DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubrovsky, V. G.; Topovsky, A. V.
New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums ofmore » special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.« less
NASA Astrophysics Data System (ADS)
Sabirov, K.; Rakhmanov, S.; Matrasulov, D.; Susanto, H.
2018-04-01
We consider the stationary sine-Gordon equation on metric graphs with simple topologies. Exact analytical solutions are obtained for different vertex boundary conditions. It is shown that the method can be extended for tree and other simple graph topologies. Applications of the obtained results to branched planar Josephson junctions and Josephson junctions with tricrystal boundaries are discussed.
A Large Class of Exact Solutions to the One-Dimensional Schrodinger Equation
ERIC Educational Resources Information Center
Karaoglu, Bekir
2007-01-01
A remarkable property of a large class of functions is exploited to generate exact solutions to the one-dimensional Schrodinger equation. The method is simple and easy to implement. (Contains 1 table and 1 figure.)
Khan, Kamruzzaman; Akbar, M Ali; Islam, S M Rayhanul
2014-01-01
In this work, recently developed modified simple equation (MSE) method is applied to find exact traveling wave solutions of nonlinear evolution equations (NLEEs). To do so, we consider the (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony (DMBBM) equation and coupled Klein-Gordon (cKG) equations. Two classes of explicit exact solutions-hyperbolic and trigonometric solutions of the associated equations are characterized with some free parameters. Then these exact solutions correspond to solitary waves for particular values of the parameters. 02.30.Jr; 02.70.Wz; 05.45.Yv; 94.05.Fg.
NASA Astrophysics Data System (ADS)
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.
On symmetries, conservation laws and exact solutions of the nonlinear Schrödinger-Hirota equation
NASA Astrophysics Data System (ADS)
Akbulut, Arzu; Taşcan, Filiz
2018-04-01
In this paper, conservation laws and exact solution are found for nonlinear Schrödinger-Hirota equation. Conservation theorem is used for finding conservation laws. We get modified conservation laws for given equation. Modified simple equation method is used to obtain the exact solutions of the nonlinear Schrödinger-Hirota equation. It is shown that the suggested method provides a powerful mathematical instrument for solving nonlinear equations in mathematical physics and engineering.
Solving Simple Kinetics without Integrals
ERIC Educational Resources Information Center
de la Pen~a, Lisandro Herna´ndez
2016-01-01
The solution of simple kinetic equations is analyzed without referencing any topic from differential equations or integral calculus. Guided by the physical meaning of the rate equation, a systematic procedure is used to generate an approximate solution that converges uniformly to the exact solution in the case of zero, first, and second order…
Solutions of the cylindrical nonlinear Maxwell equations.
Xiong, Hao; Si, Liu-Gang; Ding, Chunling; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying
2012-01-01
Cylindrical nonlinear optics is a burgeoning research area which describes cylindrical electromagnetic wave propagation in nonlinear media. Finding new exact solutions for different types of nonlinearity and inhomogeneity to describe cylindrical electromagnetic wave propagation is of great interest and meaningful for theory and application. This paper gives exact solutions for the cylindrical nonlinear Maxwell equations and presents an interesting connection between the exact solutions for different cylindrical nonlinear Maxwell equations. We also provide some examples and discussion to show the application of the results we obtained. Our results provide the basis for solving complex systems of nonlinearity and inhomogeneity with simple systems.
New Exact Solutions of Relativistic Hydrodynamics for Longitudinally Expanding Fireballs
NASA Astrophysics Data System (ADS)
Csörgő, Tamás; Kasza, Gábor; Csanád, Máté; Jiang, Zefang
2018-06-01
We present new, exact, finite solutions of relativistic hydrodynamics for longitudinally expanding fireballs for arbitrary constant value of the speed of sound. These new solutions generalize earlier, longitudinally finite, exact solutions, from an unrealistic to a reasonable equation of state, characterized by a temperature independent (average) value of the speed of sound. Observables like the rapidity density and the pseudorapidity density are evaluated analytically, resulting in simple and easy to fit formulae that can be matched to the high energy proton-proton and heavy ion collision data at RHIC and LHC. In the longitudinally boost-invariant limit, these new solutions approach the Hwa-Bjorken solution and the corresponding rapidity distributions approach a rapidity plateaux.
Analytical solution for boundary heat fluxes from a radiating rectangular medium
NASA Technical Reports Server (NTRS)
Siegel, R.
1991-01-01
Reference is made to the work of Shah (1979) which demonstrated the possibility of partially integrating the radiative equations analytically to obtain an 'exact' solution. Shah's solution was given as a double integration of the modified Bessel function of order zero. Here, it is shown that the 'exact' solution for a rectangular region radiating to cold black walls can be conveniently derived, and expressed in simple form, by using an integral function, Sn, analogous to the exponential integral function appearing in plane-layer solutions.
Rayleigh-Bloch waves trapped by a periodic perturbation: exact solutions
NASA Astrophysics Data System (ADS)
Merzon, A.; Zhevandrov, P.; Romero Rodríguez, M. I.; De la Paz Méndez, J. E.
2018-06-01
Exact solutions describing the Rayleigh-Bloch waves for the two-dimensional Helmholtz equation are constructed in the case when the refractive index is a sum of a constant and a small amplitude function which is periodic in one direction and of finite support in the other. These solutions are quasiperiodic along the structure and exponentially decay in the orthogonal direction. A simple formula for the dispersion relation of these waves is obtained.
NASA Technical Reports Server (NTRS)
Lebedeff, S. A.; Hameed, S.
1975-01-01
The problem investigated can be solved exactly in a simple manner if the equations are written in terms of a similarity variable. The exact solution is used to explore two questions of interest in the modelling of urban air pollution, taking into account the distribution of surface concentration downwind of an area source and the distribution of concentration with height.
The Double-Well Potential in Quantum Mechanics: A Simple, Numerically Exact Formulation
ERIC Educational Resources Information Center
Jelic, V.; Marsiglio, F.
2012-01-01
The double-well potential is arguably one of the most important potentials in quantum mechanics, because the solution contains the notion of a state as a linear superposition of "classical" states, a concept which has become very important in quantum information theory. It is therefore desirable to have solutions to simple double-well potentials…
Use of variational methods in the determination of wind-driven ocean circulation
NASA Technical Reports Server (NTRS)
Gelos, R.; Laura, P. A. A.
1976-01-01
Simple polynomial approximations and a variational approach were used to predict wind-induced circulation in rectangular ocean basins. Stommel's and Munk's models were solved in a unified fashion by means of the proposed method. Very good agreement with exact solutions available in the literature was shown to exist. The method was then applied to more complex situations where an exact solution seems out of the question.
Simple Perturbation Example for Quantum Chemistry.
ERIC Educational Resources Information Center
Goodfriend, P. L.
1985-01-01
Presents a simple example that illustrates various aspects of the Rayleigh-Schrodinger perturbation theory. The example is a particularly good one because it is straightforward and can be compared with both the exact solution and with experimental data. (JN)
Exact solutions for network rewiring models
NASA Astrophysics Data System (ADS)
Evans, T. S.
2007-03-01
Evolving networks with a constant number of edges may be modelled using a rewiring process. These models are used to describe many real-world processes including the evolution of cultural artifacts such as family names, the evolution of gene variations, and the popularity of strategies in simple econophysics models such as the minority game. The model is closely related to Urn models used for glasses, quantum gravity and wealth distributions. The full mean field equation for the degree distribution is found and its exact solution and generating solution are given.
Quantum decay model with exact explicit analytical solution
NASA Astrophysics Data System (ADS)
Marchewka, Avi; Granot, Er'El
2009-01-01
A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.
Analytical study of the critical behavior of the nonlinear pendulum
NASA Astrophysics Data System (ADS)
Lima, F. M. S.
2010-11-01
The dynamics of a simple pendulum consisting of a small bob and a massless rigid rod has three possible regimes depending on its total energy E: Oscillatory (when E is not enough for the pendulum to reach the top position), "perpetual ascent" when E is exactly the energy needed to reach the top, and nonoscillatory for greater energies. In the latter regime, the pendulum rotates periodically without velocity inversions. In contrast to the oscillatory regime, for which an exact analytic solution is known, the other two regimes are usually studied by solving the equation of motion numerically. By applying conservation of energy, I derive exact analytical solutions to both the perpetual ascent and nonoscillatory regimes and an exact expression for the pendulum period in the nonoscillatory regime. Based on Cromer's approximation for the large-angle pendulum period, I find a simple approximate expression for the decrease of the period with the initial velocity in the nonoscillatory regime, valid near the critical velocity. This expression is used to study the critical slowing down, which is observed near the transition between the oscillatory and nonoscillatory regimes.
Some new exact solitary wave solutions of the van der Waals model arising in nature
NASA Astrophysics Data System (ADS)
Bibi, Sadaf; Ahmed, Naveed; Khan, Umar; Mohyud-Din, Syed Tauseef
2018-06-01
This work proposes two well-known methods, namely, Exponential rational function method (ERFM) and Generalized Kudryashov method (GKM) to seek new exact solutions of the van der Waals normal form for the fluidized granular matter, linked with natural phenomena and industrial applications. New soliton solutions such as kink, periodic and solitary wave solutions are established coupled with 2D and 3D graphical patterns for clarity of physical features. Our comparison reveals that the said methods excel several existing methods. The worked-out solutions show that the suggested methods are simple and reliable as compared to many other approaches which tackle nonlinear equations stemming from applied sciences.
Exactly and quasi-exactly solvable 'discrete' quantum mechanics.
Sasaki, Ryu
2011-03-28
A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.
Applications of He's semi-inverse method, ITEM and GGM to the Davey-Stewartson equation
NASA Astrophysics Data System (ADS)
Zinati, Reza Farshbaf; Manafian, Jalil
2017-04-01
We investigate the Davey-Stewartson (DS) equation. Travelling wave solutions were found. In this paper, we demonstrate the effectiveness of the analytical methods, namely, He's semi-inverse variational principle method (SIVPM), the improved tan(φ/2)-expansion method (ITEM) and generalized G'/G-expansion method (GGM) for seeking more exact solutions via the DS equation. These methods are direct, concise and simple to implement compared to other existing methods. The exact solutions containing four types solutions have been achieved. The results demonstrate that the aforementioned methods are more efficient than the Ansatz method applied by Mirzazadeh (2015). Abundant exact travelling wave solutions including solitons, kink, periodic and rational solutions have been found by the improved tan(φ/2)-expansion and generalized G'/G-expansion methods. By He's semi-inverse variational principle we have obtained dark and bright soliton wave solutions. Also, the obtained semi-inverse variational principle has profound implications in physical understandings. These solutions might play important role in engineering and physics fields. Moreover, by using Matlab, some graphical simulations were done to see the behavior of these solutions.
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang
2018-03-01
During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained between our solutions and other published exact solutions. In addition, stability tests are performed to demonstrate that our exact solutions can safely be used to detect shallow subsurface targets.
Time-evolving bubbles in two-dimensional stokes flow
NASA Technical Reports Server (NTRS)
Tanveer, Saleh; Vasconcelos, Giovani L.
1994-01-01
A general class of exact solutions is presented for a time evolving bubble in a two-dimensional slow viscous flow in the presence of surface tension. These solutions can describe a bubble in a linear shear flow as well as an expanding or contracting bubble in an otherwise quiescent flow. In the case of expanding bubbles, the solutions have a simple behavior in the sense that for essentially arbitrary initial shapes the bubble will asymptote an expanding circle. Contracting bubbles, on the other hand, can develop narrow structures ('near-cusps') on the interface and may undergo 'break up' before all the bubble-fluid is completely removed. The mathematical structure underlying the existence of these exact solutions is also investigated.
Tachyon and quintessence in brane worlds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chimento, Luis P.; Forte, Monica; Richarte, Martin G.
2009-04-15
Using tachyon or quintessence fields along with a barotropic fluid on the brane we examine the different cosmological stages in a Friedmann-Robertson-Walker universe, from the first radiation scenario to the later era dominated by cosmic string networks. We introduce a new algorithm to generalize previous works on exact solutions and apply it to study tachyon and quintessence fields localized on the brane. We also explore the low and high energy regimes of the solutions. Besides, we show that the tachyon and quintessence fields are driven by an inverse power law potential. Finally, we find several simple exacts solutions for tachyonmore » and/or quintessence fields.« less
Exact semiclassical expansions for one-dimensional quantum oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delabaere, E.; Dillinger, H.; Pham, F.
1997-12-01
A set of rules is given for dealing with WKB expansions in the one-dimensional analytic case, whereby such expansions are not considered as approximations but as exact encodings of wave functions, thus allowing for analytic continuation with respect to whichever parameters the potential function depends on, with an exact control of small exponential effects. These rules, which include also the case when there are double turning points, are illustrated on various examples, and applied to the study of bound state or resonance spectra. In the case of simple oscillators, it is thus shown that the Rayleigh{endash}Schr{umlt o}dinger series is Borelmore » resummable, yielding the exact energy levels. In the case of the symmetrical anharmonic oscillator, one gets a simple and rigorous justification of the Zinn-Justin quantization condition, and of its solution in terms of {open_quotes}multi-instanton expansions.{close_quotes} {copyright} {ital 1997 American Institute of Physics.}« less
A new mathematical solution for predicting char activation reactions
Rafsanjani, H.H.; Jamshidi, E.; Rostam-Abadi, M.
2002-01-01
The differential conservation equations that describe typical gas-solid reactions, such as activation of coal chars, yield a set of coupled second-order partial differential equations. The solution of these coupled equations by exact analytical methods is impossible. In addition, an approximate or exact solution only provides predictions for either reaction- or diffusion-controlling cases. A new mathematical solution, the quantize method (QM), was applied to predict the gasification rates of coal char when both chemical reaction and diffusion through the porous char are present. Carbon conversion rates predicted by the QM were in closer agreement with the experimental data than those predicted by the random pore model and the simple particle model. ?? 2002 Elsevier Science Ltd. All rights reserved.
The problem of exact interior solutions for rotating rigid bodies in general relativity
NASA Technical Reports Server (NTRS)
Wahlquist, H. D.
1993-01-01
The (3 + 1) dyadic formalism for timelike congruences is applied to derive interior solutions for stationary, axisymmetric, rigidly rotating bodies. In this approach the mathematics is formulated in terms of three-space-covariant, first-order, vector-dyadic, differential equations for a and Omega, the acceleration and angular velocity three-vectors of the rigid body; for T, the stress dyadic of the matter; and for A and B, the 'electric' and 'magnetic' Weyl curvature dyadics which describe the gravitational field. It is shown how an appropriate ansatz for the forms of these dyadics can be used to discover exact rotating interior solutions such as the perfect fluid solution first published in 1968. By incorporating anisotropic stresses, a generalization is found of that previous solution and, in addition, a very simple new solution that can only exist in toroidal configurations.
NASA Astrophysics Data System (ADS)
Andrianov, A. A.; Cannata, F.; Kamenshchik, A. Yu.
2012-11-01
We show that the simple extension of the method of obtaining the general exact solution for the cosmological model with the exponential scalar-field potential to the case when the dust is present fails, and we discuss the reasons of this puzzling phenomenon.
NASA Astrophysics Data System (ADS)
Grants, Ilmārs; Bojarevičs, Andris; Gerbeth, Gunter
2016-06-01
Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.
Localized light waves: Paraxial and exact solutions of the wave equation (a review)
NASA Astrophysics Data System (ADS)
Kiselev, A. P.
2007-04-01
Simple explicit localized solutions are systematized over the whole space of a linear wave equation, which models the propagation of optical radiation in a linear approximation. Much attention has been paid to exact solutions (which date back to the Bateman findings) that describe wave beams (including Bessel-Gauss beams) and wave packets with a Gaussian localization with respect to the spatial variables and time. Their asymptotics with respect to free parameters and at large distances are presented. A similarity between these exact solutions and harmonic in time fields obtained in the paraxial approximation based on the Leontovich-Fock parabolic equation has been studied. Higher-order modes are considered systematically using the separation of variables method. The application of the Bateman solutions of the wave equation to the construction of solutions to equations with dispersion and nonlinearity and their use in wavelet analysis, as well as the summation of Gaussian beams, are discussed. In addition, solutions localized at infinity known as the Moses-Prosser “acoustic bullets”, as well as their harmonic in time counterparts, “ X waves”, waves from complex sources, etc., have been considered. Everywhere possible, the most elementary mathematical formalism is used.
On the Debye-Hückel effect of electric screening
NASA Astrophysics Data System (ADS)
Campos, L. M. B. C.; Lau, F. J. P.
2014-07-01
The paper considers non-linear self-consistent electric potential equation (Sec. I), due to a cloud made of a single species of electric charges, satisfying a Boltzmann distribution law (Sec. II). Exact solutions are obtained in a simple logarithmic form, in three cases: (Sec. III) spherical radial symmetry; (Sec. IV) plane parallel symmetry; (Sec. V) a special case of azimuthal-cylindrical symmetry. All these solutions, and their transformations (Sec. VI), involve the Debye-Hückel radius; the latter was originally defined from a solution of the linearized self-consistent potential equation. Using an exact solution of the self-consistent potential equation, the distance at which the potential vanishes differs from the Debye-Hückel radius by a factor of √2 . The preceding (Secs. II-VI) simple logarithmic exact solutions of the self-consistent potential equations involve no arbitrary constants, and thus are special or singular integrals not the general integral. The general solution of the self-consistent potential equation is obtained in the plane parallel case (Sec. VII), and it involves two arbitrary constants that can be reduced to one via a translation (Sec. VIII). The plots of dimensionless potential (Figure 1), electric field (Figure 2), charge density (Figure 3), and total charge between ζ and infinity (Figure 4), versus distance normalized to Debye-Hückel radius ζ ≡ z/a, show that (Sec. IX) there is a continuum of solutions, ranging from a charge distribution concentrated inside the Debye-Hückel radius to one spread-out beyond it. The latter case leads to the limiting case of logarithmic potential, and stronger electric field; the former case, of very concentrated charge distribution, leads to a fratricide effect and weaker electric field.
On the Debye–Hückel effect of electric screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, L. M. B. C.; Lau, F. J. P.
2014-07-15
The paper considers non-linear self-consistent electric potential equation (Sec. I), due to a cloud made of a single species of electric charges, satisfying a Boltzmann distribution law (Sec. II). Exact solutions are obtained in a simple logarithmic form, in three cases: (Sec. III) spherical radial symmetry; (Sec. IV) plane parallel symmetry; (Sec. V) a special case of azimuthal-cylindrical symmetry. All these solutions, and their transformations (Sec. VI), involve the Debye-Hückel radius; the latter was originally defined from a solution of the linearized self-consistent potential equation. Using an exact solution of the self-consistent potential equation, the distance at which the potentialmore » vanishes differs from the Debye-Hückel radius by a factor of √(2). The preceding (Secs. II–VI) simple logarithmic exact solutions of the self-consistent potential equations involve no arbitrary constants, and thus are special or singular integrals not the general integral. The general solution of the self-consistent potential equation is obtained in the plane parallel case (Sec. VII), and it involves two arbitrary constants that can be reduced to one via a translation (Sec. VIII). The plots of dimensionless potential (Figure 1), electric field (Figure 2), charge density (Figure 3), and total charge between ζ and infinity (Figure 4), versus distance normalized to Debye-Hückel radius ζ ≡ z/a, show that (Sec. IX) there is a continuum of solutions, ranging from a charge distribution concentrated inside the Debye-Hückel radius to one spread-out beyond it. The latter case leads to the limiting case of logarithmic potential, and stronger electric field; the former case, of very concentrated charge distribution, leads to a fratricide effect and weaker electric field.« less
Class of Exact Solutions for a Cosmological Model of Unified Gravitational and Quintessence Fields
NASA Astrophysics Data System (ADS)
Asenjo, Felipe A.; Hojman, Sergio A.
2017-07-01
A new approach to tackle Einstein equations for an isotropic and homogeneous Friedmann-Robertson-Walker Universe in the presence of a quintessence scalar field is devised. It provides a way to get a simple exact solution to these equations. This solution determines the quintessence potential uniquely and it differs from solutions which have been used to study inflation previously. It relays on a unification of geometry and dark matter implemented through the definition of a functional relation between the scale factor of the Universe and the quintessence field. For a positive curvature Universe, this solution produces perpetual accelerated expansion rate of the Universe, while the Hubble parameter increases abruptly, attains a maximum value and decreases thereafter. The behavior of this cosmological solution is discussed and its main features are displayed. The formalism is extended to include matter and radiation.
Exact results for models of multichannel quantum nonadiabatic transitions
Sinitsyn, N. A.
2014-12-11
We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form Hˆ(t)=Aˆ+Bˆt+Cˆ/t, where t is time and Aˆ,Bˆ,Cˆ are Hermitian N × N matrices. We show that in any model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence of the Stokes phenomenon for solutions with specific conditions at t→–∞. This allows one to continue such solutions analytically to t→+∞, and connect their asymptotic behavior at t→–∞ and t→+∞. This property becomes particularly useful when a model shows additional discrete symmetries. Specifically, we derive a number of simple exact constraints and explicitmore » expressions for scattering probabilities in such systems.« less
Localized solutions of Lugiato-Lefever equations with focused pump.
Cardoso, Wesley B; Salasnich, Luca; Malomed, Boris A
2017-12-04
Lugiato-Lefever (LL) equations in one and two dimensions (1D and 2D) accurately describe the dynamics of optical fields in pumped lossy cavities with the intrinsic Kerr nonlinearity. The external pump is usually assumed to be uniform, but it can be made tightly focused too-in particular, for building small pixels. We obtain solutions of the LL equations, with both the focusing and defocusing intrinsic nonlinearity, for 1D and 2D confined modes supported by the localized pump. In the 1D setting, we first develop a simple perturbation theory, based in the sech ansatz, in the case of weak pump and loss. Then, a family of exact analytical solutions for spatially confined modes is produced for the pump focused in the form of a delta-function, with a nonlinear loss (two-photon absorption) added to the LL model. Numerical findings demonstrate that these exact solutions are stable, both dynamically and structurally (the latter means that stable numerical solutions close to the exact ones are found when a specific condition, necessary for the existence of the analytical solution, does not hold). In 2D, vast families of stable confined modes are produced by means of a variational approximation and full numerical simulations.
A simple approximation for the current-voltage characteristics of high-power, relativistic diodes
Ekdahl, Carl
2016-06-10
A simple approximation for the current-voltage characteristics of a relativistic electron diode is presented. The approximation is accurate from non-relativistic through relativistic electron energies. Although it is empirically developed, it has many of the fundamental properties of the exact diode solutions. Lastly, the approximation is simple enough to be remembered and worked on almost any pocket calculator, so it has proven to be quite useful on the laboratory floor.
Coherent pulses in the diffusive transport of charged particles`
NASA Technical Reports Server (NTRS)
Kota, J.
1994-01-01
We present exact solutions to the diffusive transport of charged particles following impulsive injection for a simple model of scattering. A modified, two-parameter relaxation-time model is considered that simulates the low rate of scattering through perpendicular pitch-angle. Scattering is taken to be isotropic within each of the foward- and backward-pointing hemispheres, respectively, but, at the same time, a reduced rate of sccattering is assumed from one hemisphere to the other one. By applying a technique of Fourier- and Laplace-transform, the inverse transformation can be performed and exact solutions can be reached. By contrast with the first, and so far only exact solutions of Federov and Shakov, this wider class of solutions gives rise to coherent pulses to appear. The present work addresses omnidirectional densities for isotropic injection from an instantaneous and localized source. The dispersion relations are briefly discussed. We find, for this particular model, two diffusive models to exist up to a certain limiting wavenumber. The corresponding eigenvalues are real at the lowest wavenumbers. Complex eigenvalues, which are responsible for coherent pulses, appear at higher wavenumbers.
Cosmological solutions of low-energy heterotic M theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copeland, Edmund J.; Ellison, James; Roberts, Jonathan
We derive a set of exact cosmological solutions to the D=4, N=1 supergravity description of heterotic M theory. Having identified a new and exact SU(3) Toda model solution, we then apply symmetry transformations to both this solution and to a previously known SU(2) Toda model, in order to derive two further sets of new cosmological solutions. In the symmetry-transformed SU(3) Toda case we find an unusual bouncing motion for the M5 brane, such that this brane can be made to reverse direction part way through its evolution. This bounce occurs purely through the interaction of nonstandard kinetic terms, as theremore » are no explicit potentials in the action. We also present a perturbation calculation which demonstrates that, in a simple static limit, heterotic M theory possesses a scale-invariant isocurvature mode. This mode persists in certain asymptotic limits of all the solutions we have derived, including the bouncing solution.« less
Exact-Output Tracking Theory for Systems with Parameter Jumps
NASA Technical Reports Server (NTRS)
Devasia, Santosh; Paden, Brad; Rossi, Carlo
1996-01-01
In this paper we consider the exact output tracking problem for systems with parameter jumps. Necessary and sufficient conditions are derived for the elimination of switching-introduced output transient. Previous works have studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches). Such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is applicable to nonminimum-phase systems and obtains bounded but possibly non-causal solutions. If the reference trajectories are generated by an exo-system, then we develop an exact-tracking controller in a feedback form. As in standard regulator theory, we obtain a linear map from the states of the exo-system to the desired system state which is defined via a matrix differential equation. The constant solution of this differential equation provides asymptotic tracking, and coincides with the feedback law used in standard regulator theory. The obtained results are applied to a simple flexible manipulator with jumps in the pay-load mass.
Exact-Output Tracking Theory for Systems with Parameter Jumps
NASA Technical Reports Server (NTRS)
Devasia, Santosh; Paden, Brad; Rossi, Carlo
1997-01-01
We consider the exact output tracking problem for systems with parameter jumps. Necessary and sufficient conditions are derived for the elimination of switching-introduced output transient. Previous works have studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches). Such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is applicable to non-minimum-phase systems and it obtains bounded but possibly non-causal solutions. If the reference trajectories are generated by an exosystem, then we develop an exact-tracking controller in a feed-back form. As in standard regulator theory, we obtain a linear map from the states of the exosystem to the desired system state which is defined via a matrix differential equation. The constant solution of this differential equation provides asymptotic tracking, and coincides with the feedback law used in standard regulator theory. The obtained results are applied to a simple flexible manipulator with jumps in the pay-load mass.
Double-resolution electron holography with simple Fourier transform of fringe-shifted holograms.
Volkov, V V; Han, M G; Zhu, Y
2013-11-01
We propose a fringe-shifting holographic method with an appropriate image wave recovery algorithm leading to exact solution of holographic equations. With this new method the complex object image wave recovered from holograms appears to have much less traditional artifacts caused by the autocorrelation band present practically in all Fourier transformed holograms. The new analytical solutions make possible a double-resolution electron holography free from autocorrelation band artifacts and thus push the limits for phase resolution. The new image wave recovery algorithm uses a popular Fourier solution of the side band-pass filter technique, while the fringe-shifting holographic method is simple to implement in practice. Published by Elsevier B.V.
Some Remarks on Space-Time Decompositions, and Degenerate Metrics, in General Relativity
NASA Astrophysics Data System (ADS)
Bengtsson, Ingemar
Space-time decomposition of the Hilbert-Palatini action, written in a form which admits degenerate metrics, is considered. Simple numerology shows why D = 3 and 4 are singled out as admitting a simple phase space. The canonical structure of the degenerate sector turns out to be awkward. However, the real degenerate metrics obtained as solutions are the same as those that occur in Ashtekar's formulation of complex general relativity. An exact solution of Ashtekar's equations, with degenerate metric, shows that the manifestly four-dimensional form of the action, and its 3 + 1 form, are not quite equivalent.
Calculation of flexoelectric deformations of finite-size bodies
NASA Astrophysics Data System (ADS)
Yurkov, A. S.
2015-03-01
The previously developed approximate theory of flexoelectric deformations of finite-size bodies has been considered as applied to three special cases: a uniformly polarized ball, a uniformly polarized circular rod, and a uniformly polarized thin circular plate of an isotropic material. For these cases simple algebraic formulas have been derived. In the case of the ball, the solution is compared with the previously obtained exact solution.
Nonequilibrium Green's functions and atom-surface dynamics: Simple views from a simple model system
NASA Astrophysics Data System (ADS)
Boström, E.; Hopjan, M.; Kartsev, A.; Verdozzi, C.; Almbladh, C.-O.
2016-03-01
We employ Non-equilibrium Green's functions (NEGF) to describe the real-time dynamics of an adsorbate-surface model system exposed to ultrafast laser pulses. For a finite number of electronic orbitals, the system is solved exactly and within different levels of approximation. Specifically i) the full exact quantum mechanical solution for electron and nuclear degrees of freedom is used to benchmark ii) the Ehrenfest approximation (EA) for the nuclei, with the electron dynamics still treated exactly. Then, using the EA, electronic correlations are treated with NEGF within iii) 2nd Born and with iv) a recently introduced hybrid scheme, which mixes 2nd Born self-energies with non-perturbative, local exchange- correlation potentials of Density Functional Theory (DFT). Finally, the effect of a semi-infinite substrate is considered: we observe that a macroscopic number of de-excitation channels can hinder desorption. While very preliminary in character and based on a simple and rather specific model system, our results clearly illustrate the large potential of NEGF to investigate atomic desorption, and more generally, the non equilibrium dynamics of material surfaces subject to ultrafast laser fields.
Biktashev, Vadim N
2014-04-01
We consider a simple mathematical model of gradual Darwinian evolution in continuous time and continuous trait space, due to intraspecific competition for common resource in an asexually reproducing population in constant environment, while far from evolutionary stable equilibrium. The model admits exact analytical solution. In particular, Gaussian distribution of the trait emerges from generic initial conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinitsyn, N. A.
We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form Hˆ(t)=Aˆ+Bˆt+Cˆ/t, where t is time and Aˆ,Bˆ,Cˆ are Hermitian N × N matrices. We show that in any model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence of the Stokes phenomenon for solutions with specific conditions at t→–∞. This allows one to continue such solutions analytically to t→+∞, and connect their asymptotic behavior at t→–∞ and t→+∞. This property becomes particularly useful when a model shows additional discrete symmetries. Specifically, we derive a number of simple exact constraints and explicitmore » expressions for scattering probabilities in such systems.« less
Exact solution of a model DNA-inversion genetic switch with orientational control.
Visco, Paolo; Allen, Rosalind J; Evans, Martin R
2008-09-12
DNA inversion is an important mechanism by which bacteria and bacteriophage switch reversibly between phenotypic states. In such switches, the orientation of a short DNA element is flipped by a site-specific recombinase enzyme. We propose a simple model for a DNA-inversion switch in which recombinase production is dependent on the switch state (orientational control). Our model is inspired by the fim switch in E. coli. We present an exact analytical solution of the chemical master equation for the model switch, as well as stochastic simulations. Orientational control causes the switch to deviate from Poissonian behavior: the distribution of times in the on state shows a peak and successive flip times are correlated.
Exact solution of a ratchet with switching sawtooth potential
NASA Astrophysics Data System (ADS)
Saakian, David B.; Klümper, Andreas
2018-01-01
We consider the flashing potential ratchet model with general asymmetric potential. Using Bloch functions, we derive equations which allow for the calculation of both the ratchet's flux and higher moments of distribution for rather general potentials. We indicate how to derive the optimal transition rates for maximal velocity of the ratchet. We calculate explicitly the exact velocity of a ratchet with simple sawtooth potential from the solution of a system of 8 linear algebraic equations. Using Bloch functions, we derive the equations for the ratchet with potentials changing periodically with time. We also consider the case of the ratchet with evolution with two different potentials acting for some random periods of time.
Kümmel, Stephan; Perdew, John P
2003-01-31
For exchange-correlation functionals that depend explicitly on the Kohn-Sham orbitals, the potential V(xcsigma)(r) must be obtained as the solution of the optimized effective potential (OEP) integral equation. This is very demanding and has limited the use of orbital functionals. We demonstrate that instead the OEP can be obtained iteratively by solving the partial differential equations for the orbital shifts that exactify the Krieger-Li-Iafrate approximation. Unoccupied orbitals do not need to be calculated. Accuracy and efficiency of the method are shown for atoms and clusters using the exact-exchange energy. Counterintuitive asymptotic limits of the exact OEP are presented.
Delay chemical master equation: direct and closed-form solutions
Leier, Andre; Marquez-Lago, Tatiana T.
2015-01-01
The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived. PMID:26345616
Delay chemical master equation: direct and closed-form solutions.
Leier, Andre; Marquez-Lago, Tatiana T
2015-07-08
The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived.
Application of the θ-method to a telegraphic model of fluid flow in a dual-porosity medium
NASA Astrophysics Data System (ADS)
González-Calderón, Alfredo; Vivas-Cruz, Luis X.; Herrera-Hernández, Erik César
2018-01-01
This work focuses mainly on the study of numerical solutions, which are obtained using the θ-method, of a generalized Warren and Root model that includes a second-order wave-like equation in its formulation. The solutions approximately describe the single-phase hydraulic head in fractures by considering the finite velocity of propagation by means of a Cattaneo-like equation. The corresponding discretized model is obtained by utilizing a non-uniform grid and a non-uniform time step. A simple relationship is proposed to give the time-step distribution. Convergence is analyzed by comparing results from explicit, fully implicit, and Crank-Nicolson schemes with exact solutions: a telegraphic model of fluid flow in a single-porosity reservoir with relaxation dynamics, the Warren and Root model, and our studied model, which is solved with the inverse Laplace transform. We find that the flux and the hydraulic head have spurious oscillations that most often appear in small-time solutions but are attenuated as the solution time progresses. Furthermore, we show that the finite difference method is unable to reproduce the exact flux at time zero. Obtaining results for oilfield production times, which are in the order of months in real units, is only feasible using parallel implicit schemes. In addition, we propose simple parallel algorithms for the memory flux and for the explicit scheme.
The calculating hemispheres: studies of a split-brain patient.
Funnell, Margaret G; Colvin, Mary K; Gazzaniga, Michael S
2007-06-11
The purpose of the study was to investigate simple calculation in the two cerebral hemispheres of a split-brain patient. In a series of four experiments, the left hemisphere was superior to the right in simple calculation, confirming the previously reported left hemisphere specialization for calculation. In two different recognition paradigms, right hemisphere performance was at chance for all arithmetic operations, with the exception of subtraction in a two-alternative forced choice paradigm (performance was at chance when the lure differed from the correct answer by a magnitude of 1 but above chance when the magnitude difference was 4). In a recall paradigm, the right hemisphere performed above chance for both addition and subtraction, but performed at chance levels for multiplication and division. The error patterns in that experiment suggested that for subtraction and addition, the right hemisphere does have some capacity for approximating the solution even when it is unable to generate the exact solution. Furthermore, right hemisphere accuracy in addition and subtraction was higher for problems with small operands than with large operands. An additional experiment assessed approximate and exact addition in the two hemispheres for problems with small and large operands. The left hemisphere was equally accurate in both tasks but the right hemisphere was more accurate in approximate addition than in exact addition. In exact addition, right hemisphere accuracy was higher for problems with small operands than large, but the opposite pattern was found for approximate addition.
Recursive solution of number of reachable states of a simple subclass of FMS
NASA Astrophysics Data System (ADS)
Chao, Daniel Yuh
2014-03-01
This paper aims to compute the number of reachable (forbidden, live and deadlock) states for flexible manufacturing systems (FMS) without the construction of reachability graph. The problem is nontrivial and takes, in general, an exponential amount of time to solve. Hence, this paper focusses on a simple version of Systems of Simple Sequential Processes with Resources (S3PR), called kth-order system, where each resource place holds one token to be shared between two processes. The exact number of reachable (forbidden, live and deadlock) states can be computed recursively.
Exact axially symmetric galactic dynamos
NASA Astrophysics Data System (ADS)
Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.
2018-05-01
We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.
NASA Technical Reports Server (NTRS)
Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.
1975-01-01
The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.
NASA Astrophysics Data System (ADS)
Chicurel-Uziel, Enrique
2007-08-01
A pair of closed parametric equations are proposed to represent the Heaviside unit step function. Differentiating the step equations results in two additional parametric equations, that are also hereby proposed, to represent the Dirac delta function. These equations are expressed in algebraic terms and are handled by means of elementary algebra and elementary calculus. The proposed delta representation complies exactly with the values of the definition. It complies also with the sifting property and the requisite unit area and its Laplace transform coincides with the most general form given in the tables. Furthermore, it leads to a very simple method of solution of impulsive vibrating systems either linear or belonging to a large class of nonlinear problems. Two example solutions are presented.
Takahashi, Hideaki; Omi, Atsushi; Morita, Akihiro; Matubayasi, Nobuyuki
2012-06-07
We present a simple and exact numerical approach to compute the free energy contribution δμ in solvation due to the electron density polarization and fluctuation of a quantum-mechanical solute in the quantum-mechanical/molecular-mechanical (QM/MM) simulation combined with the theory of the energy representation (QM/MM-ER). Since the electron density fluctuation is responsible for the many-body QM-MM interactions, the standard version of the energy representation method cannot be applied directly. Instead of decomposing the QM-MM polarization energy into the pairwise additive and non-additive contributions, we take sum of the polarization energies in the QM-MM interaction and adopt it as a new energy coordinate for the method of energy representation. Then, it is demonstrated that the free energy δμ can be exactly formulated in terms of the energy distribution functions for the solution and reference systems with respect to this energy coordinate. The benchmark tests were performed to examine the numerical efficiency of the method with respect to the changes in the individual properties of the solvent and the solute. Explicitly, we computed the solvation free energy of a QM water molecule in ambient and supercritical water, and also the free-energy change associated with the isomerization reaction of glycine from neutral to zwitterionic structure in aqueous solution. In all the systems examined, it was demonstrated that the computed free energy δμ agrees with the experimental value, irrespective of the choice of the reference electron density of the QM solute. The present method was also applied to a prototype reaction of adenosine 5'-triphosphate hydrolysis where the effect of the electron density fluctuation is substantial due to the excess charge. It was demonstrated that the experimental free energy of the reaction has been accurately reproduced with the present approach.
NASA Technical Reports Server (NTRS)
Buglia, J. J.
1982-01-01
A simple tutorial method, based on a photon tracking procedure, is described to determine the spherical albedo for a thin atmosphere overlying a reflecting surface. This procedure is used to provide a physical structure with which to interpret the more detailed but highly mathematical analyses presented. The final equations are shown to be in good numerical agreement with more exact solutions for thin atmospheres.
Radiative transfer in falling snow: A two-stream approximation
NASA Astrophysics Data System (ADS)
Koh, Gary
1989-04-01
Light transmission measurements through falling snow have produced results unexplainable by single scattering arguments. A two-stream approximation to radiative transfer is used to derive an analytical expression that describes the effects of multiple scattering as a function of the snow optical depth and the snow asymmetry parameter. The approximate solution is simple and it may be as accurate as the exact solution for describing the transmission measurements within the limits of experimental uncertainties.
NASA Technical Reports Server (NTRS)
Bateman, H
1923-01-01
The principal result obtained in this report is a generalization of Taylor's formula for a simple eddy. The discussion of the properties of the eddy indicates that there is a slight analogy between the theory of eddies in a viscous fluid and the quantum theory of radiation. Another exact solution of the equations of motion of viscous fluid yields a result which reminds one of the well-known condition for instability in the case of a horizontally stratified atmosphere.
Induced drag ideal efficiency factor of arbitrary lateral-vertical wing forms
NASA Technical Reports Server (NTRS)
Deyoung, J.
1980-01-01
A relatively simple equation is presented for estimating the induced drag ideal efficiency factor e for arbitrary cross sectional wing forms. This equation is based on eight basic but varied wing configurations which have exact solutions. The e function which relates the basic wings is developed statistically and is a continuous function of configuration geometry. The basic wing configurations include boxwings shaped as a rectangle, ellipse, and diamond; the V-wing; end-plate wing; 90 degree cruciform; circle dumbbell; and biplane. Example applications of the e equations are made to many wing forms such as wings with struts which form partial span rectangle dumbbell wings; bowtie, cruciform, winglet, and fan wings; and multiwings. Derivations are presented in the appendices of exact closed form solutions found of e for the V-wing and 90 degree cruciform wing and for an asymptotic solution for multiwings.
Aziz, Taha; Mahomed, F M
2014-01-01
In this communication, we utilize some basic symmetry reductions to transform the governing nonlinear partial differential equations arising in the study of third-grade fluid flows into ordinary differential equations. We obtain some simple closed-form steady-state solutions of these reduced equations. Our solutions are valid for the whole domain [0,∞) and also satisfy the physical boundary conditions. We also present the numerical solutions for some of the underlying equations. The graphs corresponding to the essential physical parameters of the flow are presented and discussed.
Mahomed, F. M.
2014-01-01
In this communication, we utilize some basic symmetry reductions to transform the governing nonlinear partial differential equations arising in the study of third-grade fluid flows into ordinary differential equations. We obtain some simple closed-form steady-state solutions of these reduced equations. Our solutions are valid for the whole domain [0,∞) and also satisfy the physical boundary conditions. We also present the numerical solutions for some of the underlying equations. The graphs corresponding to the essential physical parameters of the flow are presented and discussed. PMID:25143962
Determination of stress intensity factors for interface cracks under mixed-mode loading
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.; Crews, John H., Jr.
1992-01-01
A simple technique was developed using conventional finite element analysis to determine stress intensity factors, K1 and K2, for interface cracks under mixed-mode loading. This technique involves the calculation of crack tip stresses using non-singular finite elements. These stresses are then combined and used in a linear regression procedure to calculate K1 and K2. The technique was demonstrated by calculating three different bimaterial combinations. For the normal loading case, the K's were within 2.6 percent of an exact solution. The normalized K's under shear loading were shown to be related to the normalized K's under normal loading. Based on these relations, a simple equation was derived for calculating K1 and K2 for mixed-mode loading from knowledge of the K's under normal loading. The equation was verified by computing the K's for a mixed-mode case with equal and normal shear loading. The correlation between exact and finite element solutions is within 3.7 percent. This study provides a simple procedure to compute K2/K1 ratio which has been used to characterize the stress state at the crack tip for various combinations of materials and loadings. Tests conducted over a range of K2/K1 ratios could be used to fully characterize interface fracture toughness.
Supporting the Virtual Soldier With a Physics-Based Software Architecture
2005-06-01
simple approach taken here). Rather, this paper demonstrates how existing solution schemes can rapidly expand; it embraces all theoretical solution... bodyj . In (5) the superscript ’T’ accompanying a vector denotes the transposition of the vector. The constraint force and moment are defined as F C=Z1 a a...FE codes as there are meshes, and the requested MD code. This is described next. Exactly how the PM instantiated each physics process became an issue
Investigating decoherence in a simple system
NASA Technical Reports Server (NTRS)
Albrecht, Andreas
1991-01-01
The results of some simple calculations designed to study quantum decoherence are presented. The physics of quantum decoherence are briefly reviewed, and a very simple 'toy' model is analyzed. Exact solutions are found using numerical techniques. The type of incoherence exhibited by the model can be changed by varying a coupling strength. The author explains why the conventional approach to studying decoherence by checking the diagonality of the density matrix is not always adequate. Two other approaches, the decoherence functional and the Schmidt paths approach, are applied to the toy model and contrasted to each other. Possible problems with each are discussed.
Cohomogeneity-one solutions in Einstein-Maxwell-dilaton gravity
NASA Astrophysics Data System (ADS)
Lim, Yen-Kheng
2017-05-01
The field equations for Einstein-Maxwell-dilaton gravity in D dimensions are reduced to an effective one-dimensional system under the influence of exponential potentials. Various cases where exact solutions can be found are explored. With this procedure, we present interesting solutions such as a one-parameter generalization of the dilaton-Melvin spacetime and a three-parameter solution that interpolates between the Reissner-Nordström and Bertotti-Robinson solutions. This procedure also allows simple, alternative derivations of known solutions such as the Lifshitz spacetime and the planar anti-de Sitter naked singularity. In the latter case, the metric is cast in a simpler form which reveals the presence of an additional curvature singularity.
NASA Technical Reports Server (NTRS)
Sucec, J.
1975-01-01
Solutions for the surface temperature and surface heat flux are found for laminar, constant property, slug flow over a plate convectively cooled from below, when the temperature of the fluid over the plate varies arbitrarily with time at the plate leading edge. A simple technique is presented for handling arbitrary fluid temperature variation with time by approximating it by a sequence of ramps or steps for which exact analytical solutions are available.
An approximate JKR solution for a general contact, including rough contacts
NASA Astrophysics Data System (ADS)
Ciavarella, M.
2018-05-01
In the present note, we suggest a simple closed form approximate solution to the adhesive contact problem under the so-called JKR regime. The derivation is based on generalizing the original JKR energetic derivation assuming calculation of the strain energy in adhesiveless contact, and unloading at constant contact area. The underlying assumption is that the contact area distributions are the same as under adhesiveless conditions (for an appropriately increased normal load), so that in general the stress intensity factors will not be exactly equal at all contact edges. The solution is simply that the indentation is δ =δ1 -√{ 2 wA‧ /P″ } where w is surface energy, δ1 is the adhesiveless indentation, A‧ is the first derivative of contact area and P‧‧ the second derivative of the load with respect to δ1. The solution only requires macroscopic quantities, and not very elaborate local distributions, and is exact in many configurations like axisymmetric contacts, but also sinusoidal waves contact and correctly predicts some features of an ideal asperity model used as a test case and not as a real description of a rough contact problem. The solution permits therefore an estimate of the full solution for elastic rough solids with Gaussian multiple scales of roughness, which so far was lacking, using known adhesiveless simple results. The result turns out to depend only on rms amplitude and slopes of the surface, and as in the fractal limit, slopes would grow without limit, tends to the adhesiveless result - although in this limit the JKR model is inappropriate. The solution would also go to adhesiveless result for large rms amplitude of roughness hrms, irrespective of the small scale details, and in agreement with common sense, well known experiments and previous models by the author.
Exact solutions in 3D new massive gravity.
Ahmedov, Haji; Aliev, Alikram N
2011-01-14
We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the "square root" of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.
Exact Solutions in 3D New Massive Gravity
NASA Astrophysics Data System (ADS)
Ahmedov, Haji; Aliev, Alikram N.
2011-01-01
We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the “square root” of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.
A direct connection between quantum Hall plateaus and exact pair states in a 2D electron gas
NASA Astrophysics Data System (ADS)
Hai, Wenhua; Li, Zejun; Xiao, Kewen
2011-12-01
It is previously found that the two-dimensional (2D) electron-pair in a homogeneous magnetic field has a set of exact solutions for a denumerably infinite set of magnetic fields. Here we demonstrate that as a function of magnetic field a band-like structure of energy associated with the exact pair states exists. A direct and simple connection between the pair states and the quantum Hall effect is revealed by the band-like structure of the hydrogen "pseudo-atom". From such a connection one can predict the sites and widths of the integral and fractional quantum Hall plateaus for an electron gas in a GaAs-Al x Ga1- x As heterojunction. The results are in good agreement with the existing experimental data.
Diffusion Influenced Adsorption Kinetics.
Miura, Toshiaki; Seki, Kazuhiko
2015-08-27
When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
Unstable flow structures in the Blasius boundary layer.
Wedin, H; Bottaro, A; Hanifi, A; Zampogna, G
2014-04-01
Finite amplitude coherent structures with a reflection symmetry in the spanwise direction of a parallel boundary layer flow are reported together with a preliminary analysis of their stability. The search for the solutions is based on the self-sustaining process originally described by Waleffe (Phys. Fluids 9, 883 (1997)). This requires adding a body force to the Navier-Stokes equations; to locate a relevant nonlinear solution it is necessary to perform a continuation in the nonlinear regime and parameter space in order to render the body force of vanishing amplitude. Some states computed display a spanwise spacing between streaks of the same length scale as turbulence flow structures observed in experiments (S.K. Robinson, Ann. Rev. Fluid Mech. 23, 601 (1991)), and are found to be situated within the buffer layer. The exact coherent structures are unstable to small amplitude perturbations and thus may be part of a set of unstable nonlinear states of possible use to describe the turbulent transition. The nonlinear solutions survive down to a displacement thickness Reynolds number Re * = 496 , displaying a 4-vortex structure and an amplitude of the streamwise root-mean-square velocity of 6% scaled with the free-stream velocity. At this Re* the exact coherent structure bifurcates supercritically and this is the point where the laminar Blasius flow starts to cohabit the phase space with alternative simple exact solutions of the Navier-Stokes equations.
A simple geometrical model describing shapes of soap films suspended on two rings
NASA Astrophysics Data System (ADS)
Herrmann, Felix J.; Kilvington, Charles D.; Wildenberg, Rebekah L.; Camacho, Franco E.; Walecki, Wojciech J.; Walecki, Peter S.; Walecki, Eve S.
2016-09-01
We measured and analysed the stability of two types of soap films suspended on two rings using the simple conical frusta-based model, where we use common definition of conical frustum as a portion of a cone that lies between two parallel planes cutting it. Using frusta-based we reproduced very well-known results for catenoid surfaces with and without a central disk. We present for the first time a simple conical frusta based spreadsheet model of the soap surface. This very simple, elementary, geometrical model produces results surprisingly well matching the experimental data and known exact analytical solutions. The experiment and the spreadsheet model can be used as a powerful teaching tool for pre-calculus and geometry students.
Numerical uncertainty in computational engineering and physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemez, Francois M
2009-01-01
Obtaining a solution that approximates ordinary or partial differential equations on a computational mesh or grid does not necessarily mean that the solution is accurate or even 'correct'. Unfortunately assessing the quality of discrete solutions by questioning the role played by spatial and temporal discretizations generally comes as a distant third to test-analysis comparison and model calibration. This publication is contributed to raise awareness of the fact that discrete solutions introduce numerical uncertainty. This uncertainty may, in some cases, overwhelm in complexity and magnitude other sources of uncertainty that include experimental variability, parametric uncertainty and modeling assumptions. The concepts ofmore » consistency, convergence and truncation error are overviewed to explain the articulation between the exact solution of continuous equations, the solution of modified equations and discrete solutions computed by a code. The current state-of-the-practice of code and solution verification activities is discussed. An example in the discipline of hydro-dynamics illustrates the significant effect that meshing can have on the quality of code predictions. A simple method is proposed to derive bounds of solution uncertainty in cases where the exact solution of the continuous equations, or its modified equations, is unknown. It is argued that numerical uncertainty originating from mesh discretization should always be quantified and accounted for in the overall uncertainty 'budget' that supports decision-making for applications in computational physics and engineering.« less
On local search for bi-objective knapsack problems.
Liefooghe, Arnaud; Paquete, Luís; Figueira, José Rui
2013-01-01
In this article, a local search approach is proposed for three variants of the bi-objective binary knapsack problem, with the aim of maximizing the total profit and minimizing the total weight. First, an experimental study on a given structural property of connectedness of the efficient set is conducted. Based on this property, a local search algorithm is proposed and its performance is compared to exact algorithms in terms of runtime and quality metrics. The experimental results indicate that this simple local search algorithm is able to find a representative set of optimal solutions in most of the cases, and in much less time than exact algorithms.
Bounding filter - A simple solution to lack of exact a priori statistics.
NASA Technical Reports Server (NTRS)
Nahi, N. E.; Weiss, I. M.
1972-01-01
Wiener and Kalman-Bucy estimation problems assume that models describing the signal and noise stochastic processes are exactly known. When this modeling information, i.e., the signal and noise spectral densities for Wiener filter and the signal and noise dynamic system and disturbing noise representations for Kalman-Bucy filtering, is inexactly known, then the filter's performance is suboptimal and may even exhibit apparent divergence. In this paper a system is designed whereby the actual estimation error covariance is bounded by the covariance calculated by the estimator. Therefore, the estimator obtains a bound on the actual error covariance which is not available, and also prevents its apparent divergence.
Multiple bubbles in a Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasconcelos, G.L.
A new class of exact solutions is reported for an infinite stream of identical groups of bubbles moving with a constant velocity [ital U] in a Hele-Shaw cell when surface tension is neglected. It is suggested that the existence of these solutions might explain some of the complex behavior observed in recent experiments on rising bubbles in a Hele-Shaw cell. Solutions for a finite number of bubbles in a channel are also obtained. In this case, it is shown that solutions with an arbitrary bubble velocity [ital U][gt][ital V], where [ital V] is the fluid velocity at infinity, can inmore » general be obtained from a simple transformation of the solutions for [ital U]=2[ital V].« less
Radiative interactions in multi-dimensional chemically reacting flows using Monte Carlo simulations
NASA Technical Reports Server (NTRS)
Liu, Jiwen; Tiwari, Surendra N.
1994-01-01
The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The amount and transfer of the emitted radiative energy in a finite volume element within a medium are considered in an exact manner. The spectral correlation between transmittances of two different segments of the same path in a medium makes the statistical relationship different from the conventional relationship, which only provides the non-correlated results for nongray methods is discussed. Validation of the Monte Carlo formulations is conducted by comparing results of this method of other solutions. In order to further establish the validity of the MCM, a relatively simple problem of radiative interactions in laminar parallel plate flows is considered. One-dimensional correlated Monte Carlo formulations are applied to investigate radiative heat transfer. The nongray Monte Carlo solutions are also obtained for the same problem and they also essentially match the available analytical solutions. the exact correlated and non-correlated Monte Carlo formulations are very complicated for multi-dimensional systems. However, by introducing the assumption of an infinitesimal volume element, the approximate correlated and non-correlated formulations are obtained which are much simpler than the exact formulations. Consideration of different problems and comparison of different solutions reveal that the approximate and exact correlated solutions agree very well, and so do the approximate and exact non-correlated solutions. However, the two non-correlated solutions have no physical meaning because they significantly differ from the correlated solutions. An accurate prediction of radiative heat transfer in any nongray and multi-dimensional system is possible by using the approximate correlated formulations. Radiative interactions are investigated in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The governing equations are based on the fully elliptic Navier-Stokes equations. Chemical reaction mechanisms were described by a finite rate chemistry model. The correlated Monte Carlo method developed earlier was employed to simulate multi-dimensional radiative heat transfer. Results obtained demonstrate that radiative effects on the flowfield are minimal but radiative effects on the wall heat transfer are significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and nozzle size on the radiative and conductive wall fluxes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, E.R.; Schwartz, S.
2010-03-15
Light scattering by aerosols plays an important role in Earth’s radiative balance, and quantification of this phenomenon is important in understanding and accounting for anthropogenic influences on Earth’s climate. Light scattering by an aerosol particle is determined by its radius and index of refraction, and for aerosol particles that are hygroscopic, both of these quantities vary with relative humidity RH. Here exact expressions are derived for the dependences of the radius ratio (relative to the volume-equivalent dry radius) and index of refraction on RH for aqueous solutions of single solutes. Both of these quantities depend on the apparent molal volumemore » of the solute in solution and on the practical osmotic coefficient of the solution, which in turn depend on concentration and thus implicitly on RH. Simple but accurate approximations are also presented for the RH dependences of both radius ratio and index of refraction for several atmospherically important inorganic solutes over the entire range of RH values for which these substances can exist as solution drops. For all substances considered, the radius ratio is accurate to within a few percent, and the index of refraction to within ~0.02, over this range of RH. Such parameterizations will be useful in radiation transfer models and climate models.« less
Prediction of sound absorption in rigid porous media with the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
da Silva, Andrey Ricardo; Mareze, Paulo; Brandão, Eric
2016-02-01
In this work, sound absorption phenomena associated with the viscous shear stress within rigid porous media is investigated with a simple isothermal lattice Boltzmann BGK model. Simulations are conducted for different macroscopic material properties such as sample thickness and porosity and the results are compared with the exact analytical solution for materials with slit-like structure in terms of acoustic impedance and sound absorption coefficient. The numerical results agree very well with the exact solution, particularly for the sound absorption coefficient. The small deviations found in the low frequency limit for the real part of the acoustic impedance are attributed to the ratio between the thicknesses of the slit and the viscous boundary layer. The results suggest that the lattice Boltzmann method can be a very compelling numerical tool for simulating viscous sound absorption phenomena in the time domain, particularly due to its computational simplicity when compared to traditional continuum based techniques.
The general Lie group and similarity solutions for the one-dimensional Vlasov-Maxwell equations
NASA Technical Reports Server (NTRS)
Roberts, D.
1985-01-01
The general Lie point transformation group and the associated reduced differential equations and similarity forms for the solutions are derived here for the coupled (nonlinear) Vlasov-Maxwell equations in one spatial dimension. The case of one species in a background is shown to admit a larger group than the multispecies case. Previous exact solutions are shown to be special cases of the above solutions, and many of the new solutions are found to constrain the form of the distribution function much more than, for example, the BGK solutions do. The individual generators of the Lie group are used to find the possible subgroups. Finally, a simple physical argument is given to show that the asymptotic solution for a one-species, one-dimensional plasma is one of the general similarity solutions.
1975-10-08
Aristotle Parmenides Philosophy Union of opposites...the union of opposites. Even in Heraclitus’s day, however, opinion on the problem of change was sharply divided; e.g., Parmenides regarded change...challenge. Also, if one closely examines the reasoning of Parmenides , one can advance it one step further. It is perfectly logical to state that
Localization in finite vibroimpact chains: Discrete breathers and multibreathers.
Grinberg, Itay; Gendelman, Oleg V
2016-09-01
We explore the dynamics of strongly localized periodic solutions (discrete solitons or discrete breathers) in a finite one-dimensional chain of oscillators. Localization patterns with both single and multiple localization sites (breathers and multibreathers) are considered. The model involves parabolic on-site potential with rigid constraints (the displacement domain of each particle is finite) and a linear nearest-neighbor coupling. When the particle approaches the constraint, it undergoes an inelastic impact according to Newton's impact model. The rigid nonideal impact constraints are the only source of nonlinearity and damping in the system. We demonstrate that this vibro-impact model allows derivation of exact analytic solutions for the breathers and multibreathers with an arbitrary set of localization sites, both in conservative and in forced-damped settings. Periodic boundary conditions are considered; exact solutions for other types of boundary conditions are also available. Local character of the nonlinearity permits explicit derivation of a monodromy matrix for the breather solutions. Consequently, the stability of the derived breather and multibreather solutions can be efficiently studied in the framework of simple methods of linear algebra, and with rather moderate computational efforts. One reveals that that the finiteness of the chain fragment and possible proximity of the localization sites strongly affect both the existence and the stability patterns of these localized solutions.
A new exact method for line radiative transfer
NASA Astrophysics Data System (ADS)
Elitzur, Moshe; Asensio Ramos, Andrés
2006-01-01
We present a new method, the coupled escape probability (CEP), for exact calculation of line emission from multi-level systems, solving only algebraic equations for the level populations. The CEP formulation of the classical two-level problem is a set of linear equations, and we uncover an exact analytic expression for the emission from two-level optically thick sources that holds as long as they are in the `effectively thin' regime. In a comparative study of a number of standard problems, the CEP method outperformed the leading line transfer methods by substantial margins. The algebraic equations employed by our new method are already incorporated in numerous codes based on the escape probability approximation. All that is required for an exact solution with these existing codes is to augment the expression for the escape probability with simple zone-coupling terms. As an application, we find that standard escape probability calculations generally produce the correct cooling emission by the CII 158-μm line but not by the 3P lines of OI.
A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo
A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).
Implicit versus explicit momentum relaxation time solution for semiconductor nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marin, E. G., E-mail: egmarin@ugr.es; Ruiz, F. G., E-mail: franruiz@ugr.es; Godoy, A., E-mail: agodoy@ugr.es
2015-07-14
We discuss the necessity of the exact implicit Momentum Relaxation Time (MRT) solution of the Boltzmann transport equation in order to achieve reliable carrier mobility results in semiconductor nanowires. Firstly, the implicit solution for a 1D electron gas with a isotropic bandstructure is presented resulting in the formulation of a simple matrix system. Using this solution as a reference, the explicit approach is demonstrated to be inaccurate for the calculation of inelastic anisotropic mechanisms such as polar optical phonons, characteristic of III-V materials. Its validity for elastic and isotropic mechanisms is also evaluated. Finally, the implications of the MRT explicitmore » approach inaccuracies on the total mobility of Si and III-V NWs are studied.« less
Analytical model of a corona discharge from a conical electrode under saturation
NASA Astrophysics Data System (ADS)
Boltachev, G. Sh.; Zubarev, N. M.
2012-11-01
Exact partial solutions are found for the electric field distribution in the outer region of a stationary unipolar corona discharge from an ideal conical needle in the space-charge-limited current mode with allowance for the electric field dependence of the ion mobility. It is assumed that only the very tip of the cone is responsible for the discharge, i.e., that the ionization zone is a point. The solutions are obtained by joining the spherically symmetric potential distribution in the drift space and the self-similar potential distribution in the space-charge-free region. Such solutions are outside the framework of the conventional Deutsch approximation, according to which the space charge insignificantly influences the shape of equipotential surfaces and electric lines of force. The dependence is derived of the corona discharge saturation current on the apex angle of the conical electrode and applied potential difference. A simple analytical model is suggested that describes drift in the point-plane electrode geometry under saturation as a superposition of two exact solutions for the field potential. In terms of this model, the angular distribution of the current density over the massive plane electrode is derived, which agrees well with Warburg's empirical law.
Cosmological Perturbation Theory and the Spherical Collapse model - I. Gaussian initial conditions
NASA Astrophysics Data System (ADS)
Fosalba, Pablo; Gaztanaga, Enrique
1998-12-01
We present a simple and intuitive approximation for solving the perturbation theory (PT) of small cosmic fluctuations. We consider only the spherically symmetric or monopole contribution to the PT integrals, which yields the exact result for tree-graphs (i.e. at leading order). We find that the non-linear evolution in Lagrangian space is then given by a simple local transformation over the initial conditions, although it is not local in Euler space. This transformation is found to be described by the spherical collapse (SC) dynamics, as it is the exact solution in the shearless (and therefore local) approximation in Lagrangian space. Taking advantage of this property, it is straightforward to derive the one-point cumulants, xi_J, for both the unsmoothed and smoothed density fields to arbitrary order in the perturbative regime. To leading-order this reproduces, and provides us with a simple explanation for, the exact results obtained by Bernardeau. We then show that the SC model leads to accurate estimates for the next corrective terms when compared with the results derived in the exact perturbation theory making use of the loop calculations. The agreement is within a few per cent for the hierarchical ratios S_J=xi_J/xi^J-1_2. We compare our analytic results with N-body simulations, which turn out to be in very good agreement up to scales where sigma~1. A similar treatment is presented to estimate higher order corrections in the Zel'dovich approximation. These results represent a powerful and readily usable tool to produce analytical predictions that describe the gravitational clustering of large-scale structure in the weakly non-linear regime.
Adiabatic pumping solutions in global AdS
NASA Astrophysics Data System (ADS)
Carracedo, Pablo; Mas, Javier; Musso, Daniele; Serantes, Alexandre
2017-05-01
We construct a family of very simple stationary solutions to gravity coupled to a massless scalar field in global AdS. They involve a constantly rising source for the scalar field at the boundary and thereby we name them pumping solutions. We construct them numerically in D = 4. They are regular and, generically, have negative mass. We perform a study of linear and nonlinear stability and find both stable and unstable branches. In the latter case, solutions belonging to different sub-branches can either decay to black holes or to limiting cycles. This observation motivates the search for non-stationary exactly timeperiodic solutions which we actually construct. We clarify the role of pumping solutions in the context of quasistatic adiabatic quenches. In D = 3 the pumping solutions can be related to other previously known solutions, like magnetic or translationally-breaking backgrounds. From this we derive an analytic expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, Jr., Robert; Israel, Daniel M.; Doebling, Scott William
For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returnedmore » at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.« less
An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet
NASA Technical Reports Server (NTRS)
Tang, C. C. H.
1986-01-01
This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.
An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet
NASA Astrophysics Data System (ADS)
Tang, C. C. H.
1986-08-01
This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.
A strategy for reducing gross errors in the generalized Born models of implicit solvation
Onufriev, Alexey V.; Sigalov, Grigori
2011-01-01
The “canonical” generalized Born (GB) formula [C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson, J. Am. Chem. Soc. 112, 6127 (1990)] is known to provide accurate estimates for total electrostatic solvation energies ΔGel of biomolecules if the corresponding effective Born radii are accurate. Here we show that even if the effective Born radii are perfectly accurate, the canonical formula still exhibits significant number of gross errors (errors larger than 2kBT relative to numerical Poisson equation reference) in pairwise interactions between individual atomic charges. Analysis of exact analytical solutions of the Poisson equation (PE) for several idealized nonspherical geometries reveals two distinct spatial modes of the PE solution; these modes are also found in realistic biomolecular shapes. The canonical GB Green function misses one of two modes seen in the exact PE solution, which explains the observed gross errors. To address the problem and reduce gross errors of the GB formalism, we have used exact PE solutions for idealized nonspherical geometries to suggest an alternative analytical Green function to replace the canonical GB formula. The proposed functional form is mathematically nearly as simple as the original, but depends not only on the effective Born radii but also on their gradients, which allows for better representation of details of nonspherical molecular shapes. In particular, the proposed functional form captures both modes of the PE solution seen in nonspherical geometries. Tests on realistic biomolecular structures ranging from small peptides to medium size proteins show that the proposed functional form reduces gross pairwise errors in all cases, with the amount of reduction varying from more than an order of magnitude for small structures to a factor of 2 for the largest ones. PMID:21528947
NASA Astrophysics Data System (ADS)
Denicol, Gabriel; Heinz, Ulrich; Martinez, Mauricio; Noronha, Jorge; Strickland, Michael
2014-12-01
We present an exact solution to the Boltzmann equation which describes a system undergoing boost-invariant longitudinal and azimuthally symmetric radial expansion for arbitrary shear viscosity to entropy density ratio. This new solution is constructed by considering the conformal map between Minkowski space and the direct product of three-dimensional de Sitter space with a line. The resulting solution respects S O (3 )q⊗S O (1 ,1 )⊗Z2 symmetry. We compare the exact kinetic solution with exact solutions of the corresponding macroscopic equations that were obtained from the kinetic theory in ideal and second-order viscous hydrodynamic approximations. The macroscopic solutions are obtained in de Sitter space and are subject to the same symmetries used to obtain the exact kinetic solution.
Exact Solution of the Two-Dimensional Problem on an Impact Ideal-Liquid Jet
NASA Astrophysics Data System (ADS)
Belik, V. D.
2018-05-01
The two-dimensional problem on the collision of a potential ideal-liquid jet, outflowing from a reservoir through a nozzle, with an infinite plane obstacle was considered for the case where the distance between the nozzle exit section and the obstacle is finite. An exact solution of this problem has been found using methods of the complex-variable function theory. Simple analytical expressions for the complex velocity of the liquid, its flow rate, and the force of action of the jet on the obstacle have been obtained. The velocity distributions of the liquid at the nozzle exit section, in the region of spreading of the jet, and at the obstacle have been constructed for different distances between the nozzle exit section and the obstacle. Analytical expressions for the thickness of the boundary layer and the Nusselt number at the point of stagnation of the jet have been obtained. A number of distributions of the local friction coefficient and the Nusselt number of the indicated jet are presented.
NASA Astrophysics Data System (ADS)
Fetecau, Constatin; Shah, Nehad Ali; Vieru, Dumitru
2017-12-01
The problem of hydromagnetic free convection flow over a moving infinite vertical plate with Newtonian heating, mass diffusion and chemical reaction in the presence of a heat source is completely solved. Radiative and porous effects are not taken into consideration but they can be immediately included by a simple rescaling of Prandtl number and magnetic parameter. Exact general solutions for the dimensionless velocity and concentration fields and the corresponding Sherwood number and skin friction coefficient are determined under integral form in terms of error function or complementary error function of Gauss. They satisfy all imposed initial and boundary conditions and can generate exact solutions for any problem with technical relevance of this type. As an interesting completion, uncommon in the literature, the differential equations which describe the thermal, concentration and momentum boundary layer, as well as the exact expressions for the thicknesses of thermal, concentration or velocity boundary layers were determined. Numerical results have shown that the thermal boundary layer thickness decreases for increasing values of Prandtl number and the concentration boundary layer thickness is decreasing with Schmidt number. Finally, for illustration, three special cases are considered and the influence of physical parameters on some fundamental motions is graphically underlined and discussed. The required time to reach the flow according with post-transient solution (the steady-state), for cosine/sine oscillating concentrations on the boundary is graphically determined. It is found that, the presence of destructive chemical reaction improves this time for increasing values of chemical reaction parameter.
How long does it take to boil an egg? A simple approach to the energy transfer equation
NASA Astrophysics Data System (ADS)
Roura, P.; Fort, J.; Saurina, J.
2000-01-01
The heating of simple geometric objects immersed in an isothermal bath is analysed qualitatively through Fourier's law. The approximate temperature evolution is compared with the exact solution obtained by solving the transport differential equation, the discrepancies being smaller than 20%. Our method succeeds in giving the solution as a function of the Fourier modulus so that the scale laws hold. It is shown that the time needed to homogenize temperature variations that extend over mean distances xm is approximately xm2/icons/Journals/Common/alpha" ALT="alpha" ALIGN="MIDDLE"/>, where icons/Journals/Common/alpha" ALT="alpha" ALIGN="MIDDLE"/> is the thermal diffusivity. This general relationship also applies to atomic diffusion. Within the approach presented there is no need to write down any differential equation. As an example, the analysis is applied to the process of boiling an egg.
Analytic solution of the lifeguard problem
NASA Astrophysics Data System (ADS)
De Luca, Roberto; Di Mauro, Marco; Naddeo, Adele
2018-03-01
A simple version due to Feynman of Fermat’s principle is analyzed. It deals with the path a lifeguard on a beach must follow to reach a drowning swimmer. The solution for the exact point, P(x, 0) , at the beach-sea boundary, corresponding to the fastest path to the swimmer, is worked out in detail and the analogy with light traveling at the air-water boundary is described. The results agree with the known conclusion that the shortest path does not coincide with the fastest one. The relevance of the subject for a basic physics course, at an advanced high school level, is pointed out.
Gödel universes in string theory
NASA Astrophysics Data System (ADS)
Barrow, John D.; Dabrowski, Mariusz P.
1998-11-01
We show that homogeneous Gödel spacetimes need not contain closed timelike curves in low-energy-effective string theories. We find exact solutions for the Gödel metric in string theory for the full O(α') action including both dilaton and axion fields. The results are valid for bosonic, heterotic and super-strings. To first order in the inverse string tension α', these solutions display a simple relation between the angular velocity of the Gödel universe, Ω, and the inverse string tension of the form α'=1/Ω2 in the absence of the axion field. The generalization of this relationship is also found when the axion field is present.
NASA Astrophysics Data System (ADS)
Foroutan, Mohammadreza; Zamanpour, Isa; Manafian, Jalil
2017-10-01
This paper presents a number of new solutions obtained for solving a complex nonlinear equation describing dynamics of nonlinear chains of atoms via the improved Bernoulli sub-ODE method (IBSOM) and the extended trial equation method (ETEM). The proposed solutions are kink solitons, anti-kink solitons, soliton solutions, hyperbolic solutions, trigonometric solutions, and bellshaped soliton solutions. Then our new results are compared with the well-known results. The methods used here are very simple and succinct and can be also applied to other nonlinear models. The balance number of these methods is not constant contrary to other methods. The proposed methods also allow us to establish many new types of exact solutions. By utilizing the Maple software package, we show that all obtained solutions satisfy the conditions of the studied model. More importantly, the solutions found in this work can have significant applications in Hamilton's equations and generalized momentum where solitons are used for long-range interactions.
Type IIB supergravity solution for the T-dual of the η-deformed AdS 5 × S 5 superstring
NASA Astrophysics Data System (ADS)
Hoare, B.; Tseytlin, A. A.
2015-10-01
We find an exact type IIB supergravity solution that represents a one-parameter deformation of the T-dual of the AdS 5 × S 5 background (with T-duality applied in all 6 abelian bosonic isometric directions). The non-trivial fields are the metric, dilaton and RR 5-form only. The latter has remarkably simple "undeformed" form when written in terms of a "deformation-rotated" vielbein basis. An unusual feature of this solution is that the dilaton contains a linear dependence on the isometric coordinates of the metric precluding a straightforward reversal of T-duality. If we still formally dualize back, we find exactly the metric, B-field and product of dilaton with RR field strengths as recently extracted from the η-deformed AdS 5 × S 5 superstring action in arXiv:1507.04239. We also discuss similar solutions for deformed AdS n × S n backgrounds with n = 2 , 3. In the η → i limit we demonstrate that all these backgrounds can be interpreted as special limits of gauged WZW models and are also related to (a limit of) the Pohlmeyer-reduced models of the AdS n × S n superstrings.
Study of analytical method to seek for exact solutions of variant Boussinesq equations.
Khan, Kamruzzaman; Akbar, M Ali
2014-01-01
In this paper, we have been acquired the soliton solutions of the Variant Boussinesq equations. Primarily, we have used the enhanced (G'/G)-expansion method to find exact solutions of Variant Boussinesq equations. Then, we attain some exact solutions including soliton solutions, hyperbolic and trigonometric function solutions of this equation. 35 K99; 35P05; 35P99.
Study of coupled nonlinear partial differential equations for finding exact analytical solutions.
Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H
2015-07-01
Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.
Numerical solution of the exact cavity equations of motion for an unstable optical resonator.
Bowers, M S; Moody, S E
1990-09-20
We solve numerically, we believe for the first time, the exact cavity equations of motion for a realistic unstable resonator with a simple gain saturation model. The cavity equations of motion, first formulated by Siegman ["Exact Cavity Equations for Lasers with Large Output Coupling," Appl. Phys. Lett. 36, 412-414 (1980)], and which we term the dynamic coupled modes (DCM) method of solution, solve for the full 3-D time dependent electric field inside the optical cavity by expanding the field in terms of the actual diffractive transverse eigenmodes of the bare (gain free) cavity with time varying coefficients. The spatially varying gain serves to couple the bare cavity transverse modes and to scatter power from mode to mode. We show that the DCM method numerically converges with respect to the number of eigenmodes in the basis set. The intracavity intensity in the numerical example shown reaches a steady state, and this steady state distribution is compared with that computed from the traditional Fox and Li approach using a fast Fourier transform propagation algorithm. The output wavefronts from both methods are quite similar, and the computed output powers agree to within 10%. The usefulness and advantages of using this method for predicting the output of a laser, especially pulsed lasers used for coherent detection, are discussed.
Study of coupled nonlinear partial differential equations for finding exact analytical solutions
Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.
2015-01-01
Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256
NASA Astrophysics Data System (ADS)
Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.
2018-04-01
We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.
NASA Astrophysics Data System (ADS)
Saengow, C.; Giacomin, A. J.
2017-12-01
The Oldroyd 8-constant framework for continuum constitutive theory contains a rich diversity of popular special cases for polymeric liquids. In this paper, we use part of our exact solution for shear stress to arrive at unique exact analytical solutions for the normal stress difference responses to large-amplitude oscillatory shear (LAOS) flow. The nonlinearity of the polymeric liquids, triggered by LAOS, causes these responses at even multiples of the test frequency. We call responses at a frequency higher than twice the test frequency higher harmonics. We find the new exact analytical solutions to be compact and intrinsically beautiful. These solutions reduce to those of our previous work on the special case of the corotational Maxwell fluid. Our solutions also agree with our new truncated Goddard integral expansion for the special case of the corotational Jeffreys fluid. The limiting behaviors of these exact solutions also yield new explicit expressions. Finally, we use our exact solutions to see how η∞ affects the normal stress differences in LAOS.
Constructing exact symmetric informationally complete measurements from numerical solutions
NASA Astrophysics Data System (ADS)
Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne
2018-04-01
Recently, several intriguing conjectures have been proposed connecting symmetric informationally complete quantum measurements (SIC POVMs, or SICs) and algebraic number theory. These conjectures relate the SICs to their minimal defining algebraic number field. Testing or sharpening these conjectures requires that the SICs are expressed exactly, rather than as numerical approximations. While many exact solutions of SICs have been constructed previously using Gröbner bases, this method has probably been taken as far as is possible with current computer technology (except in special cases where there are additional symmetries). Here, we describe a method for converting high-precision numerical solutions into exact ones using an integer relation algorithm in conjunction with the Galois symmetries of an SIC. Using this method, we have calculated 69 new exact solutions, including nine new dimensions, where previously only numerical solutions were known—which more than triples the number of known exact solutions. In some cases, the solutions require number fields with degrees as high as 12 288. We use these solutions to confirm that they obey the number-theoretic conjectures, and address two questions suggested by the previous work.
Integration of the Rotation of an Earth-like Body as a Perturbed Spherical Rotor
NASA Astrophysics Data System (ADS)
Ferrer, Sebastián; Lara, Martin
2010-05-01
For rigid bodies close to a sphere, we propose an analytical solution that is free from elliptic integrals and functions, and can be fundamental for application to perturbed problems. After reordering the Hamiltonian as a perturbed spherical rotor, the Lie-series solution is generated up to an arbitrary order. Using the inertia parameters of different solar system bodies, the comparison of the approximate series solution with the exact analytical one shows that the precision reached with relatively low orders is at the same level of the observational accuracy for the Earth and Mars. Thus, for instance, the periodic errors of the mathematical solution are confined to the microarcsecond level with a simple second-order truncation for the Earth. On the contrary, higher orders are required for the mathematical solution to reach a precision at the expected level of accuracy of proposed new theories for the rotational dynamics of the Moon.
Two simple models of classical heat pumps.
Marathe, Rahul; Jayannavar, A M; Dhar, Abhishek
2007-03-01
Motivated by recent studies of models of particle and heat quantum pumps, we study similar simple classical models and examine the possibility of heat pumping. Unlike many of the usual ratchet models of molecular engines, the models we study do not have particle transport. We consider a two-spin system and a coupled oscillator system which exchange heat with multiple heat reservoirs and which are acted upon by periodic forces. The simplicity of our models allows accurate numerical and exact solutions and unambiguous interpretation of results. We demonstrate that while both our models seem to be built on similar principles, one is able to function as a heat pump (or engine) while the other is not.
Nonlinear oscillator with power-form elastic-term: Fourier series expansion of the exact solution
NASA Astrophysics Data System (ADS)
Beléndez, Augusto; Francés, Jorge; Beléndez, Tarsicio; Bleda, Sergio; Pascual, Carolina; Arribas, Enrique
2015-05-01
A family of conservative, truly nonlinear, oscillators with integer or non-integer order nonlinearity is considered. These oscillators have only one odd power-form elastic-term and exact expressions for their period and solution were found in terms of Gamma functions and a cosine-Ateb function, respectively. Only for a few values of the order of nonlinearity, is it possible to obtain the periodic solution in terms of more common functions. However, for this family of conservative truly nonlinear oscillators we show in this paper that it is possible to obtain the Fourier series expansion of the exact solution, even though this exact solution is unknown. The coefficients of the Fourier series expansion of the exact solution are obtained as an integral expression in which a regularized incomplete Beta function appears. These coefficients are a function of the order of nonlinearity only and are computed numerically. One application of this technique is to compare the amplitudes for the different harmonics of the solution obtained using approximate methods with the exact ones computed numerically as shown in this paper. As an example, the approximate amplitudes obtained via a modified Ritz method are compared with the exact ones computed numerically.
NASA Astrophysics Data System (ADS)
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
Structure formation beyond shell-crossing: nonperturbative expansions and late-time attractors
NASA Astrophysics Data System (ADS)
Pietroni, Massimo
2018-06-01
Structure formation in 1+1 dimensions is considered, with emphasis on the effects of shell-crossing. The breakdown of the perturbative expansion beyond shell-crossing is discussed, and it is shown, in a simple example, that the perturbative series can be extended to a transseries including nonperturbative terms. The latter converges to the exact result well beyond the range of validity of perturbation theory. The crucial role of the divergences induced by shell-crossing is discussed. They provide constraints on the structure of the transseries and act as a bridge between the perturbative and the nonperturbative sectors. Then, we show that the dynamics in the deep multistreaming regime is governed by attractors. In the case of simple initial conditions, these attractors coincide with the asymptotic configurations of the adhesion model, but in general they may differ. These results are applied to a cosmological setting, and an algorithm to build the attractor solution starting from the Zel'dovich approximation is developed. Finally, this algorithm is applied to the search of `haloes' and the results are compared with those obtained from the exact dynamical equations.
FAST TRACK COMMUNICATION Time-dependent exact solutions of the nonlinear Kompaneets equation
NASA Astrophysics Data System (ADS)
Ibragimov, N. H.
2010-12-01
Time-dependent exact solutions of the Kompaneets photon diffusion equation are obtained for several approximations of this equation. One of the approximations describes the case when the induced scattering is dominant. In this case, the Kompaneets equation has an additional symmetry which is used for constructing some exact solutions as group invariant solutions.
Park, H M; Kim, T W
2009-01-21
Electrokinetic flows through hydrophobic microchannels experience velocity slip at the microchannel wall, which affects volumetric flow rate and solute retention time. The usual method of predicting the volumetric flow rate and velocity profile for hydrophobic microchannels is to solve the Navier-Stokes equation and the Poisson-Boltzmann equation for the electric potential with the boundary condition of velocity slip expressed by the Navier slip coefficient, which is computationally demanding and defies analytic solutions. In the present investigation, we have devised a simple method of predicting the velocity profiles and volumetric flow rates of electrokinetic flows by extending the concept of the Helmholtz-Smoluchowski velocity to microchannels with Navier slip. The extended Helmholtz-Smoluchowski velocity is simple to use and yields accurate results as compared to the exact solutions. Employing the extended Helmholtz-Smoluchowski velocity, the analytical expressions for volumetric flow rate and velocity profile for electrokinetic flows through rectangular microchannels with Navier slip have been obtained at high values of zeta potential. The range of validity of the extended Helmholtz-Smoluchowski velocity is also investigated.
Spread of epidemic disease on networks
NASA Astrophysics Data System (ADS)
Newman, M. E.
2002-07-01
The study of social networks, and in particular the spread of disease on networks, has attracted considerable recent attention in the physics community. In this paper, we show that a large class of standard epidemiological models, the so-called susceptible/infective/removed (SIR) models can be solved exactly on a wide variety of networks. In addition to the standard but unrealistic case of fixed infectiveness time and fixed and uncorrelated probability of transmission between all pairs of individuals, we solve cases in which times and probabilities are nonuniform and correlated. We also consider one simple case of an epidemic in a structured population, that of a sexually transmitted disease in a population divided into men and women. We confirm the correctness of our exact solutions with numerical simulations of SIR epidemics on networks.
Estimating radiofrequency power deposition in body NMR imaging.
Bottomley, P A; Redington, R W; Edelstein, W A; Schenck, J F
1985-08-01
Simple theoretical estimates of the average, maximum, and spatial variation of the radiofrequency power deposition (specific absorption rate) during hydrogen nuclear magnetic resonance imaging are deduced for homogeneous spheres and for cylinders of biological tissue with a uniformly penetrating linear rf field directed axially and transverse to the cylindrical axis. These are all simple scalar multiples of the expression for the cylinder in an axial field published earlier (Med. Phys. 8, 510 (1981]. Exact solutions for the power deposition in the cylinder with axial (Phys. Med. Biol. 23, 630 (1978] and transversely directed rf field are also presented, and the spatial variation of power deposition in head and body models is examined. In the exact models, the specific absorption rates decrease rapidly and monotonically with decreasing radius despite local increases in rf field amplitude. Conversion factors are provided for calculating the power deposited by Gaussian and sinc-modulated rf pulses used for slice selection in NMR imaging, relative to rectangular profiled pulses. Theoretical estimates are compared with direct measurements of the total power deposited in the bodies of nine adult males by a 63-MHz body-imaging system with transversely directed field, taking account of cable and NMR coil losses. The results for the average power deposition agree within about 20% for the exact model of the cylinder with axial field, when applied to the exposed torso volume enclosed by the rf coil. The average values predicted by the simple spherical and cylindrical models with axial fields, the exact cylindrical model with transverse field, and the simple truncated cylinder model with transverse field were about two to three times that measured, while the simple model consisting of an infinitely long cylinder with transverse field gave results about six times that measured. The surface power deposition measured by observing the incremental power as a function of external torso radius was comparable to the average value. This is consistent with the presence of a variable thickness peripheral adipose layer which does not substantially increase surface power deposition with increasing torso radius. The absence of highly localized intensity artifacts in 63-MHz body images does not suggest anomalously intense power deposition at localized internal sites, although peak power is difficult to measure.
The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations
NASA Technical Reports Server (NTRS)
Osher, Stanley
1989-01-01
Simple inequalities for the Riemann problem for a Hamilton-Jacobi equation in N space dimension when neither the initial data nor the Hamiltonian need be convex (or concave) are presented. The initial data is globally continuous, affine in each orthant, with a possible jump in normal derivative across each coordinate plane, x sub i = 0. The inequalities become equalities wherever a maxmin equals a minmax and thus an exact closed form solution to this problem is then obtained.
NASA Technical Reports Server (NTRS)
Freilich, M. H.; Pawka, S. S.
1987-01-01
The statistics of Sxy estimates derived from orthogonal-component measurements are examined. Based on results of Goodman (1957), the probability density function (pdf) for Sxy(f) estimates is derived, and a closed-form solution for arbitrary moments of the distribution is obtained. Characteristic functions are used to derive the exact pdf of Sxy(tot). In practice, a simple Gaussian approximation is found to be highly accurate even for relatively few degrees of freedom. Implications for experiment design are discussed, and a maximum-likelihood estimator for a posterior estimation is outlined.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Mikulas, Martin M., Jr.
2009-01-01
Simple formulas for the buckling stress of homogeneous, specially orthotropic, laminated-composite cylinders are presented. The formulas are obtained by using nondimensional parameters and equations that facilitate general validation, and are validated against the exact solution for a wide range of cylinder geometries and laminate constructions. Results are presented that establish the ranges of the nondimensional parameters and coefficients used. General results, given in terms of the nondimensional parameters, are presented that encompass a wide range of geometries and laminate constructions. These general results also illustrate a wide spectrum of behavioral trends. Design-oriented results are also presented that provide a simple, clear indication of laminate composition on critical stress, critical strain, and axial stiffness. An example is provided to demonstrate the application of these results to thin-walled column designs.
NASA Astrophysics Data System (ADS)
Akram, Ghazala; Mahak, Nadia
2018-06-01
The nonlinear Schrödinger equation (NLSE) with the aid of three order dispersion terms is investigated to find the exact solutions via the extended (G'/G2)-expansion method and the first integral method. Many exact traveling wave solutions, such as trigonometric, hyperbolic, rational, soliton and complex function solutions, are characterized with some free parameters of the problem studied. It is corroborated that the proposed techniques are manageable, straightforward and powerful tools to find the exact solutions of nonlinear partial differential equations (PDEs). Some figures are plotted to describe the propagation of traveling wave solutions expressed by the hyperbolic functions, trigonometric functions and rational functions.
Some new traveling wave exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli equations.
Qi, Jian-ming; Zhang, Fu; Yuan, Wen-jun; Huang, Zi-feng
2014-01-01
We employ the complex method to obtain all meromorphic exact solutions of complex (2+1)-dimensional Boiti-Leon-Pempinelli equations (BLP system of equations). The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all rational and simply periodic traveling wave exact solutions of the equations (BLP) are solitary wave solutions, the complex method is simpler than other methods, and there exist some rational solutions ur,2 (z) and simply periodic solutions us,2-6(z) which are not only new but also not degenerated successively by the elliptic function solutions. We believe that this method should play an important role for finding exact solutions in the mathematical physics. For these new traveling wave solutions, we give some computer simulations to illustrate our main results.
Exact traveling soliton solutions for the generalized Benjamin-Bona-Mahony equation
NASA Astrophysics Data System (ADS)
Boudoue Hubert, Malwe; Kudryashov, Nikolai A.; Justin, Mibaile; Abbagari, Souleymanou; Betchewe, Gambo; Doka, Serge Y.
2018-03-01
In this paper, we investigate the generalized Benjamin-Bona-Mahony equation which better describes long waves with arbitrary power-law nonlinearity. As a result, we obtain exact travelling wave soliton solutions, such as anti-kink soliton solution, bright soliton solution, dark soliton solution and periodic solution. These solutions have many free parameters such that they may be used to simulate many experimental situations. The main contribution, in this work, is to not apply the computer codes for construction of exact solutions and not consider the integration constants as zero, because they give all variants for solutions.
A new class of exact, nonlinear solutions to the Grad-Shafranov equation
NASA Technical Reports Server (NTRS)
Roumeliotis, George
1993-01-01
We have constructed a new class of exact, nonlinear solutions to the Grad-Shafranov equation, representing force-free magnetic fields with translational symmetry. These exact solutions are pertinent to the study of magnetic structures in the solar corona that are subjected to photospheric shearing motions.
Laplace-Beltrami operator and exact solutions for branes
NASA Astrophysics Data System (ADS)
Zheltukhin, A. A.
2013-02-01
Proposed is a new approach to finding exact solutions of nonlinear p-brane equations in D-dimensional Minkowski space based on the use of various initial value constraints. It is shown that the constraints Δx→=0 and Δx→=-Λ(t,σr)x→ give two sets of exact solutions.
Hypergeometric Equation in Modeling Relativistic Isotropic Sphere
NASA Astrophysics Data System (ADS)
Thirukkanesh, S.; Ragel, F. C.
2014-04-01
We study the Einstein system of equations in static spherically symmetric spacetimes. We obtained classes of exact solutions to the Einstein system by transforming the condition for pressure isotropy to a hypergeometric equation choosing a rational form for one of the gravitational potentials. The solutions are given in simple form that is a desirable requisite to study the behavior of relativistic compact objects in detail. A physical analysis indicate that our models satisfy all the fundamental requirements of realistic star and match smoothly with the exterior Schwarzschild metric. The derived masses and densities are consistent with the previously reported experimental and theoretical studies describing strange stars. The models satisfy the standard energy conditions required by normal matter.
NASA Astrophysics Data System (ADS)
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
The Equal-Width and Modified Equal-Width equations are used as a model in partial differential equations for the simulation of one-dimensional wave transmission in nonlinear media with dispersion processes. In this article we have employed extend simple equation method and the exp(-varphi(ξ)) expansion method to construct the exact traveling wave solutions of equal width and modified equal width equations. The obtained results are novel and have numerous applications in current areas of research in mathematical physics. It is exposed that our method, with the help of symbolic computation, provides a effective and powerful mathematical tool for solving different kind nonlinear wave problems.
NASA Astrophysics Data System (ADS)
Ghanbari, Behzad; Inc, Mustafa
2018-04-01
The present paper suggests a novel technique to acquire exact solutions of nonlinear partial differential equations. The main idea of the method is to generalize the exponential rational function method. In order to examine the ability of the method, we consider the resonant nonlinear Schrödinger equation (R-NLSE). Many variants of exact soliton solutions for the equation are derived by the proposed method. Physical interpretations of some obtained solutions is also included. One can easily conclude that the new proposed method is very efficient and finds the exact solutions of the equation in a relatively easy way.
Exact solutions for the entropy production rate of several irreversible processes.
Ross, John; Vlad, Marcel O
2005-11-24
We investigate thermal conduction described by Newton's law of cooling and by Fourier's transport equation and chemical reactions based on mass action kinetics where we detail a simple example of a reaction mechanism with one intermediate. In these cases we derive exact expressions for the entropy production rate and its differential. We show that at a stationary state the entropy production rate is an extremum if and only if the stationary state is a state of thermodynamic equilibrium. These results are exact and independent of any expansions of the entropy production rate. In the case of thermal conduction we compare our exact approach with the conventional approach based on the expansion of the entropy production rate near equilibrium. If we expand the entropy production rate in a series and keep terms up to the third order in the deviation variables and then differentiate, we find out that the entropy production rate is not an extremum at a nonequilibrium steady state. If there is a strict proportionality between fluxes and forces, then the entropy production rate is an extremum at the stationary state even if the stationary state is far away from equilibrium.
A simple and fast heuristic for protein structure comparison.
Pelta, David A; González, Juan R; Moreno Vega, Marcos
2008-03-25
Protein structure comparison is a key problem in bioinformatics. There exist several methods for doing protein comparison, being the solution of the Maximum Contact Map Overlap problem (MAX-CMO) one of the alternatives available. Although this problem may be solved using exact algorithms, researchers require approximate algorithms that obtain good quality solutions using less computational resources than the formers. We propose a variable neighborhood search metaheuristic for solving MAX-CMO. We analyze this strategy in two aspects: 1) from an optimization point of view the strategy is tested on two different datasets, obtaining an error of 3.5%(over 2702 pairs) and 1.7% (over 161 pairs) with respect to optimal values; thus leading to high accurate solutions in a simpler and less expensive way than exact algorithms; 2) in terms of protein structure classification, we conduct experiments on three datasets and show that is feasible to detect structural similarities at SCOP's family and CATH's architecture levels using normalized overlap values. Some limitations and the role of normalization are outlined for doing classification at SCOP's fold level. We designed, implemented and tested.a new tool for solving MAX-CMO, based on a well-known metaheuristic technique. The good balance between solution's quality and computational effort makes it a valuable tool. Moreover, to the best of our knowledge, this is the first time the MAX-CMO measure is tested at SCOP's fold and CATH's architecture levels with encouraging results.
NASA Astrophysics Data System (ADS)
Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen
2018-03-01
In this research, we investigate one of the most popular model in nature and also industrial which is the pressure equation of bubbly liquids with examination for viscosity and heat transfer which has many application in nature and engineering. Understanding the physical meaning of exact and solitary traveling wave solutions for this equation gives the researchers in this field a great clear vision of the pressure waves in a mixture liquid and gas bubbles taking into consideration the viscosity of liquid and the heat transfer and also dynamics of contrast agents in the blood flow at ultrasonic researches. To achieve our goal, we apply three different methods which are extended tanh-function method, extended simple equation method and a new auxiliary equation method on this equation. We obtained exact and solitary traveling wave solutions and we also discuss the similarity and difference between these three method and make a comparison between results that we obtained with another results that obtained with the different researchers using different methods. All of these results and discussion explained the fact that our new auxiliary equation method is considered to be the most general, powerful and the most result-oriented. These kinds of solutions and discussion allow for the understanding of the phenomenon and its intrinsic properties as well as the ease of way of application and its applicability to other phenomena.
Approximating the 0-1 Multiple Knapsack Problem with Agent Decomposition and Market Negotiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smolinski, B.
The 0-1 multiple knapsack problem appears in many domains from financial portfolio management to cargo ship stowing. Methods for solving it range from approximate algorithms, such as greedy algorithms, to exact algorithms, such as branch and bound. Approximate algorithms have no bounds on how poorly they perform and exact algorithms can suffer from exponential time and space complexities with large data sets. This paper introduces a market model based on agent decomposition and market auctions for approximating the 0-1 multiple knapsack problem, and an algorithm that implements the model (M(x)). M(x) traverses the solution space rather than getting caught inmore » a local maximum, overcoming an inherent problem of many greedy algorithms. The use of agents ensures that infeasible solutions are not considered while traversing the solution space and that traversal of the solution space is not just random, but is also directed. M(x) is compared to a bound and bound algorithm (BB) and a simple greedy algorithm with a random shuffle (G(x)). The results suggest that M(x) is a good algorithm for approximating the 0-1 Multiple Knapsack problem. M(x) almost always found solutions that were close to optimal in a fraction of the time it took BB to run and with much less memory on large test data sets. M(x) usually performed better than G(x) on hard problems with correlated data.« less
The mechanics of decompressive craniectomy: Bulging in idealized geometries
NASA Astrophysics Data System (ADS)
Weickenmeier, Johannes; Kuhl, Ellen; Goriely, Alain
2016-11-01
In extreme cases of traumatic brain injury or a stroke, the resulting uncontrollable swelling of the brain may lead to a harmful increase of the intracranial pressure. As a common measure for immediate release of pressure on the brain, part of the skull is surgically removed allowing for the brain to bulge outwards, a procedure known as a decompressive craniectomy. During this excessive brain swelling, the affected tissue typically undergoes large deformations resulting in a complex three-dimensional mechanical loading state with several important implications on optimal treatment strategies and outcome. Here, as a first step towards a better understanding of the mechanics of a decompressive craniectomy, we consider simple models for the bulging of elastic solids under geometric constraints representative of the surgical intervention. In small deformations and simple geometries, the exact solution of this problem is derived from the theory of contact mechanics. The analysis of these solutions reveals a number of interesting generic features relevant for the mechanics of craniectomy.
Petrović, Nikola Z; Belić, Milivoj; Zhong, Wei-Ping
2011-02-01
We obtain exact traveling wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation with variable coefficients and polynomial Kerr nonlinearity of an arbitrarily high order. Exact solutions, given in terms of Jacobi elliptic functions, are presented for the special cases of cubic-quintic and septic models. We demonstrate that the widely used method for finding exact solutions in terms of Jacobi elliptic functions is not applicable to the nonlinear Schrödinger equation with saturable nonlinearity. ©2011 American Physical Society
One-way invisibility in isotropic dielectric optical media
NASA Astrophysics Data System (ADS)
Horsley, S. A. R.; Longhi, S.
2017-06-01
Optical materials with a distribution of loss and gain can be used to manipulate waves in fascinating ways, seemingly impossible with ordinary lossless materials. Some recent results have shown that (for planar media) if the spatial distributions of the real and imaginary parts of the permittivity are related to one another by the Kramers-Kronig relations, then reflection can be eliminated. Moreover, if an additional "cancellation condition" is satisfied, then a material can be made invisible for incidence from one side. Here, we give a simple demonstration of these results that should be accessible to undergraduates. In addition, we show how this simple method can be used to prove results about the reflection from permittivity profiles, without ever requiring an exact solution of the Helmholtz equation.
Soliton and periodic solutions for time-dependent coefficient non-linear equation
NASA Astrophysics Data System (ADS)
Guner, Ozkan
2016-01-01
In this article, we establish exact solutions for the generalized (3+1)-dimensional variable coefficient Kadomtsev-Petviashvili (GVCKP) equation. Using solitary wave ansatz in terms of ? functions and the modified sine-cosine method, we find exact analytical bright soliton solutions and exact periodic solutions for the considered model. The physical parameters in the soliton solutions are obtained as function of the dependent model coefficients. The effectiveness and reliability of the method are shown by its application to the GVCKP equation.
Approach to first-order exact solutions of the Ablowitz-Ladik equation.
Ankiewicz, Adrian; Akhmediev, Nail; Lederer, Falk
2011-05-01
We derive exact solutions of the Ablowitz-Ladik (A-L) equation using a special ansatz that linearly relates the real and imaginary parts of the complex function. This ansatz allows us to derive a family of first-order solutions of the A-L equation with two independent parameters. This novel technique shows that every exact solution of the A-L equation has a direct analog among first-order solutions of the nonlinear Schrödinger equation (NLSE). © 2011 American Physical Society
Exact analytical solution to a transient conjugate heat-transfer problem
NASA Technical Reports Server (NTRS)
Sucec, J.
1973-01-01
An exact analytical solution is found for laminar, constant-property, slug flow over a thin plate which is also convectively cooled from below. The solution is found by means of two successive Laplace transformations when a transient in the plate and the fluid is initiated by a step change in the fluid inlet temperature. The exact solution yields the transient fluid temperature, surface heat flux, and surface temperature distributions. The results of the exact transient solution for the surface heat flux are compared to the quasi-steady values, and a criterion for the validity of the quasi-steady results is found. Also the effect of the plate coupling parameter on the surface heat flux are investigated.
An improved plate theory of order (1,2) for thick composite laminates
NASA Technical Reports Server (NTRS)
Tessler, A.
1992-01-01
A new (1,2)-order theory is proposed for the linear elasto-static analysis of laminated composite plates. The basic assumptions are those concerning the distribution through the laminate thickness of the displacements, transverse shear strains and the transverse normal stress, with these quantities regarded as some weighted averages of their exact elasticity theory representations. The displacement expansions are linear for the inplane components and quadratic for the transverse component, whereas the transverse shear strains and transverse normal stress are respectively quadratic and cubic through the thickness. The main distinguishing feature of the theory is that all strain and stress components are expressed in terms of the assumed displacements prior to the application of a variational principle. This is accomplished by an a priori least-square compatibility requirement for the transverse strains and by requiring exact stress boundary conditions at the top and bottom plate surfaces. Equations of equilibrium and associated Poisson boundary conditions are derived from the virtual work principle. It is shown that the theory is particularly suited for finite element discretization as it requires simple C(sup 0)- and C(sup -1)-continuous displacement interpolation fields. Analytic solutions for the problem of cylindrical bending are derived and compared with the exact elasticity solutions and those of our earlier (1,2)-order theory based on the assumed displacements and transverse strains.
Martirosyan, A; Saakian, David B
2011-08-01
We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs.
Solvation effects on chemical shifts by embedded cluster integral equation theory.
Frach, Roland; Kast, Stefan M
2014-12-11
The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution.
A generalized simplest equation method and its application to the Boussinesq-Burgers equation.
Sudao, Bilige; Wang, Xiaomin
2015-01-01
In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.
A Generalized Simplest Equation Method and Its Application to the Boussinesq-Burgers Equation
Sudao, Bilige; Wang, Xiaomin
2015-01-01
In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method. PMID:25973605
Exact phase boundaries and topological phase transitions of the X Y Z spin chain
NASA Astrophysics Data System (ADS)
Jafari, S. A.
2017-07-01
Within the block spin renormalization group, we give a very simple derivation of the exact phase boundaries of the X Y Z spin chain. First, we identify the Ising order along x ̂ or y ̂ as attractive renormalization group fixed points of the Kitaev chain. Then, in a global phase space composed of the anisotropy λ of the X Y interaction and the coupling Δ of the Δ σzσz interaction, we find that the above fixed points remain attractive in the two-dimesional parameter space. We therefore classify the gapped phases of the X Y Z spin chain as: (1) either attracted to the Ising limit of the Kitaev-chain, which in turn is characterized by winding number ±1 , depending on whether the Ising order parameter is along x ̂ or y ̂ directions; or (2) attracted to the charge density wave (CDW) phases of the underlying Jordan-Wigner fermions, which is characterized by zero winding number. We therefore establish that the exact phase boundaries of the X Y Z model in Baxter's solution indeed correspond to topological phase transitions. The topological nature of the phase transitions of the X Y Z model justifies why our analytical solution of the three-site problem that is at the core of the present renormalization group treatment is able to produce the exact phase boundaries of Baxter's solution. We argue that the distribution of the winding numbers between the three Ising phases is a matter of choice of the coordinate system, and therefore the CDW-Ising phase is entitled to host appropriate form of zero modes. We further observe that in the Kitaev-chain the renormalization group flow can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is actually the size of the (Majorana) zero modes.
Exact analytical solution of a classical Josephson tunnel junction problem
NASA Astrophysics Data System (ADS)
Kuplevakhsky, S. V.; Glukhov, A. M.
2010-10-01
We give an exact and complete analytical solution of the classical problem of a Josephson tunnel junction of arbitrary length W ɛ(0,∞) in the presence of external magnetic fields and transport currents. Contrary to a wide-spread belief, the exact analytical solution unambiguously proves that there is no qualitative difference between so-called "small" (W≪1) and "large" junctions (W≫1). Another unexpected physical implication of the exact analytical solution is the existence (in the current-carrying state) of unquantized Josephson vortices carrying fractional flux and located near one of the edges of the junction. We also refine the mathematical definition of critical transport current.
Classes of exact Einstein Maxwell solutions
NASA Astrophysics Data System (ADS)
Komathiraj, K.; Maharaj, S. D.
2007-12-01
We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.
NASA Astrophysics Data System (ADS)
Conway, John T.; Cohl, Howard S.
2010-06-01
A new method is presented for Fourier decomposition of the Helmholtz Green function in cylindrical coordinates, which is equivalent to obtaining the solution of the Helmholtz equation for a general ring source. The Fourier coefficients of the Green function are split into their half advanced + half retarded and half advanced-half retarded components, and closed form solutions for these components are then obtained in terms of a Horn function and a Kampé de Fériet function respectively. Series solutions for the Fourier coefficients are given in terms of associated Legendre functions, Bessel and Hankel functions and a hypergeometric function. These series are derived either from the closed form 2-dimensional hypergeometric solutions or from an integral representation, or from both. A simple closed form far-field solution for the general Fourier coefficient is derived from the Hankel series. Numerical calculations comparing different methods of calculating the Fourier coefficients are presented. Fourth order ordinary differential equations for the Fourier coefficients are also given and discussed briefly.
Integral method for transient He II heat transfer in a semi-infinite domain
NASA Astrophysics Data System (ADS)
Baudouy, B.
2002-05-01
Integral methods are suited to solve a non-linear system of differential equations where the non-linearity can be found either in the differential equations or in the boundary conditions. Though they are approximate methods, they have proven to give simple solutions with acceptable accuracy for transient heat transfer in He II. Taking in account the temperature dependence of thermal properties, direct solutions are found without the need of adjusting a parameter. Previously, we have presented a solution for the clamped heat flux and in the present study this method is used to accommodate the clamped-temperature problem. In the case of constant thermal properties, this method yields results that are within a few percent of the exact solution for the heat flux at the axis origin. We applied this solution to analyze recovery from burnout and find an agreement within 10% at low heat flux, whereas at high heat flux the model deviates from the experimental data suggesting the need for a more refined thermal model.
On exact traveling-wave solutions for local fractional Korteweg-de Vries equation.
Yang, Xiao-Jun; Tenreiro Machado, J A; Baleanu, Dumitru; Cattani, Carlo
2016-08-01
This paper investigates the Korteweg-de Vries equation within the scope of the local fractional derivative formulation. The exact traveling wave solutions of non-differentiable type with the generalized functions defined on Cantor sets are analyzed. The results for the non-differentiable solutions when fractal dimension is 1 are also discussed. It is shown that the exact solutions for the local fractional Korteweg-de Vries equation characterize the fractal wave on shallow water surfaces.
Exact solution of the hidden Markov processes.
Saakian, David B
2017-11-01
We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M-1.
Exact solution of the hidden Markov processes
NASA Astrophysics Data System (ADS)
Saakian, David B.
2017-11-01
We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .
Exact and approximate solutions to the oblique shock equations for real-time applications
NASA Technical Reports Server (NTRS)
Hartley, T. T.; Brandis, R.; Mossayebi, F.
1991-01-01
The derivation of exact solutions for determining the characteristics of an oblique shock wave in a supersonic flow is investigated. Specifically, an explicit expression for the oblique shock angle in terms of the free stream Mach number, the centerbody deflection angle, and the ratio of the specific heats, is derived. A simpler approximate solution is obtained and compared to the exact solution. The primary objectives of obtaining these solutions is to provide a fast algorithm that can run in a real time environment.
Classical integrable many-body systems disconnected with semi-simple Lie algebras
NASA Astrophysics Data System (ADS)
Inozemtsev, V. I.
2017-05-01
The review of the results in the theory of integrable many-body systems disconnected with semisimple Lie algebras is done. The one-dimensional systems of light Calogero-Sutherland-Moser particles interacting with one particle of infinite mass located at the origin are described in detail. In some cases the exact solutions of the equations of motion are obtained. The general theory of integration of the equations of motion needs the methods of algebraic geometry. The Lax pairs with spectral parameter are constructed for this purpose. The theory still contains many unsolved problems.
Predicting a future lifetime through Box-Cox transformation.
Yang, Z
1999-09-01
In predicting a future lifetime based on a sample of past lifetimes, the Box-Cox transformation method provides a simple and unified procedure that is shown in this article to meet or often outperform the corresponding frequentist solution in terms of coverage probability and average length of prediction intervals. Kullback-Leibler information and second-order asymptotic expansion are used to justify the Box-Cox procedure. Extensive Monte Carlo simulations are also performed to evaluate the small sample behavior of the procedure. Certain popular lifetime distributions, such as Weibull, inverse Gaussian and Birnbaum-Saunders are served as illustrative examples. One important advantage of the Box-Cox procedure lies in its easy extension to linear model predictions where the exact frequentist solutions are often not available.
Anomalous transport in turbulent plasmas and continuous time random walks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.
1995-05-01
The possibility of a model of anomalous transport problems in a turbulent plasma by a purely stochastic process is investigated. The theory of continuous time random walks (CTRW`s) is briefly reviewed. It is shown that a particular class, called the standard long tail CTRW`s is of special interest for the description of subdiffusive transport. Its evolution is described by a non-Markovian diffusion equation that is constructed in such a way as to yield exact values for all the moments of the density profile. The concept of a CTRW model is compared to an exact solution of a simple test problem:more » transport of charged particles in a fluctuating magnetic field in the limit of infinite perpendicular correlation length. Although the well-known behavior of the mean square displacement proportional to {ital t}{sup 1/2} is easily recovered, the exact density profile cannot be modeled by a CTRW. However, the quasilinear approximation of the kinetic equation has the form of a non-Markovian diffusion equation and can thus be generated by a CTRW.« less
Manafian Heris, Jalil; Lakestani, Mehrdad
2014-01-01
We establish exact solutions including periodic wave and solitary wave solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota system. We employ this system by using a generalized (G'/G)-expansion and the generalized tanh-coth methods. These methods are developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that these methods, with the help of symbolic computation, provide a straightforward and powerful mathematical tool for solving nonlinear partial differential equations.
Exact solution for spin precession in the radiationless relativistic Kepler problem
NASA Astrophysics Data System (ADS)
Mane, S. R.
2014-11-01
There is interest in circulating beams of polarized particles in all-electric storage rings to search for nonzero permanent electric dipole moments of subatomic particles. To this end, it is helpful to derive exact analytical solutions of the spin precession in idealized models, both for pedagogical reasons and to serve as benchmark tests for analysis and design of experiments. This paper derives exact solutions for the spin precession in the relativistic Kepler problem. Some counterintuitive properties of the solutions are pointed out.
Homotopy decomposition method for solving one-dimensional time-fractional diffusion equation
NASA Astrophysics Data System (ADS)
Abuasad, Salah; Hashim, Ishak
2018-04-01
In this paper, we present the homotopy decomposition method with a modified definition of beta fractional derivative for the first time to find exact solution of one-dimensional time-fractional diffusion equation. In this method, the solution takes the form of a convergent series with easily computable terms. The exact solution obtained by the proposed method is compared with the exact solution obtained by using fractional variational homotopy perturbation iteration method via a modified Riemann-Liouville derivative.
Exact solution of the generalized Peierls equation for arbitrary n-fold screw dislocation
NASA Astrophysics Data System (ADS)
Wang, Shaofeng; Hu, Xiangsheng
2018-05-01
The exact solution of the generalized Peierls equation is presented and proved for arbitrary n-fold screw dislocation. The displacement field, stress field and the energy of the n-fold dislocation are also evaluated explicitly. It is found that the solution defined on each individual fold is given by the tail cut from the original Peierls solution. In viewpoint of energetics, a screw dislocation has a tendency to spread the distribution on all possible slip planes which are contained in the dislocation line zone. Based on the exact solution, the approximated solution of the improved Peierls equation is proposed for the modified γ-surface.
Time-Harmonic Gaussian Beams: Exact Solutions of the Helmhotz Equation in Free Space
NASA Astrophysics Data System (ADS)
Kiselev, A. P.
2017-12-01
An exact solution of the Helmholtz equation u xx + u yy + u zz + k 2 u = 0 is presented, which describes propagation of monochromatic waves in the free space. The solution has the form of a superposition of plane waves with a specific weight function dependent on a certain free parameter a. If ka→∞, the solution is localized in the Gaussian manner in a vicinity of a certain straight line and asymptotically coincides with the famous approximate solution known as the fundamental mode of a paraxial Gaussian beam. The asymptotics of the aforementioned exact solution does not include a backward wave.
Universal shocks in the Wishart random-matrix ensemble.
Blaizot, Jean-Paul; Nowak, Maciej A; Warchoł, Piotr
2013-05-01
We show that the derivative of the logarithm of the average characteristic polynomial of a diffusing Wishart matrix obeys an exact partial differential equation valid for an arbitrary value of N, the size of the matrix. In the large N limit, this equation generalizes the simple inviscid Burgers equation that has been obtained earlier for Hermitian or unitary matrices. The solution, through the method of characteristics, presents singularities that we relate to the precursors of shock formation in the Burgers equation. The finite N effects appear as a viscosity term in the Burgers equation. Using a scaling analysis of the complete equation for the characteristic polynomial, in the vicinity of the shocks, we recover in a simple way the universal Bessel oscillations (so-called hard-edge singularities) familiar in random-matrix theory.
Protecting coherence by environmental decoherence: a solvable paradigmatic model
NASA Astrophysics Data System (ADS)
Torres, Juan Mauricio; Seligman, Thomas H.
2017-11-01
We consider a particularly simple exactly solvable model for a qubit coupled to sequentially nested environments. The purpose is to exemplify the coherence conserving effect of a central system, that has been reported as a result of increasing the coupling between near and far environment. The paradigmatic example is the Jaynes-Cummings Hamiltonian, which we introduce into a Kossakowski-Lindblad master equation using alternatively the lowering operator of the oscillator or its number operator as Lindblad operators. The harmonic oscillator is regarded as the near environment of the qubit, while effects of a far environment are accounted for by the two options for the dissipative part of the master equation. The exact solution allows us to cover the entire range of coupling strength from the perturbative regime to strong coupling analytically. The coherence conserving effect of the coupling to the far environment is confirmed throughout.
An exact algebraic solution of the infimum in H-infinity optimization with output feedback
NASA Technical Reports Server (NTRS)
Chen, Ben M.; Saberi, Ali; Ly, Uy-Loi
1991-01-01
This paper presents a simple and noniterative procedure for the computation of the exact value of the infimum in the standard H-infinity-optimal control with output feedback. The problem formulation is general and does not place any restrictions on the direct feedthrough terms between the control input and the controlled output variables, and between the disturbance input and the measurement output variables. The method is applicable to systems that satisfy (1) the transfer function from the control input to the controlled output is right-invertible and has no invariant zeros on the j(w) axis and, (2) the transfer function from the disturbance to the measurement output is left-invertible and has no invariant zeros on the j(w) axis. A set of necessary and sufficient conditions for the solvability of H-infinity-almost disturbance decoupling problem via measurement feedback with internal stability is also given.
Mixed Poisson distributions in exact solutions of stochastic autoregulation models.
Iyer-Biswas, Srividya; Jayaprakash, C
2014-11-01
In this paper we study the interplay between stochastic gene expression and system design using simple stochastic models of autoactivation and autoinhibition. Using the Poisson representation, a technique whose particular usefulness in the context of nonlinear gene regulation models we elucidate, we find exact results for these feedback models in the steady state. Further, we exploit this representation to analyze the parameter spaces of each model, determine which dimensionless combinations of rates are the shape determinants for each distribution, and thus demarcate where in the parameter space qualitatively different behaviors arise. These behaviors include power-law-tailed distributions, bimodal distributions, and sub-Poisson distributions. We also show how these distribution shapes change when the strength of the feedback is tuned. Using our results, we reexamine how well the autoinhibition and autoactivation models serve their conventionally assumed roles as paradigms for noise suppression and noise exploitation, respectively.
Geometrically derived difference formulae for the numerical integration of trajectory problems
NASA Technical Reports Server (NTRS)
Mcleod, R. J. Y.; Sanz-Serna, J. M.
1982-01-01
An initial value problem for the autonomous system of ordinary differential equations dy/dt = f(y), where y is a vector, is considered. In a number of practical applications the interest lies in obtaining the curve traced by the solution y. These applications include the computation of trajectories in mechanical problems. The term 'trajectory problem' is employed to refer to these cases. Lambert and McLeod (1979) have introduced a method involving local rotation of the axes in the y-plane for the two-dimensional case. The present investigation continues the study of difference schemes specifically derived for trajectory problems. A simple geometrical way of constructing such methods is presented, and the local accuracy of the schemes is investigated. A circularly exact, fixed-step predictor-corrector algorithm is defined, and a variable-step version of a circularly exact algorithm is presented.
A simple extension of Roe's scheme for real gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arabi, Sina, E-mail: sina.arabi@polymtl.ca; Trépanier, Jean-Yves; Camarero, Ricardo
The purpose of this paper is to develop a highly accurate numerical algorithm to model real gas flows in local thermodynamic equilibrium (LTE). The Euler equations are solved using a finite volume method based on Roe's flux difference splitting scheme including real gas effects. A novel algorithm is proposed to calculate the Jacobian matrix which satisfies the flux difference splitting exactly in the average state for a general equation of state. This algorithm increases the robustness and accuracy of the method, especially around the contact discontinuities and shock waves where the gas properties jump appreciably. The results are compared withmore » an exact solution of the Riemann problem for the shock tube which considers the real gas effects. In addition, the method is applied to a blunt cone to illustrate the capability of the proposed extension in solving two dimensional flows.« less
Exact Magnetic Diffusion Solutions for Magnetohydrodynamic Code Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D S
In this paper, the authors present several new exact analytic space and time dependent solutions to the problem of magnetic diffusion in R-Z geometry. These problems serve to verify several different elements of an MHD implementation: magnetic diffusion, external circuit time integration, current and voltage energy sources, spatially dependent conductivities, and ohmic heating. The exact solutions are shown in comparison with 2D simulation results from the Ares code.
On solutions of the fifth-order dispersive equations with porous medium type non-linearity
NASA Astrophysics Data System (ADS)
Kocak, Huseyin; Pinar, Zehra
2018-07-01
In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.
A simple and fast heuristic for protein structure comparison
Pelta, David A; González, Juan R; Moreno Vega, Marcos
2008-01-01
Background Protein structure comparison is a key problem in bioinformatics. There exist several methods for doing protein comparison, being the solution of the Maximum Contact Map Overlap problem (MAX-CMO) one of the alternatives available. Although this problem may be solved using exact algorithms, researchers require approximate algorithms that obtain good quality solutions using less computational resources than the formers. Results We propose a variable neighborhood search metaheuristic for solving MAX-CMO. We analyze this strategy in two aspects: 1) from an optimization point of view the strategy is tested on two different datasets, obtaining an error of 3.5%(over 2702 pairs) and 1.7% (over 161 pairs) with respect to optimal values; thus leading to high accurate solutions in a simpler and less expensive way than exact algorithms; 2) in terms of protein structure classification, we conduct experiments on three datasets and show that is feasible to detect structural similarities at SCOP's family and CATH's architecture levels using normalized overlap values. Some limitations and the role of normalization are outlined for doing classification at SCOP's fold level. Conclusion We designed, implemented and tested.a new tool for solving MAX-CMO, based on a well-known metaheuristic technique. The good balance between solution's quality and computational effort makes it a valuable tool. Moreover, to the best of our knowledge, this is the first time the MAX-CMO measure is tested at SCOP's fold and CATH's architecture levels with encouraging results. Software is available for download at . PMID:18366735
A B-spline Galerkin method for the Dirac equation
NASA Astrophysics Data System (ADS)
Froese Fischer, Charlotte; Zatsarinny, Oleg
2009-06-01
The B-spline Galerkin method is first investigated for the simple eigenvalue problem, y=-λy, that can also be written as a pair of first-order equations y=λz, z=-λy. Expanding both y(r) and z(r) in the B basis results in many spurious solutions such as those observed for the Dirac equation. However, when y(r) is expanded in the B basis and z(r) in the dB/dr basis, solutions of the well-behaved second-order differential equation are obtained. From this analysis, we propose a stable method ( B,B) basis for the Dirac equation and evaluate its accuracy by comparing the computed and exact R-matrix for a wide range of nuclear charges Z and angular quantum numbers κ. When splines of the same order are used, many spurious solutions are found whereas none are found for splines of different order. Excellent agreement is obtained for the R-matrix and energies for bound states for low values of Z. For high Z, accuracy requires the use of a grid with many points near the nucleus. We demonstrate the accuracy of the bound-state wavefunctions by comparing integrals arising in hyperfine interaction matrix elements with exact analytic expressions. We also show that the Thomas-Reiche-Kuhn sum rule is not a good measure of the quality of the solutions obtained by the B-spline Galerkin method whereas the R-matrix is very sensitive to the appearance of pseudo-states.
Reproduction of exact solutions of Lipkin model by nonlinear higher random-phase approximation
NASA Astrophysics Data System (ADS)
Terasaki, J.; Smetana, A.; Šimkovic, F.; Krivoruchenko, M. I.
2017-10-01
It is shown that the random-phase approximation (RPA) method with its nonlinear higher generalization, which was previously considered as approximation except for a very limited case, reproduces the exact solutions of the Lipkin model. The nonlinear higher RPA is based on an equation nonlinear on eigenvectors and includes many-particle-many-hole components in the creation operator of the excited states. We demonstrate the exact character of solutions analytically for the particle number N = 2 and numerically for N = 8. This finding indicates that the nonlinear higher RPA is equivalent to the exact Schrödinger equation.
Exact BPS domain walls at finite gauge coupling
NASA Astrophysics Data System (ADS)
Blaschke, Filip
2017-01-01
Bogomol'nyi-Prasad-Sommerfield solitons in models with spontaneously broken gauge symmetry have been intensively studied at the infinite gauge coupling limit, where the governing equation-the so-called master equation-is exactly solvable. Except for a handful of special solutions, the standing impression is that analytic results at finite coupling are generally unavailable. The aim of this paper is to demonstrate, using domain walls in Abelian-Higgs models as the simplest example, that exact solitons at finite gauge coupling can be readily obtained if the number of Higgs fields (NF ) is large enough. In particular, we present a family of exact solutions, describing N domain walls at arbitrary positions in models with at least NF≥2 N +1 . We have also found that adding together any pair of solutions can produce a new exact solution if the combined tension is below a certain limit.
General Theory of Aerodynamic Instability and the Mechanism of Flutter
NASA Technical Reports Server (NTRS)
Theodorsen, Theodore
1979-01-01
The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent degrees of freedom were determined. The problem resolves itself into the solution of certain definite integrals, which were identified as Bessel functions of the first and second kind, and of zero and first order. The theory, based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability was analyzed. An exact solution, involving potential flow and the adoption of the Kutta condition, was derived. The solution is of a simple form and is expressed by means of an auxiliary parameter k. The flutter velocity, treated as the unknown quantity, was determined as a function of a certain ratio of the frequencies in the separate degrees of freedom for any magnitudes and combinations of the airfoil-aileron parameters.
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Chow, Chuen-Yen; Chang, Sin-Chung
1998-01-01
Without resorting to special treatment for each individual test case, the 1D and 2D CE/SE shock-capturing schemes described previously (in Part I) are used to simulate flows involving phenomena such as shock waves, contact discontinuities, expansion waves and their interactions. Five 1D and six 2D problems are considered to examine the capability and robustness of these schemes. Despite their simple logical structures and low computational cost (for the 2D CE/SE shock-capturing scheme, the CPU time is about 2 micro-secs per mesh point per marching step on a Cray C90 machine), the numerical results, when compared with experimental data, exact solutions or numerical solutions by other methods, indicate that these schemes can accurately resolve shock and contact discontinuities consistently.
Statistical mechanics of an ideal active fluid confined in a channel
NASA Astrophysics Data System (ADS)
Wagner, Caleb; Baskaran, Aparna; Hagan, Michael
The statistical mechanics of ideal active Brownian particles (ABPs) confined in a channel is studied by obtaining the exact solution of the steady-state Smoluchowski equation for the 1-particle distribution function. The solution is derived using results from the theory of two-way diffusion equations, combined with an iterative procedure that is justified by numerical results. Using this solution, we quantify the effects of confinement on the spatial and orientational order of the ensemble. Moreover, we rigorously show that both the bulk density and the fraction of particles on the channel walls obey simple scaling relations as a function of channel width. By considering a constant-flux steady state, an effective diffusivity for ABPs is derived which shows signatures of the persistent motion that characterizes ABP trajectories. Finally, we discuss how our techniques generalize to other active models, including systems whose activity is modeled in terms of an Ornstein-Uhlenbeck process.
Exact solution of a modified El Farol's bar problem: Efficiency and the role of market impact
NASA Astrophysics Data System (ADS)
Marsili, Matteo; Challet, Damien; Zecchina, Riccardo
2000-06-01
We discuss a model of heterogeneous, inductive rational agents inspired by the El Farol Bar problem and the Minority Game. As in markets, agents interact through a collective aggregate variable - which plays a role similar to price - whose value is fixed by all of them. Agents follow a simple reinforcement-learning dynamics where the reinforcement, for each of their available strategies, is related to the payoff delivered by that strategy. We derive the exact solution of the model in the “thermodynamic” limit of infinitely many agents using tools of statistical physics of disordered systems. Our results show that the impact of agents on the market price plays a key role: even though price has a weak dependence on the behavior of each individual agent, the collective behavior crucially depends on whether agents account for such dependence or not. Remarkably, if the adaptive behavior of agents accounts even “infinitesimally” for this dependence they can, in a whole range of parameters, reduce global fluctuations by a finite amount. Both global efficiency and individual utility improve with respect to a “price taker” behavior if agents account for their market impact.
Exact solutions to a spatially extended model of kinase-receptor interaction.
Szopa, Piotr; Lipniacki, Tomasz; Kazmierczak, Bogdan
2011-10-01
B and Mast cells are activated by the aggregation of the immune receptors. Motivated by this phenomena we consider a simple spatially extended model of mutual interaction of kinases and membrane receptors. It is assumed that kinase activates membrane receptors and in turn the kinase molecules bound to the active receptors are activated by transphosphorylation. Such a type of interaction implies positive feedback and may lead to bistability. In this study we apply the Steklov eigenproblem theory to analyze the linearized model and find exact solutions in the case of non-uniformly distributed membrane receptors. This approach allows us to determine the critical value of receptor dephosphorylation rate at which cell activation (by arbitrary small perturbation of the inactive state) is possible. We found that cell sensitivity grows with decreasing kinase diffusion and increasing anisotropy of the receptor distribution. Moreover, these two effects are cooperating. We showed that the cell activity can be abruptly triggered by the formation of the receptor aggregate. Since the considered activation mechanism is not based on receptor crosslinking by polyvalent antigens, the proposed model can also explain B cell activation due to receptor aggregation following binding of monovalent antigens presented on the antigen presenting cell.
Magnetic Control of Solutal Buoyancy Driven Convection
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Leslie, F. W.
2003-01-01
Volumetric forces resulting from local density variations and gravitational acceleration cause buoyancy induced convective motion in melts and solutions. Solutal buoyancy is a result of concentration differences in an otherwise isothermal fluid. If the fluid also exhibits variations in magnetic susceptibility with concentration then convection control by external magnetic fields can be hypothesized. Magnetic control of thermal buoyancy induced convection in ferrofluids (dispersions of ferromagnetic particles in a carrier fluid) and paramagnetic fluids have been demonstrated. Here we show the nature of magnetic control of solutal buoyancy driven convection of a paramagnetic fluid, an aqueous solution of Manganese Chloride hydrate. We predict the critical magnetic field required for balancing gravitational solutal buoyancy driven convection and validate it through a simple experiment. We demonstrate that gravity driven flow can be completely reversed by a magnetic field but the exact cancellation of the flow is not possible. This is because the phenomenon is unstable. The technique can be applied to crystal growth processes in order to reduce convection and to heat exchanger devices for enhancing convection. The method can also be applied to impose a desired g-level in reduced gravity applications.
NASA Technical Reports Server (NTRS)
Burkhart, G. R.; Chen, J.
1989-01-01
The integrodifferential equation describing the linear tearing instability in the bi-Maxwellian neutral sheet is solved without approximating the particle orbits or the eigenfunction psi. Results of this calculation are presented. Comparison between the exact solution and the three-region approximation motivates the piecewise-straight-line approximation, a simplification that allows faster solution of the integrodifferential equation, yet retains the important features of the exact solution.
NASA Astrophysics Data System (ADS)
Yuan, Na
2018-04-01
With the aid of the symbolic computation, we present an improved ( G ‧ / G ) -expansion method, which can be applied to seek more types of exact solutions for certain nonlinear evolution equations. In illustration, we choose the (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation to demonstrate the validity and advantages of the method. As a result, abundant explicit and exact nontraveling wave solutions are obtained including two solitary waves solutions, nontraveling wave solutions and dromion soliton solutions. Some particular localized excitations and the interactions between two solitary waves are researched. The method can be also applied to other nonlinear partial differential equations.
Quantum Field Theory in Two Dimensions: Light-front Versus Space-like Solutions
NASA Astrophysics Data System (ADS)
Martinovic̆, L'ubomír
2017-07-01
A few non-perturbative topics of quantum field theory in D=1+1 are studied in both the conventional (SL) and light-front (LF) versions. First, we give a concise review of the recently proposed quantization of the two-dimensional massless LF fields. The LF version of bosonization follows in a simple and natural way including the bosonized form of the Thirring model. As a further application, we demonstrate the closeness of the 2D massless LF quantum fields to conformal field theory (CFT). We calculate several correlation functions including those between the components of the LF energy-momentum tensor and derive the LF version of the Virasoro algebra. Using the Euclidean time variable, we can immediately transform calculated quantities to the (anti)holomorphic form. The results found are in agreement with those from CFT. Finally, we show that the proposed framework provides us with the elements needed for an independent LF study of exactly solvable models. We compute the non-perturbative correlation functions from the exact operator solution of the LF Thirring model and compare it to the analogous results in the SL theory. While the vacuum effects are automatically taken into account in the LF case, the non-trivial vacuum structure has to be incorported by an explicit diagonalization of the SL Hamiltonians, to obtain the equivalently complete solution.
Attitude Determination Using Two Vector Measurements
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1998-01-01
Many spacecraft attitude determination methods use exactly two vector measurements. The two vectors are typically the unit vector to the Sun and the Earth's magnetic field vector for coarse "sun-mag" attitude determination or unit vectors to two stars tracked by two star trackers for fine attitude determination. TRIAD, the earliest published algorithm for determining spacecraft attitude from two vector measurements, has been widely used in both ground-based and onboard attitude determination. Later attitude determination methods have been based on Wahba's optimality criterion for n arbitrarily weighted observations. The solution of Wahba's problem is somewhat difficult in the general case, but there is a simple closed-form solution in the two-observation case. This solution reduces to the TRIAD solution for certain choices of measurement weights. This paper presents and compares these algorithms as well as sub-optimal algorithms proposed by Bar-Itzhack, Harman, and Reynolds. Some new results will be presented, but the paper is primarily a review and tutorial.
Transient well flow in leaky multiple-aquifer systems
NASA Astrophysics Data System (ADS)
Hemker, C. J.
1985-10-01
A previously developed eigenvalue analysis approach to groundwater flow in leaky multiple aquifers is used to derive exact solutions for transient well flow problems in leaky and confined systems comprising any number of aquifers. Equations are presented for the drawdown distribution in systems of infinite extent, caused by wells penetrating one or more of the aquifers completely and discharging each layer at a constant rate. Since the solution obtained may be regarded as a combined analytical-numerical technique, a type of one-dimensional modelling can be applied to find approximate solutions for several complicating conditions. Numerical evaluations are presented as time-drawdown curves and include effects of storage in the aquitard, unconfined conditions, partially penetrating wells and stratified aquifers. The outcome of calculations for relatively simple systems compares very well with published corresponding results. The proposed multilayer solution can be a valuable tool in aquifer test evaluation, as it provides the analytical expression required to enable the application of existing computer methods to the determination of aquifer characteristics.
NASA Astrophysics Data System (ADS)
Rahmatullah; Ellahi, Rahmat; Mohyud-Din, Syed Tauseef; Khan, Umar
2018-03-01
We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses.
Paganin, David M; Beltran, Mario A; Petersen, Timothy C
2018-03-01
We obtain exact polynomial solutions for two-dimensional coherent complex scalar fields propagating through arbitrary aberrated shift-invariant linear imaging systems. These solutions are used to model nodal-line dynamics of coherent fields output by such systems.
Exact solutions and low-frequency instability of the adiabatic auroral arc model
NASA Technical Reports Server (NTRS)
Cornwall, John M.
1988-01-01
The adiabatic auroral arc model couples a kinetic theory parallel current driven by mirror forces to horizontal ionospheric currents; the resulting equations are nonlinear. Some exact stationary solutions to these equations, some of them based on the Liouville equation, are developed, with both latitudinal and longitudinal spatial variations. These Liouville equation exact solutions are related to stability boundaries of low-frequency instabilities such as Kelvin-Helmholtz, as shown by a study of a simplified model.
NASA Astrophysics Data System (ADS)
Şenol, Mehmet; Alquran, Marwan; Kasmaei, Hamed Daei
2018-06-01
In this paper, we present analytic-approximate solution of time-fractional Zakharov-Kuznetsov equation. This model demonstrates the behavior of weakly nonlinear ion acoustic waves in a plasma bearing cold ions and hot isothermal electrons in the presence of a uniform magnetic field. Basic definitions of fractional derivatives are described in the Caputo sense. Perturbation-iteration algorithm (PIA) and residual power series method (RPSM) are applied to solve this equation with success. The convergence analysis is also presented for both methods. Numerical results are given and then they are compared with the exact solutions. Comparison of the results reveal that both methods are competitive, powerful, reliable, simple to use and ready to apply to wide range of fractional partial differential equations.
Compact stars in the non-minimally coupled electromagnetic fields to gravity
NASA Astrophysics Data System (ADS)
Sert, Özcan
2018-03-01
We investigate the gravitational models with the non-minimal Y(R)F^2 coupled electromagnetic fields to gravity, in order to describe charged compact stars, where Y( R) denotes a function of the Ricci curvature scalar R and F^2 denotes the Maxwell invariant term. We determine two parameter family of exact spherically symmetric static solutions and the corresponding non-minimal model without assuming any relation between energy density of matter and pressure. We give the mass-radius, electric charge-radius ratios and surface gravitational redshift which are obtained by the boundary conditions. We reach a wide range of possibilities for the parameters k and α in these solutions. Lastly we show that the models can describe the compact stars even in the more simple case α =3.
Particle-in-a-box model of one-dimensional excitons in conjugated polymers
NASA Astrophysics Data System (ADS)
Pedersen, Thomas G.; Johansen, Per M.; Pedersen, Henrik C.
2000-04-01
A simple two-particle model of excitons in conjugated polymers is proposed as an alternative to usual highly computationally demanding quantum chemical methods. In the two-particle model, the exciton is described as an electron-hole pair interacting via Coulomb forces and confined to the polymer backbone by rigid walls. Furthermore, by integrating out the transverse part, the two-particle equation is reduced to one-dimensional form. It is demonstrated how essentially exact solutions are obtained in the cases of short and long conjugation length, respectively. From a linear combination of these cases an approximate solution for the general case is obtained. As an application of the model the influence of a static electric field on the electron-hole overlap integral and exciton energy is considered.
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl; Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven; Daude, F.
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splittingmore » approach. The results are in good agreement with reference results and exact solutions.« less
Analytical theory of mesoscopic Bose-Einstein condensation in an ideal gas
NASA Astrophysics Data System (ADS)
Kocharovsky, Vitaly V.; Kocharovsky, Vladimir V.
2010-03-01
We find the universal structure and scaling of the Bose-Einstein condensation (BEC) statistics and thermodynamics (Gibbs free energy, average energy, heat capacity) for a mesoscopic canonical-ensemble ideal gas in a trap with an arbitrary number of atoms, any volume, and any temperature, including the whole critical region. We identify a universal constraint-cutoff mechanism that makes BEC fluctuations strongly non-Gaussian and is responsible for all unusual critical phenomena of the BEC phase transition in the ideal gas. The main result is an analytical solution to the problem of critical phenomena. It is derived by, first, calculating analytically the universal probability distribution of the noncondensate occupation, or a Landau function, and then using it for the analytical calculation of the universal functions for the particular physical quantities via the exact formulas which express the constraint-cutoff mechanism. We find asymptotics of that analytical solution as well as its simple analytical approximations which describe the universal structure of the critical region in terms of the parabolic cylinder or confluent hypergeometric functions. The obtained results for the order parameter, all higher-order moments of BEC fluctuations, and thermodynamic quantities perfectly match the known asymptotics outside the critical region for both low and high temperature limits. We suggest two- and three-level trap models of BEC and find their exact solutions in terms of the cutoff negative binomial distribution (which tends to the cutoff gamma distribution in the continuous limit) and the confluent hypergeometric distribution, respectively. Also, we present an exactly solvable cutoff Gaussian model of BEC in a degenerate interacting gas. All these exact solutions confirm the universality and constraint-cutoff origin of the strongly non-Gaussian BEC statistics. We introduce a regular refinement scheme for the condensate statistics approximations on the basis of the infrared universality of higher-order cumulants and the method of superposition and show how to model BEC statistics in the actual traps. In particular, we find that the three-level trap model with matching the first four or five cumulants is enough to yield remarkably accurate results for all interesting quantities in the whole critical region. We derive an exact multinomial expansion for the noncondensate occupation probability distribution and find its high-temperature asymptotics (Poisson distribution) and corrections to it. Finally, we demonstrate that the critical exponents and a few known terms of the Taylor expansion of the universal functions, which were calculated previously from fitting the finite-size simulations within the phenomenological renormalization-group theory, can be easily obtained from the presented full analytical solutions for the mesoscopic BEC as certain approximations in the close vicinity of the critical point.
How hairpin vortices emerge from exact invariant solutions
NASA Astrophysics Data System (ADS)
Schneider, Tobias M.; Farano, Mirko; de Palma, Pietro; Robinet, Jean-Christoph; Cherubini, Stefania
2017-11-01
Hairpin vortices are among the most commonly observed flow structures in wall-bounded shear flows. However, within the dynamical system approach to turbulence, those structures have not yet been described. They are not captured by known exact invariant solutions of the Navier-Stokes equations nor have other state-space structures supporting hairpins been identified. We show that hairpin structures are observed along an optimally growing trajectory leaving a well known exact traveling wave solution of plane Poiseuille flow. The perturbation triggering hairpins does not correspond to an unstable mode of the exact traveling wave but lies in the stable manifold where non-normality causes strong transient amplification.
Akbar, M Ali; Ali, Norhashidah Hj Mohd; Mohyud-Din, Syed Tauseef
2013-01-01
The (G'/G)-expansion method is one of the most direct and effective method for obtaining exact solutions of nonlinear partial differential equations (PDEs). In the present article, we construct the exact traveling wave solutions of nonlinear evolution equations in mathematical physics via the (2 + 1)-dimensional breaking soliton equation by using two methods: namely, a further improved (G'/G)-expansion method, where G(ξ) satisfies the auxiliary ordinary differential equation (ODE) [G'(ξ)](2) = p G (2)(ξ) + q G (4)(ξ) + r G (6)(ξ); p, q and r are constants and the well known extended tanh-function method. We demonstrate, nevertheless some of the exact solutions bring out by these two methods are analogous, but they are not one and the same. It is worth mentioning that the first method has not been exercised anybody previously which gives further exact solutions than the second one. PACS numbers 02.30.Jr, 05.45.Yv, 02.30.Ik.
NASA Technical Reports Server (NTRS)
Sheu, Y. C.; Fu, L. S.
1983-01-01
The extended method of equivalent inclusions is applied to study the specific wave problems: (1) the transmission of elastic waves in an infinite medium containing a layer of inhomogeneity, and (2) the scattering of elastic waves in an infinite medium containing a perfect spherical inhomogeneity. Eigenstrains are expanded as a geometric series and a method of integration based on the inhomogeneous Helmholtz operator is adopted. This study compares results, obtained by using limited number of terms in the eigenstrain expansion, with exact solutions for the layer problem and that for a perfect sphere.
Evolution of wave function in a dissipative system
NASA Technical Reports Server (NTRS)
Yu, Li-Hua; Sun, Chang-Pu
1994-01-01
For a dissipative system with Ohmic friction, we obtain a simple and exact solution for the wave function of the system plus the bath. It is described by the direct product in two independent Hilbert space. One of them is described by an effective Hamiltonian, the other represents the effect of the bath, i.e., the Brownian motion, thus clarifying the structure of the wave function of the system whose energy is dissipated by its interaction with the bath. No path integral technology is needed in this treatment. The derivation of the Weisskopf-Wigner line width theory follows easily.
An exact solution of a simplified two-phase plume model. [for solid propellant rocket
NASA Technical Reports Server (NTRS)
Wang, S.-Y.; Roberts, B. B.
1974-01-01
An exact solution of a simplified two-phase, gas-particle, rocket exhaust plume model is presented. It may be used to make the upper-bound estimation of the heat flux and pressure loads due to particle impingement on the objects existing in the rocket exhaust plume. By including the correction factors to be determined experimentally, the present technique will provide realistic data concerning the heat and aerodynamic loads on these objects for design purposes. Excellent agreement in trend between the best available computer solution and the present exact solution is shown.
Exact solutions of the Wheeler–DeWitt equation and the Yamabe construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ita III, Eyo Eyo, E-mail: ita@usna.edu; Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw
Exact solutions of the Wheeler–DeWitt equation of the full theory of four dimensional gravity of Lorentzian signature are obtained. They are characterized by Schrödinger wavefunctionals having support on 3-metrics of constant spatial scalar curvature, and thus contain two full physical field degrees of freedom in accordance with the Yamabe construction. These solutions are moreover Gaussians of minimum uncertainty and they are naturally associated with a rigged Hilbert space. In addition, in the limit the regulator is removed, exact 3-dimensional diffeomorphism and local gauge invariance of the solutions are recovered.
Exact solutions of fractional mBBM equation and coupled system of fractional Boussinesq-Burgers
NASA Astrophysics Data System (ADS)
Javeed, Shumaila; Saif, Summaya; Waheed, Asif; Baleanu, Dumitru
2018-06-01
The new exact solutions of nonlinear fractional partial differential equations (FPDEs) are established by adopting first integral method (FIM). The Riemann-Liouville (R-L) derivative and the local conformable derivative definitions are used to deal with the fractional order derivatives. The proposed method is applied to get exact solutions for space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation and coupled time-fractional Boussinesq-Burgers equation. The suggested technique is easily applicable and effectual which can be implemented successfully to obtain the solutions for different types of nonlinear FPDEs.
Exact Analytical Solutions for Elastodynamic Impact
2015-11-30
corroborated by derivation of exact discrete solutions from recursive equations for the impact problems. 15. SUBJECT TERMS One-dimensional impact; Elastic...wave propagation; Laplace transform; Floor function; Discrete solutions 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...impact Elastic wave propagation Laplace transform Floor function Discrete solutionsWe consider the one-dimensional impact problem in which a semi
Exact analytic solution for the spin-up maneuver of an axially symmetric spacecraft
NASA Astrophysics Data System (ADS)
Ventura, Jacopo; Romano, Marcello
2014-11-01
The problem of spinning-up an axially symmetric spacecraft subjected to an external torque constant in magnitude and parallel to the symmetry axis is considered. The existing exact analytic solution for an axially symmetric body is applied for the first time to this problem. The proposed solution is valid for any initial conditions of attitude and angular velocity and for any length of time and rotation amplitude. Furthermore, the proposed solution can be numerically evaluated up to any desired level of accuracy. Numerical experiments and comparison with an existing approximated solution and with the integration of the equations of motion are reported in the paper. Finally, a new approximated solution obtained from the exact one is introduced in this paper.
NASA Astrophysics Data System (ADS)
Lekner, John; Andrejic, Petar
2018-01-01
Solutions of the Helmholtz equation which describe electromagnetic beams (and also acoustic or particle beams) are discussed. We show that an exact solution which reproduces the Gaussian beam waveform on the beam axis does not exist. This is surprising, since the Gaussian beam is a solution of the paraxial equation, and thus supposedly accurate on and near the beam axis. Likewise, a solution of the Helmholtz equation which exactly reproduces the Gaussian beam in the focal plane does not exist. We show that the last statement also holds for Bessel-Gauss beams. However, solutions of the Helmholtz equation (one of which is discussed in detail) can approximate the Gaussian waveform within the central focal region.
Doebling, Scott William
2016-10-22
This paper documents the escape of high explosive (HE) products problem. The problem, first presented by Fickett & Rivard, tests the implementation and numerical behavior of a high explosive detonation and energy release model and its interaction with an associated compressible hydrodynamics simulation code. The problem simulates the detonation of a finite-length, one-dimensional piece of HE that is driven by a piston from one end and adjacent to a void at the other end. The HE equation of state is modeled as a polytropic ideal gas. The HE detonation is assumed to be instantaneous with an infinitesimal reaction zone. Viamore » judicious selection of the material specific heat ratio, the problem has an exact solution with linear characteristics, enabling a straightforward calculation of the physical variables as a function of time and space. Lastly, implementation of the exact solution in the Python code ExactPack is discussed, as are verification cases for the exact solution code.« less
Exact vacuum solution to conformal Weyl gravity and galactic rotation curves
NASA Technical Reports Server (NTRS)
Mannheim, Philip D.; Kazanas, Demosthenes
1989-01-01
The complete, exact exterior solution for a static, spherically symmetric source in locally conformal invariant Weyl gravity is presented. The solution includes the familiar exterior Schwarzschild solution as a special case and contains an extra gravitational potential term which grows linearly with distance. The obtained solution provides a potential explanation for observed galactic rotation curves without the need for dark matter. The solution also has some interesting implications for cosmology.
Gai, Litao; Bilige, Sudao; Jie, Yingmo
2016-01-01
In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbarz, Alan, E-mail: alan-at@df.uba.ar; Giribet, Gaston, E-mail: gaston-at@df.uba.ar, E-mail: af.goya-at@df.uba.ar; Goya, Andrés, E-mail: gaston-at@df.uba.ar, E-mail: af.goya-at@df.uba.ar
2015-03-26
We consider critical gravity in three dimensions; that is, the New Massive Gravity theory formulated about Anti-de Sitter (AdS) space with the specific value of the graviton mass for which it results dual to a two-dimensional conformai field theory with vanishing central charge. As it happens with Kerr black holes in four-dimensional critical gravity, in three-dimensional critical gravity the Bañados-Teitelboim-Zanelli black holes have vanishing mass and vanishing angular momentum. However, provided suitable asymptotic conditions are chosen, the theory may also admit solutions carrying non-vanishing charges. Here, we give simple examples of exact solutions that exhibit falling-off conditions that are evenmore » weaker than those of the so-called Log-gravity. For such solutions, we define the quasilocal stress-tensor and use it to compute conserved charges. Despite the drastic deformation of AdS{sub 3} asymptotic, these solutions have finite mass and angular momentum, which are shown to be non-zero.« less
Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm
NASA Astrophysics Data System (ADS)
Gubernatis, James
2014-03-01
A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.
Tian, Qing; Wu, Lei; Zhang, Jie-Fang; Malomed, Boris A; Mihalache, D; Liu, W M
2011-01-01
We put forward a generic transformation which helps to find exact soliton solutions of the nonlinear Schrödinger equation with a spatiotemporal modulation of the nonlinearity and external potentials. As an example, we construct exact solitons for the defocusing nonlinearity and harmonic potential. When the soliton's eigenvalue is fixed, the number of exact solutions is determined by energy levels of the linear harmonic oscillator. In addition to the stable fundamental solitons, stable higher-order modes, describing array of dark solitons nested in a finite-width background, are constructed too. We also show how to control the instability domain of the nonstationary solitons.
Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
2018-03-01
This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2002-01-01
A variable order method of integrating initial value ordinary differential equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. While it is more complex than most other methods, it produces exact solutions at arbitrary time step size when the time variation of the system can be modeled exactly by a polynomial. Solutions to several nonlinear problems exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with an exact solution and with solutions obtained by established methods.
Exact special twist method for quantum Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Dagrada, Mario; Karakuzu, Seher; Vildosola, Verónica Laura; Casula, Michele; Sorella, Sandro
2016-12-01
We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995), 10.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.
NASA Astrophysics Data System (ADS)
Liu, Jiangen; Zhang, Yufeng
2018-01-01
This paper gives an analytical study of dynamic behavior of the exact solutions of nonlinear Korteweg-de Vries equation with space-time local fractional derivatives. By using the improved (G‧ G )-expansion method, the explicit traveling wave solutions including periodic solutions, dark soliton solutions, soliton solutions and soliton-like solutions, are obtained for the first time. They can better help us further understand the physical phenomena and provide a strong basis. Meanwhile, some solutions are presented through 3D-graphs.
Exact solutions to the Mo-Papas and Landau-Lifshitz equations
NASA Astrophysics Data System (ADS)
Rivera, R.; Villarroel, D.
2002-10-01
Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electrodynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate of radiation can also be obtained, with independence of the equation of motion, from the well known fields of a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical electrodynamics.
New analytical exact solutions of time fractional KdV-KZK equation by Kudryashov methods
NASA Astrophysics Data System (ADS)
S Saha, Ray
2016-04-01
In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equation are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann-Liouville derivative is used to convert the nonlinear time fractional KdV-KZK equation into the nonlinear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV-KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV-KZK equation.
Exact solutions for postbuckling of a graded porous beam
NASA Astrophysics Data System (ADS)
Ma, L. S.; Ou, Z. Y.
2018-06-01
An exact, closed-form solution for the postbuckling responses of graded porous beams subjected to axially loading is obtained. It was assumed that the properties of the graded porous materials vary continuously through thickness of the beams, the equations governing the axial and transverse deformations are derived based on the classical beam theory and the physical neutral surface concept. The two equations are reduced to a single nonlinear fourth-order integral-differential equation governing the transverse deformations. The nonlinear equation is directly solved without any use of approximation and a closed-form solution for postbuckled deformation is obtained as a function of the applied load. The exact solutions explicitly describe the nonlinear equilibrium paths of the buckled beam and thus are able to provide insight into deformation problems. Based on the exact solutions obtained herein, the effects of various factors such as porosity distribution pattern, porosity coefficient and boundary conditions on postbuckling behavior of graded porous beams have been investigated.
Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium.
Petrov, E Yu; Kudrin, A V
2010-05-14
The features of propagation of intense waves are of great interest for theory and experiment in electrodynamics and acoustics. The behavior of nonlinear waves in a bounded volume is of special importance and, at the same time, is an extremely complicated problem. It seems almost impossible to find a rigorous solution to such a problem even for any model of nonlinearity. We obtain the first exact solution of this type. We present a new method for deriving exact solutions of the Maxwell equations in a nonlinear medium without dispersion and give examples of the obtained solutions that describe propagation of cylindrical electromagnetic waves in a nonlinear nondispersive medium and free electromagnetic oscillations in a cylindrical cavity resonator filled with such a medium.
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Tian, Yu; Zeng, Zhi-Fang
2017-10-01
In this paper, we aim to introduce a new form of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation for the long waves of small amplitude with slow dependence on the transverse coordinate. By using the Hirota's bilinear form and the extended homoclinic test approach, new exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation are presented. Moreover, the properties and characteristics for these new exact periodic solitary-wave solutions are discussed with some figures.
Mitlin, Vlad
2005-10-15
A new transformation termed the mu-derivative is introduced. Applying it to the Cahn-Hilliard equation yields dynamical exact solutions. It is shown that the mu-transformed Cahn-Hilliard equation can be presented in a separable form. This transformation also yields dynamical exact solutions and separable forms for other nonlinear models such as the modified Korteveg-de Vries and the Burgers equations. The general structure of a nonlinear partial differential equation that becomes separable upon applying the mu-derivative is described.
ERIC Educational Resources Information Center
Tisdell, C. C.
2017-01-01
Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…
A weak Hamiltonian finite element method for optimal guidance of an advanced launch vehicle
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Calise, Anthony J.; Bless, Robert R.; Leung, Martin
1989-01-01
A temporal finite-element method based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables, which are expanded in terms of nodal values and simple shape functions. Time derivatives of the states and costates do not appear in the governing variational equation; the only quantities whose time derivatives appear therein are virtual states and virtual costates. Numerical results are presented for an elementary trajectory optimization problem; they show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The feasibility of this approach for real-time guidance applications is evaluated. A simplified model for an advanced launch vehicle application that is suitable for finite-element solution is presented.
An improved finite-difference analysis of uncoupled vibrations of tapered cantilever beams
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1983-01-01
An improved finite difference procedure for determining the natural frequencies and mode shapes of tapered cantilever beams undergoing uncoupled vibrations is presented. Boundary conditions are derived in the form of simple recursive relations involving the second order central differences. Results obtained by using the conventional first order central differences and the present second order central differences are compared, and it is observed that the present second order scheme is more efficient than the conventional approach. An important advantage offered by the present approach is that the results converge to exact values rapidly, and thus the extrapolation of the results is not necessary. Consequently, the basic handicap with the classical finite difference method of solution that requires the Richardson's extrapolation procedure is eliminated. Furthermore, for the cases considered herein, the present approach produces consistent lower bound solutions.
Improved Convergence and Robustness of USM3D Solutions on Mixed Element Grids (Invited)
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2015-01-01
Several improvements to the mixed-element USM3D discretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Scheme (HANIS), has been developed and implemented. It provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier Stokes (RANS) equations and a nonlinear control of the solution update. Two variants of the new methodology are assessed on four benchmark cases, namely, a zero-pressure gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the baseline solver technology.
Brane junctions in the Randall-Sundrum scenario
NASA Astrophysics Data System (ADS)
Csáki, Csaba; Shirman, Yuri
2000-01-01
We present static solutions to Einstein's equations corresponding to branes at various angles intersecting in a single 3-brane. Such configurations may be useful for building models with localized gravity via the Randall-Sundrum mechanism. We find that such solutions may exist only if the mechanical forces acting on the junction exactly cancel. In addition to this constraint there are further conditions that the parameters of the theory have to satisfy. We find that at least one of these involves only the brane tensions and cosmological constants, and thus cannot have a dynamical origin. We present these conditions in detail for two simple examples. We discuss the nature of the cosmological constant problem in the framework of these scenarios, and outline the desired features of the brane configurations which may bring us closer towards a resolution of the cosmological constant problem.
Polynomial interpretation of multipole vectors
NASA Astrophysics Data System (ADS)
Katz, Gabriel; Weeks, Jeff
2004-09-01
Copi, Huterer, Starkman, and Schwarz introduced multipole vectors in a tensor context and used them to demonstrate that the first-year Wilkinson microwave anisotropy probe (WMAP) quadrupole and octopole planes align at roughly the 99.9% confidence level. In the present article, the language of polynomials provides a new and independent derivation of the multipole vector concept. Bézout’s theorem supports an elementary proof that the multipole vectors exist and are unique (up to rescaling). The constructive nature of the proof leads to a fast, practical algorithm for computing multipole vectors. We illustrate the algorithm by finding exact solutions for some simple toy examples and numerical solutions for the first-year WMAP quadrupole and octopole. We then apply our algorithm to Monte Carlo skies to independently reconfirm the estimate that the WMAP quadrupole and octopole planes align at the 99.9% level.
Quantifying non-Markovianity of continuous-variable Gaussian dynamical maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasile, Ruggero; Maniscalco, Sabrina; Paris, Matteo G. A.
2011-11-15
We introduce a non-Markovianity measure for continuous-variable open quantum systems based on the idea put forward in H.-P. Breuer et al.[Phys. Rev. Lett. 103, 210401 (2009);], that is, by quantifying the flow of information from the environment back to the open system. Instead of the trace distance we use here the fidelity to assess distinguishability of quantum states. We employ our measure to evaluate non-Markovianity of two paradigmatic Gaussian channels: the purely damping channel and the quantum Brownian motion channel with Ohmic environment. We consider different classes of Gaussian states and look for pairs of states maximizing the backflow ofmore » information. For coherent states we find simple analytical solutions, whereas for squeezed states we provide both exact numerical and approximate analytical solutions in the weak coupling limit.« less
Lindén, Fredrik; Cederquist, Henrik; Zettergren, Henning
2016-11-21
We present exact analytical solutions for charge transfer reactions between two arbitrarily charged hard dielectric spheres. These solutions, and the corresponding exact ones for sphere-sphere interaction energies, include sums that describe polarization effects to infinite orders in the inverse of the distance between the sphere centers. In addition, we show that these exact solutions may be approximated by much simpler analytical expressions that are useful for many practical applications. This is exemplified through calculations of Langevin type cross sections for forming a compound system of two colliding spheres and through calculations of electron transfer cross sections. We find that it is important to account for dielectric properties and finite sphere sizes in such calculations, which for example may be useful for describing the evolution, growth, and dynamics of nanometer sized dielectric objects such as molecular clusters or dust grains in different environments including astrophysical ones.
Some exact velocity profiles for granular flow in converging hoppers
NASA Astrophysics Data System (ADS)
Cox, Grant M.; Hill, James M.
2005-01-01
Gravity flow of granular materials through hoppers occurs in many industrial processes. For an ideal cohesionless granular material, which satisfies the Coulomb-Mohr yield condition, the number of known analytical solutions is limited. However, for the special case of the angle of internal friction δ equal to ninety degrees, there exist exact parametric solutions for the governing coupled ordinary differential equations for both two-dimensional wedges and three-dimensional cones, both of which involve two arbitrary constants of integration. These solutions are the only known analytical solutions of this generality. Here, we utilize the double-shearing theory of granular materials to determine the velocity field corresponding to these exact parametric solutions for the two problems of gravity flow through converging wedge and conical hoppers. An independent numerical solution for other angles of internal friction is shown to coincide with the analytical solution.
Analytical approach for the fractional differential equations by using the extended tanh method
NASA Astrophysics Data System (ADS)
Pandir, Yusuf; Yildirim, Ayse
2018-07-01
In this study, we consider analytical solutions of space-time fractional derivative foam drainage equation, the nonlinear Korteweg-de Vries equation with time and space-fractional derivatives and time-fractional reaction-diffusion equation by using the extended tanh method. The fractional derivatives are defined in the modified Riemann-Liouville context. As a result, various exact analytical solutions consisting of trigonometric function solutions, kink-shaped soliton solutions and new exact solitary wave solutions are obtained.
The time light signals of New Zealand: yet another way of communicating time in the pre-wireless era
NASA Astrophysics Data System (ADS)
Kinns, Roger
2017-08-01
The signalling of exact time using an array of lights appears to have been unique to New Zealand. It was a simple and effective solution for calibration of marine chronometers when transmission of time signals by wireless was in its infancy. Three lights, coloured green, red and white, were arranged in a vertical array. They were switched on in a defined sequence during the evening and then extinguished together to signal exact time. Time lights were first operated at the Dominion Observatory in Wellington during February 1912 and on the Ferry Building in Auckland during October 1915. The Wellington lights were immediately adjacent to the observatory buildings, but those in Auckland were operated using telegraph signals from Wellington. The timings varied over the years, but the same physical arrangement was retained at each location. The time light service was withdrawn during 1937, when wireless signals had become almost universally available for civil and navigation purposes.
More exact solutions of the constant astigmatism equation
NASA Astrophysics Data System (ADS)
Hlaváč, Adam
2018-01-01
By using Bäcklund transformation for the sine-Gordon equation, new periodic exact solutions of the constant astigmatism equation zyy +(1 / z) xx + 2 = 0 are generated from a seed which corresponds to Lipschitz surfaces of constant astigmatism.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.
2014-01-01
Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.
Exact closed-form solutions of a fully nonlinear asymptotic two-fluid model
NASA Astrophysics Data System (ADS)
Cheviakov, Alexei F.
2018-05-01
A fully nonlinear model of Choi and Camassa (1999) describing one-dimensional incompressible dynamics of two non-mixing fluids in a horizontal channel, under a shallow water approximation, is considered. An equivalence transformation is presented, leading to a special dimensionless form of the system, involving a single dimensionless constant physical parameter, as opposed to five parameters present in the original model. A first-order dimensionless ordinary differential equation describing traveling wave solutions is analyzed. Several multi-parameter families of physically meaningful exact closed-form solutions of the two-fluid model are derived, corresponding to periodic, solitary, and kink-type bidirectional traveling waves; specific examples are given, and properties of the exact solutions are analyzed.
Some exact solutions for maximally symmetric topological defects in Anti de Sitter space
NASA Astrophysics Data System (ADS)
Alvarez, Orlando; Haddad, Matthew
2018-03-01
We obtain exact analytical solutions for a class of SO( l) Higgs field theories in a non-dynamic background n-dimensional anti de Sitter space. These finite transverse energy solutions are maximally symmetric p-dimensional topological defects where n = ( p + 1) + l. The radius of curvature of anti de Sitter space provides an extra length scale that allows us to study the equations of motion in a limit where the masses of the Higgs field and the massive vector bosons are both vanishing. We call this the double BPS limit. In anti de Sitter space, the equations of motion depend on both p and l. The exact analytical solutions are expressed in terms of standard special functions. The known exact analytical solutions are for kink-like defects ( p = 0 , 1 , 2 , . . . ; l = 1), vortex-like defects ( p = 1 , 2 , 3; l = 2), and the 't Hooft-Polyakov monopole ( p = 0; l = 3). A bonus is that the double BPS limit automatically gives a maximally symmetric classical glueball type solution. In certain cases where we did not find an analytic solution, we present numerical solutions to the equations of motion. The asymptotically exponentially increasing volume with distance of anti de Sitter space imposes different constraints than those found in the study of defects in Minkowski space.
Perturbational blowup solutions to the compressible Euler equations with damping.
Cheung, Ka Luen
2016-01-01
The N-dimensional isentropic compressible Euler system with a damping term is one of the most fundamental equations in fluid dynamics. Since it does not have a general solution in a closed form for arbitrary well-posed initial value problems. Constructing exact solutions to the system is a useful way to obtain important information on the properties of its solutions. In this article, we construct two families of exact solutions for the one-dimensional isentropic compressible Euler equations with damping by the perturbational method. The two families of exact solutions found include the cases [Formula: see text] and [Formula: see text], where [Formula: see text] is the adiabatic constant. With analysis of the key ordinary differential equation, we show that the classes of solutions include both blowup type and global existence type when the parameters are suitably chosen. Moreover, in the blowup cases, we show that the singularities are of essential type in the sense that they cannot be smoothed by redefining values at the odd points. The two families of exact solutions obtained in this paper can be useful to study of related numerical methods and algorithms such as the finite difference method, the finite element method and the finite volume method that are applied by scientists to simulate the fluids for applications.
Layeni, Olawanle P; Akinola, Adegbola P; Johnson, Jesse V
2016-01-01
Two distinct and novel formalisms for deriving exact closed solutions of a class of variable-coefficient differential-difference equations arising from a plate solidification problem are introduced. Thereupon, exact closed traveling wave and similarity solutions to the plate solidification problem are obtained for some special cases of time-varying plate surface temperature.
On a method computing transient wave propagation in ionospheric regions
NASA Technical Reports Server (NTRS)
Gray, K. G.; Bowhill, S. A.
1978-01-01
A consequence of an exoatmospheric nuclear burst is an electromagnetic pulse (EMP) radiated from it. In a region far enough away from the burst, where nonlinear effects can be ignored, the EMP can be represented by a large-amplitude narrow-time-width plane-wave pulse. If the ionosphere intervenes the origin and destination of the EMP, frequency dispersion can cause significant changes in the original pulse upon reception. A method of computing these dispersive effects of transient wave propagation is summarized. The method described is different from the standard transform techniques and provides physical insight into the transient wave process. The method, although exact, can be used in approximating the early-time transient response of an ionospheric region by a simple integration with only explicit knowledge of the electron density, electron collision frequency, and electron gyrofrequency required. As an illustration of the method, it is applied to a simple example and contrasted with the corresponding transform solution.
Singularities in x-ray spectra of metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahan, G.D.
1987-08-01
The x-ray spectroscopies discussed are absorption, emission, and photoemission. The singularities show up in each of them in a different manner. In absorption and emission they show up as power law singularities at the thresholds frequencies. This review will emphasize two themes. First a simple model is proposed to describe this phenomena, which is now called the MND model after MAHAN-NOZIERES-DeDOMINICIS. Exact analytical solutions are now available for this model for the three spectroscopies discussed above. These analytical models can be evaluated numerically in a simple way. The second theme of this review is that great care must be usedmore » when comparing the theory to experiment. A number of factors influence the edge shapes in x-ray spectroscopy. The edge singularities play an important role, and are observed in many matals. Quantitative fits of the theory to experiment require the consideration of other factors. 51 refs.« less
NASA Astrophysics Data System (ADS)
Evans, Timothy J.; Singleton, Douglas
2018-04-01
We find exact, simple solutions to the Proca version of Maxwell’s equations with magnetic sources. Several properties of these solutions differ from the usual case of magnetic charge with a massless photon: (i) the string singularities of the usual 3-vector potentials become real singularities in the magnetic fields; (ii) the different 3-vector potentials become gauge inequivalent and physically distinct solutions; (iii) the magnetic field depends on r and 𝜃 and thus is no longer rotationally symmetric; (iv) a combined system of electric and magnetic charge carries a field angular momentum even when the electric and magnetic charges are located at the same place (i.e. for dyons); (v) for these dyons, one recovers the standard Dirac condition despite the photon being massive. We discuss the reason for this. We conclude by proposing that the string singularity in the magnetic field of an isolated magnetic charge suggests a confinement mechanism for magnetic charge, similar to the flux tube confinement of quarks in QCD.
Steady state solutions to dynamically loaded periodic structures
NASA Technical Reports Server (NTRS)
Kalinowski, A. J.
1980-01-01
The general problem of solving for the steady state (time domain) dynamic response (i.e., NASTRAN rigid format-8) of a general elastic periodic structure subject to a phase difference loading of the type encountered in traveling wave propagation problems was studied. Two types of structural configurations were considered; in the first type, the structure has a repeating pattern over a span that is long enough to be considered, for all practical purposes, as infinite; in the second type, the structure has structural rotational symmetry in the circumferential direction. The theory and a corresponding set of DMAP instructions which permits the NASTRAN user to automatically alter the rigid format-8 sequence to solve the intended class of problems are presented. Final results are recovered as with any ordinary rigid format-8 solution, except that the results are only printed for the typical periodic segment of the structure. A simple demonstration problem having a known exact solution is used to illustrate the implementation of the procedure.
NASA Astrophysics Data System (ADS)
Palmisano, Fabrizio; Elia, Angelo
2017-10-01
One of the main difficulties, when dealing with landslide structural vulnerability, is the diagnosis of the causes of crack patterns. This is also due to the excessive complexity of models based on classical structural mechanics that makes them inappropriate especially when there is the necessity to perform a rapid vulnerability assessment at the territorial scale. This is why, a new approach, based on a ‘simple model’ (i.e. the Load Path Method, LPM), has been proposed by Palmisano and Elia for the interpretation of the behaviour of masonry buildings subjected to landslide-induced settlements. However, the LPM is very useful for rapidly finding the 'most plausible solution' instead of the exact solution. To find the solution, optimization algorithms are necessary. In this scenario, this article aims to show how the Bidirectional Evolutionary Structural Optimization method by Huang and Xie, can be very useful to optimize the strut-and-tie models obtained by using the Load Path Method.
Es'kin, V A; Kudrin, A V; Petrov, E Yu
2011-06-01
The behavior of electromagnetic fields in nonlinear media has been a topical problem since the discovery of materials with a nonlinearity of electromagnetic properties. The problem of finding exact solutions for the source-excited nonlinear waves in curvilinear coordinates has been regarded as unsolvable for a long time. In this work, we present the first solution of this type for a cylindrically symmetric field excited by a pulsed current filament in a nondispersive medium that is simultaneously inhomogeneous and nonlinear. Assuming that the medium has a power-law permittivity profile in the linear regime and lacks a center of inversion, we derive an exact solution for the electromagnetic field excited by a current filament in such a medium and discuss the properties of this solution.
Critical Frequency in Nuclear Chiral Rotation
NASA Astrophysics Data System (ADS)
Olbratowski, P.; Dobaczewski, J.; Dudek, J.; Płóciennik, W.
2004-07-01
Self-consistent solutions for the so-called planar and chiral rotational bands in 132La are obtained for the first time within the Skyrme-Hartree-Fock cranking approach. It is suggested that the chiral rotation cannot exist below a certain critical frequency which under the approximations used is estimated as ℏωcrit≈0.5 0.6 MeV. However, the exact values of ℏωcrit may vary, to an extent, depending on the microscopic model used, in particular, through the pairing correlations and/or calculated equilibrium deformations. The existence of the critical frequency is explained in terms of a simple classical model of two gyroscopes coupled to a triaxial rigid body.
The physics of osmotic pressure
NASA Astrophysics Data System (ADS)
Bowler, M. G.
2017-09-01
Osmosis drives the development of a pressure difference of many atmospheres between a dilute solution and pure solvent with which it is in contact through a semi-permeable membrane. The educational importance of this paper is that it presents a novel treatment in terms of fluid mechanics that is quantitative and exact. It is also simple and intuitive, showing vividly how osmotic pressures are generated and maintained in equilibrium, driven by differential solvent pressures. The present rigorous analysis using the virial theorem seems unknown and can be easily understood—and taught—at various different levels. It should be valuable to undergraduates, graduate students and indeed to the general physicist.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
Peakompactons: Peaked compact nonlinear waves
Christov, Ivan C.; Kress, Tyler; Saxena, Avadh
2017-04-20
This paper is meant as an accessible introduction to/tutorial on the analytical construction and numerical simulation of a class of nonstandard solitary waves termed peakompactons. We present that these peaked compactly supported waves arise as solutions to nonlinear evolution equations from a hierarchy of nonlinearly dispersive Korteweg–de Vries-type models. Peakompactons, like the now-well-known compactons and unlike the soliton solutions of the Korteweg–de Vries equation, have finite support, i.e., they are of finite wavelength. However, unlike compactons, peakompactons are also peaked, i.e., a higher spatial derivative suffers a jump discontinuity at the wave’s crest. Here, we construct such solutions exactly bymore » reducing the governing partial differential equation to a nonlinear ordinary differential equation and employing a phase-plane analysis. Lastly, a simple, but reliable, finite-difference scheme is also designed and tested for the simulation of collisions of peakompactons. In addition to the peakompacton class of solutions, the general physical features of the so-called K #(n,m) hierarchy of nonlinearly dispersive Korteweg–de Vries-type models are discussed as well.« less
NASA Astrophysics Data System (ADS)
Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa
2018-06-01
In this work, we investigate the Lie symmetry analysis, exact solutions and conservation laws (Cls) to the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGDK) equation with Riemann-Liouville (RL) derivative. The time fractional CDGDK is reduced to nonlinear ordinary differential equation (ODE) of fractional order. New exact traveling wave solutions for the time fractional CDGDK are obtained by fractional sub-equation method. In the reduced equation, the derivative is in Erdelyi-Kober (EK) sense. Ibragimov's nonlocal conservation method is applied to construct Cls for time fractional CDGDK.
NASA Astrophysics Data System (ADS)
Kruglov, Vladimir I.; Harvey, John D.
2006-12-01
We present exact asymptotic similariton solutions of the generalized nonlinear Schrödinger equation (NLSE) with gain or loss terms for a normal-dispersion fiber amplifier with dispersion, nonlinearity, and gain profiles that depend on the propagation distance. Our treatment is based on the mapping of the NLSE with varying parameters to the NLSE with constant dispersion and nonlinearity coefficients and an arbitrary varying gain function. We formulate an effective procedure that leads directly, under appropriate conditions, to a wide range of exact asymptotic similariton solutions of NLSE demonstrating self-similar propagating regimes with linear chirp.
Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy.
Ankiewicz, A; Akhmediev, N
2017-07-01
We present rogue wave solutions of the integrable nonlinear Schrödinger equation hierarchy with an infinite number of higher-order terms. The latter include higher-order dispersion and higher-order nonlinear terms. In particular, we derive the fundamental rogue wave solutions for all orders of the hierarchy, with exact expressions for velocities, phase, and "stretching factors" in the solutions. We also present several examples of exact solutions of second-order rogue waves, including rogue wave triplets.
Gravitational field of a concentrated mass in Jordan—Brans—Dicke theory
NASA Astrophysics Data System (ADS)
Arutyunyan, G. G.; Papoyan, V. V.
1994-04-01
The problem of determining the gravitational field of a static, spherically symmetric, self-gravitating object is formulated. The small number of physically applicable exact solutions of the equations in Jordan—Brans—Dicke theory is augmented with new exact solutions describing the external gravitational field of the given body. Once a solution has been found, it can be rewritten in modified curvature, homogeneous, and other coordinates by appropriate gauging. In a special case the solution coincides with the well-known Schwarzschild solution.
Exact solutions to force-free electrodynamics in black hole backgrounds
NASA Astrophysics Data System (ADS)
Brennan, T. Daniel; Gralla, Samuel E.; Jacobson, Ted
2013-10-01
A shared property of several of the known exact solutions to the equations of force-free electrodynamics is that their charge-current four-vector is null. We examine the general properties of null-current solutions and then focus on the principal congruences of the Kerr black hole spacetime. We obtain a large class of exact solutions, which are in general time-dependent and non-axisymmetric. These solutions include waves that, surprisingly, propagate without scattering on the curvature of the black hole’s background. They may be understood as generalizations to Robinson’s solutions to vacuum electrodynamics associated with a shear-free congruence of null geodesics. When stationary and axisymmetric, our solutions reduce to those of Menon and Dermer, the only previously known solutions in Kerr. In Kerr, all of our solutions have null electromagnetic fields (\\vec{E} \\cdot \\vec{B} = 0 and E2 = B2). However, in Schwarzschild or flat spacetime there is freedom to add a magnetic monopole field, making the solutions magnetically dominated (B2 > E2). This freedom may be used to reproduce the various flat-spacetime and Schwarzschild-spacetime (split) monopole solutions available in the literature (due to Michel and later authors), and to obtain a large class of time-dependent, non-axisymmetric generalizations. These generalizations may be used to model the magnetosphere of a conducting star that rotates with arbitrary prescribed time-dependent rotation axis and speed. We thus significantly enlarge the class of known exact solutions, while organizing and unifying previously discovered solutions in terms of their null structure.
NASA Astrophysics Data System (ADS)
Russell, John
2000-11-01
A modified Orr-Sommerfeld equation that applies to the asymptotic suction boundary layer was reported by Bussmann & Münz in a wartime report dated 1942 and by Hughes & Reid in J.F.M. ( 23, 1965, p715). Fundamental systems of exact solutions of the Orr-Sommerfeld equation for this mean velocity distribution were reported by D. Grohne in an unpublished typescript dated 1950. Exact solutions of the equation of Bussmann, Münz, Hughes, & Reid were reported by P. Baldwin in Mathematika ( 17, 1970, p206). Grohne and Baldwin noticed that these exact solutions may be expressed either as Barnes integrals or as convolution integrals. In a later paper (Phil. Trans. Roy. Soc. A, 399, 1985, p321), Baldwin applied the convolution integrals in the contruction of large-Reynolds number asymptotic approximations that hold uniformly. The present talk discusses the subtleties that arise in the construction of such convolution integrals, including several not reported by Grohne or Baldwin. The aim is to recover the full set of seven solutions (one well balanced, three balanced, and three dominant-recessive) postulated by W.H. Reid in various works on the uniformly valid solutions.
Liu, Jia; Han, Qiang; Shao, L B; Wang, Z D
2011-07-08
A type of electron pairing model with spin-orbit interactions or Zeeman coupling is solved exactly in the framework of the Richardson ansatz. Based on the exact solutions for the case with spin-orbit interactions, it is shown rigorously that the pairing symmetry is of the p + ip wave and the ground state possesses time-reversal symmetry, regardless of the strength of the pairing interaction. Intriguingly, how Majorana fermions can emerge in the system is also elaborated. Exact results are illustrated for two systems, respectively, with spin-orbit interactions and Zeeman coupling.
Logical gaps in the approximate solutions of the social learning game and an exact solution.
Dai, Wenjie; Wang, Xin; Di, Zengru; Wu, Jinshan
2014-01-01
After the social learning models were proposed, finding solutions to the games becomes a well-defined mathematical question. However, almost all papers on the games and their applications are based on solutions built either upon an ad-hoc argument or a twisted Bayesian analysis of the games. Here, we present logical gaps in those solutions and offer an exact solution of our own. We also introduce a minor extension to the original game so that not only logical differences but also differences in action outcomes among those solutions become visible.
Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations
NASA Astrophysics Data System (ADS)
Indekeu, Joseph O.; Smets, Ruben
2017-08-01
Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.
Interior radiances in optically deep absorbing media. 1: Exact solutions for one-dimensional model
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Plass, G. N.
1973-01-01
The exact solutions are obtained for a one dimensional model of a scattering and absorbing medium. The results are given for both the reflected and transmitted radiance for any arbitrary surface albedo as well as for the interior radiance. These same quantities are calculated by the matrix operator method. The relative error of the solutions is obtained by comparison with the exact solutions as well as by an error analysis of the equations. The importance of an accurate starting value for the reflection and transmission operators is shown. A fourth order Runge-Kutta method can be used to solve the differential equations satisfied by these operators in order to obtain such accurate starting values.
Goličnik, Marko
2011-01-01
The Michaelis-Menten rate equation can be found in most general biochemistry textbooks, where the time derivative of the substrate is a hyperbolic function of two kinetic parameters (the limiting rate V, and the Michaelis constant K(M) ) and the amount of substrate. However, fundamental concepts of enzyme kinetics can be difficult to understand fully, or can even be misunderstood, by students when based only on the differential form of the Michaelis-Menten equation, and the variety of methods available to calculate the kinetic constants from rate versus substrate concentration "textbook data." Consequently, enzyme kinetics can be confusing if an analytical solution of the Michaelis-Menten equation is not available. Therefore, the still rarely known exact solution to the Michaelis-Menten equation is presented here through the explicit closed-form equation in terms of the Lambert W(x) function. Unfortunately, as the W(x) is not available in standard curve-fitting computer programs, the practical use of this direct solution is limited for most life-science students. Thus, the purpose of this article is to provide analytical approximations to the equation for modeling Michaelis-Menten kinetics. The elementary and explicit nature of these approximations can provide students with direct and simple estimations of kinetic parameters from raw experimental time-course data. The Michaelis-Menten kinetics studied in the latter context can provide an ideal alternative to the 100-year-old problems of data transformation, graphical visualization, and data analysis of enzyme-catalyzed reactions. Hence, the content of the course presented here could gradually become an important component of the modern biochemistry curriculum in the 21st century. Copyright © 2011 Wiley Periodicals, Inc.
Sample distribution in peak mode isotachophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, Shimon; Schwartz, Ortal; Bercovici, Moran, E-mail: mberco@technion.ac.il
We present an analytical study of peak mode isotachophoresis (ITP), and provide closed form solutions for sample distribution and electric field, as well as for leading-, trailing-, and counter-ion concentration profiles. Importantly, the solution we present is valid not only for the case of fully ionized species, but also for systems of weak electrolytes which better represent real buffer systems and for multivalent analytes such as proteins and DNA. The model reveals two major scales which govern the electric field and buffer distributions, and an additional length scale governing analyte distribution. Using well-controlled experiments, and numerical simulations, we verify andmore » validate the model and highlight its key merits as well as its limitations. We demonstrate the use of the model for determining the peak concentration of focused sample based on known buffer and analyte properties, and show it differs significantly from commonly used approximations based on the interface width alone. We further apply our model for studying reactions between multiple species having different effective mobilities yet co-focused at a single ITP interface. We find a closed form expression for an effective-on rate which depends on reactants distributions, and derive the conditions for optimizing such reactions. Interestingly, the model reveals that maximum reaction rate is not necessarily obtained when the concentration profiles of the reacting species perfectly overlap. In addition to the exact solutions, we derive throughout several closed form engineering approximations which are based on elementary functions and are simple to implement, yet maintain the interplay between the important scales. Both the exact and approximate solutions provide insight into sample focusing and can be used to design and optimize ITP-based assays.« less
NASA Astrophysics Data System (ADS)
Kamimoto, Shingo; Kawai, Takahiro; Koike, Tatsuya
2016-12-01
Inspired by the symbol calculus of linear differential operators of infinite order applied to the Borel transformed WKB solutions of simple-pole type equation [Kamimoto et al. (RIMS Kôkyûroku Bessatsu B 52:127-146, 2014)], which is summarized in Section 1, we introduce in Section 2 the space of simple resurgent functions depending on a parameter with an infra-exponential type growth order, and then we define the assigning operator A which acts on the space and produces resurgent functions with essential singularities. In Section 3, we apply the operator A to the Borel transforms of the Voros coefficient and its exponentiation for the Whittaker equation with a large parameter so that we may find the Borel transforms of the Voros coefficient and its exponentiation for the boosted Whittaker equation with a large parameter. In Section 4, we use these results to find the explicit form of the alien derivatives of the Borel transformed WKB solutions of the boosted Whittaker equation with a large parameter. The results in this paper manifest the importance of resurgent functions with essential singularities in developing the exact WKB analysis, the WKB analysis based on the resurgent function theory. It is also worth emphasizing that the concrete form of essential singularities we encounter is expressed by the linear differential operators of infinite order.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.; Yanovitsku, Edgard G.; Zakharova, Nadia T.
1999-01-01
We describe a simple and highly efficient and accurate radiative transfer technique for computing bidirectional reflectance of a macroscopically flat scattering layer composed of nonabsorbing or weakly absorbing, arbitrarily shaped, randomly oriented and randomly distributed particles. The layer is assumed to be homogeneous and optically semi-infinite, and the bidirectional reflection function (BRF) is found by a simple iterative solution of the Ambartsumian's nonlinear integral equation. As an exact Solution of the radiative transfer equation, the reflection function thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. Since this technique bypasses the computation of the internal radiation field, it is by far the fastest numerical approach available and can be used as an ideal input for Monte Carlo procedures calculating BRFs of scattering layers with macroscopically rough surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The FORTRAN implementation of the technique is available on the World Wide Web at http://ww,,v.giss.nasa.gov/-crmim/brf.html and can be applied to a wide range of remote sensing, engineering, and biophysical problems. We also examine the potential effect of ice crystal shape on the bidirectional reflectance of flat snow surfaces and the applicability of the Henyey-Greenstein phase function and the 6-Eddington approximation in calculations for soil surfaces.
Falling head ponded infiltration in the nonlinear limit
NASA Astrophysics Data System (ADS)
Triadis, D.
2014-12-01
The Green and Ampt infiltration solution represents only an extreme example of behavior within a larger class of very nonlinear, delta function diffusivity soils. The mathematical analysis of these soils is greatly simplified by the existence of a sharp wetting front below the soil surface. Solutions for more realistic delta function soil models have recently been presented for infiltration under surface saturation without ponding. After general formulation of the problem, solutions for a full suite of delta function soils are derived for ponded surface water depleted by infiltration. Exact expressions for the cumulative infiltration as a function of time, or the drainage time as a function of the initial ponded depth may take implicit or parametric forms, and are supplemented by simple asymptotic expressions valid for small times, and small and large initial ponded depths. As with surface saturation without ponding, the Green-Ampt model overestimates the effect of the soil hydraulic conductivity. At the opposing extreme, a low-conductivity model is identified that also takes a very simple mathematical form and appears to be more accurate than the Green-Ampt model for larger ponded depths. Between these two, the nonlinear limit of Gardner's soil is recommended as a physically valid first approximation. Relative discrepancies between different soil models are observed to reach a maximum for intermediate values of the dimensionless initial ponded depth, and in general are smaller than for surface saturation without ponding.
Exact solution for four-order acousto-optic Bragg diffraction with arbitrary initial conditions.
Pieper, Ron; Koslover, Deborah; Poon, Ting-Chung
2009-03-01
An exact solution to the four-order acousto-optic (AO) Bragg diffraction problem with arbitrary initial conditions compatible with exact Bragg angle incident light is developed. The solution, obtained by solving a 4th-order differential equation, is formalized into a transition matrix operator predicting diffracted light orders at the exit of the AO cell in terms of the same diffracted light orders at the entrance. It is shown that the transition matrix is unitary and that this unitary matrix condition is sufficient to guarantee energy conservation. A comparison of analytical solutions with numerical predictions validates the formalism. Although not directly related to the approach used to obtain the solution, it was discovered that all four generated eigenvalues from the four-order AO differential matrix operator are expressed simply in terms of Euclid's Divine Proportion.
Gravitational Instantons and Minimal Surfaces
NASA Astrophysics Data System (ADS)
Nutku, Y.
1996-12-01
We show that for every minimal surface in E3 there is a gravitational instanton, an exact solution of the Einstein field equations with Euclidean signature and anti-self-dual curvature. The explicit metric establishing this correspondence is presented and a new class of exact solutions are obtained.
OPTRAN- OPTIMAL LOW THRUST ORBIT TRANSFERS
NASA Technical Reports Server (NTRS)
Breakwell, J. V.
1994-01-01
OPTRAN is a collection of programs that solve the problem of optimal low thrust orbit transfers between non-coplanar circular orbits for spacecraft with chemical propulsion systems. The programs are set up to find Hohmann-type solutions, with burns near the perigee and apogee of the transfer orbit. They will solve both fairly long burn-arc transfers and "divided-burn" transfers. Program modeling includes a spherical earth gravity model and propulsion system models for either constant thrust or constant acceleration. The solutions obtained are optimal with respect to fuel use: i.e., final mass of the spacecraft is maximized with respect to the controls. The controls are the direction of thrust and the thrust on/off times. Two basic types of programs are provided in OPTRAN. The first type is for "exact solution" which results in complete, exact tkme-histories. The exact spacecraft position, velocity, and optimal thrust direction are given throughout the maneuver, as are the optimal thrust switch points, the transfer time, and the fuel costs. Exact solution programs are provided in two versions for non-coplanar transfers and in a fast version for coplanar transfers. The second basic type is for "approximate solutions" which results in approximate information on the transfer time and fuel costs. The approximate solution is used to estimate initial conditions for the exact solution. It can be used in divided-burn transfers to find the best number of burns with respect to time. The approximate solution is useful by itself in relatively efficient, short burn-arc transfers. These programs are written in FORTRAN 77 for batch execution and have been implemented on a DEC VAX series computer with the largest program having a central memory requirement of approximately 54K of 8 bit bytes. The OPTRAN program were developed in 1983.
Dark energy fingerprints in the nonminimal Wu-Yang wormhole structure
NASA Astrophysics Data System (ADS)
Balakin, Alexander B.; Zayats, Alexei E.
2014-08-01
We discuss new exact solutions to nonminimally extended Einstein-Yang-Mills equations describing spherically symmetric static wormholes supported by the gauge field of the Wu-Yang type in a dark energy environment. We focus on the analysis of three types of exact solutions to the gravitational field equations. Solutions of the first type relate to the model, in which the dark energy is anisotropic; i.e., the radial and tangential pressures do not coincide. Solutions of the second type correspond to the isotropic pressure tensor; in particular, we discuss the exact solution, for which the dark energy is characterized by the equation of state for a string gas. Solutions of the third type describe the dark energy model with constant pressure and energy density. For the solutions of the third type, we consider in detail the problem of horizons and find constraints for the parameters of nonminimal coupling and for the constitutive parameters of the dark energy equation of state, which guarantee that the nonminimal wormholes are traversable.
NASA Astrophysics Data System (ADS)
Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua
2016-12-01
Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205
Symmetry reduction and exact solutions of two higher-dimensional nonlinear evolution equations.
Gu, Yongyi; Qi, Jianming
2017-01-01
In this paper, symmetries and symmetry reduction of two higher-dimensional nonlinear evolution equations (NLEEs) are obtained by Lie group method. These NLEEs play an important role in nonlinear sciences. We derive exact solutions to these NLEEs via the [Formula: see text]-expansion method and complex method. Five types of explicit function solutions are constructed, which are rational, exponential, trigonometric, hyperbolic and elliptic function solutions of the variables in the considered equations.
High-order rogue waves of the Benjamin-Ono equation and the nonlocal nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Liu, Wei
2017-10-01
High-order rogue wave solutions of the Benjamin-Ono equation and the nonlocal nonlinear Schrödinger equation are derived by employing the bilinear method, which are expressed by simple polynomials. Typical dynamics of these high-order rogue waves are studied by analytical and graphical ways. For the Benjamin-Ono equation, there are two types of rogue waves, namely, bright rogue waves and dark rogue waves. In particular, the fundamental rogue wave pattern is different from the usual fundamental rogue wave patterns in other soliton equations. For the nonlocal nonlinear Schrödinger equation, the exact explicit rogue wave solutions up to the second order are presented. Typical rogue wave patterns such as Peregrine-type, triple and fundamental rogue waves are put forward. These high-order rogue wave patterns have not been shown before in the nonlocal Schrödinger equation.
NASA Astrophysics Data System (ADS)
Hoang, Khoa; Pophristic, Milan; Horan, Andrew J.; Johnston, Murray V.; McEwen, Charles N.
2016-10-01
First results are reported using a simple, fast, and reproducible matrix-assisted ionization (MAI) sample introduction method that provides substantial improvements relative to previously published MAI methods. The sensitivity of the new MAI methods, which requires no laser, high voltage, or nebulizing gas, is comparable to those reported for MALDI-TOF and n-ESI. High resolution full acquisition mass spectra having low chemical background are acquired from low nanoliters of solution using only a few femtomoles of analyte. The limit-of-detection for angiotensin II is less than 50 amol on an Orbitrap Exactive mass spectrometer. Analysis of peptides, including a bovine serum albumin digest, and drugs, including drugs in urine without a purification step, are reported using a 1 μL zero dead volume syringe in which only the analyte solution wetting the walls of the syringe needle is used in the analysis.
String Theory: exact solutions, marginal deformations and hyperbolic spaces
NASA Astrophysics Data System (ADS)
Orlando, Domenico
2006-10-01
This thesis is almost entirely devoted to studying string theory backgrounds characterized by simple geometrical and integrability properties. The archetype of this type of system is given by Wess-Zumino-Witten models, describing string propagation in a group manifold or, equivalently, a class of conformal field theories with current algebras. We study the moduli space of such models by using truly marginal deformations. Particular emphasis is placed on asymmetric deformations that, together with the CFT description, enjoy a very nice spacetime interpretation in terms of the underlying Lie algebra. Then we take a slight detour so to deal with off-shell systems. Using a renormalization-group approach we describe the relaxation towards the symmetrical equilibrium situation. In he final chapter we consider backgrounds with Ramond-Ramond field and in particular we analyze direct products of constant-curvature spaces and find solutions with hyperbolic spaces.
Deflection of a flexural cantilever beam
NASA Astrophysics Data System (ADS)
Sherbourne, A. N.; Lu, F.
The behavior of a flexural elastoplastic cantilever beam is investigated in which geometric nonlinearities are considered. The result of an elastica analysis by Frisch-Fay (1962) is extended to include postyield behavior. Although a closed-form solution is not possible, as in the elastic case, simple algebraic equations are derived involving only one unknown variable, which can also be expressed in the standard form of elliptic integrals if so desired. The results, in comparison with those of the small deflection analyses, indicate that large deflection analyses are necessary when the relative depth of the beam is very small over the length. The present exact solution can be used as a reference by those who resort to a finite element method for more complicated problems. It can also serve as a building block to other beam problems such as a simply supported beam or a beam with multiple loads.
The Hubbard Dimer: A Complete DFT Solution to a Many-Body Problem
NASA Astrophysics Data System (ADS)
Smith, Justin; Carrascal, Diego; Ferrer, Jaime; Burke, Kieron
2015-03-01
In this work we explain the relationship between density functional theory and strongly correlated models using the simplest possible example, the two-site asymmetric Hubbard model. We discuss the connection between the lattice and real-space and how this is a simple model for stretched H2. We can solve this elementary example analytically, and with that we can illuminate the underlying logic and aims of DFT. While the many-body solution is analytic, the density functional is given only implicitly. We overcome this difficulty by creating a highly accurate parameterization of the exact function. We use this parameterization to perform benchmark calculations of correlation kinetic energy, the adiabatic connection, etc. We also test Hartree-Fock and the Bethe Ansatz Local Density Approximation. We also discuss and illustrate the derivative discontinuity in the exchange-correlation energy and the infamous gap problem in DFT. DGE-1321846, DE-FG02-08ER46496.
Universal Non-Debye Scaling in the Density of States of Amorphous Solids.
Charbonneau, Patrick; Corwin, Eric I; Parisi, Giorgio; Poncet, Alexis; Zamponi, Francesco
2016-07-22
At the jamming transition, amorphous packings are known to display anomalous vibrational modes with a density of states (DOS) that remains constant at low frequency. The scaling of the DOS at higher packing fractions remains, however, unclear. One might expect to find a simple Debye scaling, but recent results from effective medium theory and the exact solution of mean-field models both predict an anomalous, non-Debye scaling. Being mean-field in nature, however, these solutions are only strictly valid in the limit of infinite spatial dimension, and it is unclear what value they have for finite-dimensional systems. Here, we study packings of soft spheres in dimensions 3 through 7 and find, away from jamming, a universal non-Debye scaling of the DOS that is consistent with the mean-field predictions. We also consider how the soft mode participation ratio evolves as dimension increases.
Improved Convergence and Robustness of USM3D Solutions on Mixed-Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2016-01-01
Several improvements to the mixed-element USM3D discretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Method, has been developed and implemented. The Hierarchical Adaptive Nonlinear Iteration Method provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier-Stokes equations and a nonlinear control of the solution update. Two variants of the Hierarchical Adaptive Nonlinear Iteration Method are assessed on four benchmark cases, namely, a zero-pressure-gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the preconditioner-alone method representing the baseline solver technology.
Improved Convergence and Robustness of USM3D Solutions on Mixed-Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frinks, Neal T.
2016-01-01
Several improvements to the mixed-elementUSM3Ddiscretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Method, has been developed and implemented. The Hierarchical Adaptive Nonlinear Iteration Method provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier-Stokes equations and a nonlinear control of the solution update. Two variants of the Hierarchical Adaptive Nonlinear Iteration Method are assessed on four benchmark cases, namely, a zero-pressure-gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the preconditioner-alone method representing the baseline solver technology.
Nature of self-diffusion in two-dimensional fluids
NASA Astrophysics Data System (ADS)
Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; Kidera, Akinori; Lee, Eok Kyun
2017-12-01
Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. We numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(t\\sqrt{{ln}t}), however with a rescaled time.
Exact solutions to the time-fractional differential equations via local fractional derivatives
NASA Astrophysics Data System (ADS)
Guner, Ozkan; Bekir, Ahmet
2018-01-01
This article utilizes the local fractional derivative and the exp-function method to construct the exact solutions of nonlinear time-fractional differential equations (FDEs). For illustrating the validity of the method, it is applied to the time-fractional Camassa-Holm equation and the time-fractional-generalized fifth-order KdV equation. Moreover, the exact solutions are obtained for the equations which are formed by different parameter values related to the time-fractional-generalized fifth-order KdV equation. This method is an reliable and efficient mathematical tool for solving FDEs and it can be applied to other non-linear FDEs.
Lushnikov, Pavel M; Zubarev, Nikolay M
2018-05-18
Relative motion of the normal and superfluid components of helium II results in the quantum Kelvin-Helmholtz instability (KHI) at their common free surface. We found the integrability and exact growing solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two classical fluids, the dynamics of a helium II free surface allows reduction to the Laplace growth equation, which has an infinite number of exact solutions, including the generic formation of sharp cusps at the free surface in a finite time.
NASA Astrophysics Data System (ADS)
Lushnikov, Pavel M.; Zubarev, Nikolay M.
2018-05-01
Relative motion of the normal and superfluid components of helium II results in the quantum Kelvin-Helmholtz instability (KHI) at their common free surface. We found the integrability and exact growing solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two classical fluids, the dynamics of a helium II free surface allows reduction to the Laplace growth equation, which has an infinite number of exact solutions, including the generic formation of sharp cusps at the free surface in a finite time.
NASA Astrophysics Data System (ADS)
Hosseini, K.; Ayati, Z.; Ansari, R.
2018-04-01
One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.
NASA Astrophysics Data System (ADS)
Fendley, Paul; Hagendorf, Christian
2010-10-01
We conjecture exact and simple formulas for some physical quantities in two quantum chains. A classic result of this type is Onsager, Kaufman and Yang's formula for the spontaneous magnetization in the Ising model, subsequently generalized to the chiral Potts models. We conjecture that analogous results occur in the XYZ chain when the couplings obey JxJy + JyJz + JxJz = 0, and in a related fermion chain with strong interactions and supersymmetry. We find exact formulas for the magnetization and gap in the former, and the staggered density in the latter, by exploiting the fact that certain quantities are independent of finite-size effects.
The Principle of Energetic Consistency: Application to the Shallow-Water Equations
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.
2009-01-01
If the complete state of the earth's atmosphere (e.g., pressure, temperature, winds and humidity, everywhere throughout the atmosphere) were known at any particular initial time, then solving the equations that govern the dynamical behavior of the atmosphere would give the complete state at all subsequent times. Part of the difficulty of weather prediction is that the governing equations can only be solved approximately, which is what weather prediction models do. But weather forecasts would still be far from perfect even if the equations could be solved exactly, because the atmospheric state is not and cannot be known completely at any initial forecast time. Rather, the initial state for a weather forecast can only be estimated from incomplete observations taken near the initial time, through a process known as data assimilation. Weather prediction models carry out their computations on a grid of points covering the earth's atmosphere. The formulation of these models is guided by a mathematical convergence theory which guarantees that, given the exact initial state, the model solution approaches the exact solution of the governing equations as the computational grid is made more fine. For the data assimilation process, however, there does not yet exist a convergence theory. This book chapter represents an effort to begin establishing a convergence theory for data assimilation methods. The main result, which is called the principle of energetic consistency, provides a necessary condition that a convergent method must satisfy. Current methods violate this principle, as shown in earlier work of the author, and therefore are not convergent. The principle is illustrated by showing how to apply it as a simple test of convergence for proposed methods.
Modelling natural electromagnetic interference in man-made conductors for space weather applications
NASA Astrophysics Data System (ADS)
Trichtchenko, Larisa
2016-04-01
Power transmission lines above the ground, cables and pipelines in the ground and under the sea, and in general all man-made long grounded conductors are exposed to the variations of the natural electromagnetic field. The resulting currents in the networks (commonly named geomagnetically induced currents, GIC), are produced by the conductive and/or inductive coupling and can compromise or even disrupt system operations and, in extreme cases, cause power blackouts, railway signalling mis-operation, or interfere with pipeline corrosion protection systems. To properly model the GIC in order to mitigate their impacts it is necessary to know the frequency dependence of the response of these systems to the geomagnetic variations which naturally span a wide frequency range. For that, the general equations of the electromagnetic induction in a multi-layered infinitely long cylinder (representing cable, power line wire, rail or pipeline) embedded in uniform media have been solved utilising methods widely used in geophysics. The derived electromagnetic fields and currents include the effects of the electromagnetic properties of each layer and of the different types of the surrounding media. This exact solution then has been used to examine the electromagnetic response of particular samples of long conducting structures to the external electromagnetic wave for a wide range of frequencies. Because the exact solution has a rather complicated structure, simple approximate analytical formulas have been proposed, analysed and compared with the results from the exact model. These approximate formulas show good coincidence in the frequency range spanning from geomagnetic storms (less than mHz) to pulsations (mHz to Hz) to atmospherics (kHz) and above, and can be recommended for use in space weather applications.
Hierarchic models for laminated plates. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Actis, Ricardo Luis
1991-01-01
Structural plates and shells are three-dimensional bodies, one dimension of which happens to be much smaller than the other two. Thus, the quality of a plate or shell model must be judged on the basis of how well its exact solution approximates the corresponding three-dimensional problem. Of course, the exact solution depends not only on the choice of the model but also on the topology, material properties, loading and constraints. The desired degree of approximation depends on the analyst's goals in performing the analysis. For these reasons models have to be chosen adaptively. Hierarchic sequences of models make adaptive selection of the model which is best suited for the purposes of a particular analysis possible. The principles governing the formulation of hierarchic models for laminated plates are presented. The essential features of the hierarchic models described models are: (1) the exact solutions corresponding to the hierarchic sequence of models converge to the exact solution of the corresponding problem of elasticity for a fixed laminate thickness; and (2) the exact solution of each model converges to the same limit as the exact solution of the corresponding problem of elasticity with respect to the laminate thickness approaching zero. The formulation is based on one parameter (beta) which characterizes the hierarchic sequence of models, and a set of constants whose influence was assessed by a numerical sensitivity study. The recommended selection of these constants results in the number of fields increasing by three for each increment in the power of beta. Numerical examples analyzed with the proposed sequence of models are included and good correlation with the reference solutions was found. Results were obtained for laminated strips (plates in cylindrical bending) and for square and rectangular plates with uniform loading and with homogeneous boundary conditions. Cross-ply and angle-ply laminates were evaluated and the results compared with those of MSC/PROBE. Hierarchic models make the computation of any engineering data possible to an arbitrary level of precision within the framework of the theory of elasticity.
Some Exact Solutions of a Nonintegrable Toda-type Equation
NASA Astrophysics Data System (ADS)
Kim, Chanju
2018-05-01
We study a Toda-type equation with two scalar fields which is not integrable and construct two families of exact solutions which are expressed in terms of rational functions. The equation appears in U(1) Chern-Simons theories coupled to two nonrelativistic matter fields with opposite charges. One family of solutions is a trivial embedding of Liouville-type solutions. The other family is obtained by transforming the equation into the Taubes vortex equation on the hyperbolic space. Though the Taubes equation is not integrable, a trivial vacuum solution provides nontrivial solutions to the original Toda-type equation.
Solution of the advection-dispersion equation: Continuous load of finite duration
Runkel, R.L.
1996-01-01
Field studies of solute fate and transport in streams and rivers often involve an. experimental release of solutes at an upstream boundary for a finite period of time. A review of several standard references on surface-water-quality modeling indicates that the analytical solution to the constant-parameter advection-dispersion equation for this type of boundary condition has been generally overlooked. Here an exact analytical solution that considers a continuous load of unite duration is compared to an approximate analytical solution presented elsewhere. Results indicate that the exact analytical solution should be used for verification of numerical solutions and other solute-transport problems wherein a high level of accuracy is required. ?? ASCE.
Exact-solution for cone-plate viscometry
NASA Astrophysics Data System (ADS)
Giacomin, A. J.; Gilbert, P. H.
2017-11-01
The viscosity of a Newtonian fluid is often measured by confining the fluid to the gap between a rotating cone that is perpendicular to a fixed disk. We call this experiment cone-plate viscometry. When the cone angle approaches π/2 , the viscometer gap is called narrow. The shear stress in the fluid, throughout a narrow gap, hardly departs from the shear stress exerted on the plate, and we thus call cone-plate flow nearly homogeneous. In this paper, we derive an exact solution for this slight heterogeneity, and from this, we derive the correction factors for the shear rate on the cone and plate, for the torque, and thus, for the measured Newtonian viscosity. These factors thus allow the cone-plate viscometer to be used more accurately, and with cone-angles well below π/2 . We find cone-plate flow field heterogeneity to be far slighter than previously thought. We next use our exact solution for the velocity to arrive at the exact solution for the temperature rise, due to viscous dissipation, in cone-plate flow subject to isothermal boundaries. Since Newtonian viscosity is a strong function of temperature, we expect our new exact solution for the temperature rise be useful to those measuring Newtonian viscosity, and especially so, to those using wide gaps. We include two worked examples to teach practitioners how to use our main results.
NASA Astrophysics Data System (ADS)
Hosseini, Kamyar; Mayeli, Peyman; Ansari, Reza
2018-07-01
Finding the exact solutions of nonlinear fractional differential equations has gained considerable attention, during the past two decades. In this paper, the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities are studied. Several exact soliton solutions, including the bright (non-topological) and singular soliton solutions are formally extracted by making use of the ansatz method. Results demonstrate that the method can efficiently handle the time-fractional Klein-Gordon equations with different nonlinearities.
An exact plane-stress solution for a class of problems in orthotropic elasticity
NASA Technical Reports Server (NTRS)
Erb, D. A.; Cooper, P. A.; Weisshaar, T. A.
1982-01-01
An exact solution for the stress field within a rectangular slab of orthotropic material is found using a two dimensional Fourier series formulation. The material is required to be in plane stress, with general stress boundary conditions, and the principle axes of the material must be parallel to the sides of the rectangle. Two load cases similar to those encountered in materials testing are investigated using the solution. The solution method has potential uses in stress analysis of composite structures.
Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Meza, L. E. Arroyo; Dutra, A. de Souza; Hott, M. B.; Roy, P.
2015-01-01
By using canonical transformations we obtain localized (in space) exact solutions of the nonlinear Schrödinger equation (NLSE) with cubic and quintic space and time modulated nonlinearities and in the presence of time-dependent and inhomogeneous external potentials and amplification or absorption (source or drain) coefficients. We obtain a class of wide localized exact solutions of NLSE in the presence of a number of non-Hermitian parity-time (PT )-symmetric external potentials, which are constituted by a mixing of external potentials and source or drain terms. The exact solutions found here can be applied to theoretical studies of ultrashort pulse propagation in optical fibers with focusing and defocusing nonlinearities. We show that, even in the presence of gain or loss terms, stable solutions can be found and that the PT symmetry is an important feature to guarantee the conservation of the average energy of the system.
New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.; Manafian, Jalil
2018-03-01
This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.
ERIC Educational Resources Information Center
Fulcher, Lewis P.
1979-01-01
Presents an exact solution to the nonlinear Faraday's law problem of a rod sliding on frictionless rails with resistance. Compares the results with perturbation calculations based on the methods of Poisson and Pincare and of Kryloff and Bogoliuboff. (Author/GA)
Exact solution for a non-Markovian dissipative quantum dynamics.
Ferialdi, Luca; Bassi, Angelo
2012-04-27
We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.
Exact Solution of Mutator Model with Linear Fitness and Finite Genome Length
NASA Astrophysics Data System (ADS)
Saakian, David B.
2017-08-01
We considered the infinite population version of the mutator phenomenon in evolutionary dynamics, looking at the uni-directional mutations in the mutator-specific genes and linear selection. We solved exactly the model for the finite genome length case, looking at the quasispecies version of the phenomenon. We calculated the mutator probability both in the statics and dynamics. The exact solution is important for us because the mutator probability depends on the genome length in a highly non-trivial way.
Exact Cosmological Models with Yang–Mills Fields on Lyra Manifold
NASA Astrophysics Data System (ADS)
Shchigolev, V. K.; Bezbatko, D. N.
2018-04-01
The present study deals with the Friedmann-Robertson-Walker cosmological models with Yang-Mills (YM) fields in Lyra geometry. The energy-momentum tensor of the YM fields for our models is obtained with the help of an exact solution to the YM equations with minimal coupling to gravity. Two specific exact solutions of the model are obtained regarding the effective equation of state and the exponential law of expansion. The physical and geometric behavior of the model is also discussed.
Exact Exchange calculations for periodic systems: a real space approach
NASA Astrophysics Data System (ADS)
Natan, Amir; Marom, Noa; Makmal, Adi; Kronik, Leeor; Kuemmel, Stephan
2011-03-01
We present a real-space method for exact-exchange Kohn-Sham calculations of periodic systems. The method is based on self-consistent solutions of the optimized effective potential (OEP) equation on a three-dimensional non-orthogonal grid, using norm conserving pseudopotentials. These solutions can be either exact, using the S-iteration approach, or approximate, using the Krieger, Li, and Iafrate (KLI) approach. We demonstrate, using a variety of systems, the importance of singularity corrections and use of appropriate pseudopotentials.
Exact Solutions for Wind-Driven Coastal Upwelling and Downwelling over Sloping Topography
NASA Astrophysics Data System (ADS)
Choboter, P.; Duke, D.; Horton, J.; Sinz, P.
2009-12-01
The dynamics of wind-driven coastal upwelling and downwelling are studied using a simplified dynamical model. Exact solutions are examined as a function of time and over a family of sloping topographies. Assumptions in the two-dimensional model include a frictionless ocean interior below the surface Ekman layer, and no alongshore dependence of the variables; however, dependence in the cross-shore and vertical directions is retained. Additionally, density and alongshore momentum are advected by the cross-shore velocity in order to maintain thermal wind. The time-dependent initial-value problem is solved with constant initial stratification and no initial alongshore flow. An alongshore pressure gradient is added to allow the cross-shore flow to be geostrophically balanced far from shore. Previously, this model has been used to study upwelling over flat-bottom and sloping topographies, but the novel feature in this work is the discovery of exact solutions for downwelling. These exact solutions are compared to numerical solutions from a primitive-equation ocean model, based on the Princeton Ocean Model, configured in a similar two-dimensional geometry. Many typical features of the evolution of density and velocity during downwelling are displayed by the analytical model.
Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems
NASA Astrophysics Data System (ADS)
Kucska, Nóra; Gulácsi, Zsolt
2018-06-01
A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.
NASA Astrophysics Data System (ADS)
Tisdell, C. C.
2017-08-01
Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem through a substitution. The purpose of this note is to present an alternative approach using 'exact methods', illustrating that a substitution and linearization of the problem is unnecessary. The ideas may be seen as forming a complimentary and arguably simpler approach to Azevedo and Valentino that have the potential to be assimilated and adapted to pedagogical needs of those learning and teaching exact differential equations in schools, colleges, universities and polytechnics. We illustrate how to apply the ideas through an analysis of the Gompertz equation, which is of interest in biomathematical models of tumour growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebling, Scott William
This paper documents the escape of high explosive (HE) products problem. The problem, first presented by Fickett & Rivard, tests the implementation and numerical behavior of a high explosive detonation and energy release model and its interaction with an associated compressible hydrodynamics simulation code. The problem simulates the detonation of a finite-length, one-dimensional piece of HE that is driven by a piston from one end and adjacent to a void at the other end. The HE equation of state is modeled as a polytropic ideal gas. The HE detonation is assumed to be instantaneous with an infinitesimal reaction zone. Viamore » judicious selection of the material specific heat ratio, the problem has an exact solution with linear characteristics, enabling a straightforward calculation of the physical variables as a function of time and space. Lastly, implementation of the exact solution in the Python code ExactPack is discussed, as are verification cases for the exact solution code.« less
Arrays of strongly coupled atoms in a one-dimensional waveguide
NASA Astrophysics Data System (ADS)
Ruostekoski, Janne; Javanainen, Juha
2017-09-01
We study the cooperative optical coupling between regularly spaced atoms in a one-dimensional waveguide using decompositions to subradiant and super-radiant collective excitation eigenmodes, direct numerical solutions, and analytical transfer-matrix methods. We illustrate how the spectrum of transmitted light through the waveguide, including the emergence of narrow Fano resonances, can be understood by the resonance features of the eigenmodes. We describe a method based on super-radiant and subradiant modes to engineer the optical response of the waveguide and to store light. The stopping of light is obtained by transferring an atomic excitation to a subradiant collective mode with the zero radiative resonance linewidth by controlling the level shift of an atom in the waveguide. Moreover, we obtain an exact analytic solution for the transmitted light through the waveguide for the case of a regular lattice of atoms and provide a simple description of how the light transmission may present large resonance shifts when the lattice spacing is close, but not exactly equal, to half of the wavelength of the light. Experimental imperfections such as fluctuations of the positions of the atoms and loss of light from the waveguide are easily quantified in the numerical simulations, which produce the natural result that the optical response of the atomic array tends toward the response of a gas with random atomic positions.
SOPanG: online text searching over a pan-genome.
Cislak, Aleksander; Grabowski, Szymon; Holub, Jan
2018-06-22
The many thousands of high-quality genomes available nowadays imply a shift from single genome to pan-genomic analyses. A basic algorithmic building brick for such a scenario is online search over a collection of similar texts, a problem with surprisingly few solutions presented so far. We present SOPanG, a simple tool for exact pattern matching over an elastic-degenerate string, a recently proposed simplified model for the pan-genome. Thanks to bit-parallelism, it achieves pattern matching speeds above 400MB/s, more than an order of magnitude higher than of other software. SOPanG is available for free from: https://github.com/MrAlexSee/sopang. Supplementary data are available at Bioinformatics online.
A method of solving simple harmonic oscillator Schroedinger equation
NASA Technical Reports Server (NTRS)
Maury, Juan Carlos F.
1995-01-01
A usual step in solving totally Schrodinger equation is to try first the case when dimensionless position independent variable w is large. In this case the Harmonic Oscillator equation takes the form (d(exp 2)/dw(exp 2) - w(exp 2))F = 0, and following W.K.B. method, it gives the intermediate corresponding solution F = exp(-w(exp 2)/2), which actually satisfies exactly another equation, (d(exp 2)/dw(exp 2) + 1 - w(exp 2))F = 0. We apply a different method, useful in anharmonic oscillator equations, similar to that of Rampal and Datta, and although it is slightly more complicated however it is also more general and systematic.
Digit replacement: A generic map for nonlinear dynamical systems.
García-Morales, Vladimir
2016-09-01
A simple discontinuous map is proposed as a generic model for nonlinear dynamical systems. The orbit of the map admits exact solutions for wide regions in parameter space and the method employed (digit manipulation) allows the mathematical design of useful signals, such as regular or aperiodic oscillations with specific waveforms, the construction of complex attractors with nontrivial properties as well as the coexistence of different basins of attraction in phase space with different qualitative properties. A detailed analysis of the dynamical behavior of the map suggests how the latter can be used in the modeling of complex nonlinear dynamics including, e.g., aperiodic nonchaotic attractors and the hierarchical deposition of grains of different sizes on a surface.
Demonstration of Detection and Ranging Using Solvable Chaos
NASA Technical Reports Server (NTRS)
Corron, Ned J.; Stahl, Mark T.; Blakely, Jonathan N.
2013-01-01
Acoustic experiments demonstrate a novel approach to ranging and detection that exploits the properties of a solvable chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching condition. The chaotic waveform generated by this hybrid system is used as the transmitted waveform. The oscillator admits an exact analytic solution that can be written as the linear convolution of binary symbols and a single basis function. This linear representation enables coherent reception using a simple analog matched filter and without need for digital sampling or signal processing. An audio frequency implementation of the transmitter and receiver is described. Successful acoustic ranging measurements are presented to demonstrate the viability of the approach.
Optimal Configurations for Rotating Spacecraft Formations
NASA Technical Reports Server (NTRS)
Hughes, Steven P.; Hall, Christopher D.
2000-01-01
In this paper a new class of formations that maintain a constant shape as viewed from the Earth is introduced. An algorithm is developed to place n spacecraft in a constant shape formation spaced equally in time using the classical orbital elements. To first order, the dimensions of the formation are shown to be simple functions of orbit eccentricity and inclination. The performance of the formation is investigated over a Keplerian orbit using a performance measure based on a weighted average of the angular separations between spacecraft in formation. Analytic approximations are developed that yield optimum configurations for different values of n. The analytic approximations are shown to be in excellent agreement with the exact solutions.
Tahir-Kheli, J; Goddard, W A
1993-01-01
The one-dimensional three-band Hubbard Hamiltonian is shown to be equivalent to an effective Hamiltonian that has independent spinon and holon quasiparticle excitations plus a weak coupling of the two. The spinon description includes both copper sites and oxygen hole sites leading to a one-dimensional antiferromagnet incommensurate with the copper lattice. The holons are spinless noninteracting fermions in a simple cosine band. Because the oxygen sites are in the Hamiltonian, the quasiparticles are much simpler than in the exact solution of the t-J model for 2t = +/- J. If a similar description is correct for two dimensions, then the holons will attract in a p-wave potential. PMID:11607436
REVIEWS OF TOPICAL PROBLEMS: Axisymmetric stationary flows in compact astrophysical objects
NASA Astrophysics Data System (ADS)
Beskin, Vasilii S.
1997-07-01
A review is presented of the analytical results available for a large class of axisymmetric stationary flows in the vicinity of compact astrophysical objects. The determination of the two-dimensional structure of the poloidal magnetic field (hydrodynamic flow field) faces severe difficulties, due to the complexity of the trans-field equation for stationary axisymmetric flows. However, an approach exists which enables direct problems to be solved even within the balance law framework. This possibility arises when an exact solution to the equation is available and flows close to it are investigated. As a result, with the use of simple model problems, the basic features of supersonic flows past real compact objects are determined.
Exact coherent structures in an asymptotically reduced description of parallel shear flows
NASA Astrophysics Data System (ADS)
Beaume, Cédric; Knobloch, Edgar; Chini, Gregory P.; Julien, Keith
2015-02-01
A reduced description of shear flows motivated by the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow (Wang J, Gibson J and Waleffe F 2007 Phys. Rev. Lett. 98 204501) is constructed. Exact time-independent nonlinear solutions of the reduced equations corresponding to both lower and upper branch states are found for a sinusoidal, body-forced shear flow. The lower branch solution is characterized by fluctuations that vary slowly along the critical layer while the upper branch solutions display a bimodal structure and are more strongly focused on the critical layer. The reduced equations provide a rational framework for investigations of subcritical spatiotemporal patterns in parallel shear flows.
NASA Astrophysics Data System (ADS)
Varró, Sándor
2014-01-01
Exact solutions are presented of the Klein-Gordon equation of a charged particle moving in a transverse monochromatic plasmon wave of arbitrary high amplitude, which propagates in an underdense plasma. These solutions are expressed in terms of Ince polynomials, forming a doubly infinite set, parametrized by discrete momentum components of the charged particle’s de Broglie wave along the polarization vector and along the propagation direction of the plasmon radiation. The envelope of the exact wavefunctions describes a high-contrast periodic structure of the particle density on the plasma length scale, which may have relevance in novel particle acceleration mechanisms.
BRST Exactness of Stress-Energy Tensors
NASA Astrophysics Data System (ADS)
Miyata, Hideo; Sugimoto, Hiroshi
BRST commutators in the topological conformal field theories obtained by twisting N=2 theories are evaluated explicitly. By our systematic calculations of the multiple integrals which contain screening operators, the BRST exactness of the twisted stress-energy tensors is deduced for classical simple Lie algebras and general level k. We can see that the paths of integrations do not affect the result, and further, the N=2 coset theories are obtained by deleting two simple roots with Kac-label 1 from the extended Dynkin diagram; in other words, by not performing the integrations over the variables corresponding to the two simple roots of Kac-Moody algebras. It is also shown that a series of N=1 theories are generated in the same way by deleting one simple root with Kac-label 2.
F-Expansion Method and New Exact Solutions of the Schrödinger-KdV Equation
Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah
2014-01-01
F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics. PMID:24672327
F-expansion method and new exact solutions of the Schrödinger-KdV equation.
Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah
2014-01-01
F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics.
Exact solution of a quantum forced time-dependent harmonic oscillator
NASA Technical Reports Server (NTRS)
Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN
1992-01-01
The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.
Exact solutions of the Navier-Stokes equations generalized for flow in porous media
NASA Astrophysics Data System (ADS)
Daly, Edoardo; Basser, Hossein; Rudman, Murray
2018-05-01
Flow of Newtonian fluids in porous media is often modelled using a generalized version of the full non-linear Navier-Stokes equations that include additional terms describing the resistance to flow due to the porous matrix. Because this formulation is becoming increasingly popular in numerical models, exact solutions are required as a benchmark of numerical codes. The contribution of this study is to provide a number of non-trivial exact solutions of the generalized form of the Navier-Stokes equations for parallel flow in porous media. Steady-state solutions are derived in the case of flows in a medium with constant permeability along the main direction of flow and a constant cross-stream velocity in the case of both linear and non-linear drag. Solutions are also presented for cases in which the permeability changes in the direction normal to the main flow. An unsteady solution for a flow with velocity driven by a time-periodic pressure gradient is also derived. These solutions form a basis for validating computational models across a wide range of Reynolds and Darcy numbers.
Path Following in the Exact Penalty Method of Convex Programming.
Zhou, Hua; Lange, Kenneth
2015-07-01
Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.
Path Following in the Exact Penalty Method of Convex Programming
Zhou, Hua; Lange, Kenneth
2015-01-01
Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value. PMID:26366044
Propagation of sound waves through a linear shear layer: A closed form solution
NASA Technical Reports Server (NTRS)
Scott, J. N.
1978-01-01
Closed form solutions are presented for sound propagation from a line source in or near a shear layer. The analysis was exact for all frequencies and was developed assuming a linear velocity profile in the shear layer. This assumption allowed the solution to be expressed in terms of parabolic cyclinder functions. The solution is presented for a line monopole source first embedded in the uniform flow and then in the shear layer. Solutions are also discussed for certain types of dipole and quadrupole sources. Asymptotic expansions of the exact solutions for small and large values of Strouhal number gave expressions which correspond to solutions previously obtained for these limiting cases.
Details of Exact Low Prandtl Number Boundary-Layer Solutions for Forced and For Free Convection
NASA Technical Reports Server (NTRS)
Sparrow, E. M.; Gregg, J. L.
1959-01-01
A detailed report is given of exact (numerical) solutions of the laminar-boundary-layer equations for the Prandtl number range appropriate to liquid metals (0.003 to 0.03). Consideration is given to the following situations: (1) forced convection over a flat plate for the conditions of uniform wall temperature and uniform wall heat flux, and (2) free convection over an isothermal vertical plate. Tabulations of the new solutions are given in detail. Results are presented for the heat-transfer and shear-stress characteristics; temperature and velocity distributions are also shown. The heat-transfer results are correlated in terms of dimensionless parameters that vary only slightly over the entire liquid-metal range. Previous analytical and experimental work on low Prandtl number boundary layers is surveyed and compared with the new exact solutions.
Exact finite element method analysis of viscoelastic tapered structures to transient loads
NASA Technical Reports Server (NTRS)
Spyrakos, Constantine Chris
1987-01-01
A general method is presented for determining the dynamic torsional/axial response of linear structures composed of either tapered bars or shafts to transient excitations. The method consists of formulating and solving the dynamic problem in the Laplace transform domain by the finite element method and obtaining the response by a numerical inversion of the transformed solution. The derivation of the torsional and axial stiffness matrices is based on the exact solution of the transformed governing equation of motion, and it consequently leads to the exact solution of the problem. The solution permits treatment of the most practical cases of linear tapered bars and shafts, and employs modeling of structures with only one element per member which reduces the number of degrees of freedom involved. The effects of external viscous or internal viscoelastic damping are also taken into account.
NASA Astrophysics Data System (ADS)
Protasov, M.; Gadylshin, K.
2017-07-01
A numerical method is proposed for the calculation of exact frequency-dependent rays when the solution of the Helmholtz equation is known. The properties of frequency-dependent rays are analysed and compared with classical ray theory and with the method of finite-difference modelling for the first time. In this paper, we study the dependence of these rays on the frequency of signals and show the convergence of the exact rays to the classical rays with increasing frequency. A number of numerical experiments demonstrate the distinctive features of exact frequency-dependent rays, in particular, their ability to penetrate into shadow zones that are impenetrable for classical rays.
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An approach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions.
On the exact solutions of high order wave equations of KdV type (I)
NASA Astrophysics Data System (ADS)
Bulut, Hasan; Pandir, Yusuf; Baskonus, Haci Mehmet
2014-12-01
In this paper, by means of a proper transformation and symbolic computation, we study high order wave equations of KdV type (I). We obtained classification of exact solutions that contain soliton, rational, trigonometric and elliptic function solutions by using the extended trial equation method. As a result, the motivation of this paper is to utilize the extended trial equation method to explore new solutions of high order wave equation of KdV type (I). This method is confirmed by applying it to this kind of selected nonlinear equations.
Point-particle method to compute diffusion-limited cellular uptake.
Sozza, A; Piazza, F; Cencini, M; De Lillo, F; Boffetta, G
2018-02-01
We present an efficient point-particle approach to simulate reaction-diffusion processes of spherical absorbing particles in the diffusion-limited regime, as simple models of cellular uptake. The exact solution for a single absorber is used to calibrate the method, linking the numerical parameters to the physical particle radius and uptake rate. We study the configurations of multiple absorbers of increasing complexity to examine the performance of the method by comparing our simulations with available exact analytical or numerical results. We demonstrate the potential of the method to resolve the complex diffusive interactions, here quantified by the Sherwood number, measuring the uptake rate in terms of that of isolated absorbers. We implement the method in a pseudospectral solver that can be generalized to include fluid motion and fluid-particle interactions. As a test case of the presence of a flow, we consider the uptake rate by a particle in a linear shear flow. Overall, our method represents a powerful and flexible computational tool that can be employed to investigate many complex situations in biology, chemistry, and related sciences.
New trial wave function for the nuclear cluster structure of nuclei
NASA Astrophysics Data System (ADS)
Zhou, Bo
2018-04-01
A new trial wave function is proposed for nuclear cluster physics, in which an exact solution to the long-standing center-of-mass problem is given. In the new approach, the widths of the single-nucleon Gaussian wave packets and the widths of the relative Gaussian wave functions describing correlations of nucleons or clusters are treated as variables in the explicit intrinsic wave function of the nuclear system. As an example, this new wave function was applied to study the typical {^{20}Ne} (α+{{^{16}}O}) cluster system. By removing exactly the spurious center-of-mass effect in a very simple way, the energy curve of {^{20}Ne} was obtained by variational calculations with the width of the α cluster, the width of the {{^{16}}O} cluster, and the size parameter of the nucleus. These are considered the three crucial variational variables in describing the {^{20}Ne} (α+{{^{16}}O}) cluster system. This shows that the new wave function can be a very interesting new tool for studying many-body and cluster effects in nuclear physics.
Rashba quantum wire: exact solution and ballistic transport.
Perroni, C A; Bercioux, D; Ramaglia, V Marigliano; Cataudella, V
2007-05-08
The effect of Rashba spin-orbit interaction in quantum wires with hard-wall boundaries is discussed. The exact wavefunction and eigenvalue equation are worked out, pointing out the mixing between the spin and spatial parts. The spectral properties are also studied within perturbation theory with respect to the strength of the spin-orbit interaction and diagonalization procedure. A comparison is made with the results of a simple model, the two-band model, that takes account only of the first two sub-bands of the wire. Finally, the transport properties within the ballistic regime are analytically calculated for the two-band model and through a tight-binding Green function for the entire system. Single and double interfaces separating regions with different strengths of spin-orbit interaction are analysed by injecting carriers into the first and the second sub-band. It is shown that in the case of a single interface the spin polarization in the Rashba region is different from zero, and in the case of two interfaces the spin polarization shows oscillations due to spin-selective bound states.
On prototypical wave transmission across a junction of waveguides with honeycomb structure
NASA Astrophysics Data System (ADS)
Sharma, Basant Lal
2018-02-01
An exact expression for the scattering matrix associated with a junction generated by partial unzipping along the zigzag direction of armchair tubes is presented. The assumed simple, but representative, model, for scalar wave transmission can be interpreted in terms of the transport of the out-of-plane phonons in the ribbon-side vis-a-vis the radial phonons in the tubular-side of junction, based on the nearest-neighbor interactions between lattice sites. The exact solution for the `bondlength' in `broken' versus intact bonds can be constructed via a standard application of the Wiener-Hopf technique. The amplitude distribution of outgoing phonons, far away from the junction on either side of it, is obtained in closed form by the mode-matching method; eventually, this leads to the provision of the scattering matrix. As the main result of the paper, a succinct and closed form expression for the accompanying reflection and transmission coefficients is provided along with a detailed derivation using the Chebyshev polynomials. Applications of the analysis presented in this paper include linear wave transmission in nanotubes, nanoribbons, and monolayers of honeycomb lattices containing carbon-like units.
Expanded solutions of force-free electrodynamics on general Kerr black holes
NASA Astrophysics Data System (ADS)
Li, Huiquan; Wang, Jiancheng
2017-07-01
In this work, expanded solutions of force-free magnetospheres on general Kerr black holes are derived through a radial distance expansion method. From the regular conditions both at the horizon and at spatial infinity, two previously known asymptotical solutions (one of them is actually an exact solution) are identified as the only solutions that satisfy the same conditions at the two boundaries. Taking them as initial conditions at the boundaries, expanded solutions up to the first few orders are derived by solving the stream equation order by order. It is shown that our extension of the exact solution can (partially) cure the problems of the solution: it leads to magnetic domination and a mostly timelike current for restricted parameters.
A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems
NASA Astrophysics Data System (ADS)
Liu, X.; Banerjee, J. R.
2017-03-01
A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.
Exact nonparaxial beams of the scalar Helmholtz equation.
Rodríguez-Morales, Gustavo; Chávez-Cerda, Sabino
2004-03-01
It is shown that three-dimensional nonparaxial beams are described by the oblate spheroidal exact solutions of the Helmholtz equation. For what is believed to be the first time, their beam behavior is investigated and their corresponding parameters are defined. Using the fact that the beam width of the family of paraxial Gaussian beams is described by a hyperbola, we formally establish the connection between the physical parameters of nonparaxial spheroidal beam solutions and those of paraxial beams. These results are also helpful for investigating exact vector nonparaxial beams.
NASA Technical Reports Server (NTRS)
Wang, S. S.; Choi, I.
1983-01-01
Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extenstion. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined.
An efficient and flexible Abel-inversion method for noisy data
NASA Astrophysics Data System (ADS)
Antokhin, Igor I.
2016-12-01
We propose an efficient and flexible method for solving the Abel integral equation of the first kind, frequently appearing in many fields of astrophysics, physics, chemistry, and applied sciences. This equation represents an ill-posed problem, thus solving it requires some kind of regularization. Our method is based on solving the equation on a so-called compact set of functions and/or using Tikhonov's regularization. A priori constraints on the unknown function, defining a compact set, are very loose and can be set using simple physical considerations. Tikhonov's regularization in itself does not require any explicit a priori constraints on the unknown function and can be used independently of such constraints or in combination with them. Various target degrees of smoothness of the unknown function may be set, as required by the problem at hand. The advantage of the method, apart from its flexibility, is that it gives uniform convergence of the approximate solution to the exact solution, as the errors of input data tend to zero. The method is illustrated on several simulated models with known solutions. An example of astrophysical application of the method is also given.
Yang, S A
2002-10-01
This paper presents an effective solution method for predicting acoustic radiation and scattering fields in two dimensions. The difficulty of the fictitious characteristic frequency is overcome by incorporating an auxiliary interior surface that satisfies certain boundary condition into the body surface. This process gives rise to a set of uniquely solvable boundary integral equations. Distributing monopoles with unknown strengths over the body and interior surfaces yields the simple source formulation. The modified boundary integral equations are further transformed to ordinary ones that contain nonsingular kernels only. This implementation allows direct application of standard quadrature formulas over the entire integration domain; that is, the collocation points are exactly the positions at which the integration points are located. Selecting the interior surface is an easy task. Moreover, only a few corresponding interior nodal points are sufficient for the computation. Numerical calculations consist of the acoustic radiation and scattering by acoustically hard elliptic and rectangular cylinders. Comparisons with analytical solutions are made. Numerical results demonstrate the efficiency and accuracy of the current solution method.
Spectral edge: gradient-preserving spectral mapping for image fusion.
Connah, David; Drew, Mark S; Finlayson, Graham D
2015-12-01
This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.
Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.
2015-12-10
This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.
This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less
Using exact solutions to develop an implicit scheme for the baroclinic primitive equations
NASA Technical Reports Server (NTRS)
Marchesin, D.
1984-01-01
The exact solutions presently obtained by means of a novel method for nonlinear initial value problems are used in the development of numerical schemes for the computer solution of these problems. The method is applied to a new, fully implicit scheme on a vertical slice of the isentropic baroclinic equations. It was not possible to find a global scale phenomenon that could be simulated by the baroclinic primitive equations on a vertical slice.
Benchmark problems and solutions
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.
1995-01-01
The scientific committee, after careful consideration, adopted six categories of benchmark problems for the workshop. These problems do not cover all the important computational issues relevant to Computational Aeroacoustics (CAA). The deciding factor to limit the number of categories to six was the amount of effort needed to solve these problems. For reference purpose, the benchmark problems are provided here. They are followed by the exact or approximate analytical solutions. At present, an exact solution for the Category 6 problem is not available.
Spatial correlations and exact solution of the problem of the boson peak profile in amorphous media
NASA Astrophysics Data System (ADS)
Kirillov, Sviatoslav A.; A. Voyiatzis, George; Kolomiyets, Tatiana M.; H. Anastasiadis, Spiros
1999-11-01
Based on a model correlation function which covers spatial correlations from Gaussian to exponential, we have arrived at an exact analytic solution of the problem of the Boson peak profile in amorphous media. Probe fits made for polyisoprene and triacetin prove the working ability of the formulae obtained.
Exact Solutions to Time-dependent Mdps
NASA Technical Reports Server (NTRS)
Boyan, Justin A.; Littman, Michael L.
2000-01-01
We describe an extension of the Markov decision process model in which a continuous time dimension is included in the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.
Perturbed Coulomb Potentials in the Klein-Gordon Equation: Quasi-Exact Solution
NASA Astrophysics Data System (ADS)
Baradaran, M.; Panahi, H.
2018-05-01
Using the Lie algebraic approach, we present the quasi-exact solutions of the relativistic Klein-Gordon equation for perturbed Coulomb potentials namely the Cornell potential, the Kratzer potential and the Killingbeck potential. We calculate the general exact expressions for the energies, corresponding wave functions and the allowed values of the parameters of the potential within the representation space of sl(2) Lie algebra. In addition, we show that the considered equations can be transformed into the Heun's differential equations and then we reproduce the results using the associated special functions. Also, we study the special case of the Coulomb potential and show that in the non-relativistic limit, the solution of the Klein-Gordon equation converges to that of Schrödinger equation.
Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions.
Lira, Sérgio A; Miranda, José A
2016-01-01
We investigate a quasi-two-dimensional system composed of an initially circular ferrofluid droplet surrounded by a nonmagnetic fluid of higher density. These immiscible fluids flow in a rotating Hele-Shaw cell, under the influence of an in-plane radial magnetic field. We focus on the situation in which destabilizing bulk magnetic field effects are balanced by stabilizing centrifugal forces. In this framing, we consider the interplay of capillary and magnetic normal traction effects in determining the fluid-fluid interface morphology. By employing a vortex-sheet formalism, we have been able to find a family of exact stationary N-fold polygonal shape solutions for the interface. A weakly nonlinear theory is then used to verify that such exact interfacial solutions are in fact stable.
NASA Astrophysics Data System (ADS)
Bini, Donato; Chicone, Carmen; Mashhoon, Bahram
2018-03-01
In general relativity (GR), linearized gravitational waves propagating in empty Minkowski spacetime along a fixed spatial direction have the property that the wave front is the Euclidean plane. Beyond the linear regime, exact plane waves in GR have been studied theoretically for a long time and many exact vacuum solutions of the gravitational field equations are known that represent plane gravitational waves. These have parallel rays and uniform wave fronts. It turns out, however, that GR also admits exact solutions representing gravitational waves propagating along a fixed direction that are nonplanar. The wave front is then nonuniform and the bundle of rays is twisted. We find a class of solutions representing nonplanar unidirectional gravitational waves and study some of the properties of these twisted waves.
NASA Astrophysics Data System (ADS)
Majewski, Kurt
2018-03-01
Exact solutions of the Bloch equations with T1 - and T2 -relaxation terms for piecewise constant magnetic fields are numerically challenging. We therefore investigate an approximation for the achieved magnetization in which rotations and relaxations are split into separate operations. We develop an estimate for its accuracy and explicit first and second order derivatives with respect to the complex excitation radio frequency voltages. In practice, the deviation between an exact solution of the Bloch equations and this rotation relaxation splitting approximation seems negligible. Its computation times are similar to exact solutions without relaxation terms. We apply the developed theory to numerically optimize radio frequency excitation waveforms with T1 - and T2 -relaxations in several examples.
NASA Astrophysics Data System (ADS)
Honnell, Kevin; Burnett, Sarah; Yorke, Chloe'; Howard, April; Ramsey, Scott
2017-06-01
The Noh problem is classic verification problem in the field of compressible flows. Simple to conceptualize, it is nonetheless difficult for numerical codes to predict correctly, making it an ideal code-verification test bed. In its original incarnation, the fluid is a simple ideal gas; once validated, however, these codes are often used to study highly non-ideal fluids and solids. In this work the classic Noh problem is extended beyond the commonly-studied polytropic ideal gas to more realistic equations of state (EOS) including the stiff gas, the Nobel-Abel gas, and the Carnahan-Starling hard-sphere fluid, thus enabling verification studies to be performed on more physically-realistic fluids. Exact solutions are compared with numerical results obtained from the Lagrangian hydrocode FLAG, developed at Los Alamos. For these more realistic EOSs, the simulation errors decreased in magnitude both at the origin and at the shock, but also spread more broadly about these points compared to the ideal EOS. The overall spatial convergence rate remained first order.
Eich, F G; Hellgren, Maria
2014-12-14
We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state and exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative.
Simple models for rope substructure mechanics: application to electro-mechanical lifts
NASA Astrophysics Data System (ADS)
Herrera, I.; Kaczmarczyk, S.
2016-05-01
Mechanical systems modelled as rigid mass elements connected by tensioned slender structural members such as ropes and cables represent quite common substructures used in lift engineering and hoisting applications. Special interest is devoted by engineers and researchers to the vibratory response of such systems for optimum performance and durability. This paper presents simplified models that can be employed to determine the natural frequencies of systems having substructures of two rigid masses constrained by tensioned rope/cable elements. The exact solution for free un-damped longitudinal displacement response is discussed in the context of simple two-degree-of-freedom models. The results are compared and the influence of characteristics parameters such as the ratio of the average mass of the two rigid masses with respect to the rope mass and the deviation ratio of the two rigid masses with respect to the average mass is analyzed. This analysis gives criteria for the application of such simplified models in complex elevator and hoisting system configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eich, F. G., E-mail: eichf@missouri.edu; Hellgren, Maria
2014-12-14
We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state andmore » exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative.« less
Conformally symmetric traversable wormholes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.
2007-10-15
Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at amore » finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.« less
Knotted optical vortices in exact solutions to Maxwell's equations
NASA Astrophysics Data System (ADS)
de Klerk, Albertus J. J. M.; van der Veen, Roland I.; Dalhuisen, Jan Willem; Bouwmeester, Dirk
2017-05-01
We construct a family of exact solutions to Maxwell's equations in which the points of zero intensity form knotted lines topologically equivalent to a given but arbitrary algebraic link. These lines of zero intensity, more commonly referred to as optical vortices, and their topology are preserved as time evolves and the fields have finite energy. To derive explicit expressions for these new electromagnetic fields that satisfy the nullness property, we make use of the Bateman variables for the Hopf field as well as complex polynomials in two variables whose zero sets give rise to algebraic links. The class of algebraic links includes not only all torus knots and links thereof, but also more intricate cable knots. While the unknot has been considered before, the solutions presented here show that more general knotted structures can also arise as optical vortices in exact solutions to Maxwell's equations.
Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences.
Gao, Song; Sung, Wing-Kin; Nagarajan, Niranjan
2011-11-01
Scaffolding, the problem of ordering and orienting contigs, typically using paired-end reads, is a crucial step in the assembly of high-quality draft genomes. Even as sequencing technologies and mate-pair protocols have improved significantly, scaffolding programs still rely on heuristics, with no guarantees on the quality of the solution. In this work, we explored the feasibility of an exact solution for scaffolding and present a first tractable solution for this problem (Opera). We also describe a graph contraction procedure that allows the solution to scale to large scaffolding problems and demonstrate this by scaffolding several large real and synthetic datasets. In comparisons with existing scaffolders, Opera simultaneously produced longer and more accurate scaffolds demonstrating the utility of an exact approach. Opera also incorporates an exact quadratic programming formulation to precisely compute gap sizes (Availability: http://sourceforge.net/projects/operasf/ ).
Opera: Reconstructing Optimal Genomic Scaffolds with High-Throughput Paired-End Sequences
Gao, Song; Sung, Wing-Kin
2011-01-01
Abstract Scaffolding, the problem of ordering and orienting contigs, typically using paired-end reads, is a crucial step in the assembly of high-quality draft genomes. Even as sequencing technologies and mate-pair protocols have improved significantly, scaffolding programs still rely on heuristics, with no guarantees on the quality of the solution. In this work, we explored the feasibility of an exact solution for scaffolding and present a first tractable solution for this problem (Opera). We also describe a graph contraction procedure that allows the solution to scale to large scaffolding problems and demonstrate this by scaffolding several large real and synthetic datasets. In comparisons with existing scaffolders, Opera simultaneously produced longer and more accurate scaffolds demonstrating the utility of an exact approach. Opera also incorporates an exact quadratic programming formulation to precisely compute gap sizes (Availability: http://sourceforge.net/projects/operasf/). PMID:21929371
NASA Technical Reports Server (NTRS)
Busemann, A.; Vinh, N. X.; Culp, R. D.
1976-01-01
The problem of determining the trajectories, partially or wholly contained in the atmosphere of a spherical, nonrotating planet, is considered. The exact equations of motion for three-dimensional, aerodynamically affected flight are derived. Modified Chapman variables are introduced and the equations are transformed into a set suitable for analytic integration using asymptotic expansions. The trajectory is solved in two regions: the outer region, where the force may be considered a gravitational field with aerodynamic perturbations, and the inner region, where the force is predominantly aerodynamic, with gravity as a perturbation. The two solutions are matched directly. A composite solution, valid everywhere, is constructed by additive composition. This approach of directly matched asymptotic expansions applied to the exact equations of motion couched in terms of modified Chapman variables yields an analytical solution which should prove to be a powerful tool for aerodynamic orbit calculations.
NASA Technical Reports Server (NTRS)
Unnam, J.; Tenney, D. R.
1981-01-01
Exact solutions for diffusion in single phase binary alloy systems with constant diffusion coefficient and zero-flux boundary condition have been evaluated to establish the optimum zone size of applicability. Planar, cylindrical and spherical interface geometry, and finite, singly infinite, and doubly infinite systems are treated. Two solutions are presented for each geometry, one well suited to short diffusion times, and one to long times. The effect of zone-size on the convergence of these solutions is discussed. A generalized form of the diffusion solution for doubly infinite systems is proposed.
Alam, Md Nur; Akbar, M Ali
2013-01-01
The new approach of the generalized (G'/G)-expansion method is an effective and powerful mathematical tool in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in science, engineering and mathematical physics. In this article, the new approach of the generalized (G'/G)-expansion method is applied to construct traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. By means of this scheme, we found some new traveling wave solutions of the above mentioned equation.
SSRscanner: a program for reporting distribution and exact location of simple sequence repeats.
Anwar, Tamanna; Khan, Asad U
2006-02-20
Simple sequence repeats (SSRs) have become important molecular markers for a broad range of applications, such as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a range of molecular ecology and diversity studies. These repeated DNA sequences are found in both prokaryotes and eukaryotes. They are distributed almost at random throughout the genome, ranging from mononucleotide to trinucleotide repeats. They are also found at longer lengths (> 6 repeating units) of tracts. Most of the computer programs that find SSRs do not report its exact position. A computer program SSRscanner was written to find out distribution, frequency and exact location of each SSR in the genome. SSRscanner is user friendly. It can search repeats of any length and produce outputs with their exact position on chromosome and their frequency of occurrence in the sequence. This program has been written in PERL and is freely available for non-commercial users by request from the authors. Please contact the authors by E-mail: huzzi99@hotmail.com.
Exact and approximate solutions for transient squeezing flow
NASA Astrophysics Data System (ADS)
Lang, Ji; Santhanam, Sridhar; Wu, Qianhong
2017-10-01
In this paper, we report two novel theoretical approaches to examine a fast-developing flow in a thin fluid gap, which is widely observed in industrial applications and biological systems. The problem is featured by a very small Reynolds number and Strouhal number, making the fluid convective acceleration negligible, while its local acceleration is not. We have developed an exact solution for this problem which shows that the flow starts with an inviscid limit when the viscous effect has no time to appear and is followed by a subsequent developing flow, in which the viscous effect continues to penetrate into the entire fluid gap. An approximate solution is also developed using a boundary layer integral method. This solution precisely captures the general behavior of the transient fluid flow process and agrees very well with the exact solution. We also performed numerical simulation using Ansys-CFX. Excellent agreement between the analytical and the numerical solutions is obtained, indicating the validity of the analytical approaches. The study presented herein fills the gap in the literature and will have a broad impact on industrial and biomedical applications.
The generative basis of natural number concepts.
Leslie, Alan M; Gelman, Rochel; Gallistel, C R
2008-06-01
Number concepts must support arithmetic inference. Using this principle, it can be argued that the integer concept of exactly ONE is a necessary part of the psychological foundations of number, as is the notion of the exact equality - that is, perfect substitutability. The inability to support reasoning involving exact equality is a shortcoming in current theories about the development of numerical reasoning. A simple innate basis for the natural number concepts can be proposed that embodies the arithmetic principle, supports exact equality and also enables computational compatibility with real- or rational-valued mental magnitudes.
Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes
NASA Astrophysics Data System (ADS)
Pan, E.
2004-03-01
This paper presents an exact closed-form solution for the Eshelby problem of polygonal inclusion in anisotropic piezoelectric full- and half-planes. Based on the equivalent body-force concept of eigenstrain, the induced elastic and piezoelectric fields are first expressed in terms of line integral on the boundary of the inclusion with the integrand being the Green's function. Using the recently derived exact closed-form line-source Green's function, the line integral is then carried out analytically, with the final expression involving only elementary functions. The exact closed-form solution is applied to a square-shaped quantum wire within semiconductor GaAs full- and half-planes, with results clearly showing the importance of material orientation and piezoelectric coupling. While the elastic and piezoelectric fields within the square-shaped quantum wire could serve as benchmarks to other numerical methods, the exact closed-form solution should be useful to the analysis of nanoscale quantum-wire structures where large strain and electric fields could be induced by the misfit strain.
Hydrodynamics beyond Navier-Stokes: exact solution to the lattice Boltzmann hierarchy.
Ansumali, S; Karlin, I V; Arcidiacono, S; Abbas, A; Prasianakis, N I
2007-03-23
The exact solution to the hierarchy of nonlinear lattice Boltzmann (LB) kinetic equations in the stationary planar Couette flow is found at nonvanishing Knudsen numbers. A new method of solving LB kinetic equations which combines the method of moments with boundary conditions for populations enables us to derive closed-form solutions for all higher-order moments. A convergence of results suggests that the LB hierarchy with larger velocity sets is the novel way to approximate kinetic theory.
Exact time-dependent solutions for a self-regulating gene.
Ramos, A F; Innocentini, G C P; Hornos, J E M
2011-06-01
The exact time-dependent solution for the stochastic equations governing the behavior of a binary self-regulating gene is presented. Using the generating function technique to rephrase the master equations in terms of partial differential equations, we show that the model is totally integrable and the analytical solutions are the celebrated confluent Heun functions. Self-regulation plays a major role in the control of gene expression, and it is remarkable that such a microscopic model is completely integrable in terms of well-known complex functions.
An exact solution of the Currie-Hill equations in 1 + 1 dimensional Minkowski space
NASA Astrophysics Data System (ADS)
Balog, János
2014-11-01
We present an exact two-particle solution of the Currie-Hill equations of Predictive Relativistic Mechanics in 1 + 1 dimensional Minkowski space. The instantaneous accelerations are given in terms of elementary functions depending on the relative particle position and velocities. The general solution of the equations of motion is given and by studying the global phase space of this system it is shown that this is a subspace of the full kinematic phase space.
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507
Meerson, Baruch; Fouxon, Itzhak; Vilenkin, Arkady
2008-02-01
We employ hydrodynamic equations to investigate nonstationary channel flows of freely cooling dilute gases of hard and smooth spheres with nearly elastic particle collisions. This work focuses on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes and employing Lagrangian coordinates, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation becomes exactly soluble, and the solution develops a finite-time density blowup. The blowup has the same local features at singularity as those exhibited by the recently found family of exact solutions of the full set of ideal hydrodynamic equations [I. Fouxon, Phys. Rev. E 75, 050301(R) (2007); I. Fouxon,Phys. Fluids 19, 093303 (2007)]. The heat diffusion, however, always becomes important near the attempted singularity. It arrests the density blowup and brings about previously unknown inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. The ICSs represent exact solutions of the full set of granular hydrodynamic equations. Both the density profile of an ICS and the characteristic relaxation time toward it are determined by a single dimensionless parameter L that describes the relative role of the inelastic energy loss and heat diffusion. At L>1 the intermediate cooling dynamics proceeds as a competition between "holes": low-density regions of the gas. This competition resembles Ostwald ripening (only one hole survives at the end), and we report a particular regime where the "hole ripening" statistics exhibits a simple dynamic scaling behavior.
Numerical Solution of the Electron Transport Equation in the Upper Atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Mark Christopher; Holmes, Mark; Sailor, William C
A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.
NASA Astrophysics Data System (ADS)
Rao, T. R. Ramesh
2018-04-01
In this paper, we study the analytical method based on reduced differential transform method coupled with sumudu transform through Pades approximants. The proposed method may be considered as alternative approach for finding exact solution of Gas dynamics equation in an effective manner. This method does not require any discretization, linearization and perturbation.
Simpson, Matthew J
2015-01-01
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0
Simpson, Matthew J
2015-01-01
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0
Species tree inference by minimizing deep coalescences.
Than, Cuong; Nakhleh, Luay
2009-09-01
In a 1997 seminal paper, W. Maddison proposed minimizing deep coalescences, or MDC, as an optimization criterion for inferring the species tree from a set of incongruent gene trees, assuming the incongruence is exclusively due to lineage sorting. In a subsequent paper, Maddison and Knowles provided and implemented a search heuristic for optimizing the MDC criterion, given a set of gene trees. However, the heuristic is not guaranteed to compute optimal solutions, and its hill-climbing search makes it slow in practice. In this paper, we provide two exact solutions to the problem of inferring the species tree from a set of gene trees under the MDC criterion. In other words, our solutions are guaranteed to find the tree that minimizes the total number of deep coalescences from a set of gene trees. One solution is based on a novel integer linear programming (ILP) formulation, and another is based on a simple dynamic programming (DP) approach. Powerful ILP solvers, such as CPLEX, make the first solution appealing, particularly for very large-scale instances of the problem, whereas the DP-based solution eliminates dependence on proprietary tools, and its simplicity makes it easy to integrate with other genomic events that may cause gene tree incongruence. Using the exact solutions, we analyze a data set of 106 loci from eight yeast species, a data set of 268 loci from eight Apicomplexan species, and several simulated data sets. We show that the MDC criterion provides very accurate estimates of the species tree topologies, and that our solutions are very fast, thus allowing for the accurate analysis of genome-scale data sets. Further, the efficiency of the solutions allow for quick exploration of sub-optimal solutions, which is important for a parsimony-based criterion such as MDC, as we show. We show that searching for the species tree in the compatibility graph of the clusters induced by the gene trees may be sufficient in practice, a finding that helps ameliorate the computational requirements of optimization solutions. Further, we study the statistical consistency and convergence rate of the MDC criterion, as well as its optimality in inferring the species tree. Finally, we show how our solutions can be used to identify potential horizontal gene transfer events that may have caused some of the incongruence in the data, thus augmenting Maddison's original framework. We have implemented our solutions in the PhyloNet software package, which is freely available at: http://bioinfo.cs.rice.edu/phylonet.
The method of generating functions in exact scalar field inflationary cosmology
NASA Astrophysics Data System (ADS)
Chervon, Sergey V.; Fomin, Igor V.; Beesham, Aroonkumar
2018-04-01
The construction of exact solutions in scalar field inflationary cosmology is of growing interest. In this work, we review the results which have been obtained with the help of one of the most effective methods, viz., the method of generating functions for the construction of exact solutions in scalar field cosmology. We also include in the debate the superpotential method, which may be considered as the bridge to the slow roll approximation equations. Based on the review, we suggest a classification for the generating functions, and find a connection for all of them with the superpotential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Andres
Transport and reaction in zeolites and other porous materials, such as mesoporous silica particles, has been a focus of interest in recent years. This is in part due to the possibility of anomalous transport effects (e.g. single-file diffusion) and its impact in the reaction yield in catalytic processes. Computational simulations are often used to study these complex nonequilibrium systems. Computer simulations using Molecular Dynamics (MD) techniques are prohibitive, so instead coarse grained one-dimensional models with the aid of Kinetic Monte Carlo (KMC) simulations are used. Both techniques can be computationally expensive, both time and resource wise. These coarse-grained systems canmore » be exactly described by a set of coupled stochastic master equations, that describe the reaction-diffusion kinetics of the system. The equations can be written exactly, however, coupling between the equations and terms within the equations make it impossible to solve them exactly; approximations must be made. One of the most common methods to obtain approximate solutions is to use Mean Field (MF) theory. MF treatments yield reasonable results at high ratios of reaction rate k to hop rate h of the particles, but fail completely at low k=h due to the over-estimation of fluxes of particles within the pore. We develop a method to estimate fluxes and intrapore diffusivity in simple one- dimensional reaction-diffusion models at high and low k=h, where the pores are coupled to an equilibrated three-dimensional fluid. We thus successfully describe analytically these simple reaction-diffusion one-dimensional systems. Extensions to models considering behavior with long range steric interactions and wider pores require determination of multiple boundary conditions. We give a prescription to estimate the required parameters for these simulations. For one dimensional systems, if single-file diffusion is relaxed, additional parameters to describe particle exchange have to be introduced. We use Langevin Molecular Dynamics (MD) simulations to assess these parameters.« less
Buckling of Low Arches or Curved Beams of Small Curvature
NASA Technical Reports Server (NTRS)
Fung, Y C; Kaplan, A
1952-01-01
A general solution, based on the classical buckling criterion, is given for the problem of buckling of low arches under a lateral loading acting toward the center of curvature. For a sinusoidal arch under sinusoidal loading, the critical load can be expressed exactly as a simple function of the beam dimension parameters. For other arch shapes and load distributions, approximate values of the critical load can be obtained by summing a few terms of a rapidly converging Fourier series. The effects of initial end thrust and axial and lateral elastic support are discussed. The buckling load based on energy criterion of Karman and Tsien is also calculated. Results for both the classical and the energy criteria are compared with experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xin-Ping, E-mail: xuxp@mail.ihep.ac.cn; Ide, Yusuke
In the literature, there are numerous studies of one-dimensional discrete-time quantum walks (DTQWs) using a moving shift operator. However, there is no exact solution for the limiting probability distributions of DTQWs on cycles using a general coin or swapping shift operator. In this paper, we derive exact solutions for the limiting probability distribution of quantum walks using a general coin and swapping shift operator on cycles for the first time. Based on the exact solutions, we show how to generate symmetric quantum walks and determine the condition under which a symmetric quantum walk appears. Our results suggest that choosing various coinmore » and initial state parameters can achieve a symmetric quantum walk. By defining a quantity to measure the variation of symmetry, deviation and mixing time of symmetric quantum walks are also investigated.« less
NASA Technical Reports Server (NTRS)
Boersma, J.; Rahmat-Samii, Y.
1980-01-01
The diffraction of an arbitrary cylindrical wave by a half-plane has been treated by Rahmat-Samii and Mittra who used a spectral domain approach. In this paper, their exact solution for the total field is expressed in terms of a new integral representation. For large wave number k, two rigorous procedures are described for the exact uniform asymptotic expansion of the total field solution. The uniform expansions obtained are valid in the entire space, including transition regions around the shadow boundaries. The final results are compared with the formulations of two leading uniform theories of edge diffraction, namely, the uniform asymptotic theory and the uniform theory of diffraction. Some unique observations and conclusions are made in relating the two theories.
Algebraic Construction of Exact Difference Equations from Symmetry of Equations
NASA Astrophysics Data System (ADS)
Itoh, Toshiaki
2009-09-01
Difference equations or exact numerical integrations, which have general solutions, are treated algebraically. Eliminating the symmetries of the equation, we can construct difference equations (DCE) or numerical integrations equivalent to some ODEs or PDEs that means both have the same solution functions. When arbitrary functions are given, whether we can construct numerical integrations that have solution functions equal to given function or not are treated in this work. Nowadays, Lie's symmetries solver for ODE and PDE has been implemented in many symbolic software. Using this solver we can construct algebraic DCEs or numerical integrations which are correspond to some ODEs or PDEs. In this work, we treated exact correspondence between ODE or PDE and DCE or numerical integration with Gröbner base and Janet base from the view of Lie's symmetries.
Exact models for isotropic matter
NASA Astrophysics Data System (ADS)
Thirukkanesh, S.; Maharaj, S. D.
2006-04-01
We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.
NASA Astrophysics Data System (ADS)
Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen
2018-06-01
In this research, we study new two techniques that called the extended simple equation method and the novel (G‧/G) -expansion method. The extended simple equation method depend on the auxiliary equation (dϕ/dξ = α + λϕ + μϕ2) which has three ways for solving depends on the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (α = 0) this auxiliary equation reduces to Bernoulli equation and when (α ≠ 0, λ ≠ 0, μ ≠ 0) we the general solutions of this auxiliary equation while the novel (G‧/G) -expansion method depends also on similar auxiliary equation (G‧/G)‧ = μ + λ(G‧/G) + (v - 1)(G‧/G) 2 which depend also on the value of (λ2 - 4 (v - 1) μ) and the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (μ = 0) this auxiliary equation reduces to Bernoulli equation and when (λ2 ≠ 4 (v - 1) μ) we the general solutions of this auxiliary equation. This show how both of these auxiliary equation are special cases of Riccati equation. We apply these methods on two dimensional nonlinear Kadomtsev-Petviashvili Burgers equation in quantum plasma and three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma. We obtain the exact traveling wave solutions of these important models and under special condition on the parameters, we get solitary traveling wave solutions. All calculations in this study have been established and verified back with the aid of the Maple package program. The executed method is powerful, effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions.
Refraction of dispersive shock waves
NASA Astrophysics Data System (ADS)
El, G. A.; Khodorovskii, V. V.; Leszczyszyn, A. M.
2012-09-01
We study a dispersive counterpart of the classical gas dynamics problem of the interaction of a shock wave with a counter-propagating simple rarefaction wave, often referred to as the shock wave refraction. The refraction of a one-dimensional dispersive shock wave (DSW) due to its head-on collision with the centred rarefaction wave (RW) is considered in the framework of the defocusing nonlinear Schrödinger (NLS) equation. For the integrable cubic nonlinearity case we present a full asymptotic description of the DSW refraction by constructing appropriate exact solutions of the Whitham modulation equations in Riemann invariants. For the NLS equation with saturable nonlinearity, whose modulation system does not possess Riemann invariants, we take advantage of the recently developed method for the DSW description in non-integrable dispersive systems to obtain main physical parameters of the DSW refraction. The key features of the DSW-RW interaction predicted by our modulation theory analysis are confirmed by direct numerical solutions of the full dispersive problem.
Determination of elastic stresses in gas-turbine disks
NASA Technical Reports Server (NTRS)
Manson, S S
1947-01-01
A method is presented for the calculation of elastic stresses in symmetrical disks typical of those of a high-temperature gas turbine. The method is essentially a finite-difference solution of the equilibrium and compatibility equations for elastic stresses in a symmetrical disk. Account can be taken of point-to-point variations in disk thickness, in temperature, in elastic modulus, in coefficient of thermal expansion, in material density, and in Poisson's ratio. No numerical integration or trial-and-error procedures are involved and the computations can be performed in rapid and routine fashion by nontechnical computers with little engineering supervision. Checks on problems for which exact mathematical solutions are known indicate that the method yields results of high accuracy. Illustrative examples are presented to show the manner of treating solid disks, disks with central holes, and disks constructed either of a single material or two or more welded materials. The effect of shrink fitting is taken into account by a very simple device.
Nucleation via an unstable intermediate phase.
Sear, Richard P
2009-08-21
The pathway for crystallization from dilute vapors and solutions is often observed to take a detour via a liquid or concentrated-solution phase. For example, in moist subzero air, droplets of liquid water form, which then freeze. In this example and in many others, an intermediate phase (here liquid water) is dramatically accelerating the kinetics of a phase transition between two other phases (water vapor and ice). Here we study this phenomenon via exact computer simulations of a simple lattice model. Surprisingly, we find that the rate of nucleation of the new equilibrium phase is actually fastest when the intermediate phase is slightly unstable in the bulk, i.e., has a slightly higher free energy than the phase we start in. Nucleation occurs at a concave part of the surface and microscopic amounts of the intermediate phase can form there even before the phase is stable in the bulk. As the nucleus of the equilibrium phase is microscopic, this allows nucleation to occur effectively in the intermediate phase before it is stable in the bulk.
Nature of self-diffusion in two-dimensional fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho
Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. Here, we numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(more » $$t\\sqrt{In t)}$$ however with a rescaled time.« less
NASA Technical Reports Server (NTRS)
Mcaninch, G. L.; Rawls, J. W., Jr.
1984-01-01
An acoustic disturbance's propagation through a boundary layer is discussed with a view to the analysis of the acoustic field generated by a propfan rotor incident to the fuselage of an aircraft. Applying the parallel flow assumption, the resulting partial differential equations are reduced to an ordinary acoustic pressure differential equation by means of the Fourier transform. The methods used for the solution of this equation include those of Frobenius and of analytic continuation; both yield exact solutions in series form. Two models of the aircraft fuselage-boundary layer system are considered, in the first of which the fuselage is replaced by a flat plate and the acoustic field is assumed to be two-dimensional, while in the second the fuselage is a cylinder in a fully three-dimensional acoustic field. It is shown that the boundary layer correction improves theory-data comparisons over simple application of a pressure-doubling rule at the fuselage.
Nguyen, Sy-Tuan; Vu, Mai-Ba; Vu, Minh-Ngoc; To, Quy-Dong
2018-02-01
Closed-form solutions for the effective rheological properties of a 2D viscoelastic drained porous medium made of a Generalized Maxwell viscoelastic matrix and pore inclusions are developed and applied for cortical bone. The in-plane (transverse) effective viscoelastic bulk and shear moduli of the Generalized Maxwell rheology of the homogenized medium are expressed as functions of the porosity and the viscoelastic properties of the solid phase. When deriving these functions, the classical inverse Laplace-Carson transformation technique is avoided, due to its complexity, by considering the short and long term approximations. The approximated results are validated against exact solutions obtained from the inverse Laplace-Carson transform for a simple configuration when the later is available. An application for cortical bone with assumption of circular pore in the transverse plane shows that the proposed approximation fit very well with experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mass Distribution and Gravitational Potential of the Milky Way
NASA Astrophysics Data System (ADS)
Ninković, Slobodan
2017-04-01
Models of mass distribution in the Milky Way are discussed where those yielding the potential analytically are preferred. It is noted that there are three main contributors to the Milky Way potential: bulge, disc and dark halo. In the case of the disc the Miyamoto-Nagai formula, as simple enough, has shown as a very good solution, but it has not been able to satisfy all requirements. Therefore, improvements, such as adding new terms or combining several Miyamoto-Nagai terms, have been attempted. Unlike the disc, in studying the bulge and dark halo the flattening is usually neglected, which offers the possibility of obtaining an exact solution of the Poisson equation. It is emphasized that the Hernquist formula, used very often for the bulge potential, is a special case of another formula and the properties of that formula are analysed. In the case of the dark halo, the slopes of its cumulative mass for the inner and outer parts are explained through a new formalism presented here for the first time.
Nature of self-diffusion in two-dimensional fluids
Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; ...
2017-12-18
Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. Here, we numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(more » $$t\\sqrt{In t)}$$ however with a rescaled time.« less
Capacitive Sensors for Feedback Control of Microfluidic Devices
NASA Astrophysics Data System (ADS)
Chen, J. Z.; Darhuber, A. A.; Troian, S. M.; Wagner, S.
2003-11-01
Automation of microfluidic devices based on thermocapillary flow [1] requires feedback control and detection techniques for monitoring the location, and ideally also composition and volume of liquid droplets. For this purpose we have developed a co-planar capacitance technique with a sensitivity of 0.07 pF at a frequency of 370 kHz. The variation in capacitance due to the presence of a droplet is monitored by the output frequency of an RC relaxation oscillator consisting of two inverters, one resistor and one capacitor. We discuss the performance of this coplanar sensor as a function of the electrode dimensions and geometry. These geometric variables determine the electric field penetration depth within the liquid, which in our studies ranged from 30 to 450 microns. Numerical solutions for the capacitance corresponding to the exact fabricated geometry agree very well with experimental data. An approximate analytic solution, which ignores fringe field effects, provides a simple but excellent guide for design development. [1] A. A. Darhuber et al., Appl. Phys. Lett. 82, 657 (2003).
Principles of protein folding--a perspective from simple exact models.
Dill, K. A.; Bromberg, S.; Yue, K.; Fiebig, K. M.; Yee, D. P.; Thomas, P. D.; Chan, H. S.
1995-01-01
General principles of protein structure, stability, and folding kinetics have recently been explored in computer simulations of simple exact lattice models. These models represent protein chains at a rudimentary level, but they involve few parameters, approximations, or implicit biases, and they allow complete explorations of conformational and sequence spaces. Such simulations have resulted in testable predictions that are sometimes unanticipated: The folding code is mainly binary and delocalized throughout the amino acid sequence. The secondary and tertiary structures of a protein are specified mainly by the sequence of polar and nonpolar monomers. More specific interactions may refine the structure, rather than dominate the folding code. Simple exact models can account for the properties that characterize protein folding: two-state cooperativity, secondary and tertiary structures, and multistage folding kinetics--fast hydrophobic collapse followed by slower annealing. These studies suggest the possibility of creating "foldable" chain molecules other than proteins. The encoding of a unique compact chain conformation may not require amino acids; it may require only the ability to synthesize specific monomer sequences in which at least one monomer type is solvent-averse. PMID:7613459
Linear algebra of the permutation invariant Crow-Kimura model of prebiotic evolution.
Bratus, Alexander S; Novozhilov, Artem S; Semenov, Yuri S
2014-10-01
A particular case of the famous quasispecies model - the Crow-Kimura model with a permutation invariant fitness landscape - is investigated. Using the fact that the mutation matrix in the case of a permutation invariant fitness landscape has a special tridiagonal form, a change of the basis is suggested such that in the new coordinates a number of analytical results can be obtained. In particular, using the eigenvectors of the mutation matrix as the new basis, we show that the quasispecies distribution approaches a binomial one and give simple estimates for the speed of convergence. Another consequence of the suggested approach is a parametric solution to the system of equations determining the quasispecies. Using this parametric solution we show that our approach leads to exact asymptotic results in some cases, which are not covered by the existing methods. In particular, we are able to present not only the limit behavior of the leading eigenvalue (mean population fitness), but also the exact formulas for the limit quasispecies eigenvector for special cases. For instance, this eigenvector has a geometric distribution in the case of the classical single peaked fitness landscape. On the biological side, we propose a mathematical definition, based on the closeness of the quasispecies to the binomial distribution, which can be used as an operational definition of the notorious error threshold. Using this definition, we suggest two approximate formulas to estimate the critical mutation rate after which the quasispecies delocalization occurs. Copyright © 2014 Elsevier Inc. All rights reserved.
Nickel, J; Schürmann, H W
2007-03-01
In a recent article Kengne and Liu [Phys. Rev. E 73, 026603 (2006)] have presented a number of exact elliptic solutions for a derivative nonlinear Schrödinger equation. It is the aim of this Comment to point out that all these solutions given in Secs. II and III of this article (referred to as KL in the following) are subcases of the general solution of Eq. (KL.9). Conditions for the parameters A-E of the solutions given by Kengne and Liu can be found from general conditions for solitary and periodic elliptic solutions as shown in the following. Positive and bounded solutions can be found by considering the phase diagram. Therefore, the comment of Kengne and Liu that "we find its particular positive bounded solutions" can be specified.
An entropy maximization problem related to optical communication
NASA Technical Reports Server (NTRS)
Mceliece, R. J.; Rodemich, E. R.; Swanson, L.
1986-01-01
In relation to a problem in optical communication, the paper considers the general problem of maximizing the entropy of a stationary radom process that is subject to an average transition cost constraint. By using a recent result of Justesen and Hoholdt, an exact solution to the problem is presented and a class of finite state encoders that give a good approximation to the exact solution is suggested.
Chapter 5. Hidden Symmetry and Exact Solutions in Einstein Gravity
NASA Astrophysics Data System (ADS)
Yasui, Y.; Houri, T.
Conformal Killing-Yano tensors are introduced as ageneralization of Killing vectors. They describe symmetries of higher-dimensional rotating black holes. In particular, a rank-2 closed conformal Killing-Yano tensor generates the tower of both hidden symmetries and isometries. We review a classification of higher-dimensional spacetimes admitting such a tensor, and present exact solutions to the Einstein equations for these spacetimes.
NASA Astrophysics Data System (ADS)
Prosviryakov, E. Yu.; Spevak, L. F.
2017-12-01
A new exact solution of the Oberbeck-Boussinesq system is found. The Marangoni thermocapillary convection in an infinite fluid layer is described. It is demonstrated that the specification of tangential stresses at both boundaries of the layered velocity field is nonstationary. Velocities describe a superposition of unidirectional flows with an intermediate time interval when there are counterflows.
Exact periodic solutions of the sixth-order generalized Boussinesq equation
NASA Astrophysics Data System (ADS)
Kamenov, O. Y.
2009-09-01
This paper examines a class of nonlinear sixth-order generalized Boussinesq-like equations (SGBE): utt = uxx + 3(u2)xx + uxxxx + αuxxxxxx, α in R, depending on the positive parameter α. Hirota's bilinear transformation method is applied to the above class of non-integrable equations and exact periodic solutions have been obtained. The results confirmed the well-known nonlinear superposition principle.
Bianchi class A models in Sàez-Ballester's theory
NASA Astrophysics Data System (ADS)
Socorro, J.; Espinoza-García, Abraham
2012-08-01
We apply the Sàez-Ballester (SB) theory to Bianchi class A models, with a barotropic perfect fluid in a stiff matter epoch. We obtain exact classical solutions à la Hamilton for Bianchi type I, II and VIh=-1 models. We also find exact quantum solutions to all Bianchi Class A models employing a particular ansatz for the wave function of the universe.
Oliveira, Rafael M; Miranda, José A; Leandro, Eduardo S G
2008-01-01
The response of a ferrofluid droplet to a radial magnetic field is investigated, when the droplet is confined in a Hele-Shaw cell. We study how the stability properties of the interface and the shape of the emerging patterns react to the action of the magnetic field. At early linear stages, it is found that the radial field is destabilizing and determines the growth of fingering structures at the interface. In the weakly nonlinear regime, we have verified that the magnetic field favors the formation of peaked patterned structures that tend to become sharper and sharper as the magnitude of the magnetic effects is increased. A more detailed account of the pattern morphology is provided by the determination of nontrivial exact stationary solutions for the problem with finite surface tension. These solutions are obtained analytically and reveal the development of interesting polygon-shaped and starfishlike patterns. For sufficiently large applied fields or magnetic susceptibilities, pinch-off phenomena are detected, tending to occur near the fingertips. We have found that the morphological features obtained from the exact solutions are consistent with our linear and weakly nonlinear predictions. By contrasting the exact solutions for ferrofluids under radial field with those obtained for rotating Hele-Shaw flows with ordinary nonmagnetic fluids, we deduce that they coincide in the limit of very small susceptibilities.
A three-dimensional method-of-characteristics solute-transport model (MOC3D)
Konikow, Leonard F.; Goode, D.J.; Hornberger, G.Z.
1996-01-01
This report presents a model, MOC3D, that simulates three-dimensional solute transport in flowing ground water. The model computes changes in concentration of a single dissolved chemical constituent over time that are caused by advective transport, hydrodynamic dispersion (including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources, and mathematically simple chemical reactions (including linear sorption, which is represented by a retardation factor, and decay). The transport model is integrated with MODFLOW, a three-dimensional ground-water flow model that uses implicit finite-difference methods to solve the transient flow equation. MOC3D uses the method of characteristics to solve the transport equation on the basis of the hydraulic gradients computed with MODFLOW for a given time step. This implementation of the method of characteristics uses particle tracking to represent advective transport and explicit finite-difference methods to calculate the effects of other processes. However, the explicit procedure has several stability criteria that may limit the size of time increments for solving the transport equation; these are automatically determined by the program. For improved efficiency, the user can apply MOC3D to a subgrid of the primary MODFLOW grid that is used to solve the flow equation. However, the transport subgrid must have uniform grid spacing along rows and columns. The report includes a description of the theoretical basis of the model, a detailed description of input requirements and output options, and the results of model testing and evaluation. The model was evaluated for several problems for which exact analytical solutions are available and by benchmarking against other numerical codes for selected complex problems for which no exact solutions are available. These test results indicate that the model is very accurate for a wide range of conditions and yields minimal numerical dispersion for advection-dominated problems. Mass-balance errors are generally less than 10 percent, and tend to decrease and stabilize with time.
NASA Technical Reports Server (NTRS)
Reimers, J. R.; Heller, E. J.
1985-01-01
The exact thermal rotational spectrum of a two-dimensional rigid rotor is obtained using Gaussian wave packet dynamics. The spectrum is obtained by propagating, without approximation, infinite sets of Gaussian wave packets. These sets are constructed so that collectively they have the correct periodicity, and indeed, are coherent states appropriate to this problem. Also, simple, almost classical, approximations to full wave packet dynamics are shown to give results which are either exact or very nearly exact. Advantages of the use of Gaussian wave packet dynamics over conventional linear response theory are discussed.
[Studies for analyzing restricted ingredients such as phenylbenzoimidazole sulfonic acid].
Tokunaga, Hiroshi; Mori, Kenichiro; Onuki, Nahomi; Nosaka, Tomio; Doi, Kayo; Sakaguchi, Hiroshi; Fujii, Makiko; Takano, Katuhiro; Hayashi, Masato; Yoshizawa, Kenichi; Shimamura, Kimio; Sato, Nobuo
2006-01-01
Phenylbenzoimidazol sulfonic acid (PBS) is a kind of sunscreens in cosmetics and is nominated as the restricted ingredients in cosmetics in Japanese Pharmaceutical Affairs Act. So the analytical method for PBS was investigated by HPLC. 1.0 g of the lotions with 1.0% PBS was exactly weighed, put into a 50-mL volumetric flask. Water was added to make exactly 50 mL and this mixture was used as the sample solution. On the other hand, 1.0 g of the creams with 1.0% PBS was exactly weighed, put into a beaker. After adding 1 mL of tetrahydrofuran and dissolving the cream, that mixture was transferred to a 50-mL volumetric flask. And then the beaker was rinsed with 1 mL of tetrahydrofuran and the rinsed solution was put together into the volumetric flask. After adding water to the volumetric flask to make exactly 50 mL, this mixture was used as the sample solution. If necessary, the mixture was filtrated with a membrane filter (0.45 microm). 5.0 mL of the sample solution was pipetted and put into a 200-mL volumetric flask. After adding water to make exactly 200 mL, 20 microL of this solution was analyzed by HPLC using the ODS column (CAPCELL PAK C18 column, 4.6 mm i.d. x 250 mm), the mixture of 40 mmol/L acetic buffer (pH 3.4) and acetonitrile (3:1) with 0.8 mmol/L dodecyltrimethyl ammonium bromide and the detection wavelength of 305 nm. The working curve from 0.5 to 20.0 microg/mL showed a linear line between the concentrations of PBS and the peak areas. There was no interference of peak of PBS from the lotion and cream.
Exact analytic solution for non-linear density fluctuation in a ΛCDM universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Jaiyul; Gong, Jinn-Ouk, E-mail: jyoo@physik.uzh.ch, E-mail: jinn-ouk.gong@apctp.org
We derive the exact third-order analytic solution of the matter density fluctuation in the proper-time hypersurface in a ΛCDM universe, accounting for the explicit time-dependence and clarifying the relation to the initial condition. Furthermore, we compare our analytic solution to the previous calculation in the comoving gauge, and to the standard Newtonian perturbation theory by providing Fourier kernels for the relativistic effects. Our results provide an essential ingredient for a complete description of galaxy bias in the relativistic context.
Closed timelike curves produced by pairs of moving cosmic strings - Exact solutions
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III
1991-01-01
Exact solutions of Einstein's field equations are presented for the general case of two moving straight cosmic strings that do not intersect. The solutions for parallel cosmic strings moving in opposite directions show closed timelike curves (CTCs) that circle the two strings as they pass, allowing observers to visit their own past. Similar results occur for nonparallel strings, and for masses in (2+1)-dimensional spacetime. For finite string loops the possibility that black-hole formation may prevent the formation of CTCs is discussed.
An exact solution for a thick domain wall in general relativity
NASA Technical Reports Server (NTRS)
Goetz, Guenter; Noetzold, Dirk
1989-01-01
An exact solution of the Einstein equations for a static, planar domain wall with finite thickness is presented. At infinity, density and pressure vanish and the space-time tends to the Minkowski vacuum on one side of the wall and to the Taub vacuum on the other side. A surprising feature of this solution is that the density and pressure distribution are symmetric about the central plane of the wall whereas the space-time metric and therefore also the gravitational field experienced by a test particle is asymmetric.
NASA Astrophysics Data System (ADS)
Yan, Xiao-Yong; Han, Xiao-Pu; Zhou, Tao; Wang, Bing-Hong
2011-12-01
We propose a simplified human regular mobility model to simulate an individual's daily travel with three sequential activities: commuting to workplace, going to do leisure activities and returning home. With the assumption that the individual has a constant travel speed and inferior limit of time at home and in work, we prove that the daily moving area of an individual is an ellipse, and finally obtain an exact solution of the gyration radius. The analytical solution captures the empirical observation well.
Regular black holes in f(T) Gravity through a nonlinear electrodynamics source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junior, Ednaldo L.B.; Rodrigues, Manuel E.; Houndjo, Mahouton J.S., E-mail: ednaldobarrosjr@gmail.com, E-mail: esialg@gmail.com, E-mail: sthoundjo@yahoo.fr
2015-10-01
We seek to obtain a new class of exact solutions of regular black holes in f(T) Gravity with non-linear electrodynamics material content, with spherical symmetry in 4D. The equations of motion provide the regaining of various solutions of General Relativity, as a particular case where the function f(T)=T. We developed a powerful method for finding exact solutions, where we get the first new class of regular black holes solutions in the f(T) Theory, where all the geometrics scalars disappear at the origin of the radial coordinate and are finite everywhere, as well as a new class of singular black holes.
Renormalization of the fragmentation equation: exact self-similar solutions and turbulent cascades.
Saveliev, V L; Gorokhovski, M A
2012-12-01
Using an approach developed earlier for renormalization of the Boltzmann collision integral [Saveliev and Nanbu, Phys. Rev. E 65, 051205 (2002)], we derive an exact divergence form for the fragmentation operator. Then we reduce the fragmentation equation to the continuity equation in size space, with the flux given explicitly. This allows us to obtain self-similar solutions and to find the integral of motion for these solutions (we call it the bare flux). We show how these solutions can be applied as a description of cascade processes in three- and two-dimensional turbulence. We also suggested an empirical cascade model of impact fragmentation of brittle materials.
5D Lovelock gravity: New exact solutions with torsion
NASA Astrophysics Data System (ADS)
Cvetković, B.; Simić, D.
2016-10-01
Five-dimensional Lovelock gravity is investigated in the first order formalism. A new class of exact solutions is constructed: the Bañados, Teitelboim, Zanelli black rings with and without torsion. We show that our solution with torsion exists in a different sector of the Lovelock gravity, as compared to the Lovelock Chern-Simons sector or the one investigated by Canfora et al. The conserved charges of the solutions are found using Nester's formula, and the results are confirmed by the canonical method. We show that the theory linearized around the background with torsion possesses two additional degrees of freedom with respect to general relativity.
Exact solution of large asymmetric traveling salesman problems.
Miller, D L; Pekny, J F
1991-02-15
The traveling salesman problem is one of a class of difficult problems in combinatorial optimization that is representative of a large number of important scientific and engineering problems. A survey is given of recent applications and methods for solving large problems. In addition, an algorithm for the exact solution of the asymmetric traveling salesman problem is presented along with computational results for several classes of problems. The results show that the algorithm performs remarkably well for some classes of problems, determining an optimal solution even for problems with large numbers of cities, yet for other classes, even small problems thwart determination of a provably optimal solution.
ALARA: The next link in a chain of activation codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, P.P.H.; Henderson, D.L.
1996-12-31
The Adaptive Laplace and Analytic Radioactivity Analysis [ALARA] code has been developed as the next link in the chain of DKR radioactivity codes. Its methods address the criticisms of DKR while retaining its best features. While DKR ignored loops in the transmutation/decay scheme to preserve the exactness of the mathematical solution, ALARA incorporates new computational approaches without jeopardizing the most important features of DKR`s physical modelling and mathematical methods. The physical model uses `straightened-loop, linear chains` to achieve the same accuracy in the loop solutions as is demanded in the rest of the scheme. In cases where a chain hasmore » no loops, the exact DKR solution is used. Otherwise, ALARA adaptively chooses between a direct Laplace inversion technique and a Laplace expansion inversion technique to optimize the accuracy and speed of the solution. All of these methods result in matrix solutions which allow the fastest and most accurate solution of exact pulsing histories. Since the entire history is solved for each chain as it is created, ALARA achieves the optimum combination of high accuracy, high speed and low memory usage. 8 refs., 2 figs.« less
Small-on-large geometric anelasticity
2016-01-01
In this paper, we are concerned with finding exact solutions for the stress fields of nonlinear solids with non-symmetric distributions of defects (or more generally finite eigenstrains) that are small perturbations of symmetric distributions of defects with known exact solutions. In the language of geometric mechanics, this corresponds to finding a deformation that is a result of a perturbation of the metric of the Riemannian material manifold. We present a general framework that can be used for a systematic analysis of this class of anelasticity problems. This geometric formulation can be thought of as a material analogue of the classical small-on-large theory in nonlinear elasticity. We use the present small-on-large anelasticity theory to find exact solutions for the stress fields of some non-symmetric distributions of screw dislocations in incompressible isotropic solids. PMID:27956887
Agent-based model for the h-index - exact solution
NASA Astrophysics Data System (ADS)
Żogała-Siudem, Barbara; Siudem, Grzegorz; Cena, Anna; Gagolewski, Marek
2016-01-01
Hirsch's h-index is perhaps the most popular citation-based measure of scientific excellence. In 2013, Ionescu and Chopard proposed an agent-based model describing a process for generating publications and citations in an abstract scientific community [G. Ionescu, B. Chopard, Eur. Phys. J. B 86, 426 (2013)]. Within such a framework, one may simulate a scientist's activity, and - by extension - investigate the whole community of researchers. Even though the Ionescu and Chopard model predicts the h-index quite well, the authors provided a solution based solely on simulations. In this paper, we complete their results with exact, analytic formulas. What is more, by considering a simplified version of the Ionescu-Chopard model, we obtained a compact, easy to compute formula for the h-index. The derived approximate and exact solutions are investigated on a simulated and real-world data sets.
Rainfall-runoff response informed by exact solutions of Boussinesq equation on hillslopes
NASA Astrophysics Data System (ADS)
Bartlett, M. S., Jr.; Porporato, A. M.
2017-12-01
The Boussinesq equation offers a powerful approach forunderstanding the flow dynamics of unconfined aquifers. Though this nonlinear equation allows for concise representation of both soil and geomorphological controls on groundwater flow, it has only been solved exactly for a limited number of initial and boundary conditions. These solutions do not include source/sink terms (evapotranspiration, recharge, and seepage to bedrock) and are typically limited to horizontal aquifers. Here we present a class of exact solutions that are general to sloping aquifers and a time varying source/sink term. By incorporating the source/sink term, they may describe aquifers with both time varying recharge over seasonal or weekly time scales, as well as a loss of water from seepage to the bedrock interface, which is a common feature in hillslopes. These new solutions shed light on the hysteretic relationship between streamflow and groundwater and the behavior of the hydrograph recession curves, thus providing a robust basis for deriving a runoff curves for the partition of rainfall into infiltration and runoff.
Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity
NASA Astrophysics Data System (ADS)
Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.
2018-04-01
Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.
Early-time solution of the horizontal unconfined aquifer in the build-up phase
NASA Astrophysics Data System (ADS)
Gravanis, Elias; Akylas, Evangelos
2017-04-01
The Boussinesq equation is a dynamical equation for the free surface of saturated subsurface flows over an impervious bed. Boussinesq equation is non-linear. The non-linearity comes from the reduction of the dimensionality of the problem: The flow is assumed to be vertically homogeneous, therefore the flow rate through a cross section of the flow is proportional to the free surface height times the hydraulic gradient, which is assumed to be equal to the slope of the free surface (Dupuit approximation). In general, 'vertically' means normally on the bed; combining the Dupuit approximation with the continuity equation leads to the Boussinesq equation. There are very few transient exact solutions. Self- similar solutions have been constructed in the past by various authors. A power series type of solution was derived for a self-similar Boussinesq equation by Barenblatt in 1990. That type of solution has generated a certain amount of literature. For the unconfined flow case for zero recharge rate Boussinesq derived for the horizontal aquifer an exact solution assuming separation of variables. This is actually an exact asymptotic solution of the horizontal aquifer recession phase for late times. The kinematic wave is an interesting solution obtained by dropping the non-linear term in the Boussinesq equation. Although it is an approximate solution, and holds well only for small values of the Henderson and Wooding λ parameter (that is, for steep slopes, high conductivity or small recharge rate), it becomes less and less approximate for smaller values of the parameter, that is, it is asymptotically exact with respect to that parameter. In the present work we consider the case of the unconfined subsurface flow over horizontal bed in the build-up phase under constant recharge rate. This is a case with an infinite Henderson and Wooding parameter, that is, it is the limiting case where the non-linear term is present in the Boussinesq while the linear spatial derivative term goes away. Nonetheless, no analogue of the kinematic wave or the Boussinesq separable solution exists in this case. The late time state of the build-up phase under constant recharge rate is very simply the steady state solution. Our aim is to construct the early time asymptotic solution of this problem. The solution is expressed as a power series of a suitable similarity variable, which is constructed so that to satisfy the boundary conditions at both ends of the aquifer, that is, it is a polynomial approximation of the exact solution. The series turn out to be asymptotic and it is regularized by re-summation techniques which are used to define divergent series. The outflow rate in this regime is linear in time, and the (dimensionless) coefficient is calculated to eight significant figures. The local error of the series is quantified by its deviation from satisfying the self-similar Boussinesq equation at every point. The local error turns out to be everywhere positive, hence, so is the integrated error, which in turn quantifies the degree of convergence of the series to the exact solution.
Quantifying risks with exact analytical solutions of derivative pricing distribution
NASA Astrophysics Data System (ADS)
Zhang, Kun; Liu, Jing; Wang, Erkang; Wang, Jin
2017-04-01
Derivative (i.e. option) pricing is essential for modern financial instrumentations. Despite of the previous efforts, the exact analytical forms of the derivative pricing distributions are still challenging to obtain. In this study, we established a quantitative framework using path integrals to obtain the exact analytical solutions of the statistical distribution for bond and bond option pricing for the Vasicek model. We discuss the importance of statistical fluctuations away from the expected option pricing characterized by the distribution tail and their associations to value at risk (VaR). The framework established here is general and can be applied to other financial derivatives for quantifying the underlying statistical distributions.
Exact asymmetric Skyrmion in anisotropic ferromagnet and its helimagnetic application
NASA Astrophysics Data System (ADS)
Kundu, Anjan
2016-08-01
Topological Skyrmions as intricate spin textures were observed experimentally in helimagnets on 2d plane. Theoretical foundation of such solitonic states to appear in pure ferromagnetic model, as exact solutions expressed through any analytic function, was made long ago by Belavin and Polyakov (BP). We propose an innovative generalization of the BP solution for an anisotropic ferromagnet, based on a physically motivated geometric (in-)equality, which takes the exact Skyrmion to a new class of functions beyond analyticity. The possibility of stabilizing such metastable states in helimagnets is discussed with the construction of individual Skyrmion, Skyrmion crystal and lattice with asymmetry, likely to be detected in precision experiments.
Lungu, Radu P; Huckaby, Dale A
2008-07-21
An exactly solvable lattice model describing a binary solution is considered where rodlike molecules of types AA and BB cover the links of a honeycomb lattice, the neighboring molecular ends having three-body and orientation-dependent bonding interactions. At phase coexistence of AA-rich and BB-rich phases, the average fraction of each type of triangle of neighboring molecular ends is calculated exactly. The fractions of the different types of triangles are then used to deduce the local microscopic structure of the coexisting phases for a case of the model that contains two closed loops in the phase diagram.
Exact relativistic Toda chain eigenfunctions from Separation of Variables and gauge theory
NASA Astrophysics Data System (ADS)
Sciarappa, Antonio
2017-10-01
We provide a proposal, motivated by Separation of Variables and gauge theory arguments, for constructing exact solutions to the quantum Baxter equation associated to the N-particle relativistic Toda chain and test our proposal against numerical results. Quantum Mechanical non-perturbative corrections, essential in order to obtain a sensible solution, are taken into account in our gauge theory approach by considering codimension two defects on curved backgrounds (squashed S 5 and degenerate limits) rather than flat space; this setting also naturally incorporates exact quantization conditions and energy spectrum of the relativistic Toda chain as well as its modular dual structure.
Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.
2005-01-01
This paper is the second of a set of two papers in which we study the inverse refraction problem. The first paper, "Types of Geophysical Nonuniqueness through Minimization," studies and classifies the types of nonuniqueness that exist when solving inverse problems depending on the participation of a priori information required to obtain reliable solutions of inverse geophysical problems. In view of the classification developed, in this paper we study the type of nonuniqueness associated with the inverse refraction problem. An approach for obtaining a realistic solution to the inverse refraction problem is offered in a third paper that is in preparation. The nonuniqueness of the inverse refraction problem is examined by using a simple three-layer model. Like many other inverse geophysical problems, the inverse refraction problem does not have a unique solution. Conventionally, nonuniqueness is considered to be a result of insufficient data and/or error in the data, for any fixed number of model parameters. This study illustrates that even for overdetermined and error free data, nonlinear inverse refraction problems exhibit exact-data nonuniqueness, which further complicates the problem of nonuniqueness. By evaluating the nonuniqueness of the inverse refraction problem, this paper targets the improvement of refraction inversion algorithms, and as a result, the achievement of more realistic solutions. The nonuniqueness of the inverse refraction problem is examined initially by using a simple three-layer model. The observations and conclusions of the three-layer model nonuniqueness study are used to evaluate the nonuniqueness of more complicated n-layer models and multi-parameter cell models such as in refraction tomography. For any fixed number of model parameters, the inverse refraction problem exhibits continuous ranges of exact-data nonuniqueness. Such an unfavorable type of nonuniqueness can be uniquely solved only by providing abundant a priori information. Insufficient a priori information during the inversion is the reason why refraction methods often may not produce desired results or even fail. This work also demonstrates that the application of the smoothing constraints, typical when solving ill-posed inverse problems, has a dual and contradictory role when applied to the ill-posed inverse problem of refraction travel times. This observation indicates that smoothing constraints may play such a two-fold role when applied to other inverse problems. Other factors that contribute to inverse-refraction-problem nonuniqueness are also considered, including indeterminacy, statistical data-error distribution, numerical error and instability, finite data, and model parameters. ?? Birkha??user Verlag, Basel, 2005.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, David M.; Wilkening, Jon
2008-12-11
We classify all bifurcations from traveling waves to non-trivial time-periodic solutions of the Benjamin-Ono equation that are predicted by linearization. We use a spectrally accurate numerical continuation method to study several paths of non-trivial solutions beyond the realm of linear theory. These paths are found to either re-connect with a different traveling wave or to blow up. In the latter case, as the bifurcation parameter approaches a critical value, the amplitude of the initial condition grows without bound and the period approaches zero. We propose a conjecture that gives the mapping from one bifurcation to its counterpart on the othermore » side of the path of non-trivial solutions. By experimentation with data fitting, we identify the form of the exact solutions on the path connecting two traveling waves, which represents the Fourier coefficients of the solution as power sums of a finite number of particle positions whose elementary symmetric functions execute simple orbits in the complex plane (circles or epicycles). We then solve a system of algebraic equations to express the unknown constants in the new representation in terms of the mean, a spatial phase, a temporal phase, four integers (enumerating the bifurcation at each end of the path) and one additional bifurcation parameter. We also find examples of interior bifurcations from these paths of already non-trivial solutions, but we do not attempt to analyze their algebraic structure.« less
ERIC Educational Resources Information Center
Shumway, Richard J.
1989-01-01
Illustrated is the problem of solving equations and some different strategies students might employ when using available technology. Gives illustrations for: exact solutions, approximate solutions, and approximate solutions which are graphically generated. (RT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liemert, André, E-mail: andre.liemert@ilm.uni-ulm.de; Kienle, Alwin
Purpose: Explicit solutions of the monoenergetic radiative transport equation in the P{sub 3} approximation have been derived which can be evaluated with nearly the same computational effort as needed for solving the standard diffusion equation (DE). In detail, the authors considered the important case of a semi-infinite medium which is illuminated by a collimated beam of light. Methods: A combination of the classic spherical harmonics method and the recently developed method of rotated reference frames is used for solving the P{sub 3} equations in closed form. Results: The derived solutions are illustrated and compared to exact solutions of the radiativemore » transport equation obtained via the Monte Carlo (MC) method as well as with other approximated analytical solutions. It is shown that for the considered cases which are relevant for biomedical optics applications, the P{sub 3} approximation is close to the exact solution of the radiative transport equation. Conclusions: The authors derived exact analytical solutions of the P{sub 3} equations under consideration of boundary conditions for defining a semi-infinite medium. The good agreement to Monte Carlo simulations in the investigated domains, for example, in the steady-state and time domains, as well as the short evaluation time needed suggests that the derived equations can replace the often applied solutions of the diffusion equation for the homogeneous semi-infinite medium.« less
NASA Astrophysics Data System (ADS)
Thomson, C. J.
2004-12-01
Pseudodifferential operators (PSDOs) yield in principle exact one--way seismic wave equations, which are attractive both conceptually and for their promise of computational efficiency. The one--way operators can be extended to include multiple--scattering effects, again in principle exactly. In practice approximations must be made and, as an example, the variable--wavespeed Helmholtz equation for scalar waves in two space dimensions is here factorized to give the one--way wave equation. This simple case permits clear identification of a sequence of physically reasonable approximations to be used when the mathematically exact PSDO one--way equation is implemented on a computer. As intuition suggests, these approximations hinge on the medium gradients in the direction transverse to the main propagation direction. A key point is that narrow--angle approximations are to be avoided in the interests of accuracy. Another key consideration stems from the fact that the so--called ``standard--ordering'' PSDO indicates how lateral interpolation of the velocity structure can significantly reduce computational costs associated with the Fourier or plane--wave synthesis lying at the heart of the calculations. The decision on whether a slow or a fast Fourier transform code should be used rests upon how many lateral model parameters are truly distinct. A third important point is that the PSDO theory shows what approximations are necessary in order to generate an exponential one--way propagator for the laterally varying case, representing the intuitive extension of classical integral--transform solutions for a laterally homogeneous medium. This exponential propagator suggests the use of larger discrete step sizes, and it can also be used to approach phase--screen like approximations (though the latter are not the main interest here). Numerical comparisons with finite--difference solutions will be presented in order to assess the approximations being made and to gain an understanding of computation time differences. The ideas described extend to the three--dimensional, generally anisotropic case and to multiple scattering by invariant embedding.
Exact solutions to Brans-Dicke cosmologies in flat Friedmann universes.
NASA Technical Reports Server (NTRS)
Morganstern, R. E.
1971-01-01
The Brans-Dicke cosmological equations for flat Friedmann-type expanding universes are solved parametrically for time, density, expansion parameter, and scalar field. These results reduce to a previously obtained exact solution to the radiation cosmology. Although the scalar field may be undetectable at the present epoch, it is felt that, if it exists, it must play an important role as one approaches the initial singularity of the cosmology.
Finite element analysis of wrinkling membranes
NASA Technical Reports Server (NTRS)
Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.
1984-01-01
The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.
SSRscanner: a program for reporting distribution and exact location of simple sequence repeats
Anwar, Tamanna; Khan, Asad U
2006-01-01
Simple sequence repeats (SSRs) have become important molecular markers for a broad range of applications, such as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a range of molecular ecology and diversity studies. These repeated DNA sequences are found in both prokaryotes and eukaryotes. They are distributed almost at random throughout the genome, ranging from mononucleotide to trinucleotide repeats. They are also found at longer lengths (> 6 repeating units) of tracts. Most of the computer programs that find SSRs do not report its exact position. A computer program SSRscanner was written to find out distribution, frequency and exact location of each SSR in the genome. SSRscanner is user friendly. It can search repeats of any length and produce outputs with their exact position on chromosome and their frequency of occurrence in the sequence. Availability This program has been written in PERL and is freely available for non-commercial users by request from the authors. Please contact the authors by E-mail: huzzi99@hotmail.com PMID:17597863
Exact Solution of a Two-Species Quantum Dimer Model for Pseudogap Metals
NASA Astrophysics Data System (ADS)
Feldmeier, Johannes; Huber, Sebastian; Punk, Matthias
2018-05-01
We present an exact ground state solution of a quantum dimer model introduced by Punk, Allais, and Sachdev [Quantum dimer model for the pseudogap metal, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015)., 10.1073/pnas.1512206112], which features ordinary bosonic spin-singlet dimers as well as fermionic dimers that can be viewed as bound states of spinons and holons in a hole-doped resonating valence bond liquid. Interestingly, this model captures several essential properties of the metallic pseudogap phase in high-Tc cuprate superconductors. We identify a line in parameter space where the exact ground state wave functions can be constructed at an arbitrary density of fermionic dimers. At this exactly solvable line the ground state has a huge degeneracy, which can be interpreted as a flat band of fermionic excitations. Perturbing around the exactly solvable line, this degeneracy is lifted and the ground state is a fractionalized Fermi liquid with a small pocket Fermi surface in the low doping limit.
NASA Astrophysics Data System (ADS)
Balakin, Alexander B.
2018-03-01
The extended Einstein-Maxwell-aether-axion model describes internal interactions inside the system, which contains gravitational, electromagnetic fields, the dynamic unit vector field describing the velocity of an aether, and the pseudoscalar field associated with the axionic dark matter. The specific feature of this model is that the axion field controls the dynamics of the aether through the guiding functions incorporated into Jacobson’s constitutive tensor. Depending on the state of the axion field, these guiding functions can control and switch on or switch off the influence of acceleration, shear, vorticity and expansion of the aether flow on the state of physical system as a whole. We obtain new exact solutions, which possess the pp-wave symmetry, and indicate them by the term pp-wave aether modes in contrast to the pure pp-waves, which cannot propagate in this field conglomerate. These exact solutions describe a specific dynamic state of the pseudoscalar field, which corresponds to one of the minima of the axion potential and switches off the influence of shear and expansion of the aether flow; the model does not impose restrictions on Jacobson’s coupling constants and on the axion mass. Properties of these new exact solutions are discussed.
Global Asymptotic Behavior of Iterative Implicit Schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1994-01-01
The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.
Martelli, Fabrizio; Sassaroli, Angelo; Pifferi, Antonio; Torricelli, Alessandro; Spinelli, Lorenzo; Zaccanti, Giovanni
2007-12-24
The Green's function of the time dependent radiative transfer equation for the semi-infinite medium is derived for the first time by a heuristic approach based on the extrapolated boundary condition and on an almost exact solution for the infinite medium. Monte Carlo simulations performed both in the simple case of isotropic scattering and of an isotropic point-like source, and in the more realistic case of anisotropic scattering and pencil beam source, are used to validate the heuristic Green's function. Except for the very early times, the proposed solution has an excellent accuracy (> 98 % for the isotropic case, and > 97 % for the anisotropic case) significantly better than the diffusion equation. The use of this solution could be extremely useful in the biomedical optics field where it can be directly employed in conditions where the use of the diffusion equation is limited, e.g. small volume samples, high absorption and/or low scattering media, short source-receiver distances and early times. Also it represents a first step to derive tools for other geometries (e.g. slab and slab with inhomogeneities inside) of practical interest for noninvasive spectroscopy and diffuse optical imaging. Moreover the proposed solution can be useful to several research fields where the study of a transport process is fundamental.
NASA Technical Reports Server (NTRS)
Hu, Fang Q.
1994-01-01
It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converges slowly for high frequency waves. In this paper, we present a fast number solution for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, we show that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented.
A Path Algorithm for Constrained Estimation
Zhou, Hua; Lange, Kenneth
2013-01-01
Many least-square problems involve affine equality and inequality constraints. Although there are a variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current article proposes a new path-following algorithm for quadratic programming that replaces hard constraints by what are called exact penalties. Similar penalties arise in l1 regularization in model selection. In the regularization setting, penalties encapsulate prior knowledge, and penalized parameter estimates represent a trade-off between the observed data and the prior knowledge. Classical penalty methods of optimization, such as the quadratic penalty method, solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties!are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path-following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in Lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the Lasso and generalized Lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well-chosen examples illustrate the mechanics and potential of path following. This article has supplementary materials available online. PMID:24039382
Akhmediev, Nail; Ankiewicz, Adrian
2011-04-01
We study modulation instability (MI) of the discrete constant-background wave of the Ablowitz-Ladik (A-L) equation. We derive exact solutions of the A-L equation which are nonlinear continuations of MI at longer times. These periodic solutions comprise a family of two-parameter solutions with an arbitrary background field and a frequency of initial perturbation. The solutions are recurrent, since they return the field state to the original constant background solution after the process of nonlinear evolution has passed. These solutions can be considered as a complete resolution of the Fermi-Pasta-Ulam paradox for the A-L system. One remarkable consequence of the recurrent evolution is the nonlinear phase shift gained by the constant background wave after the process. A particular case of this family is the rational solution of the first-order or fundamental rogue wave.
Alam, Md Nur; Akbar, M Ali; Roshid, Harun-Or-
2014-01-01
Exact solutions of nonlinear evolution equations (NLEEs) play a vital role to reveal the internal mechanism of complex physical phenomena. In this work, the exact traveling wave solutions of the Boussinesq equation is studied by using the new generalized (G'/G)-expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, trigonometric, and rational functions. It is shown that the new approach of generalized (G'/G)-expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations in mathematical physics and engineering. 05.45.Yv, 02.30.Jr, 02.30.Ik.
Front and pulse solutions for the complex Ginzburg-Landau equation with higher-order terms.
Tian, Huiping; Li, Zhonghao; Tian, Jinping; Zhou, Guosheng
2002-12-01
We investigate one-dimensional complex Ginzburg-Landau equation with higher-order terms and discuss their influences on the multiplicity of solutions. An exact analytic front solution is presented. By stability analysis for the original partial differential equation, we derive its necessary stability condition for amplitude perturbations. This condition together with the exact front solution determine the region of parameter space where the uniformly translating front solution can exist. In addition, stable pulses, chaotic pulses, and attenuation pulses appear generally if the parameters are out of the range. Finally, applying these analysis into the optical transmission system numerically we find that the stable transmission of optical pulses can be achieved if the parameters are appropriately chosen.
On exact solutions for some oscillating motions of a generalized Oldroyd-B fluid
NASA Astrophysics Data System (ADS)
Khan, M.; Anjum, Asia; Qi, Haitao; Fetecau, C.
2010-02-01
This paper deals with exact solutions for some oscillating motions of a generalized Oldroyd-B fluid. The fractional calculus approach is used in the constitutive relationship of fluid model. Analytical expressions for the velocity field and the corresponding shear stress for flows due to oscillations of an infinite flat plate as well as those induced by an oscillating pressure gradient are determined using Fourier sine and Laplace transforms. The obtained solutions are presented under integral and series forms in terms of the Mittag-Leffler functions. For α = β = 1, our solutions tend to the similar solutions for ordinary Oldroyd-B fluid. A comparison between generalized and ordinary Oldroyd-B fluids is shown by means of graphical illustrations.
Mohamad, Ahmad Qushairi; Khan, Ilyas; Ismail, Zulkhibri; Shafie, Sharidan
2016-01-01
Non-coaxial rotation has wide applications in engineering devices, e.g. in food processing such as mixer machines and stirrers with a two-axis kneader, in cooling turbine blades, jet engines, pumps and vacuum cleaners, in designing thermal syphon tubes, and in geophysical flows. Therefore, this study aims to investigate unsteady free convection flow of viscous fluid due to non-coaxial rotation and fluid at infinity over an oscillating vertical plate with constant wall temperature. The governing equations are modelled by a sudden coincidence of the axes of a disk and the fluid at infinity rotating with uniform angular velocity, together with initial and boundary conditions. Some suitable non-dimensional variables are introduced. The Laplace transform method is used to obtain the exact solutions of the corresponding non-dimensional momentum and energy equations with conditions. Solutions of the velocity for cosine and sine oscillations as well as for temperature fields are obtained and displayed graphically for different values of time ( t ), the Grashof number ( Gr ), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]). Skin friction and the Nusselt number are also evaluated. The exact solutions are obtained and in limiting cases, the present solutions are found to be identical to the published results. Further, the obtained exact solutions also validated by comparing with results obtained by using Gaver-Stehfest algorithm. The interested physical property such as velocity, temperature, skin friction and Nusselt number are affected by the embedded parameters time ( t ), the Grashof number ( Gr ), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]).
Convex Banding of the Covariance Matrix
Bien, Jacob; Bunea, Florentina; Xiao, Luo
2016-01-01
We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings. PMID:28042189
Convex Banding of the Covariance Matrix.
Bien, Jacob; Bunea, Florentina; Xiao, Luo
2016-01-01
We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, C.; Bhattacharjee, A.; Skiff, F.
2006-05-15
Landau damping and Bernstein-Greene-Kruskal (BGK) modes are among the most fundamental concepts in plasma physics. While the former describes the surprising damping of linear plasma waves in a collisionless plasma, the latter describes exact undamped nonlinear solutions of the Vlasov equation. There does exist a relationship between the two: Landau damping can be described as the phase mixing of undamped eigenmodes, the so-called Case-Van Kampen modes, which can be viewed as BGK modes in the linear limit. While these concepts have been around for a long time, unexpected new results are still being discovered. For Landau damping, we show thatmore » the textbook picture of phase mixing is altered profoundly in the presence of collision. In particular, the continuous spectrum of Case-Van Kampen modes is eliminated and replaced by a discrete spectrum, even in the limit of zero collision. Furthermore, we show that these discrete eigenmodes form a complete set of solutions. Landau-damped solutions are then recovered as true eigenmodes (which they are not in the collisionless theory). For BGK modes, our interest is motivated by recent discoveries of electrostatic solitary waves in magnetospheric plasmas. While one-dimensional BGK theory is quite mature, there appear to be no exact three-dimensional solutions in the literature (except for the limiting case when the magnetic field is sufficiently strong so that one can apply the guiding-center approximation). We show, in fact, that two- and three-dimensional solutions that depend only on energy do not exist. However, if solutions depend on both energy and angular momentum, we can construct exact three-dimensional solutions for the unmagnetized case, and two-dimensional solutions for the case with a finite magnetic field. The latter are shown to be exact, fully electromagnetic solutions of the steady-state Vlasov-Poisson-Ampere system.« less
NASA Technical Reports Server (NTRS)
Storch, J.; Gates, S.
1983-01-01
The planar transverse bending behavior of a uniform cantilevered beam with rigid tip body subject to constant axial base acceleration was analyzed. The beam is inextensible and capable of small elastic transverse bending deformations only. Two classes of tip bodies are recognized: (1) mass centers located along the beam tip tangent line; and (2) mass centers with arbitrary offset towards the beam attachment point. The steady state response is studied for the beam end condition cases: free, tip mass, tip body with restricted mass center offset, and tip body with arbitrary mass center offset. The first three cases constitute classical Euler buckling problems, and the characteristic equation for the critical loads/accelerations are determined. For the last case a unique steady state solution exists. The free vibration response is examined for the two classes of tip body. The characteristic equation, eigenfunctions and their orthogonality properties are obtained for the case of restricted mass center offset. The vibration problem is nonhomogeneous for the case of arbitrary mass center offset. The exact solution is obtained as a sum of the steady state solution and a superposition of simple harmonic motions.
NASA Technical Reports Server (NTRS)
Wang, S. S.; Choi, I.
1983-01-01
Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extension. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined. Previously announced in STAR as N84-13222
A finite element based method for solution of optimal control problems
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.; Calise, Anthony J.
1989-01-01
A temporal finite element based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables that are expanded in terms of elemental values and simple shape functions. Unlike other variational approaches to optimal control problems, however, time derivatives of the states and costates do not appear in the governing variational equation. Instead, the only quantities whose time derivatives appear therein are virtual states and virtual costates. Also noteworthy among characteristics of the finite element formulation is the fact that in the algebraic equations which contain costates, they appear linearly. Thus, the remaining equations can be solved iteratively without initial guesses for the costates; this reduces the size of the problem by about a factor of two. Numerical results are presented herein for an elementary trajectory optimization problem which show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The goal is to evaluate the feasibility of this approach for real-time guidance applications. To this end, a simplified two-stage, four-state model for an advanced launch vehicle application is presented which is suitable for finite element solution.
Random element method for numerical modeling of diffusional processes
NASA Technical Reports Server (NTRS)
Ghoniem, A. F.; Oppenheim, A. K.
1982-01-01
The random element method is a generalization of the random vortex method that was developed for the numerical modeling of momentum transport processes as expressed in terms of the Navier-Stokes equations. The method is based on the concept that random walk, as exemplified by Brownian motion, is the stochastic manifestation of diffusional processes. The algorithm based on this method is grid-free and does not require the diffusion equation to be discritized over a mesh, it is thus devoid of numerical diffusion associated with finite difference methods. Moreover, the algorithm is self-adaptive in space and explicit in time, resulting in an improved numerical resolution of gradients as well as a simple and efficient computational procedure. The method is applied here to an assortment of problems of diffusion of momentum and energy in one-dimension as well as heat conduction in two-dimensions in order to assess its validity and accuracy. The numerical solutions obtained are found to be in good agreement with exact solution except for a statistical error introduced by using a finite number of elements, the error can be reduced by increasing the number of elements or by using ensemble averaging over a number of solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakin, Alexander B.; Popov, Vladimir A., E-mail: alexander.balakin@kpfu.ru, E-mail: vladipopov@mail.ru
In the framework of the Einstein-aether theory we consider a cosmological model, which describes the evolution of the unit dynamic vector field with activated rotational degree of freedom. We discuss exact solutions of the Einstein-aether theory, for which the space-time is of the Gödel-type, the velocity four-vector of the aether motion is characterized by a non-vanishing vorticity, thus the rotational vectorial modes can be associated with the source of the universe rotation. The main goal of our paper is to study the motion of test relativistic particles with a vectorial internal degree of freedom (spin or polarization), which is coupledmore » to the unit dynamic vector field. The particles are considered as the test ones in the given space-time background of the Gödel-type; the spin (polarization) coupling to the unit dynamic vector field is modeled using exact solutions of three types. The first exact solution describes the aether with arbitrary Jacobson's coupling constants; the second one relates to the case, when the Jacobson's constant responsible for the vorticity is vanishing; the third exact solution is obtained using three constraints for the coupling constants. The analysis of the exact expressions, which are obtained for the particle momentum and for the spin (polarization) four-vector components, shows that the interaction of the spin (polarization) with the unit vector field induces a rotation, which is additional to the geodesic precession of the spin (polarization) associated with the universe rotation as a whole.« less
New exact solutions for a discrete electrical lattice using the analytical methods
NASA Astrophysics Data System (ADS)
Manafian, Jalil; Lakestani, Mehrdad
2018-03-01
This paper retrieves soliton solutions to an equation in nonlinear electrical transmission lines using the semi-inverse variational principle method (SIVPM), the \\exp(-Ω(ξ)) -expansion method (EEM) and the improved tan(φ/2) -expansion method (ITEM), with the aid of the symbolic computation package Maple. As a result, the SIVPM, EEM and ITEM methods are successfully employed and some new exact solitary wave solutions are acquired in terms of kink-singular soliton solution, hyperbolic solution, trigonometric solution, dark and bright soliton solutions. All solutions have been verified back into their corresponding equations with the aid of the Maple package program. We depicted the physical explanation of the extracted solutions with the choice of different parameters by plotting some 2D and 3D illustrations. Finally, we show that the used methods are robust and more efficient than other methods. More importantly, the solutions found in this work can have significant applications in telecommunication systems where solitons are used to codify data.
NASA Astrophysics Data System (ADS)
Kudinov, I. V.; Kudinov, V. A.
2013-09-01
A mathematical model of elastic vibrations of an incompressible liquid has been developed based on the hypothesis on the finite velocity of propagation of field potentials in this liquid. A hyperbolic equation of vibrations of such a liquid with account of its relaxation properties has been obtained. An exact analytical solution of this equation has been found and investigated in detail.
Resonant vibrations of a submerged beam
NASA Astrophysics Data System (ADS)
Achenbach, J. D.; Qu, J.
1986-03-01
Forced vibration of a simply supported submerged beam of circular cross section is investigated by the use of two mathematical methods. In the first approach the problem formulation is reduced to a singular integro-differential equation for the transverse deflection. In the second approach the method of matched asymptotic expansions is employed. The integro-differential equation is solved numerically, to yield an exact solution for the frequency response. Subsequent use of a representation integral yields the radiated far field acoustic pressure. The exact results for the beam deflection are compared with approximate results that are available in the literature. Next, a matched asymptotic expansion is worked out by constructing "inner" and "outer" expansions for frequencies near and not near resonance frequencies, respectively. The two expansions are matched in an appropriate manner to yield a uniformly valid solution. The leading term of the matched asymptotic solution is compared with exact numerical results.
NASA Technical Reports Server (NTRS)
Busemann, A.; Vinh, N. X.; Culp, R. D.
1974-01-01
The general solution for the optimum three-dimensional aerodynamic control of a lifting vehicle entering a planetary atmosphere is developed. A set of dimensionless variables, modified Chapman variables, is introduced. The resulting exact equations of motion, referred to as Chapman's exact equations, have the advantage that they are completely free of the physical characteristics of the vehicle. Furthermore, a completely general lift-drag relationship is used in the derivation. The results obtained apply to any type of vehicle of arbitrary weight, dimensions and shape, having an arbitrary drag polar, and entering any planetary atmosphere. The aerodynamic controls chosen are the lift coefficient and the bank angle. General optimum control laws for these controls are developed. Several earlier particular solutions are shown to be special cases of this general result. Results are valid for both free and constrained terminal position.
Applying the Zel'dovich approximation to general relativity
NASA Astrophysics Data System (ADS)
Croudace, K. M.; Parry, J.; Salopek, D. S.; Stewart, J. M.
1994-03-01
Starting from general relativity, we give a systematic derivation of the Zel'dovich approximation describing the nonlinear evolution of collisionless dust. We begin by evolving dust along world lines, and we demonstrate that the Szekeres line element is an exact but apparently unstable solution of the evolution equations describing pancake collapse. Next, we solve the Einstein field equations by employing Hamilton-Jacobi techniques and a spatial gradient expansion. We give a prescription for evolving a primordial or 'seed' metric up to the formation of pancakes, and demonstrate its validity by rederiving the Szekeres solution approximately at third order and exactly at fifth order in spatial gradients. Finally we show that the range of validity of the expansion can be improved quite significantly if one notes that the 3-metric must have nonnegative eigenvalues. With this improvement the exact Szekeres solution is obtained after only one iteration.
Islam, Md Shafiqul; Khan, Kamruzzaman; Akbar, M Ali; Mastroberardino, Antonio
2014-10-01
The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin-Bona-Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering.
Islam, Md. Shafiqul; Khan, Kamruzzaman; Akbar, M. Ali; Mastroberardino, Antonio
2014-01-01
The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering. PMID:26064530
NASA Technical Reports Server (NTRS)
Barnes, A.
1983-01-01
An exact nonlinear solution is found to the relativistic kinetic and electrodynamic equations (in their hydromagnetic limit) that describes the large-amplitude fast-mode magnetoacoustic wave propagating normal to the magnetic field in a collisionless, previously uniform plasma. It is pointed out that a wave of this kind will be generated by transverse compression of any collisionless plasma. The solution is in essence independent of the detailed form of the particle momentum distribution functions. The solution is obtained, in part, through the method of characteristics; the wave exhibits the familiar properties of steepening and shock formation. A detailed analysis is given of the ultrarelativistic limit of this wave.
Gravitational waves in ghost free bimetric gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohseni, Morteza, E-mail: m-mohseni@pnu.ac.ir
2012-11-01
We obtain a set of exact gravitational wave solutions for the ghost free bimetric theory of gravity. With a flat reference metric, the theory admits the vacuum Brinkmann plane wave solution for suitable choices of the coefficients of different terms in the interaction potential. An exact gravitational wave solution corresponding to a massive scalar mode is also admitted for arbitrary choice of the coefficients with the reference metric being proportional to the spacetime metric. The proportionality factor and the speed of the wave are calculated in terms of the parameters of the theory. We also show that a F(R) extensionmore » of the theory admits similar solutions but in general is plagued with ghost instabilities.« less
Renormalization of the fragmentation equation: Exact self-similar solutions and turbulent cascades
NASA Astrophysics Data System (ADS)
Saveliev, V. L.; Gorokhovski, M. A.
2012-12-01
Using an approach developed earlier for renormalization of the Boltzmann collision integral [Saveliev and Nanbu, Phys. Rev. E1539-375510.1103/PhysRevE.65.051205 65, 051205 (2002)], we derive an exact divergence form for the fragmentation operator. Then we reduce the fragmentation equation to the continuity equation in size space, with the flux given explicitly. This allows us to obtain self-similar solutions and to find the integral of motion for these solutions (we call it the bare flux). We show how these solutions can be applied as a description of cascade processes in three- and two-dimensional turbulence. We also suggested an empirical cascade model of impact fragmentation of brittle materials.
NASA Astrophysics Data System (ADS)
Akram, Ghazala; Batool, Fiza
2017-10-01
The (G'/G)-expansion method is utilized for a reliable treatment of space-time fractional biological population model. The method has been applied in the sense of the Jumarie's modified Riemann-Liouville derivative. Three classes of exact traveling wave solutions, hyperbolic, trigonometric and rational solutions of the associated equation are characterized with some free parameters. A generalized fractional complex transform is applied to convert the fractional equations to ordinary differential equations which subsequently resulted in number of exact solutions. It should be mentioned that the (G'/G)-expansion method is very effective and convenient for solving nonlinear partial differential equations of fractional order whose balancing number is a negative integer.
Properties of pendular liquid bridges determined on Delaunay's roulettes
NASA Astrophysics Data System (ADS)
Mielniczuk, Boleslaw; Millet, Olivier; Gagneux, Gérard; El Youssoufi, Moulay Said
2017-06-01
This work addresses the study of capillary bridge properties between two grains, with use of recent analytical model, based on solutions of Young-Laplace equation from an inverse problem. A simple explicit criterion allows to classify the profile of capillary bridge as a surface of revolution with constant mean curvature (Delaunay roulette) using its measured geometrical parameters (gorge radius, contact angle, half-filling angle). Necessary data are obtained from experimental tests, realized on liquid bridges between two equal spherical grains. Sequences of images are recorded at several (fixed) volumes of liquid and different separations distances between the spheres (from contact to rupture), in laboratory and in micro-gravity conditions. For each configuration, an exact parametric representation of the meridian is revealed. Mean bridge curvature, internal pressure and intergranular capillary force are also determined.
Effective Hamiltonian for travelling discrete breathers
NASA Astrophysics Data System (ADS)
MacKay, Robert S.; Sepulchre, Jacques-Alexandre
2002-05-01
Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on the construction of an effective Hamiltonian enabling one to describe the dynamics of the translation degree of freedom of moving breathers. Error estimate on the approximate dynamics is also studied. The concept of the Peierls-Nabarro barrier can be made clear in this framework. We illustrate the method with two simple examples, namely the Salerno model which interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear Schrödinger system, and the Fermi-Pasta-Ulam chain.
The hexagon hypothesis: Six disruptive scenarios.
Burtles, Jim
2015-01-01
This paper aims to bring a simple but effective and comprehensive approach to the development, delivery and monitoring of business continuity solutions. To ensure that the arguments and principles apply across the board, the paper sticks to basic underlying concepts rather than sophisticated interpretations. First, the paper explores what exactly people are defending themselves against. Secondly, the paper looks at how defences should be set up. Disruptive events tend to unfold in phases, each of which invites a particular style of protection, ranging from risk management through to business continuity to insurance cover. Their impact upon any business operation will fall into one of six basic scenarios. The hexagon hypothesis suggests that everyone should be prepared to deal with each of these six disruptive scenarios and it provides them with a useful benchmark for business continuity.
NASA Astrophysics Data System (ADS)
Hosseini, Kamyar; Mayeli, Peyman; Bekir, Ahmet; Guner, Ozkan
2018-01-01
In this article, a special type of fractional differential equations (FDEs) named the density-dependent conformable fractional diffusion-reaction (DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the \\exp (-φ (\\varepsilon )) -expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.
An efficient technique for higher order fractional differential equation.
Ali, Ayyaz; Iqbal, Muhammad Asad; Ul-Hassan, Qazi Mahmood; Ahmad, Jamshad; Mohyud-Din, Syed Tauseef
2016-01-01
In this study, we establish exact solutions of fractional Kawahara equation by using the idea of [Formula: see text]-expansion method. The results of different studies show that the method is very effective and can be used as an alternative for finding exact solutions of nonlinear evolution equations (NLEEs) in mathematical physics. The solitary wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. Graphical representations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, expedient for fractional PDEs, and could be extended to other physical problems.
NASA Astrophysics Data System (ADS)
Bezerra, V. B.; Christiansen, H. R.; Cunha, M. S.; Muniz, C. R.
2017-07-01
We obtain the exact (confluent Heun) solutions to the massive scalar field in a gravity's rainbow Schwarzschild metric. With these solutions at hand, we study the Hawking radiation resulting from the tunneling rate through the event horizon. We show that the emission spectrum obeys nonextensive statistics and is halted when a certain mass remnant is reached. Next, we infer constraints on the rainbow parameters from recent LHC particle physics experiments and Hubble STIS astrophysics measurements. Finally, we study the low frequency limit in order to find the modified energy spectrum around the source.
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.
NASA Technical Reports Server (NTRS)
Chen, Guanrong
1991-01-01
An optimal trajectory planning problem for a single-link, flexible joint manipulator is studied. A global feedback-linearization is first applied to formulate the nonlinear inequality-constrained optimization problem in a suitable way. Then, an exact and explicit structural formula for the optimal solution of the problem is derived and the solution is shown to be unique. It turns out that the optimal trajectory planning and control can be done off-line, so that the proposed method is applicable to both theoretical analysis and real time tele-robotics control engineering.
NASA Technical Reports Server (NTRS)
Pogorzelski, Ronald J.
2004-01-01
When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.
Chakrabarti, Nikhil; Maity, Chandan; Schamel, Hans
2011-04-08
Compressional waves in a magnetized plasma of arbitrary resistivity are treated with the lagrangian fluid approach. An exact nonlinear solution with a nontrivial space and time dependence is obtained with boundary conditions as in Harris' current sheet. The solution shows competition among hydrodynamic convection, magnetic field diffusion, and dispersion. This results in a collapse of density and the magnetic field in the absence of dispersion. The dispersion effects arrest the collapse of density but not of the magnetic field. A possible application is in the early stage of magnetic star formation.
Liu, Jian-Guo; Du, Jian-Qiang; Zeng, Zhi-Fang; Ai, Guo-Ping
2016-10-01
The Korteweg-de Vries (KdV)-type models have been shown to describe many important physical situations such as fluid flows, plasma physics, and solid state physics. In this paper, a new (2 + 1)-dimensional KdV equation is discussed. Based on the Hirota's bilinear form and a generalized three-wave approach, we obtain new exact solutions for the new (2 + 1)-dimensional KdV equation. With the help of symbolic computation, the properties for some new solutions are presented with some figures.
Exact solutions for STO and (3+1)-dimensional KdV-ZK equations using (G‧/G2) -expansion method
NASA Astrophysics Data System (ADS)
Bibi, Sadaf; Mohyud-Din, Syed Tauseef; Ullah, Rahmat; Ahmed, Naveed; Khan, Umar
This article deals with finding some exact solutions of nonlinear fractional differential equations (NLFDEs) by applying a relatively new method known as (G‧/G2) -expansion method. Solutions of space-time fractional Sharma-Tasso-Olever (STO) equation of fractional order and (3+1)-dimensional KdV-Zakharov Kuznetsov (KdV-ZK) equation of fractional order are reckoned to demonstrate the validity of this method. The fractional derivative version of modified Riemann-Liouville, linked with Fractional complex transform is employed to transform fractional differential equations into the corresponding ordinary differential equations.
The exact fundamental solution for the Benes tracking problem
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam
2009-05-01
The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2003-01-01
A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.
Comment on "Exact solution of resonant modes in a rectangular resonator".
Gutiérrez-Vega, Julio C; Bandres, Miguel A
2006-08-15
We comment on the recent Letter by J. Wu and A. Liu [Opt. Lett. 31, 1720 (2006)] in which an exact scalar solution to the resonant modes and the resonant frequencies in a two-dimensional rectangular microcavity were presented. The analysis is incorrect because (a) the field solutions were imposed to satisfy simultaneously both Dirichlet and Neumann boundary conditions at the four sides of the rectangle, leading to an overdetermined problem, and (b) the modes in the cavity were expanded using an incorrect series ansatz, leading to an expression for the mode fields that does not satisfy the Helmholtz equation.
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Meneghini, R.
1978-01-01
A solution is presented for the electromagnetic fields radiated by an arbitrarily oriented current filament over a conducting ground plane in the case where the current propagates along the filament at the speed of light, and this solution is interpreted in terms of radiation from lightning return strokes. The solution is exact in the fullest sense; no mathematical approximations are made, and the governing differential equations and boundary conditions are satisfied. The solution has the additional attribute of being specified in closed form in terms of elementary functions. This solution is discussed from the point of view of deducing lightning current wave forms from measurements of the electromagnetic fields and understanding the effects of channel tortuosity on the radiated fields. In addition, it is compared with two approximate solutions, the traditional moment approximation and the Fraunhofer approximation, and a set of criteria describing their applicability are presented and interpreted.
Radiating black hole solutions in Einstein-Gauss-Bonnet gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominguez, Alfredo E.; Instituto Universitario Aeronautico, Avenida Fuerza Aerea km 6.5.; Gallo, Emanuel
2006-03-15
In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in n-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as the Gauss-Bonnet versions of the Bonnor-Vaidya (de Sitter/anti-de Sitter) solution, a global monopole, and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditionsmore » on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics.« less
Resolvent analysis of exact coherent solutions
NASA Astrophysics Data System (ADS)
Rosenberg, Kevin; McKeon, Beverley
2017-11-01
Exact coherent solutions have been hypothesized to constitute the state-space skeleton of turbulent trajectories and thus are of interest as a means to better understand the underlying dynamics of turbulent flows. An asymptotic description of how these types of solutions self-sustain was provided by Hall & Sherwin. Here we offer a fully-nonlinear perspective on the self-sustainment of these solutions in terms of triadic scale interactions and use the resolvent framework of McKeon & Sharma to interpret these results from an input/output point of view. We analyze traveling wave solutions and periodic orbits in channel flow, and demonstrate how resolvent analysis can be used to obtain low-dimensional representations of these flows. We gratefully acknowledge funding from the AFOSR (FA9550-16-1-0361) and J.S. Park, M.D. Graham, and J.F. Gibson for providing data for the ECS solutions.
Ma, Xiaolu; Thompson, Richard S
2017-12-01
We analyze a family of exact finite energy solutions to Maxwell's equations. These solutions are a subset of the modified-power-spectrum solutions found by Ziolkowski [Phys. Rev. A 39, 2005 (1989)10.1103/PhysRevA.39.2005]. There are three characteristic parameters in the solutions: q_{1},q_{2}, and k_{0}. q_{1} and q_{2} are related to the frequency bandwidth of the solution. In the parameter space of k_{0}q_{1}≫1 and k_{0}q_{2}≫1, they represent quasimonochromatic continuous wave fields with the main angular frequency k_{0}c and energy localized in the transverse directions. Under the restriction of q_{1}≪q_{2}, the beam propagates mainly in the +z direction with velocity c and limited diffraction.
Numerical simulation of KdV equation by finite difference method
NASA Astrophysics Data System (ADS)
Yokus, A.; Bulut, H.
2018-05-01
In this study, the numerical solutions to the KdV equation with dual power nonlinearity by using the finite difference method are obtained. Discretize equation is presented in the form of finite difference operators. The numerical solutions are secured via the analytical solution to the KdV equation with dual power nonlinearity which is present in the literature. Through the Fourier-Von Neumann technique and linear stable, we have seen that the FDM is stable. Accuracy of the method is analyzed via the L2 and L_{∞} norm errors. The numerical, exact approximations and absolute error are presented in tables. We compare the numerical solutions with the exact solutions and this comparison is supported with the graphic plots. Under the choice of suitable values of parameters, the 2D and 3D surfaces for the used analytical solution are plotted.
Approximate Expressions for the Period of a Simple Pendulum Using a Taylor Series Expansion
ERIC Educational Resources Information Center
Belendez, Augusto; Arribas, Enrique; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi
2011-01-01
An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the…
Integral Equations and Scattering Solutions for a Square-Well Potential.
ERIC Educational Resources Information Center
Bagchi, B.; Seyler, R. G.
1979-01-01
Derives Green's functions and integral equations for scattering solutions subject to a variety of boundary conditions. Exact solutions are obtained for the case of a finite spherical square-well potential, and properties of these solutions are discussed. (Author/HM)
Highly accurate symplectic element based on two variational principles
NASA Astrophysics Data System (ADS)
Qing, Guanghui; Tian, Jia
2018-02-01
For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process is simple and straightforward. In this paper, based on the seminal idea of the generalized mixed methods, a simple, stable, and highly accurate 8-node noncompatible symplectic element (NCSE8) was developed by the combination of the modified Hellinger-Reissner mixed variational principle and the minimum energy principle. To ensure the accuracy of in-plane stress results, a simultaneous equation approach was also suggested. Numerical experimentation shows that the accuracy of stress results of NCSE8 are nearly the same as that of displacement methods, and they are in good agreement with the exact solutions when the mesh is relatively fine. NCSE8 has advantages of the clearing concept, easy calculation by a finite element computer program, higher accuracy and wide applicability for various linear elasticity compressible and nearly incompressible material problems. It is possible that NCSE8 becomes even more advantageous for the fracture problems due to its better accuracy of stresses.
Well balancing of the SWE schemes for moving-water steady flows
NASA Astrophysics Data System (ADS)
Caleffi, Valerio; Valiani, Alessandro
2017-08-01
In this work, the exact reproduction of a moving-water steady flow via the numerical solution of the one-dimensional shallow water equations is studied. A new scheme based on a modified version of the HLLEM approximate Riemann solver (Dumbser and Balsara (2016) [18]) that exactly preserves the total head and the discharge in the simulation of smooth steady flows and that correctly dissipates mechanical energy in the presence of hydraulic jumps is presented. This model is compared with a selected set of schemes from the literature, including models that exactly preserve quiescent flows and models that exactly preserve moving-water steady flows. The comparison highlights the strengths and weaknesses of the different approaches. In particular, the results show that the increase in accuracy in the steady state reproduction is counterbalanced by a reduced robustness and numerical efficiency of the models. Some solutions to reduce these drawbacks, at the cost of increased algorithm complexity, are presented.
Exact and Approximate Solutions for Transient Squeezing Flow
NASA Astrophysics Data System (ADS)
Lang, Ji; Santhanam, Sridhar; Wu, Qianhong
2017-11-01
In this paper, we report two novel theoretical approaches to examine a fast-developing flow in a thin fluid gap, which is widely observed in industrial applications and biological systems. The problem is featured by a very small Reynolds number and Strouhal number, making the fluid convective acceleration is negligible, while its local acceleration is not. We have developed an exact solution for this problem which shows that the flow starts with an inviscid limit when the viscous effect has no time to appear, and is followed by a subsequent developing flow, in which the viscous effect continues to penetrate into the entire fluid gap. An approximate solution is also developed using a boundary layer integral method. This solution precisely captures the general behavior of the transient fluid flow process, and agrees very well with the exact solution. We also performed numerical simulation using Ansys-CFX. Excellent agreement between the analytical and the numerical solutions is obtained, indicating the validity of the analytical approaches. The study presented herein fills the gap in the literature, and will have a broad impact in industrial and biomedical applications. This work is supported by National Science Foundation CBET Fluid Dynamics Program under Award #1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).
Stability of exact solutions describing two-layer flows with evaporation at the interface
NASA Astrophysics Data System (ADS)
Bekezhanova, V. B.; Goncharova, O. N.
2016-12-01
A new exact solution of the equations of free convection has been constructed in the framework of the Oberbeck-Boussinesq approximation of the Navier-Stokes equations. The solution describes the joint flow of an evaporating viscous heat-conducting liquid and gas-vapor mixture in a horizontal channel. In the gas phase the Dufour and Soret effects are taken into account. The consideration of the exact solution allows one to describe different classes of flows depending on the values of the problem parameters and boundary conditions for the vapor concentration. A classification of solutions and results of the solution analysis are presented. The effects of the external disturbing influences (of the liquid flow rates and longitudinal gradients of temperature on the channel walls) on the stability characteristics have been numerically studied for the system HFE7100-nitrogen in the common case, when the longitudinal temperature gradients on the boundaries of the channel are not equal. In the system both monotonic and oscillatory modes can be formed, which damp or grow depending on the values of the initial perturbations, flow rates and temperature gradients. Hydrodynamic perturbations are most dangerous under large gas flow rates. The increasing oscillatory perturbations are developed due to the thermocapillary effect under large longitudinal gradients of temperature. The typical forms of the disturbances are shown.
An exact closed form solution for constant area compressible flow with friction and heat transfer
NASA Technical Reports Server (NTRS)
Sturas, J. I.
1971-01-01
The well-known differential equation for the one-dimensional flow of a compressible fluid with heat transfer and wall friction has no known solution in closed form for the general case. This report presents a closed form solution for the special case of constant heat flux per unit length and constant specific heat. The solution was obtained by choosing the square of a dimensionless flow parameter as one of the independent variables to describe the flow. From this exact solution, an approximate simplified form is derived that is applicable for predicting subsonic flow performance characteristics for many types of constant area passages in internal flow. The data included in this report are considered sufficiently accurate for use as a guide in analyzing and designing internal gas flow systems.
An accuracy assessment of Cartesian-mesh approaches for the Euler equations
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1995-01-01
A critical assessment of the accuracy of Cartesian-mesh approaches for steady, transonic solutions of the Euler equations of gas dynamics is made. An exact solution of the Euler equations (Ringleb's flow) is used not only to infer the order of the truncation error of the Cartesian-mesh approaches, but also to compare the magnitude of the discrete error directly to that obtained with a structured mesh approach. Uniformly and adaptively refined solutions using a Cartesian-mesh approach are obtained and compared to each other and to uniformly refined structured mesh results. The effect of cell merging is investigated as well as the use of two different K-exact reconstruction procedures. The solution methodology of the schemes is explained and tabulated results are presented to compare the solution accuracies.
Analysis of thin plates with holes by using exact geometrical representation within XFEM.
Perumal, Logah; Tso, C P; Leng, Lim Thong
2016-05-01
This paper presents analysis of thin plates with holes within the context of XFEM. New integration techniques are developed for exact geometrical representation of the holes. Numerical and exact integration techniques are presented, with some limitations for the exact integration technique. Simulation results show that the proposed techniques help to reduce the solution error, due to the exact geometrical representation of the holes and utilization of appropriate quadrature rules. Discussion on minimum order of integration order needed to achieve good accuracy and convergence for the techniques presented in this work is also included.
Exact solutions of a hierarchy of mixing speeds models
NASA Astrophysics Data System (ADS)
Cornille, H.; Platkowski, T.
1992-07-01
This paper presents several new aspects of discrete kinetic theory (DKT). First a hierarchy of d-dimensional (d=1,2,3) models is proposed with (2d+3) velocities and three moduli speeds: 0, 2, and a third one that can be arbitrary. It is assumed that the particles at rest have an internal energy which, for microscopic collisions, supplies for the loss of the kinetic energy. In a more general way than usual, collisions are allowed that mix particles with different speeds. Second, for the (1+1)-dimensional restriction of the systems of PDE for these models which have two independent quadratic collision terms we construct different exact solutions. The usual types of exact solutions are studied: periodic solutions and shock wave solutions obtained from the standard linearization of the scalar Riccati equations called Riccatian shock waves. Then other types of solutions of the coupled Riccati equations are found called non-Riccatian shock waves and they are compared with the previous ones. The main new result is that, between the upstream and downstream states, these new solutions are not necessarily monotonous. Further, for the shock problem, a two-dimensional dynamical system of ODE is solved numerically with limit values corresponding to the upstream and downstream states. As a by-product of this study two new linearizations for the Riccati coupled equations with two functions are proposed.
A procedure to construct exact solutions of nonlinear fractional differential equations.
Güner, Özkan; Cevikel, Adem C
2014-01-01
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.
1990-01-01
The accuracy of high-alpha slender-body theory (HASBT) for bodies with elliptical cross-sections is presently demonstrated by means of a comparison with exact solutions for incompressible potential flow over a wide range of ellipsoid geometries and angles of attack and sideslip. The addition of the appropriate trigonometric coefficients to the classical slender-body theory decomposition yields the formally correct HASBT, and results in accuracies previously considered unattainable.
Gödel metrics with chronology protection in Horndeski gravities
NASA Astrophysics Data System (ADS)
Geng, Wei-Jian; Li, Shou-Long; Lü, H.; Wei, Hao
2018-05-01
Gödel universe, one of the most interesting exact solutions predicted by General Relativity, describes a homogeneous rotating universe containing naked closed time-like curves (CTCs). It was shown that such CTCs are the consequence of the null energy condition in General Relativity. In this paper, we show that the Gödel-type metrics with chronology protection can emerge in Einstein-Horndeski gravity. We construct such exact solutions also in Einstein-Horndeski-Maxwell and Einstein-Horndeski-Proca theories.
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1988-01-01
An exact analytic solution is found for a basic electromagnetic wave-charged particle interaction by solving the nonlinear equations of motion. The particle position, velocity, and corresponding time are found to be explicit functions of the total phase of the wave. Particle position and velocity are thus implicit functions of time. Applications include describing the motion of a free electron driven by an intense laser beam..
NASA Astrophysics Data System (ADS)
Prosviryakov, E. Yu; Spevak, L. F.
2017-06-01
The layered convective flow of a viscous incompressible fluid is considered with the specified velocities at the bottom of an infinite layer. A new exact stationary and nonstationary solution of the Oberbeck-Boussinesq system is presented. The account of fluid velocity at the bottom is characterized by the presence of two stagnant points, this being indicative of the nonmonotonic kinetic energy profile with two local extrema.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Säkkinen, Niko; Leeuwen, Robert van; Peng, Yang
2015-12-21
We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong, whereas at smaller interactions, only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron densities. A comparison to exact results indicates that this symmetry breaking is stronglymore » correlated with the formation of a bipolaron state in which the two electrons prefer to reside on the same molecule. The results further show that the Hartree and partially self-consistent Born solutions obtained by enforcing symmetry do not compare well with exact energetics, while the fully self-consistent Born approximation improves the qualitative and quantitative agreement with exact results in the same symmetric case. This together with a presented natural occupation number analysis supports the conclusion that the fully self-consistent approximation describes partially the bipolaron crossover. These results contribute to better understanding how these approximations cope with the strong localizing effect of the electron-phonon interaction.« less
Simpson, Matthew J.; Sharp, Jesse A.; Morrow, Liam C.; Baker, Ruth E.
2015-01-01
Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction–diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction–diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially–confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially–confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit. PMID:26407013
Simpson, Matthew J; Sharp, Jesse A; Morrow, Liam C; Baker, Ruth E
2015-01-01
Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction-diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction-diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction-diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially-confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially-confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.
Revealing Numerical Solutions of a Differential Equation
ERIC Educational Resources Information Center
Glaister, P.
2006-01-01
In this article, the author considers a student exercise that involves determining the exact and numerical solutions of a particular differential equation. He shows how a typical student solution is at variance with a numerical solution, suggesting that the numerical solution is incorrect. However, further investigation shows that this numerical…
NASA Astrophysics Data System (ADS)
Krapez, J.-C.
2018-02-01
Applying the Darboux transformation in the optical-depth space allows building infinite chains of exact analytical solutions of the electromagnetic (EM) fields in planar 1D-graded dielectrics. As a matter of fact, infinite chains of solvable admittance profiles (e.g. refractive-index profiles, in the case of non-magnetic materials), together with the related EM fields are simultaneously and recursively obtained. The whole procedure has received the name "PROFIDT method" for PROperty and FIeld Darboux Transformation method. By repeating the Darboux transformations we can find out progressively more complex profiles and their EM solutions. An alternative is to stop after the first step and settle for a particular class of four-parameter admittance profiles that were dubbed of "sech(ξ)-type". These profiles are highly flexible. For this reason, they can be used as elementary bricks for building and modeling profiles of arbitrary shape. In addition, the corresponding transfer matrix involves only elementary functions. The sub-class of "sech(ξ)-type" profiles with horizontal end-slopes (S-shaped function) is particularly interesting: these can be used for high-level modeling of piecewise-sigmoidal refractive-index profiles encountered in various photonic devices such as matchinglayers, antireflection layers, rugate filters, chirped mirrors and photonic crystals. These simple analytical tools also allow exploring the fascinating properties of a new kind of structure, namely smooth quasicrystals. They can also be applied to model propagation of other types of waves in graded media such as acoustic waves and electric waves in tapered transmission lines.
Abril Hernández, José-María
2015-05-01
After half a century, the use of unsupported (210)Pb ((210)Pbexc) is still far off from being a well established dating tool for recent sediments with widespread applicability. Recent results from the statistical analysis of time series of fluxes, mass sediment accumulation rates (SAR), and initial activities, derived from varved sediments, place serious constraints to the assumption of constant fluxes, which is widely used in dating models. The Sediment Isotope Tomography (SIT) model, under the assumption of non post-depositional redistribution, is used for dating recent sediments in scenarios in that fluxes and SAR are uncorrelated and both vary with time. By using a simple graphical analysis, this paper shows that under the above assumptions, any given (210)Pbexc profile, even with the restriction of a discrete set of reference points, is compatible with an infinite number of chronological lines, and thus generating an infinite number of mathematically exact solutions for histories of initial activity concentrations, SAR and fluxes onto the SWI, with these two last ranging from zero up to infinity. Particularly, SIT results, without additional assumptions, cannot contain any statistically significant difference with respect to the exact solutions consisting in intervals of constant SAR or constant fluxes (both being consistent with the reference points). Therefore, there is not any benefit in its use as a dating tool without the explicit introduction of additional restrictive assumptions about fluxes, SAR and/or their interrelationship. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cosmology with decaying cosmological constant—exact solutions and model testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szydłowski, Marek; Stachowski, Aleksander, E-mail: marek.szydlowski@uj.edu.pl, E-mail: aleksander.stachowski@uj.edu.pl
We study dynamics of Λ(t) cosmological models which are a natural generalization of the standard cosmological model (the ΛCDM model). We consider a class of models: the ones with a prescribed form of Λ(t)=Λ{sub bare}+α{sup 2}/t{sup 2}. This type of a Λ(t) parametrization is motivated by different cosmological approaches. We interpret the model with running Lambda (Λ(t)) as a special model of an interacting cosmology with the interaction term −dΛ(t)/dt in which energy transfer is between dark matter and dark energy sectors. For the Λ(t) cosmology with a prescribed form of Λ(t) we have found the exact solution in themore » form of Bessel functions. Our model shows that fractional density of dark energy Ω{sub e} is constant and close to zero during the early evolution of the universe. We have also constrained the model parameters for this class of models using the astronomical data such as SNIa data, BAO, CMB, measurements of H(z) and the Alcock-Paczyński test. In this context we formulate a simple criterion of variability of Λ with respect to t in terms of variability of the jerk or sign of estimator (1−Ω{sub m},0−Ω{sub Λ,0}). The case study of our model enable us to find an upper limit α{sup 2} < 0.012 (2σ C.L.) describing the variation from the cosmological constant while the LCDM model seems to be consistent with various data.« less
Fokker-Planck Equations of Stochastic Acceleration: A Study of Numerical Methods
NASA Astrophysics Data System (ADS)
Park, Brian T.; Petrosian, Vahe
1996-03-01
Stochastic wave-particle acceleration may be responsible for producing suprathermal particles in many astrophysical situations. The process can be described as a diffusion process through the Fokker-Planck equation. If the acceleration region is homogeneous and the scattering mean free path is much smaller than both the energy change mean free path and the size of the acceleration region, then the Fokker-Planck equation reduces to a simple form involving only the time and energy variables. in an earlier paper (Park & Petrosian 1995, hereafter Paper 1), we studied the analytic properties of the Fokker-Planck equation and found analytic solutions for some simple cases. In this paper, we study the numerical methods which must be used to solve more general forms of the equation. Two classes of numerical methods are finite difference methods and Monte Carlo simulations. We examine six finite difference methods, three fully implicit and three semi-implicit, and a stochastic simulation method which uses the exact correspondence between the Fokker-Planck equation and the it5 stochastic differential equation. As discussed in Paper I, Fokker-Planck equations derived under the above approximations are singular, causing problems with boundary conditions and numerical overflow and underflow. We evaluate each method using three sample equations to test its stability, accuracy, efficiency, and robustness for both time-dependent and steady state solutions. We conclude that the most robust finite difference method is the fully implicit Chang-Cooper method, with minor extensions to account for the escape and injection terms. Other methods suffer from stability and accuracy problems when dealing with some Fokker-Planck equations. The stochastic simulation method, although simple to implement, is susceptible to Poisson noise when insufficient test particles are used and is computationally very expensive compared to the finite difference method.
Penetrable square-well fluids: exact results in one dimension.
Santos, Andrés; Fantoni, Riccardo; Giacometti, Achille
2008-05-01
We introduce a model of attractive penetrable spheres by adding a short-range attractive square well outside a penetrable core, and we provide a detailed analysis of structural and thermodynamical properties in one dimension using the exact impenetrable counterpart as a starting point. The model is expected to describe star polymers in regimes of good and moderate solvent under dilute conditions. We derive the exact coefficients of a low-density expansion up to second order for the radial distribution function and up to fourth order in the virial expansion. These exact results are used as a benchmark to test the reliability of approximate theories (Percus-Yevick and hypernetted chain). Notwithstanding the lack of an exact solution for arbitrary densities, our results are expected to be rather precise within a wide range of temperatures and densities. A detailed analysis of some limiting cases is carried out. In particular, we provide a complete solution of the sticky penetrable-sphere model in one dimension up to the same order in density. The issue of Ruelle's thermodynamics stability is analyzed and the region of a well-defined thermodynamic limit is identified.
The Poisson-Boltzmann theory for the two-plates problem: some exact results.
Xing, Xiang-Jun
2011-12-01
The general solution to the nonlinear Poisson-Boltzmann equation for two parallel charged plates, either inside a symmetric electrolyte, or inside a 2q:-q asymmetric electrolyte, is found in terms of Weierstrass elliptic functions. From this we derive some exact asymptotic results for the interaction between charged plates, as well as the exact form of the renormalized surface charge density.