Simple proof of equivalence between adiabatic quantum computation and the circuit model.
Mizel, Ari; Lidar, Daniel A; Mitchell, Morgan
2007-08-17
We prove the equivalence between adiabatic quantum computation and quantum computation in the circuit model. An explicit adiabatic computation procedure is given that generates a ground state from which the answer can be extracted. The amount of time needed is evaluated by computing the gap. We show that the procedure is computationally efficient.
Equivalent circuit models for interpreting impedance perturbation spectroscopy data
NASA Astrophysics Data System (ADS)
Smith, R. Lowell
2004-07-01
As in-situ structural integrity monitoring disciplines mature, there is a growing need to process sensor/actuator data efficiently in real time. Although smaller, faster embedded processors will contribute to this, it is also important to develop straightforward, robust methods to reduce the overall computational burden for practical applications of interest. This paper addresses the use of equivalent circuit modeling techniques for inferring structure attributes monitored using impedance perturbation spectroscopy. In pioneering work about ten years ago significant progress was associated with the development of simple impedance models derived from the piezoelectric equations. Using mathematical modeling tools currently available from research in ultrasonics and impedance spectroscopy is expected to provide additional synergistic benefits. For purposes of structural health monitoring the objective is to use impedance spectroscopy data to infer the physical condition of structures to which small piezoelectric actuators are bonded. Features of interest include stiffness changes, mass loading, and damping or mechanical losses. Equivalent circuit models are typically simple enough to facilitate the development of practical analytical models of the actuator-structure interaction. This type of parametric structure model allows raw impedance/admittance data to be interpreted optimally using standard multiple, nonlinear regression analysis. One potential long-term outcome is the possibility of cataloging measured viscoelastic properties of the mechanical subsystems of interest as simple lists of attributes and their statistical uncertainties, whose evolution can be followed in time. Equivalent circuit models are well suited for addressing calibration and self-consistency issues such as temperature corrections, Poisson mode coupling, and distributed relaxation processes.
NASA Astrophysics Data System (ADS)
Kobayashi, Kiyoshi; Suzuki, Tohru S.
2018-03-01
A new algorithm for the automatic estimation of an equivalent circuit and the subsequent parameter optimization is developed by combining the data-mining concept and complex least-squares method. In this algorithm, the program generates an initial equivalent-circuit model based on the sampling data and then attempts to optimize the parameters. The basic hypothesis is that the measured impedance spectrum can be reproduced by the sum of the partial-impedance spectra presented by the resistor, inductor, resistor connected in parallel to a capacitor, and resistor connected in parallel to an inductor. The adequacy of the model is determined by using a simple artificial-intelligence function, which is applied to the output function of the Levenberg-Marquardt module. From the iteration of model modifications, the program finds an adequate equivalent-circuit model without any user input to the equivalent-circuit model.
Simple two-electrode biosignal amplifier.
Dobrev, D; Neycheva, T; Mudrov, N
2005-11-01
A simple, cost effective circuit for a two-electrode non-differential biopotential amplifier is proposed. It uses a 'virtual ground' transimpedance amplifier and a parallel RC network for input common mode current equalisation, while the signal input impedance preserves its high value. With this innovative interface circuit, a simple non-inverting amplifier fully emulates high CMRR differential. The amplifier equivalent CMRR (typical range from 70-100 dB) is equal to the open loop gain of the operational amplifier used in the transimpedance interface stage. The circuit has very simple structure and utilises a small number of popular components. The amplifier is intended for use in various two-electrode applications, such as Holter-type monitors, defibrillators, ECG monitors, biotelemetry devices etc.
Combined analysis of energy band diagram and equivalent circuit on nanocrystal solid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kano, Shinya, E-mail: kano@eedept.kobe-u.ac.jp, E-mail: fujii@eedept.kobe-u.ac.jp; Sasaki, Masato; Fujii, Minoru, E-mail: kano@eedept.kobe-u.ac.jp, E-mail: fujii@eedept.kobe-u.ac.jp
We investigate a combined analysis of an energy band diagram and an equivalent circuit on nanocrystal (NC) solids. We prepared a flat silicon-NC solid in order to carry out the analysis. An energy band diagram of a NC solid is determined from DC transport properties. Current-voltage characteristics, photocurrent measurements, and conductive atomic force microscopy images indicate that a tunneling transport through a NC solid is dominant. Impedance spectroscopy gives an equivalent circuit: a series of parallel resistor-capacitors corresponding to NC/metal and NC/NC interfaces. The equivalent circuit also provides an evidence that the NC/NC interface mainly dominates the carrier transport throughmore » NC solids. Tunneling barriers inside a NC solid can be taken into account in a combined capacitance. Evaluated circuit parameters coincide with simple geometrical models of capacitances. As a result, impedance spectroscopy is also a useful technique to analyze semiconductor NC solids as well as usual DC transport. The analyses provide indispensable information to implement NC solids into actual electronic devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Srutarshi; Rajan, Rehim N.; Singh, Sandeep K.
2014-07-01
DC Accelerators undergoes different types of discharges during its operation. A model depicting the discharges has been simulated to study the different transient conditions. The paper presents a Physics based approach of developing a compact circuit model of the DC Accelerator using Partial Element Equivalent Circuit (PEEC) technique. The equivalent RLC model aids in analyzing the transient behavior of the system and predicting anomalies in the system. The electrical discharges and its properties prevailing in the accelerator can be evaluated by this equivalent model. A parallel coupled voltage multiplier structure is simulated in small scale using few stages of coronamore » guards and the theoretical and practical results are compared. The PEEC technique leads to a simple model for studying the fault conditions in accelerator systems. Compared to the Finite Element Techniques, this technique gives the circuital representation. The lumped components of the PEEC are used to obtain the input impedance and the result is also compared to that of the FEM technique for a frequency range of (0-200) MHz. (author)« less
NASA Astrophysics Data System (ADS)
Ivković, Saša S.; Marković, Marija Z.; Ivković, Dragica Ž.; Cvetanović, Nikola
2017-09-01
Equivalent series resistance (ESR) represents the measurement of total energy loss in a capacitor. In this paper a simple method for measuring the ESR of ceramic capacitors based on the analysis of the oscillations of an LCR circuit is proposed. It is shown that at frequencies under 3300 Hz, the ESR is directly proportional to the period of oscillations. Based on the determined dependence of the ESR on the period, a method is devised and tested for measuring coil inductance. All measurements were performed using the standard equipment found in student laboratories, which makes both methods very suitable for implementation at high school and university levels.
A novel analytical description of periodic volume coil geometries in MRI
NASA Astrophysics Data System (ADS)
Koh, D.; Felder, J.; Shah, N. J.
2018-03-01
MRI volume coils can be represented by equivalent lumped element circuits and for a variety of these circuit configurations analytical design equations have been presented. The unification of several volume coil topologies results in a two-dimensional gridded equivalent lumped element circuit which compromises the birdcage resonator, its multiple endring derivative but also novel structures like the capacitive coupled ring resonator. The theory section analyzes a general two-dimensional circuit by noting that its current distribution can be decomposed into a longitudinal and an azimuthal dependency. This can be exploited to compare the current distribution with a transfer function of filter circuits along one direction. The resonances of the transfer function coincide with the resonance of the volume resonator and the simple analytical solution can be used as a design equation. The proposed framework is verified experimentally against a novel capacitive coupled ring structure which was derived from the general circuit formulation and is proven to exhibit a dominant homogeneous mode. In conclusion, a unified analytical framework is presented that allows determining the resonance frequency of any volume resonator that can be represented by a two dimensional meshed equivalent circuit.
Energy awareness for supercapacitors using Kalman filter state-of-charge tracking
NASA Astrophysics Data System (ADS)
Nadeau, Andrew; Hassanalieragh, Moeen; Sharma, Gaurav; Soyata, Tolga
2015-11-01
Among energy buffering alternatives, supercapacitors can provide unmatched efficiency and durability. Additionally, the direct relation between a supercapacitor's terminal voltage and stored energy can improve energy awareness. However, a simple capacitive approximation cannot adequately represent the stored energy in a supercapacitor. It is shown that the three branch equivalent circuit model provides more accurate energy awareness. This equivalent circuit uses three capacitances and associated resistances to represent the supercapacitor's internal SOC (state-of-charge). However, the SOC cannot be determined from one observation of the terminal voltage, and must be tracked over time using inexact measurements. We present: 1) a Kalman filtering solution for tracking the SOC; 2) an on-line system identification procedure to efficiently estimate the equivalent circuit's parameters; and 3) experimental validation of both parameter estimation and SOC tracking for 5 F, 10 F, 50 F, and 350 F supercapacitors. Validation is done within the operating range of a solar powered application and the associated power variability due to energy harvesting. The proposed techniques are benchmarked against the simple capacitive model and prior parameter estimation techniques, and provide a 67% reduction in root-mean-square error for predicting usable buffered energy.
Chua's Circuit and the Qualitative Theory of Dynamical Systems
NASA Astrophysics Data System (ADS)
Mira, Christian
Simple electronic oscillators were at the origin of many studies related to the qualitative theory of dynamical systems. Chua's circuit ([Chua, 1992; Madan, 1993; Chua, 1993; Chua & Pivka, 1995; Wu & Chua, 1996; Pivka et al., 1996]) is now playing an equivalent role for the generation and understanding of complex dynamics. In honour of my friend Leon Chua on his 60th birthday.
Magnetic Field Analysis of Lorentz Motors Using a Novel Segmented Magnetic Equivalent Circuit Method
Qian, Junbing; Chen, Xuedong; Chen, Han; Zeng, Lizhan; Li, Xiaoqing
2013-01-01
A simple and accurate method based on the magnetic equivalent circuit (MEC) model is proposed in this paper to predict magnetic flux density (MFD) distribution of the air-gap in a Lorentz motor (LM). In conventional MEC methods, the permanent magnet (PM) is treated as one common source and all branches of MEC are coupled together to become a MEC network. In our proposed method, every PM flux source is divided into three sub-sections (the outer, the middle and the inner). Thus, the MEC of LM is divided correspondingly into three independent sub-loops. As the size of the middle sub-MEC is small enough, it can be treated as an ideal MEC and solved accurately. Combining with decoupled analysis of outer and inner MECs, MFD distribution in the air-gap can be approximated by a quadratic curve, and the complex calculation of reluctances in MECs can be avoided. The segmented magnetic equivalent circuit (SMEC) method is used to analyze a LM, and its effectiveness is demonstrated by comparison with FEA, conventional MEC and experimental results. PMID:23358368
Simple model of a photoacoustic system as a CR circuit
NASA Astrophysics Data System (ADS)
Fukuhara, Akiko; Kaneko, Fumitoshi; Ogawa, Naohisa
2012-05-01
We introduce the photoacoustic educational system (PAES), by which we can identify which gas causes the greenhouse effect in a classroom (Kaneko et al 2010 J. Chem. Educ. 87 202-4). PAES is an experimental system in which a pulse of infrared (IR) is absorbed into gas as internal energy, an oscillation of pressure (sound) appears, and then we can measure the absorptance of IR by the strength of sound. In this paper, we construct a simple mathematical model for PAES which is equivalent to the CR circuit. The energy absorption of an IR pulse into gas corresponds to the charge of a condenser and the heat diffusion to the outside corresponds to the energy dissipation by electric resistance. We analyse the experimental results by using this simple model, and check its validity. Although the model is simple, it explains phenomena occurring in PAES and can be a good educational resource.
Development and Experimental Evaluation of an Automated Multi-Media Course on Transistors.
ERIC Educational Resources Information Center
Whitted, J.H., Jr.; And Others
A completely automated multi-media self-study program for teaching a portion of electronic solid-state fundamentals was developed. The subject matter areas included were fundamental theory of transistors, transistor amplifier fundamentals, and simple mathematical analysis of transistors including equivalent circuits, parameters, and characteristic…
An improved equivalent circuit model of a four rod deflecting cavity
NASA Astrophysics Data System (ADS)
Apsimon, R.; Burt, G.
2017-03-01
In this paper we present an improved equivalent circuit model for a four rod deflecting cavity which calculates the frequencies of the first four modes of the cavity as well as the RT/Q for the deflecting mode. Equivalent circuit models of RF cavities give intuition and understanding about how the cavity operates and what changes can be made to modify the frequency, without the need for RF simulations, which can be time-consuming. We parameterise a generic four rod deflecting cavity into a geometry consisting of simple shapes. Equations are derived for the line impedance of the rods and the capacitance between the rods and these are used to calculate the resonant frequency of the deflecting dipole mode as well as the lower order mode and the model is bench-marked against two test cases; the CEBAF separator and the HL-LHC 4-rod LHC crab cavity. CST and the equivalent circuit model agree within 4% for both cavities with the LOM frequency and within 1% for the deflecting frequency. RT/Q differs between the model and CST by 37% for the CEBAF separator and 25% for the HL-LHC 4-rod crab cavity; however this is sufficient for understanding how to optimise the cavity design. The model has then been utilised to suggest a method of separating the modal frequencies in the HL-LHC crab cavity and to suggest design methodologies to optimise the cavity geometries.
NASA Technical Reports Server (NTRS)
Edmonds, Larry D.
1987-01-01
The steady state current distribution in a three dimensional integrated circuit is presented. A device physics approach, based on a perturbation method rather than an equivalent lumped circuit approach, is used. The perturbation method allows the various currents to be expressed in terms of elementary solutions which are solutions to very simple boundary value problems. A Simple Steady State Theory is the subtitle because the most obvious limitation of the present version of the analysis is that all depletion region boundary surfaces are treated as equipotential surfaces. This may be an adequate approximation in some applications but it is an obvious weakness in the theory when applied to latched states. Examples that illustrate the use of these analytical methods are not given because they will be presented in detail in the future.
Quantum mechanical settings inspired by RLC circuits
NASA Astrophysics Data System (ADS)
Alicata, G.; Bagarello, F.; Gargano, F.; Spagnolo, S.
2018-04-01
In some recent papers, several authors used electronic circuits to construct loss and gain systems. This is particularly interesting in the context of PT-quantum mechanics, where this kind of effects appears quite naturally. The electronic circuits used so far are simple, but not so much. Surprisingly enough, a rather trivial RLC circuit can be analyzed with the same perspective and it produces a variety of unexpected results, both from a mathematical and on a physical side. In this paper, we show that this circuit produces two biorthogonal bases associated with the Liouville matrix L used in the treatment of its dynamics, with a biorthogonality which is linked to the value of the parameters of the circuit. We also show that the related loss RLC circuit is naturally associated with a gain RLC circuit and that the relation between the two is rather naturally encoded in L . We propose a pseudo-fermionic analysis of the circuit, and we introduce the notion of m-equivalence between electronic circuits.
Huang, Like; Xu, Jie; Sun, Xiaoxiang; Du, Yangyang; Cai, Hongkun; Ni, Jian; Li, Juan; Hu, Ziyang; Zhang, Jianjun
2016-04-20
Currently, most efficient perovskite solar cells (PVKSCs) with a p-i-n structure require simultaneously electron transport layers (ETLs) and hole transport layers (HTLs) to help collecting photogenerated electrons and holes for obtaining high performance. ETL free planar PVKSC is a relatively new and simple structured solar cell that gets rid of the complex and high temperature required ETL (such as compact and mesoporous TiO2). Here, we demonstrate the critical role of high coverage of perovskite in efficient ETL free PVKSCs from an energy band and equivalent circuit model perspective. From an electrical point of view, we confirmed that the low coverage of perovskite does cause localized short circuit of the device. With coverage optimization, a planar p-i-n(++) device with a power conversion efficiency of over 11% was achieved, implying that the ETL layer may not be necessary for an efficient device as long as the perovskite coverage is approaching 100%.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Aleksandr I.; Lazarev, Alexander A.; Magas, Taras E.
2010-04-01
Equivalence models (EM) advantages of neural networks (NN) are shown in paper. EMs are based on vectormatrix procedures with basic operations of continuous neurologic: normalized vector operations "equivalence", "nonequivalence", "autoequivalence", "autononequivalence". The capacity of NN on the basis of EM and of its modifications, including auto-and heteroassociative memories for 2D images, exceeds in several times quantity of neurons. Such neuroparadigms are very perspective for processing, recognition, storing large size and strongly correlated images. A family of "normalized equivalence-nonequivalence" neuro-fuzzy logic operations on the based of generalized operations fuzzy-negation, t-norm and s-norm is elaborated. A biologically motivated concept and time pulse encoding principles of continuous logic photocurrent reflexions and sample-storage devices with pulse-width photoconverters have allowed us to design generalized structures for realization of the family of normalized linear vector operations "equivalence"-"nonequivalence". Simulation results show, that processing time in such circuits does not exceed units of micro seconds. Circuits are simple, have low supply voltage (1-3 V), low power consumption (milliwatts), low levels of input signals (microwatts), integrated construction, satisfy the problem of interconnections and cascading.
NASA Astrophysics Data System (ADS)
Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Ma, Jianguo; Ma, Zhenqiang
2011-10-01
This letter presents radio frequency (RF) characterization of flexible microwave switches using single-crystal silicon nanomembranes (SiNMs) on plastic substrate under various uniaxial mechanical tensile bending strains. The flexible switches shows significant/negligible performance enhancement on strains under on/off states from dc to 10 GHz. Furthermore, an RF/microwave strain equivalent circuit model is developed and reveals the most influential factors, and un-proportional device parameters change with bending strains. The study demonstrates that flexible microwave single-crystal SiNM switches, as a simple circuit example towards the goal of flexible monolithic microwave integrated circuits, can be properly operated and modeled under mechanical bending conditions.
Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell
NASA Astrophysics Data System (ADS)
Giner-Sanz, J. J.; Ortega, E. M.; Pérez-Herranz, V.
2018-03-01
Electrochemical impedance spectroscopy (EIS) has been widely used in the fuel cell field since it allows deconvolving the different physic-chemical processes that affect the fuel cell performance. Typically, EIS spectra are modelled using electric equivalent circuits. In this work, EIS spectra of an individual cell of a commercial PEM fuel cell stack were obtained experimentally. The goal was to obtain a mechanistic electric equivalent circuit in order to model the experimental EIS spectra. A mechanistic electric equivalent circuit is a semiempirical modelling technique which is based on obtaining an equivalent circuit that does not only correctly fit the experimental spectra, but which elements have a mechanistic physical meaning. In order to obtain the aforementioned electric equivalent circuit, 12 different models with defined physical meanings were proposed. These equivalent circuits were fitted to the obtained EIS spectra. A 2 step selection process was performed. In the first step, a group of 4 circuits were preselected out of the initial list of 12, based on general fitting indicators as the determination coefficient and the fitted parameter uncertainty. In the second step, one of the 4 preselected circuits was selected on account of the consistency of the fitted parameter values with the physical meaning of each parameter.
Basic Research in Electronics (JSEP) Joint Services Electronics Program.
1987-12-31
poiNU362Z~ fi5v WALu i~n v.j WSW)F fulmB JELECTROUICS FROMM. (U) POLYTECHNIC UII FAW1406lL WY MEKR RESERCH INST At A OLINEN ET ft. 31 DEC S? UmC...range, as discussed in section 3. The fifth topic relates to a superstrate-substrate structure that permits a simple printed-circuit antenna to radiate...Antennas Loaded by Periodic Metal Strips. In last year’s Annual Report we presented a simple and accurate transverse equivalent network for the class
Huang, Yihua; Huang, Wenjin; Wang, Qinglei; Su, Xujian
2013-07-01
The equivalent circuit model of a piezoelectric transformer is useful in designing and optimizing the related driving circuits. Based on previous work, an equivalent circuit model for a circular flexural-vibration-mode piezoelectric transformer with moderate thickness is proposed and validated by finite element analysis. The input impedance, voltage gain, and efficiency of the transformer are determined through computation. The basic behaviors of the transformer are shown by numerical results.
Research of vibration control based on current mode piezoelectric shunt damping circuit
NASA Astrophysics Data System (ADS)
Liu, Weiwei; Mao, Qibo
2017-12-01
The piezoelectric shunt damping circuit using current mode approach is imposed to control the vibration of a cantilever beam. Firstly, the simulated inductance with large values are designed for the corresponding RL series shunt circuits. Moreover, with an example of cantilever beam, the second natural frequency of the beam is targeted to control for experiment. By adjusting the values of the equivalent inductance and equivalent resistance of the shunt circuit, the optimal damping of the shunt circuit is obtained. Meanwhile, the designed piezoelectric shunt damping circuit stability is experimental verified. Experimental results show that the proposed piezoelectric shunt damping circuit based on current mode circuit has good vibration control performance. However, the control performance will be reduced if equivalent inductance and equivalent resistance values deviate from optimal values.
Development of single cell lithium ion battery model using Scilab/Xcos
NASA Astrophysics Data System (ADS)
Arianto, Sigit; Yunaningsih, Rietje Y.; Astuti, Edi Tri; Hafiz, Samsul
2016-02-01
In this research, a lithium battery model, as a component in a simulation environment, was developed and implemented using Scicos/Xcos graphical language programming. Scicos used in this research was actually Xcos that is a variant of Scicos which is embedded in Scilab. The equivalent circuit model used in modeling the battery was Double Polarization (DP) model. DP model consists of one open circuit voltage (VOC), one internal resistance (Ri), and two parallel RC circuits. The parameters of the battery were extracted using Hybrid Power Pulse Characterization (HPPC) testing. In this experiment, the Double Polarization (DP) electrical circuit model was used to describe the lithium battery dynamic behavior. The results of simulation of the model were validated with the experimental results. Using simple error analysis, it was found out that the biggest error was 0.275 Volt. It was occurred mostly at the low end of the state of charge (SOC).
An Equivalent Circuit of Longitudinal Vibration for a Piezoelectric Structure with Losses.
Yuan, Tao; Li, Chaodong; Fan, Pingqing
2018-03-22
Equivalent circuits of piezoelectric structures such as bimorphs and unimorphs conventionally focus on the bending vibration modes. However, the longitudinal vibration modes are rarely considered even though they also play a remarkable role in piezoelectric devices. Losses, especially elastic loss in the metal substrate, are also generally neglected, which leads to discrepancies compared with experiments. In this paper, a novel equivalent circuit with four kinds of losses is proposed for a beamlike piezoelectric structure under the longitudinal vibration mode. This structure consists of a slender beam as the metal substrate, and a piezoelectric patch which covers a partial length of the beam. In this approach, first, complex numbers are used to deal with four kinds of losses-elastic loss in the metal substrate, and piezoelectric, dielectric, and elastic losses in the piezoelectric patch. Next in this approach, based on Mason's model, a new equivalent circuit is developed. Using MATLAB, impedance curves of this structure are simulated by the equivalent circuit method. Experiments are conducted and good agreements are revealed between experiments and equivalent circuit results. It is indicated that the introduction of four losses in an equivalent circuit can increase the result accuracy considerably.
An Equivalent Circuit of Longitudinal Vibration for a Piezoelectric Structure with Losses
Yuan, Tao; Li, Chaodong; Fan, Pingqing
2018-01-01
Equivalent circuits of piezoelectric structures such as bimorphs and unimorphs conventionally focus on the bending vibration modes. However, the longitudinal vibration modes are rarely considered even though they also play a remarkable role in piezoelectric devices. Losses, especially elastic loss in the metal substrate, are also generally neglected, which leads to discrepancies compared with experiments. In this paper, a novel equivalent circuit with four kinds of losses is proposed for a beamlike piezoelectric structure under the longitudinal vibration mode. This structure consists of a slender beam as the metal substrate, and a piezoelectric patch which covers a partial length of the beam. In this approach, first, complex numbers are used to deal with four kinds of losses—elastic loss in the metal substrate, and piezoelectric, dielectric, and elastic losses in the piezoelectric patch. Next in this approach, based on Mason’s model, a new equivalent circuit is developed. Using MATLAB, impedance curves of this structure are simulated by the equivalent circuit method. Experiments are conducted and good agreements are revealed between experiments and equivalent circuit results. It is indicated that the introduction of four losses in an equivalent circuit can increase the result accuracy considerably. PMID:29565825
New equivalent-electrical circuit model and a practical measurement method for human body impedance.
Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako
2015-01-01
Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.
An equivalent circuit model of supercapacitors for applications in wireless sensor networks
NASA Astrophysics Data System (ADS)
Yang, Hengzhao; Zhang, Ying
2011-04-01
Energy harvesting technologies have been extensively researched to develop long-lived wireless sensor networks. To better utilize the harvested energy, various energy storage systems are proposed. A simple circuit model is developed to describe supercapacitor behavior, which uses two resistor-capacitor branches with different time constants to characterize the charging and redistribution processes, and a variable leakage resistance (VLR) to characterize the self-discharge process. The voltage and temperature dependence of the VLR values is also discussed. Results show that the VLR model is more accurate than the energy recursive equation (ERE) models for short term wireless sensor network applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delnick, F.M.
1993-11-01
Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).
Fast modeling of flux trapping cascaded explosively driven magnetic flux compression generators.
Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Liu, Chebo
2013-01-01
To predict the performance of flux trapping cascaded flux compression generators, a calculation model based on an equivalent circuit is investigated. The system circuit is analyzed according to its operation characteristics in different steps. Flux conservation coefficients are added to the driving terms of circuit differential equations to account for intrinsic flux losses. To calculate the currents in the circuit by solving the circuit equations, a simple zero-dimensional model is used to calculate the time-varying inductance and dc resistance of the generator. Then a fast computer code is programmed based on this calculation model. As an example, a two-staged flux trapping generator is simulated by using this computer code. Good agreements are achieved by comparing the simulation results with the measurements. Furthermore, it is obvious that this fast calculation model can be easily applied to predict performances of other flux trapping cascaded flux compression generators with complex structures such as conical stator or conical armature sections and so on for design purpose.
Wideband analytical equivalent circuit for one-dimensional periodic stacked arrays.
Molero, Carlos; Rodríguez-Berral, Raúl; Mesa, Francisco; Medina, Francisco; Yakovlev, Alexander B
2016-01-01
A wideband equivalent circuit is proposed for the accurate analysis of scattering from a set of stacked slit gratings illuminated by a plane wave with transverse magnetic or electric polarization that impinges normally or obliquely along one of the principal planes of the structure. The slit gratings are printed on dielectric slabs of arbitrary thickness, including the case of closely spaced gratings that interact by higher-order modes. A Π-circuit topology is obtained for a pair of coupled arrays, with fully analytical expressions for all the circuit elements. This equivalent Π circuit is employed as the basis to derive the equivalent circuit of finite stacks with any given number of gratings. Analytical expressions for the Brillouin diagram and the Bloch impedance are also obtained for infinite periodic stacks.
Real-time monitoring of a microbial electrolysis cell using an electrical equivalent circuit model.
Hussain, S A; Perrier, M; Tartakovsky, B
2018-04-01
Efforts in developing microbial electrolysis cells (MECs) resulted in several novel approaches for wastewater treatment and bioelectrosynthesis. Practical implementation of these approaches necessitates the development of an adequate system for real-time (on-line) monitoring and diagnostics of MEC performance. This study describes a simple MEC equivalent electrical circuit (EEC) model and a parameter estimation procedure, which enable such real-time monitoring. The proposed approach involves MEC voltage and current measurements during its operation with periodic power supply connection/disconnection (on/off operation) followed by parameter estimation using either numerical or analytical solution of the model. The proposed monitoring approach is demonstrated using a membraneless MEC with flow-through porous electrodes. Laboratory tests showed that changes in the influent carbon source concentration and composition significantly affect MEC total internal resistance and capacitance estimated by the model. Fast response of these EEC model parameters to changes in operating conditions enables the development of a model-based approach for real-time monitoring and fault detection.
Equivalent circuit consideration of frequency-shift-type acceleration sensor
NASA Astrophysics Data System (ADS)
Sasaki, Yoshifumi; Sugawara, Sumio; Kudo, Subaru
2018-07-01
In this paper, an electrical equivalent circuit for the piezoelectrically driven frequency-shift-type acceleration sensor model is represented, and the equivalent circuit constants including the effect of the axial force are clarified for the first time. The results calculated by the finite element method are compared with the experimentally measured ones of the one-axis sensor of trial production. The result shows that the analyzed values almost agree with the measured ones, and that the equivalent circuit representation of the sensor is useful for electrical engineers in order to easily analyze the characteristics of the sensors.
New equivalent lumped electrical circuit for piezoelectric transformers.
Gonnard, Paul; Schmitt, P M; Brissaud, Michel
2006-04-01
A new equivalent circuit is proposed for a contour-vibration-mode piezoelectric transformer (PT). It is shown that the usual lumped equivalent circuit derived from the conventional Mason approach is not accurate. The proposed circuit, built on experimental measurements, makes an explicit difference between the elastic energies stored respectively on the primary and secondary parts. The experimental and theoretical resonance frequencies with the secondary in open or short circuit are in good agreement as well as the output "voltage-current" characteristic and the optimum efficiency working point. This circuit can be extended to various PT configurations and appears to be a useful tool for modeling electronic devices that integrate piezoelectric transformers.
TCAD Analysis of Heating and Maximum Current Density in Carbon Nanofiber Interconnects
2011-09-01
a metallic MWCNT interconnect. From [20]. ....20 Figure 11. Simple equivalent circuit model of a metallic MWCNT interconnect. From [20...Carbon Nanotube MWCNT Multi-Walled Carbon Nanotube SCU Santa Clara University Si Silicon SiO2 Silicon Dioxide SiC Silicon Carbide Au Gold...proven, multi-walled carbon nanotube ( MWCNT ) [2]. He later discovered single-walled carbon nanotubes (SWCNT) in 1993 [13]. Since Iijima’s discovery
Equivalent circuit simulation of HPEM-induced transient responses at nonlinear loads
NASA Astrophysics Data System (ADS)
Kotzev, Miroslav; Bi, Xiaotang; Kreitlow, Matthias; Gronwald, Frank
2017-09-01
In this paper the equivalent circuit modeling of a nonlinearly loaded loop antenna and its transient responses to HPEM field excitations are investigated. For the circuit modeling the general strategy to characterize the nonlinearly loaded antenna by a linear and a nonlinear circuit part is pursued. The linear circuit part can be determined by standard methods of antenna theory and numerical field computation. The modeling of the nonlinear circuit part requires realistic circuit models of the nonlinear loads that are given by Schottky diodes. Combining both parts, appropriate circuit models are obtained and analyzed by means of a standard SPICE circuit simulator. It is the main result that in this way full-wave simulation results can be reproduced. Furthermore it is clearly seen that the equivalent circuit modeling offers considerable advantages with respect to computation speed and also leads to improved physical insights regarding the coupling between HPEM field excitation and nonlinearly loaded loop antenna.
Jeffery, A.; Elmquist, R. E.; Cage, M. E.
1995-01-01
Precision tests verify the dc equivalent circuit used by Ricketts and Kemeny to describe a quantum Hall effect device in terms of electrical circuit elements. The tests employ the use of cryogenic current comparators and the double-series and triple-series connection techniques of Delahaye. Verification of the dc equivalent circuit in double-series and triple-series connections is a necessary step in developing the ac quantum Hall effect as an intrinsic standard of resistance. PMID:29151768
Paul Drude's Prediction of Nonreciprocal Mutual Inductance for Tesla Transformers
McGuyer, Bart
2014-01-01
Inductors, transmission lines, and Tesla transformers have been modeled with lumped-element equivalent circuits for over a century. In a well-known paper from 1904, Paul Drude predicts that the mutual inductance for an unloaded Tesla transformer should be nonreciprocal. This historical curiosity is mostly forgotten today, perhaps because it appears incorrect. However, Drude's prediction is shown to be correct for the conditions treated, demonstrating the importance of constraints in deriving equivalent circuits for distributed systems. The predicted nonreciprocity is not fundamental, but instead is an artifact of the misrepresentation of energy by an equivalent circuit. The application to modern equivalent circuits is discussed. PMID:25542040
Paul Drude's prediction of nonreciprocal mutual inductance for Tesla transformers.
McGuyer, Bart
2014-01-01
Inductors, transmission lines, and Tesla transformers have been modeled with lumped-element equivalent circuits for over a century. In a well-known paper from 1904, Paul Drude predicts that the mutual inductance for an unloaded Tesla transformer should be nonreciprocal. This historical curiosity is mostly forgotten today, perhaps because it appears incorrect. However, Drude's prediction is shown to be correct for the conditions treated, demonstrating the importance of constraints in deriving equivalent circuits for distributed systems. The predicted nonreciprocity is not fundamental, but instead is an artifact of the misrepresentation of energy by an equivalent circuit. The application to modern equivalent circuits is discussed.
Approximate analytical solution for induction heating of solid cylinders
Jankowski, Todd Andrew; Pawley, Norma Helen; Gonzales, Lindsey Michal; ...
2015-10-20
An approximate solution to the mathematical model for induction heating of a solid cylinder in a cylindrical induction coil is presented here. The coupled multiphysics model includes equations describing the electromagnetic field in the heated object, a heat transfer simulation to determine temperature of the heated object, and an AC circuit simulation of the induction heating power supply. A multiple-scale perturbation method is used to solve the multiphysics model. The approximate analytical solution yields simple closed-form expressions for the electromagnetic field and heat generation rate in the solid cylinder, for the equivalent impedance of the associated tank circuit, and formore » the frequency response of a variable frequency power supply driving the tank circuit. The solution developed here is validated by comparing predicted power supply frequency to both experimental measurements and calculated values from finite element analysis for heating of graphite cylinders in an induction furnace. The simple expressions from the analytical solution clearly show the functional dependence of the power supply frequency on the material properties of the load and the geometrical characteristics of the furnace installation. In conclusion, the expressions developed here provide physical insight into observations made during load signature analysis of induction heating.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Na, Woonki; Leighty, Bill
Self-Excited Induction Generation(SEIG) is very rugged, simple, lightweight, and it is easy and inexpensive to implement, very simple to control, and requires a very little maintenance. In this variable-speed operation, the SEIG needs a power electronics interface to convert from the variable frequency output voltage of the generator to a DC output voltage for battery or other DC applications. In our study, a SEIG is connected to the power electronics interface such as diode rectifier and DC/DC converter and then an electrolyzer is connected as a final DC load for fuel cell applications. An equivalent circuit model for an electrolyzermore » is utilized for our application. The control and analysis for the proposed system is carried out by using PSCAD and MATLAB software. This study would be useful for designing and control analysis of power interface circuits for SEIG for a variable speed wind turbine generation with fuel cell applications before the actual implementation.« less
NASA Astrophysics Data System (ADS)
Dinh, Thanh Vu; Cabon, Béatrice; Daoud, Nahla; Chilo, Jean
1992-11-01
This paper presents a simple and efficient method for calculating the propagating line parameters (actually, a microstrip one) and its magnetic fields, by simulating an original equivalent circuit with an electrical nodal simulator (SPICE). The losses in the normal conducting line (due to DC losses and to skin effect losses) and also in the superconducting one can be investigated. This allows us to integrate the electromagnetic solutions to the CAD softwares. Dans ce papier, une méthode simple et efficace pour calculer les paramètres de propagation d'une ligne microruban et les champs magnétiques qu'elle engendre est présentée; pour cela, nous simulons un circuit original équivalent à l'aide du simulateur nodal SPICE. Les pertes dans une ligne conductrice (pertes continues et par effet de peau) ainsi que dans une ligne supraconductrice peuvent être considérées. Les solutions électromagnétiques peuvent être intégrées dans les simulateurs de CAO.
NASA Astrophysics Data System (ADS)
Karisan, Yasir; Caglayan, Cosan; Sertel, Kubilay
2018-02-01
We present a novel distributed equivalent circuit that incorporates a three-way-coupled transmission line to accurately capture the external parasitics of double-finger high electron mobility transistor (HEMT) topologies up to 750 GHz. A six-step systematic parameter extraction procedure is used to determine the equivalent circuit elements for a representative device layout. The accuracy of the proposed approach is validated in the 90-750 GHz band through comparisons between measured data (via non-contact probing) and full-wave simulations, as well as the equivalent circuit response. Subsequently, a semi-distributed active device model is incorporated into the proposed parasitic circuit to demonstrate that the three-way-coupled transmission line model effectively predicts the adverse effect of parasitic components on the sub-mmW performance in an amplifier setting.
Resonant electrodynamic heating of stellar coronal loops: An LRC circuit analogue
NASA Technical Reports Server (NTRS)
Ionson, J. A.
1980-01-01
The electrodynamic coupling of stellar coronal loops to underlying beta velocity fields. A rigorous analysis revealed that the physics can be represented by a simple yet equivalent LRC circuit analogue. This analogue points to the existence of global structure oscillations which resonantly excite internal field line oscillations at a spatial resonance within the coronal loop. Although the width of this spatial resonance, as well as the induced currents and coronal velocity field, explicitly depend upon viscosity and resistivity, the resonant form of the generalized electrodynamic heating function is virtually independent of irreversibilities. This is a classic feature of high quality resonators that are externally driven by a broad band source of spectral power. Applications to solar coronal loops result in remarkable agreement with observations.
Analysis of shielded CPW discontinuities with air-bridges
NASA Technical Reports Server (NTRS)
Dib, N. I.; Katehi, P. B.; Ponchak, George E.
1992-01-01
The effect of air-bridges on the performance of various coplanar waveguides (CPW) discontinuities is studied. Specifically, the coupled open-end CPW's and the short-end shunt CPW stub discontinuities are considered. The high frequency effect of the air-bridge is evaluated using a hybrid technique. At first, the frequency dependent equivalent circuit of the planar discontinuity without the air-bridge is derived using the Space Domain Integral Equation (SDIE) method. Then, the circuit is modified by incorporating the air-bridge's parasitic inductance and capacitance which are evaluated using a simple quasi-static model. The frequency response of each discontinuity with and without the air-bridge is studied and the scattering parameters are plotted in the frequency range 30-50 GHz for typical CPW dimensions.
Equivalent circuit model of Ge/Si separate absorption charge multiplication avalanche photodiode
NASA Astrophysics Data System (ADS)
Wang, Wei; Chen, Ting; Yan, Linshu; Bao, Xiaoyuan; Xu, Yuanyuan; Wang, Guang; Wang, Guanyu; Yuan, Jun; Li, Junfeng
2018-03-01
The equivalent circuit model of Ge/Si Separate Absorption Charge Multiplication Avalanche Photodiode (SACM-APD) is proposed. Starting from the carrier rate equations in different regions of device and considering the influences of non-uniform electric field, noise, parasitic effect and some other factors, the equivalent circuit model of SACM-APD device is established, in which the steady-state and transient current voltage characteristics can be described exactly. In addition, the proposed Ge/Si SACM APD equivalent circuit model is embedded in PSpice simulator. The important characteristics of Ge/Si SACM APD such as dark current, frequency response, shot noise are simulated, the simulation results show that the simulation with the proposed model are in good agreement with the experimental results.
On equivalent resistance of electrical circuits
NASA Astrophysics Data System (ADS)
Kagan, Mikhail
2015-01-01
While the standard (introductory physics) way of computing the equivalent resistance of nontrivial electrical circuits is based on Kirchhoff's rules, there is a mathematically and conceptually simpler approach, called the method of nodal potentials, whose basic variables are the values of the electric potential at the circuit's nodes. In this paper, we review the method of nodal potentials and illustrate it using the Wheatstone bridge as an example. We then derive a closed-form expression for the equivalent resistance of a generic circuit, which we apply to a few sample circuits. The result unveils a curious interplay between electrical circuits, matrix algebra, and graph theory and its applications to computer science. The paper is written at a level accessible by undergraduate students who are familiar with matrix arithmetic. Additional proofs and technical details are provided in appendices.
NASA Technical Reports Server (NTRS)
Wilson, T. G.; Lee, F. C. Y.; Burns, W. W., III; Owen, H. A., Jr.
1974-01-01
A procedure is developed for classifying dc-to-square-wave two-transistor parallel inverters used in power conditioning applications. The inverters are reduced to equivalent RLC networks and are then grouped with other inverters with the same basic equivalent circuit. Distinction between inverter classes is based on the topology characteristics of the equivalent circuits. Information about one class can then be extended to another class using the basic oscillation theory and the concept of duality. Oscillograms from test circuits confirm the validity of the procedure adopted.
An Investigation of the Static Force Balance of a Model Railgun
2007-06-01
this simple circuit diagram two 950 CCA batteries are passed through a variable resistor (R1) to limit the current applied to the model railgun (R2...of a known value and placed a voltmeter across the resistor . For additional protection in these early trials we inserted an equivalent 1kA fuse...our variable resistor . Current then passed through the resistor into the model gun, through a volt-meter with a known resistance, into a kilo-amp
A study of microwave downcoverters operating in the K sub u band
NASA Technical Reports Server (NTRS)
Fellers, R. G.; Simpson, T. L.; Tseng, B.
1982-01-01
A computer program for parametric amplifier design is developed with special emphasis on practical design considerations for microwave integrated circuit degenerate amplifiers. Precision measurement techniques are developed to obtain a more realistic varactor equivalent circuit. The existing theory of a parametric amplifier is modified to include the equivalent circuit, and microwave properties, such as loss characteristics and circuit discontinuities are investigated.
Development of AC impedance methods for evaluating corroding metal surfaces and coatings
NASA Technical Reports Server (NTRS)
Knockemus, Ward
1986-01-01
In an effort to investigate metal surface corrosion and the breakdown of metal protective coatings the AC Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The model 368-1 AC Impedance Measurement System recently acquired by the MSFC Corrosion Research Branch was used to monitor changing properties of coated aluminum disks immersed in 3.5% NaCl buffered at ph 5.5 over three to four weeks. The DC polarization resistance runs were performed on the same samples. The corrosion system can be represented by an electronic analog called an equivalent circuit that consists of transistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacities that can be assigned in the equivalent circuit following a least squares analysis of the data describe changes that occur on the corroding metal surface and in the protective coating. A suitable equivalent circuit was determined that predicts the correct Bode phase and magnitude for the experimental sample. The DC corrosion current density data are related to equivalent circuit element parameters.
The corrosion mechanisms for primer coated 2219-T87 aluminum
NASA Technical Reports Server (NTRS)
Danford, Merlin D.; Knockemus, Ward W.
1987-01-01
To investigate metal surface corrosion and the breakdown of metal protective coatings, the ac Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The EG&GPARC Model 368 ac Impedance Measurement System, along with dc measurements with the same system using the Polarization Resistance Method, was used to monitor changing properties of coated aluminum disks immersed in 3.5 percent NaCl solutions buffered at pH 5.5 and pH 8.2 over periods of 40 days each. The corrosion system can be represented by an electronic analog called an equivalent circuit consisting of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacitances, that can be assigned in the equivalent circuit following a least squares analysis of the data, describe changes occurring on the corroding metal surface and in the protective coatings. A suitable equivalent circuit has been determined which predicts the correct Bode phase and magnitude for the experimental sample. The dc corrosion current density data are related to equivalent circuit element parameters.
NASA Technical Reports Server (NTRS)
Guseynov, F. G.; Abbasova, E. M.
1977-01-01
The equivalent representation of brakes and coupling by lumped circuits is investigated. Analytical equations are derived for relating the indices of the transients to the parameters of the equivalent circuits for arbitrary rotor speed. A computer algorithm is given for the calculations.
47 CFR 36.156 - Interexchange Cable and Wire Facilities (C&WF)-Category 3-apportionment procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... cost per equivalent interexchange telephone circuit kilometer for all circuits in Category 3 is determined and applied to the equivalent interexchange telephone circuit kilometer counts of each of the... Interexchange Cable and Wire Facilities C&WF where feasible. All study areas shall apportion the non-directly...
47 CFR 36.156 - Interexchange Cable and Wire Facilities (C&WF)-Category 3-apportionment procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cost per equivalent interexchange telephone circuit kilometer for all circuits in Category 3 is determined and applied to the equivalent interexchange telephone circuit kilometer counts of each of the... Interexchange Cable and Wire Facilities C&WF where feasible. All study areas shall apportion the non-directly...
47 CFR 36.156 - Interexchange Cable and Wire Facilities (C&WF)-Category 3-apportionment procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... cost per equivalent interexchange telephone circuit kilometer for all circuits in Category 3 is determined and applied to the equivalent interexchange telephone circuit kilometer counts of each of the... Interexchange Cable and Wire Facilities C&WF where feasible. All study areas shall apportion the non-directly...
47 CFR 36.156 - Interexchange Cable and Wire Facilities (C&WF)-Category 3-apportionment procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... cost per equivalent interexchange telephone circuit kilometer for all circuits in Category 3 is determined and applied to the equivalent interexchange telephone circuit kilometer counts of each of the... Interexchange Cable and Wire Facilities C&WF where feasible. All study areas shall apportion the non-directly...
NASA Technical Reports Server (NTRS)
Tulintseff, A. N.
1993-01-01
Printed dipole elements and their complement, linear slots, are elementary radiators that have found use in low-profile antenna arrays. Low-profile antenna arrays, in addition to their small size and low weight characteristics, offer the potential advantage of low-cost, high-volume production with easy integration with active integrated circuit components. The design of such arrays requires that the radiation and impedance characteristics of the radiating elements be known. The FDTD (Finite-Difference Time-Domain) method is a general, straight-forward implementation of Maxwell's equations and offers a relatively simple way of analyzing both printed dipole and slot elements. Investigated in this work is the application of the FDTD method to the analysis of printed dipole and slot elements transversely coupled to an infinite transmission line in a multilayered configuration. Such dipole and slot elements may be used in dipole and slot series-fed-type linear arrays, where element offsets and interelement line lengths are used to obtain the desired amplitude distribution and beam direction, respectively. The design of such arrays is achieved using transmission line theory with equivalent circuit models for the radiating elements. In an equivalent circuit model, the dipole represents a shunt impedance to the transmission line, where the impedance is a function of dipole offset, length, and width. Similarly, the slot represents a series impedance to the transmission line. The FDTD method is applied to single dipole and slot elements transversely coupled to an infinite microstrip line using a fixed rectangular grid with Mur's second order absorbing boundary conditions. Frequency-dependent circuit and scattering parameters are obtained by saving desired time-domain quantities and using the Fourier transform. A Gaussian pulse excitation is applied to the microstrip transmission line, where the resulting reflected signal due to the presence of the radiating element is used to determine the equivalent element impedance.
Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Propp, Karsten; Marinescu, Monica; Auger, Daniel J.; O'Neill, Laura; Fotouhi, Abbas; Somasundaram, Karthik; Offer, Gregory J.; Minton, Geraint; Longo, Stefano; Wild, Mark; Knap, Vaclav
2016-10-01
Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a 'behavioural' interpretation of the ECN model; as Li-S exhibits a 'steep' open-circuit voltage (OCV) profile at high states-of-charge, identification methods are designed to take into account OCV changes during current pulses. The prediction-error minimization technique is used. The model is parameterized from laboratory experiments using a mixed-size current pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict the behaviour of a validation data set representing an automotive NEDC driving cycle, the terminal voltage predictions are judged accurate with a root mean square error of 32 mV.
Wu, Ching-Chou; Lin, Chia-Hung; Wang, Way-Shyan
2009-06-30
Enrofloxacin is the most widespread antibiotic in the fluoroquinolone family. As such, the development of a rapid and sensitive method for the determination of trace amounts of enrofloxacin is an important issue in the health field. The interaction of the enrofloxacin antigen to a specific antibody (Ab) immobilized on an 11-mercapto-undecanoic acid-coated gold electrode was quantified by electrochemical impedance spectroscopy. Two equivalent circuits were separately used to interpret the obtained impedance spectra. These circuits included one resistor in series with one parallel circuit comprised of a resistor and a capacitor (1R//C), and one resistor in series with two parallel RC circuits (2R//C). The results indicate that the antigen-antibody reaction analyzed using the 1R//C circuit provided a more sensitive resistance increment against the enrofloxacin concentration than that of the 2R//C circuit. However, the 2R//C circuit provided a better fitting for impedance spectra, and therefore supplies more detailed results of the enrofloxacin-antibody interaction, causing the increase of electron transfer resistance selectively to the modified layer, and not the electrical double layer. The antibody-modified electrode allowed for analysis of the dynamic linear range of 1-1000 ng/ml enrofloxacin with a detection limit of 1 ng/ml. The reagentless and label-free impedimetric immunosensors provide a simple and sensitive detection method for the specific determination of enrofloxacin.
Moazami, Hamid Reza; Nojavan, Saeed; Zahedi, Pegah; Davarani, Saied Saeed Hosseiny
2014-09-02
In order to understand the limitations of electromebrane extraction procedure better, a simple equivalent circuit has been proposed for a supported liquid membrane consisting of a resistor and a low leakage capacitor in series. To verify the equivalent circuit, it was subjected to a simulated periodical polarity changing potential and the resulting time variation of the current was compared with that of a real electromembrane extraction system. The results showed a good agreement between the simulated current patterns and those of the real ones. In order to investigate the impact of various limiting factors, the corresponding values of the equivalent circuit were estimated for a real electromembrane extraction system and were attributed to the physical parameters of the extraction system. A dual charge transfer mechanism was proposed for electromembrane extraction by combining general migration equation and fundamental aspects derived from the simulation. Dual mechanism comprises a current dependent contribution of analyte in total current and could support the possibility of an improvement in performance of an electromembrane extraction by application of an asymmetric polarity changing potential. The optimization of frequency and duty cycle of the asymmetric polarity exchanging potential resulted in a higher recovery (2.17 times greater) in comparison with the conventional electromebrane extraction. The simulation also provided more quantitative approaches toward the investigation of the mechanism of extraction and contribution of different limiting factors in electromembrane extraction. Results showed that the buildup of the double layer is the main limiting factor and the Joule heating has lesser impact on the performance of an electromebrane extraction system. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanphuang, Varittha; Ghalichechian, Nima; Nahar, Niru K.
We developed equivalent circuits of phase change materials based on vanadium dioxide (VO{sub 2}) thin films. These circuits are used to model VO{sub 2} thin films for reconfigurable frequency selective surfaces (FSSs). This is important as it provides a way for designing complex structures. A reconfigurable FSS filter using VO{sub 2} ON/OFF switches is designed demonstrating −60 dB isolation between the states. This filter is used to provide the transmission and reflection responses of the FSS in the frequency range of 0.1–0.6 THz. The comparison between equivalent circuit and full-wave simulation shows excellent agreement.
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhang, Fengge; Guan, Tao; Yu, Siyang
2017-09-01
A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mian, Muhammad Umer, E-mail: umermian@gmail.com; Khir, M. H. Md.; Tang, T. B.
Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for themore » proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used.« less
Mohamad, Almustafa; Tân-Hoa, Vuong; Jacques, David
2012-01-01
An approach to determine an equivalent electrical circuit of a micro planar discharge on a microstrip printed circuit is reported. The micro discharge is used to realize a dynamic microwave switching circuit. This approach is based on the measurement of the discharge current and the transmission coefficient for a given frequency 2.45 GHz. Numerical methods like FEM can be used to study the effect of plasma parameters on the propagation of electromagnetic waves through a microstrip printed circuit. Plasma behaves as flexible elements that can change its electrical proprieties such as conductivity.
Solving ordinary differential equations by electrical analogy: a multidisciplinary teaching tool
NASA Astrophysics Data System (ADS)
Sanchez Perez, J. F.; Conesa, M.; Alhama, I.
2016-11-01
Ordinary differential equations are the mathematical formulation for a great variety of problems in science and engineering, and frequently, two different problems are equivalent from a mathematical point of view when they are formulated by the same equations. Students acquire the knowledge of how to solve these equations (at least some types of them) using protocols and strict algorithms of mathematical calculation without thinking about the meaning of the equation. The aim of this work is that students learn to design network models or circuits in this way; with simple knowledge of them, students can establish the association of electric circuits and differential equations and their equivalences, from a formal point of view, that allows them to associate knowledge of two disciplines and promote the use of this interdisciplinary approach to address complex problems. Therefore, they learn to use a multidisciplinary tool that allows them to solve these kinds of equations, even students of first course of engineering, whatever the order, grade or type of non-linearity. This methodology has been implemented in numerous final degree projects in engineering and science, e.g., chemical engineering, building engineering, industrial engineering, mechanical engineering, architecture, etc. Applications are presented to illustrate the subject of this manuscript.
NASA Astrophysics Data System (ADS)
Gomez, Jamie; Nelson, Ruben; Kalu, Egwu E.; Weatherspoon, Mark H.; Zheng, Jim P.
2011-05-01
Equivalent circuit model (EMC) of a high-power Li-ion battery that accounts for both temperature and state of charge (SOC) effects known to influence battery performance is presented. Electrochemical impedance measurements of a commercial high power Li-ion battery obtained in the temperature range 20 to 50 °C at various SOC values was used to develop a simple EMC which was used in combination with a non-linear least squares fitting procedure that used thirteen parameters for the analysis of the Li-ion cell. The experimental results show that the solution and charge transfer resistances decreased with increase in cell operating temperature and decreasing SOC. On the other hand, the Warburg admittance increased with increasing temperature and decreasing SOC. The developed model correlations that are capable of being used in process control algorithms are presented for the observed impedance behavior with respect to temperature and SOC effects. The predicted model parameters for the impedance elements Rs, Rct and Y013 show low variance of 5% when compared to the experimental data and therefore indicates a good statistical agreement of correlation model to the actual experimental values.
Ribaric, Samo; Kordas, Marjan
2011-06-01
Here, we report on a new tool for teaching cardiovascular physiology and pathophysiology that promotes qualitative as well as quantitative thinking about time-dependent physiological phenomena. Quantification of steady and presteady-state (transient) cardiovascular phenomena is traditionally done by differential equations, but this is time consuming and unsuitable for most undergraduate medical students. As a result, quantitative thinking about time-dependent physiological phenomena is often not extensively dealt with in an undergraduate physiological course. However, basic concepts of steady and presteady state can be explained with relative simplicity, without the introduction of differential equation, with equivalent electronic circuits (EECs). We introduced undergraduate medical students to the concept of simulating cardiovascular phenomena with EECs. EEC simulations facilitate the understanding of simple or complex time-dependent cardiovascular physiological phenomena by stressing the analogies between EECs and physiological processes. Student perceptions on using EEC to simulate, study, and understand cardiovascular phenomena were documented over a 9-yr period, and the impact of the course on the students' knowledge of selected basic facts and concepts in cardiovascular physiology was evaluated over a 3-yr period. We conclude that EECs are a valuable tool for teaching cardiovascular physiology concepts and that EECs promote active learning.
Sensitivity and Switching Delay in Trigger Circuits; SENSIBILITA E RITARDO ENI CIRCUITI A SCATTO
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Lotto, I.; Stanchi, L.
The problem of regeneration in trigger circuits is studied, particularly in relation to switching delay and switching time. The factors that affect the speed, such as the threshold as a function of the input signal duration, are examined. The sensitivity of the circuit is also discussed. The characteristics of the dipole equivalent to a trigger circuit are determined, and the switching delay and switching rise time are examined using considerable simplifications (circuits with constant parameters) and graphical methods. For the particular case of a transistor circuit, the equation of the equivalent circuit is derived taking into account the nonlinearity ofmore » the parameters. This equation is processed by means of an analog computer. Using experimental data, the circuits are classified according to their sensitivity and the switching delay. A merit figure is obtained for synthetically evaluating different circuits and optimizing circuit sensitivity and speed. (auth)« less
NASA Astrophysics Data System (ADS)
Aghakhani, Amirreza; Basdogan, Ipek; Erturk, Alper
2016-04-01
Plate-like components are widely used in numerous automotive, marine, and aerospace applications where they can be employed as host structures for vibration based energy harvesting. Piezoelectric patch harvesters can be easily attached to these structures to convert the vibrational energy to the electrical energy. Power output investigations of these harvesters require accurate models for energy harvesting performance evaluation and optimization. Equivalent circuit modeling of the cantilever-based vibration energy harvesters for estimation of electrical response has been proposed in recent years. However, equivalent circuit formulation and analytical modeling of multiple piezo-patch energy harvesters integrated to thin plates including nonlinear circuits has not been studied. In this study, equivalent circuit model of multiple parallel piezoelectric patch harvesters together with a resistive load is built in electronic circuit simulation software SPICE and voltage frequency response functions (FRFs) are validated using the analytical distributedparameter model. Analytical formulation of the piezoelectric patches in parallel configuration for the DC voltage output is derived while the patches are connected to a standard AC-DC circuit. The analytic model is based on the equivalent load impedance approach for piezoelectric capacitance and AC-DC circuit elements. The analytic results are validated numerically via SPICE simulations. Finally, DC power outputs of the harvesters are computed and compared with the peak power amplitudes in the AC output case.
Equivalent circuit parameters of nickel/metal hydride batteries from sparse impedance measurements
NASA Astrophysics Data System (ADS)
Nelatury, Sudarshan Rao; Singh, Pritpal
In a recent communication, a method for extracting the equivalent circuit parameters of a lead acid battery from sparse (only three) impedance spectroscopy observations at three different frequencies was proposed. It was based on an equivalent circuit consisting of a bulk resistance, a reaction resistance and a constant phase element (CPE). Such a circuit is a very appropriate model of a lead-acid cell at high state of charge (SOC). This paper is a sequel to it and presents an application of it in case of nickel/metal hydride (Ni/MH) batteries, which also at high SOC are represented by the same circuit configuration. But when the SOC of a Ni/MH battery under interrogation goes low, The EIS curve has a positive slope at the low frequency end and our technique yields complex values for the otherwise real circuit parameters, suggesting the need for additional elements in the equivalent circuit and a definite relationship between parameter consistency and SOC. To improvise the previous algorithm, in order that it works reasonably well at both high and low SOCs, we propose three more measurements—two at very low frequencies to include the Warburg response and one at a high frequency to model the series inductance, in addition to the three in the mid frequency band—totally six measurements. In most of the today's instrumentation, it is the user who should choose the circuit configuration and the number of frequencies where impedance should be measured and the accompanying software performs data fitting by complex nonlinear least squares. The proposed method has built into it an SOC-based decision-making capability—both to choose the circuit configuration and to estimate the values of the circuit elements.
NASA Astrophysics Data System (ADS)
Yamazaki, Katsumi
In this paper, we propose a method to calculate the equivalent circuit parameters of interior permanent magnet motors including iron loss resistance using the finite element method. First, the finite element analysis considering harmonics and magnetic saturation is carried out to obtain time variations of magnetic fields in the stator and the rotor core. Second, the iron losses of the stator and the rotor are calculated from the results of the finite element analysis with the considerations of harmonic eddy current losses and the minor hysteresis losses of the core. As a result, we obtain the equivalent circuit parameters i.e. the d-q axis inductance and the iron loss resistance as functions of operating condition of the motor. The proposed method is applied to an interior permanent magnet motor to calculate the characteristics based on the equivalent circuit obtained by the proposed method. The calculated results are compared with the experimental results to verify the accuracy.
Lumped-parameters equivalent circuit for condenser microphones modeling.
Esteves, Josué; Rufer, Libor; Ekeom, Didace; Basrour, Skandar
2017-10-01
This work presents a lumped parameters equivalent model of condenser microphone based on analogies between acoustic, mechanical, fluidic, and electrical domains. Parameters of the model were determined mainly through analytical relations and/or finite element method (FEM) simulations. Special attention was paid to the air gap modeling and to the use of proper boundary condition. Corresponding lumped-parameters were obtained as results of FEM simulations. Because of its simplicity, the model allows a fast simulation and is readily usable for microphone design. This work shows the validation of the equivalent circuit on three real cases of capacitive microphones, including both traditional and Micro-Electro-Mechanical Systems structures. In all cases, it has been demonstrated that the sensitivity and other related data obtained from the equivalent circuit are in very good agreement with available measurement data.
NASA Technical Reports Server (NTRS)
Neto, Andrea; Siegel, Peter H.
2001-01-01
At submillimeter wavelengths typical gap discontinuities in microstrip, CPW lines or at antenna terminals, which might contain diodes or active elements, cannot be viewed as simple quasi statically evaluated lumped elements. Planar Schottky diodes at 2.5 THz, for example, have a footprint that is comparable to a wavelength. Thus, apart from modelling the diodes themselves, the connection with their exciting elements (antennas or microstrip) gives rise to parasitics. Full wave or strictly numeric approaches can be used to account for these parasitics but at the expense of generality of the solution and the CPU time of the calculation. In this paper an equivalent network is derived that accurately accounts for large gap discontinuities (with respect to a wavelength) without suffering from the limitations of available numeric techniques.
Frequency-tunable terahertz absorber with wire-based metamaterial and graphene
NASA Astrophysics Data System (ADS)
Xiong, Han; Jiang, Yan-Nan; Yang, Cheng; Zeng, Xiao-Ping
2018-01-01
We present a dynamically tunable metamaterial graphene absorber (MGA) in the terahertz regime. The unit cell of the proposed MGA consists of metal wire and graphene sheet over the grounded dielectric absorber. The MGA achieves frequency tunable characteristics via changing the chemical potential. In order to understand the absorption mechanism of this absorber, a simple equivalent circuit method has been proposed. Because the coupling between wire-based metamaterial and graphene is complicated and cannot be neglected an equivalent surface impedance was introduced and extracted for simplification. In addition to the chemical potential of graphene, the constitutive parameters of metal wire are also discussed in detail to completely understand how these factors affect the absorption properties. It is believed that this study may be useful for providing valuable guidance in the development of more advanced MGAs.
Impedance characterization of AlGaN/GaN Schottky diodes with metal contacts
NASA Astrophysics Data System (ADS)
Donahue, M.; Lübbers, B.; Kittler, M.; Mai, P.; Schober, A.
2013-04-01
To obtain detailed information on structural and electrical properties of AlGaN/GaN Schottky diodes and to determine an appropriate equivalent circuit, impedance spectroscopy and impedance voltage profiling are employed over a frequency range of 1 MHz-1 Hz. In contrast to the commonly assumed parallel connection of capacitive and resistive elements, an equivalent circuit is derived from impedance spectra which utilizes the constant phase element and accounts for frequency dispersion and trap states. The trap density is estimated and is in good agreement with the literature values. The resulting reduced equivalent circuit consists of a capacitor and resistor connected in series.
Method for assessing in-service motor efficiency and in-service motor/load efficiency
Kueck, John D.; Otaduy, Pedro J.
1997-01-01
A method and apparatus for assessing the efficiency of an in-service motor. The operating characteristics of the in-service motor are remotely measured. The operating characteristics are then applied to an equivalent circuit for electrical motors. Finally the equivalent circuit is evaluated to determine the performance characteristics of said in-service motor. Based upon the evaluation an individual is able to determine the rotor speed, power output, efficiency, and toque of the in-service motor. Additionally, an individual is able to confirm the calculations by comparing measured values with values obtained as a result of the motor equivalent circuit evaluation.
NASA Astrophysics Data System (ADS)
Qu, Zilian; Meng, Yonggang; Zhao, Qian
2015-03-01
This paper proposes a new eddy current method, named equivalent unit method (EUM), for the thickness measurement of the top copper film of multilayer interconnects in the chemical mechanical polishing (CMP) process, which is an important step in the integrated circuit (IC) manufacturing. The influence of the underneath circuit layers on the eddy current is modeled and treated as an equivalent film thickness. By subtracting this equivalent film component, the accuracy of the thickness measurement of the top copper layer with an eddy current sensor is improved and the absolute error is 3 nm for sampler measurement.
Coupling intensity between discharge and magnetic circuit in Hall thrusters
NASA Astrophysics Data System (ADS)
Wei, Liqiu; Yang, Xinyong; Ding, Yongjie; Yu, Daren; Zhang, Chaohai
2017-03-01
Coupling oscillation is a newly discovered plasma oscillation mode that utilizes the coupling between the discharge circuit and magnetic circuit, whose oscillation frequency spectrum ranges from several kilohertz to megahertz. The coupling coefficient parameter represents the intensity of coupling between the discharge and magnetic circuits. According to previous studies, the coupling coefficient is related to the material and the cross-sectional area of the magnetic coils, and the magnetic circuit of the Hall thruster. However, in our recent study on coupling oscillations, it was found that the Hall current equivalent position and radius have important effects on the coupling intensity between the discharge and magnetic circuits. This causes a difference in the coupling coefficient for different operating conditions of Hall thrusters. Through non-intrusive methods for measuring the Hall current equivalent radius and the axial position, it is found that with an increase in the discharge voltage and magnetic field intensity, the Hall current equivalent radius increases and its axial position moves towards the exit plane. Thus, both the coupling coefficient and the coupling intensity between the discharge and magnetic circuits increase. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.
NASA Astrophysics Data System (ADS)
Alizadeh Sahraei, Abolfazl; Ayati, Moosa; Baniassadi, Majid; Rodrigue, Denis; Baghani, Mostafa; Abdi, Yaser
2018-03-01
This study attempts to comprehensively investigate the effects of multi-walled carbon nanotubes (MWCNTs) on the AC and DC electrical conductivity of epoxy nanocomposites. The samples (0.2, 0.3, and 0.5 wt. % MWCNT) were produced using a combination of ultrason and shear mixing methods. DC measurements were performed by continuous measurement of the current-voltage response and the results were analyzed via a numerical percolation approach, while for the AC behavior, the frequency response was studied by analyzing phase difference and impedance in the 10 Hz to 0.2 MHz frequency range. The results showed that the dielectric parameters, including relative permittivity, impedance phase, and magnitude, present completely different behaviors for the frequency range and MWCNT weight fractions studied. To better understand the nanocomposites electrical behavior, equivalent electric circuits were also built for both DC and AC modes. The DC equivalent networks were developed based on the current-voltage curves, while the AC equivalent circuits were proposed by using an optimization problem according to the impedance magnitude and phase at different frequencies. The obtained equivalent electrical circuits were found to be highly useful tools to understand the physical mechanisms involved in MWCNT filled polymer nanocomposites.
The Application of the EIS in Li-ion Batteries Measurement
NASA Astrophysics Data System (ADS)
Zhai, N. S.; Li, M. W.; Wang, W. L.; Zhang, D. L.; Xu, D. G.
2006-10-01
The measurement and determination of the lithium ion battery's electrochemical impedance spectroscopy (EIS) and the application of EIS to battery classification are researched in this paper. The lithium ion battery gets extensive applications due to its inherent advantages over other batteries. For proper and sustainable performance, it is very necessary to check the uniformity of the lithium ion batteries. In this paper, the equivalent circuit of the lithium ion battery is analyzed; the design of hardware circuit based on DSP and software that calculates the EIS of the lithium ion battery is critically done and evaluated. The parameters of the lithium ion equivalent circuit are determined, the parameter values of li-ion equivalent circuit are achieved by least square method, and the application of Principal Component Analysis (CPA) to the battery classification is analyzed.
NASA Astrophysics Data System (ADS)
McCulloch, Mark A.; Melhuish, Simon J.; Piccirillo, Lucio
2015-01-01
An approach to enhancing the noise performance of an InP monolithic microwave integrated circuit (MMIC)-based low noise amplifiers (LNA) through the use of a discrete 100-nm gate length InP high electron mobility transistor is outlined. This LNA, known as a transistor in front of MMIC (T + MMIC) LNA, possesses a gain in excess of 40 dB and an average noise temperature of 9.4 K across the band 27 to 33 GHz at a physical temperature of 8 K. This compares favorably with 14.5 K for an LNA containing an equivalent MMIC. A simple advanced design system model offering further insights into the operation of the LNA is also presented and the LNA is compared with the current state-of-the-art Planck LFI LNAs.
NASA Astrophysics Data System (ADS)
Wang, Hao-Yu; Wu, Jhao-Ting; Chow, Chi-Wai; Liu, Yang; Yeh, Chien-Hung; Liao, Xin-Lan; Lin, Kun-Hsien; Wu, Wei-Liang; Chen, Yi-Yuan
2018-01-01
Using solar cell (or photovoltaic cell) for visible light communication (VLC) is attractive. Apart from acting as a VLC receiver (Rx), the solar cell can provide energy harvesting. This can be used in self-powered smart devices, particularly in the emerging ;Internet of Things (IoT); networks. Here, we propose and demonstrate for the first time using pre-distortion pulse-amplitude-modulation (PAM)-4 signal and parallel resistance circuit to enhance the transmission performance of solar cell Rx based VLC. Pre-distortion is a simple non-adaptive equalization technique that can significantly mitigate the slow charging and discharging of the solar cell. The equivalent circuit model of the solar cell and the operation of using parallel resistance to increase the bandwidth of the solar cell are discussed. By using the proposed schemes, the experimental results show that the data rate of the solar cell Rx based VLC can increase from 20 kbit/s to 1.25 Mbit/s (about 60 times) with the bit error-rate (BER) satisfying the 7% forward error correction (FEC) limit.
NASA Astrophysics Data System (ADS)
Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola
2018-03-01
The analysis of the transmission and reflection spectra of stacked slot-based 2D periodic structures of arbitrary geometry and the ability to devise and control their electromagnetic responses have been a matter of extensive research for many decades. The purpose of this paper is to develop an equivalent Π circuit model based on the transmission-line theory and Floquet harmonic interactions, for broadband and short longitudinal period analysis. The proposed circuit model overcomes the limits of identical and symmetrical configurations imposed by the even/odd excitation approach, exploiting both the circuit topology of a single 2D periodic array of apertures and the ABCD matrix formalism. The transmission spectra obtained through the equivalent-circuit model have been validated by comparison with full-wave simulations carried out with a finite-element commercial electromagnetic solver. This allowed for a physical insight into the spectral and angular responses of multilayer devices with arbitrary aperture shapes, guaranteeing a noticeable saving of computational resources.
Formalization, equivalence and generalization of basic resonance electrical circuits
NASA Astrophysics Data System (ADS)
Penev, Dimitar; Arnaudov, Dimitar; Hinov, Nikolay
2017-12-01
In the work are presented basic resonance circuits, which are used in resonance energy converters. The following resonant circuits are considered: serial, serial with parallel load parallel capacitor, parallel and parallel with serial loaded inductance. For the circuits under consideration, expressions are generated for the frequencies of own oscillations and for the equivalence of the active power emitted in the load. Mathematical expressions are graphically constructed and verified using computer simulations. The results obtained are used in the model based design of resonant energy converters with DC or AC output. This guaranteed the output indicators of power electronic devices.
Secondary School Students' Misconceptions about Simple Electric Circuits
ERIC Educational Resources Information Center
Küçüközer, Hüseyin; Kocakülah, Sabri
2007-01-01
The aim of this study is to reveal secondary school students' misconceptions about simple electric circuits and to define whether specific misconceptions peculiar to Turkish students exist within those identified. Data were obtained with a conceptual understanding test for simple electric circuits and semi-structured interviews. Conceptual…
Building a Library for Microelectronics Verification with Topological Constraints
2017-03-01
Tables 1d, 3b); 1-bit full adder cell (Fig. 1), respectively. Table 5. Frequency distributions for the genus of logically equivalent circuit...Figure 1 shows that switching signal pairs produces logically- equivalent topologies of the 1-bit full adder cell with three values of the genus (g = 3 [1...case], 4, 5, 6). Figure 1. Frequency distribution for logically equivalent circuit topologies of the 1-bit full adder cell (2048) in Table 1(e
Equivalent circuit modeling of a piezo-patch energy harvester on a thin plate with AC-DC conversion
NASA Astrophysics Data System (ADS)
Bayik, B.; Aghakhani, A.; Basdogan, I.; Erturk, A.
2016-05-01
As an alternative to beam-like structures, piezoelectric patch-based energy harvesters attached to thin plates can be readily integrated to plate-like structures in automotive, marine, and aerospace applications, in order to directly exploit structural vibration modes of the host system without mass loading and volumetric occupancy of cantilever attachments. In this paper, a multi-mode equivalent circuit model of a piezo-patch energy harvester integrated to a thin plate is developed and coupled with a standard AC-DC conversion circuit. Equivalent circuit parameters are obtained in two different ways: (1) from the modal analysis solution of a distributed-parameter analytical model and (2) from the finite-element numerical model of the harvester by accounting for two-way coupling. After the analytical modeling effort, multi-mode equivalent circuit representation of the harvester is obtained via electronic circuit simulation software SPICE. Using the SPICE software, electromechanical response of the piezoelectric energy harvester connected to linear and nonlinear circuit elements are computed. Simulation results are validated for the standard AC-AC and AC-DC configurations. For the AC input-AC output problem, voltage frequency response functions are calculated for various resistive loads, and they show excellent agreement with modal analysis-based analytical closed-form solution and with the finite-element model. For the standard ideal AC input-DC output case, a full-wave rectifier and a smoothing capacitor are added to the harvester circuit for conversion of the AC voltage to a stable DC voltage, which is also validated against an existing solution by treating the single-mode plate dynamics as a single-degree-of-freedom system.
Electronic test and calibration circuits, a compilation
NASA Technical Reports Server (NTRS)
1972-01-01
A wide variety of simple test calibration circuits are compiled for the engineer and laboratory technician. The majority of circuits were found inexpensive to assemble. Testing electronic devices and components, instrument and system test, calibration and reference circuits, and simple test procedures are presented.
Battery parameterisation based on differential evolution via a boundary evolution strategy
NASA Astrophysics Data System (ADS)
Yang, Guangya
2014-01-01
Attention has been given to the battery modelling in the electric engineering field following the current development of renewable energy and electrification of transportation. The establishment of the equivalent circuit model of the battery requires data preparation and parameterisation. Besides, as the equivalent circuit model is an abstract map of the battery electric characteristics, the determination of the possible ranges of parameters can be a challenging task. In this paper, an efficient yet easy to implement method is proposed to parameterise the equivalent circuit model of batteries utilising the advances of evolutionary algorithms (EAs). Differential evolution (DE) is selected and modified to parameterise an equivalent circuit model of lithium-ion batteries. A boundary evolution strategy (BES) is developed and incorporated into the DE to update the parameter boundaries during the parameterisation. The method can parameterise the model without extensive data preparation. In addition, the approach can also estimate the initial SOC and the available capacity. The efficiency of the approach is verified through two battery packs, one is an 8-cell battery module and one from an electrical vehicle.
NASA Astrophysics Data System (ADS)
Ueda, Daiki; Takeuchi, Kiyoshi; Kobayashi, Masaharu; Hiramoto, Toshiro
2018-04-01
A new circuit model that provides a clear guide on designing a MOS-gated thyristor (MGT) is reported. MGT plays a significant role in achieving a steep subthreshold slope of a PN-body tied silicon-on-insulator (SOI) FET (PNBTFET), which is an SOI MOSFET merged with an MGT. The effects of design parameters on MGT and the proposed equivalent circuit model are examined to determine how to regulate the voltage response of MGT and how to suppress power dissipation. It is demonstrated that MGT with low threshold voltages, small hysteresis widths, and small power dissipation can be designed by tuning design parameters. The temperature dependence of MGT is also examined, and it is confirmed that hysteresis width decreases with the average threshold voltage kept nearly constant as temperature rises. The equivalent circuit model can be conveniently used to design low-power PNBTFET.
Full circuit calculation for electromagnetic pulse transmission in a high current facility
NASA Astrophysics Data System (ADS)
Zou, Wenkang; Guo, Fan; Chen, Lin; Song, Shengyi; Wang, Meng; Xie, Weiping; Deng, Jianjun
2014-11-01
We describe herein for the first time a full circuit model for electromagnetic pulse transmission in the Primary Test Stand (PTS)—the first TW class pulsed power driver in China. The PTS is designed to generate 8-10 MA current into a z -pinch load in nearly 90 ns rise time for inertial confinement fusion and other high energy density physics research. The PTS facility has four conical magnetic insulation transmission lines, in which electron current loss exists during the establishment of magnetic insulation. At the same time, equivalent resistance of switches and equivalent inductance of pinch changes with time. However, none of these models are included in a commercially developed circuit code so far. Therefore, in order to characterize the electromagnetic transmission process in the PTS, a full circuit model, in which switch resistance, magnetic insulation transmission line current loss and a time-dependent load can be taken into account, was developed. Circuit topology and an equivalent circuit model of the facility were introduced. Pulse transmission calculation of shot 0057 was demonstrated with the corresponding code FAST (full-circuit analysis and simulation tool) by setting controllable parameters the same as in the experiment. Preliminary full circuit simulation results for electromagnetic pulse transmission to the load are presented. Although divergences exist between calculated and experimentally obtained waveforms before the vacuum section, consistency with load current is satisfactory, especially at the rising edge.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhao, Jiyun; Wang, Peng; Skyllas-Kazacos, Maria; Xiong, Binyu; Badrinarayanan, Rajagopalan
2015-09-01
Electrical equivalent circuit models demonstrate excellent adaptability and simplicity in predicting the electrical dynamic response of the all-vanadium redox flow battery (VRB) system. However, only a few publications that focus on this topic are available. The paper presents a comprehensive equivalent circuit model of VRB for system level analysis. The least square method is used to identify both steady-state and dynamic characteristics of VRB. The inherent features of the flow battery such as shunt current, ion diffusion and pumping energy consumption are also considered. The proposed model consists of an open-circuit voltage source, two parasitic shunt bypass circuits, a 1st order resistor-capacitor network and a hydraulic circuit model. Validated with experimental data, the proposed model demonstrates excellent accuracy. The mean-error of terminal voltage and pump consumption are 0.09 V and 0.49 W respectively. Based on the proposed model, self-discharge and system efficiency are studied. An optimal flow rate which maximizes the system efficiency is identified. Finally, the dynamic responses of the proposed VRB model under step current profiles are presented. Variables such as SOC and stack terminal voltage can be provided.
Electromagnetic scattering from a class of open-ended waveguide discontinuities
NASA Technical Reports Server (NTRS)
Altintas, A.; Pathak, P. H.; Burnside, Walter D.
1986-01-01
A relatively simple high frequency analysis of electromagnetic scattering from a class of open-ended waveguide discontinuites was developed. The waveguides are composed of perfectly-conducting sections in which the electromagnetic field can be written as the sum of waveguide modes. Junctions are formed at the open end and also within interior regions where different sections are joined. The reflection and transmission properties of each junction are described in terms of a scattering matrix which is determined by combining the modal ray picture with high frequency techniques such as the Geometrical Theory of Diffraction (GTD), the Equivalent Current Method (ECM), and modifications of the Physical Theory of Diffraction (PTD). A new set of equivalent circuits are employed in this ECM analysis which leads to a simple treatment of many types of junction discontinuities. Also, a new procedure is presented to improve the efficiency of the aperture integration at the open end which is required in the PTD procedure for finding the fields radiated from (or coupled to) the open end. Once the scattering matrices are determined, they are then combined using a self-consistent multiple scattering method to obtain the total scattered fields.
Effect of solar-cell junction geometry on open-circuit voltage
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Godlewski, M. P.
1985-01-01
Simple analytical models have been found that adequately describe the voltage behavior of both the stripe junction and dot junction grating cells as a function of junction area. While the voltage in the former case is found to be insensitive to junction area reduction, significant voltage increases are shown to be possible for the dot junction cell. With regard to cells in which the junction area has been increased in a quest for better performance, it was found that (1) texturation does not affect the average saturation current density J0, indicating that the texturation process is equivalent to a simple extension of junction area by a factor of square root of 3 and (2) the vertical junction cell geometry produces a sizable decrease in J0 that, unfortunately, is more than offset by the effects of attendant areal increases.
A Complete Multimode Equivalent-Circuit Theory for Electrical Design
Williams, Dylan F.; Hayden, Leonard A.; Marks, Roger B.
1997-01-01
This work presents a complete equivalent-circuit theory for lossy multimode transmission lines. Its voltages and currents are based on general linear combinations of standard normalized modal voltages and currents. The theory includes new expressions for transmission line impedance matrices, symmetry and lossless conditions, source representations, and the thermal noise of passive multiports. PMID:27805153
New modeling method for the dielectric relaxation of a DRAM cell capacitor
NASA Astrophysics Data System (ADS)
Choi, Sujin; Sun, Wookyung; Shin, Hyungsoon
2018-02-01
This study proposes a new method for automatically synthesizing the equivalent circuit of the dielectric relaxation (DR) characteristic in dynamic random access memory (DRAM) without frequency dependent capacitance measurement. Charge loss due to DR can be observed by a voltage drop at the storage node and this phenomenon can be analyzed by an equivalent circuit. The Havariliak-Negami model is used to accurately determine the electrical characteristic parameters of an equivalent circuit. The DRAM sensing operation is performed in HSPICE simulations to verify this new method. The simulation demonstrates that the storage node voltage drop resulting from DR and the reduction in the sensing voltage margin, which has a critical impact on DRAM read operation, can be accurately estimated using this new method.
Threshold flux-controlled memristor model and its equivalent circuit implementation
NASA Astrophysics Data System (ADS)
Wu, Hua-Gan; Bao, Bo-Cheng; Chen, Mo
2014-11-01
Modeling a memristor is an effective way to explore the memristor properties due to the fact that the memristor devices are still not commercially available for common researchers. In this paper, a physical memristive device is assumed to exist whose ionic drift direction is perpendicular to the direction of the applied voltage, upon which, corresponding to the HP charge-controlled memristor model, a novel threshold flux-controlled memristor model with a window function is proposed. The fingerprints of the proposed model are analyzed. Especially, a practical equivalent circuit of the proposed model is realized, from which the corresponding experimental fingerprints are captured. The equivalent circuit of the threshold memristor model is appropriate for various memristors based breadboard experiments.
Equivalent circuit for the characterization of the resonance mode in piezoelectric systems
NASA Astrophysics Data System (ADS)
Fernández-Afonso, Y.; García-Zaldívar, O.; Calderón-Piñar, F.
2015-12-01
The impedance properties in polarized piezoelectric can be described by electric equivalent circuits. The classic circuit used in the literature to describe real systems is formed by one resistor (R), one inductance (L) and one capacitance C connected in series and one capacity (C0) connected in parallel with the formers. Nevertheless, the equation that describe the resonance and anti-resonance frequencies depends on a complex manner of R, L, C and C0. In this work is proposed a simpler model formed by one inductance (L) and one capacity (C) in series; one capacity (C0) in parallel; one resistor (RP) in parallel and one resistor (RS) in series with other components. Unlike the traditional circuit, the equivalent circuit elements in the proposed model can be simply determined by knowing the experimental values of the resonance frequency fr, anti-resonance frequency fa, impedance module at resonance frequency |Zr|, impedance module at anti-resonance frequency |Za| and low frequency capacitance C0, without fitting the impedance experimental data to the obtained equation.
30 CFR 57.12025 - Grounding circuit enclosures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Electricity Surface and Underground § 57.12025 Grounding circuit enclosures. All metal enclosing or encasing electrical circuits shall be grounded or provided with equivalent protection. This requirement does not apply... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding circuit enclosures. 57.12025 Section...
Pre-Service and In-Service Physics Teachers' Ideas about Simple Electric Circuits
ERIC Educational Resources Information Center
Kucukozer, Huseyin; Demirci, Neset
2008-01-01
The aim of the study is to determine pre-service and high school physics teachers' ideas about simple electric circuits. In this study, a test containing eight questions related to simple electric circuits was given to the pre-service physics teachers (32 subjects) that had graduated from Balikesir University, Necatibey Faculty of Education, the…
Identification of Synchronous Machine Stability - Parameters: AN On-Line Time-Domain Approach.
NASA Astrophysics Data System (ADS)
Le, Loc Xuan
1987-09-01
A time-domain modeling approach is described which enables the stability-study parameters of the synchronous machine to be determined directly from input-output data measured at the terminals of the machine operating under normal conditions. The transient responses due to system perturbations are used to identify the parameters of the equivalent circuit models. The described models are verified by comparing their responses with the machine responses generated from the transient stability models of a small three-generator multi-bus power system and of a single -machine infinite-bus power network. The least-squares method is used for the solution of the model parameters. As a precaution against ill-conditioned problems, the singular value decomposition (SVD) is employed for its inherent numerical stability. In order to identify the equivalent-circuit parameters uniquely, the solution of a linear optimization problem with non-linear constraints is required. Here, the SVD appears to offer a simple solution to this otherwise difficult problem. Furthermore, the SVD yields solutions with small bias and, therefore, physically meaningful parameters even in the presence of noise in the data. The question concerning the need for a more advanced model of the synchronous machine which describes subtransient and even sub-subtransient behavior is dealt with sensibly by the concept of condition number. The concept provides a quantitative measure for determining whether such an advanced model is indeed necessary. Finally, the recursive SVD algorithm is described for real-time parameter identification and tracking of slowly time-variant parameters. The algorithm is applied to identify the dynamic equivalent power system model.
Topological Properties of Some Integrated Circuits for Very Large Scale Integration Chip Designs
NASA Astrophysics Data System (ADS)
Swanson, S.; Lanzerotti, M.; Vernizzi, G.; Kujawski, J.; Weatherwax, A.
2015-03-01
This talk presents topological properties of integrated circuits for Very Large Scale Integration chip designs. These circuits can be implemented in very large scale integrated circuits, such as those in high performance microprocessors. Prior work considered basic combinational logic functions and produced a mathematical framework based on algebraic topology for integrated circuits composed of logic gates. Prior work also produced an historically-equivalent interpretation of Mr. E. F. Rent's work for today's complex circuitry in modern high performance microprocessors, where a heuristic linear relationship was observed between the number of connections and number of logic gates. This talk will examine topological properties and connectivity of more complex functionally-equivalent integrated circuits. The views expressed in this article are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense or the U.S. Government.
To probe the equivalence and opulence of nanocrystal and nanotube based dye-sensitized solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jyoti, Divya, E-mail: divyabathla17@gmail.com; Mohan, Devendra
2016-05-06
Dye-Sensitized solar cells based on TiO{sub 2} nanocrystal and TiO{sub 2} nanotubes have been fabricated by a simple sol-gel hydrothermal process and their performances have been compared. Current density and voltage (JV) characteristics and incident photon to current conversion efficiency (IPCE) plots have been set as criterion to check which one is better as a photoanode candidate in dye-sensitized solar cell. It has been observed that although open circuit voltage values for both type of cells do not differ much still, nanotube based dye-sensitized solar cells are more successful having an efficiency value of 7.28%.
NASA Astrophysics Data System (ADS)
Xavier, Marcelo A.; Trimboli, M. Scott
2015-07-01
This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models.
Modelling nonlinearity in piezoceramic transducers: From equations to nonlinear equivalent circuits.
Parenthoine, D; Tran-Huu-Hue, L-P; Haumesser, L; Vander Meulen, F; Lematre, M; Lethiecq, M
2011-02-01
Quadratic nonlinear equations of a piezoelectric element under the assumptions of 1D vibration and weak nonlinearity are derived by the perturbation theory. It is shown that the nonlinear response can be represented by controlled sources that are added to the classical hexapole used to model piezoelectric ultrasonic transducers. As a consequence, equivalent electrical circuits can be used to predict the nonlinear response of a transducer taking into account the acoustic loads on the rear and front faces. A generalisation of nonlinear equivalent electrical circuits to cases including passive layers and propagation media is then proposed. Experimental results, in terms of second harmonic generation, on a coupled resonator are compared to theoretical calculations from the proposed model. Copyright © 2010 Elsevier B.V. All rights reserved.
Simple circuit for pacing hearts of experimental animals.
Freeman, G L; Colston, J T
1992-06-01
In this paper we describe a simple pacing circuit which can be used to drive the heart over a wide range of rates. The circuit is an astable multivibrator, based on an LM555 integrated circuit. It is powered by a 9-V battery and is small enough for use in rabbits. The circuit is easily constructed and inexpensive, making it attractive for numerous applications in cardiovascular research.
Design and verification of large-moment transmitter loops for geophysical applications
NASA Astrophysics Data System (ADS)
Sternberg, Ben K.; Dvorak, Steven L.; Feng, Wanjie
2017-01-01
In this paper we discuss the modeling, design and verification of large-moment transmitter (TX) loops for geophysical applications. We first develop two equivalent circuit models for TX loops. We show that the equivalent inductance can be predicted using one of two empirical formulas. The stray capacitance of the loop is then calculated using the measured self-resonant frequency and the loop inductance. We model the losses associated with both the skin effect and the dissipation factor in both of these equivalent circuits. We find that the two equivalent circuit models produce the same results provided that the dissipation factor is small. Next we compare the measured input impedances for three TX loops that were constructed with different wire configurations with the equivalent circuit model. We found excellent agreement between the measured and simulated results after adjusting the dissipation factor. Since the skin effect and dissipation factor yield good agreement with measurements, the proximity effect is negligible in the three TX loops that we tested. We found that the effects of the dissipation factor dominated those of the skin effect when the wires were relatively close together. When the wires were widely separated, then the skin effect was the dominant loss mechanism. We also found that loops with wider wire separations exhibited higher self-resonant frequencies and better high-frequency performance.
Equivalent circuit-based analysis of CMUT cell dynamics in arrays.
Oguz, H K; Atalar, Abdullah; Köymen, Hayrettin
2013-05-01
Capacitive micromachined ultrasonic transducers (CMUTs) are usually composed of large arrays of closely packed cells. In this work, we use an equivalent circuit model to analyze CMUT arrays with multiple cells. We study the effects of mutual acoustic interactions through the immersion medium caused by the pressure field generated by each cell acting upon the others. To do this, all the cells in the array are coupled through a radiation impedance matrix at their acoustic terminals. An accurate approximation for the mutual radiation impedance is defined between two circular cells, which can be used in large arrays to reduce computational complexity. Hence, a performance analysis of CMUT arrays can be accurately done with a circuit simulator. By using the proposed model, one can very rapidly obtain the linear frequency and nonlinear transient responses of arrays with an arbitrary number of CMUT cells. We performed several finite element method (FEM) simulations for arrays with small numbers of cells and showed that the results are very similar to those obtained by the equivalent circuit model.
Homma, Akira
2011-07-01
A novel annular parallel-strip transmission line was devised to construct high-voltage high-speed pulse isolation transformers. The transmission lines can easily realize stable high-voltage operation and good impedance matching between primary and secondary circuits. The time constant for the step response of the transformer was calculated by introducing a simple low-frequency equivalent circuit model. Results show that the relation between the time constant and low-cut-off frequency of the transformer conforms to the theory of the general first-order linear time-invariant system. Results also show that the test transformer composed of the new transmission lines can transmit about 600 ps rise time pulses across the dc potential difference of more than 150 kV with insertion loss of -2.5 dB. The measured effective time constant of 12 ns agreed exactly with the theoretically predicted value. For practical applications involving the delivery of synchronized trigger signals to a dc high-voltage electron gun station, the transformer described in this paper exhibited advantages over methods using fiber optic cables for the signal transfer system. This transformer has no jitter or breakdown problems that invariably occur in active circuit components.
Comment on 'Current Budget of the Atmospheric Electric Global Circuit'
NASA Technical Reports Server (NTRS)
Driscoll, Kevin T.; Blakeslee, Richard J.
1996-01-01
In this paper, three major issues relevant to Kasemir's new model will be addressed. The first concerns Kasemir's assertion that there are significant differences between the potentials associated with the new model and the conventional model. A recalculation of these potentials reveals that both models provide equivalent results for the potential difference between the Earth and ionosphere. The second issue to be addressed is Kasemir's assertion that discrepancies in the electric potentials associated with both models can be attributed to modeling the Earth as a sphere, instead of as a planar surface. A simple analytical comparison will demonstrate that differences in the equations for the potentials of the atmosphere derived with a spherical and a planar Earth are negligible for applications to global current flow. Finally, the third issue to be discussed is Kasemir's claim that numerous aspects of the conventional model are incorrect, including the role of the ionosphere in global current flow as well as the significance of cloud-to-ground lightning in supplying charge to the global circuit. In order to refute these misconceptions, it will be shown that these aspects related to the flow of charge in the atmosphere are accurately described by the conventional model of the global circuit.
Signal transduction in Mimosa pudica: biologically closed electrical circuits.
Volkov, Alexander G; Foster, Justin C; Markin, Vladislav S
2010-05-01
Biologically closed electrical circuits operate over large distances in biological tissues. The activation of such circuits can lead to various physiological and biophysical responses. Here, we analyse the biologically closed electrical circuits of the sensitive plant Mimosa pudica Linn. using electrostimulation of a petiole or pulvinus by the charged capacitor method, and evaluate the equivalent electrical scheme of electrical signal transduction inside the plant. The discharge of a 100 microF capacitor in the pulvinus resulted in the downward fall of the petiole in a few seconds, if the capacitor was charged beforehand by a 1.5 V power supply. Upon disconnection of the capacitor from Ag/AgCl electrodes, the petiole slowly relaxed to the initial position. The electrical properties of the M. pudica were investigated, and an equivalent electrical circuit was proposed that explains the experimental data.
NASA Astrophysics Data System (ADS)
Bhowmik, Dhrubajyoti; Saha, Apu Kr; Dutta, Paramartha; Nandi, Supratim
2017-08-01
Quantum-dot Cellular Automata (QCA) is one of the most substitutes developing nanotechnologies for electronic circuits, as a result of lower force utilization, higher speed and smaller size in correlation with CMOS innovation. The essential devices, a Quantum-dot cell can be utilized to logic gates and wires. As it is the key building block on nanotechnology circuits. By applying simple gates, the hardware requirements for a QCA circuit can be decreased and circuits can be less complex as far as level, delay and cell check. This article exhibits an unobtrusive methodology for actualizing novel upgraded simple and universal gates, which can be connected to outline numerous variations of complex QCA circuits. Proposed gates are straightforward in structure and capable as far as implementing any digital circuits. The main aim is to build all basic and universal gates in a simple circuit with and without crossbar-wire. Simulation results and physical relations affirm its handiness in actualizing each advanced circuit.
NASA Astrophysics Data System (ADS)
Maeno, Tsuyoshi; Sakurai, Yukihiko; Unou, Takanori; Ichikawa, Kouji; Fujiwara, Osamu
It is well-known that electromagnetic (EM) disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common ground patterns with slits. To evaluate the noise current outflows from the PCBs of this kind, we previously measured noise current outflows from four types of simple three-layer PCBs having two perpendicular signal traces and different ground patterns with/without slits, and showed that slits on a ground pattern allow conducted noise currents to flow out from PCBs, while the levels for the symmetric slits ground type are smaller compared to the case for two asymmetric slits ground types. In the present study, to further investigate the above finding, we fabricated six types of simple two-layer PCBs having two parallel signal traces and different ground patterns with/without slits, and measured the cross-talk noise between the traces. As a result, we found that the ground patterns with the slits perpendicular to the traces increase the cross-talk noise levels, which are larger by 19-42 dB than those for the ground pattern with no slits, while the ground patterns with the slits in parallel with the traces can suppress the noise levels, which are slightly smaller by 2.5-4.5 dB compared to the case for the no-slit ground pattern. These results were confirmed by the FDTD simulation, and were also qualitatively explained from an equivalent bridge circuit model we previously proposed.
AC impedance analysis of polypyrrole thin films
NASA Technical Reports Server (NTRS)
Penner, Reginald M.; Martin, Charles R.
1987-01-01
The AC impedance spectra of thin polypyrrole films were obtained at open circuit potentials from -0.4 to 0.4 V vs SCE. Two limiting cases are discussed for which simplified equivalent circuits are applicable. At very positive potentials, the predominantly nonfaradaic AC impedance of polypyrrole is very similar to that observed previously for finite porous metallic films. Modeling of the data with the appropriate equivalent circuit permits effective pore diameter and pore number densities of the oxidized film to be estimated. At potentials from -0.4 to -0.3 V, the polypyrrole film is essentially nonelectronically conductive and diffusion of polymer oxidized sites with their associated counterions can be assumed to be linear from the film/substrate electrode interface. The equivalent circuit for the polypyrrole film at these potentials is that previously described for metal oxide, lithium intercalation thin films. Using this model, counterion diffusion coefficients are determined for both semi-infinite and finite diffusion domains. In addition, the limiting low frequency resistance and capacitance of the polypyrrole thin fims was determined and compared to that obtained previously for thicker films of the polymer. The origin of the observed potential dependence of these low frequency circuit components is discussed.
Theoretical and experimental characterization of the DUal-BAse transistor (DUBAT)
NASA Astrophysics Data System (ADS)
Wu, Chung-Yu; Wu, Ching-Yuan
1980-11-01
A new A-type integrated voltage controlled differential negative resistance device using an extra effective base region to form a lateral pnp (npn) bipolar transistor beside the original base region of a vertical npn (pnp) bipolar junction transistor, and so called the DUal BAse Transistor (DUBAT), is studied both experimentally and theoretically, The DUBAT has three terminals and is fully comparible with the existing bipolar integrated circuits technologies. Based upon the equivalent circuit of the DUBAT, a simple first-order analytical theory is developed, and important device parameters, such as: the I-V characteristic, the differential negative resistance, and the peak and valley points, are also characterized. One of the proposed integrated structures of the DUBAT, which is similar in structure to I 2L but with similar high density and a normally operated vertical npn transistor, has been successfully fabricated and studied. Comparisons between the experimental data and theoretical analyses are made, and show in satisfactory agreements.
Optical flip-flops and sequential logic circuits using a liquid crystal light valve
NASA Technical Reports Server (NTRS)
Fatehi, M. T.; Collins, S. A., Jr.; Wasmundt, K. C.
1984-01-01
This paper is concerned with the application of optics to digital computing. A Hughes liquid crystal light valve is used as an active optical element where a weak light beam can control a strong light beam with either a positive or negative gain characteristic. With this device as the central element the ability to produce bistable states from which different types of flip-flop can be implemented is demonstrated. In this paper, some general comments are first presented on digital computing as applied to optics. This is followed by a discussion of optical implementation of various types of flip-flop. These flip-flops are then used in the design of optical equivalents to a few simple sequential circuits such as shift registers and accumulators. As a typical sequential machine, a schematic layout for an optical binary temporal integrator is presented. Finally, a suggested experimental configuration for an optical master-slave flip-flop array is given.
Vacuum Microelectronic Field Emission Array Devices for Microwave Amplification.
NASA Astrophysics Data System (ADS)
Mancusi, Joseph Edward
This dissertation presents the design, analysis, and measurement of vacuum microelectronic devices which use field emission to extract an electron current from arrays of silicon cones. The arrays of regularly-spaced silicon cones, the field emission cathodes or emitters, are fabricated with an integrated gate electrode which controls the electric field at the tip of the cone, and thus the electron current. An anode or collector electrode is placed above the array to collect the emission current. These arrays, which are fabricated in a standard silicon processing facility, are developed for use as high power microwave amplifiers. Field emission has been studied extensively since it was first characterized in 1928, however due to the large electric fields required practical field emission devices are difficult to make. With the development of the semiconductor industry came the development of fabrication equipment and techniques which allow for the manufacture of the precision micron-scale structures necessary for practical field emission devices. The active region of a field emission device is a vacuum, therefore the electron travel is ballistic. This analysis of field emission devices includes electric field and electron emission modeling, development of a device equivalent circuit, analysis of the parameters in the equivalent circuit, and device testing. Variations in device structure are taken into account using a statistical model based upon device measurements. Measurements of silicon field emitter arrays at DC and RF are presented and analyzed. In this dissertation, the equivalent circuit is developed from the analysis of the device structure. The circuit parameters are calculated from geometrical considerations and material properties, or are determined from device measurements. It is necessary to include the emitter resistance in the equivalent circuit model since relatively high resistivity silicon wafers are used. As is demonstrated, the circuit model accurately predicts the magnitude of the emission current at a number of typical bias current levels when the device is operating at frequencies within the range of 10 MHz to 1 GHz. At low frequencies and at high frequencies within this range, certain parameters are negligible, and simplifications may be made in the equivalent circuit model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xavier, MA; Trimboli, MS
This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggestmore » significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.« less
Tian, Hua; Luo, Shiqiang; Zhang, Rui; Yang, Gang; Huang, Hua
2009-12-01
Frequency-domain electricity properties of four objects, including bullfrog skin, bullfrog muscle, triply distilled water and 0.9% NaCl, were tested in the range of 100Hz-10MHz using home-made electrode and measuring system. The experimental results showed that the resistance of 0.9% NaCl decreased dramatically, that the amplitude frequency characteristics of bullfrog's muscle and skin were similar, but that of triply distilled water did not change significantly. The frequency dependence of 0.9% NaCl showed that the electrode had great influence on the measuring system, so a new equivalent circuit model based on the electrode system was needed. These findings suggest that the new five-parameter equivalent circuit model, which embodies considerations on the interaction between electrodes and tissues, is a reasonable equivalent circuit for studying the electrical characteristics of biological materials.
Modeling and analysis of circular flexural-vibration-mode piezoelectric transformer.
Huang, Yihua; Huang, Wei
2010-12-01
We propose a circular flexural-vibration-mode piezoelectric transformer and perform a theoretical analysis of the transformer. An equivalent circuit is derived from the equations of piezoelectricity and the Hamilton's principle. With this equivalent circuit, the voltage gain ratio, input impedance, and the efficiency of the circular flexural-vibration-mode piezoelectric transformer can be determined. The basic behavior of the transformer is shown by numerical results.
NASA Astrophysics Data System (ADS)
Zhao, Yanlin; Yao, Jun; Wang, Mi
2016-07-01
On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance (C 2) and resistance (R 2) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process.
Molecular electronics in pinnae of Mimosa pudica
Foster, Justin C; Markin, Vladislav S
2010-01-01
Bioelectrochemical circuits operate in all plants including the sensitive plant Mimosa pudica Linn. The activation of biologically closed circuits with voltage gated ion channels can lead to various mechanical, hydrodynamical, physiological, biochemical and biophysical responses. Here the biologically closed electrochemical circuit in pinnae of Mimosa pudica is analyzed using the charged capacitor method for electrostimulation at different voltages. Also the equivalent electrical scheme of electrical signal transduction inside the plant's pinna is evaluated. These circuits remain linear at small potentials not exceeding 0.5 V. At higher potentials the circuits become strongly non-linear pointing to the opening of ion channels in plant tissues. Changing the polarity of electrodes leads to a strong rectification effect and to different kinetics of a capacitor. These effects can be caused by a redistribution of K+, Cl−, Ca2+ and H+ ions through voltage gated ion channels. The electrical properties of Mimosa pudica were investigated and equivalent electrical circuits within the pinnae were proposed to explain the experimental data. PMID:20448476
Molecular electronics in pinnae of Mimosa pudica.
Volkov, Alexander G; Foster, Justin C; Markin, Vladislav S
2010-07-01
Bioelectrochemical circuits operate in all plants including the sensitive plant Mimosa pudica Linn. The activation of biologically closed circuits with voltage gated ion channels can lead to various mechanical, hydrodynamical, physiological, biochemical, and biophysical responses. Here the biologically closed electrochemical circuit in pinnae of Mimosa pudica is analyzed using the charged capacitor method for electrostimulation at different voltages. Also the equivalent electrical scheme of electrical signal transduction inside the plant's pinna is evaluated. These circuits remain linear at small potentials not exceeding 0.5 V. At higher potentials the circuits become strongly non-linear pointing to the opening of ion channels in plant tissues. Changing the polarity of electrodes leads to a strong rectification effect and to different kinetics of a capacitor. These effects can be caused by a redistribution of K(+), Cl(-), Ca(2+), and H(+) ions through voltage gated ion channels. The electrical properties of Mimosa pudica were investigated and equivalent electrical circuits within the pinnae were proposed to explain the experimental data.
Ehmler, Hartmut; Köppen, Matthias
2007-10-01
The impedance spectrum test was employed for detection of short circuits within Wendelstein 7-X (W7-X) superconducting magnetic field coils. This test is based on measuring the complex impedance over several decades of frequency. The results are compared to predictions of appropriate electrical equivalent circuits of coils in different production states or during cold test. When the equivalent circuit is not too complicated the impedance can be represented by an analytic function. A more detailed analysis is performed with a network simulation code. The overall agreement of measured and calculated or simulated spectra is good. Two types of short circuits which appeared are presented and analyzed. The detection limit of the method is discussed. It is concluded that combined high-voltage ac and low-voltage impedance spectrum tests are ideal means to rule out short circuits in the W7-X coils.
Analysis and modeling of a family of two-transistor parallel inverters
NASA Technical Reports Server (NTRS)
Lee, F. C. Y.; Wilson, T. G.
1973-01-01
A family of five static dc-to-square-wave inverters, each employing a square-loop magnetic core in conjunction with two switching transistors, is analyzed using piecewise-linear models for the nonlinear characteristics of the transistors, diodes, and saturable-core devices. Four of the inverters are analyzed in detail for the first time. These analyses show that, by proper choice of a frame of reference, each of the five quite differently appearing inverter circuits can be described by a common equivalent circuit. This equivalent circuit consists of a five-segment nonlinear resistor, a nonlinear saturable reactor, and a linear capacitor. Thus, by proper interpretation and identification of the parameters in the different circuits, the results of a detailed solution for one of the inverter circuits provide similar information and insight into the local and global behavior of each inverter in the family.
Scaling up digital circuit computation with DNA strand displacement cascades.
Qian, Lulu; Winfree, Erik
2011-06-03
To construct sophisticated biochemical circuits from scratch, one needs to understand how simple the building blocks can be and how robustly such circuits can scale up. Using a simple DNA reaction mechanism based on a reversible strand displacement process, we experimentally demonstrated several digital logic circuits, culminating in a four-bit square-root circuit that comprises 130 DNA strands. These multilayer circuits include thresholding and catalysis within every logical operation to perform digital signal restoration, which enables fast and reliable function in large circuits with roughly constant switching time and linear signal propagation delays. The design naturally incorporates other crucial elements for large-scale circuitry, such as general debugging tools, parallel circuit preparation, and an abstraction hierarchy supported by an automated circuit compiler.
Design and implementation of a simple acousto optic dual control circuit
NASA Astrophysics Data System (ADS)
Li, Biqing; Li, Zhao
2017-04-01
This page proposed a simple light control circuit which designed by using power supply circuit, sonic circuits, electric circuit and delay circuit four parts. The main chip for CD4011, have inside of the four and to complete the sonic or circuit, electric, delay logic circuit. During the day, no matter how much a pedestrian voice, is ever shine light bulb. Dark night, circuit in a body to make the microphone as long as testing noise, and will automatically be bright for pedestrians lighting, several minutes after the automatic and put out, effective energy saving. Applicable scope and the working principle of the circuit principle diagram and given device parameters selection, power saving effect is obvious, at the same time greatly reduce the maintenance quantity, saving money, use effect is good.
Comparative evaluation of power factor impovement techniques for squirrel cage induction motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spee, R.; Wallace, A.K.
1992-04-01
This paper describes the results obtained from a series of tests of relatively simple methods of improving the power factor of squirrel-cage induction motors. The methods, which are evaluated under controlled laboratory conditions for a 10-hp, high-efficiency motor, include terminal voltage reduction; terminal static capacitors; and a floating'' winding with static capacitors. The test results are compared with equivalent circuit model predictions that are then used to identify optimum conditions for each of the power factor improvement techniques compared with the basic induction motor. Finally, the relative economic value, and the implications of component failures, of the three methods aremore » discussed.« less
Kwon, Oh Kee; Han, Young Tak; Baek, Yong Soon; Chung, Yun C
2012-05-21
We present and demonstrate a simple and cost-effective technique for improving the modulation bandwidth of electroabsorption-modulated laser (EML). This technique utilizes the RF resonance caused by the EML chip (i.e., junction capacitance) and bonding wire (i.e, wire inductance). We analyze the effects of the lengths of the bonding wires on the frequency responses of EML by using an equivalent circuit model. To verify this analysis, we package a lumped EML chip on the sub-mount and measure its frequency responses. The results show that, by using the proposed technique, we can increase the modulation bandwidth of EML from ~16 GHz to ~28 GHz.
A simple structure wavelet transform circuit employing function link neural networks and SI filters
NASA Astrophysics Data System (ADS)
Mu, Li; Yigang, He
2016-12-01
Signal processing by means of analog circuits offers advantages from a power consumption viewpoint. Implementing wavelet transform (WT) using analog circuits is of great interest when low-power consumption becomes an important issue. In this article, a novel simple structure WT circuit in analog domain is presented by employing functional link neural network (FLNN) and switched-current (SI) filters. First, the wavelet base is approximated using FLNN algorithms for giving a filter transfer function that is suitable for simple structure WT circuit implementation. Next, the WT circuit is constructed with the wavelet filter bank, whose impulse response is the approximated wavelet and its dilations. The filter design that follows is based on a follow-the-leader feedback (FLF) structure with multiple output bilinear SI integrators and current mirrors as the main building blocks. SI filter is well suited for this application since the dilation constant across different scales of the transform can be precisely implemented and controlled by the clock frequency of the circuit with the same system architecture. Finally, to illustrate the design procedure, a seventh-order FLNN-approximated Gaussian wavelet is implemented as an example. Simulations have successfully verified that the designed simple structure WT circuit has low sensitivity, low-power consumption and litter effect to the imperfections.
Development of a Low-Noise High Common-Mode-Rejection Instrumentation Amplifier. M.S. Thesis
NASA Technical Reports Server (NTRS)
Rush, Kenneth; Blalock, T. V.; Kennedy, E. J.
1975-01-01
Several previously used instrumentation amplifier circuits were examined to find limitations and possibilities for improvement. One general configuration is analyzed in detail, and methods for improvement are enumerated. An improved amplifier circuit is described and analyzed with respect to common mode rejection and noise. Experimental data are presented showing good agreement between calculated and measured common mode rejection ratio and equivalent noise resistance. The amplifier is shown to be capable of common mode rejection in excess of 140 db for a trimmed circuit at frequencies below 100 Hz and equivalent white noise below 3.0 nv/square root of Hz above 1000 Hz.
A MEMS disk resonator-based band pass filter electrical equivalent circuit simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaram, G. M.; Angira, Mahesh; Gupta, Navneet
In this paper, coupled beam bandpass Disk filter is designed for 1 MHz bandwidth. Filter electrical equivalent circuit simulation is performed using circuit simulators. Important filter parameters such as insertion loss, shape factor and Q factor aresetimated using coventorware simulation. Disk resonator based radial contour mode filter provides 1.5 MHz bandwidth and unloaded quality factor of resonator and filter as 233480, 21797 respectively. From the simulation result it’s found that insertion loss minimum is 151.49 dB, insertion loss maximum is 213.94 dB, and 40 dB shape factor is 4.17.
Fast simulation techniques for switching converters
NASA Technical Reports Server (NTRS)
King, Roger J.
1987-01-01
Techniques for simulating a switching converter are examined. The state equations for the equivalent circuits, which represent the switching converter, are presented and explained. The uses of the Newton-Raphson iteration, low ripple approximation, half-cycle symmetry, and discrete time equations to compute the interval durations are described. An example is presented in which these methods are illustrated by applying them to a parallel-loaded resonant inverter with three equivalent circuits for its continuous mode of operation.
Study on the radial vibration of a piezoelectric ceramic thin ring with an inner metal disc
NASA Astrophysics Data System (ADS)
Lin, Shuyu
2006-11-01
In this paper, a piezoelectric ceramic thin ring with an inner metal disc is studied. The radial vibrations of a metal thin disc and a piezoelectric ceramic thin ring are analysed. Their electro-mechanical equivalent circuits in radial vibration are obtained. Based on the electro-mechanical equivalent circuits and the radial boundary conditions, the composite electro-mechanical equivalent circuit of the combination of a piezoelectric ceramic thin ring and a metal disc is obtained and the resonance and anti-resonance frequency equations are derived. The relationship between the resonance frequency, the anti-resonance frequency, the effective electro-mechanical coupling coefficient and the geometrical dimensions is analysed. The resonance and anti-resonance frequencies are measured using the Agilent Precision Impedance Analyzer. It is illustrated that the measured radial resonance and anti-resonance frequencies are in good agreement with the theoretical results.
Equivalent Circuit for Magnetoelectric Read and Write Operations
NASA Astrophysics Data System (ADS)
Camsari, Kerem Y.; Faria, Rafatul; Hassan, Orchi; Sutton, Brian M.; Datta, Supriyo
2018-04-01
We describe an equivalent circuit model applicable to a wide variety of magnetoelectric phenomena and use spice simulations to benchmark this model against experimental data. We use this model to suggest a different mode of operation where the 1 and 0 states are represented not by states with net magnetization (like mx , my, or mz) but by different easy axes, quantitatively described by (mx2-my2), which switches from 0 to 1 through the write voltage. This change is directly detected as a read signal through the inverse effect. The use of (mx2-my2) to represent a bit is a radical departure from the standard convention of using the magnetization (m ) to represent information. We then show how the equivalent circuit can be used to build a device exhibiting tunable randomness and suggest possibilities for extending it to nonvolatile memory with read and write capabilities, without the use of external magnetic fields or magnetic tunnel junctions.
Equivalent circuit and optimum design of a multilayer laminated piezoelectric transformer.
Dong, Shuxiang; Carazo, Alfredo Vazquez; Park, Seung Ho
2011-12-01
A multilayer laminated piezoelectric Pb(Zr(1-x)Ti(x))O(3) (PZT) ceramic transformer, operating in a half- wavelength longitudinal resonant mode (λ/2 mode), has been analyzed. This piezoelectric transformer is composed of one thickness-polarized section (T-section) for exciting the longitudinal mechanical vibrations, two longitudinally polarized sections (L-section) for generating high-voltage output, and two insulating layers laminated between the T-section and L-section layers to provide insulation between the input and output sections. Based on the piezoelectric constitutive and motion equations, an electro-elasto-electric (EEE) equivalent circuit has been developed, and correspondingly, an effective EEE coupling coefficient was proposed for optimum design of this multilayer transformer. Commercial finite element analysis software is used to determine the validity of the developed equivalent circuit. Finally, a prototype sample was manufactured and experimental data was collected to verify the model's validity.
Student Conceptions of Simple Circuits.
ERIC Educational Resources Information Center
Fredette, Norman; Lochhead, John
1980-01-01
Investigates some conceptual difficulties which college students have with regard to simple direct current circuits. The clinical interview technique was used with 57 students in a freshman level engineering course. (HM)
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Individual tubing circuits shall not contain more than 1,000 feet of pneumatic tubing or its equivalent. However, more than one tubing circuit may be included in the same fire detecting zone. ...
Equivalent radiation source of 3D package for electromagnetic characteristics analysis
NASA Astrophysics Data System (ADS)
Li, Jun; Wei, Xingchang; Shu, Yufei
2017-10-01
An equivalent radiation source method is proposed to characterize electromagnetic emission and interference of complex three dimensional integrated circuits (IC) in this paper. The method utilizes amplitude-only near-field scanning data to reconstruct an equivalent magnetic dipole array, and the differential evolution optimization algorithm is proposed to extract the locations, orientation and moments of those dipoles. By importing the equivalent dipoles model into a 3D full-wave simulator together with the victim circuit model, the electromagnetic interference issues in mixed RF/digital systems can be well predicted. A commercial IC is used to validate the accuracy and efficiency of this proposed method. The coupled power at the victim antenna port calculated by the equivalent radiation source is compared with the measured data. Good consistency is obtained which confirms the validity and efficiency of the method. Project supported by the National Nature Science Foundation of China (No. 61274110).
NASA Astrophysics Data System (ADS)
Li, C.; Li, Fang
2007-06-01
A method to characterize and model a microstrip line coupled with complementary split-ring resonators (CSRRs) is investigated. The detailed parameter extraction approach based on three characteristic frequencies is presented. Good agreement between the results of the equivalent circuit model and the full wave simulations supports the effectiveness of the proposed modelling methodology. In particular, it is found that the shunt capacitance in the equivalent circuit has a negative value which appears to contradict the general physical perception. The physical rationality of the problem is discussed and justified. It is found that the negative capacitance is a natural part required to approximate more closely the distributed nature of the CSRR-loaded microstrip line and the whole equivalent circuit still satisfies Foster's reactance theorem. To extract the effective permittivity of the CSRR-loaded microstrip, the dielectric window concept and the effective medium theory are both applied. Both their results show the negative permittivity at the vicinity of the resonance. Finally, the application of the CSRRs in microstip highpass filters is presented to highlight the unique features of the CSRRs and the validity of their equivalent circuit descriptions. Compared with conventional structures, the proposed highpass filters not only have via free structure but also exhibit extremely steep out-of-band rejection. This may lead to useful applications.
Calculation of transient potential rise on the wind turbine struck by lightning.
Xiaoqing, Zhang
2014-01-01
A circuit model is proposed in this paper for calculating the transient potential rise on the wind turbine struck by lightning. The model integrates the blade, sliding contact site, and tower and grounding system of the wind turbine into an equivalent circuit. The lightning current path from the attachment point to the ground can be fully described by the equivalent circuit. The transient potential responses are obtained in the different positions on the wind turbine by solving the circuit equations. In order to check the validity of the model, the laboratory measurement is made with a reduced-scale wind turbine. The measured potential waveform is compared with the calculated one and a better agreement is shown between them. The practical applicability of the model is also examined by a numerical example of a 2 MW Chinese-built wind turbine.
A novel compact dual-wideband BPF with multiple transmission zeros and super wide upper stopband
NASA Astrophysics Data System (ADS)
Mirzaee, Milad; Nosrati, Mehdi
2013-05-01
In this article, a novel miniaturised dual-wideband bandpass filter (DWB-BPF) based on two different resonators including a quasi-spiral loaded multiple-mode resonator (QSL-MMR) and L-shaped transmission line (LS-TL) is presented. At the first step, in order to design a single wideband BPF filter with controllable transmission zeros near the centre frequency, the open circuit impedance parameter of quasi-spiral loaded resonator Z21 is determined in terms of ABCD matrix. Then an equivalent circuit model of the proposed structure is derived and the impedance characteristic and electrical length of LS-TLs to achieve a DWB-BPF with excellent selectivity are calculated through even- and odd-mode analysis. The proposed filter possesses both compact and simple structure as well as two wide passbands with fractional bandwidth (FBW) of 70% and 22.8% for its first and second passbands, respectively. The proposed technique creates two transmission zeros at the lower and upper stopbands of each passband resulting in a very sharp roll-off accompanied by a wide stopband. Notably, the circuit size is reduced and the bandwidth is enhanced in comparison with its conventional counterparts. The theoretical performance of the filter is verified by the experimental one where a good agreement is reported between them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández, Miguel A.; Masó, Nahum; West, Anthony R.
Bulk conductivity data of ionically and electronically conducting solid electrolytes and electronic ceramics invariably show a frequency dependence that cannot be modelled by a single-valued resistor. To model this, common practice is to add a constant phase element (CPE) in parallel with the bulk resistance. To fit experimental data on a wide variety of materials, however, it is also essential to include the limiting, high frequency permittivity of the material in the equivalent circuit. Failure to do so can lead to incorrect values for the sample resistance and CPE parameters and to an inappropriate circuit for materials that are electricallymore » heterogeneous.« less
1993-02-01
currents can be reached by optimizing the electrode geometry and the charging circuit voltage and that the equivalent circuit modelling provides a realistic basis for analyzing plasma focus pinch dynamics.
ITER-like antenna capacitors voltage probes: Circuit/electromagnetic calculations and calibrations.
Helou, W; Dumortier, P; Durodié, F; Lombard, G; Nicholls, K
2016-10-01
The analyses illustrated in this manuscript have been performed in order to provide the required data for the amplitude-and-phase calibration of the D-dot voltage probes used in the ITER-like antenna at the Joint European Torus tokamak. Their equivalent electrical circuit has been extracted and analyzed, and it has been compared to the one of voltage probes installed in simple transmission lines. A radio-frequency calibration technique has been formulated and exact mathematical relations have been derived. This technique mixes in an elegant fashion data extracted from measurements and numerical calculations to retrieve the calibration factors. The latter have been compared to previous calibration data with excellent agreement proving the robustness of the proposed radio-frequency calibration technique. In particular, it has been stressed that it is crucial to take into account environmental parasitic effects. A low-frequency calibration technique has been in addition formulated and analyzed in depth. The equivalence between the radio-frequency and low-frequency techniques has been rigorously demonstrated. The radio-frequency calibration technique is preferable in the case of the ITER-like antenna due to uncertainties on the characteristics of the cables connected at the inputs of the voltage probes. A method to extract the effect of a mismatched data acquisition system has been derived for both calibration techniques. Finally it has been outlined that in the case of the ITER-like antenna voltage probes can be in addition used to monitor the currents at the inputs of the antenna.
Mikulecky, D C
1979-01-01
A two-port for coupled salt and current flow is created by using the network thermodynamic approach in the same manner as that for coupled solute and volume flow (Mikulecky et al., 1977b; Mikulecky, 1977). This electrochemical two-port has distinct advantages over the equivalent circuit representation and overcomes difficulties pointed out by Finkelstein and Mauro (1963). The electrochemical two-port is used to produce a schematic diagram of the coupled flows through a tissue. The network is superimposable on the tissue morphology and preserves the physical qualities of the flows and forces in each part of an organized structure (e.g., an epithelium). The topological properties are manipulated independently from the constitutive (flow-force) relations. The constitutive relations are chosen from a number of alternatives depending on the detail and rigor desired. With the topology and constitutive parameters specified, the steady-state behavior is simulated with a network simulation program. By using capacitance to represent the filling and depletion of compartments, as well as the traditional electrical capacitances, time-dependent behavior is also simulated. Nonlinear effects arising from the integration of equations describing local behavior (e.g., the Nernst-Planck equations) are dealt with explicitly. The network thermodynamic approach provides a simple, straightforward method for representing a system diagrammatically and then simulating the system's behavior from the diagram with a minimum of mathematical manipulation. PMID:262391
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Kook In; Lee, In Gyu; Hwang, Wan Sik, E-mail: mhshin@kau.ac.kr, E-mail: whwang@kau.ac.kr
The oxidation properties of graphene oxide (GO) are systematically correlated with their chemical sensing properties. Based on an impedance analysis, the equivalent circuit models of the capacitive sensors are established, and it is demonstrated that capacitive operations are related to the degree of oxidation. This is also confirmed by X-ray diffraction and Raman analysis. Finally, highly sensitive stacked GO sensors are shown to detect humidity in capacitive mode, which can be useful in various applications requiring low power consumption.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Yatskovsky, Victor I.; Ogorodnik, K. V.; Lischenko, Sergey
2002-07-01
The perspective of neural networks equivalental models (EM) base on vector-matrix procedure with basic operations of continuous and neuro-fuzzy logic (equivalence, absolute difference) are shown. Capacity on base EMs exceeded the amount of neurons in 2.5 times. This is larger than others neural networks paradigms. Amount neurons of this neural networks on base EMs may be 10 - 20 thousands. The base operations in EMs are normalized equivalency operations. The family of new operations equivalency and non-equivalency of neuro-fuzzy logic's, which we have elaborated on the based of such generalized operations of fuzzy-logic's as fuzzy negation, t-norm and s-norm are shown. Generalized rules of construction of new functions (operations) equivalency which uses relations of t-norm and s-norm to fuzzy negation are proposed. Among these elements the following should be underlined: (1) the element which fulfills the operation of limited difference; (2) the element which algebraic product (intensifier with controlled coefficient of transmission or multiplier of analog signals); (3) the element which fulfills a sample summarizing (uniting) of signals (including the one during normalizing). Synthesized structures which realize on the basic of these elements the whole spectrum of required operations: t-norm, s-norm and new operations equivalency are shown. These realization on the basic of new multifunctional optoelectronical BISPIN- devices (MOEBD) represent the circuit with constant and pulse optical input signals. They are modeling the operation of limited difference. These circuits realize frequency- dynamic neuron models and neural networks. Experimental results of these MOEBD and equivalency circuits, which fulfill the limited difference operation are discussed. For effective realization of neural networks on the basic of EMs as it is shown in report, picture elements are required as main nodes to implement element operations equivalence ('non-equivalence') of neuro-fuzzy logic's.
Calculation of Transient Potential Rise on the Wind Turbine Struck by Lightning
Xiaoqing, Zhang
2014-01-01
A circuit model is proposed in this paper for calculating the transient potential rise on the wind turbine struck by lightning. The model integrates the blade, sliding contact site, and tower and grounding system of the wind turbine into an equivalent circuit. The lightning current path from the attachment point to the ground can be fully described by the equivalent circuit. The transient potential responses are obtained in the different positions on the wind turbine by solving the circuit equations. In order to check the validity of the model, the laboratory measurement is made with a reduced-scale wind turbine. The measured potential waveform is compared with the calculated one and a better agreement is shown between them. The practical applicability of the model is also examined by a numerical example of a 2 MW Chinese-built wind turbine. PMID:25254231
Study on Optimum Design of Multi-Pole Interior Permanent Magnet Motor with Concentrated Windings
NASA Astrophysics Data System (ADS)
Kano, Yoshiaki; Kosaka, Takashi; Matsui, Nobuyuki
Interior Permanent Magnet Synchronous Motors (IPMSM) have been found in many applications because of their high-power density and high-efficiency. The existence of a complex magnetic circuit, however, makes the design of this machine quite complicated. Although FEM is commonly used in the IPMSM design, one of disadvantages is long CPU times. This paper presents a simple non-linear magnetic analysis for a multi-pole IPMSM as a preliminary design tool of FEM. The proposed analysis consists of the geometric-flux-tube-based equivalent-magnetic-circuit model. The model includes saturable permeances taking into account the local magnetic saturation in the core. As a result, the proposed analysis is capable of calculating the flux distribution and the torque characteristics in the presence of magnetic saturation. The effectiveness of the proposed analysis is verified by comparing with FEM in terms of the analytical accuracy and the computation time for two IPMSMs with different specifications. After verification, the proposed analysis-based optimum design is examined, by which the minimization of motor volume is realized while satisfying the necessary maximum torque for target applications.
Reduction of a linear complex model for respiratory system during Airflow Interruption.
Jablonski, Ireneusz; Mroczka, Janusz
2010-01-01
The paper presents methodology of a complex model reduction to its simpler version - an identifiable inverse model. Its main tool is a numerical procedure of sensitivity analysis (structural and parametric) applied to the forward linear equivalent designed for the conditions of interrupter experiment. Final result - the reduced analog for the interrupter technique is especially worth of notice as it fills a major gap in occlusional measurements, which typically use simple, one- or two-element physical representations. Proposed electrical reduced circuit, being structural combination of resistive, inertial and elastic properties, can be perceived as a candidate for reliable reconstruction and quantification (in the time and frequency domain) of dynamical behavior of the respiratory system in response to a quasi-step excitation by valve closure.
Auto-programmable impulse neural circuits
NASA Technical Reports Server (NTRS)
Watula, D.; Meador, J.
1990-01-01
Impulse neural networks use pulse trains to communicate neuron activation levels. Impulse neural circuits emulate natural neurons at a more detailed level than that typically employed by contemporary neural network implementation methods. An impulse neural circuit which realizes short term memory dynamics is presented. The operation of that circuit is then characterized in terms of pulse frequency modulated signals. Both fixed and programmable synapse circuits for realizing long term memory are also described. The implementation of a simple and useful unsupervised learning law is then presented. The implementation of a differential Hebbian learning rule for a specific mean-frequency signal interpretation is shown to have a straightforward implementation using digital combinational logic with a variation of a previously developed programmable synapse circuit. This circuit is expected to be exploited for simple and straightforward implementation of future auto-adaptive neural circuits.
CMOS Active-Pixel Image Sensor With Simple Floating Gates
NASA Technical Reports Server (NTRS)
Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.
1996-01-01
Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.
Project Circuits in a Basic Electric Circuits Course
ERIC Educational Resources Information Center
Becker, James P.; Plumb, Carolyn; Revia, Richard A.
2014-01-01
The use of project circuits (a photoplethysmograph circuit and a simple audio amplifier), introduced in a sophomore-level electric circuits course utilizing active learning and inquiry-based methods, is described. The development of the project circuits was initiated to promote enhanced engagement and deeper understanding of course content among…
Modeling and analysis of cascade solar cells
NASA Technical Reports Server (NTRS)
Ho, F. D.
1986-01-01
A brief review is given of the present status of the development of cascade solar cells. It is known that photovoltaic efficiencies can be improved through this development. The designs and calculations of the multijunction cells, however, are quite complicated. The main goal is to find a method which is a compromise between accuracy and simplicity for modeling a cascade solar cell. Three approaches are presently under way, among them (1) equivalent circuit approach, (2) numerical approach, and (3) analytical approach. Here, the first and the second approaches are discussed. The equivalent circuit approach using SPICE (Simulation Program, Integrated Circuit Emphasis) to the cascade cells and the cascade-cell array is highlighted. The methods of extracting parameters for modeling are discussed.
Voltage controlled oscillator is easily aligned, has low phase noise
NASA Technical Reports Server (NTRS)
Sydnor, R. L.
1965-01-01
Voltage Controlled Oscillator /VCO/, represented by an equivalent RF circuit, is easily adjusted for optimum performance by varying the circuit parameter. It contains a crystal drive level which is also easily adjusted to obtain minimum phase noise.
Geometry of Quantum Computation with Qudits
Luo, Ming-Xing; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-01-01
The circuit complexity of quantum qubit system evolution as a primitive problem in quantum computation has been discussed widely. We investigate this problem in terms of qudit system. Using the Riemannian geometry the optimal quantum circuits are equivalent to the geodetic evolutions in specially curved parametrization of SU(dn). And the quantum circuit complexity is explicitly dependent of controllable approximation error bound. PMID:24509710
Gao, Yue-Ming; Wu, Zhu-Mei; Pun, Sio-Hang; Mak, Peng-Un; Vai, Mang-I; Du, Min
2016-04-02
Existing research on human channel modeling of galvanic coupling intra-body communication (IBC) is primarily focused on the human body itself. Although galvanic coupling IBC is less disturbed by external influences during signal transmission, there are inevitable factors in real measurement scenarios such as the parasitic impedance of electrodes, impedance matching of the transceiver, etc. which might lead to deviations between the human model and the in vivo measurements. This paper proposes a field-circuit finite element method (FEM) model of galvanic coupling IBC in a real measurement environment to estimate the human channel gain. First an anisotropic concentric cylinder model of the electric field intra-body communication for human limbs was developed based on the galvanic method. Then the electric field model was combined with several impedance elements, which were equivalent in terms of parasitic impedance of the electrodes, input and output impedance of the transceiver, establishing a field-circuit FEM model. The results indicated that a circuit module equivalent to external factors can be added to the field-circuit model, which makes this model more complete, and the estimations based on the proposed field-circuit are in better agreement with the corresponding measurement results.
ERIC Educational Resources Information Center
Tekbiyik, Ahmet; Ercan, Orhan
2015-01-01
Current study examined the effects of virtual and physical laboratory practices on students' conceptual achievement in the subject of electricity and their attitudes towards simple electric circuits. Two groups (virtual and physical) selected through simple random sampling was taught with web-aided material called "Electricity in Our…
Finding False Paths in Sequential Circuits
NASA Astrophysics Data System (ADS)
Matrosova, A. Yu.; Andreeva, V. V.; Chernyshov, S. V.; Rozhkova, S. V.; Kudin, D. V.
2018-02-01
Method of finding false paths in sequential circuits is developed. In contrast with heuristic approaches currently used abroad, the precise method based on applying operations on Reduced Ordered Binary Decision Diagrams (ROBDDs) extracted from the combinational part of a sequential controlling logic circuit is suggested. The method allows finding false paths when transfer sequence length is not more than the given value and obviates the necessity of investigation of combinational circuit equivalents of the given lengths. The possibilities of using of the developed method for more complicated circuits are discussed.
All-nanotube stretchable supercapacitor with low equivalent series resistance.
Gilshteyn, Evgenia P; Amanbayev, Daler; Anisimov, Anton S; Kallio, Tanja; Nasibulin, Albert G
2017-12-12
We report high-performance, stable, low equivalent series resistance all-nanotube stretchable supercapacitor based on single-walled carbon nanotube film electrodes and a boron nitride nanotube separator. A layer of boron nitride nanotubes, fabricated by airbrushing from isopropanol dispersion, allows avoiding problem of high internal resistance and short-circuiting of supercapacitors. The device, fabricated in a two-electrode test cell configuration, demonstrates electrochemical double layer capacitance mechanism and retains 96% of its initial capacitance after 20 000 electrochemical charging/discharging cycles with the specific capacitance value of 82 F g -1 and low equivalent series resistance of 4.6 Ω. The stretchable supercapacitor prototype withstands at least 1000 cycles of 50% strain with a slight increase in the volumetric capacitance from 0.4 to 0.5 mF cm -3 and volumetric power density from 32 mW cm -3 to 40 mW cm -3 after stretching, which is higher than reported before. Moreover, a low resistance of 250 Ω for the as-fabricated stretchable prototype was obtained, which slightly decreased with the strain applied up to 200 Ω. Simple fabrication process of such devices can be easily extended making the all-nanotube stretchable supercapacitors, presented here, promising elements in future wearable devices.
Theoretical, Experimental, and Computational Evaluation of Disk-Loaded Circular Wave Guides
NASA Technical Reports Server (NTRS)
Wallett, Thomas M.; Qureshi, A. Haq
1994-01-01
A disk-loaded circular wave guide structure and test fixture were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the codes ARGUS and SOS. Interaction impedances were computed based on the corresponding dispersion characteristics. Finally, an equivalent circuit model for one period of the structure was chosen using equivalent circuit models for cylindrical wave guides of different radii. Optimum values for the discrete capacitors and inductors describing discontinuities between cylindrical wave guides were found using the computer code TOUCHSTONE.
Simple BiCMOS CCCTA design and resistorless analog function realization.
Tangsrirat, Worapong
2014-01-01
The simple realization of the current-controlled conveyor transconductance amplifier (CCCTA) in BiCMOS technology is introduced. The proposed BiCMOS CCCTA realization is based on the use of differential pair and basic current mirror, which results in simple structure. Its characteristics, that is, parasitic resistance (R x) and current transfer (i o/i z), are also tunable electronically by external bias currents. The realized circuit is suitable for fabrication using standard 0.35 μm BiCMOS technology. Some simple and compact resistorless applications employing the proposed CCCTA as active elements are also suggested, which show that their circuit characteristics with electronic controllability are obtained. PSPICE simulation results demonstrating the circuit behaviors and confirming the theoretical analysis are performed.
Making Complex Electrically Conductive Patterns on Cloth
NASA Technical Reports Server (NTRS)
Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert
2008-01-01
A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.
Band-Pass Amplifier Without Discrete Reactance Elements
NASA Technical Reports Server (NTRS)
Kleinberg, L.
1984-01-01
Inherent or "natural" device capacitance exploited. Band-Pass Circuit has input impedance of equivalent circuit at frequencies much greater than operational-amplifier rolloff frequency. Apparent inductance and capacitance arise from combined effects of feedback and reactive component of amplifier gain in frequency range.
75 FR 60863 - Safety Advisory 2010-02
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
... equipped, railroads should ensure that the circuit plan shows the actual interconnection and the designed... detection device (or equivalent) is programmed or equipped to provide the appropriate designed pre-emption... circuit and as designed. By conducting comprehensive periodic joint inspections, the railroad and State...
Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium.
Fern, Joshua; Schulman, Rebecca
2017-09-15
The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, in particular DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as the use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Together, these results provide a basic route to increased DNA circuit stability in cell culture environments.
Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium
Fern, Joshua; Schulman, Rebecca
2017-05-30
The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, particularly DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as themore » use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Furthermore, simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Altogether, these results provide a basic route to increased DNA circuit stability in cell culture environments.« less
Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fern, Joshua; Schulman, Rebecca
The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, particularly DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as themore » use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Furthermore, simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Altogether, these results provide a basic route to increased DNA circuit stability in cell culture environments.« less
Analysis and elimination method of the effects of cables on LVRT testing for offshore wind turbines
NASA Astrophysics Data System (ADS)
Jiang, Zimin; Liu, Xiaohao; Li, Changgang; Liu, Yutian
2018-02-01
The current state, characteristics and necessity of the low voltage ride through (LVRT) on-site testing for grid-connected offshore wind turbines are introduced firstly. Then the effects of submarine cables on the LVRT testing are analysed based on the equivalent circuit of the testing system. A scheme for eliminating the effects of cables on the proposed LVRT testing method is presented. The specified voltage dips are guaranteed to be in compliance with the testing standards by adjusting the ratio between the current limiting impedance and short circuit impedance according to the steady voltage relationship derived from the equivalent circuit. Finally, simulation results demonstrate that the voltage dips at the high voltage side of wind turbine transformer satisfy the requirements of testing standards.
NASA Astrophysics Data System (ADS)
Pivac, Ivan; Barbir, Frano
2016-09-01
The results of electrochemical impedance spectroscopy of proton exchange membrane (PEM) fuel cells may exhibit inductive phenomena at low frequencies. The occurrence of inductive features at high frequencies is explained by the cables and wires of the test system. However, explanation of inductive loop at low frequencies requires a more detailed study. This review paper discusses several possible causes of such inductive behavior in PEM fuel cells, such as side reactions with intermediate species, carbon monoxide poisoning, and water transport, also as their equivalent circuit representations. It may be concluded that interpretation of impedance spectra at low frequencies is still ambiguous, and that better equivalent circuit models are needed with clearly defined physical meaning of each of the circuit elements.
Flexible composite film for printed circuit board
NASA Technical Reports Server (NTRS)
Yabe, K.; Asakura, M.; Tanaka, H.; Soda, A.
1982-01-01
A flexible printed circuit for a printed circuit board in which layers of reaction product composed of a combination of phenoxy resin - polyisocyanate - brominated epoxy resin, and in which the equivalent ratio of those functional groups is hydroxyl group: isocyanate group: epoxy group - 1 : 0.2 to 2 : 0.5 to 3 are laminated on at least one side of saturated polyester film is discussed.
Connecting Time and Frequency in the RC Circuit
NASA Astrophysics Data System (ADS)
Moya, A. A.
2017-04-01
Charging and discharging processes of a capacitor through a resistor, as well as the concept of impedance in alternating current circuits, are topics covered in introductory physics courses. The experimental study of the charge and discharge of a capacitor through a resistor is a well-established lab exercise that is used to introduce concepts such as exponential increase or decrease and time constant. Determining the time constant of the RC circuit has important practical applications because, for example, it can be used to measure unknown values of resistance or capacitance. The transient experiment can be done by using a voltmeter and stopwatch, signal generator and oscilloscope, or even low-cost data acquisition systems such as Arduino. An equivalent topic when studying alternating current circuits arises from the characterization of the impedance of the series or parallel combination of the capacitor and the resistor as a function of frequency. Determining the time constant of the RC circuit by means of impedance measurements for different frequencies is a known experimental technique that can be done using not only LCR meters but also basic instrumentation in the physics lab such as a signal generator, frequency counter, and multimeter. However, lab exercises dealing with RC circuits in alternating current usually focus on their use as filters, and the potential applications in the field of the electrical characterization of material systems are ignored. In this work, we describe a simple exercise showing how the time constant of the RC circuit can easily be determined in the introductory physics lab by means of impedance measurements as a function of frequency. This exercise allows students to learn experimental techniques that find application to characterize the time constants of the charge transport processes in material systems. Moreover, comparison of the time constants obtained from transient and frequency analysis allows us to relate the time and frequency domains, which plays a central role in the advanced analysis of electric circuits, once the concept of Laplace transform has been introduced in order to simplify the problem of dealing with differential equations in the time domain by converting them into algebraic equations within the frequency domain.
Design of an FPGA-based electronic flow regulator (EFR) for spacecraft propulsion system
NASA Astrophysics Data System (ADS)
Manikandan, J.; Jayaraman, M.; Jayachandran, M.
2011-02-01
This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.Motivation for proposed FPGA-based electronic flow regulation is on the disadvantages of conventional approach of using analog circuits. Digital flow regulation overcomes the analog equivalent as digital circuits are highly flexible, are not much affected due to noise, accurate performance is repeatable, interface is easier to computers, storing facilities are possible and finally failure rate of digital circuits is less. FPGA has certain advantages over ASIC and microprocessor/micro-controller that motivated us to opt for FPGA-based electronic flow regulator. Also the control algorithm being software, it is well modifiable without changing the hardware. This scheme is simple enough to adopt for a wide range of applications, where the flow is to be regulated for efficient operation.The proposed scheme is based on a space-qualified re-configurable field programmable gate arrays (FPGA) and hybrid micro circuit (HMC). A graphical user interface (GUI) based application software is also developed for debugging, monitoring and controlling the electronic flow regulator from PC COM port.
An ADC Interface for the Apple II.
ERIC Educational Resources Information Center
Leiker, P. Steven
1990-01-01
Described is the construction of a simple analog-to-digital convertor circuit to interface an Apple II+ microcomputer to a light sensor used in conjunction with a holographic gear inspector. A list of parts, circuit diagram, and a simple BASIC program for the convertor are provided. (CW)
Analysis of each branch current of serial solar cells by using an equivalent circuit model
NASA Astrophysics Data System (ADS)
Yi, Shi-Guang; Zhang, Wan-Hui; Ai, Bin; Song, Jing-Wei; Shen, Hui
2014-02-01
In this paper, based on the equivalent single diode circuit model of the solar cell, an equivalent circuit diagram for two serial solar cells is drawn. Its equations of current and voltage are derived from Kirchhoff's current and voltage law. First, parameters are obtained from the I—V (current—voltage) curves for typical monocrystalline silicon solar cells (125 mm × 125 mm). Then, by regarding photo-generated current, shunt resistance, serial resistance of the first solar cell, and resistance load as the variables. The properties of shunt currents (Ish1 and Ish2), diode currents (ID1 and ID2), and load current (IL) for the whole two serial solar cells are numerically analyzed in these four cases for the first time, and the corresponding physical explanations are made. We find that these parameters have different influences on the internal currents of solar cells. Our results will provide a reference for developing higher efficiency solar cell module and contribute to the better understanding of the reason of efficiency loss of solar cell module.
Hsu, Yu-Hsiang; Lee, Chih-Kung; Hsiao, Wen-Hsin
2005-10-01
A piezoelectric transformer is a power transfer device that converts its input and output voltage as well as current by effectively using electrical and mechanical coupling effects of piezoelectric materials. Equivalent-circuit models, which are traditionally used to analyze piezoelectric transformers, merge each mechanical resonance effect into a series of ordinary differential equations. Because of using ordinary differential equations, equivalent circuit models are insufficient to reflect the mechanical behavior of piezoelectric plates. Electromechanically, fully coupled governing equations of Rosen-type piezoelectric transformers, which are partial differential equations in nature, can be derived to address the deficiencies of the equivalent circuit models. It can be shown that the modal actuator concept can be adopted to optimize the electromechanical coupling effect of the driving section once the added spatial domain design parameters are taken into account, which are three-dimensional spatial dependencies of electromechanical properties. The maximum power transfer condition for a Rosen-type piezoelectric transformer is detailed. Experimental results, which lead us to a series of new design rules, also are presented to prove the validity and effectiveness of the theoretical predictions.
Traveling wave ultrasonic motor: coupling effects in free stator.
Frayssignes, H; Briot, R
2003-03-01
Generally a stator of traveling wave ultrasonic motor (TWUM) consists of piezoelectric transducers (annular plate or rods) coupled by the way of a metallic ring. These transducers divided into halves are excited independently by two electrical signals with different phases of about 90 degrees. So an elastic traveling wave propagates along the circumference of the ring and a rotor pressed on this vibrating surface is then driven by the stator via contact forces. Many difficulties appear in developing TWUM because the contact between the stator and the rotor via a frictional material is very important. However that may be, the first stage consists in obtaining a vibrating stator with optimum characteristics with two symmetrical phases. The aim of this paper is to discuss some coupling effects in a free stator through an enhanced equivalent circuit model. A simple experimental method based on impedance measurements is performed to estimate the coupling characteristics at a low driving voltage. This paper reports results obtained with the free stator of the well known piezoelectric ultrasonic motor "USR60" by Shinsei Co. Ltd. Since the stator behaves as an elastic body, interactions between the two electrical inputs might be described by the introduction of a coupling oscillator. The comparison of experimental and theoretical results leads to validate the new equivalent circuit of the free stator. The presence of coupling impedance could imply a change of electrical supply condition to optimize the TWUM efficiency. The effects of unbalanced features for each electrical input and the applicability of the proposed model to actual operating condition are discussed in the paper. Copyright 2002 Elsevier Science B.V.
Modeling of the Electric Characteristics of Solar Cells
NASA Astrophysics Data System (ADS)
Logan, Benjamin; Tzolov, Marian
The purpose of a solar cell is to covert solar energy, through means of photovoltaic action, into a sustainable electrical current that produces usable electricity. The electrical characteristics of solar cells can be modeled to better understand how they function. As an electrical device, solar cells can be conveniently represented as an equivalent electrical circuit with an ideal diode, ideal current source for the photovoltaic action, a shunt resistor for recombination, a resistor in series to account for contact resistance, and a resistor modeling external power consumption. The values of these elements have been modified to model dark and illumination states. Fitting the model to the experimental current voltage characteristics allows to determine the values of the equivalent circuit elements. Comparing values of open circuit voltage, short circuit current, and shunt resistor can determine factors such as the amount of recombination to diagnose problems in solar cells. The many measurable quantities of a solar cell's characteristics give guidance for the design when they are related with microscopic processes.
Difference-Equation/Flow-Graph Circuit Analysis
NASA Technical Reports Server (NTRS)
Mcvey, I. M.
1988-01-01
Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.
NASA Astrophysics Data System (ADS)
Beh, Kian Lim
2000-10-01
This study was designed to explore the effect of a typical traditional method of instruction in physics on the formation of useful mental models among college students for problem-solving using simple electric circuits as a context. The study was also aimed at providing a comprehensive description of the understanding regarding electric circuits among novices and experts. In order to achieve these objectives, the following two research approaches were employed: (1) A students survey to collect data from 268 physics students; and (2) An interview protocol to collect data from 23 physics students and 24 experts (including 10 electrical engineering graduates, 4 practicing electrical engineers, 2 secondary school physics teachers, 8 physics lecturers, and 4 electrical engineers). Among the major findings are: (1) Most students do not possess accurate models of simple electric circuits as presented implicitly in physics textbooks; (2) Most students display good procedural understanding for solving simple problems concerning electric circuits but have no in-depth conceptual understanding in terms of practical knowledge of current, voltage, resistance, and circuit connections; (3) Most students encounter difficulty in discerning parallel connections that are drawn in a non-conventional format; (4) After a year of college physics, students show significant improvement in areas, including practical knowledge of current and voltage, ability to compute effective resistance and capacitance, ability to identify circuit connections, and ability to solve problems; however, no significance was found in practical knowledge of resistance and ability to connect circuits; and (5) The differences and similarities between the physics students and the experts include: (a) Novices perceive parallel circuits more in terms of 'branch', 'current', and 'resistors with the same resistance' while experts perceive parallel circuits more in terms of 'node', 'voltage', and 'less resistance'; and (b) Both novices and experts use phrases such as 'side-by side' and 'one on top of the other' in describing parallel circuits which emphasize the geometry of the standard circuit drawing when describing parallel resistors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crull, E W; Brown Jr., C G; Perkins, M P
2008-07-30
For short monopoles in this low-power case, it has been shown that a simple circuit model is capable of accurate predictions for the shape and magnitude of the antenna response to lightning-generated electric field coupling effects, provided that the elements of the circuit model have accurate values. Numerical EM simulation can be used to provide more accurate values for the circuit elements than the simple analytical formulas, since the analytical formulas are used outside of their region of validity. However, even with the approximate analytical formulas the simple circuit model produces reasonable results, which would improve if more accurate analyticalmore » models were used. This report discusses the coupling analysis approaches taken to understand the interaction between a time-varying EM field and a short monopole antenna, within the context of lightning safety for nuclear weapons at DOE facilities. It describes the validation of a simple circuit model using laboratory study in order to understand the indirect coupling of energy into a part, and the resulting voltage. Results show that in this low-power case, the circuit model predicts peak voltages within approximately 32% using circuit component values obtained from analytical formulas and about 13% using circuit component values obtained from numerical EM simulation. We note that the analytical formulas are used outside of their region of validity. First, the antenna is insulated and not a bare wire and there are perhaps fringing field effects near the termination of the outer conductor that the formula does not take into account. Also, the effective height formula is for a monopole directly over a ground plane, while in the time-domain measurement setup the monopole is elevated above the ground plane by about 1.5-inch (refer to Figure 5).« less
Rapid Ultrasonic Inspection of Artillery Projectiles
1980-11-01
field behavior as a function of gap separation d 26 Fig. 14 Electromagnet equivalent circuit model use for final design of yoke, pole pieces and...card 64 Fig. 37 Frequency response of receiver circuit 66 Fig. 38 a) Configuration of EMAT used to launch both longitudinal and circumferential... circuit for OD and ID location 88 Fig. 51 Photograph of fully assembled EMAT inspection system during projectile inspection 92 Fig. 52 Sequence
Simple evaporation controller for thin-film deposition from a resistively heated boat
NASA Technical Reports Server (NTRS)
Scofield, John H.; Bajuk, Lou; Mohler, William
1990-01-01
A simple, inexpensive circuit is described for switching the current through a resistively heated evaporation boat during thin-film deposition. The circuit uses a silicon-controlled rectifier (SCR) to switch the 0-15-A current in the primary of a 2-kV A step-down transformer that supplies the 0-200-A current to an evaporation boat. The circuit is controlled by a 0-10 V-dc signal similar to that furnished by an Inficon XTC deposition-rate controller. This circuit may be assembled from a handful of parts for a cost of about $400, nearly one-tenth the cost of similar commercial units. Minimum construction is required, since the circuit is built around an off-the-shelf, self-contained SCR unit.
Mirror-Image Equivalence and Interhemispheric Mirror-Image Reversal
Corballis, Michael C.
2018-01-01
Mirror-image confusions are common, especially in children and in some cases of neurological impairment. They can be a special impediment in activities such as reading and writing directional scripts, where mirror-image patterns (such as b and d) must be distinguished. Treating mirror images as equivalent, though, can also be adaptive in the natural world, which carries no systematic left-right bias and where the same object or event can appear in opposite viewpoints. Mirror-image equivalence and confusion are natural consequences of a bilaterally symmetrical brain. In the course of learning, mirror-image equivalence may be established through a process of symmetrization, achieved through homotopic interhemispheric exchange in the formation of memory circuits. Such circuits would not distinguish between mirror images. Learning to discriminate mirror-image discriminations may depend either on existing brain asymmetries, or on extensive learning overriding the symmetrization process. The balance between mirror-image equivalence and mirror-image discrimination may nevertheless be precarious, with spontaneous confusions or reversals, such as mirror writing, sometimes appearing naturally or as a manifestation of conditions like dyslexia. PMID:29706878
Mirror-Image Equivalence and Interhemispheric Mirror-Image Reversal.
Corballis, Michael C
2018-01-01
Mirror-image confusions are common, especially in children and in some cases of neurological impairment. They can be a special impediment in activities such as reading and writing directional scripts, where mirror-image patterns (such as b and d ) must be distinguished. Treating mirror images as equivalent, though, can also be adaptive in the natural world, which carries no systematic left-right bias and where the same object or event can appear in opposite viewpoints. Mirror-image equivalence and confusion are natural consequences of a bilaterally symmetrical brain. In the course of learning, mirror-image equivalence may be established through a process of symmetrization, achieved through homotopic interhemispheric exchange in the formation of memory circuits. Such circuits would not distinguish between mirror images. Learning to discriminate mirror-image discriminations may depend either on existing brain asymmetries, or on extensive learning overriding the symmetrization process. The balance between mirror-image equivalence and mirror-image discrimination may nevertheless be precarious, with spontaneous confusions or reversals, such as mirror writing, sometimes appearing naturally or as a manifestation of conditions like dyslexia.
Francioso, L; De Pascali, C; Capone, S; Siciliano, P
2012-03-09
The present research was motivated by the growing interest of the scientific community towards the understanding of basic gas-surface interaction mechanisms in 1D nanostructured metal oxide semiconductors, whose significantly enhanced chemical detection sensitivity is known. In this work, impedance spectroscopy (IS) was used to evaluate how a top-down patterning of the sensitive layer can modulate the electrical properties of a gas sensor based on a fully integrated nanometric array of TiO(2) polycrystalline strips. The aim of the study was supported by comparative experimental activity carried out on different thin film gas sensors based on identical TiO(2) polycrystalline sensitive thin films. The impedance responses of the investigated devices under dry air (as the reference environment) and ethanol vapors (as the target gas) were fitted by a complex nonlinear least-squares method using LEVM software, in order to find an appropriate equivalent circuit describing the main conduction processes involved in the gas/semiconductor interactions. Two different equivalent circuit models were identified as completely representative of the TiO(2) thin film and the TiO(2) nanostructure-based gas sensors, respectively. All the circuit parameters were quantified and the related standard deviations were evaluated. The simulated results well approximated the experimental data as indicated by the small mean errors of the fits (in the range of 10(-4)) and the small standard deviations of the circuit parameters. In addition to the substrate capacitance, three different contributions to the overall conduction mechanism were identified for both equivalent circuits: bulk conductivity, intergrain contact and semiconductor-electrode contact, electrically represented by an ideal resistor R(g), a parallel R(gb)C(gb) block and a parallel R(c)-CPE(c) combination, respectively. In terms of equivalent circuit modeling, the sensitive layer patterning introduced an additional parameter in parallel connection with the whole circuit block. Such a circuit element (an ideal inductor, L) has an average value of about 125 μH and exhibits no direct dependence on the analyte gas concentration. Its presence could be due to complex mutual inductance effects occurring both between all the adjacent nanostrips (10 µm spaced) and between the nanostrips and the n-type-doped silicon substrate underneath the thermal oxide (wire/plate effect), where a two order of magnitude higher magnetic permeability of silicon can give L values comparable with those estimated by the fitting procedure. Slightly modified experimental models confirmed that the theoretical background, regulating thin film devices based on metal oxide semiconductors, is also valid for nanopatterned devices.
Recruitment of prefrontal-striatal circuit in response to skilled motor challenge.
Guo, Yumei; Wang, Zhuo; Prathap, Sandhya; Holschneider, Daniel P
2017-12-13
A variety of physical fitness regimens have been shown to improve cognition, including executive function, yet our understanding of which parameters of motor training are important in optimizing outcomes remains limited. We used functional brain mapping to compare the ability of two motor challenges to acutely recruit the prefrontal-striatal circuit. The two motor tasks - walking in a complex running wheel with irregularly spaced rungs or walking in a running wheel with a smooth internal surface - differed only in the extent of skill required for their execution. Cerebral perfusion was mapped in rats by intravenous injection of [C]-iodoantipyrine during walking in either a motorized complex wheel or in a simple wheel. Regional cerebral blood flow (rCBF) was quantified by whole-brain autoradiography and analyzed in three-dimensional reconstructed brains by statistical parametric mapping and seed-based functional connectivity. Skilled or simple walking compared with rest, increased rCBF in regions of the motor circuit, somatosensory and visual cortex, as well as the hippocampus. Significantly greater rCBF increases were noted during skilled walking than for simple walking. Skilled walking, unlike simple walking or the resting condition, was associated with a significant positive functional connectivity in the prefrontal-striatal circuit (prelimbic cortex-dorsomedial striatum) and greater negative functional connectivity in the prefrontal-hippocampal circuit. Our findings suggest that the level of skill of a motor training task determines the extent of functional recruitment of the prefrontal-corticostriatal circuit, with implications for a new approach in neurorehabilitation that uses circuit-specific neuroplasticity to improve motor and cognitive functions.
Theoretical and experimental investigation of a rectenna element for microwave power transmission
NASA Technical Reports Server (NTRS)
Mcspadden, James O.; Yoo, Taewhan; Chang, Kai
1992-01-01
A microstrip measurement system has been designed to analyze packaged GaAs Schottky barrier diodes under small and large signal conditions. The nonlinear equivalent circuit parameters of the diode are determined using a small signal test method that analyzes the diode's scattering parameters at various bias levels. The experimental results of a 2.45 GHz diode are verified using a nonlinear circuit simulation program based on a multireflection algorithm. A 35 GHz rectenna has been built using a microstrip patch antenna and Ka-band mixer diode. The measured efficiency was 29 percent at 120 mW input power. A frequency selective surface is designed using an equivalent circuit model to reduce the second harmonic radiations for a 2.45 GHz rectenna. Theoretical results are found to be in fairly good agreement with experiments.
In-depth analysis and modelling of self-heating effects in nanometric DGMOSFETs
NASA Astrophysics Data System (ADS)
Roldán, J. B.; González, B.; Iñiguez, B.; Roldán, A. M.; Lázaro, A.; Cerdeira, A.
2013-01-01
Self-heating effects (SHEs) in nanometric symmetrical double-gate MOSFETs (DGMOSFETs) have been analysed. An equivalent thermal circuit for the transistors has been developed to characterise thermal effects, where the temperature and thickness dependency of the thermal conductivity of the silicon and oxide layers within the devices has been included. The equivalent thermal circuit is consistent with simulations using a commercial technology computer-aided design (TCAD) tool (Sentaurus by Synopsys). In addition, a model for DGMOSFETs has been developed where SHEs have been considered in detail, taking into account the temperature dependence of the low-field mobility, saturation velocity, and inversion charge. The model correctly reproduces Sentaurus simulation data for the typical bias range used in integrated circuits. Lattice temperatures predicted by simulation are coherently reproduced by the model for varying silicon layer geometry.
Tester Detects Steady-Short Or Intermittent-Open Circuits
NASA Technical Reports Server (NTRS)
Anderson, Bobby L.
1990-01-01
Momentary open circuits or steady short circuits trigger buzzer. Simple, portable, lightweight testing circuit sounds long-duration alarm when it detects steady short circuit or momentary open circuit in coaxial cable or other two-conductor transmission line. Tester sensitive to discontinuities lasting 10 microseconds or longer. Used extensively for detecting intermittent open shorts in accelerometer and extensometer cables. Also used as ordinary buzzer-type continuity checker to detect steady short or open circuits.
Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.
Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker
2007-10-01
Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems.
Equivalent Circuit Modeling for Carbon Nanotube Schottky Barrier Modulation in Polarized Gases
NASA Technical Reports Server (NTRS)
Yamada, Toshishige
2005-01-01
We study the carbon nanotube Schottky barrier at the metallic electrode interface in polarized gases using an equivalent circuit model. The gas-nanotube interaction is often weak and very little charge transfer is expected [l]. This is the case with'oxygen, but the gas-electrode interaction is appreciable and makes the oxygen molecules negatively charged. In the closed circuit condition, screening positive charges appear in the nanotube as well as in the electrode, and the Schottky barrier is modulated due to the resultant electrostatic effects [2]. In the case of ammonia, both the gas-nanotube and gas-electrode interactions are weak, but the Schottky barrier can still be modulated since the molecules are polarized and align in the preferred orientation within the gap between the electrode and nanotube in the open circuit condition (dipole layer formation). In the closed circuit condition, an electric field appears in the gap and strengthens or weakens the preferred dipole alignment reflecting the nanotube Fermi level. The modulation is visible when the nanotube depletion mode is involved, and the required dipole density is as low as 2 x 10(exp 13) dipoles/sq cm, which is quite feasible experimentally,
NASA Astrophysics Data System (ADS)
Shurupov, A. V.; Shurupov, M. A.; Kozlov, A. A.; Kotov, A. V.
2016-11-01
This paper considers the possibility of creating on new physical principles a highspeed current-limiting device (CLD) for the networks with voltage of 110 kV, namely, on the basis of the explosive switching elements. The device is designed to limit the steady short-circuit current to acceptable values for the time does not exceed 3 ms at electric power facilities. The paper presents an analysis of the electrical circuit of CLD. The main features of the scheme are: a new high-speed switching element with high regenerating voltage; fusible switching element that enables to limit the overvoltage after sudden breakage of network of the explosive switch; non-inductive resistor with a high heat capacity and a special reactor with operating time less than 1 s. We analyzed the work of the CLD with help of special software PSPICE, which is based on the equivalent circuit of single-phase short circuit to ground in 110 kV network. Analysis of the equivalent circuit operation CLD shows its efficiency and determines the CLD as a perspective direction of the current-limiting devices of new generation.
Xu, J; Bhattacharya, P; Váró, G
2004-03-15
The light-sensitive protein, bacteriorhodopsin (BR), is monolithically integrated with an InP-based amplifier circuit to realize a novel opto-electronic integrated circuit (OEIC) which performs as a high-speed photoreceiver. The circuit is realized by epitaxial growth of the field-effect transistors, currently used semiconductor device and circuit fabrication techniques, and selective area BR electro-deposition. The integrated photoreceiver has a responsivity of 175 V/W and linear photoresponse, with a dynamic range of 16 dB, with 594 nm photoexcitation. The dynamics of the photochemical cycle of BR has also been modeled and a proposed equivalent circuit simulates the measured BR photoresponse with good agreement.
NASA Astrophysics Data System (ADS)
Beltrán-Pitarch, Braulio; García-Cañadas, Jorge
2018-02-01
Impedance spectroscopy is a useful method for the characterization of thermoelectric (TE) modules. It can determine with high accuracy the module's dimensionless figure of merit (zT) as well as the average TE properties of the module's thermoelements. Interpretation of impedance results requires the use of a theoretical model (equivalent circuit), which provides the desired device parameters after a fitting is performed to the experimental results. Here, we extend the currently available equivalent circuit, only valid for adiabatic conditions, to account for the effect of convection at the outer surface of the module ceramic plates, which is the part of the device where convection is more prominent. This is performed by solving the heat equation in the frequency domain including convection heat losses. As a result, a new element (convection resistance) appears in the developed equivalent circuit, which starts to influence at mid-low frequencies, causing a decrease of the typically observed semicircle in the impedance spectrum. If this effect is not taken into account, an underestimation of the zT occurs when measurements are performed under room conditions. The theoretical model is validated by experimental measurements performed in a commercial module with and without vacuum. Interestingly, the use of the new equivalent circuit allows the determination of the convection heat transfer coefficient (h), if the module's Seebeck coefficient is known, and an impedance measurement in vacuum is performed, opening up the possibility to develop TE modules as h sensors. On the other hand, if h is known, all the properties of the module (zT, ohmic (internal) resistance, average Seebeck coefficient and average thermal conductivity of the thermoelements and thermal conductivity of the ceramics) can be obtained from one impedance measurement in vacuum and another measurement under room conditions.
Rong, Y; Padron, A V; Hagerty, K J; Nelson, N; Chi, S; Keyhani, N O; Katz, J; Datta, S P A; Gomes, C; McLamore, E S
2018-04-30
Impedimetric biosensors for measuring small molecules based on weak/transient interactions between bioreceptors and target analytes are a challenge for detection electronics, particularly in field studies or in the analysis of complex matrices. Protein-ligand binding sensors have enormous potential for biosensing, but achieving accuracy in complex solutions is a major challenge. There is a need for simple post hoc analytical tools that are not computationally expensive, yet provide near real time feedback on data derived from impedance spectra. Here, we show the use of a simple, open source support vector machine learning algorithm for analyzing impedimetric data in lieu of using equivalent circuit analysis. We demonstrate two different protein-based biosensors to show that the tool can be used for various applications. We conclude with a mobile phone-based demonstration focused on the measurement of acetone, an important biomarker related to the onset of diabetic ketoacidosis. In all conditions tested, the open source classifier was capable of performing as well as, or better, than the equivalent circuit analysis for characterizing weak/transient interactions between a model ligand (acetone) and a small chemosensory protein derived from the tsetse fly. In addition, the tool has a low computational requirement, facilitating use for mobile acquisition systems such as mobile phones. The protocol is deployed through Jupyter notebook (an open source computing environment available for mobile phone, tablet or computer use) and the code was written in Python. For each of the applications, we provide step-by-step instructions in English, Spanish, Mandarin and Portuguese to facilitate widespread use. All codes were based on scikit-learn, an open source software machine learning library in the Python language, and were processed in Jupyter notebook, an open-source web application for Python. The tool can easily be integrated with the mobile biosensor equipment for rapid detection, facilitating use by a broad range of impedimetric biosensor users. This post hoc analysis tool can serve as a launchpad for the convergence of nanobiosensors in planetary health monitoring applications based on mobile phone hardware.
CMOS output buffer wave shaper
NASA Technical Reports Server (NTRS)
Albertson, L.; Whitaker, S.; Merrell, R.
1990-01-01
As the switching speeds and densities of Digital CMOS integrated circuits continue to increase, output switching noise becomes more of a problem. A design technique which aids in the reduction of switching noise is reported. The output driver stage is analyzed through the use of an equivalent RLC circuit. The results of the analysis are used in the design of an output driver stage. A test circuit based on these techniques is being submitted to MOSIS for fabrication.
Ladder-Type Circuits Revisited
ERIC Educational Resources Information Center
Yoon, Sung Hyun
2007-01-01
Ladder-type circuits where a given unit is repeated infinitely many times are dealt with in many textbooks on electromagnetism as examples of filter circuits. Determining the impedance of such circuits seems to be regarded as simple, which may be due to the fact that the invariance of the infinite system under the operation of adding one more unit…
NASA Astrophysics Data System (ADS)
Fletcher, Stephen; Kirkpatrick, Iain; Dring, Roderick; Puttock, Robert; Thring, Rob; Howroyd, Simon
2017-03-01
Supercapacitors are an emerging technology with applications in pulse power, motive power, and energy storage. However, their carbon electrodes show a variety of non-ideal behaviours that have so far eluded explanation. These include Voltage Decay after charging, Voltage Rebound after discharging, and Dispersed Kinetics at long times. In the present work, we establish that a vertical ladder network of RC components can reproduce all these puzzling phenomena. Both software and hardware realizations of the network are described. In general, porous carbon electrodes contain random distributions of resistance R and capacitance C, with a wider spread of log R values than log C values. To understand what this implies, a simplified model is developed in which log R is treated as a Gaussian random variable while log C is treated as a constant. From this model, a new family of equivalent circuits is developed in which the continuous distribution of log R values is replaced by a discrete set of log R values drawn from a geometric series. We call these Pascal Equivalent Circuits. Their behaviour is shown to resemble closely that of real supercapacitors. The results confirm that distributions of RC time constants dominate the behaviour of real supercapacitors.
NASA Astrophysics Data System (ADS)
Chien, Wei-Chih; Yao, Yeong-Der; Wu, Jiann-Kuo; Lo, Chi-Kuen; Hung, Ruei-Feng; Lan, M. D.; Lin, Pang
2009-02-01
Magnetoimpedance behaviors and thermal effects of a Co/Cu/Co/Py pseudo-spin-valve (PSV) with a nano-oxide layer (NOL) were studied. The PSV can be regarded as a combination of resistances, inductances, and capacitances. In addition, equivalent circuit theory can be used to analyze the ac behavior of this system. The imaginary part of the magnetoimpedance (magnetoreactance) ratio is more than 1700% at the resonance frequency (fr)=476 kHz at room temperature (RT). The dc magnetoresistance (MR) ratio decreases as the annealing temperature increases because the NOL is formed at the interface between the spacer and the magnetic layer. The NOL deteriorates the differential spin scattering and reduces the dc MR ratio. Impedance spectroscopy was utilized to analyze the capacitance effect from NOL after annealing. The effective capacitance of the PSV was 21.8 nF at RT and changed to 11.8 nF after annealing at 200 °C. The useful equivalent capacitor circuit not only is a nondestructive measurement technology but can also explain the experimental results and prove the formation of the NOL.
Complex capacitance in the representation of modulus of the lithium niobate crystals
NASA Astrophysics Data System (ADS)
Alim, Mohammad A.; Batra, A. K.; Bhattacharjee, Sudip; Aggarwal, M. D.
2011-03-01
The lithium niobate (LiNbO 3 or LN) single crystal is grown in-house. The ac small-signal electrical characterization is conducted over a temperature range 35 ≤T≤150 °C as a function of measurement frequency (10 ≤f≤10 6 Hz). Meaningful observation is noted only in a narrow temperature range 59 ≤T≤73 °C. These electrical data when analyzed via complex plane formalisms revealed single semicircular relaxation both in the complex capacitance ( C*) and in the modulus ( M*) planes. The physical meaning of this kind of observation is obtained on identifying the relaxation type, and then incorporating respective equivalent circuit model. The simplistic non-blocking nature of the equivalent circuit model obtained via M*-plane is established as the lumped relaxation is identified in the C*-plane. The feature of the eventual equivalent circuit model allows non-blocking aspect for the LN crystal attributing to the presence of the operative dc conduction process. Identification of this leakage dc conduction via C*-plane is portrayed in the M*-plane where the blocking nature is removed. The interacting interpretation between these two complex planes is successfully presented.
Improved equivalent circuit for twin slot terahertz receivers
NASA Technical Reports Server (NTRS)
McGrath, W. R.
2002-01-01
Series-fed coplanar waveguide embedding circuits are being developed for terahertz mixers using, in particular, submicron-sized superconducting devices, such as hot electron bolometers as the nonlinear element. Although these mixers show promising performance, they usually also show a considerable downward shift in the center frequency, when compared with simulations obtained by using simplified models. This makes it very difficult to design low-noise mixers for a given THz frequency. This shiftis principally caused by parasitics due to the extremely small details (in terms of wavelength) of the device, and by the electrical properties of the RF choke filter in the DC/IF line. In this paper, we present an improved equivalent network model of such mixer circuits which agrees with measured results at THz frequencies and we propose a new set of THz bolometric mixers that have been fabricated and are currently being tested.
Low-frequency dielectric spectra of low-resistivity GaSe crystals (in Ukrainian)
NASA Astrophysics Data System (ADS)
Stakhira, J.; Fl'Unt, O.; Fiyala, Ya.
The low-frequency dielectric response of low-resistivity GaSe layered crystal along the c-axis has been investigated at liquid nitrogen temperatures. The normalized spectra (activation energies from frequency shift is 0.19 eV) have been treated analytically employing equivalent circuits. It is shown that experimental data cannot be obtained with the circuit containing only ideal capacitors and resistors. At the same time, the equivalent circuit containing dispersive capacitors characterized by the power law dependence on frequency C^*=B(jω)^{n-1}, where ω is radian frequency, 0< n< 1, gives a good agreement with experimental data. This means that measured response of low-resistivity GaSe crystals follows the ``universal" power law of dielectric response χ^*˜(jω)^{n-1}, but not the Debye one. The nature of the ``universal" power law is explained by many-body interactions between localized charge carriers.
Lee, Gihyun; Kim, Sohee; Cho, Sungbo
2015-10-01
Life-time and functionality of planar microelectrode-based devices are determined by not only the corrosion-resistance of the electrode, but also the durability of the insulation layer coated on the transmission lines. Degradation of the insulating layer exposed to a humid environment or solution may cause leakage current or signal loss, and a decrease in measurement sensitivity. In this study, degradation of SU-8, an epoxy-based negative photoresist and insulating material, patterned on Au interdigitated microelectrode (IDE) for long-term (>30 days) immersion in an electrolyte at 37 °C was investigated by electrical impedance spectroscopy and theoretical equivalent circuit modeling. From the experiment and simulation results, it was found that the degradation level of the insulating layer of the IDE electrode can be characterized by monitoring the resistance of the insulating layer among the circuit parameters of the designed equivalent circuit modeling.
Measurement of Gravitational Acceleration Using a Computer Microphone Port
ERIC Educational Resources Information Center
Khairurrijal; Eko Widiatmoko; Srigutomo, Wahyu; Kurniasih, Neny
2012-01-01
A method has been developed to measure the swing period of a simple pendulum automatically. The pendulum position is converted into a signal frequency by employing a simple electronic circuit that detects the intensity of infrared light reflected by the pendulum. The signal produced by the electronic circuit is sent to the microphone port and…
Development of a Three-Tier Test to Assess Misconceptions about Simple Electric Circuits
ERIC Educational Resources Information Center
Pesman, Haki; Eryilmaz, Ali
2010-01-01
The authors aimed to propose a valid and reliable diagnostic instrument by developing a three-tier test on simple electric circuits. Based on findings from the interviews, open-ended questions, and the related literature, the test was developed and administered to 124 high school students. In addition to some qualitative techniques for…
ERIC Educational Resources Information Center
Fienup, Daniel M.; Wright, Nicole A.; Fields, Lanny
2015-01-01
Two experiments evaluated the effects of the simple-to-complex and simultaneous training protocols on the formation of academically relevant equivalence classes. The simple-to-complex protocol intersperses derived relations probes with training baseline relations. The simultaneous protocol conducts all training trials and test trials in separate…
Improved Rotary Transformer For Shaft-Position Indicator
NASA Technical Reports Server (NTRS)
Mclyman, W. T.
1991-01-01
Improved rotary transformer for Inductosyn (or equivalent) shaft-position-indicating circuit has pair of ferrite cores instead of the solid-iron cores. Designed with view toward decreasing excitation power (to maximum allowable 2 W) supplied to shaft-position-indicating circuit to increase its output signal and make tracking system less vulnerable to electromagnetic interference.
Chang, Kuo-Tsai
2007-01-01
This paper investigates electrical transient characteristics of a Rosen-type piezoelectric transformer (PT), including maximum voltages, time constants, energy losses and average powers, and their improvements immediately after turning OFF. A parallel resistor connected to both input terminals of the PT is needed to improve the transient characteristics. An equivalent circuit for the PT is first given. Then, an open-circuit voltage, involving a direct current (DC) component and an alternating current (AC) component, and its related energy losses are derived from the equivalent circuit with initial conditions. Moreover, an AC power control system, including a DC-to-AC resonant inverter, a control switch and electronic instruments, is constructed to determine the electrical characteristics of the OFF transient state. Furthermore, the effects of the parallel resistor on the transient characteristics at different parallel resistances are measured. The advantages of adding the parallel resistor also are discussed. From the measured results, the DC time constant is greatly decreased from 9 to 0.04 ms by a 10 k(omega) parallel resistance under open output.
Fabrication of multijunction high voltage concentrator solar cells by integrated circuit technology
NASA Technical Reports Server (NTRS)
Valco, G. J.; Kapoor, V. J.; Evans, J. C., Jr.; Chai, A.-T.
1981-01-01
Standard integrated circuit technology has been developed for the design and fabrication of planar multijunction (PMJ) solar cell chips. Each 1 cm x 1 cm solar chip consisted of six n(+)/p, back contacted, internally series interconnected unit cells. These high open circuit voltage solar cells were fabricated on 2 ohm-cm, p-type 75 microns thick, silicon substrates. A five photomask level process employing contact photolithography was used to pattern for boron diffusions, phorphorus diffusions, and contact metallization. Fabricated devices demonstrated an open circuit voltage of 3.6 volts and a short circuit current of 90 mA at 80 AMl suns. An equivalent circuit model of the planar multi-junction solar cell was developed.
The RC Circuit--A Multipurpose Laboratory Experiment.
ERIC Educational Resources Information Center
Wood, Herbert T.
1993-01-01
Describes an experiment that demonstrates the use of Kirchoff's rules in the analysis of electrical circuits. The experiment also involves the solution of a linear nonhomogeneous differential equation that is slightly different from the standard one for the simple RC circuit. (ZWH)
Low-frequency noise behavior of polysilicon emitter bipolar junction transistors: a review
NASA Astrophysics Data System (ADS)
Deen, M. Jamal; Pascal, Fabien
2003-05-01
For many analog integrated circuit applications, the polysilicon emitter bipolar junction transistor (PE-BJT) is still the preferred choice because of its higher operational frequency and lower noise performance characteristics compared to MOS transistors of similar active areas and at similar biasing currents. In this paper, we begin by motivating the reader with reasons why bipolar transistors are still of great interest for analog integrated circuits. This motivation includes a comparison between BJT and the MOSFET using a simple small-signal equivalent circuit to derive important parameters that can be used to compare these two technologies. An extensive review of the popular theories used to explain low frequency noise results is presented. However, in almost all instances, these theories have not been fully tested. The effects of different processing technologies and conditions on the noise performance of PE-BJTs is reviewed and a summary of some of the key technological steps and device parameters and their effects on noise is discussed. The effects of temperature and emitter geometries scaling is reviewed. It is shown that dispersion of the low frequency noise in ultra-small geometries is a serious issue since the rate of increase of the noise dispersion is faster than the noise itself as the emitter geometry is scaled to smaller values. Finally, some ideas for future research on PE-BJTs, some of which are also applicable to SiGe heteorjunction bipolar transistors and MOSFETs, are presented after the conclusions.
Efficient G(sup 4)FET-Based Logic Circuits
NASA Technical Reports Server (NTRS)
Vatan, Farrokh
2008-01-01
A total of 81 optimal logic circuits based on four-gate field-effect transistors (G(sup 4)4FETs) have been designed to implement all Boolean functions of up to three variables. The purpose of this development was to lend credence to the expectation that logic circuits based on G(sup 4)FETs could be more efficient (in the sense that they could contain fewer transistors), relative to functionally equivalent logic circuits based on conventional transistors. A G(sup 4)FET a combination of a junction field-effect transistor (JFET) and a metal oxide/semiconductor field-effect transistor (MOSFET) superimposed in a single silicon island and can therefore be regarded as two transistors sharing the same body. A G(sup 4)FET can also be regarded as a single device having four gates: two side junction-based gates, a top MOS gate, and a back gate activated by biasing of a silicon-on-insulator substrate. Each of these gates can be used to control the conduction characteristics of the transistor; this possibility creates new options for designing analog, radio-frequency, mixed-signal, and digital circuitry. One such option is to design a G(sup 4)FET to function as a three-input NOT-majority gate, which has been shown to be a universal and programmable logic gate. Optimal NOT-majority-gate, G(sup 4)FET-based logic-circuit designs were obtained in a comparative study that also included formulation of functionally equivalent logic circuits based on NOR and NAND gates implemented by use of conventional transistors. In the study, the problem of finding the optimal design for each logic function and each transistor type was solved as an integer-programming optimization problem. Considering all 81 non-equivalent Boolean functions included in the study, it was found that in 63% of the cases, fewer logic gates (and, hence, fewer transistors) would be needed in the G(sup 4)FET-based implementations.
High discharge rate characteristics of nickel-cadmium batteries for pulse load filtering
NASA Technical Reports Server (NTRS)
Gearing, G. M.; Cimino, M. B.; Fritts, D. H.; Leonard, J. F.; Terzuoli, A. J., Jr.
1985-01-01
Several tests of specially fabricated nickel-cadmium batteries having circular disk type electrodes were considered. These batteries were evaluated as filter elements between a constant current power supply and a five hertz pulsed load demanding approximately twice the power supply current during the load on portion of the cycle. Short tests lasting 10,000 cycles were conducted at up to a 21 C rate and an equivalent energy density of over 40 Joules per pound. In addition, two batteries were subjected to 10 to the 7 charge/discharge cycles, one at a 6.5 C rate and the other at a 13 C rate. Assuming an electrode to battery weight ratio of 0.5, these tests represent an energy density of about 7 and 14 Joules per pound respectively. Energy density, efficiency, capacitance, average voltage, and available capacity were tracked during these tests. After 10 to the 7 cycles, capacity degradation was negligible for one battery and about 20% for the other. Cadmium electrode failure may be the factor limiting lifetime at extremely low depth of discharge cycling. The output was examined and a simple equivalent circuit was proposed.
A Cost-Effective Energy-Recovering Sustain Driving Circuit for ac Plasma Display Panels
NASA Astrophysics Data System (ADS)
Lim, Jae Kwang; Tae, Heung-Sik; Choi, Byungcho; Kim, Seok Gi
A new sustain driving circuit, featuring an energy-recovering function with simple structure and minimal component count, is proposed as a cost-effective solution for driving plasma display panels during the sustaining period. Compared with existing solutions, the proposed circuit reduces the number of semiconductor switches and reactive circuit components without compromising the circuit performance and gas-discharging characteristics. In addition, the proposed circuit utilizes the harness wire as an inductive circuit component, thereby further simplifying the circuit structure. The performance of the proposed circuit is confirmed with a 42-inch plasma display panel.
Simple photometer circuits using modular electronic components
NASA Technical Reports Server (NTRS)
Wampler, J. E.
1975-01-01
Operational and peak holding amplifiers are discussed as useful circuits for bioluminescence assays. Circuit diagrams are provided. While analog methods can give a good integration on short time scales, digital methods were found best for long term integration in bioluminescence assays. Power supplies, a general photometer circuit with ratio capability, and variations in the basic photometer design are also considered.
NASA Astrophysics Data System (ADS)
Takeda, Kotaro; Honda, Kentaro; Takeya, Tsutomu; Okazaki, Kota; Hiraki, Tatsurou; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Fukuda, Hiroshi; Usui, Mitsuo; Nosaka, Hideyuki; Yamamoto, Tsuyoshi; Yamada, Koji
2015-01-01
We developed a design technique for a photonics-electronics convergence system by using an equivalent circuit of optical devices in an electrical circuit simulator. We used the transfer matrix method to calculate the response of an optical device. This method used physical parameters and dimensions of optical devices as calculation parameters to design a device in the electrical circuit simulator. It also used an intermediate frequency to express the wavelength dependence of optical devices. By using both techniques, we simulated bit error rates and eye diagrams of optical and electrical integrated circuits and calculated influences of device structure change and wavelength shift penalty.
ERIC Educational Resources Information Center
Tsai, Chin-Chung
2003-01-01
Examines the effects of using a conflict map on 8th grade students' conceptual change and ideational networks about simple series electric circuits. Analyzes student interview data through a flow map method. Shows that the use of conflict maps could help students construct greater, richer, and more integrated ideational networks about electric…
Creating a Simple Electric Circuit with Children between the Ages of Five and Six
ERIC Educational Resources Information Center
Kada, Vasiliki; Ravanis, Kostantinos
2016-01-01
This paper presents a study of how preschool-aged children go about creating and operating a simple electric circuit (wires, light bulb, and battery), and how they view the elements that comprise it, particularly how they view the role of the battery. The research involved 108 children aged between five and six, who were individually interviewed.…
ERIC Educational Resources Information Center
Bawaneh, Ali Khalid Ali; Nurulazam Md Zain, Ahmad; Salmiza, Saleh
2011-01-01
The purpose of this study was to investigate the effect of Herrmann Whole Brain Teaching Method over conventional teaching method on eight graders in their understanding of simple electric circuits in Jordan. Participants (N = 273 students; M = 139, F = 134) were randomly selected from Bani Kenanah region-North of Jordan and randomly assigned to…
ERIC Educational Resources Information Center
Planinic, Maja; Boone, William J.; Krsnik, Rudolf; Beilfuss, Meredith L.
2006-01-01
Croatian 1st-year and 3rd-year high-school students (N = 170) completed a conceptual physics test. Students were evaluated with regard to two physics topics: Newtonian dynamics and simple DC circuits. Students answered test items and also indicated their confidence in each answer. Rasch analysis facilitated the calculation of three linear…
NASA Astrophysics Data System (ADS)
Iezekiel, Stavros; Christou, Andreas
2015-03-01
Equivalent circuit models of a transistor laser are used to investigate the suitability of this relatively new device for analog microwave photonic links. The three-terminal nature of the device enables transistor-based circuit design techniques to be applied to optoelectronic transmitter design. To this end, we investigate the application of balanced microwave amplifier topologies in order to enable low-noise links to be realized with reduced intermodulation distortion and improved RF impedance matching compared to conventional microwave photonic links.
Learning Abstract Physical Concepts from Experience: Design and Use of an RC Circuit
NASA Astrophysics Data System (ADS)
Parra, Alfredo; Ordenes, Jorge; de la Fuente, Milton
2018-05-01
Science learning for undergraduate students requires grasping a great number of theoretical concepts in a rather short time. In our experience, this is especially difficult when students are required to simultaneously use abstract concepts, mathematical reasoning, and graphical analysis, such as occurs when learning about RC circuits. We present a simple experimental model in this work that allows students to easily design, build, and analyze RC circuits, thus providing an opportunity to test personal ideas, build graphical descriptions, and explore the meaning of the respective mathematical models, ultimately gaining a better grasp of the concepts involved. The result suggests that the simple setup indeed helps untrained students to visualize the essential points of this kind of circuit.
Electric Circuit Theory--Computer Illustrated Text.
ERIC Educational Resources Information Center
Riches, Brian
1990-01-01
Discusses the use of a computer-illustrated text (CIT) with integrated software to teach electric circuit theory to college students. Examples of software use are given, including simple animation, graphical displays, and problem-solving programs. Issues affecting electric circuit theory instruction are also addressed, including mathematical…
CMOS image sensor with contour enhancement
NASA Astrophysics Data System (ADS)
Meng, Liya; Lai, Xiaofeng; Chen, Kun; Yuan, Xianghui
2010-10-01
Imitating the signal acquisition and processing of vertebrate retina, a CMOS image sensor with bionic pre-processing circuit is designed. Integration of signal-process circuit on-chip can reduce the requirement of bandwidth and precision of the subsequent interface circuit, and simplify the design of the computer-vision system. This signal pre-processing circuit consists of adaptive photoreceptor, spatial filtering resistive network and Op-Amp calculation circuit. The adaptive photoreceptor unit with a dynamic range of approximately 100 dB has a good self-adaptability for the transient changes in light intensity instead of intensity level itself. Spatial low-pass filtering resistive network used to mimic the function of horizontal cell, is composed of the horizontal resistor (HRES) circuit and OTA (Operational Transconductance Amplifier) circuit. HRES circuit, imitating dendrite of the neuron cell, comprises of two series MOS transistors operated in weak inversion region. Appending two diode-connected n-channel transistors to a simple transconductance amplifier forms the OTA Op-Amp circuit, which provides stable bias voltage for the gate of MOS transistors in HRES circuit, while serves as an OTA voltage follower to provide input voltage for the network nodes. The Op-Amp calculation circuit with a simple two-stage Op-Amp achieves the image contour enhancing. By adjusting the bias voltage of the resistive network, the smoothing effect can be tuned to change the effect of image's contour enhancement. Simulations of cell circuit and 16×16 2D circuit array are implemented using CSMC 0.5μm DPTM CMOS process.
Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.
Safavieh, Roozbeh; Juncker, David
2013-11-07
Microfluidic capillary systems employ surface tension effects to manipulate liquids, and are thus self-powered and self-regulated as liquid handling is structurally and chemically encoded in microscale conduits. However, capillary systems have been limited to perform simple fluidic operations. Here, we introduce complex capillary flow circuits that encode sequential flow of multiple liquids with distinct flow rates and flow reversal. We first introduce two novel microfluidic capillary elements including (i) retention burst valves and (ii) robust low aspect ratio trigger valves. These elements are combined with flow resistors, capillary retention valves, capillary pumps, and open and closed reservoirs to build a capillary circuit that, following sample addition, autonomously delivers a defined sequence of multiple chemicals according to a preprogrammed and predetermined flow rate and time. Such a circuit was used to measure the concentration of C-reactive protein. This work illustrates that as in electronics, complex capillary circuits may be built by combining simple capillary elements. We define such circuits as "capillarics", and introduce symbolic representations. We believe that more complex circuits will become possible by expanding the library of building elements and formulating abstract design rules.
Plasticity in single neuron and circuit computations
NASA Astrophysics Data System (ADS)
Destexhe, Alain; Marder, Eve
2004-10-01
Plasticity in neural circuits can result from alterations in synaptic strength or connectivity, as well as from changes in the excitability of the neurons themselves. To better understand the role of plasticity in the brain, we need to establish how brain circuits work and the kinds of computations that different circuit structures achieve. By linking theoretical and experimental studies, we are beginning to reveal the consequences of plasticity mechanisms for network dynamics, in both simple invertebrate circuits and the complex circuits of mammalian cerebral cortex.
Beyond Molecular Codes: Simple Rules to Wire Complex Brains
Hassan, Bassem A.; Hiesinger, P. Robin
2015-01-01
Summary Molecular codes, like postal zip codes, are generally considered a robust way to ensure the specificity of neuronal target selection. However, a code capable of unambiguously generating complex neural circuits is difficult to conceive. Here, we re-examine the notion of molecular codes in the light of developmental algorithms. We explore how molecules and mechanisms that have been considered part of a code may alternatively implement simple pattern formation rules sufficient to ensure wiring specificity in neural circuits. This analysis delineates a pattern-based framework for circuit construction that may contribute to our understanding of brain wiring. PMID:26451480
NASA Astrophysics Data System (ADS)
Kiraga, A.
Several common problems occur in measurement techniques and interpretation of plasma natural emissions and impedance data. Antenna characteristics are of prime importance in equivalent circuit analysis. Spacecraft - plasma interaction contributes to variability of equivalent circuit impedances and e.m.f. components and imposes constrains on usefulness of experimental data. In order to have independent, built in estimate of local plasma frequency and to get deeper insight into properties of equivalent circuit for wave diagnostics, impedance measurement was integrated with radio receivers on the ACTIVE, APEX and CORONAS satellites. Impedance measurements of 7.5m long monopole were performed in frequency range .1-10MHz with the frequency step of 50kHz, in voltage divider configuration. Due to high inclination of 82.5deg and altitude range of 500-3000km, data from very different plasmas were collected. Data can be split into quasi normal, disturbed and very disturbed measurements. Equivalent circuit structure evolved in attempt to m tcha even very disturbed measurements. For quasi normal measurements, satisfactory matching is obtained with computed gyrofrequency fc and fitted plasma frequency fn, stray capacitance Cs and capacitance Cv of phenomenological vacuum sheath. With Balmain formula for monopole impedance in cold magnetoplasma, two basic spectral structures are explained. For sufficiently magnetized plasma (roughly fn/fc<2 if Cs=20pF), circuit parallel resonance frequency Fr falls into upper hybrid band (max(fn,fc),fu), resonance amplitude is reduced by high antenna resistance and horn like absolute maximum points fu. For values of fn/fc ratio, greater then critical, Fr is less than fn and broad absolute maximum at Fr follows from low antenna resistance. Further increase of fn/fc results in increasing lag of Fr behind fn. Critical rati o fn/fc increases with decreasing stray capacitance Cs. It follows from data analysis that stray capacitance may change in flight, at least due to attitude changes, so mentioned basic structures may be relevant in stray compensated bridge configuration. It is found that strongly disturbed measurements are related to activation of fast diodes, designed for input protection. Injections of charged particle beams saturated instrument. On line telemetry transmission interfered directly by receipted VHF fields and indirectly by particle acceleration leading to differential charging and direct current flow. In dense equatorial plasma, very peculiar evolution of base voltage spectra is linked to differential charging and intense direct current flow of thermal electrons. Deep, quasi periodic modulations or irregular excursions on time scales much shorter than sweep period are indicative of differential charging by ambient, energetic minor populations. Presented data and simulations address challenges in instrument design, monitoring and onboard data processing.
Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues.
Gao, Fei; Zheng, Qian; Zheng, Yuanjin
2014-05-01
Numerical study of microwave imaging and microwave-induced thermoacoustic imaging utilizes finite difference time domain (FDTD) analysis for simulation of microwave and acoustic interaction with biological tissues, which is time consuming due to complex grid-segmentation and numerous calculations, not straightforward due to no analytical solution and physical explanation, and incompatible with hardware development requiring circuit simulator such as SPICE. In this paper, instead of conventional FDTD numerical simulation, an equivalent electrical circuit model is proposed to model the microwave acoustic interaction with biological tissues for fast simulation and quantitative analysis in both one and two dimensions (2D). The equivalent circuit of ideal point-like tissue for microwave-acoustic interaction is proposed including transmission line, voltage-controlled current source, envelop detector, and resistor-inductor-capacitor (RLC) network, to model the microwave scattering, thermal expansion, and acoustic generation. Based on which, two-port network of the point-like tissue is built and characterized using pseudo S-parameters and transducer gain. Two dimensional circuit network including acoustic scatterer and acoustic channel is also constructed to model the 2D spatial information and acoustic scattering effect in heterogeneous medium. Both FDTD simulation, circuit simulation, and experimental measurement are performed to compare the results in terms of time domain, frequency domain, and pseudo S-parameters characterization. 2D circuit network simulation is also performed under different scenarios including different sizes of tumors and the effect of acoustic scatterer. The proposed circuit model of microwave acoustic interaction with biological tissue could give good agreement with FDTD simulated and experimental measured results. The pseudo S-parameters and characteristic gain could globally evaluate the performance of tumor detection. The 2D circuit network enables the potential to combine the quasi-numerical simulation and circuit simulation in a uniform simulator for codesign and simulation of a microwave acoustic imaging system, bridging bioeffect study and hardware development seamlessly.
Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors
Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C. P.; Gelinck, Gerwin H.; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon
2016-01-01
Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics. PMID:27762321
Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors.
Yoo, Hocheon; Ghittorelli, Matteo; Smits, Edsger C P; Gelinck, Gerwin H; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon
2016-10-20
Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they can operate as n-type and p-type transistors. Nevertheless, the experimental demonstration of ambipolar organic complementary circuits is limited to inverters. The control of the transistor polarity is crucial for proper circuit operation. Novel gating techniques enable to control the transistor polarity but result in dramatically reduced performances. Here we show high-performance non-planar ambipolar organic transistors with electrical control of the polarity and orders of magnitude higher performances with respect to state-of-art split-gate ambipolar transistors. Electrically reconfigurable complementary logic gates based on ambipolar organic transistors are experimentally demonstrated, thus opening up new opportunities for ambipolar organic complementary electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinthavali, Madhu Sudhan; Campbell, Steven L
This paper presents an analytical model for wireless power transfer system used in electric vehicle application. The equivalent circuit model for each major component of the system is described, including the input voltage source, resonant network, transformer, nonlinear diode rectifier load, etc. Based on the circuit model, the primary side compensation capacitance, equivalent input impedance, active / reactive power are calculated, which provides a guideline for parameter selection. Moreover, the voltage gain curve from dc output to dc input is derived as well. A hardware prototype with series-parallel resonant stage is built to verify the developed model. The experimental resultsmore » from the hardware are compared with the model predicted results to show the validity of the model.« less
Compartmental and Data-Based Modeling of Cerebral Hemodynamics: Linear Analysis.
Henley, B C; Shin, D C; Zhang, R; Marmarelis, V Z
Compartmental and data-based modeling of cerebral hemodynamics are alternative approaches that utilize distinct model forms and have been employed in the quantitative study of cerebral hemodynamics. This paper examines the relation between a compartmental equivalent-circuit and a data-based input-output model of dynamic cerebral autoregulation (DCA) and CO2-vasomotor reactivity (DVR). The compartmental model is constructed as an equivalent-circuit utilizing putative first principles and previously proposed hypothesis-based models. The linear input-output dynamics of this compartmental model are compared with data-based estimates of the DCA-DVR process. This comparative study indicates that there are some qualitative similarities between the two-input compartmental model and experimental results.
Frequency tuning allows flow direction control in microfluidic networks with passive features.
Jain, Rahil; Lutz, Barry
2017-05-02
Frequency tuning has emerged as an attractive alternative to conventional pumping techniques in microfluidics. Oscillating (AC) flow driven through a passive valve can be rectified to create steady (DC) flow, and tuning the excitation frequency to the characteristic (resonance) frequency of the underlying microfluidic network allows control of flow magnitude using simple hardware, such as an on-chip piezo buzzer. In this paper, we report that frequency tuning can also be used to control the direction (forward or backward) of the rectified DC flow in a single device. Initially, we observed that certain devices provided DC flow in the "forward" direction expected from previous work with a similar valve geometry, and the maximum DC flow occurred at the same frequency as a prominent peak in the AC flow magnitude, as expected. However, devices of a slightly different geometry provided the DC flow in the opposite direction and at a frequency well below the peak AC flow. Using an equivalent electrical circuit model, we found that the "forward" DC flow occurred at the series resonance frequency (with large AC flow peak), while the "backward" DC flow occurred at a less obvious parallel resonance (a valley in AC flow magnitude). We also observed that the DC flow occurred only when there was a measurable differential in the AC flow magnitude across the valve, and the DC flow direction was from the channel with large AC flow magnitude to that with small AC flow magnitude. Using these observations and the AC flow predictions from the equivalent circuit model, we designed a device with an AC flowrate frequency profile that was expected to allow the DC flow in opposite directions at two distinct frequencies. The fabricated device showed the expected flow reversal at the expected frequencies. This approach expands the flow control toolkit to include both magnitude and direction control in frequency-tuned microfluidic pumps. The work also raises interesting questions about the origin of flow reversal behavior that may be addressed by the further study of the circuit model behavior or dynamic modeling of the fluid-solid mechanics of the valve under the AC flow.
Inexpensive robots used to teach dc circuits and electronics
NASA Astrophysics Data System (ADS)
Sidebottom, David L.
2017-05-01
This article describes inexpensive, autonomous robots, built without microprocessors, used in a college-level introductory physics laboratory course to motivate student learning of dc circuits. Detailed circuit descriptions are provided as well as a week-by-week course plan that can guide students from elementary dc circuits, through Kirchhoff's laws, and into simple analog integrated circuits with the motivational incentive of building an autonomous robot that can compete with others in a public arena.
Transport properties of nanocomposite and its simulation with L-R-C circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangopadhyay, Arnab, E-mail: agangulyphysics@gmail.com; Sarkar, Aditi, E-mail: agangulyphysics@gmail.com; Sarkar, A., E-mail: agangulyphysics@gmail.com
2014-04-24
The nano particles are represented in this communication by L-R-C equivalent circuit. The dc current voltage characteristics (CVC) of the proposed circuit have simulated using Circuit-Maker ® 2000. Experimental investigation on ZnO nano-composite with capping material gum acacia shows similar CVC. NPs are represented by C-R combinations to manifest the Coulomb blockade effect of a quantum dot. The capping material is represented by an inductor along with a resistance in series. Nine NPs with capping matrix are simulated. The dc current voltage characteristics (CVC) and gross feature of polarization nature obtained by experiment and simulation study are consistent.
Rahmanzadeh, Mahdi; Rajabalipanah, Hamid; Abdolali, Ali
2018-02-01
In this study, by using an equivalent circuit method, a polarization-insensitive terahertz (THz) absorber based on multilayer graphene-based metasurfaces (MGBMs) is systematically designed, providing an extremely broad absorption bandwidth (BW). The proposed absorber is a compact, three-layer structure, comprising square-, cross-, and circular-shaped graphene metasurfaces embedded between three separator dielectrics. The equivalent-conductivity method serves as a parameter retrieval technique to characterize the graphene metasurfaces as the components of the proposed circuit model. Good agreement is observed between the full-wave simulations and the equivalent-circuit predictions. The optimum MGBM absorber exhibits >90% absorbance in an extremely broad frequency band of 0.55-3.12 THz (BW=140%). The results indicate a significant BW enhancement compared with both the previous metal- and graphene-based THz absorbers, highlighting the capability of the designed MGBM absorber. To clarify the physical mechanism of absorption, the surface current and the electric-field distributions, as well as the power loss density of each graphene metasurface, are monitored and discussed. The MGBM functionality is evaluated under a wide range of incident wave angles to prove that the proposed absorber is omnidirectional and polarization-insensitive. These superior performances guarantee the applicability of the MGBM structure as an ultra-broadband absorber for various THz applications.
Application of an impedance matching transformer to a plasma focus.
Bures, B L; James, C; Krishnan, M; Adler, R
2011-10-01
A plasma focus was constructed using an impedance matching transformer to improve power transfer between the pulse power and the dynamic plasma load. The system relied on two switches and twelve transformer cores to produce a 100 kA pulse in short circuit on the secondary at 27 kV on the primary with 110 J stored. With the two transformer systems in parallel, the Thevenin equivalent circuit parameters on the secondary side of the driver are: C = 10.9 μF, V(0) = 4.5 kV, L = 17 nH, and R = 5 mΩ. An equivalent direct drive circuit would require a large number of switches in parallel, to achieve the same Thevenin equivalent. The benefits of this approach are replacement of consumable switches with non-consumable transformer cores, reduction of the driver inductance and resistance as viewed by the dynamic load, and reduction of the stored energy to produce a given peak current. The system is designed to operate at 100 Hz, so minimizing the stored energy results in less load on the thermal management system. When operated at 1 Hz, the neutron yield from the transformer matched plasma focus was similar to the neutron yield from a conventional (directly driven) plasma focus at the same peak current.
NASA Astrophysics Data System (ADS)
Ramotar, Lokendra; Rohrauer, Greg L.; Filion, Ryan; MacDonald, Kathryn
2017-03-01
The development of a dynamic thermal battery model for hybrid and electric vehicles is realized. A thermal equivalent circuit model is created which aims to capture and understand the heat propagation from the cells through the entire pack and to the environment using a production vehicle battery pack for model validation. The inclusion of production hardware and the liquid battery thermal management system components into the model considers physical and geometric properties to calculate thermal resistances of components (conduction, convection and radiation) along with their associated heat capacity. Various heat sources/sinks comprise the remaining model elements. Analog equivalent circuit simulations using PSpice are compared to experimental results to validate internal temperature nodes and heat rates measured through various elements, which are then employed to refine the model further. Agreement with experimental results indicates the proposed method allows for a comprehensive real-time battery pack analysis at little computational expense when compared to other types of computer based simulations. Elevated road and ambient conditions in Mesa, Arizona are simulated on a parked vehicle with varying quiescent cooling rates to examine the effect on the diurnal battery temperature for longer term static exposure. A typical daily driving schedule is also simulated and examined.
Teaching Electricity and Engineering with LEDs
ERIC Educational Resources Information Center
Johnstone, Christopher
2014-01-01
When learning about electricity, students are typically asked to complete a simple circuit involving a battery, wire, and lightbulb. This activity can be enhanced by adding discussion and discourse and can take on a unique final form in the case of "The Friendship Detector." In such electrical circuit activities, the completed circuit is…
Circuits in the Sun: Solar Panel Physics
ERIC Educational Resources Information Center
Gfroerer, Tim
2013-01-01
Typical commercial solar panels consist of approximately 60 individual photovoltaic cells connected in series. Since the usual Kirchhoff rules apply, the current is uniform throughout the circuit, while the electric potential of the individual devices is cumulative. Hence, a solar panel is a good analog of a simple resistive series circuit, except…
Modeling of spacecraft charging
NASA Technical Reports Server (NTRS)
Whipple, E. C., Jr.
1977-01-01
Three types of modeling of spacecraft charging are discussed: statistical models, parametric models, and physical models. Local time dependence of circuit upset for DoD and communication satellites, and electron current to a sphere with an assumed Debye potential distribution are presented. Four regions were involved in spacecraft charging: (1) undisturbed plasma, (2) plasma sheath region, (3) spacecraft surface, and (4) spacecraft equivalent circuit.
Microwave, Semiconductor Research - Materials, Devices and Circuits.
1984-03-01
Phenomena, Gamisch/Partenkirchen, Germany, 1982 (Springer-Verlag, Berlin). 3. "Observation of nonlinear refractive index in molecular liquids by...in non-walled dielectric waveguide including a novel use of transverse resonance equivalent circuits for the treatment of dispersion in graded index ...number) This program covers the growth and assessment of Gallium Arsenide, and related compounds and alloys, for use in microwave, millimeter, and
Circuital characterisation of space-charge motion with a time-varying applied bias
Kim, Chul; Moon, Eun-Yi; Hwang, Jungho; Hong, Hiki
2015-01-01
Understanding the behaviour of space-charge between two electrodes is important for a number of applications. The Shockley-Ramo theorem and equivalent circuit models are useful for this; however, fundamental questions of the microscopic nature of the space-charge remain, including the meaning of capacitance and its evolution into a bulk property. Here we show that the microscopic details of the space-charge in terms of resistance and capacitance evolve in a parallel topology to give the macroscopic behaviour via a charge-based circuit or electric-field-based circuit. We describe two approaches to this problem, both of which are based on energy conservation: the energy-to-current transformation rule, and an energy-equivalence-based definition of capacitance. We identify a significant capacitive current due to the rate of change of the capacitance. Further analysis shows that Shockley-Ramo theorem does not apply with a time-varying applied bias, and an additional electric-field-based current is identified to describe the resulting motion of the space-charge. Our results and approach provide a facile platform for a comprehensive understanding of the behaviour of space-charge between electrodes. PMID:26133999
Methods of fabricating applique circuits
Dimos, Duane B.; Garino, Terry J.
1999-09-14
Applique circuits suitable for advanced packaging applications are introduced. These structures are particularly suited for the simple integration of large amounts (many nanoFarads) of capacitance into conventional integrated circuit and multichip packaging technology. In operation, applique circuits are bonded to the integrated circuit or other appropriate structure at the point where the capacitance is required, thereby minimizing the effects of parasitic coupling. An immediate application is to problems of noise reduction and control in modern high-frequency circuitry.
NASA Astrophysics Data System (ADS)
Perný, M.; Šály, V.; Packa, J.; Mikolášek, M.; Váry, M.; Huran, J.; Hrubčín, L.; Skuratov, V. A.; Arbet, J.
2017-04-01
The photovoltaic efficiency of heterostructures a-SiC/c-Si may be the same or even better in comparison with conventional silicon structures when suitable adjustment of technological parameters is realized. The main advantage of heterojunction formed amorphous SiC thin film and crystalline silicon compared to standard crystalline solar cell lies in high build-in voltage and thus a high open-circuit voltage. Solar cells can be exposed to various influences of hard environment. A deterioration of properties of heterostructures (a-SiC/c-Si) due to irradiation is examined in our paper using impedance spectroscopy method. Xe ions induced damage is reflected in changes of proposed AC equivalent circuit elements. AC equivalent circuit was proposed and verified using numerical simulations. Impedance spectra were also measured at different DC bias voltages due to a more detailed understanding correlation between Xe ions induced damage and transport phenomenon in the heterostructure.
Modeling integrated photovoltaic–electrochemical devices using steady-state equivalent circuits
Winkler, Mark T.; Cox, Casandra R.; Nocera, Daniel G.; Buonassisi, Tonio
2013-01-01
We describe a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. We identify the fundamental efficiency limitations that arise from using solar cells with a single band gap, an arrangement that describes the use of currently economic solar cell technologies such as Si or CdTe. Steady-state equivalent circuit analysis permits modeling of practical systems. For the water-splitting reaction, modeling defines parameters that enable a solar-to-fuels efficiency exceeding 18% using laboratory GaAs cells and 16% using all earth-abundant components, including commercial Si solar cells and Co- or Ni-based oxygen evolving catalysts. Circuit analysis also provides a predictive tool: given the performance of the separate photovoltaic and electrochemical systems, the behavior of the coupled photovoltaic–electrochemical system can be anticipated. This predictive utility is demonstrated in the case of water oxidation at the surface of a Si solar cell, using a Co–borate catalyst.
A study of short test and charge retention test methods for nickel-cadmium spacecraft cells
NASA Technical Reports Server (NTRS)
Scott, W. R.
1975-01-01
Methods for testing nickel-cadmium cells for internal shorts and charge retention were studied. Included were (a) open circuit voltage decay after a brief charge, (b) open circuit voltage recovery after shorting, and (c) open circuit voltage decay and capacity loss after a full charge. The investigation included consideration of the effects of prior history, of conditioning cells prior to testing, and of various test method variables on the results of the tests. Sensitivity of the tests was calibrated in terms of equivalent external resistance. The results were correlated. It was shown that a large number of variables may affect the results of these tests. It is concluded that the voltage decay after a brief charge and the voltage recovery methods are more sensitive than the charged stand method, and can detect an internal short equivalent to a resistance of about (10,000/C)ohms where "C' is the numerical value of the capacity of the cell in ampere hours.
Kalman-variant estimators for state of charge in lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Propp, Karsten; Auger, Daniel J.; Fotouhi, Abbas; Longo, Stefano; Knap, Vaclav
2017-03-01
Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ. This paper describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly introduced, and the applicability of 'standard' lithium-ion state-of-charge estimation methods is explored. Open-circuit voltage methods and 'Coulomb counting' are found to have a poor fit for lithium-sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which are based on a relatively simple equivalent-circuit-network model, can deliver useful results. If the three estimators implemented, the unscented Kalman filter gives the most robust and accurate performance, with an acceptable computational effort.
RF-MEMS tunable interdigitated capacitor and fixed spiral inductor for band pass filter applications
NASA Astrophysics Data System (ADS)
Bade, Ladon Ahmed; Dennis, John Ojur; Khir, M. Haris Md; Wen, Wong Peng
2016-11-01
This research presents the tunable Radio Frequency Micro Electromechanical Systems (RF-MEMS) coupled band-pass filter (BPF), which possess a wide tuning range and constructed by using the Chebyshev fourth degree equivalent circuit consisting of fixed inductors and interdigitated tunable capacitors. The suggested method was authenticated by designing a new tunable BPF with a 100% tuning range from 3.1 GHz to 4.9 GHz. The Metal Multi-User MEMS Process (Metal MUMPs) was involved in the process of design of this band-pass filter. It aimed to achieve the reconfiguration of frequencies and show high efficiency of RF in the applications that using Ultra Wide Band (UWB) such as wireless sensor networks. The RF performance of this filter was found to be very satisfactory due to its simple fabrication. Moreover, it showed less insertion loss of around 4 dB and high return loss of around 20 dB.
NASA Astrophysics Data System (ADS)
Nakachi, Yoshiki; Ueda, Fukashi; Kajikawa, Takuya; Amau, Tooru; Kameyama, Hirokazu; Ito, Hisanori
This paper verifies the mechanism of occurring over voltage phenomena in the distributed power system on energizing the transformer. This over-voltage, which is observed at the actual distributed power system, with heavy inrush current is found to occur at about 0.1-0.2sec after the energizing and continue for a duration of more than 0.1[sec]. There is a concern that this over-voltage may operate the protection relay and deteriorate the insulation of apparatus. It is basically caused by the resonance between the shunt capacitors and saturated/unsaturated magnetizing inductance of transformer, system inductance. By using analytical formulation of a simple equivalent circuit, its mechanism has been verified through simulations carried out by using EMTP. Moreover, the sympathetic interaction between transformers is prolonged the duration of the over-voltage by the field test data is discussed in this paper.
Ogirala, Ajay; Stachel, Joshua R; Mickle, Marlin H
2011-11-01
Increasing density of wireless communication and development of radio frequency identification (RFID) technology in particular have increased the susceptibility of patients equipped with cardiac rhythmic monitoring devices (CRMD) to environmental electro magnetic interference (EMI). Several organizations reported observing CRMD EMI from different sources. This paper focuses on mathematically analyzing the energy as perceived by the implanted device, i.e., voltage. Radio frequency (RF) energy transmitted by RFID interrogators is considered as an example. A simplified front-end equivalent circuit of a CRMD sensing circuitry is proposed for the analysis following extensive black-box testing of several commercial pacemakers and implantable defibrillators. After careful understanding of the mechanics of the CRMD signal processing in identifying the QRS complex of the heart-beat, a mitigation technique is proposed. The mitigation methodology introduced in this paper is logical in approach, simple to implement and is therefore applicable to all wireless communication protocols.
Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2016-01-01
Time dependence of absorption voltages (Vabs) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on Vabs, cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on Vabs, are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks. Index Terms: Ceramic capacitor, insulation resistance, dielectric absorption, cracking.
Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2014-01-01
Time dependence of absorption voltages (V(sub abs)) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on V(sub abs)), cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on V(sub abs)), are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks.
Filamentary model in resistive switching materials
NASA Astrophysics Data System (ADS)
Jasmin, Alladin C.
2017-12-01
The need for next generation computer devices is increasing as the demand for efficient data processing increases. The amount of data generated every second also increases which requires large data storage devices. Oxide-based memory devices are being studied to explore new research frontiers thanks to modern advances in nanofabrication. Various oxide materials are studied as active layers for non-volatile memory. This technology has potential application in resistive random-access-memory (ReRAM) and can be easily integrated in CMOS technologies. The long term perspective of this research field is to develop devices which mimic how the brain processes information. To realize such application, a thorough understanding of the charge transport and switching mechanism is important. A new perspective in the multistate resistive switching based on current-induced filament dynamics will be discussed. A simple equivalent circuit of the device gives quantitative information about the nature of the conducting filament at different resistance states.
Electrical description of N2 capacitively coupled plasmas with the global model
NASA Astrophysics Data System (ADS)
Cao, Ming-Lu; Lu, Yi-Jia; Cheng, Jia; Ji, Lin-Hong; Engineering Design Team
2016-10-01
N2 discharges in a commercial capacitively coupled plasma reactor are modelled by a combination of an equivalent circuit and the global model, for a range of gas pressure at 1 4 Torr. The ohmic and inductive plasma bulk and the capacitive sheath are represented as LCR elements, with electrical characteristics determined by plasma parameters. The electron density and electron temperature are obtained from the global model in which a Maxwellian electron distribution is assumed. Voltages and currents are recorded by a VI probe installed after the match network. Using the measured voltage as an input, the current flowing through the discharge volume is calculated from the electrical model and shows excellent agreement with the measurements. The experimentally verified electrical model provides a simple and accurate description for the relationship between the external electrical parameters and the plasma properties, which can serve as a guideline for process window planning in industrial applications.
Origin of nonsaturating linear magnetoresistivity
NASA Astrophysics Data System (ADS)
Kisslinger, Ferdinand; Ott, Christian; Weber, Heiko B.
2017-01-01
The observation of nonsaturating classical linear magnetoresistivity has been an enigmatic phenomenon in solid-state physics. We present a study of a two-dimensional ohmic conductor, including local Hall effect and a self-consistent consideration of the environment. An equivalent-circuit scheme delivers a simple and convincing argument why the magnetoresistivity is linear in strong magnetic field, provided that current and biasing electric field are misaligned by a nonlocal mechanism. A finite-element model of a two-dimensional conductor is suited to display the situations that create such deviating currents. Besides edge effects next to electrodes, charge carrier density fluctuations are efficiently generating this effect. However, mobility fluctuations that have frequently been related to linear magnetoresistivity are barely relevant. Despite its rare observation, linear magnetoresitivity is rather the rule than the exception in a regime of low charge carrier densities, misaligned current pathways and strong magnetic field.
Harris, Alexander R; Molino, Paul J; Kapsa, Robert M I; Clark, Graeme M; Paolini, Antonio G; Wallace, Gordon G
2015-05-07
Electrode impedance is used to assess the thermal noise and signal-to-noise ratio for brain-machine interfaces. An intermediate frequency of 1 kHz is typically measured, although other frequencies may be better predictors of device performance. PEDOT-PSS, PEDOT-DBSA and PEDOT-pTs conducting polymer modified electrodes have reduced impedance at 1 kHz compared to bare metal electrodes, but have no correlation with the effective electrode area. Analytical solutions to impedance indicate that all low-intermediate frequencies can be used to compare the electrode area at a series RC circuit, typical of an ideal metal electrode in a conductive solution. More complex equivalent circuits can be used for the modified electrodes, with a simplified Randles circuit applied to PEDOT-PSS and PEDOT-pTs and a Randles circuit including a Warburg impedance element for PEDOT-DBSA at 0 V. The impedance and phase angle at low frequencies using both equivalent circuit models is dependent on the electrode area. Low frequencies may therefore provide better predictions of the thermal noise and signal-to-noise ratio at modified electrodes. The coefficient of variation of the PEDOT-pTs impedance at low frequencies was lower than the other conducting polymers, consistent with linear and steady-state electroactive area measurements. There are poor correlations between the impedance and the charge density as they are not ideal metal electrodes.
Text Based Analogy in Overcoming Student Misconception on Simple Electricity Circuit Material
NASA Astrophysics Data System (ADS)
Hesti, R.; Maknun, J.; Feranie, S.
2017-09-01
Some researcher have found that the use of analogy in learning and teaching physics was effective enough in giving comprehension in a complicated physics concept such as electrical circuits. Meanwhile, misconception become main cause that makes students failed when learning physics. To provide teaching physics effectively, the misconception should be resolved. Using Text Based Analogy is one of the way to identifying misconceptions and it is enough to assist teachers in conveying scientific truths in order to overcome misconceptions. The purpose of the study to investigate the use of text based analogy in overcoming students misconception on simple electrical circuit material. The samples of this research were 28 of junior high school students taken purposively from one high school in South Jakarta. The method use in this research is pre-experimental and design in one shot case study. Students who are the participants of sample have been identified misconception on the electrical circuit material by using the Diagnostic Test of Simple Electricity Circuit. The results of this study found that TBA can replace the misconceptions of the concept possessed by students with scientific truths conveyed in the text in a way that is easily understood so that TBA is strongly recommended to use in other physics materials.
Develop real-time dosimetry concepts and instrumentation for long term missions
NASA Technical Reports Server (NTRS)
Braby, L. A.
1982-01-01
The development of a rugged portable instrument to evaluate dose and dose equivalent is described. A tissue-equivalent proportional counter simulating a 2 micrometer spherical tissue volume was operated satisfactorily for over a year. The basic elements of the electronic system were designed and tested. And finally, the most suitable mathematical technique for evaluating dose equivalent with a portable instrument was selected. Design and fabrication of a portable prototype, based on the previously tested circuits, is underway.
A Fan-tastic Alternative to Bulbs: Learning Circuits with Fans
ERIC Educational Resources Information Center
Ekey, Robert; Edwards, Andrea; McCullough, Roy; Reitz, William; Mitchell, Brandon
2017-01-01
The incandescent bulb has been a useful tool for teaching basic electrical circuits, as brightness is related to the current or power flowing through a bulb. This has led to the development of qualitative pedagogical treatments for examining resistive combinations in simple circuits using bulbs and batteries, which were first introduced by James…
An Activity for Demonstrating the Concept of a Neural Circuit
ERIC Educational Resources Information Center
Kreiner, David S.
2012-01-01
College students in two sections of a general psychology course participated in a demonstration of a simple neural circuit. The activity was based on a neural circuit that Jeffress proposed for localizing sounds. Students in one section responded to a questionnaire prior to participating in the activity, while students in the other section…
Resonance-induced sensitivity enhancement method for conductivity sensors
NASA Technical Reports Server (NTRS)
Tai, Yu-Chong (Inventor); Shih, Chi-yuan (Inventor); Li, Wei (Inventor); Zheng, Siyang (Inventor)
2009-01-01
Methods and systems for improving the sensitivity of a variety of conductivity sensing devices, in particular capacitively-coupled contactless conductivity detectors. A parallel inductor is added to the conductivity sensor. The sensor with the parallel inductor is operated at a resonant frequency of the equivalent circuit model. At the resonant frequency, parasitic capacitances that are either in series or in parallel with the conductance (and possibly a series resistance) is substantially removed from the equivalent circuit, leaving a purely resistive impedance. An appreciably higher sensor sensitivity results. Experimental verification shows that sensitivity improvements of the order of 10,000-fold are possible. Examples of detecting particulates with high precision by application of the apparatus and methods of operation are described.
Regulated Capacitor Charging Circuit Using a High Reactance Transformer
1999-06-01
REGULATED CAPACITOR CHARGING CIRCUIT USING A HIGH REACTANCE TRANSFORMER1 Diana L. Loree and James P. O’Loughlin Air Force Research Laboratory...Directed Energy Directorate Kirtland Air Force Base, NM 87117-5776 Abstract A high reactance transformer circuit is used to provide for the compact...simple, economic and reliable charging of a capacitor energy store to a predetermined and regulated voltage. The circuit can be operated from a
Analog Microcontroller Model for an Energy Harvesting Round Counter
2012-07-01
densities representing the duration of ≥ for all scaled piezo ................................7 1 INTRODUCTION An accurate count...limited surface area available for mounting piezos on the gun system. Figure 1. Equivalent circuit model for a piezoelectric transducer...circuit model for the linear I-V relationships is parallel combination of six stages, each of which is comprised of a series combination of a resistor , DC
Modular thought in the circuit analysis
NASA Astrophysics Data System (ADS)
Wang, Feng
2018-04-01
Applied to solve the problem of modular thought, provides a whole for simplification's method, the complex problems have become of, and the study of circuit is similar to the above problems: the complex connection between components, make the whole circuit topic solution seems to be more complex, and actually components the connection between the have rules to follow, this article mainly tells the story of study on the application of the circuit modular thought. First of all, this paper introduces the definition of two-terminal network and the concept of two-terminal network equivalent conversion, then summarizes the common source resistance hybrid network modular approach, containing controlled source network modular processing method, lists the common module, typical examples analysis.
Electronic Circuit Analysis Language (ECAL)
NASA Astrophysics Data System (ADS)
Chenghang, C.
1983-03-01
The computer aided design technique is an important development in computer applications and it is an important component of computer science. The special language for electronic circuit analysis is the foundation of computer aided design or computer aided circuit analysis (abbreviated as CACD and CACA) of simulated circuits. Electronic circuit analysis language (ECAL) is a comparatively simple and easy to use circuit analysis special language which uses the FORTRAN language to carry out the explanatory executions. It is capable of conducting dc analysis, ac analysis, and transient analysis of a circuit. Futhermore, the results of the dc analysis can be used directly as the initial conditions for the ac and transient analyses.
Radiation damage in MOS integrated circuits, Part 1
NASA Technical Reports Server (NTRS)
Danchenko, V.
1971-01-01
Complementary and p-channel MOS integrated circuits made by four commercial manufacturers were investigated for sensitivity to radiation environment. The circuits were irradiated with 1.5 MeV electrons. The results are given for electrons and for the Co-60 gamma radiation equivalent. The data are presented in terms of shifts in the threshold potentials and changes in transconductances and leakages. Gate biases of -10V, +10V and zero volts were applied to individual MOS units during irradiation. It was found that, in most of circuits of complementary MOS technologies, noticable changes due to radiation appear first as increased leakage in n-channel MOSFETs somewhat before a total integrated dose 10 to the 12th power electrons/sg cm is reached. The inability of p-channel MOSFETs to turn on sets in at about 10 to the 13th power electrons/sq cm. Of the circuits tested, an RCA A-series circuit was the most radiation resistant sample.
High density printed electrical circuit board card connection system
Baumbaugh, Alan E.
1997-01-01
A zero insertion/extraction force printed circuit board card connection system comprises a cam-operated locking mechanism disposed along an edge portion of the printed circuit board. The extrusions along the circuit board mate with an extrusion fixed to the card cage having a plurality of electrical connectors. The card connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned. The card connection system provides a simple solution to the need for a greater number of electrical signal connections.
Problem Solvers: Problem--Light It up! and Solutions--Flags by the Numbers
ERIC Educational Resources Information Center
Hall, Shaun
2009-01-01
A simple circuit is created by the continuous flow of electricity through conductors (copper wires) from a source of electrical energy (batteries). "Completing a circuit" means that electricity flows from the energy source through the circuit and, in the case described in this month's problem, causes the light bulb tolight up. The presence of…
ERIC Educational Resources Information Center
Houghton, Janaye Matteson; Houghton, Robert S.
Today and in the future, critical toolmaking advances will need to be made in the area of circuit design, construction, and implementation. Traditional school curriculum has sidestepped the area of tool design, especially at the elementary level. This publication addresses a calling for a new curriculum direction, based not only on the study of…
Construction, Calibration, and Validation of a Simple Patch-Clamp Amplifier for Physiology Education
ERIC Educational Resources Information Center
Rouzrokh, Ali; Ebrahimi, Soltan Ahmed; Mahmoudian, Massoud
2009-01-01
A modular patch-clamp amplifier was constructed based on the Strickholm design, which was initially published in 1995. Various parts of the amplifier such as the power supply, input circuit, headstage, feedback circuit, output and nulling circuits were redesigned to use recent software advances and fabricated using the common lithographic printed…
Unit: Electric Circuits, Inspection Pack, National Trial Print.
ERIC Educational Resources Information Center
Australian Science Education Project, Toorak, Victoria.
As a part of the unit materials in the series produced by the Australian Science Education Project, this teacher edition is primarily composed of a core relating to simple circuits, a test form, and options. Options are given under the headings: Your Invention; "How Long Does a Call Last?"; One, Two, Three Wires; Parallel Circuits; More…
Evangelista, Luiz Roberto; Lenzi, Ervin Kaminski; Barbero, Giovanni; Macdonald, James Ross
2013-03-21
The response of an electrolytic cell, in the shape of a slab, is analyzed in the framework of the Poisson-Nernst-Planck model in the limit of full dissociation. Two different types of boundary conditions on the electrodes are compared. One type describes the exchange of charges between the volume and the external circuit, in the form originally proposed by Chang and Jaffé and later extended to include specific adsorption, where the surface current density is proportional to the variation of the surface bulk density of ions with respect to the value of equilibrium. The other one describes the surface adsorption, in the limit of Langmuir. We show that in the simple case where the ions dissolved in the insulating liquid are identical in all the aspects, except for the sign of the charge, the two models are equivalent only if the phenomenological parameter entering the boundary condition of the Chang-Jaffé model, κ, is frequency dependent, and related to the adsorption coefficient, k(a), in the form κ = iωτ/(1 + iωτ)k(a), where τ is the desorption time and ω the circular frequency of the applied voltage, as proposed long ago by Macdonald.
Optimal ancilla-free Pauli+V circuits for axial rotations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blass, Andreas; Bocharov, Alex; Gurevich, Yuri
We address the problem of optimal representation of single-qubit rotations in a certain unitary basis consisting of the so-called V gates and Pauli matrices. The V matrices were proposed by Lubotsky, Philips, and Sarnak [Commun. Pure Appl. Math. 40, 401–420 (1987)] as a purely geometric construct in 1987 and recently found applications in quantum computation. They allow for exceptionally simple quantum circuit synthesis algorithms based on quaternionic factorization. We adapt the deterministic-search technique initially proposed by Ross and Selinger to synthesize approximating Pauli+V circuits of optimal depth for single-qubit axial rotations. Our synthesis procedure based on simple SL{sub 2}(ℤ) geometrymore » is almost elementary.« less
Mathematical neuroscience: from neurons to circuits to systems.
Gutkin, Boris; Pinto, David; Ermentrout, Bard
2003-01-01
Applications of mathematics and computational techniques to our understanding of neuronal systems are provided. Reduction of membrane models to simplified canonical models demonstrates how neuronal spike-time statistics follow from simple properties of neurons. Averaging over space allows one to derive a simple model for the whisker barrel circuit and use this to explain and suggest several experiments. Spatio-temporal pattern formation methods are applied to explain the patterns seen in the early stages of drug-induced visual hallucinations.
A Mathematical Model of a Simple Amplifier Using a Ferroelectric Transistor
NASA Technical Reports Server (NTRS)
Sayyah, Rana; Hunt, Mitchell; MacLeod, Todd C.; Ho, Fat D.
2009-01-01
This paper presents a mathematical model characterizing the behavior of a simple amplifier using a FeFET. The model is based on empirical data and incorporates several variables that affect the output, including frequency, load resistance, and gate-to-source voltage. Since the amplifier is the basis of many circuit configurations, a mathematical model that describes the behavior of a FeFET-based amplifier will help in the integration of FeFETs into many other circuits.
Bistability in a complementary metal oxide semiconductor inverter circuit.
Carroll, Thomas L
2005-09-01
Radiofrequency signals can disrupt the operation of low frequency circuits. A digital inverter circuit would seem to be immune to such disruption, because its output state usually jumps abruptly between 0 and 5 V. Nevertheless, when driven with a high frequency signal, the inverter can have two coexisting stable states (which are not at 0 and 5 V). Slow switching between these states (by changing the rf signal) will produce a low frequency signal. I demonstrate the bistability in a circuit experiment and in a simple model of the circuit.
Development of a Self Powered Vehicle Detector
1978-10-01
Low Power RFTelemetry Link, Audio Tone kncoder/Decoder, 9mn’dlrectional Microstrip Antenna, RF Oscillator , RF Transmitter, Battery/ Solar Cell Tests...tuned Colpitts oscillator using a fundamental mode crystal, a reactance modulator (varactor diode), and a collector tank circuit tuned to the second...papers discussing this type of VCXO. The basic Colpitts oscillator equivalent circuit is shown in Figure 29 having a collector tank tuned to the 2nd
NASA Astrophysics Data System (ADS)
Pesin, A.; Pustovoytov, D.; Shveyova, T.; Vafin, R.
2017-12-01
The level of a shear strain and equivalent strain plays a key role in terms of the possibility of using the asymmetric rolling process as a method of severe plastic deformation. Strain mode (pure shear or simple shear) can affect very strongly on the equivalent strain and the grain refinement of the material. This paper presents the results of FEM simulations and comparison of the equivalent strain in the aluminium alloy 5083 processed by a single-pass equal channel angular pressing (simple shear), symmetric rolling (pure shear) and asymmetric rolling (simultaneous pure and simple shear). The nonlinear effect of rolls speed ratio on the deformation characteristics during asymmetric rolling was found. Extremely high equivalent strain up to e=4.2 was reached during a single-pass asymmetric rolling. The influence of the shear strain on the level of equivalent strain is discussed. Finite element analysis of the deformation characteristics, presented in this study, can be used for optimization of the asymmetric rolling process as a method of severe plastic deformation.
NASA Astrophysics Data System (ADS)
Devarakonda, Lalitha; Hu, Tingshu
2014-12-01
This paper presents an algebraic method for parameter identification of Thevenin's equivalent circuit models for batteries under non-zero initial condition. In traditional methods, it was assumed that all capacitor voltages have zero initial conditions at the beginning of each charging/discharging test. This would require a long rest time between two tests, leading to very lengthy tests for a charging/discharging cycle. In this paper, we propose an algebraic method which can extract the circuit parameters together with initial conditions. This would theoretically reduce the rest time to 0 and substantially accelerate the testing cycles.
De-Trending Techniques: Methods for Cleaning Questionable Shock Data
NASA Technical Reports Server (NTRS)
Grillo, Vincent J.
2010-01-01
Not all zero shifted acceleration data can De-trended using this technique. DC shifts, improper AC coupling, Circuit noise/EMI/EMR, Equivalent RC circuit gain response/Circuit saturation(Slew Rate Limited), fixture grounding and wiring losses can all contribute to bad shock data being recorded. Some data that is zero-shifted or exhibit large instantaneous velocity shifts is inherently bad and a retest is warranted. Clean Acceleration-Time history data can be bad upon examining the Velocity & Displacement profiles. Laser Vibrometers provide a high level of accuracy for pyrotechnic shock testing. Engineering judgment and experience will determine the validity of Shock data.
Sensor/amplifier for weak light sources
NASA Technical Reports Server (NTRS)
Desmet, D. J.; Jason, A. J.; Parr, A. C.
1980-01-01
Light sensor/amplifier circuit detects weak light converts it into strong electrical signal in electrically noisy environment. Circuit is relatively simple and uses inexpensive, readily available components. Device is useful in such applications as fire detection and photographic processing.
Modeling electrical response of polymer-coated SAW resonators by equivalent circuit representation.
Kshetrimayum, Roshan; Yadava, R D S; Tandon, R P
2011-07-01
The paper presents an equivalent circuit model of the polymer coated surface acoustic wave (SAW) resonators by combining coupling-of-mode (COM) description of SAW resonators and perturbation calculation of SAW propagation under polymer loading. An expression for the motional load produced by polymer coating is deduced in terms of COM parameters and polymer characteristics. In addition, expressions for the shifts in resonance frequency and attenuation due to polymer loading are obtained. Simulation results are presented for one-port and two-port resonator devices coated with viscoelastic thin polymer film. The influence of polymer film on resonator response is studied with regard to variations in film thickness and shear modulus. The model simplifies understanding of polymer-coated SAW sensors. Copyright © 2010 Elsevier B.V. All rights reserved.
Lithium-ion battery models: a comparative study and a model-based powerline communication
NASA Astrophysics Data System (ADS)
Saidani, Fida; Hutter, Franz X.; Scurtu, Rares-George; Braunwarth, Wolfgang; Burghartz, Joachim N.
2017-09-01
In this work, various Lithium-ion (Li-ion) battery models are evaluated according to their accuracy, complexity and physical interpretability. An initial classification into physical, empirical and abstract models is introduced. Also known as white
, black
and grey
boxes, respectively, the nature and characteristics of these model types are compared. Since the Li-ion battery cell is a thermo-electro-chemical system, the models are either in the thermal or in the electrochemical state-space. Physical models attempt to capture key features of the physical process inside the cell. Empirical models describe the system with empirical parameters offering poor analytical, whereas abstract models provide an alternative representation. In addition, a model selection guideline is proposed based on applications and design requirements. A complex model with a detailed analytical insight is of use for battery designers but impractical for real-time applications and in situ diagnosis. In automotive applications, an abstract model reproducing the battery behavior in an equivalent but more practical form, mainly as an equivalent circuit diagram, is recommended for the purpose of battery management. As a general rule, a trade-off should be reached between the high fidelity and the computational feasibility. Especially if the model is embedded in a real-time monitoring unit such as a microprocessor or a FPGA, the calculation time and memory requirements rise dramatically with a higher number of parameters. Moreover, examples of equivalent circuit models of Lithium-ion batteries are covered. Equivalent circuit topologies are introduced and compared according to the previously introduced criteria. An experimental sequence to model a 20 Ah cell is presented and the results are used for the purposes of powerline communication.
[Design of blood-pressure parameter auto-acquisition circuit].
Chen, Y P; Zhang, D L; Bai, H W; Zhang, D A
2000-02-01
This paper presents the realization and design of a kind of blood-pressure parameter auto-acquisition circuit. The auto-acquisition of blood-pressure parameter controlled by 89C2051 single chip microcomputer is accomplished by collecting and processing the driving signal of LCD. The circuit that is successfully applied in the home unit of telemedicine system has the simple and reliable properties.
Circuits Protect Against Incorrect Power Connections
NASA Technical Reports Server (NTRS)
Delombard, Richard
1992-01-01
Simple circuits prevent application of incorrectly polarized or excessive voltages. Connected temporarily or permanently at power-connecting terminals. Devised to protect electrical and electronic equipment installed in spacecraft and subjected to variety of tests in different facilities prior to installation. Basic concept of protective circuits also applied easily to many kinds of electrical and electronic equipment that must be protected against incorrect power connections.
An equivalent circuit for small atrial trabeculae of frog.
Jakobsson, E; Barr, L; Connor, J A
1975-01-01
An equivalent electrical circuit has been constructed for small atrial trabecula of frog in a double sucrose gap voltage clamp apparatus. The basic strategy in constructing the circuit was to derive the distribution of membrane capacitance and extracellular resistance from the preparation's response to small voltage displacements near the resting condition, when the membrane conductance is presumably quite low. Then standard Hodgkin-Huxley channels were placed in parallel with the capacitance and the results of voltage clamp experiments were simulated. The results suggest that the membranes of the preparation cannot in fact be clamped near the control voltage nor can the ionic currents be measured directly with reasonable accuracy by axon standards. It may or may not be a realizable goal in the future to define the preparation's electrical behavior well enough to permit the ultimate quantitative description of the membrane's specific ion conductances. The result of this paper suggest that if this goal is achieved using the double sucrose gap voltage clamp, it will be by a detailed quantitative accounting for substantial irreducible errors in voltage control, rather than by experimental achievement of good voltage control. PMID:1203441
NASA Astrophysics Data System (ADS)
Zhang, Xi; Lu, Jinling; Yuan, Shifei; Yang, Jun; Zhou, Xuan
2017-03-01
This paper proposes a novel parameter identification method for the lithium-ion (Li-ion) battery equivalent circuit model (ECM) considering the electrochemical properties. An improved pseudo two-dimension (P2D) model is established on basis of partial differential equations (PDEs), since the electrolyte potential is simplified from the nonlinear to linear expression while terminal voltage can be divided into the electrolyte potential, open circuit voltage (OCV), overpotential of electrodes, internal resistance drop, and so on. The model order reduction process is implemented by the simplification of the PDEs using the Laplace transform, inverse Laplace transform, Pade approximation, etc. A unified second order transfer function between cell voltage and current is obtained for the comparability with that of ECM. The final objective is to obtain the relationship between the ECM resistances/capacitances and electrochemical parameters such that in various conditions, ECM precision could be improved regarding integration of battery interior properties for further applications, e.g., SOC estimation. Finally simulation and experimental results prove the correctness and validity of the proposed methodology.
NASA Astrophysics Data System (ADS)
Yamada, Keisuke
2017-01-01
This paper describes passive technique for suppressing vibration in flexible structures using a multi-layered piezoelectric element, an inductor, and a resistor. The objective of using a multi-layered piezoelectric element is to increase its capacitance. A piezoelectric element with a large capacitance value does not require an active electrical circuit to simulate an inductor with a large inductance value. The effect of multi-layering of piezoelectric elements was theoretically analyzed through an equivalent transformation of a multi-layered piezoelectric element into a single-layered piezoelectric element. The governing equations were derived using this equivalent transformation. The effect of the resistances of the inductor and piezoelectric elements were considered because the sum of these resistances may exceed the optimum resistance. The performance of the passive vibration suppression using an LR circuit was compared to that of the method where a resistive circuit is used assuming that the sum of the resistances of the inductor and piezoelectric elements exceeds the optimum resistance. The effectiveness of the proposed method and theoretical analysis was verified through simulations and experiments.
NASA Astrophysics Data System (ADS)
Pivac, Ivan; Šimić, Boris; Barbir, Frano
2017-10-01
Representation of fuel cell processes by equivalent circuit models, involving resistance and capacitance elements representing activation losses on both anode and cathode in series with resistance representing ohmic losses, cannot capture and explain the inductive loop that may show up at low frequencies in Nyquist diagram representation of the electrochemical impedance spectra. In an attempt to explain the cause of the low-frequency inductive loop and correlate it with the processes within the fuel cell electrodes, a novel equivalent circuit model of a Proton Exchange Membrane (PEM) fuel cell has been proposed and experimentally verified here in detail. The model takes into account both the anode and the cathode, and has an additional resonant loop on each side, comprising of a resistance, capacitance and inductance in parallel representing the processes within the catalyst layer. Using these additional circuit elements, more accurate and better fits to experimental impedance data in the wide frequency range at different current densities, cell temperatures, humidity of gases, air flow stoichiometries and backpressures were obtained.
Quantum gates with controlled adiabatic evolutions
NASA Astrophysics Data System (ADS)
Hen, Itay
2015-02-01
We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.
Cable Crosstalk Suppression with Two-Wire Voltage Feedback Method for Resistive Sensor Array
Wu, Jianfeng; He, Shangshang; Li, Jianqing; Song, Aiguo
2016-01-01
Using a long, flexible test cable connected with a one-wire voltage feedback circuit, a resistive tactile sensor in a shared row-column fashion exhibited flexibility in robotic operations but suffered from crosstalk caused by the connected cable due to its wire resistances and its contacted resistances. Firstly, we designed a new non-scanned driving-electrode (VF-NSDE) circuit using two wires for every row line and every column line to reduce the crosstalk caused by the connected cables in the circuit. Then, an equivalent resistance expression of the element being tested (EBT) for the two-wire VF-NSDE circuit was analytically derived. Following this, the one-wire VF-NSDE circuit and the two-wire VF-NSDE circuit were evaluated by simulation experiments. Finally, positive features of the proposed method were verified with the experiments of a two-wire VF-NSDE prototype circuit. The experiment results show that the two-wire VF-NSDE circuit can greatly reduce the crosstalk error caused by the cables in the 2-D networked resistive sensor array. PMID:26907279
Architecture-Dependent Robustness and Bistability in a Class of Genetic Circuits
Zhang, Jiajun; Yuan, Zhanjiang; Li, Han-Xiong; Zhou, Tianshou
2010-01-01
Understanding the relationship between genotype and phenotype is a challenge in systems biology. An interesting yet related issue is why a particular circuit topology is present in a cell when the same function can supposedly be obtained from an alternative architecture. Here we analyzed two topologically equivalent genetic circuits of coupled positive and negative feedback loops, named NAT and ALT circuits, respectively. The computational search for the oscillation volume of the entire biologically reasonable parameter region through large-scale random samplings shows that the NAT circuit exhibits a distinctly larger fraction of the oscillatory region than the ALT circuit. Such a global robustness difference between two circuits is supplemented by analyzing local robustness, including robustness to parameter perturbations and to molecular noise. In addition, detailed dynamical analysis shows that the molecular noise of both circuits can induce transient switching of the different mechanism between a stable steady state and a stable limit cycle. Our investigation on robustness and dynamics through examples provides insights into the relationship between network architecture and its function. PMID:20712986
Transmission line pulse system for avalanche characterization of high power semiconductor devices
NASA Astrophysics Data System (ADS)
Riccio, Michele; Ascione, Giovanni; De Falco, Giuseppe; Maresca, Luca; De Laurentis, Martina; Irace, Andrea; Breglio, Giovanni
2013-05-01
Because of the increasing in power density of electronic devices for medium and high power application, reliabilty of these devices is of great interest. Understanding the avalanche behaviour of a power device has become very important in these last years because it gives an indication of the maximum energy ratings which can be seen as an index of the device ruggedness. A good description of this behaviour is given by the static IV blocking characteristc. In order to avoid self heating, very relevant in high power devices, very short pulses of current have to be used, whose value can change from few milliamps up to tens of amps. The most used method to generate short pulses is the TLP (Transmission Line Pulse) test, which is based on charging the equivalent capacitance of a transmission line to high value of voltage and subsequently discharging it onto a load. This circuit let to obtain very short square pulses but it is mostly used for evaluate the ESD capability of semiconductor and, in this environment, it generates pulses of low amplitude which are not high enough to characterize the avalanche behaviour of high power devices . Advanced TLP circuit able to generate high current are usually very expensive and often suffer of distorption of the output pulse. In this article is proposed a simple, low cost circuit, based on a boosted-TLP configuration, which is capable to produce very square pulses of about one hundreds of nanosecond with amplitude up to some tens of amps. A prototype is implemented which can produce pulses up to 20A of amplitude with 200 ns of duration which can characterize power devices up to 1600V of breakdown voltage. Usage of microcontroller based logic make the circuit very flexible. Results of SPICE simulation are provided, together with experimental results. To prove the effectiveness of the circuit, the I-V blocking characteristics of two commercial devices, namely a 600V PowerMOS and a 1200V Trench-IGBT, are measured at different operating temperature.
Display-And-Alarm Circuit For Accelerometer
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Compact accelerometer assembly consists of commercial accelerometer retrofit with display-and-alarm circuit. Provides simple means for technician attending machine to monitor vibrations. Also simpifies automatic safety shutdown by providing local alarm or shutdown signal when vibration exceeds preset level.
Simple Electronic Analog of a Josephson Junction.
ERIC Educational Resources Information Center
Henry, R. W.; And Others
1981-01-01
Demonstrates that an electronic Josephson junction analog constructed from three integrated circuits plus an external reference oscillator can exhibit many of the circuit phenomena of a real Josephson junction. Includes computer and other applications of the analog. (Author/SK)
Tunnel diode circuit used as nanosecond-range time marker
NASA Technical Reports Server (NTRS)
Larsen, R. N.; Shear, E. B.
1968-01-01
Simple tunnel diode time marker circuit determines the time at which an event occurs in a scintillation crystal. It is capable of triggering at voltages as low as the noise level of a 10-stage PM tube.
Apparatus for Teaching Physics
ERIC Educational Resources Information Center
Gottlieb, Herbert H., Ed.
1977-01-01
Describes an electronic digital counter, a speed-of-light experiment using a television, a simple out-of-circuit method for determining if a transistor is made of silicon or germanium, and the use of dry cells to power TTL integrated circuits. (MLH)
Teaching Oscillations with a Small Computer.
ERIC Educational Resources Information Center
Calvo, J. L.; And Others
1983-01-01
Describes a simple, inexpensive electronic circuit used as a small analog computer in an experimental approach to the study of oscillations. Includes circuit diagram and an example of the method using steps followed by students studying underdamped oscillatory motion. (JN)
Lou, Guofeng; Yu, Xinjie; Lu, Shihua
2017-06-15
This paper describes the modeling of magnetoelectric (ME) effects for disk-type Terfenol-D (Tb 0.3 Dy 0.7 Fe 1.92 )/PZT (Pb(Zr,Ti)O₃) laminate composite at low frequency by combining the advantages of the static elastic model and the equivalent circuit model, aiming at providing a guidance for the design and fabrication of the sensors based on magnetoelectric laminate composite. Considering that the strains of the magnetostrictive and piezoelectric layers are not equal in actual operating due to the epoxy resin adhesive bonding condition, the magnetostrictive and piezoelectric layers were first modeled through the equation of motion separately, and then coupled together with a new interface coupling factor k c , which physically reflects the strain transfer between the phases. Furthermore, a theoretical expression containing k c for the transverse ME voltage coefficient α v and the optimum thickness ratio n optim to which the maximum ME voltage coefficient corresponds were derived from the modified equivalent circuit of ME laminate, where the interface coupling factor acted as an ideal transformer. To explore the influence of mechanical load on the interface coupling factor k c , two sets of weights, i.e., 100 g and 500 g, were placed on the top of the ME laminates with the same thickness ratio n in the sample fabrication. A total of 22 T-T mode disk-type ME laminate samples with different configurations were fabricated. The interface coupling factors determined from the measured α v and the DC bias magnetic field H bias were 0.11 for 500 g pre-mechanical load and 0.08 for 100 g pre-mechanical load. Furthermore, the measured optimum thickness ratios were 0.61 for k c = 0.11 and 0.56 for k c = 0.08. Both the theoretical ME voltage coefficient α v and optimum thickness ratio n optim containing k c agreed well with the measured data, verifying the reasonability and correctness for the introduction of k c in the modified equivalent circuit model.
Lou, Guofeng; Yu, Xinjie; Lu, Shihua
2017-01-01
This paper describes the modeling of magnetoelectric (ME) effects for disk-type Terfenol-D (Tb0.3Dy0.7Fe1.92)/PZT (Pb(Zr,Ti)O3) laminate composite at low frequency by combining the advantages of the static elastic model and the equivalent circuit model, aiming at providing a guidance for the design and fabrication of the sensors based on magnetoelectric laminate composite. Considering that the strains of the magnetostrictive and piezoelectric layers are not equal in actual operating due to the epoxy resin adhesive bonding condition, the magnetostrictive and piezoelectric layers were first modeled through the equation of motion separately, and then coupled together with a new interface coupling factor kc, which physically reflects the strain transfer between the phases. Furthermore, a theoretical expression containing kc for the transverse ME voltage coefficient αv and the optimum thickness ratio noptim to which the maximum ME voltage coefficient corresponds were derived from the modified equivalent circuit of ME laminate, where the interface coupling factor acted as an ideal transformer. To explore the influence of mechanical load on the interface coupling factor kc, two sets of weights, i.e., 100 g and 500 g, were placed on the top of the ME laminates with the same thickness ratio n in the sample fabrication. A total of 22 T-T mode disk-type ME laminate samples with different configurations were fabricated. The interface coupling factors determined from the measured αv and the DC bias magnetic field Hbias were 0.11 for 500 g pre-mechanical load and 0.08 for 100 g pre-mechanical load. Furthermore, the measured optimum thickness ratios were 0.61 for kc = 0.11 and 0.56 for kc = 0.08. Both the theoretical ME voltage coefficient αv and optimum thickness ratio noptim containing kc agreed well with the measured data, verifying the reasonability and correctness for the introduction of kc in the modified equivalent circuit model. PMID:28617352
Students conception and perception of simple electrical circuit
NASA Astrophysics Data System (ADS)
Setyani, ND; Suparmi; Sarwanto; Handhika, J.
2017-11-01
This research aims to describe the profile of the students’ conception and perception on the simple electrical circuit. The results of this research suppose to be used as a reference by teachers to use learning models or strategies to improve understanding the physics concept. The research method used is descriptive qualitative. Research subjects are the students of physics education program, Universitas Sebelas Maret, Surakarta, Indonesia (49 students). The results showed that students have alternative conceptions. Their conceptions are (1) a high-voltage wire has an electric current and can cause electric shock, (2) the potential difference and the value of resistance used in a circuit is influenced by electric current, (3) the value of resistance of a lamp is proportional to the filament thickness, (4) the amount of electric current that coming out from the positive pole battery is the same for all type of circuit, in series or parallel (battery is constant current sources), (5) the current at any resistor in the series circuit is influenced by the resistor used, (6) the resistor consume the current through it. This incorrect conception can cause misconceptions.
High density electrical card connector system
Haggard, J. Eric; Trotter, Garrett R.
2000-01-01
An electrical circuit board card connection system is disclosed which comprises a wedge-operated locking mechanism disposed along an edge portion of the printed circuit board. An extrusion along the edge of the circuit board mates with an extrusion fixed to the card cage having a plurality of electrical connectors. The connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned and the wedge inserted. The disclosed connection system is a simple solution to the need for a greater number of electrical signal connections.
Circuit Methods for VLF Antenna Couplers. [for use in Loran or Omega receiver systems
NASA Technical Reports Server (NTRS)
Burhans, R. W.
1977-01-01
The limitations of different E-field antenna coupler or preamplifier circuits are presented. All circuits were evaluated using actual Loran or Omega signals. Electric field whip or wire antennas are the simplest types which can be used for reception of VLF signals in the 10 to 100 kHz range. JFET or MOSFET transistors provide impedance transformation and some voltage gain in simple circuits where the power for operating the preamplifier uses the same coaxial cable that feeds the signal back to the receiver. The circuit techniques provide useful alternative methods for Loran-Omega receiver system designers.
NASA Astrophysics Data System (ADS)
Tang, Li-Ming; Chang, Ben-Kang; Liu, Tie-Bing; Wu, Min; Ling, Gang
2002-12-01
To design a new type of circuit for measuring frequency & duty cycle of stimulated bioelectrical signal for the project of 'the map of neuron-threshold in human brain and its clinical application'. This circuit was designed according to the character of stimulated bioelectrical signals. It was tested and improved and then used in the neuron -threshold stimulator. The circuit was found to be very accurate for measuring frequency and the error for measuring duty cycle was below 0.2%. This circuit is well-designed, simple, easy to use, and can be applied in many systems.
Systematic use of closed-circuit television in a general practice teaching unit
Irwin, W. George; Perrott, Jon S.
1981-01-01
We describe use of closed-circuit television in teaching general practice consulting skills in a new central teaching unit of a department of general practice. We explain how the system works, present a simple analysis of student performance in communicating with real and simulated patients and discuss the value of teaching from the consultation with closed-circuit television and video. PMID:7328539
Simple constant-current-regulated power supply
NASA Technical Reports Server (NTRS)
Priebe, D. H. E.; Sturman, J. C.
1977-01-01
Supply incorporates soft-start circuit that slowly ramps current up to set point at turn-on. Supply consists of full-wave rectifier, regulating pass transistor, current feedback circuit, and quad single-supply operational-amplifier circuit providing control. Technique is applicable to any system requiring constant dc current, such as vacuum tube equipment, heaters, or battery charges; it has been used to supply constant current for instrument calibration.
ERIC Educational Resources Information Center
Downs, Nathan; Parisi, Alfio
2010-01-01
A method is described for building a cost effective digital circuit capable of monitoring the solar radiation incident upon a remote solar cell. The circuit is built in two sections, the first, digitises the analogue voltage produced by the solar cell at a remote location and transmits the received signal to the second receiver circuit which…
ERIC Educational Resources Information Center
Kallunki, Veera
2013-01-01
Pupils' qualitative understanding of DC-circuit phenomena is reported to be weak. In numerous research reports lists of problems in understanding the functioning of simple DC-circuits have been presented. So-called mental model surveys have uncovered difficulties in different age groups, and in different phases of instruction. In this study, the…
Sammoura, Firas; Smyth, Katherine; Kim, Sang-Gook
2013-09-01
An electric circuit model for a clamped circular bimorph piezoelectric micromachined ultrasonic transducer (pMUT) was developed for the first time. The pMUT consisted of two piezoelectric layers sandwiched between three thin electrodes. The top and bottom electrodes were separated into central and annular electrodes by a small gap. While the middle electrode was grounded, the central and annular electrodes were biased with two independent voltage sources. The strain mismatch between the piezoelectric layers caused the plate to vibrate and transmit a pressure wave, whereas the received echo generated electric charges resulting from plate deformation. The clamped pMUT plate was separated into a circular and an annular plate, and the respective electromechanical transformation matrices were derived. The force and velocity vectors were properly selected using Hamilton's principle and the necessary boundary conditions were invoked. The electromechanical transformation matrix for the clamped circular pMUT was deduced using simple matrix manipulation techniques. The pMUT performance under three biasing schemes was elaborated: 1) central electrode only, 2) central and annular electrodes with voltages of the same magnitude and polarity, and 3) central and annular electrodes with voltages of the same magnitude and opposite polarity. The circuit parameters of the pMUT were extracted for each biasing scheme, including the transformer ratio, the clamped electric impedance, and the open-circuit mechanical impedance. Each pMUT scheme was characterized under different acoustic loadings using the theoretically developed model, which was verified with finite element modeling (FEM) simulation. The electrode size was optimized to maximize the electromechanical transformer ratio. As such, the developed model could provide more insight into the design, optimization, and characterization of pMUTs and allow for performance comparison with their cMUT counterparts.
NASA Technical Reports Server (NTRS)
Haynes, Davy A.; Miller, David S.; Klein, John R.; Louie, Check M.
1988-01-01
A method by which a simple equivalent faired body can be designed to replace a more complex body with flowing inlets has been demonstrated for supersonic flow. An analytically defined, geometrically simple faired inlet forebody has been designed using a linear potential code to generate flow perturbations equivalent to those produced by a much more complex forebody with inlets. An equivalent forebody wind-tunnel model was fabricated and a test was conducted in NASA Langley Research Center's Unitary Plan Wind Tunnel. The test Mach number range was 1.60 to 2.16 for angles of attack of -4 to 16 deg. Test results indicate that, for the purposes considered here, the equivalent forebody simulates the original flowfield disturbances to an acceptable degree of accuracy.
Characteristics of Radio-Frequency Circuits Utilizing Ferroelectric Capacitors
NASA Technical Reports Server (NTRS)
Eskridge, Michael; Gui, Xiao; MacLeod, Todd; Ho, Fat D.
2011-01-01
Ferroelectric capacitors, most commonly used in memory circuits and variable components, were studied in simple analog radio-frequency circuits such as the RLC resonator and Colpitts oscillator. The goal was to characterize the RF circuits in terms of frequency of oscillation, gain, etc, using ferroelectric capacitors. Frequencies of oscillation of both circuits were measured and studied a more accurate resonant frequency can be obtained using the ferroelectric capacitors. Many experiments were conducted and data collected. A model to simulate the experimental results will be developed. Discrepancies in gain and frequency in these RF circuits when conventional capacitors are replaced with ferroelectric ones were studied. These results will enable circuit designers to anticipate the effects of using ferroelectric components in their radio- frequency applications.
Dielectric relaxation in AC powder electroluminescent devices
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Su, Haibin; Tan, Chuan Seng; Wong, Terence Kin Shun; Teo, Ronnie Jin Wah
2017-01-01
The dielectric properties of AC powder electroluminescent devices were measured and analyzed using complex impedance spectroscopy to determine the relaxation processes occurring within the devices. The relaxation processes identified were ascribed to the electrode polarization caused by ion accumulation at the electrode/resin interfaces, the Maxwell-Wagner-Sillars effects at the (ZnS or BaTiO3) particle/resin interfaces, and the dipolar reorientation of polymer chains in the resin matrix. Each relaxation process was represented by its corresponding equivalent circuit component. Space charge polarization at the electrodes were represented by a Warburg element, a resistor, and a constant phase element. The resin matrix, ZnS/resin and BaTiO3/resin interfaces could each be modeled by a resistor and a capacitor in parallel. The simulated equivalent circuits for three different printed structures showed good fitting with their experimental impedance results.
NASA Astrophysics Data System (ADS)
Bellver, Fernando Gimeno; Garratón, Manuel Caravaca; Soto Meca, Antonio; López, Juan Antonio Vera; Guirao, Juan L. G.; Fernández-Martínez, Manuel
In this paper, we explore the chaotic behavior of resistively and capacitively shunted Josephson junctions via the so-called Network Simulation Method. Such a numerical approach establishes a formal equivalence among physical transport processes and electrical networks, and hence, it can be applied to efficiently deal with a wide range of differential systems. The generality underlying that electrical equivalence allows to apply the circuit theory to several scientific and technological problems. In this work, the Fast Fourier Transform has been applied for chaos detection purposes and the calculations have been carried out in PSpice, an electrical circuit software. Overall, it holds that such a numerical approach leads to quickly computationally solve Josephson differential models. An empirical application regarding the study of the Josephson model completes the paper.
NASA Astrophysics Data System (ADS)
Cojocaru, Ludmila; Uchida, Satoshi; Jayaweera, Piyankarage V. V.; Kaneko, Shoji; Toyoshima, Yasutake; Nakazaki, Jotaro; Kubo, Takaya; Segawa, Hiroshi
2017-02-01
Physical modeling of hysteretic behavior in current-voltage (I-V) curves of perovskite solar cells (PSCs) is necessary for further improving their power conversion efficiencies (PCEs). The reduction of hysteresis in inverted planar structure PSCs (p-PSCs) has been achieved by using a [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) layer. In the cases, the opposite trend of the I-V hysteresis has been observed where the forward scan shows slightly higher efficiency than the reverse scan. In this paper, an equivalent circuit model with inductance is proposed. This model consists of a Schottky diode involving a parasitic inductance focusing PCBM/Al(Ca) interface and accurately represents the opposite trend of the I-V hysteresis of the p-PSC with an inverted structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, K.D.
1961-06-01
A method which gives quantitative data is presented which allows for characterization of the grid blackout effect and is applicable to calculation of circuit degradation. Data are presented for several tube types which show developed bias and discharge time constants as a function of pulse input conditions. Blackout can seriously change the performance of any vacuum tube circuit which utilizes the tube in positive grid operation. The effects on CW oscillators and UHF mixers are discussed. An equivalent circuit which simulates some portions of the blackout phenomenon is presented and used to calculate effective capacitance and resistance associated with themore » grid surface. (auth)« less
An X-Band SOS Resistive Gate-Insulator-Semiconductor /RIS/ switch
NASA Astrophysics Data System (ADS)
Kwok, S. P.
1980-02-01
The new X-Band Resistive Gate-Insulator-Semiconductor (RIS) switch has been fabricated on silicon-on-sapphire, and its equivalent circuit model characterized. An RIS SPST switch with 20-dB on/off isolation, 1.2-dB insertion loss, and power handling capacity in excess of 20-W peak has been achieved at X band. The device switching time is on the order of 600 ns, and it requires negligible control holding current in both on and off states. The device is compatible with monolithic integrated-circuit technology and thus is suitable for integration into low-cost monolithic phase shifters or other microwave integrated circuits.
Simulation of 100-300 GHz solid-state harmonic sources
NASA Technical Reports Server (NTRS)
Zybura, Michael F.; Jones, J. Robert; Jones, Stephen H.; Tait, Gregory B.
1995-01-01
Accurate and efficient simulations of the large-signal time-dependent characteristics of second-harmonic Transferred Electron Oscillators (TEO's) and Heterostructure Barrier Varactor (HBV) frequency triplers have been obtained. This is accomplished by using a novel and efficient harmonic-balance circuit analysis technique which facilitates the integration of physics-based hydrodynamic device simulators. The integrated hydrodynamic device/harmonic-balance circuit simulators allow TEO and HBV circuits to be co-designed from both a device and a circuit point of view. Comparisons have been made with published experimental data for both TEO's and HBV's. For TEO's, excellent correlation has been obtained at 140 GHz and 188 GHz in second-harmonic operation. Excellent correlation has also been obtained for HBV frequency triplers operating near 200 GHz. For HBV's, both a lumped quasi-static equivalent circuit model and the hydrodynamic device simulator have been linked to the harmonic-balance circuit simulator. This comparison illustrates the importance of representing active devices with physics-based numerical device models rather than analytical device models.
Hasan, Mehedi; Hall, Trevor
2015-11-01
A photonic integrated circuit architecture for implementing frequency upconversion is proposed. The circuit consists of a 1×2 splitter and 2×1 combiner interconnected by two stages of differentially driven phase modulators having 2×2 multimode interference coupler between the stages. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. The intrinsic conversion efficiency of the proposed design is improved by 6 dB over the alternative functionally equivalent circuit based on dual parallel Mach-Zehnder modulators known in the prior art. A two-tone analysis is presented to study the linearity of the proposed circuit, and a comparison is provided over the alternative. The proposed circuit is suitable for integration in any platform that offers linear electro-optic phase modulation such as LiNbO(3), silicon, III-V, or hybrid technology.
Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.
Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J
2015-06-01
A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.
Simple tunnel diode circuit for accurate zero crossing timing
NASA Technical Reports Server (NTRS)
Metz, A. J.
1969-01-01
Tunnel diode circuit, capable of timing the zero crossing point of bipolar pulses, provides effective design for a fast crossing detector. It combines a nonlinear load line with the diode to detect the zero crossing of a wide range of input waveshapes.
Design of Compact Wilkinson Power Divider with Harmonic Suppression using T-Shaped Resonators
NASA Astrophysics Data System (ADS)
Siahkamari, Hesam; Yasoubi, Zahra; Jahanbakhshi, Maryam; Mousavi, Seyed Mohammad Hadi; Siahkamari, Payam; Nouri, Mohammad Ehsan; Azami, Sajad; Azadi, Rasoul
2018-04-01
A novel scheme of a shrunken Wilkinson power divider with harmonic suppression, using two identical resonators in the conventional Wilkinson power divider is designed. Moreover, the LC equivalent circuit and its relevant formulas are provided. To substantiate the functionality and soundness of design, a microstrip implementation of this design operating at 1 GHz with the second to eighth harmonic suppression, is developed. The proposed circuit is relatively smaller than the conventional circuit, (roughly 55% of the conventional circuit). Simulation and measurement results for the proposed scheme, which are highly consistent with one another, indicate a good insertion loss about 3.1 dB, input return loss of 20 dB and isolation of 20 dB, while sustaining high-power handling capability over the Wilkinson power divider.
ERIC Educational Resources Information Center
Physics Education, 1982
1982-01-01
Describes: (1) an apparatus which provides a simple method for measuring Stefan's constant; (2) a simple phase shifting circuit; (3) a radioactive decay computer program (for ZX81); and (4) phase difference between transformer voltages. (Author/JN)
Obermaier, Michael; Bandarenka, Aliaksandr S; Lohri-Tymozhynsky, Cyrill
2018-03-21
Electrochemical impedance spectroscopy (EIS) is an indispensable tool for non-destructive operando characterization of Polymer Electrolyte Fuel Cells (PEFCs). However, in order to interpret the PEFC's impedance response and understand the phenomena revealed by EIS, numerous semi-empirical or purely empirical models are used. In this work, a relatively simple model for PEFC cathode catalyst layers in absence of oxygen has been developed, where all the equivalent circuit parameters have an entire physical meaning. It is based on: (i) experimental quantification of the catalyst layer pore radii, (ii) application of De Levie's analytical formula to calculate the response of a single pore, (iii) approximating the ionomer distribution within every pore, (iv) accounting for the specific adsorption of sulfonate groups and (v) accounting for a small H 2 crossover through ~15 μm ionomer membranes. The derived model has effectively only 6 independent fitting parameters and each of them has clear physical meaning. It was used to investigate the cathode catalyst layer and the double layer capacitance at the interface between the ionomer/membrane and Pt-electrocatalyst. The model has demonstrated excellent results in fitting and interpretation of the impedance data under different relative humidities. A simple script enabling fitting of impedance data is provided as supporting information.
A Simple and Accurate Analysis of Conductivity Loss in Millimeter-Wave Helical Slow-Wave Structures
NASA Astrophysics Data System (ADS)
Datta, S. K.; Kumar, Lalit; Basu, B. N.
2009-04-01
Electromagnetic field analysis of a helix slow-wave structure was carried out and a closed form expression was derived for the inductance per unit length of the transmission-line equivalent circuit of the structure, taking into account the actual helix tape dimensions and surface current on the helix over the actual metallic area of the tape. The expression of the inductance per unit length, thus obtained, was used for estimating the increment in the inductance per unit length caused due to penetration of the magnetic flux into the conducting surfaces following Wheeler’s incremental inductance rule, which was subsequently interpreted for the attenuation constant of the propagating structure. The analysis was computationally simple and accurate, and accrues the accuracy of 3D electromagnetic analysis by allowing the use of dispersion characteristics obtainable from any standard electromagnetic modeling. The approach was benchmarked against measurement for two practical structures, and excellent agreement was observed. The analysis was subsequently applied to demonstrate the effects of conductivity on the attenuation constant of a typical broadband millimeter-wave helical slow-wave structure with respect to helix materials and copper plating on the helix, surface finish of the helix, dielectric loading effect and effect of high temperature operation - a comparative study of various such aspects are covered.
Kilic, Mustafa Sabri; Bazant, Martin Z; Ajdari, Armand
2007-02-01
In situations involving large potentials or surface charges, the Poisson-Boltzman (PB) equation has shortcomings because it neglects ion-ion interactions and steric effects. This has been widely recognized by the electrochemistry community, leading to the development of various alternative models resulting in different sets "modified PB equations," which have had at least qualitative success in predicting equilibrium ion distributions. On the other hand, the literature is scarce in terms of descriptions of concentration dynamics in these regimes. Here, adapting strategies developed to modify the PB equation, we propose a simple modification of the widely used Poisson-Nernst-Planck (PNP) equations for ionic transport, which at least qualitatively accounts for steric effects. We analyze numerical solutions of these modified PNP equations on the model problem of the charging of a simple electrolyte cell, and compare the outcome to that of the standard PNP equations. Finally, we repeat the asymptotic analysis of Bazant, Thornton, and Ajdari [Phys. Rev. E 70, 021506 (2004)] for this new system of equations to further document the interest and limits of validity of the simpler equivalent electrical circuit models introduced in Part I [Kilic, Bazant, and Ajdari, Phys. Rev. E 75, 021502 (2007)] for such problems.
Assessment of Systematic Measurement Errors for Acoustic Travel-Time Tomography of the Atmosphere
2013-01-01
measurements include assess- ment of the time delays in electronic circuits and mechanical hardware (e.g., drivers and microphones) of a tomography array ...hardware and electronic circuits of the tomography array and errors in synchronization of the transmitted and recorded signals. For example, if...coordinates can be as large as 30 cm. These errors are equivalent to the systematic errors in the travel times of 0.9 ms. Third, loudspeakers which are used
Copper circuit patterning on polymer using selective surface modification and electroless plating
NASA Astrophysics Data System (ADS)
Park, Sang Jin; Ko, Tae-Jun; Yoon, Juil; Moon, Myoung-Woon; Oh, Kyu Hwan; Han, Jun Hyun
2017-02-01
We have examined a potential new and simple method for patterning a copper circuit on PET substrate by copper electroless plating, without the pretreatment steps (i.e., sensitization and activation) for electroless plating as well as the etching processes of conventional circuit patterning. A patterned mask coated with a catalyst material, Ag, for the reduction of Cu ions, is placed on a PET substrate. Subsequent oxygen plasma treatment of the PET substrate covered with the mask promotes the selective generation of anisotropic pillar- or hair-like nanostructures coated with co-deposited nanoparticles of the catalyst material on PET. After oxygen plasma treatment, a Cu circuit is well formed just by dipping the plasma-treated PET into a Cu electroless plating solution. By increasing the oxygen gas pressure in the chamber, the height of the nanostructures increases and the Ag catalyst particles are coated on not only the top but also the side surfaces of the nanostructures. Strong mechanical interlocking between the Cu circuit and PET substrate is produced by the large surface area of the nanostructures, and enhances peel strength. Results indicate this new simple two step (plasma surface modification and pretreatment-free electroless plating) method can be used to produce a flexible Cu circuit with good adhesion.
Simple Chaotic Flow with Circle and Square Equilibrium
NASA Astrophysics Data System (ADS)
Gotthans, Tomas; Sprott, Julien Clinton; Petrzela, Jiri
Simple systems of third-order autonomous nonlinear differential equations can exhibit chaotic behavior. In this paper, we present a new class of chaotic flow with a square-shaped equilibrium. This unique property has apparently not yet been described. Such a system belongs to a newly introduced category of chaotic systems with hidden attractors that are interesting and important in engineering applications. The mathematical model is accompanied by an electrical circuit implementation, demonstrating structural stability of the strange attractor. The circuit is simulated with PSpice, constructed, and analyzed (measured).
Reconfigurable liquid metal circuits by Laplace pressure shaping
NASA Astrophysics Data System (ADS)
Cumby, Brad L.; Hayes, Gerard J.; Dickey, Michael D.; Justice, Ryan S.; Tabor, Christopher E.; Heikenfeld, Jason C.
2012-10-01
We report reconfigurable circuits formed by liquid metal shaping with <10 pounds per square inch (psi) Laplace and vacuum pressures. Laplace pressure drives liquid metals into microreplicated trenches, and upon release of vacuum, the liquid metal dewets into droplets that are compacted to 10-100× less area than when in the channel. Experimental validation includes measurements of actuation speeds exceeding 30 cm/s, simple erasable resistive networks, and switchable 4.5 GHz antennas. Such capability may be of value for next generation of simple electronic switches, tunable antennas, adaptive reflectors, and switchable metamaterials.
Benchmarking gate-based quantum computers
NASA Astrophysics Data System (ADS)
Michielsen, Kristel; Nocon, Madita; Willsch, Dennis; Jin, Fengping; Lippert, Thomas; De Raedt, Hans
2017-11-01
With the advent of public access to small gate-based quantum processors, it becomes necessary to develop a benchmarking methodology such that independent researchers can validate the operation of these processors. We explore the usefulness of a number of simple quantum circuits as benchmarks for gate-based quantum computing devices and show that circuits performing identity operations are very simple, scalable and sensitive to gate errors and are therefore very well suited for this task. We illustrate the procedure by presenting benchmark results for the IBM Quantum Experience, a cloud-based platform for gate-based quantum computing.
Modeling Hidden Circuits: An Authentic Research Experience in One Lab Period
NASA Astrophysics Data System (ADS)
Moore, J. Christopher; Rubbo, Louis J.
2016-10-01
Two wires exit a black box that has three exposed light bulbs connected together in an unknown configuration. The task for students is to determine the circuit configuration without opening the box. In the activity described in this paper, we navigate students through the process of making models, developing and conducting experiments that can support or falsify models, and confronting ways of distinguishing between two different models that make similar predictions. We also describe a twist that forces students to confront new phenomena, requiring revision of their mental model of electric circuits. This activity is designed to mirror the practice of science by actual scientists and expose students to the "messy" side of science, where our simple explanations of reality often require expansion and/or revision based on new evidence. The purpose of this paper is to present a simple classroom activity within the context of electric circuits that supports students as they learn to test hypotheses and refine and revise models based on evidence.
2009-02-12
equivalent to usual printing or typescript . Can read either representations of familiar formulaic verbal exchanges or simple language containing only...read simple, authentic written material in a form equivalent to usual printing or typescript on subjects within a familiar context. Able to read with
2012-11-01
that mobile application developers should reconsider implementing garbled circuits due to their extreme resource usage, and instead rely upon our equivalently secure and significantly more efficient alternative.
29 CFR 1915.56 - Arc welding and cutting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or other equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable... generation of an arc, sparks or heat at any point shall cause rejection of the structure as a ground circuit...
29 CFR 1915.56 - Arc welding and cutting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... or other equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable... generation of an arc, sparks or heat at any point shall cause rejection of the structure as a ground circuit...
29 CFR 1915.56 - Arc welding and cutting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... or other equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable... generation of an arc, sparks or heat at any point shall cause rejection of the structure as a ground circuit...
29 CFR 1915.56 - Arc welding and cutting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or other equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable... generation of an arc, sparks or heat at any point shall cause rejection of the structure as a ground circuit...
NASA Astrophysics Data System (ADS)
Xu, Shengzhi; Chu, Ian; Zhao, Gengshen; Wang, Qingzhang
2008-03-01
When proceed photovoltaic power system design, engineer needs prepared model of PV cells to evaluate system response, capability performance, and stability, the DC model is not enough, but an accuracy AC model plays a big role. This paper talks first about the AC model of PV cells, and DC model is also introduced in simple. There is a PV controller example explaining the steps to do system simulation in this paper. Two equivalent circuit models are implemented with mixed-signal language verilog-a, one hardware language easy to use and having good speed and high accuracy. Both of two models include solar cell arrays, one buck switched mode DC-DC converter, and the maximum power point tracking algorithm. The difference between them is that Solar cell in one of two models is with ac small signal parameter, another is without. The simulation result is given in comparison. This paper's work shows that ac parameter plays large role in switch-mode PV power system, especially when the switch frequency is higher than 100kHz.
NASA Astrophysics Data System (ADS)
Ho, Ching S.; Liou, Juin J.; Georgiopoulos, Michael; Christodoulou, Christos G.
1994-03-01
This paper presents an analog circuit design and implementation for an adaptive resonance theory neural network architecture called the augmented ART1 neural network (AART1-NN). Practical monolithic operational amplifiers (Op-Amps) LM741 and LM318 are selected to implement the circuit, and a simple compensation scheme is developed to adjust the Op-Amp electrical characteristics to meet the design requirement. A 7-node prototype circuit has been designed and verified using the Pspice circuit simulator run on a Sun workstation. Results simulated from the AART1-NN circuit using the LM741, LM318, and ideal Op-Amps are presented and compared.
Analog Binaural Circuits for Detecting and Locating Leaks
NASA Technical Reports Server (NTRS)
Hartley, Frank T.
2003-01-01
Very-large-scale integrated (VLSI) analog binaural signal-processing circuits have been proposed for use in detecting and locating leaks that emit noise in the ultrasonic frequency range. These circuits would be designed to function even in the presence of intense lower-frequency background noise that could include sounds associated with flow and pumping. Each of the proposed circuits would include the approximate electronic equivalent of a right and a left cochlea plus correlator circuits. A pair of transducers (microphones or accelerometers), corresponding to right and left ears, would provide the inputs to their respective cochleas from different locations (e.g., from different positions along a pipe). The correlation circuits plus some additional external circuits would determine the difference between the times of arrival of a common leak sound at the two transducers. Then the distance along the pipe from either transducer to the leak could be estimated from the time difference and the speed of sound along the pipe. If three or more pairs of transducers and cochlear/correlator circuits were available and could suitably be positioned, it should be possible to locate a leak in three dimensions by use of sound propagating through air.
Negative inductance circuits for metamaterial bandwidth enhancement
NASA Astrophysics Data System (ADS)
Avignon-Meseldzija, Emilie; Lepetit, Thomas; Ferreira, Pietro Maris; Boust, Fabrice
2017-12-01
Passive metamaterials have yet to be translated into applications on a large scale due in large part to their limited bandwidth. To overcome this limitation many authors have suggested coupling metamaterials to non-Foster circuits. However, up to now, the number of convincing demonstrations based on non-Foster metamaterials has been very limited. This paper intends to clarify why progress has been so slow, i.e., the fundamental difficulty in making a truly broadband and efficient non-Foster metamaterial. To this end, we consider two families of metamaterials, namely Artificial Magnetic Media and Artificial Magnetic Conductors. In both cases, it turns out that bandwidth enhancement requires negative inductance with almost zero resistance. To estimate bandwidth enhancement with actual non-Foster circuits, we consider two classes of such circuits, namely Linvill and gyrator. The issue of stability being critical, both metamaterial families are studied with equivalent circuits that include advanced models of these non-Foster circuits. Conclusions are different for Artificial Magnetic Media coupled to Linvill circuits and Artificial Magnetic Conductors coupled to gyrator circuits. In the first case, requirements for bandwidth enhancement and stability are very hard to meet simultaneously whereas, in the second case, an adjustment of the transistor gain does significantly increase bandwidth.
A simple calculation method for determination of equivalent square field.
Shafiei, Seyed Ali; Hasanzadeh, Hadi; Shafiei, Seyed Ahmad
2012-04-01
Determination of the equivalent square fields for rectangular and shielded fields is of great importance in radiotherapy centers and treatment planning software. This is accomplished using standard tables and empirical formulas. The goal of this paper is to present a formula based on analysis of scatter reduction due to inverse square law to obtain equivalent field. Tables are published by different agencies such as ICRU (International Commission on Radiation Units and measurements), which are based on experimental data; but there exist mathematical formulas that yield the equivalent square field of an irregular rectangular field which are used extensively in computation techniques for dose determination. These processes lead to some complicated and time-consuming formulas for which the current study was designed. In this work, considering the portion of scattered radiation in absorbed dose at a point of measurement, a numerical formula was obtained based on which a simple formula was developed to calculate equivalent square field. Using polar coordinate and inverse square law will lead to a simple formula for calculation of equivalent field. The presented method is an analytical approach based on which one can estimate the equivalent square field of a rectangular field and may be used for a shielded field or an off-axis point. Besides, one can calculate equivalent field of rectangular field with the concept of decreased scatter radiation with inverse square law with a good approximation. This method may be useful in computing Percentage Depth Dose and Tissue-Phantom Ratio which are extensively used in treatment planning.
Simple circuit monitors "third wire" in ac lines
NASA Technical Reports Server (NTRS)
Kojima, T. T.; Stuck, D. E.
1980-01-01
Device detects interruption of ground connection in three-wire electrical equipment and shuts off ac power to prevent shock hazard. Silicon-controlled rectifiers detect floating ground, and deenergize optoelectric relays thereby breaking power connections. Circuit could be incorporated into hand tools, appliances, and other electrical equipment.
GaAs optoelectronic neuron arrays
NASA Technical Reports Server (NTRS)
Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri
1993-01-01
A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.
NASA Astrophysics Data System (ADS)
Cho, Inhee; Huh, Keon; Kwak, Rhokyun; Lee, Hyomin; Kim, Sung Jae
2016-11-01
The first direct chronopotentiometric measurement was provided to distinguish the potential difference through the extended space charge (ESC) layer which is formed with the electrical double layer (EDL) near a perm-selective membrane. From this experimental result, the linear relationship was obtained between the resistance of ESC and the applied current density. Furthermore, we observed the step-wise distributions of relaxation time at the limiting current regime, confirming the existence of ESC capacitance other than EDL's. In addition, we proposed the equivalent electrokinetic circuit model inside ion concentration polarization (ICP) layer under rigorous consideration of EDL, ESC and electro-convection (EC). In order to elucidate the voltage configuration in chronopotentiometric measurement, the EC component was considered as the "dependent voltage source" which is serially connected to the ESC layer. This model successfully described the charging behavior of the ESC layer with or without EC, where both cases determined each relaxation time, respectively. Finally, we quantitatively verified their values utilizing the Poisson-Nernst-Planck equations. Therefore, this unified circuit model would provide a key insight of ICP system and potential energy-efficient applications.
NASA Astrophysics Data System (ADS)
Miotk, R.; Jasiński, M.; Mizeraczyk, J.
2018-03-01
This paper presents the partial electromagnetic optimisation of a 2.45 GHz cylindrical-type microwave plasma source (MPS) operated at atmospheric pressure. The presented device is designed for hydrogen production from liquid fuels, e.g. hydrocarbons and alcohols. Due to industrial requirements regarding low costs for hydrogen produced in this way, previous testing indicated that improvements were required to the electromagnetic performance of the MPS. The MPS has a duct discontinuity region, which is a result of the cylindrical structure located within the device. The microwave plasma is generated in this discontinuity region. Rigorous analysis of the region requires solving a set of Maxwell equations, which is burdensome for complicated structures. Furthermore, the presence of the microwave plasma increases the complexity of this task. To avoid calculating the complex Maxwell equations, we suggest the use of the equivalent circuit method. This work is based upon the idea of using a Weissfloch circuit to characterize the area of the duct discontinuity and the plasma. The resulting MPS equivalent circuit allowed the calculation of a capacitive metallic diaphragm, through which an improvement in the electromagnetic performance of the plasma source was obtained.
Unified equivalent circuit model for carbon nanotube-based nanocomposites.
Zhao, Chaoyang; Yuan, Weifeng; Zhao, Yangzhou; Hu, Ning; Gu, Bin; Liu, Haidong; Alamusi
2018-07-27
Carbon nanotubes form a complex network in nanocomposites. In the network, the configuration of the nanotubes is various. A carbon nanotube may be curled or straight, and it may be parallel or crossed to another. As a result, carbon nanotube-based composites exhibit integrated characteristics of inductor, capacitor and resistor. In this work, it is hypothesised that carbon nanotube-based composites all adhere to a RLC interior circuit. To verify the hypothesis, three different composites, viz multi-walled carbon nanotube/polyvinylidene fluoride (MWCNT/PVDF), multi-walled carbon nanotube/epoxy (MWCNT/EP), multi-walled carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) were fabricated and tested. The resistances and the dielectric loss tangent (tanδ) of the materials were measured in direct and alternating currents. The measurement shows that the value of tanδ is highly affected by the volume fraction of MWCNT in the composites. The experimental results prove that the proposed RLC equivalent circuit model can fully describe the electrical properties of the MWCNT network in nanocomposites. The RLC model provides a new route to detect the inductance and capacitance of carbon nanotubes. Moreover, the model also indicates that the carbon nanotube-based composite films may be used to develop wireless strain sensors.
Structure theorems and the dynamics of nitrogen catabolite repression in yeast
Boczko, Erik M.; Cooper, Terrance G.; Gedeon, Tomas; Mischaikow, Konstantin; Murdock, Deborah G.; Pratap, Siddharth; Wells, K. Sam
2005-01-01
By using current biological understanding, a conceptually simple, but mathematically complex, model is proposed for the dynamics of the gene circuit responsible for regulating nitrogen catabolite repression (NCR) in yeast. A variety of mathematical “structure” theorems are described that allow one to determine the asymptotic dynamics of complicated systems under very weak hypotheses. It is shown that these theorems apply to several subcircuits of the full NCR circuit, most importantly to the URE2–GLN3 subcircuit that is independent of the other constituents but governs the switching behavior of the full NCR circuit under changes in nitrogen source. Under hypotheses that are fully consistent with biological data, it is proven that the dynamics of this subcircuit is simple periodic behavior in synchrony with the cell cycle. Although the current mathematical structure theorems do not apply to the full NCR circuit, extensive simulations suggest that the dynamics is constrained in much the same way as that of the URE2–GLN3 subcircuit. This finding leads to the proposal that mathematicians study genetic circuits to find new geometries for which structure theorems may exist. PMID:15814615
A Physics-Based Heterojunction Bipolar Transistor Model for Integrated Circuit Simulation
1993-12-01
Laverghetta, Practical Microwaves, IN, Howard W. Sams & Co., 1984. [56] C. R . Selvakumar , "A New Minority Carrier Lifetime Model for Heavily Doped GaAs...transistor common-emitter output conductance (S). gm Small-signal transconductance (S). r Reflection coefficient of a transmission line. ’Y Emitter...material and geometry parameters to equivalent circuit element values. Typically, the first step in 6 C RC Re + VWc- +B B ,a W’ COE ’IIc I R E Figure 1.7
Hardware implementation of Lorenz circuit systems for secure chaotic communication applications.
Chen, Hsin-Chieh; Liau, Ben-Yi; Hou, Yi-You
2013-02-18
This paper presents the synchronization between the master and slave Lorenz chaotic systems by slide mode controller (SMC)-based technique. A proportional-integral (PI) switching surface is proposed to simplify the task of assigning the performance of the closed-loop error system in sliding mode. Then, extending the concept of equivalent control and using some basic electronic components, a secure communication system is constructed. Experimental results show the feasibility of synchronizing two Lorenz circuits via the proposed SMC.
NASA Astrophysics Data System (ADS)
Ravikiran, Y. T.; Vijaya Kumari, S. C.
2013-06-01
To innovate the properties of Polypyrrole/Titanium dioxide (PPy/TiO2) nanocomposite further, it has been synthesized by chemical polymerization technique. The nanostructure and monoclinic phase of the prepared composite have been confirmed by simulating the X-ray diffraction pattern (XRD). Also, complex plane impedance plot of the composite has been simulated to find equivalent resistance capacitance circuit (RC circuit) and numerical values of R and C have been predicted.
Equivalent circuit of radio frequency-plasma with the transformer model
NASA Astrophysics Data System (ADS)
Nishida, K.; Mochizuki, S.; Ohta, M.; Yasumoto, M.; Lettry, J.; Mattei, S.; Hatayama, A.
2014-02-01
LINAC4 H- source is radio frequency (RF) driven type source. In the RF system, it is required to match the load impedance, which includes H- source, to that of final amplifier. We model RF plasma inside the H- source as circuit elements using transformer model so that characteristics of the load impedance become calculable. It has been shown that the modeling based on the transformer model works well to predict the resistance and inductance of the plasma.
Choi, Kyung Min; Lee, Seok Jae; Choi, Jung Hoon; Park, Tae Jung; Park, Jong Wan; Shin, Weon Ho; Kang, Jeung Ku
2010-12-07
A facile route to fabricate a protein-immobilized network pattern circuit for rapid and highly sensitive diagnosis was developed via the evaporation directed impromptu patterning method and selective avian influenza virus (AIV) immobilization. The response to the 10 fg mL(-1) anti-AI antibody demonstrates that this easy and simple circuit has about 1000 times higher sensitivity compared to those of conventional approaches.
New Concept Firefighting Agent Delivery System
1992-05-01
timer circuit . The time to rupture could be determined by the interactive computer associated with the kazincher system based on range-to-target and...windage effects. The timer circuit considered was a simple resistance capacitance (RC) timing network wi:h a set rate of discharge. The capacito, would...circut -to the canister timing circuit would be separated at launch and could initir.te the timing sequence. A "g" switch could aiso be used to
47 CFR 2.1047 - Measurements required: Modulation characteristics.
Code of Federal Regulations, 2013 CFR
2013-10-01
... equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a...
47 CFR 2.1047 - Measurements required: Modulation characteristics.
Code of Federal Regulations, 2014 CFR
2014-10-01
... equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a...
Theoretical and simulation analysis of piezoelectric liquid resistance captor filled with pipeline
NASA Astrophysics Data System (ADS)
Zheng, Li; Zhigang, Yang; Junwu, Kan; Lisheng; Bo, Yan; Dan, Lu
2018-03-01
This paper designs a kind of Piezoelectric liquid resistance capture energy device, by using the superposition theory of the sheet deformation, the calculation model of the displacement curve of the circular piezoelectric vibrator and the power generation capacity under the concentrated load is established. The results show that the radius ratio, thickness ratio and Young’s modulus of the circular piezoelectric vibrator have greater influence on the power generation capacity. When the material of piezoelectric oscillator is determined, the best radius ratio and thickness ratio make the power generation capacity the largest. Excessive or small radius ratio and thickness ratio will reduce the generating capacity and even generate zero power. In addition, the electromechanical equivalent model is established. Equivalent analysis is made by changing the circuit impedance. The results are consistent with the theoretical simulation results, indicating that the established circuit model can truly reflect the characteristics of the theoretical model.
Two multichannel integrated circuits for neural recording and signal processing.
Obeid, Iyad; Morizio, James C; Moxon, Karen A; Nicolelis, Miguel A L; Wolf, Patrick D
2003-02-01
We have developed, manufactured, and tested two analog CMOS integrated circuit "neurochips" for recording from arrays of densely packed neural electrodes. Device A is a 16-channel buffer consisting of parallel noninverting amplifiers with a gain of 2 V/V. Device B is a 16-channel two-stage analog signal processor with differential amplification and high-pass filtering. It features selectable gains of 250 and 500 V/V as well as reference channel selection. The resulting amplifiers on Device A had a mean gain of 1.99 V/V with an equivalent input noise of 10 microV(rms). Those on Device B had mean gains of 53.4 and 47.4 dB with a high-pass filter pole at 211 Hz and an equivalent input noise of 4.4 microV(rms). Both devices were tested in vivo with electrode arrays implanted in the somatosensory cortex.
Transversal Clifford gates on folded surface codes
Moussa, Jonathan E.
2016-10-12
Surface and color codes are two forms of topological quantum error correction in two spatial dimensions with complementary properties. Surface codes have lower-depth error detection circuits and well-developed decoders to interpret and correct errors, while color codes have transversal Clifford gates and better code efficiency in the number of physical qubits needed to achieve a given code distance. A formal equivalence exists between color codes and folded surface codes, but it does not guarantee the transferability of any of these favorable properties. However, the equivalence does imply the existence of constant-depth circuit implementations of logical Clifford gates on folded surfacemore » codes. We achieve and improve this result by constructing two families of folded surface codes with transversal Clifford gates. This construction is presented generally for qudits of any dimension. Lastly, the specific application of these codes to universal quantum computation based on qubit fusion is also discussed.« less
Parasitic Parameters Extraction for InP DHBT Based on EM Method and Validation up to H-Band
NASA Astrophysics Data System (ADS)
Li, Oupeng; Zhang, Yong; Wang, Lei; Xu, Ruimin; Cheng, Wei; Wang, Yuan; Lu, Haiyan
2017-05-01
This paper presents a small-signal model for InGaAs/InP double heterojunction bipolar transistor (DHBT). Parasitic parameters of access via and electrode finger are extracted by 3-D electromagnetic (EM) simulation. By analyzing the equivalent circuit of seven special structures and using the EM simulation results, the parasitic parameters are extracted systematically. Compared with multi-port s-parameter EM model, the equivalent circuit model has clear physical intension and avoids the complex internal ports setting. The model is validated on a 0.5 × 7 μm2 InP DHBT up to 325 GHz. The model provides a good fitting result between measured and simulated multi-bias s-parameters in full band. At last, an H-band amplifier is designed and fabricated for further verification. The measured amplifier performance is highly agreed with the model prediction, which indicates the model has good accuracy in submillimeterwave band.
Transient stability enhancement of electric power generating systems by 120-degree phase rotation
Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.
1982-01-01
A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.
Modeling the magnetoelectric effect in laminated composites using Hamilton’s principle
NASA Astrophysics Data System (ADS)
Zhang, Shengyao; Zhang, Ru; Jiang, Jiqing
2018-01-01
Mathematical modeling of the magnetoelectric (ME) effect has been established for some rectangular and disk laminate structures. However, these methods are difficult in other cases, particularly for complex structures. In this work, a new method for the analysis of the ME effect is proposed using a generalized Hamilton’s principle, which is conveniently applicable to various laminate structures. As an example, the performance of the rectangular ME laminated composite is analyzed and the equivalent circuit model for the laminate is obtained directly from the analysis. The experimental data is also obtained to compare with the theoretical calculations and to validate the new method. Compared with Dong’s method, the new method is more accurate and convenient. In particular, the equivalent circuit for the rectangular laminated composite can be obtained more easily by the proposed method as it does not require the complex treatment used in Dong’s method.
NASA Astrophysics Data System (ADS)
Šály, V.; Perný, M.; Janíček, F.; Huran, J.; Mikolášek, M.; Packa, J.
2017-04-01
Progressive smart photovoltaic technologies including heterostructures a-SiC/c-Si with ITO antireflection film are one of the prospective replacements of conventional photovoltaic silicon technology. Our paper is focused on the investigation of heterostructures a-SiC/c-Si provided with a layer of ITO (indium oxide/tin oxide 90/10 wt.%) which acts as a passivating and antireflection coating. Prepared photovoltaic cell structure was investigated at various temperatures and the influence of temperature on its operation was searched. The investigation of the dynamic properties of heterojunction PV cells was carried out using impedance spectroscopy. The equivalent AC circuit which approximates the measured impedance data was proposed. Assessment of the influence of the temperature on the operation of prepared heterostructure was carried out by analysis of the temperature dependence of AC equivalent circuit elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz
This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variablesmore » that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.« less
Bias-dependent hybrid PKI empirical-neural model of microwave FETs
NASA Astrophysics Data System (ADS)
Marinković, Zlatica; Pronić-Rančić, Olivera; Marković, Vera
2011-10-01
Empirical models of microwave transistors based on an equivalent circuit are valid for only one bias point. Bias-dependent analysis requires repeated extractions of the model parameters for each bias point. In order to make model bias-dependent, a new hybrid empirical-neural model of microwave field-effect transistors is proposed in this article. The model is a combination of an equivalent circuit model including noise developed for one bias point and two prior knowledge input artificial neural networks (PKI ANNs) aimed at introducing bias dependency of scattering (S) and noise parameters, respectively. The prior knowledge of the proposed ANNs involves the values of the S- and noise parameters obtained by the empirical model. The proposed hybrid model is valid in the whole range of bias conditions. Moreover, the proposed model provides better accuracy than the empirical model, which is illustrated by an appropriate modelling example of a pseudomorphic high-electron mobility transistor device.
Dielectric monitoring of carbon nanotube network formation in curing thermosetting nanocomposites
NASA Astrophysics Data System (ADS)
Battisti, A.; Skordos, A. A.; Partridge, I. K.
2009-08-01
This paper focuses on monitoring of carbon nanotube (CNT) network development during the cure of unsaturated polyester nanocomposites by means of electrical impedance spectroscopy. A phenomenological model of the dielectric response is developed using equivalent circuit analysis. The model comprises two parallel RC elements connected in series, each of them giving rise to a semicircular arc in impedance complex plane plots. An established inverse modelling methodology is utilized for the estimation of the parameters of the corresponding equivalent circuit. This allows a quantification of the evolution of two separate processes corresponding to the two parallel RC elements. The high frequency process, which is attributed to CNT aggregates, shows a monotonic decrease in characteristic time during the cure. In contrast, the low frequency process, which corresponds to inter-aggregate phenomena, shows a more complex behaviour explained by the interplay between conductive network development and the cross-linking of the polymer.
Laser induced non-monotonic degradation in short-circuit current of triple-junction solar cells
NASA Astrophysics Data System (ADS)
Dou, Peng-Cheng; Feng, Guo-Bin; Zhang, Jian-Min; Song, Ming-Ying; Zhang, Zhen; Li, Yun-Peng; Shi, Yu-Bin
2018-06-01
In order to study the continuous wave (CW) laser radiation effects and mechanism of GaInP/GaAs/Ge triple-junction solar cells (TJSCs), 1-on-1 mode irradiation experiments were carried out. It was found that the post-irradiation short circuit current (ISC) of the TJSCs initially decreased and then increased with increasing of irradiation laser power intensity. To explain this phenomenon, a theoretical model had been established and then verified by post-damage tests and equivalent circuit simulations. Conclusion was drawn that laser induced alterations in the surface reflection and shunt resistance were the main causes for the observed non-monotonic decrease in the ISC of the TJSCs.
Transient response to three-phase faults on a wind turbine generator. Ph.D. Thesis - Toledo Univ.
NASA Technical Reports Server (NTRS)
Gilbert, L. J.
1978-01-01
In order to obtain a measure of its responses to short circuits a large horizontal axis wind turbine generator was modeled and its performance was simulated on a digital computer. Simulation of short circuit faults on the synchronous alternator of a wind turbine generator, without resort to the classical assumptions generally made for that analysis, indicates that maximum clearing times for the system tied to an infinite bus are longer than the typical clearing times for equivalent capacity conventional machines. Also, maximum clearing times are independent of tower shadow and wind shear. Variation of circuit conditions produce the modifications in the transient response predicted by analysis.
NASA Astrophysics Data System (ADS)
Sutherland, Herbert J.
1988-08-01
Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to equivalent gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system.
NASA Astrophysics Data System (ADS)
Luxa, Andreas
The necessary conditions in switching system and vacuum circuit breaker for the occurrence of multiple re-ignitions and accompanying effects were examined. The shape of the occurring voltages was determined in relationship to other types of overvoltage. A phenomenological model of the arc, based on an extension of the Mayr equation for arcs was used with the simulation program NETOMAC for the switching transients. Factors which affect the arc parameters were analyzed. The results were statistically verified by 3000 three-phase switching tests on 3 standard vacuum circuit breakers under realistic systems conditions; the occurring overvoltage level was measured. Dimensioning criteria for motor simulation circuits in power plants were formulated on the basis of a theoretical equivalence analysis and experimental studies. The simulation model allows a sufficiently correct estimation of all effects.
Investigation and Modeling of Capacitive Human Body Communication.
Zhu, Xiao-Qi; Guo, Yong-Xin; Wu, Wen
2017-04-01
This paper presents a systematic investigation of the capacitive human body communication (HBC). The measurement of HBC channels is performed using a novel battery-powered system to eliminate the effects of baluns, cables and instruments. To verify the measured results, a numerical model incorporating the entire HBC system is established. Besides, it is demonstrated that both the impedance and path gain bandwidths of HBC channels is affected by the electrode configuration. Based on the analysis of the simulated electric field distribution, an equivalent circuit model is proposed and the circuit parameters are extracted using the finite element method. The transmission capability along the human body is also studied. The simulated results using the numerical and circuit models coincide very well with the measurement, which demonstrates that the proposed circuit model can effectively interpret the operation mechanism of the capacitive HBC.
NASA Astrophysics Data System (ADS)
Nadaud, Kevin; Morini, François; Dahiya, Abhishek S.; Justeau, Camille; Boubenia, Sarah; Rajeev, Kiron P.; Alquier, Daniel; Poulin-Vittrant, Guylaine
2018-02-01
The accurate and precise measurements of voltage and current output generated by a nanogenerator (NG) are crucial to design the rectifying/harvesting circuit and to evaluate correctly the amount of energy provided by a NG. High internal impedance of the NGs (several MΩ) is the main limiting factor for designing circuits to measure the open circuit voltage. In this paper, we present the influence of the characterization circuit used to measure the generated voltage of piezoelectric NGs. The proposed circuit consists of a differential amplifier which permits us to measure the voltage provided by the NG without applying any parasitic bias to it. The proposed circuit is compared to a commercial electrometer and a homemade buffer circuit based on a voltage follower circuit to show its interest. For the proposed double buffer circuit, no asymmetric behavior has been noticed contrary to the measurements made using a simple buffer circuit and a Keithley electrometer. The proposed double buffer circuit is thus suitable to measure the NG voltage in a transparent way, as an ideal voltage probe should do.
An evaluation of corrosion protection by two epoxy primers on 2219-T87 and 7075-T73 aluminum
NASA Technical Reports Server (NTRS)
Mendrek, M. J.
1992-01-01
A comparison of the corrosion protection provided by two amine epoxy primers was made using salt fog, alternate immersion, and total immersion as exposure media. The study is the result of a request to use an unqualified low volatile organic carbon (VOC) primer (AKZO 463-6-78) in place of the current primer (AKZO 463-6-3) because environmental regulations have eliminated use of the current primer in many states. Primed, scribed samples of 2219-T87 and 7075-T73 aluminum were exposed to 5-percent NaCl salt fog and 3.5-percent NaCl alternate immersion for a period of 90 days. In addition, electrode samples immersed in 3.5-percent NaCl were tested using electrochemical impedance spectroscopy (EIS). The EG&G model 368 ac impedance measurement system was used to monitor changing properties of AKZO 463-6-78 and AKZO 463-6-3 primed 2219-T87 aluminum for a period of 30 days. The response of the corroding system of a frequency scan can be modeled in terms of an equivalent circuit consisting of resistors and capacitors in a specific arrangement. Each resistor/capacitor combination represents physical processes taking place within the electrolyte, at the electrolyte/primer surface, within the coating, and at the coating/substrate surface. Values for the resistors and capacitors are assigned following a nonlinear least squares fit of the data to the equivalent circuit. Changes in the values of equivalent circuit parameters during the 30-day exposure allow assessment of the time to and mechanism of coating breakdown.
Finite element simulation of piezoelectric transformers.
Tsuchiya, T; Kagawa, Y; Wakatsuki, N; Okamura, H
2001-07-01
Piezoelectric transformers are nothing but ultrasonic resonators with two pairs of electrodes provided on the surface of a piezoelectric substrate in which electrical energy is carried in the mechanical form. The input and output electrodes are arranged to provide the impedance transformation, which results in the voltage transformation. As they are operated at a resonance, the electrical equivalent circuit approach has traditionally been developed in a rather empirical way and has been used for analysis and design. The present paper deals with the analysis of the piezoelectric transformers based on the three-dimensional finite element modelling. The PIEZO3D code that we have developed is modified to include the external loading conditions. The finite element approach is now available for a wide variety of the electrical boundary conditions. The equivalent circuit of lumped parameters can also be derived from the finite element method (FEM) solution if required. The simulation of the present transformers is made for the low intensity operation and compared with the experimental results. Demonstration is made for basic Rosen-type transformers in which the longitudinal mode of a plate plays an important role; in which the equivalent circuit of lumped constants has been used. However, there are many modes of vibration associated with the plate, the effect of which cannot always be ignored. In the experiment, the double resonances are sometimes observed in the vicinity of the operating frequency. The simulation demonstrates that this is due to the coupling of the longitudinal mode with the flexural mode. Thus, the simulation provides an invaluable guideline to the transformer design.
NASA Astrophysics Data System (ADS)
Guo, Mengchao; Zhou, Kan; Wang, Xiaokun; Zhuang, Haiyan; Tang, Dongming; Zhang, Baoshan; Yang, Yi
2018-04-01
In this paper, the impact of coupling between unit cells on the performance of linear-to-circular polarization conversion metamaterial with half transmission and half reflection is analyzed by changing the distance between the unit cells. An equivalent electrical circuit model is then built to explain it based on the analysis. The simulated results show that, when the distance between the unit cells is 23 mm, this metamaterial converts half of the incident linearly-polarized wave into reflected left-hand circularly-polarized wave and converts the other half of it into transmitted left-hand circularly-polarized wave at 4.4 GHz; when the distance is 28 mm, this metamaterial reflects all of the incident linearly-polarized wave at 4.4 GHz; and when the distance is 32 mm, this metamaterial converts half of the incident linearly-polarized wave into reflected right-hand circularly-polarized wave and converts the other half of it into transmitted right-hand circularly-polarized wave at 4.4 GHz. The tunability is realized successfully. The analysis shows that the changes of coupling between unit cells lead to the changes of performance of this metamaterial. The coupling between the unit cells is then considered when building the equivalent electrical circuit model. The built equivalent electrical circuit model can be used to perfectly explain the simulated results, which confirms the validity of it. It can also give help to the design of tunable polarization conversion metamaterials.
NASA Astrophysics Data System (ADS)
Siouane, Saima; Jovanović, Slaviša; Poure, Philippe
2017-01-01
The Seebeck effect is used in thermoelectric generators (TEGs) to supply electronic circuits by converting the waste thermal into electrical energy. This generated electrical power is directly proportional to the temperature difference between the TEG module's hot and cold sides. Depending on the applications, TEGs can be used either under constant temperature gradient between heat reservoirs or constant heat flow conditions. Moreover, the generated electrical power of a TEG depends not only on these operating conditions, but also on the contact thermal resistance. The influence of the contact thermal resistance on the generated electrical power have already been extensively reported in the literature. However, as reported in Park et al. (Energy Convers Manag 86:233, 2014) and Montecucco and Knox (IEEE Trans Power Electron 30:828, 2015), while designing TEG-powered circuit and systems, a TEG module is mostly modeled with a Thévenin equivalent circuit whose resistance is constant and voltage proportional to the temperature gradient applied to the TEG's terminals. This widely used simplified electrical TEG model is inaccurate and not suitable under constant heat flow conditions or when the contact thermal resistance is considered. Moreover, it does not provide realistic behaviour corresponding to the physical phenomena taking place in a TEG. Therefore, from the circuit designer's point of view, faithful and fully electrical TEG models under different operating conditions are needed. Such models are mainly necessary to design and evaluate the power conditioning electronic stages and the maximum power point tracking algorithms of a TEG power supply. In this study, these fully electrical models with the contact thermal resistance taken into account are presented and the analytical expressions of the Thévenin equivalent circuit parameters are provided.
Micromachined integrated quantum circuit containing a superconducting qubit
NASA Astrophysics Data System (ADS)
Brecht, Teresa; Chu, Yiwen; Axline, Christopher; Pfaff, Wolfgang; Blumoff, Jacob; Chou, Kevin; Krayzman, Lev; Frunzio, Luigi; Schoelkopf, Robert
We demonstrate a functional multilayer microwave integrated quantum circuit (MMIQC). This novel hardware architecture combines the high coherence and isolation of three-dimensional structures with the advantages of integrated circuits made with lithographic techniques. We present fabrication and measurement of a two-cavity/one-qubit prototype, including a transmon coupled to a three-dimensional microwave cavity micromachined in a silicon wafer. It comprises a simple MMIQC with competitive lifetimes and the ability to perform circuit QED operations in the strong dispersive regime. Furthermore, the design and fabrication techniques that we have developed are extensible to more complex quantum information processing devices.
A simple circuit to deliver bubbling CPAP.
Kaur, Charanjit; Sema, Akatoli; Beri, Rajbir S; Puliyel, Jacob M
2008-04-01
Nasal continuous positive airway pressure (CPAP), especially bubbling CPAP, is known to reduce the need for more invasive ventilation. We here describe a circuit that can deliver bubbling CPAP in resource poor settings. We describe how the oxygen concentration can be altered from 98% to 21% oxygen using this system. Addition of a humidifier in the circuit has the effect of reducing the oxygen concentration by 1 to 5%. The cost of putting together the system is approximately Rs 5000.
Design, Construction and Testing of a Prototype Holonomic Autonomous Vehicle
2007-12-01
Circuit A simple 100 kHz crystal oscillator tank circuit using an LM741 opamp was fed to a LM393N comparator . The circuit’s schematic is provided...research in areas that support development of unmanned ground and air battlefield vehicles. Little attention has been paid to applying robotics to...motion control using a single board computer, a pulse width modulation (PWM) and optical isolation circuit, and a low-cost inertial measurement unit
1991-11-08
only simple bounds on delays but also relate the delays in linear inequalities so that tradeoffs are apparent. We model circuits as communicating...set of linear inequalities constraining the variables. These relations provide synthesis tools with information about tradeoffs between circuit delays...available to express the original circuit as a graph of elementary gates and then cover the graph’s fanout-free trees with collections of three-input
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr
The anticipated increase in the number of plug-in electric vehicles (EV) will put additional strain on electrical distribution circuits. Many control schemes have been proposed to control EV charging. Here, we develop control algorithms based on randomized EV charging start times and simple one-way broadcast communication allowing for a time delay between communication events. Using arguments from queuing theory and statistical analysis, we seek to maximize the utilization of excess distribution circuit capacity while keeping the probability of a circuit overload negligible.
Parthasarathy, S; Manikandakumar, K
2007-12-01
We consider a simple nonautonomous dissipative nonlinear electronic circuit consisting of Chua's diode as the only nonlinear element, which exhibit a typical period doubling bifurcation route to chaotic oscillations. In this paper, we show that the effect of additional periodic pulses in this Murali-Lakshmanan-Chua (MLC) circuit results in novel multiple-period-doubling bifurcation behavior, prior to the onset of chaos, by using both numerical and some experimental simulations. In the chaotic regime, this circuit exhibits a rich variety of dynamical behavior including enlarged periodic windows, attractor crises, distinctly modified bifurcation structures, and so on. For certain types of periodic pulses, this circuit also admits transcritical bifurcations preceding the onset of multiple-period-doubling bifurcations. We have characterized our numerical simulation results by using Lyapunov exponents, correlation dimension, and power spectrum, which are found to be in good agreement with the experimental observations. Further controlling and synchronization of chaos in this periodically pulsed MLC circuit have been achieved by using suitable methods. We have also shown that the chaotic attractor becomes more complicated and their corresponding return maps are no longer simple for large n-periodic pulses. The above study also indicates that one can generate any desired n-period-doubling bifurcation behavior by applying n-periodic pulses to a chaotic system.
Suh, Sungho; Itoh, Shinya; Aoyama, Satoshi; Kawahito, Shoji
2010-01-01
For low-noise complementary metal-oxide-semiconductor (CMOS) image sensors, the reduction of pixel source follower noises is becoming very important. Column-parallel high-gain readout circuits are useful for low-noise CMOS image sensors. This paper presents column-parallel high-gain signal readout circuits, correlated multiple sampling (CMS) circuits and their noise reduction effects. In the CMS, the gain of the noise cancelling is controlled by the number of samplings. It has a similar effect to that of an amplified CDS for the thermal noise but is a little more effective for 1/f and RTS noises. Two types of the CMS with simple integration and folding integration are proposed. In the folding integration, the output signal swing is suppressed by a negative feedback using a comparator and one-bit D-to-A converter. The CMS circuit using the folding integration technique allows to realize a very low-noise level while maintaining a wide dynamic range. The noise reduction effects of their circuits have been investigated with a noise analysis and an implementation of a 1Mpixel pinned photodiode CMOS image sensor. Using 16 samplings, dynamic range of 59.4 dB and noise level of 1.9 e(-) for the simple integration CMS and 75 dB and 2.2 e(-) for the folding integration CMS, respectively, are obtained.
A simple calculation method for determination of equivalent square field
Shafiei, Seyed Ali; Hasanzadeh, Hadi; Shafiei, Seyed Ahmad
2012-01-01
Determination of the equivalent square fields for rectangular and shielded fields is of great importance in radiotherapy centers and treatment planning software. This is accomplished using standard tables and empirical formulas. The goal of this paper is to present a formula based on analysis of scatter reduction due to inverse square law to obtain equivalent field. Tables are published by different agencies such as ICRU (International Commission on Radiation Units and measurements), which are based on experimental data; but there exist mathematical formulas that yield the equivalent square field of an irregular rectangular field which are used extensively in computation techniques for dose determination. These processes lead to some complicated and time-consuming formulas for which the current study was designed. In this work, considering the portion of scattered radiation in absorbed dose at a point of measurement, a numerical formula was obtained based on which a simple formula was developed to calculate equivalent square field. Using polar coordinate and inverse square law will lead to a simple formula for calculation of equivalent field. The presented method is an analytical approach based on which one can estimate the equivalent square field of a rectangular field and may be used for a shielded field or an off-axis point. Besides, one can calculate equivalent field of rectangular field with the concept of decreased scatter radiation with inverse square law with a good approximation. This method may be useful in computing Percentage Depth Dose and Tissue-Phantom Ratio which are extensively used in treatment planning. PMID:22557801
Printed Graphene Derivative Circuits as Passive Electrical Filters
Sinar, Dogan
2018-01-01
The objective of this study is to inkjet print resistor-capacitor (RC) low pass electrical filters, using a novel water-based cellulose graphene ink, and compare the voltage-frequency and transient behavior to equivalent circuits constructed from discrete passive components. The synthesized non-toxic graphene-carboxymethyl cellulose (G-CMC) ink is deposited on mechanically flexible polyimide substrates using a customized printer that dispenses functionalized aqueous solutions. The design of the printed first-order and second-order low-pass RC filters incorporate resistive traces and interdigitated capacitors. Low pass filter characteristics, such as time constant, cut-off frequency and roll-off rate, are determined for comparative analysis. Experiments demonstrate that for low frequency applications (<100 kHz) the printed graphene derivative circuits performed as well as the circuits constructed from discrete resistors and capacitors for both low pass filter and RC integrator applications. The impact of mechanical stress due to bending on the electrical performance of the flexible printed circuits is also investigated. PMID:29473890
Printed Graphene Derivative Circuits as Passive Electrical Filters.
Sinar, Dogan; Knopf, George K
2018-02-23
The objective of this study is to inkjet print resistor-capacitor ( RC ) low pass electrical filters, using a novel water-based cellulose graphene ink, and compare the voltage-frequency and transient behavior to equivalent circuits constructed from discrete passive components. The synthesized non-toxic graphene-carboxymethyl cellulose (G-CMC) ink is deposited on mechanically flexible polyimide substrates using a customized printer that dispenses functionalized aqueous solutions. The design of the printed first-order and second-order low-pass RC filters incorporate resistive traces and interdigitated capacitors. Low pass filter characteristics, such as time constant, cut-off frequency and roll-off rate, are determined for comparative analysis. Experiments demonstrate that for low frequency applications (<100 kHz) the printed graphene derivative circuits performed as well as the circuits constructed from discrete resistors and capacitors for both low pass filter and RC integrator applications. The impact of mechanical stress due to bending on the electrical performance of the flexible printed circuits is also investigated.
Active shunt capacitance cancelling oscillator circuit
Wessendorf, Kurt O.
2003-09-23
An oscillator circuit is disclosed which can be used to produce oscillation using a piezoelectric crystal, with a frequency of oscillation being largely independent of any shunt capacitance associated with the crystal (i.e. due to electrodes on the surfaces of the crystal and due to packaging and wiring for the crystal). The oscillator circuit is based on a tuned gain stage which operates the crystal at a frequency, f, near a series resonance frequency, f.sub.S. The oscillator circuit further includes a compensation circuit that supplies all the ac current flow through the shunt resistance associated with the crystal so that this ac current need not be supplied by the tuned gain stage. The compensation circuit uses a current mirror to provide the ac current flow based on the current flow through a reference capacitor that is equivalent to the shunt capacitance associated with the crystal. The oscillator circuit has applications for driving piezoelectric crystals for sensing of viscous, fluid or solid media by detecting a change in the frequency of oscillation of the crystal and a resonator loss which occur from contact of an exposed surface of the crystal by the viscous, fluid or solid media.
Efficient Multiplexer FPGA Block Structures Based on G4FETs
NASA Technical Reports Server (NTRS)
Vatan, Farrokh; Fijany, Amir
2009-01-01
Generic structures have been conceived for multiplexer blocks to be implemented in field-programmable gate arrays (FPGAs) based on four-gate field-effect transistors (G(sup 4)FETs). This concept is a contribution to the continuing development of digital logic circuits based on G4FETs and serves as a further demonstration that logic circuits based on G(sup 4)FETs could be more efficient (in the sense that they could contain fewer transistors), relative to functionally equivalent logic circuits based on conventional transistors. Results in this line of development at earlier stages were summarized in two previous NASA Tech Briefs articles: "G(sup 4)FETs as Universal and Programmable Logic Gates" (NPO-41698), Vol. 31, No. 7 (July 2007), page 44, and "Efficient G4FET-Based Logic Circuits" (NPO-44407), Vol. 32, No. 1 ( January 2008), page 38 . As described in the first-mentioned previous article, a G4FET can be made to function as a three-input NOT-majority gate, which has been shown to be a universal and programmable logic gate. The universality and programmability could be exploited to design logic circuits containing fewer components than are required for conventional transistor-based circuits performing the same logic functions. The second-mentioned previous article reported results of a comparative study of NOT-majority-gate (G(sup 4)FET)-based logic-circuit designs and equivalent NOR- and NAND-gate-based designs utilizing conventional transistors. [NOT gates (inverters) were also included, as needed, in both the G(sup 4)FET- and the NOR- and NAND-based designs.] In most of the cases studied, fewer logic gates (and, hence, fewer transistors), were required in the G(sup 4)FET-based designs. There are two popular categories of FPGA block structures or architectures: one based on multiplexers, the other based on lookup tables. In standard multiplexer- based architectures, the basic building block is a tree-like configuration of multiplexers, with possibly a few additional logic gates such as ANDs or ORs. Interconnections are realized by means of programmable switches that may connect the input terminals of a block to output terminals of other blocks, may bridge together some of the inputs, or may connect some of the input terminals to signal sources representing constant logical levels 0 or 1. The left part of the figure depicts a four-to-one G(sup 4)FET-based multiplexer tree; the right part of the figure depicts a functionally equivalent four-to-one multiplexer based on conventional transistors. The G(sup 4)FET version would contains 54 transistors; the conventional version contains 70 transistors.
NASA Technical Reports Server (NTRS)
Dix, M. G.; Harrison, D. R.; Edwards, T. M.
1982-01-01
Bubble vial with external aluminum-foil electrodes is sensing element for simple indicating tiltmeter. To measure bubble displacement, bridge circuit detects difference in capacitance between two sensing electrodes and reference electrode. Tiltmeter was developed for experiment on forecasting seismic events by changes in Earth's magnetic field.
Polyvinylidene fluoride membranes probed by electrochemical impedance spectroscopy
NASA Astrophysics Data System (ADS)
Luo, Qi-Zhao; Huang, Qing; Chen, Zhe; Yao, Lei; Fu, Ping; Lin, Zhi-Dong
2018-06-01
Electrochemical impedance spectroscopy (EIS) has been applied to characterize the structure of polyvinylidene fluoride (PVDF) membranes. The characteristic frequency, which directly obtained from the original EIS data, was used to clarify the difference of the membranes’ structures. The experimental data indicated the equivalence between the characteristic frequency and the membrane resistance fitted from the equivalent circuit. The results evidenced that the characteristic frequency obtained directly from original EIS data without any fitting calculation can be used for in situ characterizing a membrane instead of the membrane resistance.
Two-Wire to Four-Wire Audio Converter
NASA Technical Reports Server (NTRS)
Talley, G. L., Jr; Seale, B. L.
1983-01-01
Simple circuit provides interface between normally incompatible voicecommunication lines. Circuit maintains 40 dB of isolation between input and output halves of four-wire line permitting two-wire line to be connected. Balancing potentiometer, Rg, adjusts gain of IC2 to null feed through from input to output. Adjustment is done on workbench just after assembly.
Using Inquiry-Based Instruction for Teaching Science to Students with Learning Disabilities
ERIC Educational Resources Information Center
Aydeniz, Mehmet; Cihak, David F.; Graham, Shannon C.; Retinger, Larryn
2012-01-01
The purpose of this study was to examine the effects of inquiry-based science instruction for five elementary students with learning disabilities (LD). Students participated in a series of inquiry-based activities targeting conceptual and application-based understanding of simple electric circuits, conductors and insulators, parallel circuits, and…
Supercharging Lessons with a Virtual Lab
ERIC Educational Resources Information Center
Stewart, Jefferson; Vincent, Daniel
2013-01-01
The authors describes their experiences incorporating the virtual lab into a simple circuit lesson during an energy unit in a sixth-grade class. The lesson included a hands-on group experiment using wire, batteries, and light bulbs to make a circuit and an online simulation, using a virtual lab. Class discussions, student inquiries, and the study…
Photogate Timing with a Smartphone
ERIC Educational Resources Information Center
Forinash, Kyle; Wisman, Raymond F.
2015-01-01
In a previous article we demonstrated that a simple, passive external circuit incorporating a thermistor, connected to a mobile device through the headset jack, can be used to collect temperature data. The basic approach is to output a sine wave signal to the headset port, through the circuit, and input the resulting signal from the headset…
Interface Circuits for Self-Checking Microprocessors
NASA Technical Reports Server (NTRS)
Rennels, D. A.; Chandramouli, R.
1986-01-01
Fault-tolerant-microcomputer concept based on enhancing "simple" computer with redundancy and self-checking logic circuits detect hardware faults. Interface and checking logic and redundant processors confer on 16-bit microcomputer ability to check itself for hardware faults. Checking circuitry also checks itself. Concept of self-checking complementary pairs (SCCP's) employed throughout ICL unit.
Advanced Imaging of Elementary Circuits
ERIC Educational Resources Information Center
Baird, William H.; Richards, Caleb; Godbole, Pranav
2012-01-01
Students commonly find the second semester of introductory physics to be more challenging than the first, probably due to the mechanical intuition we acquire just by moving around. For most students, there is no similar comfort with electricity or magnetism. In an effort to combat this confusion, we decided to examine simple electric circuits with…
A Simple 2-Transistor Touch or Lick Detector Circuit
ERIC Educational Resources Information Center
Slotnick, Burton
2009-01-01
Contact or touch detectors in which a subject acts as a switch between two metal surfaces have proven more popular and arguably more useful for recording responses than capacitance switches, photocell detectors, and force detectors. Components for touch detectors circuits are inexpensive and, except for some special purpose designs, can be easily…
Turkish Students' Conceptions about the Simple Electric Circuits
ERIC Educational Resources Information Center
Cepni, Salih; Keles, Esra
2006-01-01
In this study, the Turkish students' understanding level of electric circuits consisting of two bulbs and one battery was investigated by using open-ended questions. Two-hundred fifty students, whose ages range from 11 to 22, were chosen from five different groups at primary, secondary and university levels in Trabzon in Turkey. In analyzing…
Buzi, Gentian; Khammash, Mustafa
2016-01-01
Biological systems use a variety of mechanisms to deal with the uncertain nature of their external and internal environments. Two of the most common motifs employed for this purpose are the incoherent feedforward (IFF) and feedback (FB) topologies. Many theoretical and experimental studies suggest that these circuits play very different roles in providing robustness to uncertainty in the cellular environment. Here, we use a control theoretic approach to analyze two common FB and IFF architectures that make use of an intermediary species to achieve regulation. We show the equivalence of both circuits topologies in suppressing static cell-to-cell variations. While both circuits can suppress variations due to input noise, they are ineffective in suppressing inherent chemical reaction stochasticity. Indeed, these circuits realize comparable improvements limited to a modest 25% variance reduction in best case scenarios. Such limitations are attributed to the use of intermediary species in regulation, and as such, they persist even for circuit architectures that combine both IFF and FB features. Intriguingly, while the FB circuits are better suited in dealing with dynamic input variability, the most significant difference between the two topologies lies not in the structural features of the circuits, but in their practical implementation considerations. PMID:27257684
Buzi, Gentian; Khammash, Mustafa
2016-06-01
Biological systems use a variety of mechanisms to deal with the uncertain nature of their external and internal environments. Two of the most common motifs employed for this purpose are the incoherent feedforward (IFF) and feedback (FB) topologies. Many theoretical and experimental studies suggest that these circuits play very different roles in providing robustness to uncertainty in the cellular environment. Here, we use a control theoretic approach to analyze two common FB and IFF architectures that make use of an intermediary species to achieve regulation. We show the equivalence of both circuits topologies in suppressing static cell-to-cell variations. While both circuits can suppress variations due to input noise, they are ineffective in suppressing inherent chemical reaction stochasticity. Indeed, these circuits realize comparable improvements limited to a modest 25% variance reduction in best case scenarios. Such limitations are attributed to the use of intermediary species in regulation, and as such, they persist even for circuit architectures that combine both IFF and FB features. Intriguingly, while the FB circuits are better suited in dealing with dynamic input variability, the most significant difference between the two topologies lies not in the structural features of the circuits, but in their practical implementation considerations.
NASA Astrophysics Data System (ADS)
Fulkerson, David E.
2010-02-01
This paper describes a new methodology for characterizing the electrical behavior and soft error rate (SER) of CMOS and SiGe HBT integrated circuits that are struck by ions. A typical engineering design problem is to calculate the SER of a critical path that commonly includes several circuits such as an input buffer, several logic gates, logic storage, clock tree circuitry, and an output buffer. Using multiple 3D TCAD simulations to solve this problem is too costly and time-consuming for general engineering use. The new and simple methodology handles the problem with ease by simple SPICE simulations. The methodology accurately predicts the measured threshold linear energy transfer (LET) of a bulk CMOS SRAM. It solves for circuit currents and voltage spikes that are close to those predicted by expensive 3D TCAD simulations. It accurately predicts the measured event cross-section vs. LET curve of an experimental SiGe HBT flip-flop. The experimental cross section vs. frequency behavior and other subtle effects are also accurately predicted.
Ko, Sangwon; Hoke, Eric T; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D; Brédas, Jean-Luc; Salleo, Alberto; Bao, Zhenan
2012-03-21
Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.
New Theoretical Model of Nerve Conduction in Unmyelinated Nerves
Akaishi, Tetsuya
2017-01-01
Nerve conduction in unmyelinated fibers has long been described based on the equivalent circuit model and cable theory. However, without the change in ionic concentration gradient across the membrane, there would be no generation or propagation of the action potential. Based on this concept, we employ a new conductive model focusing on the distribution of voltage-gated sodium ion channels and Coulomb force between electrolytes. Based on this new model, the propagation of the nerve conduction was suggested to take place far before the generation of action potential at each channel. We theoretically showed that propagation of action potential, which is enabled by the increasing Coulomb force produced by inflowing sodium ions, from one sodium ion channel to the next sodium channel would be inversely proportionate to the density of sodium channels on the axon membrane. Because the longitudinal number of sodium ion channel would be proportionate to the square root of channel density, the conduction velocity of unmyelinated nerves is theoretically shown to be proportionate to the square root of channel density. Also, from a viewpoint of equilibrium state of channel importation and degeneration, channel density was suggested to be proportionate to axonal diameter. Based on these simple basis, conduction velocity in unmyelinated nerves was theoretically shown to be proportionate to the square root of axonal diameter. This new model would also enable us to acquire more accurate and understandable vision on the phenomena in unmyelinated nerves in addition to the conventional electric circuit model and cable theory. PMID:29081751
Deng, Ruixiang; Li, Meiling; Muneer, Badar; Zhu, Qi; Shi, Zaiying; Song, Lixin; Zhang, Tao
2018-01-01
Optically Transparent Microwave Metamaterial Absorber (OTMMA) is of significant use in both civil and military field. In this paper, equivalent circuit model is adopted as springboard to navigate the design of OTMMA. The physical model and absorption mechanisms of ideal lightweight ultrathin OTMMA are comprehensively researched. Both the theoretical value of equivalent resistance and the quantitative relation between the equivalent inductance and equivalent capacitance are derived for design. Frequency-dependent characteristics of theoretical equivalent resistance are also investigated. Based on these theoretical works, an effective and controllable design approach is proposed. To validate the approach, a wideband OTMMA is designed, fabricated, analyzed and tested. The results reveal that high absorption more than 90% can be achieved in the whole 6~18 GHz band. The fabricated OTMMA also has an optical transparency up to 78% at 600 nm and is much thinner and lighter than its counterparts. PMID:29324686
Deng, Ruixiang; Li, Meiling; Muneer, Badar; Zhu, Qi; Shi, Zaiying; Song, Lixin; Zhang, Tao
2018-01-11
Optically Transparent Microwave Metamaterial Absorber (OTMMA) is of significant use in both civil and military field. In this paper, equivalent circuit model is adopted as springboard to navigate the design of OTMMA. The physical model and absorption mechanisms of ideal lightweight ultrathin OTMMA are comprehensively researched. Both the theoretical value of equivalent resistance and the quantitative relation between the equivalent inductance and equivalent capacitance are derived for design. Frequency-dependent characteristics of theoretical equivalent resistance are also investigated. Based on these theoretical works, an effective and controllable design approach is proposed. To validate the approach, a wideband OTMMA is designed, fabricated, analyzed and tested. The results reveal that high absorption more than 90% can be achieved in the whole 6~18 GHz band. The fabricated OTMMA also has an optical transparency up to 78% at 600 nm and is much thinner and lighter than its counterparts.
Integrated neuron circuit for implementing neuromorphic system with synaptic device
NASA Astrophysics Data System (ADS)
Lee, Jeong-Jun; Park, Jungjin; Kwon, Min-Woo; Hwang, Sungmin; Kim, Hyungjin; Park, Byung-Gook
2018-02-01
In this paper, we propose and fabricate Integrate & Fire neuron circuit for implementing neuromorphic system. Overall operation of the circuit is verified by measuring discrete devices and the output characteristics of the circuit. Since the neuron circuit shows asymmetric output characteristic that can drive synaptic device with Spike-Timing-Dependent-Plasticity (STDP) characteristic, the autonomous weight update process is also verified by connecting the synaptic device and the neuron circuit. The timing difference of the pre-neuron and the post-neuron induce autonomous weight change of the synaptic device. Unlike 2-terminal devices, which is frequently used to implement neuromorphic system, proposed scheme of the system enables autonomous weight update and simple configuration by using 4-terminal synapse device and appropriate neuron circuit. Weight update process in the multi-layer neuron-synapse connection ensures implementation of the hardware-based artificial intelligence, based on Spiking-Neural- Network (SNN).
Development of Android based Smart Power Saving System
NASA Astrophysics Data System (ADS)
Gupta, Ashutosh; Kumar, Pradeep; Ghosh, Tathagata; Bhawna, Shruthi. S.
2017-08-01
An android based smart power saving system has been presented in this paper. For this purpose, an application is developed for controlling the intensity of an AC supply using a dimmer circuit in android platform and to monitor the current flow on different intensity level a current sensor is used in the circuit. Dimmer circuit provides a 16-different intensity level to control the flow of current and help in power saving. The system is very simple and robust as it is based on android platform.
A neural circuit mechanism for regulating vocal variability during song learning in zebra finches.
Garst-Orozco, Jonathan; Babadi, Baktash; Ölveczky, Bence P
2014-12-15
Motor skill learning is characterized by improved performance and reduced motor variability. The neural mechanisms that couple skill level and variability, however, are not known. The zebra finch, a songbird, presents a unique opportunity to address this question because production of learned song and induction of vocal variability are instantiated in distinct circuits that converge on a motor cortex analogue controlling vocal output. To probe the interplay between learning and variability, we made intracellular recordings from neurons in this area, characterizing how their inputs from the functionally distinct pathways change throughout song development. We found that inputs that drive stereotyped song-patterns are strengthened and pruned, while inputs that induce variability remain unchanged. A simple network model showed that strengthening and pruning of action-specific connections reduces the sensitivity of motor control circuits to variable input and neural 'noise'. This identifies a simple and general mechanism for learning-related regulation of motor variability.
A simple electric circuit model for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Lazarou, Stavros; Pyrgioti, Eleftheria; Alexandridis, Antonio T.
A simple and novel dynamic circuit model for a proton exchange membrane (PEM) fuel cell suitable for the analysis and design of power systems is presented. The model takes into account phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The proposed circuit model includes three resistors to approach adequately these phenomena; however, since for the PEM dynamic performance connection or disconnection of an additional load is of crucial importance, the proposed model uses two saturable inductors accompanied by an ideal transformer to simulate the double layer charging effect during load step changes. To evaluate the effectiveness of the proposed model its dynamic performance under load step changes is simulated. Experimental results coming from a commercial PEM fuel cell module that uses hydrogen from a pressurized cylinder at the anode and atmospheric oxygen at the cathode, clearly verify the simulation results.
NASA Astrophysics Data System (ADS)
Lan, Chunbo; Tang, Lihua; Harne, Ryan L.
2018-05-01
Nonlinear piezoelectric energy harvester (PEH) has been widely investigated during the past few years. Among the majority of these researches, a pure resistive load is used to evaluate power output. To power conventional electronics in practical application, the alternating current (AC) generated by nonlinear PEH needs to be transformed into a direct current (DC) and rectifying circuits are required to interface the device and electronic load. This paper aims at exploring the critical influences of AC and DC interface circuits on nonlinear PEH. As a representative nonlinear PEH, we fabricate and evaluate a monostable PEH in terms of generated power and useful operating bandwidth when it is connected to AC and DC interface circuits. Firstly, the harmonic balance analysis and equivalent circuit representation method are utilized to tackle the modeling of nonlinear energy harvesters connected to AC and DC interface circuits. The performances of the monostable PEH connected to these interface circuits are then analyzed and compared, focusing on the influences of the varying load, excitation and electromechanical coupling strength on the nonlinear dynamics, bandwidth and harvested power. Subsequently, the behaviors of the monostable PEH with AC and DC interface circuits are verified by experiment. Results indicate that both AC and DC interface circuits have a peculiar influence on the power peak shifting and operational bandwidth of the monostable PEH, which is quite different from that on the linear PEH.
A Novel Crosstalk Suppression Method of the 2-D Networked Resistive Sensor Array
Wu, Jianfeng; Wang, Lei; Li, Jianqing; Song, Aiguo
2014-01-01
The 2-D resistive sensor array in the row–column fashion suffered from the crosstalk problem for parasitic parallel paths. Firstly, we proposed an Improved Isolated Drive Feedback Circuit with Compensation (IIDFCC) based on the voltage feedback method to suppress the crosstalk. In this method, a compensated resistor was specially used to reduce the crosstalk caused by the column multiplexer resistors and the adjacent row elements. Then, a mathematical equivalent resistance expression of the element being tested (EBT) of this circuit was analytically derived and verified by the circuit simulations. The simulation results show that the measurement method can greatly reduce the influence on the EBT caused by parasitic parallel paths for the multiplexers' channel resistor and the adjacent elements. PMID:25046011
A new OLED SPICE model for pixel circuit simulation in OLED-on-silicon microdisplay design
NASA Astrophysics Data System (ADS)
Bohua, Zhao; Ran, Huang; Jianhui, Bu; Yinxue, Lü; Yiqi, Wang; Fei, Ma; Guohua, Xie; Zhensong, Zhang; Huan, Du; Jiajun, Luo; Zhengsheng, Han; Yi, Zhao
2012-07-01
A new equivalent circuit model of organic-light-emitting-diode (OLED) is proposed. As the single-diode model is able to approximate OLED behavior as well as the multiple-diode model, the new model will be built based on it. In order to make sure that the experimental and simulated data are in good agreement, the constant resistor is exchanged for an exponential resistor in the new model. Compared with the measured data and the results of the other two OLED SPICE models, the simulated I—V characteristics of the new model match the measured data much better. This new model can be directly incorporated into an SPICE circuit simulator and presents good accuracy over the whole operating voltage.
NASA Technical Reports Server (NTRS)
Lee, F. C. Y.; Wilson, T. G.
1982-01-01
The present investigation is concerned with an important class of power conditioning networks, taking into account self-oscillating dc-to-square-wave transistor inverters. The considered circuits are widely used both as the principal power converting and processing means in many systems and as low-power analog-to-discrete-time converters for controlling the switching of the output-stage semiconductors in a variety of power conditioning systems. Aspects of piecewise-linear modeling are discussed, taking into consideration component models, and an equivalent-circuit model. Questions of singular point analysis and state plane representation are also investigated, giving attention to limit cycles, starting circuits, the region of attraction, a hard oscillator, and a soft oscillator.
Gog, Simon; Bader, Martin
2008-10-01
The problem of sorting signed permutations by reversals is a well-studied problem in computational biology. The first polynomial time algorithm was presented by Hannenhalli and Pevzner in 1995. The algorithm was improved several times, and nowadays the most efficient algorithm has a subquadratic running time. Simple permutations played an important role in the development of these algorithms. Although the latest result of Tannier et al. does not require simple permutations, the preliminary version of their algorithm as well as the first polynomial time algorithm of Hannenhalli and Pevzner use the structure of simple permutations. More precisely, the latter algorithms require a precomputation that transforms a permutation into an equivalent simple permutation. To the best of our knowledge, all published algorithms for this transformation have at least a quadratic running time. For further investigations on genome rearrangement problems, the existence of a fast algorithm for the transformation could be crucial. Another important task is the back transformation, i.e. if we have a sorting on the simple permutation, transform it into a sorting on the original permutation. Again, the naive approach results in an algorithm with quadratic running time. In this paper, we present a linear time algorithm for transforming a permutation into an equivalent simple permutation, and an O(n log n) algorithm for the back transformation of the sorting sequence.
Equivalent electron fluence for solar proton damage in GaAs shallow junction cells
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Stock, L. V.
1984-01-01
The short-circuit current reduction in GaAs shallow junction heteroface solar cells was calculated according to a simplified solar cell damage model in which the nonuniformity of the damage as a function of penetration depth is treated explicitly. Although the equivalent electron fluence was not uniquely defined for low-energy monoenergetic proton exposure, an equivalent electron fluence is found for proton spectra characteristic of the space environment. The equivalent electron fluence ratio was calculated for a typical large solar flare event for which the proton spectrum is PHI(sub p)(E) = A/E(p/sq. cm) where E is in MeV. The equivalent fluence ratio is a function of the cover glass shield thickness or the corresponding cutoff energy E(sub c). In terms of the cutoff energy, the equivalent 1 MeV electron fluence ratio is r(sub p)(E sub c) = 10(9)/E(sub c)(1.8) where E(sub c) is in units of KeV.
Behavioral modeling of VCSELs for high-speed optical interconnects
NASA Astrophysics Data System (ADS)
Szczerba, Krzysztof; Kocot, Chris
2018-02-01
Transition from on-off keying to 4-level pulse amplitude modulation (PAM) in VCSEL based optical interconnects allows for an increase of data rates, at the cost of 4.8 dB sensitivity penalty. The resulting strained link budget creates a need for accurate VCSEL models for driver integrated circuit (IC) design and system level simulations. Rate equation based equivalent circuit models are convenient for the IC design, but system level analysis requires computationally efficient closed form behavioral models based Volterra series and neural networks. In this paper we present and compare these models.
Enhanced Low Dose Rate Effects in Bipolar Circuits: A New Hardness Assurance Problem for NASA
NASA Technical Reports Server (NTRS)
Johnston, A.; Barnes, C.
1995-01-01
Many bipolar integrated circuits are much more susceptible to ionizing radiation at low dose rates than they are at high dose rates typically used for radiation parts testing. Since the low dose rate is equivalent to that seen in space, the standard lab test no longer can be considered conservative and has caused the Air Force to issue an alert. Although a reliable radiation hardness assurance test has not yet been designed, possible mechanisms for low dose rate enhancement and hardness assurance tests are discussed.
State of charge modeling of lithium-ion batteries using dual exponential functions
NASA Astrophysics Data System (ADS)
Kuo, Ting-Jung; Lee, Kung-Yen; Huang, Chien-Kang; Chen, Jau-Horng; Chiu, Wei-Li; Huang, Chih-Fang; Wu, Shuen-De
2016-05-01
A mathematical model is developed by fitting the discharging curve of LiFePO4 batteries and used to investigate the relationship between the state of charge and the closed-circuit voltage. The proposed mathematical model consists of dual exponential terms and a constant term which can fit the characteristics of dual equivalent RC circuits closely, representing a LiFePO4 battery. One exponential term presents the stable discharging behavior and the other one presents the unstable discharging behavior and the constant term presents the cut-off voltage.
Can we estimate the cellular phone RF peak output power with a simple experiment?
NASA Astrophysics Data System (ADS)
Fioreze, Maycon; dos Santos Junior, Sauli; Goncalves Hönnicke, Marcelo
2016-07-01
Cellular phones are becoming increasingly useful tools for students. Since cell phones operate in the microwave bandwidth, they can be used to motivate students to demonstrate and better understand the properties of electromagnetic waves. However, since these waves operate at higher frequencies (L-band, from 800 MHz to 2 GHz) it is not simple to detect them. Usually, expensive real-time high frequency oscilloscopes are required. Indirect measurements are also possible through heat-based and diode-detector-based radio-frequency (RF) power sensors. Another didactic and intuitive way is to explore a simple and inexpensive detection system, based on the interference effect caused in the electronic circuit of TV and PC soundspeakers, and to try to investigate different properties of the cell phones’ RF electromagnetic waves, such as its power and modulated frequency. This manuscript proposes a trial to quantify these measurements, based on a simple Friis equation model and the time constant of the circuit used in the detection system, in order to show it didactically to the students and even allow them also to explore such a simple detection system at home.
Equivalent Mass of a Coil Spring.
ERIC Educational Resources Information Center
Ruby, Lawrence
2000-01-01
Finds that first-year college students can understand in detail the origin of the equivalent mass. Provides both a simple calculation derivation of this result as well as a noncalculus derivation. Argues that for every soft spring, the equivalent mass should be somewhere between m0/3 and m0/2. (CCM)
An equivalent circuit model for terahertz quantum cascade lasers: Modeling and experiments
NASA Astrophysics Data System (ADS)
Yao, Chen; Xu, Tian-Hong; Wan, Wen-Jian; Zhu, Yong-Hao; Cao, Jun-Cheng
2015-09-01
Terahertz quantum cascade lasers (THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In order to illustrate the capability of the model, the steady and dynamic performances of the fabricated THz QCLs are simulated by the model. Compared to the sophisticated numerical methods, the presented model has advantages of fast calculation and good compatibility with circuit simulation for system-level designs and optimizations. The validity of the model is verified by the experimental and numerical results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61404149), the Major National Development Project of Scientific Instrument and Equipment, China (Grant No. 2011YQ150021), the National Science and Technology Major Project, China (Grant No. 2011ZX02707), the Major Project, China (Grant No. YYYJ-1123-1), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology, China (Grant Nos. 14530711300).
Basic guidelines to introduce electric circuit simulation software in a general physics course
NASA Astrophysics Data System (ADS)
Moya, A. A.
2018-05-01
The introduction of electric circuit simulation software for undergraduate students in a general physics course is proposed in order to contribute to the constructive learning of electric circuit theory. This work focuses on the lab exercises based on dc, transient and ac analysis in electric circuits found in introductory physics courses, and shows how students can use the simulation software to do simple activities associated with a lab exercise itself and with related topics. By introducing electric circuit simulation programs in a general physics course as a brief activitiy complementing lab exercise, students develop basic skills in using simulation software, improve their knowledge on the topology of electric circuits and perceive that the technology contributes to their learning, all without reducing the time spent on the actual content of the course.
Nonlinear dynamics based digital logic and circuits.
Kia, Behnam; Lindner, John F; Ditto, William L
2015-01-01
We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two.
A Fan-tastic Quantitative Exploration of Ohm's Law
NASA Astrophysics Data System (ADS)
Mitchell, Brandon; Ekey, Robert; McCullough, Roy; Reitz, William
2018-02-01
Teaching simple circuits and Ohm's law to students in the introductory classroom has been extensively investigated through the common practice of using incandescent light bulbs to help students develop a conceptual foundation before moving on to quantitative analysis. However, the bulb filaments' resistance has a large temperature dependence, which makes them less suitable as a tool for quantitative analysis. Some instructors show that light bulbs do not obey Ohm's law either outright or through inquiry-based laboratory experiments. Others avoid the subject altogether by using bulbs strictly for qualitative purposes and then later switching to resistors for a numerical analysis, or by changing the operating conditions of the bulb so that it is "barely" glowing. It seems incongruous to develop a conceptual basis for the behavior of simple circuits using bulbs only to later reveal that they do not follow Ohm's law. Recently, small computer fans were proposed as a suitable replacement of bulbs for qualitative analysis of simple circuits where the current is related to the rotational speed of the fans. In this contribution, we demonstrate that fans can also be used for quantitative measurements and provide suggestions for successful classroom implementation.
A physics-based model of the electrical impedance of ionic polymer metal composites
NASA Astrophysics Data System (ADS)
Cha, Youngsu; Aureli, Matteo; Porfiri, Maurizio
2012-06-01
In this paper, we analyze the chemoelectrical behavior of ionic polymer metal composites (IPMCs) in the small voltage range with a novel hypothesis on the charge dynamics in proximity of the electrodes. In particular, we homogenize the microscopic properties of the interfacial region through a so-called composite layer which extends between the polymer membrane and the metal electrode. This layer accounts for the dissimilar properties of its constituents by describing the charge distribution via two species of charge carriers, that is, electrons and mobile counterions. We model the charge dynamics in the IPMC by adapting the multiphysics formulation based on the Poisson-Nernst-Planck (PNP) framework, which is enriched through an additional term to capture the electron transport in the composite layer. Under the hypothesis of small voltage input, we use the linearized PNP model to derive an equivalent IPMC circuit model with lumped elements. The equivalent model comprises a resistor connected in series with the parallel of a capacitor and a Warburg impedance element. These elements idealize the phenomena of charge build up in the double layer region and the faradaic impedance related to mass transfer, respectively. We validate the equivalent model through measurements on in-house fabricated samples addressing both IPMC step response and impedance, while assessing the influence of repeated plating cycles on the electrical properties of IPMCs. Experimental results are compared with theoretical findings to identify the equivalent circuit parameters. Findings from this study are compared with alternative impedance models proposed in the literature.
ERIC Educational Resources Information Center
Schleyer, Michael; Saumweber, Timo; Nahrendorf, Wiebke; Fischer, Benjamin; von Alpen, Desiree; Pauls, Dennis; Thum, Andreas; Gerber, Bertram
2011-01-01
Drosophila larvae combine a numerically simple brain, a correspondingly moderate behavioral complexity, and the availability of a rich toolbox for transgenic manipulation. This makes them attractive as a study case when trying to achieve a circuit-level understanding of behavior organization. From a series of behavioral experiments, we suggest a…
The Salty Science of the Aluminum-Air Battery
ERIC Educational Resources Information Center
Chasteen, Stephanie V.; Chasteen, N. Dennis; Doherty, Paul
2008-01-01
Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries in which metal reacts with oxygen in the air in order to generate free electrons, which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an…
1985-10-01
characteristic of a p-n junction to provide exponential linearization in a simple, thermally-stable, wide band circuit. RESME Les oscillateurs A...exponentielle (fr6quence/tension) que V’on 1 retrouve chez plusieurs oscillateurs . Ce circuit, d’une grande largeur de bande, utilise la caractfiristique
Thakore, Vaibhav; Molnar, Peter; Hickman, James J.
2014-01-01
Extracellular neuroelectronic interfacing is an emerging field with important applications in the fields of neural prosthetics, biological computation and biosensors. Traditionally, neuron-electrode interfaces have been modeled as linear point or area contact equivalent circuits but it is now being increasingly realized that such models cannot explain the shapes and magnitudes of the observed extracellular signals. Here, results were compared and contrasted from an unprecedented optimization based study of the point contact models for an extracellular ‘on-cell’ neuron-patch electrode and a planar neuron-microelectrode interface. Concurrent electrophysiological recordings from a single neuron simultaneously interfaced to three distinct electrodes (intracellular, ‘on-cell’ patch and planar microelectrode) allowed novel insights into the mechanism of signal transduction at the neuron-electrode interface. After a systematic isolation of the nonlinear neuronal contribution to the extracellular signal, a consistent underestimation of the simulated supra-threshold extracellular signals compared to the experimentally recorded signals was observed. This conclusively demonstrated that the dynamics of the interfacial medium contribute nonlinearly to the process of signal transduction at the neuron-electrode interface. Further, an examination of the optimized model parameters for the experimental extracellular recordings from sub- and supra-threshold stimulations of the neuron-electrode junctions revealed that ionic transport at the ‘on-cell’ neuron-patch electrode is dominated by diffusion whereas at the neuron-microelectrode interface the electric double layer (EDL) effects dominate. Based on this study, the limitations of the equivalent circuit models in their failure to account for the nonlinear EDL and ionic electrodiffusion effects occurring during signal transduction at the neuron-electrode interfaces are discussed. PMID:22695342
Time-of-flight radio location system
McEwan, T.E.
1997-08-26
A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence. The sample signal in equivalent time is passed through an envelope detection circuit, formed of an absolute value circuit followed by a low pass filter, to convert the sample signal to a unipolar signal to eliminate effects of antenna misorientation. 8 figs.
Time-of-flight radio location system
McEwan, Thomas E.
1997-01-01
A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence. The sample signal in equivalent time is passed through an envelope detection circuit, formed of an absolute value circuit followed by a low pass filter, to convert the sample signal to a unipolar signal to eliminate effects of antenna misorientation.
Nature of size effects in compact models of field effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torkhov, N. A., E-mail: trkf@mail.ru; Scientific-Research Institute of Semiconductor Devices, Tomsk 634050; Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050
Investigations have shown that in the local approximation (for sizes L < 100 μm), AlGaN/GaN high electron mobility transistor (HEMT) structures satisfy to all properties of chaotic systems and can be described in the language of fractal geometry of fractional dimensions. For such objects, values of their electrophysical characteristics depend on the linear sizes of the examined regions, which explain the presence of the so-called size effects—dependences of the electrophysical and instrumental characteristics on the linear sizes of the active elements of semiconductor devices. In the present work, a relationship has been established for the linear model parameters of themore » equivalent circuit elements of internal transistors with fractal geometry of the heteroepitaxial structure manifested through a dependence of its relative electrophysical characteristics on the linear sizes of the examined surface areas. For the HEMTs, this implies dependences of their relative static (A/mm, mA/V/mm, Ω/mm, etc.) and microwave characteristics (W/mm) on the width d of the sink-source channel and on the number of sections n that leads to a nonlinear dependence of the retrieved parameter values of equivalent circuit elements of linear internal transistor models on n and d. Thus, it has been demonstrated that the size effects in semiconductors determined by the fractal geometry must be taken into account when investigating the properties of semiconductor objects on the levels less than the local approximation limit and designing and manufacturing field effect transistors. In general, the suggested approach allows a complex of problems to be solved on designing, optimizing, and retrieving the parameters of equivalent circuits of linear and nonlinear models of not only field effect transistors but also any arbitrary semiconductor devices with nonlinear instrumental characteristics.« less
Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.
Guerrero, Federico Nicolás; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro
2016-06-01
In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.
Solid-state switch increases switching speed
NASA Technical Reports Server (NTRS)
Mcgowan, G. F.
1966-01-01
Solid state switch for commutating capacitors in an RC commutated network increases switching speed and extends the filtering or commutating frequency spectrum well into the kilocycle region. The switch is equivalent to the standard double- pole double-throw /DPDT/ relay and is driven from digital micrologic circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnabel, Manuel; Klein, Talysa R.; Jain, Nikhil
Solar cells made from bulk crystalline silicon (c-Si) dominate the market, but laboratory efficiencies have stagnated because the current record efficiency of 26.3% is already very close to the theoretical limit of 29.4% for a single-junction c-Si cell. In order to substantially boost the efficiency of Si solar cells we have been developing stacked III-V/Si tandem cells, recently attaining efficiencies above 32% in four-terminal configuration. In this contribution, we use state-of-the-art III-V cells coupled with equivalent circuit simulations to compare four-terminal (4T) to three- and two-terminal (3T, 2T) operation. Equivalent circuit simulations are used to show that tandem cells canmore » be operated just as efficiently using three terminals as with four terminals. However, care must be taken not to overestimate 3T efficiency, as the two circuits used to extract current interact, and a method is described to accurately determine this efficiency. Experimentally, a 4T GaInP/Si tandem cell utilizing an interdigitated back contact cell is shown, exhibiting a 4T efficiency of 31.5% and a 2T efficiency of 28.1%. In 3T configuration, it is used to verify the finding from simulation that 3T efficiency is overestimated when interactions between the two circuits are neglected. Considering these, a 3T efficiency approaching the 4T efficiency is found, showing that 3T operation is efficient, and an outlook on fully integrated high-efficiency 3T and 2T tandem cells is given.« less
NASA Astrophysics Data System (ADS)
Yousefvand, H. R.
2017-12-01
We report a study of the effects of hot-electron and hot-phonon dynamics on the output characteristics of quantum cascade lasers (QCLs) using an equivalent circuit-level model. The model is developed from the energy balance equation to adopt the electron temperature in the active region levels, the heat transfer equation to include the lattice temperature, the nonequilibrium phonon rate to account for the hot phonon dynamics and simplified two-level rate equations to incorporate the carrier and photon dynamics in the active region. This technique simplifies the description of the electron-phonon interaction in QCLs far from the equilibrium condition. Using the presented model, the steady and transient responses of the QCLs for a wide range of sink temperatures (80 to 320 K) are investigated and analysed. The model enables us to explain the operating characteristics found in QCLs. This predictive model is expected to be applicable to all QCL material systems operating in pulsed and cw regimes.
NASA Technical Reports Server (NTRS)
1971-01-01
An investigation into the electrostatic phenomena associated with the manufacturing and handling of explosives is discussed. The testing includes measurement of the severity of the primary charge generation mechanism, triboelectric effects between dissimilar surfaces; refinement of equivalent circuits of the XM15/XM165 and E8 fuse trains; evaluation of the electrostatic spark discharge characteristics predicted by an equivalent circuit analysis; and determination of the spark ignition sensitivity of materials, components, junctions, and subassemblies which compose the XM15/XM165 and E8 units. Special studies were also performed. These special tests included ignition sensitivity of the complete XM15 fuse train when subjected to discharges through its entire length, measurement of electrostatic potentials which occur during the E8 foaming operation during fabrication, and investigation of the inadvertent functioning of an XM15 cluster during manufacturing. The test results are discussed and related to the effectiveness of suggested modification to reduce the electrostatic ignition sensitivity.
A compact D-band monolithic APDP-based sub-harmonic mixer
NASA Astrophysics Data System (ADS)
Zhang, Shengzhou; Sun, Lingling; Wang, Xiang; Wen, Jincai; Liu, Jun
2017-11-01
The paper presents a compact D-band monolithic sub-harmonic mixer (SHM) with 3 μm planar hyperabrupt schottky-varactor diodes offered by 70 nm GaAs mHEMT technology. According to empirical equivalent-circuit models, a wide-band large signal equivalent circuit model of the diode is proposed. Based on the extracted model, the mixer is implemented and optimized with a shunt-mounted anti-parallel diode pair (APDP) to fulfill the sub-harmonic mixing mechanism. Furthermore, a modified asymmetric three-transmission-line coupler is devised to achieve high-level coupling and minimize the chip size. The measured results show that the conversion gain varies between -13.9 dB and -17.5 dB from 110 GHz to 145 GHz, with a local oscillator (LO) power level of 14 dBm and an intermediate frequency (IF) of 1 GHz. The total chip size including probe GSG pads is 0.57 × 0.68mm2. In conclusion, the mixer exhibits outstanding figure-of-merits.
Analytical Model-Based Design Optimization of a Transverse Flux Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz
This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variablesmore » that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.« less
LiTaO3 Shear Wave Resonator for Viscosity Measurement of Polymer Liquid in MHz Range
NASA Astrophysics Data System (ADS)
Bannai, Mai; Wakatsuki, Noboru
2004-05-01
We are studying the response of a strip-type LiTaO3 shear wave resonator in polymer liquid in MHz range. The element size is small (1.0× 7.4× 0.49 mm3). The side surfaces of the resonator were covered with a highly viscous silicone rubber material. Using Newton fluid theory, the characteristic mechanical impedance of the shear wave in the liquid was derived for the equivalent circuit of the resonator. The analytical values of glycerin were roughly consistent with the experiment using only 0.1 cm3. The polymer liquid used for the measurement was silicone oil. The static viscosity was from 9.8 to 94,720 mPa\\cdots. The resonance frequency change was from 0.05% to 0.07%. The resonance resistance change was from 57 Ω to 190 Ω. The experiment results were examined using Mason’s equivalent circuit with Maxwell model of a viscoelastic polymer.
Correlation between the oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys
NASA Astrophysics Data System (ADS)
Park, Sang-Yoon; Lee, Myung-Ho; Jeong, Yong-Hwan; Jung, Youn-Ho
2004-12-01
The correlation between the oxide impedance and corrosion behavior of two series of Zr-Nb-Sn-Fe-Cu alloys was evaluated. Corrosion tests were performed in a 70 ppm LiOH aqueous solution at 360°C for 300 days. The results of the corrosion tests revealed that the corrosion behavior of the alloys depended on the Nb and Sn content. The impedance characteristics for the pre- and post-transition oxide layers formed on the surface of the alloys were investigated in sulfuric acid at room temperature. From the results, a pertinent equivalent circuit model was preferably established, explaining the properties of double oxide layers. The impedance of the oxide layers correlated with the corrosion behavior; better corrosion resistance always showed higher electric resistance for the inner layers. It is thus concluded that a pertinent equivalent circuit model would be useful for evaluating the long-term corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys.
MODIFICATIONS TO REDUCE DRAG OUT AT A PRINTED CIRCUIT BOARD MANUFACTURER
This MnTAP/EPA Waste Reduction Innovative Technology Evaluation project at Micom, Inc., demonstrated the waste reducing capability of two simple rinsing modifications on an etchant and an electroless copper process. he simple, tow (or no) cost, low technology changes that were ma...
An alternative low-loss stack topology for vanadium redox flow battery: Comparative assessment
NASA Astrophysics Data System (ADS)
Moro, Federico; Trovò, Andrea; Bortolin, Stefano; Del, Davide, , Col; Guarnieri, Massimo
2017-02-01
Two vanadium redox flow battery topologies have been compared. In the conventional series stack, bipolar plates connect cells electrically in series and hydraulically in parallel. The alternative topology consists of cells connected in parallel inside stacks by means of monopolar plates in order to reduce shunt currents along channels and manifolds. Channelled and flat current collectors interposed between cells were considered in both topologies. In order to compute the stack losses, an equivalent circuit model of a VRFB cell was built from a 2D FEM multiphysics numerical model based on Comsol®, accounting for coupled electrical, electrochemical, and charge and mass transport phenomena. Shunt currents were computed inside the cells with 3D FEM models and in the piping and manifolds by means of equivalent circuits solved with Matlab®. Hydraulic losses were computed with analytical models in piping and manifolds and with 3D numerical analyses based on ANSYS Fluent® in the cell porous electrodes. Total losses in the alternative topology resulted one order of magnitude lower than in an equivalent conventional battery. The alternative topology with channelled current collectors exhibits the lowest shunt currents and hydraulic losses, with round-trip efficiency higher by about 10%, as compared to the conventional topology.
NASA Astrophysics Data System (ADS)
Xiang, HE; Chong, LIU; Yachun, ZHANG; Jianping, CHEN; Yudong, CHEN; Xiaojun, ZENG; Bingyan, CHEN; Jiaxin, PANG; Yibing, WANG
2018-02-01
The capacitively coupled radio frequency (CCRF) plasma has been widely used in various fields. In some cases, it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma. In this paper, a glass vacuum chamber and a pair of plate electrodes were designed and fabricated, using 13.56 MHz radio frequency (RF) discharge technology to ionize the working gas of Ar. This discharge was mathematically described with equivalent circuit model. The discharge voltage and current of the plasma were measured at different pressures and different powers. Based on the capacitively coupled homogeneous discharge model, the equivalent circuit and the analytical formula were established. The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation. The experimental results show that when RF discharge power is 50-300 W and pressure is 25-250 Pa, the average electron temperature is about 1.7-2.1 eV and the average electron density is about 0.5 × 1017-3.6 × 1017 m-3. Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.
Mechanical Equivalent of Heat--Software for a Thermistor
ERIC Educational Resources Information Center
Boleman, Michael
2008-01-01
The Mechanical Equivalent of Heat Apparatus from PASCO scientific provides the means for doing a simple experiment to determine the mechanical equivalent of heat, "J." A necessary step of this experiment is to determine the temperature of an aluminum cylinder. By measuring the resistance of a thermistor embedded in the cylinder, one is able to…
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1975-01-01
STICAP (Stiff Circuit Analysis Program) is a FORTRAN 4 computer program written for the CDC-6400-6600 computer series and SCOPE 3.0 operating system. It provides the circuit analyst a tool for automatically computing the transient responses and frequency responses of large linear time invariant networks, both stiff and nonstiff (algorithms and numerical integration techniques are described). The circuit description and user's program input language is engineer-oriented, making simple the task of using the program. Engineering theories underlying STICAP are examined. A user's manual is included which explains user interaction with the program and gives results of typical circuit design applications. Also, the program structure from a systems programmer's viewpoint is depicted and flow charts and other software documentation are given.
Transient-Switch-Signal Suppressor
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.
Insulator photocurrents: Application to dose rate hardening of CMOS/SOI integrated circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont-Nivet, E.; Coiec, Y.M.; Flament, O.
1998-06-01
Irradiation of insulators with a pulse of high energy x-rays can induce photocurrents in the interconnections of integrated circuits. The authors present, here, a new method to measure and analyze this effect together with a simple model. They also demonstrate that these insulator photocurrents have to be taken into account to obtain high levels of dose-rate hardness with CMOS on SOI integrated circuits, especially flip-flops or memory blocks of ASICs. They show that it explains some of the upsets observed in a SRAM embedded in an ASIC.
Reward from bugs to bipeds: a comparative approach to understanding how reward circuits function
Scaplen, Kristin M.; Kaun, Karla R.
2016-01-01
Abstract In a complex environment, animals learn from their responses to stimuli and events. Appropriate response to reward and punishment can promote survival, reproduction and increase evolutionary fitness. Interestingly, the neural processes underlying these responses are remarkably similar across phyla. In all species, dopamine is central to encoding reward and directing motivated behaviors, however, a comprehensive understanding of how circuits encode reward and direct motivated behaviors is still lacking. In part, this is a result of the sheer diversity of neurons, the heterogeneity of their responses and the complexity of neural circuits within which they are found. We argue that general features of reward circuitry are common across model organisms, and thus principles learned from invertebrate model organisms can inform research across species. In particular, we discuss circuit motifs that appear to be functionally equivalent from flies to primates. We argue that a comparative approach to studying and understanding reward circuit function provides a more comprehensive understanding of reward circuitry, and informs disorders that affect the brain’s reward circuitry. PMID:27328845
NASA Astrophysics Data System (ADS)
Pavlichin, Dmitri S.; Mabuchi, Hideo
2014-06-01
Nanoscale integrated photonic devices and circuits offer a path to ultra-low power computation at the few-photon level. Here we propose an optical circuit that performs a ubiquitous operation: the controlled, random-access readout of a collection of stored memory phases or, equivalently, the computation of the inner product of a vector of phases with a binary selector" vector, where the arithmetic is done modulo 2pi and the result is encoded in the phase of a coherent field. This circuit, a collection of cascaded interferometers driven by a coherent input field, demonstrates the use of coherence as a computational resource, and of the use of recently-developed mathematical tools for modeling optical circuits with many coupled parts. The construction extends in a straightforward way to the computation of matrix-vector and matrix-matrix products, and, with the inclusion of an optical feedback loop, to the computation of a weighted" readout of stored memory phases. We note some applications of these circuits for error correction and for computing tasks requiring fast vector inner products, e.g. statistical classification and some machine learning algorithms.
Bahar, Ali Newaz; Waheed, Sajjad
2016-01-01
The fundamental logical element of a quantum-dot cellular automata (QCA) circuit is majority voter gate (MV). The efficiency of a QCA circuit is depends on the efficiency of the MV. This paper presents an efficient single layer five-input majority voter gate (MV5). The structure of proposed MV5 is very simple and easy to implement in any logical circuit. This proposed MV5 reduce number of cells and use conventional QCA cells. However, using MV5 a multilayer 1-bit full-adder (FA) is designed. The functional accuracy of the proposed MV5 and FA are confirmed by QCADesigner a well-known QCA layout design and verification tools. Furthermore, the power dissipation of proposed circuits are estimated, which shows that those circuits dissipate extremely small amount of energy and suitable for reversible computing. The simulation outcomes demonstrate the superiority of the proposed circuit.
Circuit filling factor (CFF) for multiply tuned probes, revisited
NASA Astrophysics Data System (ADS)
Conradi, Mark S.; Zens, Albert P.
2018-07-01
The concept of circuit filling factor (CFF) is re-examined for multi-tuned, multi-inductor probe circuits. The CFF is the fraction of magnetic stored energy residing in the NMR coil. The CFF theorem states that the CFF sums to unity across all the resonant normal modes. It dictates that improved performance from a large CFF in one mode comes at the expense of CFF (and performance) at the other mode(s). Simple analytical calculations of two-mode circuits are used to demonstrate and confirm the CFF theorem. A triple-resonance circuit is calculated to show the large trade-offs involved there. The theorem can provide guidance for choosing the best circuit and relative inductances in multi-nuclear probes. The CFF is directly accessible from ball frequency-shift measurements. We give experimental measures of the CFF from ball shifts and compare to calculated values of the CFF, with good agreement.
Li, Jingsi; Wang, Huan; Chen, Xiangfei; Yin, Zuowei; Shi, Yuechun; Lu, Yanqing; Dai, Yitang; Zhu, Hongliang
2009-03-30
In this paper we report, to the best of our knowledge, the first experimental realization of distributed feedback (DFB) semiconductor lasers based on reconstruction-equivalent-chirp (REC) technology. Lasers with different lasing wavelengths are achieved simultaneously on one chip, which shows a potential for the REC technology in combination with the photonic integrated circuits (PIC) technology to be a possible method for monolithic integration, in that its fabrication is as powerful as electron beam technology and the cost and time-consuming are almost the same as standard holographic technology.
Charge Transport in Carbon Nanotubes-Polymer Composite Photovoltaic Cells
Ltaief, Adnen; Bouazizi, Abdelaziz; Davenas, Joel
2009-01-01
We investigate the dark and illuminated current density-voltage (J/V) characteristics of poly(2-methoxy-5-(2’-ethylhexyloxy)1-4-phenylenevinylene) (MEH-PPV)/single-walled carbon nanotubes (SWNTs) composite photovoltaic cells. Using an exponential band tail model, the conduction mechanism has been analysed for polymer only devices and composite devices, in terms of space charge limited current (SCLC) conduction mechanism, where we determine the power parameters and the threshold voltages. Elaborated devices for MEH-PPV:SWNTs (1:1) composites showed a photoresponse with an open-circuit voltage Voc of 0.4 V, a short-circuit current density JSC of 1 µA/cm² and a fill factor FF of 43%. We have modelised the organic photovoltaic devices with an equivalent circuit, where we calculated the series and shunt resistances.
Reduction of characteristic RL time for fast, efficient magnetic levitation
NASA Astrophysics Data System (ADS)
Li, Yuqing; Feng, Guosheng; Wang, Xiaofeng; Wu, Jizhou; Ma, Jie; Xiao, Liantuan; Jia, Suotang
2017-09-01
We demonstrate the reduction of characteristic time in resistor-inductor (RL) circuit for fast, efficient magnetic levitation according to Kirchhoff's circuit laws. The loading time is reduced by a factor of ˜4 when a high-power resistor is added in series with the coils. By using the controllable output voltage of power supply and voltage of feedback circuit, the loading time is further reduced by ˜ 3 times. The overshoot loading in advance of the scheduled magnetic field gradient is equivalent to continuously adding a resistor without heating. The magnetic field gradient with the reduced loading time is used to form the upward magnetic force against to the gravity of the cooled Cs atoms, and we obtain an effectively levitated loading of the Cs atoms to a crossed optical dipole trap.
Nonlinear analysis of a family of LC tuned inverters
NASA Technical Reports Server (NTRS)
Lee, F. C. Y.; Wilson, T. G.
1975-01-01
Four widely used self-oscillating dc-to-square-wave parallel inverters which employ an inductor-capacitor tuned network to determine the oscillation frequency are reduced to a common equivalent RLC network, The techniques of singular-point analysis and state-plane interpretations are employed to describe the steady-state and transient behavior of these circuits and to elucidate the three possible modes of operation: quasi-harmonic, relaxation, and discontinuous. Design guidelines are provided through a study of the influence of circuit parameter variations on the characteristics of oscillation and on frequency stability. Several examples are provided to illustrate the usefulness of this analysis when studying such problems as transistor emitter-to-base junction breakdown during oscillations and the design of starting circuits to insure self-excited oscillations in these inverters.
Spin-Based Devices for Magneto-Optoelectronic Integrated Circuits
2009-04-29
bulk material and matches that in quantum wells. While these simple linear relationships hold for spin-polarized light-emitting diodes (spin-LEDs...temperature. The quantum efficiency and hence r| increases with decreasing temperature. The individual circuit elements, 33 therefore, exhibit the...Injection, Threshold Reduction and Output Circular Polarization Modulation in Quantum Well and Quantum Dot Semiconductor Spin Polarized Lasers working
Mental Models of Elementary and Middle School Students in Analyzing Simple Battery and Bulb Circuits
ERIC Educational Resources Information Center
Jabot, Michael; Henry, David
2007-01-01
Written assessment items were developed to probe students' understanding of a variety of direct current (DC) resistive electric circuit concepts. The items were used to explore the mental models that grade 3-8 students use in explaining the direction of electric current and how electric current is affected by different configurations of simple…
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
This report describes an undergraduate course in digital subsystems. The course is divided into two major parts. Part I is entitled Electronic Circuits and Functional Units. The material in this part of the course proceeds from simple understandings of circuits to the progressively more complex functional units. Early emphasis is placed on basic…
Deconstructing and constructing innate immune functions using molecular sensors and actuators
NASA Astrophysics Data System (ADS)
Coutinho, Kester; Inoue, Takanari
2016-05-01
White blood cells such as neutrophils and macrophages are made competent for chemotaxis and phagocytosis -- the dynamic cellular behaviors that are hallmarks of their innate immune functions -- by the reorganization of complex biological circuits during differentiation. Conventional loss-of-function approaches have revealed that more than 100 genes participate in these cellular functions, and we have begun to understand the intricate signaling circuits that are built up from these gene products. We now appreciate: (1) that these circuits come in a variety of flavors -- so that we can make a distinction between genetic circuits, metabolic circuits and signaling circuits; and (2) that they are usually so complex that the assumption of multiple feedback loops, as well as that of crosstalk between seemingly independent pathways, is now routine. It has not escaped our notice, however, that just as physicists and electrical engineers have long been able to disentangle complex electric circuits simply by repetitive cycles of probing and measuring electric currents using a voltmeter, we might similarly be able to dissect these intricate biological circuits by incorporating equivalent approaches in the fields of cell biology and bioengineering. Existing techniques in biology for probing individual circuit components are unfortunately lacking, so that the overarching goal of drawing an exact circuit diagram for the whole cell -- complete with kinetic parameters for connections between individual circuit components -- is not yet in near sight. My laboratory and others have thus begun the development of a new series of molecular tools that can measurably investigate the circuit connectivity inside living cells, as if we were doing so on a silicon board. In these proceedings, I will introduce some of these techniques, provide examples of their implementation, and offer a perspective on directions moving forward.
NASA Astrophysics Data System (ADS)
Yang, Ningning; Xu, Cheng; Wu, Chaojun; Jia, Rong; Liu, Chongxin
2017-12-01
Memristor is a nonlinear “missing circuit element”, that can easily achieve chaotic oscillation. Memristor-based chaotic systems have received more and more attention. Research shows that fractional-order systems are more close to real systems. As an important parameter, the order can increase the flexibility and degree of freedom of the system. In this paper, a fractional-order generalized memristor, which consists of a diode bridge and a parallel circuit with an equivalent unit circuit and a linear resistance, is proposed. Frequency and electrical characteristics of the fractional-order memristor are analyzed. A chain structure circuit is used to implement the fractional-order unit circuit. Then replacing the conventional Chua’s diode by the fractional-order generalized memristor, a fractional-order memristor-based chaotic circuit is proposed. A large amount of research work has been done to investigate the influence of the order on the dynamical behaviors of the fractional-order memristor-based chaotic circuit. Varying with the order, the system enters the chaotic state from the periodic state through the Hopf bifurcation and period-doubling bifurcation. The chaotic state of the system has two types of attractors: single-scroll and double-scroll attractor. The stability theory of fractional-order systems is used to determine the minimum order occurring Hopf bifurcation. And the influence of the initial value on the system is analyzed. Circuit simulations are designed to verify the results of theoretical analysis and numerical simulation.
Electrical and Plasmonic Properties of Ligand-Free Sn(4+) -Doped In2 O3 (ITO) Nanocrystals.
Jagadeeswararao, Metikoti; Pal, Somnath; Nag, Angshuman; Sarma, D D
2016-03-03
Sn(4+) -doped In2 O3 (ITO) is a benchmark transparent conducting oxide material. We prepared ligand-free but colloidal ITO (8 nm, 10 % Sn(4+) ) nanocrystals (NCs) by using a post-synthesis surface-modification reaction. (CH3 )3 OBF4 removes the native oleylamine ligand from NC surfaces to give ligand-free, positively charged NCs that form a colloidal dispersion in polar solvents. Both oleylamine-capped and ligand-free ITO NCs exhibit intense absorption peaks, due to localized surface plasmon resonance (LSPR) at around λ=1950 nm. Compared with oleylamine-capped NCs, the electrical resistivity of ligand-free ITO NCs is lower by an order of magnitude (≈35 mΩ cm(-1) ). Resistivity over a wide range of temperatures can be consistently described as a composite of metallic ITO grains embedded in an insulating matrix by using a simple equivalent circuit, which provides an insight into the conduction mechanism in these systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Park, Joonam; Appiah, Williams Agyei; Byun, Seoungwoo; Jin, Dahee; Ryou, Myung-Hyun; Lee, Yong Min
2017-10-01
To overcome the limitation of simple empirical cycle life models based on only equivalent circuits, we attempt to couple a conventional empirical capacity loss model with Newman's porous composite electrode model, which contains both electrochemical reaction kinetics and material/charge balances. In addition, an electrolyte depletion function is newly introduced to simulate a sudden capacity drop at the end of cycling, which is frequently observed in real lithium-ion batteries (LIBs). When simulated electrochemical properties are compared with experimental data obtained with 20 Ah-level graphite/LiFePO4 LIB cells, our semi-empirical model is sufficiently accurate to predict a voltage profile having a low standard deviation of 0.0035 V, even at 5C. Additionally, our model can provide broad cycle life color maps under different c-rate and depth-of-discharge operating conditions. Thus, this semi-empirical model with an electrolyte depletion function will be a promising platform to predict long-term cycle lives of large-format LIB cells under various operating conditions.
Origin of anomalies and phase competitions around magnetic transition temperature in Pr0.7Ca0.3MnO3
NASA Astrophysics Data System (ADS)
Shah, Matiullah; Nadeem, M.; Atif, M.
2013-03-01
A polycrystalline sample of Pr0.7Ca0.3MnO3 is synthesized by the conventional solid-state reaction method and the phase formation is confirmed by x-ray diffraction. In this work, we addressed the phase competition issues in the vicinity of magnetic transition temperature and also established its correlation with oxygen contents of domains, disorder effects and heterogeneity in the material. The appearance and disappearance of anomaly in the vicinity of TC (128 K) with magnetic field is discussed in terms of establishment of short- and long-range networks between Mn3+ and Mn4+. Switching behaviour of two competing phases is analysed qualitatively and quantitatively, using an equivalent circuit model and magnetization analysis. The issue of coexisting phases is further substantiated using a simple depression angle approach of impedance plane plots. variable range hopping is found to be a better model than polaronic for explaining the transport properties of both competing phases below the magnetic transition temperature, 128 K.
Modeling and control of a self-sensing polymer metal composite actuator
NASA Astrophysics Data System (ADS)
Nam, Doan Ngoc Chi; Ahn, Kyoung Kwan
2014-02-01
An ion polymer metal composite (IPMC) is an electro-active polymer (EAP) that bends in response to a small applied electrical field as a result of mobility of cations in the polymer network and vice versa. One drawback in the use of an IPMC is the sensing problem for such a small size actuator. The aim of this paper is to develop a physical model for a self-sensing IPMC actuator and to verify its applicability for practical position control. Firstly, ion dynamics inside a polymer membrane is investigated with an asymmetric solution in the presence of distributed surface resistance. Based on this analysis, a modified equivalent circuit and a simple configuration to realize the self-sensing IPMC actuator are proposed. Mathematical modelling and experimental evaluation indicate that the bending curvature can be obtained accurately using several feedback voltage signals along with the IPMC length. Finally, the controllability of the developed self-sensing IPMC actuator is investigated using a robust position control. Experimental results prove that the self-sensing characteristics can be applied in engineering control problems to provide a more convenient sensing method for IPMC actuating systems.
NASA Astrophysics Data System (ADS)
Herrera, A.; Ali, H.; Punjabi, A.
2004-11-01
The unperturbed magnetic topology of DIII-D USN shot 115467 in the absence of ELMs and C-coils is described by the symmetric simple map (SSM) with the map parameter k=0.2623. For this k, the last good surface passes through x=0 and y=0.9995, q_edge=6.48 if six iterations of the SSM are taken to be equivalent to a single toroidal circuit of DIII-D, and the q_edge equals the q_edge in the DIII-D for shot 115467 [1]. The map parameter k represents the effects of the toroidal asymmetries. We study the changes in the last good surface and its destruction as the map parameter k is increased. This work is supported by NASA SHARP program and DE-FG02-02ER54673. [1] H. Ali, A. Punjabi, A. Boozer, and T. Evans, presented at the 31st European Physical Society Plasma Physics Meeting, London, UK, June 29, 2004, paper P2-172.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzi, P., E-mail: lorenzi@die.uniroma1.it; Rao, R.; Irrera, F.
2015-09-14
According to previous reports, filamentary electron transport in resistive switching HfO{sub 2}-based metal-insulator-metal structures can be modeled using a diode-like conduction mechanism with a series resistance. Taking the appropriate limits, the model allows simulating the high (HRS) and low (LRS) resistance states of the devices in terms of exponential and linear current-voltage relationships, respectively. In this letter, we show that this simple equivalent circuit approach can be extended to represent the progressive reset transition between the LRS and HRS if a generalized logistic growth model for the pre-exponential diode current factor is considered. In this regard, it is demonstrated heremore » that a Verhulst logistic model does not provide accurate results. The reset dynamics is interpreted as the sequential deactivation of multiple conduction channels spanning the dielectric film. Fitting results for the current-voltage characteristics indicate that the voltage sweep rate only affects the deactivation rate of the filaments without altering the main features of the switching dynamics.« less
High-Power Piezoelectric Acoustic-Electric Power Feedthru for Metal Walls
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Biederman, Will; Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Jones, Christopher; Aldrich, Jack; Chang, Zensheu
2008-01-01
Piezoelectric acoustic-electric power feed-through devices transfer electric power wirelessly through a solid wall by using acoustic waves. This approach allows for the removal of holes through structures. The technology is applicable to power supply for electric equipment inside sealed containers, vacuum or pressure vessels, etc where the holes on the wall are prohibitive or result in significant performance degrade or complex designs. In the author's previous work, 100-W electric power was transferred through a metal wall by a small, simple-structure piezoelectric device. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feedthru devices were analyzed by finite element model. An equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the analysis results, a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1-kW was successfully conducted. The methods to minimize the plate wave excitation on the wall were also analyzed. Both model analysis and experimental results are presented in detail in this presentation.
The Voronoi volume and molecular representation of molar volume: equilibrium simple fluids.
Hunjan, Jagtar Singh; Eu, Byung Chan
2010-04-07
The Voronoi volume of simple fluids was previously made use of in connection with volume transport phenomena in nonequilibrium simple fluids. To investigate volume transport phenomena, it is important to develop a method to compute the Voronoi volume of fluids in nonequilibrium. In this work, as a first step to this goal, we investigate the equilibrium limit of the nonequilibrium Voronoi volume together with its attendant related molar (molal) and specific volumes. It is proved that the equilibrium Voronoi volume is equivalent to the molar (molal) volume. The latter, in turn, is proved equivalent to the specific volume. This chain of equivalences provides an alternative procedure of computing the equilibrium Voronoi volume from the molar volume/specific volume. We also show approximate methods of computing the Voronoi and molar volumes from the information on the pair correlation function. These methods may be employed for their quick estimation, but also provide some aspects of the fluid structure and its relation to the Voronoi volume. The Voronoi volume obtained from computer simulations is fitted to a function of temperature and pressure in the region above the triple point but below the critical point. Since the fitting function is given in terms of reduced variables for the Lennard-Jones (LJ) model and the kindred volumes (i.e., specific and molar volumes) are in essence equivalent to the equation of state, the formula obtained is a reduced equation state for simple fluids obeying the LJ model potential in the range of temperature and pressure examined and hence can be used for other simple fluids.
A Simple Low-Cost Lock-In Amplifier for the Laboratory
ERIC Educational Resources Information Center
Sengupta, Sandip K.; Farnham, Jessica M.; Whitten, James E.
2005-01-01
The creation of a simple, low-cost lock-in amplifier (LIA) suitable for use in the chemistry teaching laboratory is described. The use of integrated circuits and few components are necessary to adequately accomplish lock-in amplification limited the total cost of construction to under US$100.
Measurement of luminescence decays: High performance at low cost
NASA Astrophysics Data System (ADS)
Sulkes, Mark; Sulkes, Zoe
2011-11-01
The availability of inexpensive ultra bright LEDs spanning the visible and near-ultraviolet combined with the availability of inexpensive electronics equipment makes it possible to construct a high performance luminescence lifetime apparatus (˜5 ns instrumental response or better) at low cost. A central need for time domain measurement systems is the ability to obtain short (˜1 ns or less) excitation light pulses from the LEDs. It is possible to build the necessary LED driver using a simple avalanche transistor circuit. We describe first a circuit to test for small signal NPN transistors that can avalanche. We then describe a final optimized avalanche mode circuit that we developed on a prototyping board by measuring driven light pulse duration as a function of the circuit on the board and passive component values. We demonstrate that the combination of the LED pulser and a 1P28 photomultiplier tube used in decay waveform acquisition has a time response that allows for detection and lifetime determination of luminescence decays down to ˜5 ns. The time response and data quality afforded with the same components in time-correlated single photon counting are even better. For time-correlated single photon counting an even simpler NAND-gate based LED driver circuit is also applicable. We also demonstrate the possible utility of a simple frequency domain method for luminescence lifetime determinations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, Kuniyasu, E-mail: kuniyasu.shimizu@it-chiba.ac.jp; Sekikawa, Munehisa; Inaba, Naohiko
2015-02-15
Bifurcations of complex mixed-mode oscillations denoted as mixed-mode oscillation-incrementing bifurcations (MMOIBs) have frequently been observed in chemical experiments. In a previous study [K. Shimizu et al., Physica D 241, 1518 (2012)], we discovered an extremely simple dynamical circuit that exhibits MMOIBs. Our model was represented by a slow/fast Bonhoeffer-van der Pol circuit under weak periodic perturbation near a subcritical Andronov-Hopf bifurcation point. In this study, we experimentally and numerically verify that our dynamical circuit captures the essence of the underlying mechanism causing MMOIBs, and we observe MMOIBs and chaos with distinctive waveforms in real circuit experiments.
Implementing quantum optics with parametrically driven superconducting circuits
NASA Astrophysics Data System (ADS)
Aumentado, Jose
Parametric coupling has received much attention, in part because it forms the core of many low-noise amplifiers in superconducting quantum information experiments. However, parametric coupling in superconducting circuits is, as a general rule, simple to generate and forms the basis of a methodology for interacting microwave fields at different frequencies. In the quantum regime, this has important consequences, allowing relative novices to do experiments in superconducting circuits today that were previously heroic efforts in quantum optics and cavity-QED. In this talk, I'll give an overview of some of our work demonstrating parametric coupling within the context of circuit-QED as well as some of the possibilities this concept creates in our field.
Optimized structural designs for stretchable silicon integrated circuits.
Kim, Dae-Hyeong; Liu, Zhuangjian; Kim, Yun-Soung; Wu, Jian; Song, Jizhou; Kim, Hoon-Sik; Huang, Yonggang; Hwang, Keh-Chih; Zhang, Yongwei; Rogers, John A
2009-12-01
Materials and design strategies for stretchable silicon integrated circuits that use non-coplanar mesh layouts and elastomeric substrates are presented. Detailed experimental and theoretical studies reveal many of the key underlying aspects of these systems. The results shpw, as an example, optimized mechanics and materials for circuits that exhibit maximum principal strains less than 0.2% even for applied strains of up to approximately 90%. Simple circuits, including complementary metal-oxide-semiconductor inverters and n-type metal-oxide-semiconductor differential amplifiers, validate these designs. The results suggest practical routes to high-performance electronics with linear elastic responses to large strain deformations, suitable for diverse applications that are not readily addressed with conventional wafer-based technologies.
Determination of the Pressure Equivalent Noise Signal of Vector Sensors in a Hybrid Array
2012-12-01
pressure sensors for acoustic signals raises the possibility of increased sonar array performance with smaller arrays. Caulk successfully...contribution of the preamplifier in the circuit was estimated as . So the Johnson noise of the sensor wires themselves is expected to dominate
A Simple Memristor Model for Circuit Simulations
NASA Astrophysics Data System (ADS)
Fullerton, Farrah-Amoy; Joe, Aaleyah; Gergel-Hackett, Nadine; Department of Chemistry; Physics Team
This work describes the development of a model for the memristor, a novel nanoelectronic technology. The model was designed to replicate the real-world electrical characteristics of previously fabricated memristor devices, but was constructed with basic circuit elements using a free widely available circuit simulator, LT Spice. The modeled memrsistors were then used to construct a circuit that performs material implication. Material implication is a digital logic that can be used to perform all of the same basic functions as traditional CMOS gates, but with fewer nanoelectronic devices. This memristor-based digital logic could enable memristors' use in new paradigms of computer architecture with advantages in size, speed, and power over traditional computing circuits. Additionally, the ability to model the real-world electrical characteristics of memristors in a free circuit simulator using its standard library of elements could enable not only the development of memristor material implication, but also the development of a virtually unlimited array of other memristor-based circuits.
Martins, G B; Büsser, C A; Al-Hassanieh, K A; Anda, E V; Moreo, A; Dagotto, E
2006-02-17
Numerical calculations are shown to reproduce the main results of recent experiments involving nonlocal spin control in quantum dots [Craig, Science 304, 565 (2004).]. In particular, the experimentally reported zero-bias-peak splitting is clearly observed in our studies. To understand these results, a simple "circuit model" is introduced and shown to qualitatively describe the experiments. The main idea is that the splitting originates in a Fano antiresonance, which is caused by having one quantum dot side connected in relation to the current's path. This scenario provides an explanation of the results of Craig et al. that is an alternative to the RKKY proposal, also addressed here.
Design of portable valuables touch alarm circuit
NASA Astrophysics Data System (ADS)
Li, Biqing; Li, Zhao
2017-03-01
In this paper, the name of the alarm is portable touch burglar alarm. It not only has the advantages of high sensitivity, small size and light weight, but it is easy on the trigger, the circuit is simple and easy to be implemented, besides, it works stably. This alarm is featured with simple design, convenient use, strong flexibility and reliable performance, thus it can be installed on the door or window and even can be carried on human's body. When the human body touches the metal valuables that need to be protected, the device will start the alarm equipment so as to make the bell keep ringing, and the alarm sound stops until the power is cut off.
Wirelessly Interrogated Position or Displacement Sensors
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor, Bryant D.
2007-01-01
Two simple position or displacement sensors based on inductance-capacitance resonant circuits have been conceived. These sensors are both powered and interrogated without use of wires and without making contact with other objects. Instead, excitation and interrogation are accomplished by means of a magnetic-field-response recorder. Both of the present position or displacement sensors consist essentially of variable rectangular parallel-plate capacitors electrically connected in series with fixed inductors. Simple inductance-capacitance circuits of the type used in these sensors are inherently robust; their basic mode of operation does not depend on maintenance of specific environmental conditions. Hence, these sensors can be used under such harsh conditions as cryogenic temperatures, high pressures, and radioactivity.
Adler, D; Mahler, Y
1980-04-01
A procedure for automatic detection and digital processing of the maximum first derivative of the intraventricular pressure (dp/dtmax), time to dp/dtmax(t - dp/dt) and beat-to-beat intervals have been developed. The procedure integrates simple electronic circuits with a short program using a simple algorithm for the detection of the points of interest. The tasks of differentiating the pressure signal and detecting the onset of contraction were done by electronics, while the tasks of finding the values of dp/dtmax, t - dp/dt, beat-to-beat intervals and all computations needed were done by software. Software/hardware 'trade off' considerations and the accuracy and reliability of the system are discussed.
Magnetogasdynamic compression of a coaxial plasma accelerator flow for micrometeoroid simulation
NASA Technical Reports Server (NTRS)
Igenbergs, E. B.; Shriver, E. L.
1974-01-01
A new configuration of a coaxial plasma accelerator with self-energized magnetic compressor coil attached is described. It is shown that the circuit may be treated theoretically by analyzing an equivalent circuit mesh. The results obtained from the theoretical analysis compare favorably with the results measured experimentally. Using this accelerator configuration, glass beads of 125 micron diameter were accelerated to velocities as high as 11 kilometers per second, while 700 micron diameter glass beads were accelerated to velocities as high as 5 kilometers per second. The velocities are within the hypervelocity regime of meteoroids.
Using the Rasch Model to Determine Equivalence of Forms In the Trilingual Lollipop Readiness Test
ERIC Educational Resources Information Center
Lang, W. Steve; Chew, Alex L.; Crownover, Carol; Wilkerson, Judy R.
2007-01-01
Determining the cross-cultural equivalence of multilingual tests is a challenge that is more complex than simple horizontal equating of test forms. This study examines the functioning of a trilingual test of preschool readiness to determine the equivalence. Different forms of the test have previously been examined using classical statistical…
NASA Astrophysics Data System (ADS)
Lai, Szu Cheng; Sharifzadeh Mirshekarloo, Meysam; Yao, Kui
2017-05-01
Piezoelectric shunt damping (PSD) utilizes an electrically-shunted piezoelectric damper attached on a panel structure to suppress the transmission of acoustic noise. The paper develops an understanding on the effects of equivalent series resistance (ESR) of the piezoelectric damper in a PSD system on noise mitigation performance, and demonstrates that an increased ESR leads to a significant rise in the noise transmissibility due to reduction in the system’s mechanical damping. It is further demonstrated with experimental results that ESR effects can be compensated in the shunt circuit to significantly improve the noise mitigation performance. A theoretical electrical equivalent model of the PSD incorporating the ESR is established for quantitative analysis of ESR effects on noise mitigation.
Connecting localized DNA strand displacement reactions
NASA Astrophysics Data System (ADS)
Mullor Ruiz, Ismael; Arbona, Jean-Michel; Lad, Amitkumar; Mendoza, Oscar; Aimé, Jean-Pierre; Elezgaray, Juan
2015-07-01
Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions.Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR02434J
A programming language for composable DNA circuits
Phillips, Andrew; Cardelli, Luca
2009-01-01
Recently, a range of information-processing circuits have been implemented in DNA by using strand displacement as their main computational mechanism. Examples include digital logic circuits and catalytic signal amplification circuits that function as efficient molecular detectors. As new paradigms for DNA computation emerge, the development of corresponding languages and tools for these paradigms will help to facilitate the design of DNA circuits and their automatic compilation to nucleotide sequences. We present a programming language for designing and simulating DNA circuits in which strand displacement is the main computational mechanism. The language includes basic elements of sequence domains, toeholds and branch migration, and assumes that strands do not possess any secondary structure. The language is used to model and simulate a variety of circuits, including an entropy-driven catalytic gate, a simple gate motif for synthesizing large-scale circuits and a scheme for implementing an arbitrary system of chemical reactions. The language is a first step towards the design of modelling and simulation tools for DNA strand displacement, which complements the emergence of novel implementation strategies for DNA computing. PMID:19535415
Perez-Carrasco, Ruben; Barnes, Chris P; Schaerli, Yolanda; Isalan, Mark; Briscoe, James; Page, Karen M
2018-04-25
Although the structure of a genetically encoded regulatory circuit is an important determinant of its function, the relationship between circuit topology and the dynamical behaviors it can exhibit is not well understood. Here, we explore the range of behaviors available to the AC-DC circuit. This circuit consists of three genes connected as a combination of a toggle switch and a repressilator. Using dynamical systems theory, we show that the AC-DC circuit exhibits both oscillations and bistability within the same region of parameter space; this generates emergent behaviors not available to either the toggle switch or the repressilator alone. The AC-DC circuit can switch on oscillations via two distinct mechanisms, one of which induces coherence into ensembles of oscillators. In addition, we show that in the presence of noise, the AC-DC circuit can behave as an excitable system capable of spatial signal propagation or coherence resonance. Together, these results demonstrate how combinations of simple motifs can exhibit multiple complex behaviors. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
A programming language for composable DNA circuits.
Phillips, Andrew; Cardelli, Luca
2009-08-06
Recently, a range of information-processing circuits have been implemented in DNA by using strand displacement as their main computational mechanism. Examples include digital logic circuits and catalytic signal amplification circuits that function as efficient molecular detectors. As new paradigms for DNA computation emerge, the development of corresponding languages and tools for these paradigms will help to facilitate the design of DNA circuits and their automatic compilation to nucleotide sequences. We present a programming language for designing and simulating DNA circuits in which strand displacement is the main computational mechanism. The language includes basic elements of sequence domains, toeholds and branch migration, and assumes that strands do not possess any secondary structure. The language is used to model and simulate a variety of circuits, including an entropy-driven catalytic gate, a simple gate motif for synthesizing large-scale circuits and a scheme for implementing an arbitrary system of chemical reactions. The language is a first step towards the design of modelling and simulation tools for DNA strand displacement, which complements the emergence of novel implementation strategies for DNA computing.
Multipurpose silicon photonics signal processor core.
Pérez, Daniel; Gasulla, Ivana; Crudgington, Lee; Thomson, David J; Khokhar, Ali Z; Li, Ke; Cao, Wei; Mashanovich, Goran Z; Capmany, José
2017-09-21
Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.Integrated optical circuits today are typically designed for a few special functionalities and require complex design and development procedures. Here, the authors demonstrate a reconfigurable but simple silicon waveguide mesh with different functionalities.
A simple model of space radiation damage in GaAs solar cells
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Stith, J. J.; Stock, L. V.
1983-01-01
A simple model is derived for the radiation damage of shallow junction gallium arsenide (GaAs) solar cells. Reasonable agreement is found between the model and specific experimental studies of radiation effects with electron and proton beams. In particular, the extreme sensitivity of the cell to protons stopping near the cell junction is predicted by the model. The equivalent fluence concept is of questionable validity for monoenergetic proton beams. Angular factors are quite important in establishing the cell sensitivity to incident particle types and energies. A fluence of isotropic incidence 1 MeV electrons (assuming infinite backing) is equivalent to four times the fluence of normal incidence 1 MeV electrons. Spectral factors common to the space radiations are considered, and cover glass thickness required to minimize the initial damage for a typical cell configuration is calculated. Rough equivalence between the geosynchronous environment and an equivalent 1 MeV electron fluence (normal incidence) is established.
2014-01-01
Background The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer’s sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems. The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. Methods The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. Results We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers. Therefore, we performed a pulse-echo test using a single element transducer in order to utilize the crossed SMPS MOSFET-based protection circuit in an ultrasound system. Conclusions The SMPS-based protection circuit could be a viable alternative that provides better sensitivity, especially for high frequency ultrasound applications. PMID:24924595
Choi, Hojong; Shung, K Kirk
2014-06-12
The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer's sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems.The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers. Therefore, we performed a pulse-echo test using a single element transducer in order to utilize the crossed SMPS MOSFET-based protection circuit in an ultrasound system. The SMPS-based protection circuit could be a viable alternative that provides better sensitivity, especially for high frequency ultrasound applications.
ERIC Educational Resources Information Center
Ribaric, Samo; Kordas, Marjan
2011-01-01
Here, we report on a new tool for teaching cardiovascular physiology and pathophysiology that promotes qualitative as well as quantitative thinking about time-dependent physiological phenomena. Quantification of steady and presteady-state (transient) cardiovascular phenomena is traditionally done by differential equations, but this is time…
1984-11-28
equivalent circuit is simplified. Fig is an illustration of the cyclic voltametry of the ferricyanide/ferrocyanide couple at a thin ring electrode of...8217 but irreversible voltammogram for this fast redox couple at relatively low sweep speeds (2 7 ) * , *o.... 13 DISCUSSION It can be seen that the
ERP Evidence of Visualization at Early Stages of Visual Processing
ERIC Educational Resources Information Center
Page, Jonathan W.; Duhamel, Paul; Crognale, Michael A.
2011-01-01
Recent neuroimaging research suggests that early visual processing circuits are activated similarly during visualization and perception but have not demonstrated that the cortical activity is similar in character. We found functional equivalency in cortical activity by recording evoked potentials while color and luminance patterns were viewed and…
47 CFR 4.3 - Communications providers covered by the requirements of this part.
Code of Federal Regulations, 2010 CFR
2010-10-01
... providers that also provide circuit-switched telephony. Also included are affiliated and non-affiliated... their equivalents) and interoffice facilities used in the provision of interexchange or local exchange... communications, such as telephony and paging. Also included are affiliated and non-affiliated entities that...