with net ultrafiltration from miniPET, UFSP60, FWF60 and sodium dip. The fraction of ultrasmall pores correlated with FWF60 and sodium dip. The sequential PET described and interpreted mechanisms of ultrafiltration and solute transport. Fluid transport parameters from the 3p model were independent of the PET D/P creatinine, but correlated with fluid transport characteristics from PET and miniPET.
Liu, Fang; Wang, Yan; Wang, Yuhong; Zhou, Junyi; Yan, Chao
2012-03-01
A high performance liquid chromatographic method with evaporative light scattering detection (HPLC-ELSD) was developed for the simultaneous determination of five synthetic sweeteners (acesulfame-K, saccharin sodium, sodium cyclamate, sucralose and aspartame) in food. The sweeteners were extracted by 0.1% (v/v) formic acid buffer solution. The extract of sample was cleaned up and concentrated with solid phase extraction (SPE) cartridge. Then the sweeteners were separated on a C18 column (3 microm) using 0.1% (v/v) formic acid buffer (adjusted to pH = 3.5 with aqueous ammonia solution)-methanol (61: 39, v/v) as mobile phase, and finally detected by ELSD. The results showed that the reasonable linearity was achieved for all the analytes over the range of 30 - 1000 mg/L with the correlation coefficients (r) greater than 0.997. The recoveries for the five sweeteners ranged from 85.6% to 109.0% at three spiked concentrations with the relative standard deviations (RSDs) lower than 4.0%. The limits of detection (LODs, S/N = 3) were 2.5 mg/L for both acesulfame-K and sucralose, 3 mg/L for saccharin sodium, 10 mg/L for sodium cyclamate, and 5 mg/L for aspartame. The method is simple, sensitive and low cost, and has been successfully applied to the simultaneous determination of the five synthetic sweeteners in food.
Park, Gi Dae; Kang, Yun Chan
2016-03-14
A simple one-pot synthesis of metal selenide/reduced graphene oxide (rGO) composite powders for application as anode materials in sodium-ion batteries was developed. The detailed mechanism of formation of the CoSe(x)-rGO composite powders that were selected as the first target material in the spray pyrolysis process was studied. The crumple-structured CoSe(x)-rGO composite powders prepared by spray pyrolysis at 800 °C had a crystal structure consisting mainly of Co0.85 Se with a minor phase of CoSe2. The bare CoSe(x) powders prepared for comparison had a spherical shape and hollow structure. The discharge capacities of the CoSe(x)-rGO composite and bare CoSe(x) powders in the 50th cycle at a constant current density of 0.3 A g(-1) were 420 and 215 mA h g(-1), respectively, and their capacity retentions measured from the second cycle were 80 and 46%, respectively. The high structural stability of the CoSe(x)-rGO composite powders for repeated sodium-ion charge and discharge processes resulted in superior sodium-ion storage properties compared to those of the bare CoSe(x) powders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yue, Ji -Li; Yang, Xiao -Qing; Zhou, Yong -Ning; ...
2015-10-09
High rate capability and long cycle life are challenging goals for the development of room temperature sodium-ion batteries. Here we report a new single phase quaternary O3-type layer-structured transition metal oxide Na(NiCoFeTi) 1/4O 2 synthesized by a simple solid-state reaction as a new cathode material for sodium-ion batteries. It can deliver a reversible capacity of 90.6 mA h g –1 at a rate as high as 20C. At 5C, 75.0% of the initial specific capacity can be retained after 400 cycles with a capacity-decay rate of 0.07% per cycle, demonstrating a superior long-term cyclability at high current density. X-ray diffractionmore » and absorption characterization revealed reversible phase transformations and electronic structural changes during the Na + deintercalation/intercalation process. Ni, Co and Fe ions contribute to charge compensation during charge and discharge. Although Ti ions do not contribute to the charge transfer, they play a very important role in stabilizing the structure during charge and discharge by suppressing the Fe migration. Additionally, Ti substitution can also smooth the charge–discharge plateaus effectively, which provides a potential advantage for the commercialization of this material for room temperature sodium-ion batteries.« less
The role of sodium in the salty taste of permeate.
Frankowski, K M; Miracle, R E; Drake, M A
2014-09-01
Many food companies are trying to limit the amount of sodium in their products. Permeate, the liquid remaining after whey or milk is ultrafiltered, has been suggested as a salt substitute. The objective of this study was to determine the sensory and compositional properties of permeates and to determine if elements other than sodium contribute to the salty taste of permeate. Eighteen whey (n=14) and reduced-lactose (n=4) permeates were obtained in duplicate from commercial facilities. Proximate analyses, specific mineral content, and nonprotein nitrogen were determined. Organic acids and nucleotides were extracted followed by HPLC. Aromatic volatiles were evaluated by gas chromatography-mass spectrometry. Descriptive analysis of permeates and model solutions was conducted using a trained sensory panel. Whey permeates were characterized by cooked/milky and brothy flavors, sweet taste, and low salty taste. Permeates with lactose removed were distinctly salty. The organic acids with the highest concentration in permeates were lactic and citric acids. Volatiles included aldehydes, sulfur-containing compounds, and diacetyl. Sensory tests with sodium chloride solutions confirmed that the salty taste of reduced-lactose permeates was not solely due to the sodium present. Permeate models were created with NaCl, KCl, lactic acid, citric acid, hippuric acid, uric acid, orotic acid, and urea; in addition to NaCl, KCl, lactic acid, and orotic acid were contributors to the salty taste. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The formation conditions of chondrules and chondrites
Alexander, C.M. O'D.; Grossman, Jeffrey N.; Ebel, D.S.; Ciesla, F.J.
2008-01-01
Chondrules, which are roughly millimeter-sized silicate-rich spherules, dominate the most primitive meteorites, the chondrites. They formed as molten droplets and, judging from their abundances in chondrites, are the products of one of the most energetic processes that operated in the early inner solar system. The conditions and mechanism of chondrule formation remain poorly understood. Here we show that the abundance of the volatile element sodium remained relatively constant during chondrule formation. Prevention of the evaporation of sodium requires that chondrules formed in regions with much higher solid densities than predicted by known nebular concentration mechanisms. These regions would probably have been self-gravitating. Our model explains many other chemical characteristics of chondrules and also implies that chondrule and planetesimal formation were linked.
Thermoelectric energy conversion with solid electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, T.
1983-09-02
The alkali metal thermoelectric converter (AMTEC) is a device for the direct conversion of heat to electrical energy. The sodium ion conductor beta''-alumina is used to form a high-temperature regenerative concentration cell for elemental sodium. An AMTEC of mature design should have an efficiency of 20 to 40%, a power density of 0.5 kilowatt per kilogram or more, no moving parts, low maintenance requirements, high durability, and efficiency independent of size. It should be usable with high-temperature combustion, nuclear, or solar heat sources. Experiments have demonstrated the feasibility of the AMTEC and confirmed the theoretical analysis of the device. Amore » wide range of applications from aerospace power to utility power plants appears possible.« less
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...
2015-11-12
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells.
Law, Robert; Levin, Michael
2015-10-15
Bioelectric gradients among all cells, not just within excitable nerve and muscle, play instructive roles in developmental and regenerative pattern formation. Plasma membrane resting potential gradients regulate cell behaviors by regulating downstream transcriptional and epigenetic events. Unlike neurons, which fire rapidly and typically return to the same polarized state, developmental bioelectric signaling involves many cell types stably maintaining various levels of resting potential during morphogenetic events. It is important to begin to quantitatively model the stability of bioelectric states in cells, to understand computation and pattern maintenance during regeneration and remodeling. To facilitate the analysis of endogenous bioelectric signaling and the exploitation of voltage-based cellular controls in synthetic bioengineering applications, we sought to understand the conditions under which somatic cells can stably maintain distinct resting potential values (a type of state memory). Using the Channelpedia ion channel database, we generated an array of amphibian oocyte and mammalian membrane models for voltage evolution. These models were analyzed and searched, by simulation, for a simple dynamical property, multistability, which forms a type of voltage memory. We find that typical mammalian models and amphibian oocyte models exhibit bistability when expressing different ion channel subsets, with either persistent sodium or inward-rectifying potassium, respectively, playing a facilitative role in bistable memory formation. We illustrate this difference using fast sodium channel dynamics for which a comprehensive theory exists, where the same model exhibits bistability under mammalian conditions but not amphibian conditions. In amphibians, potassium channels from the Kv1.x and Kv2.x families tend to disrupt this bistable memory formation. We also identify some common principles under which physiological memory emerges, which suggest specific strategies for implementing memories in bioengineering contexts. Our results reveal conditions under which cells can stably maintain one of several resting voltage potential values. These models suggest testable predictions for experiments in developmental bioelectricity, and illustrate how cells can be used as versatile physiological memory elements in synthetic biology, and unconventional computation contexts.
Self supporting heat transfer element
Story, Grosvenor Cook; Baldonado, Ray Orico
2002-01-01
The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.
Dennis, V W; Brazy, P C
1978-08-01
Interactions among the transport systems involved with sodium, bicarbonate, glucose, phosphate, and alanine absorption in isolated segments of the rabbit proximal convoluted tubule were examined with radioisotopic techniques to measure glucose, phosphate, and fluid absorption rates. The composition of the perfusate and bath varied from normal, physiological fluids to fluids deficient in a single solute. The deletion of glucose from the perfusate increased the lumen-to-bath flux of phosphate from 5.51 +/- 1.15 to 8.32 +/- 1.34 pmol/mm-min (P less than 0.01). Similar changes occurred when glucose transport was inhibited by phlorizin 10 micron in the perfusate, The deletion of alanine from the perfusate increased the lumen-to-bath flux of phosphate from 6.55 +/- 1.08 to 9.00 +/- 1.30 pmol/mm-min (P less than 0.01) but did not affect glucose transport significantly, 80.1 +/- 10.1 vs. 72.5 +/- 5.4 pmol/mm-min. Replacement of intraluminal sodium with choline, elimination of potassium from the bath, and removal of bicarbonate from the lumen and bath each reduced glucose, phosphate, and fluid absorption. These data indicate that the proximal absorptive processes for glucose and for phosphate include elements that are dependent upon some function of sodium transport. Additionally, the effects on phosphate transport of deleting glucose or alanine occur independent of any changes in net sodium transport and are opposite the effects of deleting bicarbonate. These differences may relate to the observations that the transport of glucose and alanine is electrogenic while that of bicarbonate is not. Regardless of possible mechanisms, the data demonstrate that important changes in the absorption rates of different solutes handled significantly by the proximal convoluted tubule may occur in response to changes in specific components of proximal sodium transport.
van der Graaf, Anne Marijn; Paauw, Nina D; Toering, Tsjitske J; Feelisch, Martin; Faas, Marijke M; Sutton, Thomas R; Minnion, Magdalena; Lefrandt, Joop D; Scherjon, Sicco A; Franx, Arie; Navis, Gerjan; Lely, A Titia
2016-06-01
Women with a history of preeclampsia have an increased risk for cardiovascular diseases later in life. Persistent vascular alterations in the postpartum period might contribute to this increased risk. The current study assessed arterial stiffness under low sodium (LS) and high sodium (HS) conditions in a well-characterized group of formerly early-onset preeclamptic (fPE) women and formerly pregnant (fHP) women. Eighteen fHP and 18 fPE women were studied at an average of 5 yr after pregnancy on 1 wk of LS (50 mmol Na(+)/day) and 1 wk of HS (200 mmol Na(+)/day) intake. Arterial stiffness was measured by pulse-wave analysis (aortic augmentation index, AIx) and carotid-femoral pulse-wave velocity (PWV). Circulating markers of the renin-angiotensin aldosterone system (RAAS), extracellular volume (ECV), nitric oxide (NO), and hydrogen sulfide (H2S) were measured in an effort to identify potential mechanistic elements underlying adaptation of arterial stiffness. AIx was significantly lower in fHP women on LS compared with HS while no difference in AIx was apparent in fPE women. PWV remained unchanged upon different sodium loads in either group. Comparable sodium-dependent changes in RAAS, ECV, and NO/H2S were observed in fHP and fPE women. fPE women have an impaired ability to adapt their arterial stiffness in response to changes in sodium intake, independently of blood pressure, RAAS, ECV, and NO/H2S status. The pathways involved in impaired adaptation of arterial stiffness, and its possible contribution to the increased long-term risk for cardiovascular diseases in fPE women, remain to be investigated. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Pan, Feng; Ding, Xiaoxue; Launey, Kristina D.; Draayer, J. P.
2018-06-01
A simple and effective algebraic isospin projection procedure for constructing orthonormal basis vectors of irreducible representations of O (5) ⊃OT (3) ⊗ON (2) from those in the canonical O (5) ⊃ SUΛ (2) ⊗ SUI (2) basis is outlined. The expansion coefficients are components of null space vectors of the projection matrix with four nonzero elements in each row in general. Explicit formulae for evaluating OT (3)-reduced matrix elements of O (5) generators are derived.
Antidepressant and anxiolytic-like activity of sodium selenite after acute treatment in mice.
Kędzierska, Ewa; Dudka, Jarosław; Poleszak, Ewa; Kotlińska, Jolanta H
2017-04-01
Selenium (Se) is an essential trace element for humans and animals, that is needed for a broad variety of physiological functions including thyroid hormone metabolism, protection against oxidative stress, and immunity associated functions. Human nutritional Se deficiencies are associated with neuropsychiatric diseases, like Alzheimer's disease, Parkinson's disease, obsessive - compulsive disorder, stroke, epilepsy as well as depressive behaviours. In this study we examined antidepressant- and anxiolytic-like activity of Se in the inorganic form of sodium selenite and investigated whether Se influence on the locomotor activity in mice. The antidepressant-like and anxiolytic-like activity of Se was assessed using forced swim test (FST) and elevated plus-maze test (EPM), respectively. Spontaneous locomotor activity was measured using photoresistor actimeters. Sodium selenite administered at the doses of 0.5, 1, and 2mg/kg, ip reduced immobility time in the FST exerting antidepressant-like activity. In the EPM test, sodium selenite at the same doses, produced anxiolytic-like effect; the doses active in both tests did not affect locomotor activity, indicating that these effects of Se are specific. These potential antidepressant- and anxiolytic-like effects of Se require more detailed experimental study using animal models to approach a clear conclusion regarding the potential mechanism of the observed effect. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.
Mineral metabolism in dimethylnitrosamine-induced hepatic fibrosis.
George, Joseph
2006-10-01
Complications such as ascites during the pathogenesis of hepatic fibrosis and cirrhosis may lead to several abnormalities in mineral metabolism. In the present investigation, we have monitored serum and liver concentrations of calcium, magnesium, sodium and potassium during experimentally induced hepatic fibrosis in rats. The liver injury was induced by intraperitoneal injections of dimethylnitrosamine (DMN; N-nitrosodimethylamine, NDMA) in doses 1 mg/100 g body weight on 3 consecutive days of each week over a period of 21 days. Calcium, magnesium, sodium and potassium were measured by atomic absorption spectrophotometry in the serum and liver on days 7, 14 and 21 after the start of DMN administration. Negative correlations were observed between liver function tests and serum mineral levels, except with albumin. Calcium, magnesium, potassium and sodium concentrations in the serum were decreased after the induction of liver injury. The liver calcium content was increased after DMN treatment. No change occurred in liver sodium content. However, magnesium and potassium content was significantly reduced in the hepatic tissue. The results suggest that DMN-induced hepatic fibrosis plays certain role in the alteration of essential elements. The low levels of albumin and the related ascites may be one of the major causes of the imbalance of mineral metabolism in hepatic fibrosis and further aggravation of the disease.
Gaonkar, Teja; Nayak, Pramoda Kumar; Garg, Sandeep; Bhosle, Saroj
2012-01-01
Bioremediation in natural ecosystems is dependent upon the availability of micronutrients and cofactors, of which iron is one of the essential elements. Under aerobic and alkaline conditions, iron oxidizes to Fe(+3) creating iron deficiency. To acquire this essential growth-limiting nutrient, bacteria produce low-molecular-weight, high-affinity iron chelators termed siderophores. In this study, siderophore-producing bacteria from rhizosphere and nonrhizosphere areas of coastal sand dunes were isolated using a culture-dependent approach and were assigned to 8 different genera with the predominance of Bacillus sp. Studies on the ability of these isolates to grow on sodium benzoate revealed that a pigmented bacterial culture TMR2.13 identified as Pseudomonas aeruginosa showed growth on mineral salts medium (MSM) with 2% of sodium benzoate and produced a yellowish fluorescent siderophore identified as pyoverdine. This was inhibited above 54 μM of added iron in MSM with glucose without affecting growth, while, in presence of sodium benzoate, siderophore was produced even up to the presence of 108 μM of added iron. Increase in the requirement of iron for metabolism of aromatic compounds in ecosystems where the nutrient deficiencies occur naturally would be one of the regulating factors for the bioremediation process.
NASA Astrophysics Data System (ADS)
Chauhan, H. P. S.; Carpenter, Jaswant; Joshi, Sapana
2014-09-01
The bis(N,N-dimethyldithiocarbamato-S,S‧)antimony(III) complexes have been obtained by the reaction of chloro bis(N,N-dimethyldithiocarbamato-S,S‧)antimony(III) with corresponding oxo or thio donor ligands such as sodium benzoate 1, sodium thioglycolate 2, phenol 3, sodium 1-propanethiolate 4, potassium thioacetate 5, sodium salicylate 6, ethane-1,2-dithiolate 7 and disodium oxalate 8. These complexes have been characterized by the physicochemical [melting point, molecular weight determination and elemental analysis (C, H, N, S and Sb)], spectral [UV-Visible, FT-IR, far IR, NMR (1H and 13C)], thermogravimetric (TG & DTA) analysis, ESI-Mass and powder X-ray diffraction studies. Thermogravimetric analysis of the complexes confirmed the final decomposition product as highly pure antimony sulfide (Sb2S3) and powder X-ray diffraction studies show that the complexes are in lower symmetry with monoclinic crystal lattice and nano-ranged particle size (11.51-20.82 nm). The complexes have also been screened against some bacterial and fungal strains for their antibacterial and antifungal activities and compared with standard drugs. These show that the complexes have greater activities against some human pathogenic bacteria and fungi than the activities of standard drugs.
Gaonkar, Teja; Nayak, Pramoda Kumar; Garg, Sandeep; Bhosle, Saroj
2012-01-01
Bioremediation in natural ecosystems is dependent upon the availability of micronutrients and cofactors, of which iron is one of the essential elements. Under aerobic and alkaline conditions, iron oxidizes to Fe+3 creating iron deficiency. To acquire this essential growth-limiting nutrient, bacteria produce low-molecular-weight, high-affinity iron chelators termed siderophores. In this study, siderophore-producing bacteria from rhizosphere and nonrhizosphere areas of coastal sand dunes were isolated using a culture-dependent approach and were assigned to 8 different genera with the predominance of Bacillus sp. Studies on the ability of these isolates to grow on sodium benzoate revealed that a pigmented bacterial culture TMR2.13 identified as Pseudomonas aeruginosa showed growth on mineral salts medium (MSM) with 2% of sodium benzoate and produced a yellowish fluorescent siderophore identified as pyoverdine. This was inhibited above 54 μM of added iron in MSM with glucose without affecting growth, while, in presence of sodium benzoate, siderophore was produced even up to the presence of 108 μM of added iron. Increase in the requirement of iron for metabolism of aromatic compounds in ecosystems where the nutrient deficiencies occur naturally would be one of the regulating factors for the bioremediation process. PMID:22629215
Huppertz, Thom; de Kruif, Cornelis G
2006-08-09
In this study, factors influencing the disruption and aggregation of casein micelles during high-pressure (HP) treatment at 250 MPa for 40 min were studied in situ in serum protein-free casein micelle suspensions. In control milk, light transmission increased with treatment time for approximately 15 min, after which a progressive partial reversal of the HP-induced increase in light transmission occurred, indicating initial HP-induced disruption of casein micelles, followed by reformation of casein aggregates from micellar fragments. The extent of HP-induced micellar disruption was negatively correlated with the concentration of casein micelles, milk pH, and levels of added ethanol, calcium chloride, or sodium chloride and positively correlated with the level of added sodium phosphate. The reformation of casein aggregates during prolonged HP treatment did not occur when HP-induced disruption of casein micelles was limited (<60%) or very extensive (>95%) and was promoted by a low initial milk pH or added sodium phosphate, sodium chloride, or ethanol. On the basis of these findings, a mechanism for HP-induced disruption of casein micelles and subsequent aggregation of micellar fragments is proposed, in which the main element appears to be HP-induced solubilization of micellar calcium phosphate.
NASA Technical Reports Server (NTRS)
Dix, M. G.; Harrison, D. R.; Edwards, T. M.
1982-01-01
Bubble vial with external aluminum-foil electrodes is sensing element for simple indicating tiltmeter. To measure bubble displacement, bridge circuit detects difference in capacitance between two sensing electrodes and reference electrode. Tiltmeter was developed for experiment on forecasting seismic events by changes in Earth's magnetic field.
Construction of a Simple Respirometer.
ERIC Educational Resources Information Center
Taboga, Leandro
1979-01-01
Instructions for making a simple respirometer, to measure rates of oxygen consumption of organisms, are presented. The instrument incorporates most of the basic elements of commercial respirometers but can be made inexpensively by high school students. Operating instructions and applications are given. (Author/SA)
Variational formulation of high performance finite elements: Parametrized variational principles
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Militello, Carmello
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.
Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays
Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.
2016-01-01
Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer. PMID:26876008
Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays
NASA Astrophysics Data System (ADS)
Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.
2016-02-01
Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer.
Carmona-Ribeiro, A M; Chaimovich, H
1986-01-01
Small dioctadecyldimethylammonium chloride (DODAC) vesicles prepared by sonication fuse upon addition of NaCl as detected by several methods (electron microscopy, trapped volume determinations, temperature-dependent phase transition curves, and osmometer behavior. In contrast, small sodium dihexadecyl phosphate (DHP) vesicles mainly aggregate upon NaCl addition as shown by electron microscopy and the lack of osmometer behavior. Scatter-derived absorbance changes of small and large DODAC or DHP vesicles as a function of time after salt addition were obtained for a range of NaCl or amphiphile concentration. These changes were interpreted in accordance with a phenomenological model based upon fundamental light-scattering laws and simple geometrical considerations. Short-range hydration repulsion between DODAC (or DHP) vesicles is possibly the main energy barrier for the fusion process. Images FIGURE 2 FIGURE 9 PMID:3779002
Role of U(VI) Reduction by Geobacter species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovely, Derrick
2008-12-23
Previous work had suggested that Acholeplasma palmae has a higher capacity for uranium sorption than other bacteria studied. Sorption studies were performed with cells in suspension in various solutions containing uranium, and results were used to generate uranium-biosorption isotherms. Results from this study showed that the U(VI) sorption capacity of G. uraniireducens was relatively similar in simple solutions, such as sodium chloride or bicarbonate. However, this ability to sorb uranium significantly decreased in groundwater. This suggested that certain chemicals present in the groundwater were inhibiting the ability of cell components of Geobacter to adsorb uranium. It was hypothesized that uraniummore » removal would also be diminished in the bicarbonate solution. However, this did not seem to be the case, as uranium was as easily removed in the bicarbonate solution as in the sodium chloride solution.« less
Zeng, Z; Xu, Q
1992-04-01
The synthesis of 5-(4-sodium sulphonatephenylazo)-8-aminoquinoline (SPAQ) is described, and a simple, rapid, selective and sensitive new spectrophotometric method for determination of gold is developed. SPAQ reacts with gold(III), and in the presence of cetyl trimethyl ammonium bromide cationic surfactant and upon making the solution alkaline, forms a blue-green 1:3 (metal:ligand) with an absorption maximum at 605 nm. Beer's law is obeyed over the concentration range 0-2 microg/ml gold. The molar absorptivity and Sandell's sensitivity of the method are 1.48 x 10(5) 1.mole(-1).cm(-1) and 0.0013 microg/cm(2), respectively. The interference of various ions has been studied and the method has been used for the determination of microamounts of gold in ores and anode slimes.
Horstkotte, Burkhard; Duarte, Carlos M; Cerdà, Víctor
2011-07-15
In this article, a simple, economic, and miniature flow analyzer for ammonium in seawater based on the solenoid micropumps is presented. A single reagent of sodium tetraborate, ortho-phthaldialdehyde (OPA), and sodium sulfite was used and optimized applying the modified SIMPLEX method. A special-made detection cell for fluorescence detection of the reaction product isoindol-1-sulfonat was made and combined with a commercial photomultiplier tube, a long-pass optical filter, and an UV-LED as excitation light source. A LOD down to 13 nmol/L was achieved. The fabrication and application of a miniature reaction coil heating device for reaction rate enhancement is further described. The system featured an injection frequency of 32 h(-1) at average standard deviation of 3%. Copyright © 2011 Elsevier B.V. All rights reserved.
Synthesis, characterization, and photocatalytic properties of Ni12P5 hollow microspheres
NASA Astrophysics Data System (ADS)
Liu, Shuling; Han, Xiaoli; Zhang, Hongzhe; Liu, Hui
2017-05-01
Ni12P5 hollow microspheres were prepared by a simple mixed cetyltrimethyl ammonium bromide/sodium dodecyl sulfate surfactant-assisted hydrothermal route. The as-prepared Ni12P5 microstructures were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). It was interesting to find that cetyltrimethyl ammonium bromide/sodium dodecyl sulfate could form a micro-reactor by the mixed micelles in the aqueous solution, which served as a soft template for Ni12P5 hollow microspheres with a diameter of 2 6 μm. Moreover, the as-prepared Ni12P5 hollow microspheres exhibited a good photocatalytic degradation activity for some organic dyes (such as Rhodamine B, Methylene Blue, Pyronine B, and Safranine T), and the degradation ratio could achieve more than 80%.
Role of glycemic elements of Cynodon dactylon and Musa paradisiaca in diabetes management.
Rai, Prashant Kumar; Jaiswal, Dolly; Rai, Nilesh K; Pandhija, Shiwani; Rai, A K; Watal, Geeta
2009-09-01
The study defined the scientific evaluation of glycemic elements of extracts of Cynodon dactylon and Musa paradisiaca. A dose of 500 mg/kg body weight (bw) of C. dactylon produced maximum falls of 23.2% and 22.8% in blood glucose levels of normoglycemic rats during studies of fasting blood glucose and glucose tolerance, respectively, whereas the same dose of M. paradisiaca produced a rise of 34.9% and 18.4%. In diabetic rats during glucose tolerance tests, a fall of 27.8% and a rise of 17.5% were observed with the same dose of C. dactylon and M. paradisiaca, respectively. Laser-induced breakdown spectroscopy used for detection of glycemic elements present in both the extracts indicated that C. dactylon was rich in magnesium (Mg), whereas M. paradisiaca was rich in potassium (K) and sodium (Na), comparatively, suggesting thereby the defined roles of these elements in diabetes management.
Overgaard-Steensen, Christian; Stødkilde-Jørgensen, Hans; Larsson, Anders; Tønnesen, Else; Frøkiaer, Jørgen; Ring, Troels
2016-07-01
What is the central question of this study? The brain response to acute hyponatraemia is usually studied in rodents by intraperitoneal instillation of hypotonic fluids (i.p. model). The i.p. model is described as 'dilutional' and 'syndrome of inappropriate ADH (SIADH)', but the mechanism has not been explored systematically and might affect the brain response. Therefore, in vivo brain and muscle response were studied in pigs. What is the main finding and its importance? The i.p. model induces hypovolaemic hyponatraemia attributable to sodium redistribution, not dilution. A large reduction in brain sodium is observed, probably because of the specific mechanism causing the hyponatraemia. This is not accounted for in current understanding of the brain response to acute hyponatraemia. Hyponatraemia is common clinically, and if it develops rapidly, brain oedema evolves, and severe morbidity and even death may occur. Experimentally, acute hyponatraemia is most frequently studied in small animal models, in which the hyponatraemia is produced by intraperitoneal instillation of hypotonic fluids (i.p. model). This hyponatraemia model is described as 'dilutional' or 'syndrome of inappropriate ADH (SIADH)', but seminal studies contradict this interpretation. To confront this issue, we developed an i.p. model in a large animal (the pig) and studied water and electrolyte responses in brain, muscle, plasma and urine. We hypothesized that hyponatraemia was induced by simple water dilution, with no change in organ sodium content. Moderate hypotonic hyponatraemia was induced by a single i.v. dose of desmopressin and intraperitoneal instillation of 2.5% glucose. All animals were anaesthetized and intensively monitored. In vivo brain and muscle water was determined by magnetic resonance imaging and related to the plasma sodium concentration. Muscle water content increased less than expected as a result of pure dilution, and muscle sodium content decreased significantly (by 28%). Sodium was redistributed to the peritoneal fluid, resulting in a significantly reduced plasma volume. This shows that the i.p. model induces hypovolaemic hyponatraemia and not dilutional/SIADH hyponatraemia. Brain oedema evolved, but brain sodium content decreased significantly (by 21%). To conclude, the i.p. model induces hypovolaemic hyponatraemia attributable to sodium redistribution and not water dilution. The large reduction in brain sodium is probably attributable to the specific mechanism that causes the hyponatraemia. This is not accounted for in the current understanding of the brain response to acute hyponatraemia. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Lubkowska, Anna; Chlubek, Dariusz; Machoy-Mokrzyniska, Anna
2006-01-01
Fluorine and aluminum remain a very interesting research topic due to equivocal and relatively unknown toxic action, role in the etiology of various diseases, and interactions of both elements. Fluorine and aluminum compounds are absorbed by organisms through the gastric and respiratory systems, although the latter route operates only at very high concentrations in air. Chronic exposure to fluorine and aluminum leads to accumulation of both elements, especially in bones and teeth, but also in lung, brain, kidney, and liver. Organisms excrete these elements with urine, faeces, and to a minor extent with sweat and bile. In the light of reports suggesting that aluminum has protective properties against fluorine toxicity during exposure to both elements, we decided to examine the effect of alternating doses of aluminum fluoride and sodium fluoride in drinking water on rats. Four female groups received: I--100 ppm fluorine ions during one month; II--100 ppm fluorine ions alternating every two days with 300 ppm aluminum ions during one month; III--100 ppm fluoride ions during four months; IV--100 ppm fluorine ions alternating every two days with 300 ppm aluminum ions during four months. The respective male groups called IA, IIA, IIIA, and IVA were treated identically. Subsequently, the animals were anesthetized and sacrificed. Blood was sampled from the heart and the right femur was removed for fluorine determination. Fluorine content in the femur and serum was determined with an ion-selective electrode (Orion). The results were analyzed statistically (Statistica 6). We observed higher fluoride concentrations in serum as compared with control values in all groups of female and male rats exposed to sodium fluoride only. Longer exposure time (4 months) did not result in further increase in serum fluoride concentration. However, longer exposure increased fluoride accumulation in the femur (p < 0.001). All groups exposed to NaF had significantly higher fluoride concentration in the femur as compared with control animals. Groups receiving NaF and AlCl3 showed lower fluoride concentration in serum and femur compared with those exposed to NaF only and higher in comparison with controls. Fluorine content in the femur of rats exposed to NaF and AlCI3 for four months was similar to the results obtained after one month of exposure.
An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements
NASA Technical Reports Server (NTRS)
Ross, H. Richard
1993-01-01
A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.
The Content of Structural and Trace Elements in the Knee Joint Tissues.
Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Mitko, Krzysztof; Jakóbik-Kolon, Agata; Konieczny, Magdalena; Babuśka-Roczniak, Magdalena
2017-11-23
Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead.
The Content of Structural and Trace Elements in the Knee Joint Tissues
Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Mitko, Krzysztof; Jakóbik-Kolon, Agata; Konieczny, Magdalena; Babuśka-Roczniak, Magdalena
2017-01-01
Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead. PMID:29168758
Manga Vectorization and Manipulation with Procedural Simple Screentone.
Yao, Chih-Yuan; Hung, Shih-Hsuan; Li, Guo-Wei; Chen, I-Yu; Adhitya, Reza; Lai, Yu-Chi
2017-02-01
Manga are a popular artistic form around the world, and artists use simple line drawing and screentone to create all kinds of interesting productions. Vectorization is helpful to digitally reproduce these elements for proper content and intention delivery on electronic devices. Therefore, this study aims at transforming scanned Manga to a vector representation for interactive manipulation and real-time rendering with arbitrary resolution. Our system first decomposes the patch into rough Manga elements including possible borders and shading regions using adaptive binarization and screentone detector. We classify detected screentone into simple and complex patterns: our system extracts simple screentone properties for refining screentone borders, estimating lighting, compensating missing strokes inside screentone regions, and later resolution independently rendering with our procedural shaders. Our system treats the others as complex screentone areas and vectorizes them with our proposed line tracer which aims at locating boundaries of all shading regions and polishing all shading borders with the curve-based Gaussian refiner. A user can lay down simple scribbles to cluster Manga elements intuitively for the formation of semantic components, and our system vectorizes these components into shading meshes along with embedded Bézier curves as a unified foundation for consistent manipulation including pattern manipulation, deformation, and lighting addition. Our system can real-time and resolution independently render the shading regions with our procedural shaders and drawing borders with the curve-based shader. For Manga manipulation, the proposed vector representation can be not only magnified without artifacts but also deformed easily to generate interesting results.
Lu, Yan; Li, Gang; Liu, Wei; Yuan, Hongyan; Xiao, Dan
2018-08-15
It is known that most of the refractory ore are the basis of national economy and widely applied in various fields, however, the complexity of the chemical composition and the diversity of the crystallinity in the mineral phases make the sample pre-treatment of refractory ore still remains a challenge. In this work, the complete decomposition of the refractory ore sample can be achieved just by exposing the solid fusion agent and the refractory ore sample in the microwave irradiation environment for a few minutes, and induced by a drop of water. A digestion time of 15 min for 3.0 g solid fusion agent mixture of sodium peroxide/sodium carbonate (Na 2 O 2 /Na 2 CO 3 ) in a corundum crucible via microwave heating is sufficient to decompose 0.1 g refractory ore sample. An excellent microwave digestion solid agent should meet the following conditions, a good decomposition ability, an outstanding ability of absorbing microwave energy and converting it into heat quickly, a higher melting point than the decomposing temperature of the ore sample. In the research, the induction effect of water plays an important role for the microwave digestion. The energy which is released by the reaction of water and the solid fusion agent (Na 2 O 2 ) is the key to decompose refractory ore samples with solid fusion agent, which replenished the total energy required for the microwave digestion and made the microwave digestion completed successfully. This microwave digestion technique has good reproducibility and precision, RSD % for Mo, Fe, Ti, Cr and W in the refractory ore samples were all better than 6, except RSD % for Be of about 8 because of the influence of matrix-effect. Meanwhile, the analysis results of the elements in the refractory ore samples provided by the microwave digestion technique were all in good agreement with the analysis results provided by the traditional fusion method except for Cr in the mixture ore samples. In the study, the non-linear dependence of the electromagnetic and thermal properties of the solid fusion agent on temperature under microwave irradiation and the selective heating of microwave are fully applied in this simple microwave technique. Comparing to the traditional fusion decomposition method, this microwave digestion technique is a simple, economical, fast and energy-saving sample pre-treatment technique. Copyright © 2018 Elsevier B.V. All rights reserved.
Hokkanen, Sanna; Bhatnagar, Amit; Koistinen, Ari; Kangas, Teija; Lassi, Ulla; Sillanpää, Mika
2018-04-01
In the present study, the adsorption of sulfates of sodium sulfate (Na 2 SO 4 ) and sodium lauryl sulfate (SLS) by calcium hydroxyapatite-modified microfibrillated cellulose was studied in the aqueous solution. The adsorbent was characterized using elemental analysis, Fourier transform infrared, scanning electron microscope and elemental analysis in order to gain the information on its structure and physico-chemical properties. The adsorption studies were conducted in batch mode. The effects of solution pH, contact time, the initial concentration of sulfate and the effect of competing anions were studied on the performance of synthesized adsorbent for sulfate removal. Adsorption kinetics indicated very fast adsorption rate for sulfate of both sources (Na 2 SO 4 and SLS) and the adsorption process was well described by the pseudo-second-order kinetic model. Experimental maximum adsorption capacities were found to be 34.53 mg g -1 for sulfates of SLS and 7.35 mg g -1 for sulfates of Na 2 SO 4. The equilibrium data were described by the Langmuir, Sips, Freundlich, Toth and Redlich-Peterson isotherm models using five different error functions.
Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander
2014-02-18
Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.
Fluid-structure interaction in fast breeder reactors
NASA Astrophysics Data System (ADS)
Mitra, A. A.; Manik, D. N.; Chellapandi, P. A.
2004-05-01
A finite element model for the seismic analysis of a scaled down model of Fast breeder reactor (FBR) main vessel is proposed to be established. The reactor vessel, which is a large shell structure with a relatively thin wall, contains a large volume of sodium coolant. Therefore, the fluid structure interaction effects must be taken into account in the seismic design. As part of studying fluid-structure interaction, the fundamental frequency of vibration of a circular cylindrical shell partially filled with a liquid has been estimated using Rayleigh's method. The bulging and sloshing frequencies of the first four modes of the aforementioned system have been estimated using the Rayleigh-Ritz method. The finite element formulation of the axisymmetric fluid element with Fourier option (required due to seismic loading) is also presented.
Solvent Isotope Effects Upon the Kinetics of some Simple Electrode Reactions.
1980-08-15
rate constants of homogeneous electron transfer reactions between transition-metal complexes occur when heavy water (D20) is substituted for H20. 1 -3...Fe(Cl0 4)3 (G. F. Smith Co.). Potassium hexafluorophosphate 3 (Alfa Ventron Corp.) was thrice recrystallized from water . Sodium perchlorate was... water into the resulting D20 solutions. The Co(III) and Cr(III) ammine and ethylene- diamine complexes were deuterated by dissolving the protonated
Succession of Periphytic Microorganisms on Metal and Glass Surfaces in Natural Seawater
1976-06-01
this depolarization process. Not all investigators agree on the importance of the depolarization mechanisin (Nelson, 1962 ), but an increasing volume...small amounts of water. Hendey (1964), investigating Cladosporiuni rcinae as a fuel contaminant in kerosene-type fuel storage tanks and 2 fuel tanks of...added. Compton (1970) pointed out the naivet6 of some scientists who consider seawater a simple solution of sodium chloride contaminated with a few
Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumetta, Gregg J.; Arcia, Edgar
A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as how the morphological features of the crystals dictates how the dissolution process proceeds, and how materials can be purified by re-crystallization techniques.
NASA Astrophysics Data System (ADS)
Wojciechowski, K. F.; Rogowska, J. M.; Bogdanów, H.
1991-05-01
The thickness of a jellium slab representing an alkali monolayer on a jellium surface has been calculated, using parametrized trial functions for the electron density profile at the surface fulfilling the Budd-Vannimenus theorem and the charge neutrality condition. Reasonable values of the thicknesses of potassium, sodium, rubidium and caesium monolayers are obtained, which, contrary to earlier assumptions, depend on the bulk electron density of the substrate.
Frías, Sergio; Conde, José E; Rodríguez-Bencomo, Juan J; García-Montelongo, Francisco; Pérez-Trujillo, Juan P
2003-02-06
Eleven elements, K, Na, Ca, Mg, Fe, Cu, Zn, Mn, Sr, Li and Rb, were determined in dry and sweet wines bearing the denominations of origin of El Hierro, La Palma and Lanzarote islands (Canary Islands, Spain). Analyses were performed by flame atomic absorption spectrophotometry, with the exceptions of lithium and rubidium for which flame atomic emission spectrophotometry was used. Sweet wines from La Palma were elaborated as naturally sweet with over-ripe grapes and significant differences were found in all the analysed elements with the exceptions of sodium, iron and rubidium with regard to dry wines from the same island. Contrarily, sweet wines from Lanzarote elaborated with grapes in a similar ripening state to dry wines did not present significant differences between them with the exception of strontium, the content of which was greater in dry wines. Among the three islands, significant differences in mean content were found with the exceptions of iron and copper. Cluster analysis and principal component analysis show differences in wines according to the island of origin and the ripening state of the grapes. Linear discriminant analysis using rubidium, sodium, manganese and strontium, the four most discriminant elements, gave 100% recognition ability and 95.6% prediction ability. The sensitivity and specificity obtained using soft independent modelling of class analogy (SIMCA) as a modelling multivariate technique were both 100% for El Hierro and Lanzarote, and 100 and 95%, respectively, for La Palma. The modelling and discriminant capacities of the different metals were also studied.
Stress analysis under component relative interference fit
NASA Technical Reports Server (NTRS)
Taylor, C. M.
1978-01-01
Finite-element computer program enables analysis of distortions and stresses occurring in components having relative interference. Program restricts itself to simple elements and axisymmetric loading situations. External inertial and thermal loads may be applied in addition to forces arising from interference conditions.
A simple and rapid radiochemical choline acetyltransferase (ChAT) assay screening test.
Shiba, Kazuhiro; Ogawa, Kazuma; Kinuya, Seigo; Yajima, Kazuyoshi; Mori, Hirofumi
2006-10-15
A simple radiochemical choline acetyltransferase (ChAT) assay screening test was developed by measuring for [(3)H]acetylcholine ([(3)H]ACh) formed from 0.2 mM [(3)H]acetyl-coenzyme A ([(3)H]acetyl-CoA) and 1 mM choline by 0.2 mg of rat brain homogenates containing ChAT into 96-well microplates. A simple and rapid procedure for isolating [(3)H]ACh from the incubation mixture into 96-well microplates was achieved by using a sodium tetraphenylboron (Kalibor) solution (in ethyl acetate, 0.75%, w/v) and a hydrophobic liquid scintillator mixture (1:5, v/v, 0.2 mL) as an extraction solvent. The benefits of this radiochemical method using 96-well microplates are as follows: (1) this method is reliable and reproducible; (2) many samples can be examined at the same time by this method; (3) this method is economical and effective in reducing radioactive waste. The development of a new simple radiochemical ChAT assay screening test is the first stage of development of radiolabeled ChAT mapping agent.
A simple colorimetric chemosensor bearing a carboxylic acid group with high selectivity for CN-
NASA Astrophysics Data System (ADS)
Park, Gyeong Jin; Choi, Ye Won; Lee, Dongkuk; Kim, Cheal
2014-11-01
A new simple ‘naked eye' chemosensor 1 (sodium (E)-2-((2-(3-hydroxy-2-naphthoyl)hydrazono)methyl)benzoate) has been synthesized for detection of CN- in a mixture of DMF/H2O (9:1). The sensor 1 comprises of a naphthoic hydrazide as efficient hydrogen bonding donor group and a benzoic acid as the moiety with the water solubility. The receptor 1 showed high selectivity toward cyanide ions in a 1:1 stoichiometric manner, which induces a fast color change from colorless to yellow for CN- over other anions. Therefore, receptor 1 could be useful for cyanide detection in aqueous environment, displaying a high distinguishable selectivity from hydrogen bonded anions and being clearly visible to the naked eye.
NASA Technical Reports Server (NTRS)
Miller, Christopher J.
2011-01-01
A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.
NASA Astrophysics Data System (ADS)
Andhavarapu, A.; King, W.; Lindsay, A.; Byrns, B.; Knappe, D.; Fonteno, W.; Shannon, S.
2014-10-01
Plasma source generated nitrogen fertilizer is compared to conventional nitrogen fertilizers in water for plant growth. Root, shoot sizes, and weights are used to examine differences between plant treatment groups. With a simple coaxial structure creating a large-volume atmospheric glow discharge, a 162 MHz generator drives the air plasma. The VHF plasma source emits a steady state glow; the high drive frequency is believed to inhibit the glow-to-arc transition for non-thermal discharge generation. To create the plasma activated water (PAW) solutions used for plant treatment, the discharge is held over distilled water until a 100 ppm nitrate aqueous concentration is achieved. The discharge is used to incorporate nitrogen species into aqueous solution, which is used to fertilize radishes, marigolds, and tomatoes. In a four week experiment, these plants are watered with four different solutions: tap water, dissolved ammonium nitrate DI water, dissolved sodium nitrate DI water, and PAW. Ammonium nitrate solution has the same amount of total nitrogen as PAW; sodium nitrate solution has the same amount of nitrate as PAW. T-tests are used to determine statistical significance in plant group growth differences. PAW fertilization chemical mechanisms are presented.
Revitalising Silver Nitrate for Caries Management
Zhao, Irene Shuping; Duffin, Steve; Duangthip, Duangporn
2018-01-01
Silver nitrate has been adopted for medical use as a disinfectant for eye disease and burned wounds. In dentistry, it is an active ingredient of Howe’s solution used to prevent and arrest dental caries. While medical use of silver nitrate as a disinfectant became subsidiary with the discovery of antibiotics, its use in caries treatment also diminished with the use of fluoride in caries prevention. Since then, fluoride agents, particularly sodium fluoride, have gained popularity in caries prevention. However, caries is an infection caused by cariogenic bacteria, which demineralise enamel and dentine. Caries can progress and cause pulpal infection, but its progression can be halted through remineralisation. Sodium fluoride promotes remineralisation and silver nitrate has a profound antimicrobial effect. Hence, silver nitrate solution has been reintroduced for use with sodium fluoride varnish to arrest caries as a medical model strategy of caries management. Although the treatment permanently stains caries lesions black, this treatment protocol is simple, painless, non-invasive, and low-cost. It is well accepted by many clinicians and patients and therefore appears to be a promising strategy for caries control, particularly for young children, the elderly, and patients with severe caries risk or special needs. PMID:29316616
2013-01-01
Abstract A simple and facile electrochemical route was developed for the shape-selective synthesis of large-scaled series of ZnO microstructures, including petal, flower, sphere, nest and clew aggregates of ZnO laminas at room temperature. This route is based on sodium citrate-directed crystallization. In the system, sodium citrate can greatly promote ZnO to nucleate and directly grow by selectively capping the specific ZnO facets because of its excellent adsorption ability. The morphology of ZnO is tuned by readily adjusting the concentration of sodium citrate and the electrodeposition time. Among the series structures, the remarkable ZnO nestlike structure can be used as a container to hold not only the interlaced ZnO laminas but also Ag nanoparticles in the center. The special heterostructures of nestlike ZnO holding Ag nanoparticles were found to display the superior properties on the surface-enhanced Raman scattering. This work has signified an important methodology to produce a wide assortment of desired microstructures of ZnO. PACS 81 Materials science 81.07.-b nanoscale materials and structures Fabrication Characterization 81.15.-z Methods of deposition of films Coatings Film growth and epitaxy. PMID:23414592
Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries
NASA Astrophysics Data System (ADS)
Colò, Francesca; Bella, Federico; Nair, Jijeesh R.; Gerbaldi, Claudio
2017-10-01
In this work we present a very simple preparation procedure of a poly(ethylene oxide) (PEO)-based crosslinked polymer electrolyte (XPE) for application in sodium-ion batteries (NIBs). The polymer electrolyte, containing NaClO4 as Na+ source, is prepared by rapid, energy saving, solvent-free photopolymerization technique, in a single step. Thermal, mechanical, morphological and electrochemical properties of the resulting XPE are thoroughly investigated. The highly ionic conducting (>1 mS cm-1 at 25 °C) polymer electrolyte is used in a lab-scale sodium cell with nanostructured TiO2 working electrode. The obtained results in terms of ambient temperature cycling behaviour (stable specific capacity of about 250 mAh g-1 at 0.1 mA cm-2 and overall remarkable stability, for a quasi-solid state Na polymer cell, upon very long term cycling exceeding 1000 reversible cycles at 0.5 mA cm-2 corresponding to > 5000 h of continuous operation) demonstrate the promising prospects of this novel XPE to be implemented in the next-generation NIBs conceived for large-scale energy storage systems, such as those connected to photovoltaic and wind factories.
Influence of Surfactants on Sodium Chloride Crystallization in Confinement
2017-01-01
We study the influence of different surfactants on NaCl crystallization during evaporation of aqueous salt solutions. We found that at concentrations of sodium chloride close to saturation, only the cationic surfactant CTAB and the nonionic surfactant Tween 80 remain stable. For the nonionic surfactant, the high concentration of salt does not significantly change either the critical micellar concentration (CMC) or the surface tension at the CMC; for the cationic surfactant, the CMC is reduced by roughly 2 orders of magnitude upon adding the salt. The presence of both types of surfactants in the salt solution delays the crystallization of sodium chloride with evaporation. This, in turn, leads to high supersaturation which induces the rapid precipitation of a hopper crystal in the bulk. The crystallization inhibitor role of these surfactants is shown to be mainly due to the passivation of nucleation sites at both liquid/air and solid/liquid interfaces rather than a change in the evaporation rate which is found not to be affected by the presence of the surfactants. The adsorption of surfactants at the liquid/air interface prevents the crystallization at this location which is generally the place where the precipitation of sodium chloride is observed. Moreover, sum frequency generation spectroscopy measurements show that the surfactants are also present at the solid/liquid interface. The incorporation of the surfactants into the salt crystals is investigated using a novel, but simple, method based on surface tension measurements. Our results show that the nonionic surfactant Tween 80 is incorporated in the NaCl crystals but the cationic surfactant CTAB is not. Taken together, these results therefore allow us to establish the effect of the presence of surfactants on sodium chloride crystallization. PMID:28425711
Optimization of Wireless Power Transfer Systems Enhanced by Passive Elements and Metasurfaces
NASA Astrophysics Data System (ADS)
Lang, Hans-Dieter; Sarris, Costas D.
2017-10-01
This paper presents a rigorous optimization technique for wireless power transfer (WPT) systems enhanced by passive elements, ranging from simple reflectors and intermedi- ate relays all the way to general electromagnetic guiding and focusing structures, such as metasurfaces and metamaterials. At its core is a convex semidefinite relaxation formulation of the otherwise nonconvex optimization problem, of which tightness and optimality can be confirmed by a simple test of its solutions. The resulting method is rigorous, versatile, and general -- it does not rely on any assumptions. As shown in various examples, it is able to efficiently and reliably optimize such WPT systems in order to find their physical limitations on performance, optimal operating parameters and inspect their working principles, even for a large number of active transmitters and passive elements.
A particle finite element method for machining simulations
NASA Astrophysics Data System (ADS)
Sabel, Matthias; Sator, Christian; Müller, Ralf
2014-07-01
The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.
Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.
Safavieh, Roozbeh; Juncker, David
2013-11-07
Microfluidic capillary systems employ surface tension effects to manipulate liquids, and are thus self-powered and self-regulated as liquid handling is structurally and chemically encoded in microscale conduits. However, capillary systems have been limited to perform simple fluidic operations. Here, we introduce complex capillary flow circuits that encode sequential flow of multiple liquids with distinct flow rates and flow reversal. We first introduce two novel microfluidic capillary elements including (i) retention burst valves and (ii) robust low aspect ratio trigger valves. These elements are combined with flow resistors, capillary retention valves, capillary pumps, and open and closed reservoirs to build a capillary circuit that, following sample addition, autonomously delivers a defined sequence of multiple chemicals according to a preprogrammed and predetermined flow rate and time. Such a circuit was used to measure the concentration of C-reactive protein. This work illustrates that as in electronics, complex capillary circuits may be built by combining simple capillary elements. We define such circuits as "capillarics", and introduce symbolic representations. We believe that more complex circuits will become possible by expanding the library of building elements and formulating abstract design rules.
Elemental analysis of scorpion venoms.
Al-Asmari, AbdulRahman K; Kunnathodi, Faisal; Al Saadon, Khalid; Idris, Mohammed M
2016-01-01
Scorpion venom is a rich source of biomolecules, which can perturb physiological activity of the host on envenomation and may also have a therapeutic potential. Scorpion venoms produced by the columnar cells of venom gland are complex mixture of mucopolysaccharides, neurotoxic peptides and other components. This study was aimed at cataloguing the elemental composition of venoms obtained from medically important scorpions found in the Arabian peninsula. The global elemental composition of the crude venom obtained from Androctonus bicolor, Androctonus crassicauda and Leiurus quinquestriatus scorpions were estimated using ICP-MS analyzer. The study catalogued several chemical elements present in the scorpion venom using ICP-MS total quant analysis and quantitation of nine elements exclusively using appropriate standards. Fifteen chemical elements including sodium, potassium and calcium were found abundantly in the scorpion venom at PPM concentrations. Thirty six chemical elements of different mass ranges were detected in the venom at PPB level. Quantitative analysis of the venoms revealed copper to be the most abundant element in Androctonus sp. venom but at lower level in Leiurus quinquestriatus venom; whereas zinc and manganese was found at higher levels in Leiurus sp. venom but at lower level in Androctonus sp. venom. These data and the concentrations of other different elements present in the various venoms are likely to increase our understanding of the mechanisms of venom activity and their pharmacological potentials.
Possible forerunners of earthquakes in optical range
NASA Astrophysics Data System (ADS)
Malnev, V. N.; Martysh, E. V.; Koshevya, S.; Kotsarenko, A.; Siqueiros Alatorre, J.
2007-05-01
The monitoring of the electrostatic field on the eve of the strong earthquakes detect its ultra-low-frequency perturbations with a period of a few hours (10-4Hz) and a magnitude of the order of 10 V/cm. Usually this field is on the level of one V/cm. The anomalous electric field as a forerunner of the coming earthquake considerably increases a concentration of the metal ions (sodium) in the E-domain at altitudes ~120 km and the electron concentration, as well. In particular, the latter may enlarge by one order comparing with the initial electron concentration in this domain. The typical dimensions of this layer are ~ 100 km in a length and ~ 10 km in a thickness. The perturbations of this electric field form a layer with higher than usual concentration of sodium ions and atoms in the E- ionosphere and the field will heats-up electrons in this layer. Simple evaluations show the electron temperature in this layer in the presence of the seismogenic electric field is approximately about 1000-1300K at altitudes 100-120 km provided that the electric field is ~ 10-3 V/cm. It is important the cross-section of excitation of the nitrogen low vibration levels by electrons at this energy is anomalous and close to 5x10-15cm2. It happens to be that the eighth vibration level of a nitrogen molecule practically coincides with the first excited state of a sodium atom with energy ENa=2.1eV. Thus, the resonant transfer of the vibration energy of excited nitrogen with excitation of a sodium atom takes place practically in every collision. Our evaluation of the sodium doublet intensity due to the above-discussed mechanism from the ionosphere layer, mentioned above, gives 5x10-3erg/cm2s. A comparison of this quantity with the conventional intensity of the sodium doublet from this layer 7x10-4erg/cm2s shows that the suggested mechanism provides the intensity almost by one order larger than the conventional intensity of the sodium doublet. The considerable increasing in the intensity of the sodium doublet in the spectrum of the night ionosphere can be registered by monitoring the night sky over the seismic dangerous regions.
Pi, Yingying; Shang, Yazhuo; Peng, Changjun; Liu, Honglai; Hu, Ying; Jiang, Jianwen
2006-07-01
The phase behavior of aqueous mixtures of gemini surfactant hexylene-1,6-bis(dodecyldimethylammonium bromide) (12-6-12) and oppositely charged polyelectrolyte sodium polyacrylate (NaPAA) has been studied experimentally. Compared to the mixtures of the traditional surfactant dodecyltrimethylammonium bromide (DTAB) and NaPAA, the gel phase region in the 12-6-12/NaPAA solution is larger. Element analysis reveals that NaPAA in the gel phase tends to replace the counterions of surfactant micelle and to release its own counterions. Spherical aggregates are observed in either top or bottom gel phase as detected by transmission electron microscopy. The addition of sodium bromide (NaBr) leads to a decrease in the gel phase region and the occurrence of a new cream phase.
Silicon oxidation in fluoride solutions
NASA Technical Reports Server (NTRS)
Sancier, K. M.; Kapur, V.
1980-01-01
Silicon is produced in a NaF, Na2SiF6, and Na matrix when SiF4 is reduced by metallic sodium. Hydrogen is evolved during acid leaching to separate the silicon from the accompanying reaction products, NaF and Na2SiF6. The hydrogen evolution reaction was studied under conditions simulating leaching conditions by making suspensions of the dry silicon powder in aqueous fluoride solutions. The mechanism for the hydrogen evolution is discussed in terms of spontaneous oxidation of silicon resulting from the cooperative effects of (1) elemental sodium in the silicon that reacts with water to remove a protective silica layer, leaving clean reactive silicon, and (2) fluoride in solution that complexes with the oxidized silicon in solution and retards formation of a protective hydrous oxide gel.
NASA Astrophysics Data System (ADS)
Mahadevan, M.; Arivanandhan, M.; Elangovan, K.; Anandan, P.; Ramachandran, K.
2017-07-01
Good quality single crystals of sodium acid phthalate (NaAP) were grown by slow evaporation technique. Single crystal X-ray diffraction study of the grown crystal reveals that the crystal belongs to orthorhombic system with space group B2ab. Fourier transform infrared spectrum confirms the presence of the functional groups of the grown material. Inductively coupled plasma emission spectroscopy analysis is used to confirm the presence of Na element in the sample. Thermal analysis of the NaAP crystal shows that the crystal is stable up to 140°C. Optical transmittance of the grown crystal was recorded in the wavelength range from 200 and 800 nm using UV-Vis-NIR spectrophotometer. The second harmonic generation of NaAP was analysed using Kurtz powder technique.
Non-linear valence electron dynamics in metallic clusters
NASA Astrophysics Data System (ADS)
Calvayrac, F.
This work deals with the response of the valence electrons of simple metal clusters to various excitations, in a purely dynamical context. It is related to various recent experiments where the methods based on linear response fail. The electronic motion is solved in direct time, the wavefunctions being discretized on an evenly spaced grid. The theoretical framework is the time dependent density functional theory, restricted to a version local in time and space (LSDA). The other parts of the clusters are either a jellium or an explicit ionic background exerting local or non-local pseudopotentials. The ionic dynamics is discussed, as well as the relevance of various observables. The corresponding numerical techniques are given: either a selfconsistent Crank-Nicholson method is used, approximated by an alternate propagation in every space direction, or a method alternating between direct and Fourier space. The equations suggest a parallel treatment. Several examples of application are given. The case of Na9+ is thoroughly discussed, then the less simple case of Na11+. Spectra obtained for sodium clusters deposited on sodium chlorine surfaces are shown. An example of a simulation with a moving ionic background is handled: the transfer to the ionic degrees of freedom of the energy deposited in a twelve sodium atoms cluster by a femtosecond laser pulse is discussed. The electronic resonance spectrum for a linear carbon cluster C5 is then given. In the conclusion, the work is discussed as well as possible improvements and developments from the theoretical or numerical point of view. Ce travail aborde la réponse des électrons de valence d'agrégats de métaux simples à diverses excitations, dans un contexte purement dynamique, en relation avec diverses expériences récentes que les méthodes fondées sur la réponse linéaire sont incapables d'aborder. Le mouvement de ces électrons est résolu directement en temps, leurs fonctions d'onde étant discrétisées sur une grille régulière en espace. Le cadre théorique repose sur la théorie de la fonctionnelle de la densité dépendant du temps, restreinte à une version locale en temps et en espace (LSDA). Les autres constituants des agrégats sont soit un “jellium”, soit un fond ionique explicite agissant par des pseudopotentiels locaux ou non-locaux. La dynamique de ce fond ionique est discutée, ainsi que la pertinence de différentes observables. Les techniques numériques correspondantes sont présentées. Il s'agit soit d'un traitement Crank-Nicholson autocohérent, approché par une propagation successive dans chacune des directions d'espace, soit d'un traitement alternant entre l'espace direct et celui de Fourier. Les équations utilisées suggèrent un traitement parallèle. Plusieurs exemples d'application sont alors donnés. Nous discutons en détail le cas de Na9^+, puis le cas moins simple de Na{11}^+. Nous donnons des spectres obtenus pour des agrégats de sodium déposés sur une surface de chlorure de sodium. Puis, nous abordons un exemple de simulation avec fond ionique mouvant par dynamique moléculaire. Nous discutons ainsi le transfert aux ions de l'énergie déposée par un laser femtoseconde dans un agrégat Na12. Nous présentons enfin le spectre obtenu pour la résonance électronique dans un agrégat de carbone linéaire C5. Nous concluons alors sur le travail effectué et les développements ou améliorations possibles sur le plan théorique comme numérique.
NASA Astrophysics Data System (ADS)
Bahreini, Maryam; Hosseinimakarem, Zahra; Hassan Tavassoli, Seyed
2012-09-01
Laser induced breakdown spectroscopy (LIBS) is used to investigate the possible effect of osteoporosis on the elemental composition of fingernails. Also, the ability to classify healthy, osteopenic, and osteoporotic subjects based on their fingernail spectra has been examined. 46 atomic and ionic emission lines belonging to 13 elements, which are dominated by calcium and magnesium, have been identified. Measurements are carried out on fingernail clippings of 99 subjects including 27 healthy, 47 osteopenic, and 25 osteoporotic subjects. The Pearson correlations between spectral intensities of different elements of fingernail and age and bone mineral densities (BMDs) in nail samples are calculated. Correlations between line intensities of some elements such as sodium and potassium, calcium and iron, magnesium and silicon and also between some fingernail elements, BMD, and age are observed. Although some of these correlations are weak, some information about mineral metabolism can be deduced from them. Discrimination between nail samples of healthy, osteopenic, and osteoporotic subjects is shown to be somehow possible by a discriminant function analysis using 46 atomic emission lines of the LIBS spectra as input variables. The results of this study provide some evidences for association between osteoporosis and elemental composition of fingernails measured by LIBS.
Analyzing C2 Structures and Self-Synchronization with Simple Computational Models
2011-06-01
16th ICCRTS “Collective C2 in Multinational Civil-Military Operations” Analyzing C2 Structures and Self- Synchronization with Simple...Self- Synchronization with Simple Computational Models 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...models. The Kuramoto Model, though with some serious limitations, provides a representation of information flow and self- synchronization in an
Thermal-Hydraulic Transient Analysis of a Packed Particle Bed Reactor Fuel Element
1990-06-01
long fuel elements, arranged to form a core , were analyzed for an up-power transient from 0 MWt to approximately 18 MWt. The simple model significantly...VARIATIONS IN FUEL ELEMENT GEOMETRY ............. 60 4.4 VARIATIONS IN THE MANNER OF TRANSIENT CONTROL ..... 62 4.5 CORE REPRESENTATION BY MULTIPLE FUEL ...the HTGR , however, the PBR packs small fuel particles between inner and outer retention elements, designated as frits. The PBR is appropriate for a
Humic first, A new theory on the origin of life
NASA Astrophysics Data System (ADS)
Daei, Mohammad Ali; Daei, Manijeh
2016-04-01
In 1953, Miller &Urey through a brilliant experiment demonstrated that the building blocks of life could evolve in primitive earth conditions1. In recent years scientists revealed that organic matters are not very rare compounds in comets, asteroids, and meteorites2. These facts show simple organic molecules on early earth could be quite enough to start development of life. But, how? Many theorists have tried to explain how life emerged from non life, but failed2. There is a huge gap between the simple building blocks, like amino acid, sugar, and lipid molecules, to a living cell with a very sophisticated structure and organization. Obviously, creation of a cell needed a qualified production line which had to be durable and active, can gather all biochemical ingredients, protect them from degradation, have catalyzing ability, provide numerous opportunities for interaction between basic molecules, and above all, have capability to react to different sources of energy. We are sure this perfect factory was available on primitive earth and is nothing except humic substance! At the moment, HS, are doing nearly all of these duties, among the others, under your feet in agricultural soils4. What are humic substances? According to IHSS definition "Humic substances (HS) are major components of the natural organic matter (NOM) in soil and water as well as in geological organic deposits such as lake sediments, peats, brown coals, and shales5." They come from polymerization of organic molecules, but looking at them like a simple aggregation of different organic molecules, is a huge mistake6! It seems they do not come together except for making a capable structure! HS are the first organic machinery which appeared in proplanetary disk, more than four billion years ago. Derived from simple inorganic molecules, humic substances construct a firm intermediate structure which connects none life to life. In other word, life road pass over the humic bridge. This does not mean that necessarily they had extra terrestrial origin. In fact Ziechman et al7, in 1994 by finding humic material in Miller's experimental vessels proved that humic substances could be generate on early earth conditions by polymerizing simple organic molecules. Which evidences support our Ideas? 1- Suppose a wet land located in a warm area of primitive earth, covered with a layer of black humic materials, ready to action and reaction. Under this umbrella, basic molecules of life can interact freely and benefit from catalyzing and stimulating effects of HS. Amino and nucleic acid molecules may line up, grow, and develop mutually. Protein molecules can appear and do practices and before decaying a strand of nucleotides is ready to save their information and can rebuilt them for further practices. Thus, chemical evolution on a bed of humic acid can promote targeted, firmly and continuously towards a large network that be able to support a self replicating cell! We deliberately suggested, land and not the sea, as cradle of life. Because sodium, the most prevalent cation in oceans could not participate in primitive life, instead potassium played an important role. 2- There are strong evidences that show HS, really acted as the main elemental selector and even chairal selector for life on early earth. HS, show strong affinity and fast releasing tendency for macro nutrients (N, P, K).There is moderate affinity and releasing tendency for Ca, Mg, S. Also there is weak affinity and reluctance for liberating micronutrients. More interesting, HS generate insoluble compounds with nearly all toxic elements. As you see not only HS selected some and rejected other elements but also definite their proportions in the cell structure. 3- What is the reason of homochairality in living organism? As you know, none of previous theories in this field provided an easy explanation for this difficult and fundamental question. But, humic theory has a simple answer. Humic substances accepted some and rejected the other enantiomers, because their spatial structure dictate, as did so regarding elemental selection. References: 1- Miller, Stanly L." production of amino acid under possible primitive Earth conditions" Science 117:528.(may 1953) 2- Encyclopedia Britannica website "carbonaceous contrite" October 17, 2014 3- Shapiro, Robert " A simpler origin for life" Science American February 12 . 2007 4- Pettit, Robert, "organic matter, humus, humate, humic acid, fulvic acid humin: their importance in soil fertility and plant health" 5- International Humic Substances Society website, " What are humic substances" 6- Humic, Fulvic and microbial balance: organic soil conditioning, by William R. Jackson 1993, pag 165-167 7- Steinberg, Christian E.W "Ecology of humic substances in freshwater-determination from geochemistry to ecological niches" (2003)
Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation.
Zhu, Nengwu; Cao, Yanlan; Shi, Chaohong; Wu, Pingxiao; Ma, Haiqin
2016-04-01
Recovery of gold from aqueous solution using simple and economical methodologies is highly desirable. In this work, recovery of gold as gold nanoparticles (AuNPs) by Shewanella haliotis with sodium lactate as electron donor was explored. The results showed that the process was affected by the concentration of biomass, sodium lactate, and initial gold ions as well as pH value. Specifically, the presence of sodium lactate determines the formation of nanoparticles, biomass, and AuCl4 (-) concentration mainly affected the size and dispersity of the products, reaction pH greatly affected the recovery efficiency, and morphology of the products in the recovery process. Under appropriate conditions (5.25 g/L biomass, 40 mM sodium lactate, 0.5 mM AuCl4 (-), and pH of 5), the recovery efficiency was almost 99 %, and the recovered AuNPs were mainly spherical with size range of 10-30 nm (~85 %). Meanwhile, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that carboxyl and amine groups might play an important role in the process. In addition, the catalytic activity of the AuNPs recovered under various conditions was testified by analyzing the reduction rate of p-nitrophenol by borohydride. The biorecovered AuNPs exhibited interesting size and shape-dependent catalytic activity, of which the spherical particle with smaller size showed the highest catalytic reduction activity with rate constant of 0.665 min(-1).
Determination of sodium benzoate in food products by fluorescence polarization immunoassay.
Ren, Linlin; Meng, Meng; Wang, Peng; Xu, Zhihuan; Eremin, Sergei A; Zhao, Junhong; Yin, Yongmei; Xi, Rimo
2014-04-01
A rapid and sensitive fluorescence polarization immunoassay (FPIA), based on a polyclonal antibody, has been developed for the detection of sodium benzoate in spiked samples. The immunogen and fluorescein-labeled analyte conjugate were successfully synthesized, and the tracer was purified by TLC. Under the optimal assay conditions, the FPIA shows a detection range of 0.3-20.0 μg mL(-1) for sodium benzoate with a detection limit of 0.26 μg mL(-1) in the borate buffer. In addition, the IC₅₀ value was 2.48 μg mL(-1), and the cross-reactivity of the antibodies with ten structurally and functionally related analogs were detected respectively. Four kinds of food samples (energy drink, candy, ice sucker, RIO(TM) cocktail) were selected to evaluate the application of FPIA in real systems. The recoveries were 96.68-106.55% in energy drink; 95.78-100.80% in candy, 86.97-102.70% in ice sucker, and 103.58-109.87% in benzoate contained sample RIO(TM) cocktail, and coefficients of variation of this method were all lower than 11.25%. Comparing with the detection results of HPLC, the developed FPIA has comparative performance in the real sample determination. The results suggest that the FPIA developed in this study is a rapid, convenient and simple method, which is suitable to be used as a screening tool for homogeneous detection of sodium benzoate in food products. Copyright © 2013 Elsevier B.V. All rights reserved.
Development of sodium alginate/PVA antibacterial nanofibers by the incorporation of essential oils
NASA Astrophysics Data System (ADS)
Rafiq, M.; Hussain, T.; Abid, S.; Nazir, A.; Masood, R.
2018-03-01
Electrospinning is a well known method for the manufacturing of nanoscale fibers. Electrospun nanofibers have higher surface area to volume ratio and can be used for the incorporation of different materials. Essential oils are well known for their antimicrobial and healing properties since ancient times. The main objective of this study was to develop antibacterial nanofibers by the incorporation of essential oils in sodium alginate/PVA solution. Sodium alginate and PVA have excellent biocompatible properties which are the base of their use in wound care applications. Three different essential oils (cinnamon, clove, and lavender) at three different concentrations (0.5, 1 and 1.5%) were used to optimize the fiber forming conditions during electrospinning and then the desired antibacterial properties were evaluated. Addition of oils in PVA/SA solutions increased the viscosity but reduced the surface tension and conductivity as compared to pure PVA/sodium alginate solution. FTIR Spectra of composite fibers verified the successful incorporation of essential oils in nanofibers through electrospinning. All oil containing samples showed good antibacterial properties against staphylococcus aureus which make them a good replacement of antibiotics. Cinnamon oil loaded nanofibers showed the best results among selected oils regarding the antibacterial properties. Nanofibers with 1.5% cinnamon oil exhibited highest zone of inhabitation of 2.7 cm. Nanofibrous coated cotton gauze showed higher liquid absorptions as compared to simple cotton gauze and potential to be used as wound dressings for its improved liquid absorption and antibacterial activity.
NASA Astrophysics Data System (ADS)
Wu, Lihang; Mu, Dan; Gao, Dejiang; Deng, Xinyu; Tian, Yuan; Zhang, Hanqi; Yu, Aimin
2009-02-01
The resonance light scattering (RLS) spectra of bovine serum albumin (BSA)-dithiothreitol (DTT)-sodium dodecylbenzene sulphonate (SDBS) and its analytical application were investigated. The RLS intensity of this system can be effectively enhanced in the presence of BSA. Based on the enhanced RLS intensity, a simple assay for BSA was developed. The experimental results indicate that the enhanced RLS intensity is proportional to the concentration of BSA in the range from 1.0 × 10 -8 to 7.5 × 10 -7 mol L -1 with the determination limit of 5.0 × 10 -9 mol L -1. The effects of pH, concentration of SDBS and DTT on the RLS enhancement were discussed. Most metal ions have little interference on the determination of BSA. Some synthetic and real samples were analyzed, and the results obtained were in good agreement with those obtained by Bradford method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajamani, S.
The leather industry is an important export-oriented industry in India, with more than 3,000 tanneries located in different clusters. Sodium sulfide, a toxic chemical, is used in large quantities to remove hair and excess flesh from hides and skins. Most of the sodium sulfide used in the process is discharged as waste in the effluent, which causes serious environmental problems. Reduction of sulfide in the effluent is generally achieved by means of chemicals in the pretreatment system, which involves aerobic mixing using large amounts of chemicals and high energy, and generating large volumes of sludge. A simple biotechnological system thatmore » uses the residual biosludge from the secondary settling tank was developed, and the commercial-scale application established that more than 90% of the sulfide could be reduced in the primary treatment system. In addition to the reduction of sulfide, foul smells, BOD and COD are reduced to a considerable level. 3 refs., 2 figs., 1 tab.« less
Glycerin Borax Treatment of Exfoliative Cheilitis Induced by Sodium Lauryl Sulfate: a Case Report
2016-01-01
This paper reports on the results of a case study of a 19-year-old female who presented to the Oral Medicine clinic with a chief complaint of scaly and peeling lips. The lesions had persisted on her lips for more than 7 years and were refractory to previous treatment. Her physician’s diagnosis was contact dermatitis. We diagnosed this patient as having exfoliative cheilitis (EC). A patch test using the toothpaste containing sodium lauryl sulfate (SLS) was positive and the patient discontinued using it. Instead, she started using a toothpaste not containing SLS. One year after treating her lesions with hydrogen peroxide mouthwash 1% and glycerin borax, a gradual improvement was observed until returning to normal. Glycerin borax was safe, low cost and simple to use in treatment of refractory exfoliative cheilitis. SLS may have been a precipitating factor in EC in this case. PMID:27789914
Glycerin Borax Treatment of Exfoliative Cheilitis Induced by Sodium Lauryl Sulfate: a Case Report.
Thongprasom, Kobkan
2016-06-01
This paper reports on the results of a case study of a 19-year-old female who presented to the Oral Medicine clinic with a chief complaint of scaly and peeling lips. The lesions had persisted on her lips for more than 7 years and were refractory to previous treatment. Her physician's diagnosis was contact dermatitis. We diagnosed this patient as having exfoliative cheilitis (EC). A patch test using the toothpaste containing sodium lauryl sulfate (SLS) was positive and the patient discontinued using it. Instead, she started using a toothpaste not containing SLS. One year after treating her lesions with hydrogen peroxide mouthwash 1% and glycerin borax, a gradual improvement was observed until returning to normal. Glycerin borax was safe, low cost and simple to use in treatment of refractory exfoliative cheilitis. SLS may have been a precipitating factor in EC in this case.
Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz
2015-05-22
Preparation is described of a durable surface of cationic gold nanoparticles (AuNPs), covering commercial and custom-made MALDI targets, along with characterization of the nanoparticle surface properties and examples of the use in MS analyses and MS imaging (IMS) of low molecular weight (LMW) organic compounds. Tested compounds include nucleosides, saccharides, amino acids, glycosides, and nucleic bases for MS measurements, as well as over one hundred endogenous compounds in imaging experiment. The nanoparticles covering target plate were enriched in sodium in order to promote sodium-adduct formation. The new surface allows fast analysis, high sensitivity of detection and high mass determination accuracy. Example of application of new Au nanoparticle-enhanced target for fast and simple MS imaging of a fingerprint is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lasfargues, Mathieu; Bell, Andrew; Ding, Yulong
2016-06-01
In this study, TiO2 nanoparticles (average particle size 16 nm) were successfully produced in molten salt phase and were showed to significantly enhance the specific heat capacity of a binary eutectic mixture of sodium and potassium nitrate (60/40) by 5.4 % at 390 °C and 7.5 % at 445 °C for 3.0 wt% of precursors used. The objective of this research was to develop a cost-effective alternate method of production which is potentially scalable, as current techniques utilized are not economically viable for large quantities. Enhancing the specific heat capacity of molten salt would promote more competitive pricing for electricity production by concentrating solar power plant. Here, a simple precursor (TiOSO4) was added to a binary eutectic mixture of potassium and sodium nitrate, heated to 450 °C, and cooled to witness the production of nanoparticles.
NASA Astrophysics Data System (ADS)
Swaminathan, K.; Asokane, C.; Sylvia, J. I.; Kalyanasundaram, P.; Swaminathan, P.
2012-02-01
An ultrasonic under-sodium scanner has been developed for deployment in Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India. Its purpose is to scan the above-core plenum for detection, if any, of displacement of sub-assemblies. During its burn-up in the reactor, the head of a Fuel Sub-Assembly (FSA) may undergo a lateral shift from its original position (called `bowing') due to the fast neutron induced damage on its structural material. A simple scanning technique has been developed for measuring the extent of bowing in-situ. This paper describes a PC-controlled mock-up of the scanner used to implement the scanning technique and the results obtained of scanning a mock-up FSA head under water. The details of the liquid-sodium proof transducer developed for use in the PFBR scanner and its performance are also discussed.
Liu, Xiaoxi; Ding, Li; Liu, Jinxia; Zhang, Ying; Huang, Zhiqiang; Wang, Libing; Chen, Bo
2010-11-01
A simple and sensitive method for the determination of six synthetic sweeteners (sodium cyclamate, saccharin sodium, acesulfame-K, aspartame, alitame and neotame) in food was developed. The synthetic sweeteners were extracted by methanol-water (1 : 1, v/v). The extract was separated on a C18 column using 0.1% (v/v) formic acid-5 mmol/L ammonium formate/acetonitrile as mobile phase, and then detected by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) using multiple reaction monitoring (MRM) mode. The good linearities (r > 0.998) were achieved for all the analytes over the range of 20-500 microg/L. The recoveries obtained ranged from 81.3% to 106.0% at three spiked concentrations, with the relative standard deviations lower than 11%. The established method has been successfully applied to the determination of synthetic sweeteners in food.
Jiang, Xiancai; Xiang, Nanping; Zhang, Hongxiang; Sun, Yujun; Lin, Zhen; Hou, Linxi
2018-04-15
Development of bio-based hydrogels with good mechanical properties and high electrical conductivity is of great importance for their excellent biocompatibility and biodegradability. Novel electrically conducive and tough poly(vinyl alcohol)/sodium alginate (PVA/SA) composite hydrogel was obtained by a simple method in this paper. PVA and SA were firstly dissolved in distilled water to form the composite solution and the pure PVA/SA hydrogel was obtained through the freezing/thawing process. The pure PVA/SA hydrogels were subsequently immersed into the saturated NaCl aqueous solution to increase the gel strength and conductivity. The effect of the immersing time on the thermal and mechanical properties of PVA/SA hydrogel was studied. The swelling properties and the antiseptic properties of the obtained PVA/SA hydrogel were also studied. This paper provided a novel way for the preparation of tough hydrogel electrolyte. Copyright © 2018. Published by Elsevier Ltd.